MEMBRANES FOR FUEL CELLS

B. Viswanathan National Centre for Catalysis Research Department of Chemistry, Indian Institute of Technology Madras

5th july 2007

Why membranes are essential constituent of **Fuel cells**

- Separates the two electrodes
- Separates the two electrode reactions
- Prevents the mix up of reactants

Allows the treatment of reactions as separate processes – no mixed kinetics

Schematic representation of membrane and processes therein

Pictorial representation of possible processes in a membrane

5th july 2007

Role of membrane ?

Membranes in electrochemical devices

- Fuel cells Polymeric proton conducting membranes
- Batteries Lithium ion cells Amorphous polyethylene oxide (PEO)
- Water electrolysis Bipolar ion exchange membranes
- Sensor Polymeric membranes
- Biosensors Lipid membranes, enzyme immobilized membranes

Role decides the type of membrane employed

Required and desirable characteristics of membranes for fuel cell applications

- > High ionic conductivity (and zero electronic conductivity)
- Long-term chemical stability at elevated temperatures in oxidizing and reducing environments
- > Stable under the fuel cell potential window
- Good mechanical strength resistance to swelling
- > Low oxidant and fuel cross-over
- Low cost and ready availability

$$-(CF_{2}-CF_{2})_{x}-(CF_{2}-CF)_{y}-$$

$$| (O-CF_{2}-CF)_{m}-O-(CF_{2})_{n}-SO_{3}H$$

$$| CF_{3}$$

Advantages

- > Stable in both oxidative and reductive environments
- > Excellent proton conductor (0.07 0.23 S cm⁻¹ at 100 % RH) 1M H₂SO₄ $\sigma = 0.08$ S cm⁻¹
- > Why nation is so special as a membrane for fuel cells

Simplified Nafion[®] structure according to water content

Dry state of PFSA

Water incorporated PFSA

Fully swollen PFSA

G. Gebel, *Polymer* **41** (2000) §829

- > Dry membrane is characterized by the presence of isolated spherical ionic clusters
- As water is absorbed in the membrane, its hydrophilic domain size increases swells in water
- Swelling induces a modification of the cluster structure which become spherical water pools - in order to minimize the interfacial energy
- ➢ As more water is absorbed in the PFSA membrane, the cluster size is connected to each other through the water passage
- Water and hydrophilic solvents can penetrate the membrane through water channel and it can also provide the passage of protons - Percolation

5th july 2007

NCCR

Characteristics of Nafion[®] membranes

Membarne	Dry thickness (µm)	Equivalent weight (gmol ⁻¹ /SO ₃ ⁻)	Area resitance (Ωcm ²)	Conductiviy (Scm ⁻¹)	Water content at 25°C
Nafion 105	125	1000	-	-	-
Nafion 112	50	1100	0.07	0.165	20.7 ± 0.5
Nafion 1135	89	1100	0.10	0.11	21.1 ± 0.6
Nafion 115	125	1100	0.12	0.09	21.9 ± 0.6
Nafion 117	175	1100	0.13	0.08	23.2 ± 0.4
Nafion 1110	254	1100	-	-	38

Nafion xyzz'

xy - Equivalent weight/100

ZZ'- Thickness x 25 μm 5th july 2007 S. Slade *et al.*, J. Electrochem. Soc., 149 (2002) A1556

Characteristics of other commercial polymer membranes

Membrane	Dry thickness (µm)	Equivalent weight (gmol ⁻¹ /SO ₃ ⁻)	Conductiviy (Scm ⁻¹)	Water content (wt %)	Manufacturer
Dow	125	800	0.114	54	Dow Chemical
Aciplex-S	120	1000	0.108	43	Asahi Chemical
Gore Select	5-20	900-1100	0.028-0.096	32-43	Gore
BAM 3G	140(wet)	375 -920	N/A	87	Ballard
Flemion	50	1000	0.14	38	Asahi Glass

General structure

A polymer containing anion groups(SO₃⁻) on a polymer backbone or side chain (proton exchange membranes)

Cont.

10

Membrane	Dry thickness (µm)	Conductivity (Scm ⁻¹)	IEC (meq g ⁻¹)	Methanol diffusion coefficient (cm ² s ⁻¹ × 10 ⁶)	Manufacturer
CRA ^a	160	0.045	1.4-2.2	0.58	Solvay
CRS ^b	160	0.05	1.7-2.2	0.92	Solvay
R1010 ^c	40	0.07	1.2	0.6	IonClad
R4010	20	0.08	1.2	1.2	Pall Gelman Sciences

a. Polyethylene-Tetra-fluoroethylene radiochemically grafted sulphonyls-supliers

b. Fluorinated film - Tetra-fluoroethylene with poly(styrene sulfonic acid)

c. Tetra-fluoroethylene grafted poly(styrene sulfonic acid)

Limitations of Nafion®

 \triangleright Dehydrates at T > 80 °C & RH < 100%

Diffusion of other species

- Lack of safety during its manufacturing and use (because of fluoro carbon)
- ➢ Expensive (~ 1000 \$/m²)

Modified PFSA membranes

- Thin and reinforced PFSA membranes
- Swelling with low volatile and non aqueous solvents
- Composites with hygroscopic oxides
- Composites with solid inorganic proton conductors

Thin and reinforced PFSA membranes

- > To decrease the internal resistance
- To reduce material cost
- > To improve water management

Nafion with porous polypropylene/polysulfone

- > Thickness has been reduced to 5 $30\mu m$
- Has good conductivity & mechanical properties

Water management is improved

Drawback

Reduced mechanical strength (under high temp & swelling)

5th july 2007

Resional Carrie Br Calgeis Research Anther A

Swelling with low volatile and non aqueous solvents

- Phosphoric acid (B.P: 158 °C) with Nafion achieved a conductivity of 0.05 S cm⁻¹ at 150 °C
- Acts as a Bronsted base & solvates the proton
- Allows high operational temperature >100 °C
- Imidazole (B.P: 255 °C) and benzimidazole (B.P: 360 °C) were also tried

Limitations

- > No significant improvement in conductivity at low humidity
- Imidazole groups are not as water in solvating membrane acid groups

5th july 2007

R. Savinell^{NCCR} *et al.*, J. Electrochem. Soc., **141** (1994) L¹⁵

Composites with hygroscopic oxides

\succ SiO₂ and TiO₂

Internal (self) humidification at low operational temperatures

> Water uptake:

- Pristine Nafion 27 wt %
- Nafion containing 3 wt % SiO_2 43 wt %
- Conductivity in the range of 10⁻⁷ to 10⁻³ S cm⁻¹ at 100°C

M. Watanabe *et al.*, J. Electrochem. Soc. **143** (1996) 3847

Ritional Centre Br Caligris Research Thur the the Description of the second of the sec

Composites with solid inorganic proton conductors

- Bifunctional particles both hydrophilic and proton conducting
- Inorganic proton conductors
 - Heteropolyacids
 - zirconium phosphates
- > Decreases the chemical potential of water inside the membrane
- Provides H-bonding sites for water
 - Increase in hydration of the membrane
 - Decrease in water transport and evaporation

Nafion/HPA

Properties:

- ▶ Increased conductivity than Nafion : 0.012 0.015 S cm⁻¹ at 35 % RH
- > Water uptake:
 - Pristine Nafion 27 wt %
 - Nafion/HPA 95 wt %

Drawbacks:

- > HPA is highly water soluble eventually leaches out from PEM
- Decreased tensile strength (~14 kPa whereas Pristine Nation ~ 40 MPa)

5th july 2007

S. Malhotra *et al.*, J. Electrochem. Soc. **144** (1997) L23

Nafion/a-ZrP

Properties:

- > Water insoluble
- Has intercalated hydronium ions with conductivity of 0.1 S cm⁻¹ at 100 °C at 100% RH
- Enhanced performance is due to increased water retention capability
 - Replacement of unassociated pore water with hydrophilic α -ZrP nanoparticles
 - Capillary condensation effects due to the smaller dimensions of the free spaces in α -ZrP filled pores

Drawbacks:

- \succ H⁺ transport properties depend upon humidity
- Water management is difficult

5th july 2007

P. Costamagna *et al.*, *Electrochim Acta* **47** (2002) 1023

Why?

- > To lower the material cost
- > To improve the operating temperature
- Polymers should have high chemical and thermal stability
- Alteration of conducting property
- Preferential transport characteristics

Fluoropolymers

- Sulfonated polystyrenes first generation polymer electrolytes for fuel cells
- Suffers from a short lifetime mechanical/chemical stability
- Partially fluorinated polymer
 - Poly(tetrafluoroethylene-hexafluoropropylene) (FEP)
 - Poly(vinylidene fluoride) (PVDF)
- Prepared by grafting and then sulfonating the styrene groups
- High water uptake & high proton conductivity

5th july 2007

- Organic modified silicate electrolyte (ORMOLYTE) by using arylsulfonic anions or alkylsulfonic anions grafted to the benzyl group were attempted
- > Exhibit a proton conductivity of 10⁻² S cm⁻¹ at RT
- Chemically and thermally stable up to 200 °C
- Water uptake alteration are possible

- Cost effective and ready availability
- Good oxidation resistance of aromatic hydrocarbons
- Electrolyte for high temperature range (> 100 °C)
- Investigated systems
 - polyetheretherketone (PEEK)
 - polysulfones (PSF) or Polyethersulfone (PES)
 - polybenzimidazoles (PBI)
 - polyimides (PI)
 - polyphenylenes (PP)
 - poly(4-phenoxybenzoyl-1,4-phenylene) (PPBP)

Sulfonation of polymers

- By direct sulfonation in concentrated sulfuric acid, chlorosulfonic acid or sulfur trioxide
- By lithiation-sulfonation-oxidation
- By chemically grafting a group containing a sulfonic acid onto a polymer
- By graft copolymerization using high energy radiation followed by sulfonation of the aromatic component
- By synthesis from monomers bearing sulfonic acid groups

Modification of S-PEEK

S-PEEK

- Has excellent thermal oxidation resistance with a glass transition temperature of 143 °C
- > Conductivity, $\sigma_{100^{\circ}C} = 8 \times 10^{-3} \text{ S cm}^{-1}$ at 100 % RH

S-PEEK/SiO₂

S-PEEK containing 10 wt% SiO₂ – Exhibited best mechanical and electrical characteristics ($\sigma_{100^{\circ}C} = 9 \times 10^{-2} \text{ S cm}^{-1}$)

S-PEEK/ZrO₂

S-PEEK containing 10 wt% ZrO_2 – Exhibited low permeability and good conductivity ($\sigma_{100^{\circ}C} = 4.5 \times 10^{-2} \text{ S cm}^{-1}$)

S-PEEK/HPA

> S-PEEK containing 60 wt% TPA – Increased glass transition temperature, $_{5th j}$ by midity and conductivity (σ_{120} NCCR 0.1 S cm⁻¹) 25

Microstructures

Nafion 117

- Wide channels
- More separated
- Less branched
- Small $-SO_3^-/-SO_3^-$ separation
- $pK_a \sim -6$
- $D_{MeOH} = 2.91 \times 10^{-6} \text{ cm}^2/\text{s}$

- Narrow channels
- Less separated
- Highly branched
- Large $-SO_3^-/-SO_3^-$ separation
- $pK_a \sim -1$
- $D_{MeOH} = 6.57 \times 10^{-8} \, \text{cm}^2/\text{s}$

5th july 2007

^{NCCR} K. D. Kreuer, J. Membr. Sci. **185** (2001) ²⁶/₂₉

Limitations of sulfonated polymers

- Highly deliquescent
- Hard to recover from solution
- ➢ Has a temperature limit at 200 ℃
- \succ H⁺ conductivity decays due to decomposition of the SO₃H groups
- High sulfonation results in high swelling and therefore poor mechanical properties

Acid-Base Polymer membranes

Two Approaches:

- Basic polymer with excess acid
- Acidic polymer with excess base (sulfonated polymer with absorbed imidazole, benzimidazole or another appropriate proton acceptor)

Basic polymers	Acids
Polybenzimidazole (PBI)	H ₃ PO ₄
Poly-(ethylene oxide)s (PEO)	H_2SO_4
Polyvinyl alcohol (PVA)	HC1
Polyacrylamide (PAAM)	HNO ₃
Polyethylenimine (PEI)	HClO ₄
Nylon	

Sth july 2007

Acid doped polybenzimidazole

D. Gones et al., J. Membr. Sci., 185 (2001)²41

5th july 2007

Doping with organic and inorganic bases

Membrane	Conductivity (S cm ⁻¹)
PBI-S	4.2 x 10 ⁻⁴
PBI-S/NH ₄ OH	1.5 x 10 ⁻²
PBI-S/imidazol	e 7.9×10^{-3}
PBI-S/LiOH	1.2 x 10 ⁻²
PBI-S/NaOH	1.2 x 10 ⁻²
PBI-S/KOH	1.7 x 10 ⁻²
PBI-S/CsOH	1.7 x 10 ⁻²

N-benzylsulfonate grafted PBI (PBI-S)

J. Roziere *et al*, Solid State Ionics **145** (2001) 61

Advantages

- → High temperature oxidative stability of the blank PBI (~300 °C)
- Good chemical stability and mechanical properties of the blank PBI
- Exhibits good conductivity
- > Ease of fabrication of the composite
- Less fuel cross-over than Nation 117

Disadvantages

- Long-term stability and reliability based on composite PBI membranes must be proven
- > Conductivity of PBI $-H_3PO_4$ is 10 times < Nation 117
- > Diffusion of H_3PO_4 out of the PBI limit membrane performance

Inorganic Organic composite membranes

Justification:

- > To improve self-humidification of the membrane
- > To reduce the electro-osmotic drag
- To suppress fuel crossover
- > To improve mechanical strength
- > To improve thermal stability
- > To enhance the proton conductivity

Organic component

Perfluorosulfonic acid (PFSA) Poly-(ethylene oxide)s (PEO) Polybenzimidazole (PBI)

Sulfonated polystyrene

Sulfonated polysulfone (SPSF)

Sulfonated polyetheretherketone (SPEEK)

Inorganic component

Oxides (Silica, titania & Zirconia)

Inorganic proton conductors (zirconium phosphates, heteropolyacids, metal hydrogen sulfate)

Requirement - Stability under fuel cell operating conditions

Effect of adding an inorganic component to a polymer membrane

- > Thermodynamic changes due to hygroscopic nature
- Changes in capillary forces and the vapour liquid equilibrium as a result of changes in the pore properties
- Surface charge interactions between the composite species
- Changes the morphology of the membrane
- Membrane architecture is possible
- Membrane casting conditions allowed

 α -Zr(HPO₄)₂·H₂O

- Exhibits H⁺ conductivity upto 300 °C
- Transport mechanism is dominated by surface transport than bulk

Zirconium phosphates

 γ (ZrPO₄[O₂P(OH)₂]· *n*H₂O)

Attempts to enhance the proton conductivity

- Intercalation of functional groups
- > Composites α -ZrP membranes
- External surface area maximization (mechanical and colloidal synthesis)
- Internal surface area maximization (sol–gel synthesis and pillaring)

Intercalation of functional groups

Layered ZrP and phosphonates	σ (S cm ⁻¹) at 100°C, 95% RH
α -Zr(O ₃ P-OH) ₂ . H ₂ O *	1.8×10^{-5}
γ -ZrPO ₄ [O ₂ P(OH) ₂]. 2H ₂ O*	2×10^{-4}
$Zr(O_3P-OH)_2 \cdot nH_2O\P$	1–5 x 10 ⁻³
$Zr(O_{3}P-OH)_{1.5}(O_{3}P-C_{6}H_{4}SO_{3}H)_{0.5}$ ¶	0.9–1.1 x 10 ⁻²
Zr(O ₃ P-OH)(O ₃ P-C ₆ H ₄ SO ₃ H) nH ₂ O §	0.8–1.1 x 10 ⁻¹

* Crystalline; § Semicrystal: ¶ Amorphous

Composites *a*-ZrP membranes

- (a) s-PEK membrane (thickness 50 µm)
- (b) s-PEK filled with 35 wt% of $Zr(O_3P-OH)(O_3P-C_6H_4SO_3H).nH_2O$

5th july 2007

P. Costamagna et al., Electrochimica Acta 47 (2002) 1023

Heteropolyacids - H₃PM₁₂O₄₀ (cluster species)

- 0.18 S cm⁻¹ for $H_3PW_{12}O_{40}.29H_2O$
- **0.17 S cm⁻¹** for H₃PMo₁₂O₄₀.29H₂O
- > Thermally stable at temperatures of interest, < 200 °C
- Greater water uptake, but decreased tensile strength than Nafion 117
- ➤ Water soluble need to be immobilized

Proton transport in polymer/nano particle composite membranes

- Increases the swelling of the membranes at lower relative humidity
- Increases the resistance to fuel crossover
- Increases the proton transport through the water phase and reduces methanol permeability

5th july 2007

Hydrogen sulphates, MHSO₄

M - Rb, Cs, or NH_4^+

- H-bonded solid acids with disordered phases show high conductivity
- Upon slight heating changes to disordered structure
- Proton transport is due to reorientation of SO₄ groups in the disordered structure

Drawbacks

- ➢ Water soluble
- Poor mechanical strength
- Volume expansion at raised temperatures

 $_{5th july 2007}$ SO₄ reduced under H₂ atm

Proton transport mechanism in CsHSO₄

- \succ CsHSO₄ consist of oxyanions, linked together through hydrogen bonds
- At 141°C it undergoes a "superprotonic" phase change (from monoclinic to tetragonal structure)
- > Undergoes rapid reorientation time scale 10^{-11} sec
- Proton conductivity 10⁻² S cm⁻¹ ^{5th july 2007} S. M. Haile *et al*, *Nature* 410 (2001) 1589

Conceptual representation of Hybrid Composite

Characteristics of Hybrid Inorganic-Organic Composites

- Hybrid membranes Isotropic, flexible, amorphous nanocomposite materials
- > Material properties can be widely controlled
- > Thermal stability can be improved
- > The composite is flexible and homogeneous

Systems investigated

- \succ GPTS*–STA[#]–SiO₂
- ➢ GPTS−STA−ZrP
- ➢ GPTS-SiO₂, H⁺ conductivity 1 x 10⁻⁷ - 3.6 x 10⁻⁶ S cm⁻¹ at 20 - 100°C
- ➢ GPTS–SiO₂ with 30 wt% STA, H⁺ conductivity 1.4 x 10⁻³ − 1.9 x 10⁻² S cm⁻¹ at 20 − 100°C
- ➢ GPTS–ZrP 30 wt% STA, H⁺ conductivity 2 x 10⁻² S cm⁻¹ at 100°C
- *3-glycidoxypropyltrimethoxysilane 5th july 2007 # silicotungstic acid

Inorganic additives enhanced thermal stability and water uptake

> The proton conducting path is through the pseudo-PEO network

5th july 2007

Y. Park et al., Solid State Ionics 145 (2001) 149

Requirements for DMFC membranes

> Operation at high temperature and at low humid condition

► Low methanol crossover ($<10^{-6}$ mol min⁻¹ cm⁻¹) or low methanol diffusion coefficient in the membrane ($<5.6 \times 10^{-6}$ cm² s⁻¹ at T = 25 °C)

> High ionic conductivity (> 80 mS cm^{-1})

> High chemical and mechanical durability especially at T > 80 °C (for increased CO tolerance)

 $\succ \text{ Low cost } (<\$10 \text{ kW}^{-1} \text{ based on a PEMFC})$

Challenges ahead for the development of

membranes for DMFC

Membranes with controlled methanol permeability represents a primary goal

> Nafion - Instability at T > 80°C & RH < 100%, diffusion of other species and cost (~ 1000 /m²)

Alternative membranes - sulfonated polysulfones (PSU), polybenzimidazole (PBI), sulfonated polyetherketones (SPEK), & sulfonated polyetheretherketones (SPEEK)

Sulfonation of these polymers leads to the formation of water-soluble polymers at high sulfonation levels

> The procedure and the reaction conditions are sometimes extreme

Compromise needs to balance the hydrophilicity and the hydrophobicity

Futuristic Outlook

- The search for alternate new membranes for fuel cell application should not start from ionic conductivity
- Alternate membranes can be superior to Nafion
 - stability in less humid conditions,
 - restricted or reduced swelling index as compared to Nafion &
 - showing improved activities against the limitations for fuel cross over from anode
- Composite or hybrid systems is desirable
 - to improve the durability

➢ to exploit the electronegative environment provided by the ^{5th july 2007} matrices

Why Hybrid Organic-Inorganic Composites?

Hybrid organic-inorganic composites show controllable physical properties (thermal & mechanical) by combining the properties of both organic polymers and inorganic compounds

Composite membranes - Proton conductivity of polymer electrolyte membranes can be considerably improved by incorporating fast proton conductors

Fast proton conductors - Zirconium phosphate, Titanium phosphate, Calcium phosphate, Heteropolyacids, Boron phosphate (BPO_4)

> The strong interaction between the organic polymer and inorganic mineral is expected to result in a hybrid with markedly improved properties

- Inorganic fillers or proton conducting species can also function as catalysts for the fuel thus decomposing methanol
- This role of the components of membrane has not yet established or realized yet
- Salts of heteropoly anions can function as catalysts for the methanol decomposition and this could also result in the reduced cross over
- ✓ It is necessary that this role is identified and established so that new membrane development can have this additional criterion built in the search

Objective

- > To develop a simple and controllable fabrication method
- > To develop self-humidifying membrane
- To develop cost effective membrane with appreciable
 conductivity and thermal and mechanical stability

PVA-ZrP-SWA (10,20 & 30%)

composite membranes

- PVA is cost effective polymer
- HPAs are generally water-soluble
- Composite matrix reduces the leaching of HPA
- - Zirconium phosphate suppress crack formation
 - mitigates HPA solubility
 - contributes to protonic conduction

Dried at 95°C for 2 h and stored at 100 % RH

Cu K_{α} XRD patterns of composite membranes and its components for comparison

> $2\theta = 20^{\circ}$ corresponds to the (101) plane of PVA

> $2\theta = 20$ to 40° - overlap of the diffraction lines of ZrP and SWA

Absence of any sharp diffraction line - uniform distribution.
 5th july 2007 NCCR

FT-IR spectra of composite membranes

- Characteristic bands of PVA 3260 cm⁻¹ and 2900 cm⁻¹ represent O–H stretching and -CH₂ stretching; 1420 cm⁻¹ is for -CH₃ bending
- Characteristics of ZrP 500 cm⁻¹ and 1050 cm⁻¹ are due to Zr-O and P-O₄ asymmetric stretching; 969 cm⁻¹ is due to P-OH asymmetric stretching
- Band of W-Ob-W blue shift from 779 to 790 cm⁻¹; W-O_t bond red shifted from 926 to 918 cm⁻¹

5th july 2007

TGA analysis of composite membranes in a temperature range from 50 to 800 °C

- ➢ At 100 °C loss of absorbed water molecules
- At 200-300 °C decomposition of polyvinyl alcohol
- >300 °C decomposition of silicotungstic acid to respective metal oxides combined with loss due to phase transition

5th july 2007

Water uptake, swelling and IEC values for different hybrid membranes with a 250 μ m thickness

Membrane	Water uptake (wt %)	Swelling (%)	IEC(meq/g)
PVA-ZrP-SWA(10%)	204	90	0.902
PVA-ZrP-SWA(20%)	388	170	0.958
PVA-ZrP-SWA(30%)	482	230	1.07

$$IEC = \frac{V \times M}{W_{dry}}$$

- IEC ion-exchange capacity (meq g^{-1}),
- V Added titrant volume at the equivalent point (ml),
- M Molar concentration of the titrant and
- $W_{\rm dry}$ -The dry mass of the sample (g)

5th july 2007

NCCR

Surface morphology

PVA-ZrP-SWA(10%)

PVA-ZrP-SWA(20%)

PVA-ZrP-SWA(30%)

×

Proton conductivity at 60 % RH as a function of temperature

Frequency: 10 Hz to 1 MHz Amplitude: 5 mV at 60 % RH

5th july 2007

Methanol cross over studies

Concentration of crossed methanol as a function of crossover time

Methanol permeability of hybrid membranes compared with Nafion 115

PVA-ZrP-CsHPA (Cs salt of SWA)

composite membranes

HPA solubility

- ✓ forming composites
- ✓ ion exchanging protons of HPA with larger cations like Cs⁺, NH₄⁺, Rb⁺ and Tl⁺

Water uptake, swelling and IEC values for PVA-ZrP-Cs₁SWA and PVA-ZrP-Cs₂SWA hybrid membranes with a 180 μ m thickness compared with Nafion 115

Membrane	Water uptake	Swelling (%)	IEC (meq/g)
	(%)		
PVA-ZrP-Cs ₁ SWA	260	100	3.2
PVA-ZrP-Cs ₂ SWA	140	85	3
Nafion [®] 115	22	12	0.9

Cu K_{α} XRD patterns of PVA-ZrP-Cs₁SWA and PVA-ZrP-Cs₂SWA hybrid membranes

The broad hump in the 2θ range 20 to 35 is due to the presence of PVA and zirconium phosphate

Assignments of main absorption bands for PVA-ZrP-Cs₁SWA and PVA-ZrP-Cs₂SWA hybrid membranes

Vibration frequency (cm ⁻¹)		Bond Assignment	
PVA-ZrP-Cs ₁ SWA	PVA-ZrP-Cs ₂ SWA		
981 cm ⁻¹	969 cm ⁻¹	W=O _t stretching	
917 cm ⁻¹	916 cm ⁻¹	X-O stretching	
876 cm ⁻¹	-	corner sharing W-O _b -W	
744 cm ⁻¹	793 cm ⁻¹	edge sharing W-O _b -W	
3274 cm ⁻¹	3257 cm ⁻¹	O-H stretching	
2906 cm ⁻¹	2907 cm ⁻¹	-CH ₂ stretching	
1426 cm ⁻¹	1413 cm ⁻¹	-CH ₃ bending	
504 cm ⁻¹	525 cm ⁻¹	Zr-O symmetric stretching	
1018 cm ⁻¹	1085 cm ⁻¹	$P-O_4$ symmetric stretching	

Scanning electron micrographs of PVA-ZrP-Cs₁SWA and PVA-ZrP-Cs₂SWA hybrid membranes

Concentration of crossed methanol as a function of crossover time

Proton conductivity at 50 % RH as a function of temperature for PVA-ZrP-Cs₁SWA and PVA-ZrP-Cs₂SWA membranes compared with Nafion[®] 115 at 100% RH

Methanol permeability of PVA-ZrP-Cs₁SWA and PVA-ZrP-Cs₂SWA hybrid membranes compared with Nafion® 115

Comparison of conductivity and permeability for various membranes

Membrane	RH (%)	Temperature (°C)	Conductivity (Scm ⁻¹)	Permeability (cm ² s ⁻¹)	References
PVA-ZrP-Cs ₁ SWA	50	100	0.013	2 x 10 ⁻⁶	J. Power Sources 163 (2006) 433
PVA-ZrP-Cs ₂ SWA	50	100	0.02	3 x 10 ⁻⁶	"
Nafion [®] 115	100	90	0.03	3.5 x 10 ⁻⁶	"
Nafion [®] 115/Cs ⁺ ,NH4 ⁺ , Rb ⁺ and Tl ⁺ modified PTA	35	120	0.016	-	J. Membr. Sci., 217 (2003) 5
SPEK/ZP/ZrO ₂ (70/20/10 wt %)	100	70	2.3 x 10 ⁻³	-	Solid State Ionics, 162– 163 (2003) 269-275.
PVA/PWA/SiO ₂	-	-	0.004-0.017	10 ⁻⁷ to 10 ⁻⁸	Solid State Ionics, 171 (2004) 121-127
PEG/SiO ₂ /SWA	100	80	0.01	10^{-5} to 10^{-6}	J. Power Sources, 139 (2005) 141-151
PEG/SiO ₂ /PWA	-	-	10 ⁻⁵ to 10 ⁻³	10 ⁻⁶ to10 ⁻⁷	J. Membr. Sci., 254 (2005) 197-205
PVA–SiO ₂ –SWA	100	100	4.13 x 10 ⁻³	-	J. Membr. Sci., 275 (2006) 105-109
SPEEK/PWA	100	100	1.7 x 10 ⁻²	-	J. Membr. Sci., 254 (2005) 197-205

Passive cell DMFC

Electrode area = $2 \times 3 \text{ cm}^2$ catalyst loading = 6 mg/cm^2 $4 \text{ M CH}_3\text{OH}$

Polarization and power density curves for passive DMFC cell with Nafion[®] 115, PyA₁Z₂P₀Cs₁SWA and PVA-ZrP-Cs₂SWCCR hybrid membranes as proton conducting electrolyte at 273 K and at atmospheric pressure

Characteristic of commercial and composite membranes for DMFCs

Membrane	Water uptake (%)	IEC meq g ⁻¹	Methanol diffusion coefficient cm ² s ⁻¹	DMFC performance	Proton conductivity
Nafion 117	28-31	0.9	1.72 × 10 ⁻⁶	OCV=0.65 V and current density 100 mAcm ⁻² (0.5 V, 70°C, 2 bar air, 2 M)	95 mS cm⁻¹ (25°C)
CRA-08 °	33.7	1.4- 2.2	0.58 × 10 ⁻⁶	-	45 mS cm⁻¹ (60° <i>C</i>)
IonClad [®] R1010	-	1.2	0.6 × 10 ⁻⁶	-	146 mS cm ⁻¹ (60°C)
SPEEK	30 (SD=87 %)	1.7	17.5 × 10 ⁻⁷	current density 25 mAcm ⁻² (0.5 V, 80°C, 2M)	13 mS cm ⁻¹ (60° <i>C</i>)
Composite membrane	40-80	2-3	10 ⁻⁸	OCV=0.75 V and current density 160 mA/cm² (0.35 V)	0.1-0.93 5 cm ⁻¹ (90°C)

a- Polyethylene-Tetra-fluoroethylene with sulphonyls in divinyl benzene matrix

b- Tetra-fluoroethylene with poly(styrene sulfonic acid)

Summary of Inorganic-Organic Composite Membranes

Membranes	(Water uptake in %) [Swelling %] {IEC}	Conductivity σ (S/cm) (Temp in °C)) [RH %]	Diffusion coefficient/ permeability	Fuel cell performance
Silica as filler				
Nafion–SiO ₂			$10^{-5} \text{ cm}^2 \text{ s}^{-1}$	DMFC performance- current density of 0.6 A/cm ² at a cell potential of 0.4 V at 130 °C
Nafion®/Aerosil (SiO ₂)	(30-40)	0.1 – 0.4 (90)	$\begin{array}{c} 0.1 \text{ mol } \text{m}^{-2} \text{ s}^{-1} \\ \text{Selectivity 4 - 6} \end{array}$	
sulfonated polysulfone/ SiO ₂		5 x 10 ⁻² (25-90)		Power density in 2M methanol/oxygen fuel cell 0.18 W/cm ² at 120 °C
PEO/SiO ₂		10 ⁻³ (80)		
PTFE /amorphous fumed SiO ₂		0.22		DMFC (OCV) was 0.56 and 0.65 V with 50 and 130 mW cm ⁻² at 80 and 130 °C, respectively.
PTFE/SiO ₂ (commercial SiO ₂ sol)		0.1 (RT)		
Nafion/polyaniline/ SiO ₂	(20)	9.1 x 10 ⁻³ (50) [100]	methanol crossover of the composite membrane is reduced by over two orders of magnitude	The MEA performance of polyaniline modified membranes reaches 8 mW cm ⁻² at 40 °C in a cell operating on 2 M methanol solution and air. This performance is about two-fold lower than for MEAs with Nafion,
Nafion/PTFE/ SiO ₂ 5th july 2007		3.25×10^{-3} NCCR		OCV of 0.564 V for DMFCs operated at 70 °C, with methanol feed concentration of $2M_{-}$ with maximum power density of 70 mA cm ⁻²

Membranes	(Water uptake in %) [Swelling %] {IEC}	Conductivity σ (S/cm) (Temp in °C)) [RH %]	Diffusion coefficient/ permeability	Fuel cell performance
Poly(vinylidene) fluoride-chloro tetrafluoro ethylene, (PVdF-CTFE), copolymer/SiO ₂		10 ⁻² (RT)		DMFC- power density of about 1.4 mW cm ⁻² and currents of the order of 10–20 mA cm ⁻²
PEG / DBSA(4-dodecylbenzene sulfonic acid) /SiO ₂	(30-60) {0.5 - 1 m mol g ⁻¹ }	4 – 7 x 10 ⁻³ (RT) [100]	(0.78 - 2.1) x $10^{-8} \text{ cm}^2 \text{ s}^{-1}$ Selectivity = $5.09 \times 10^3 - 1.87$ $\times 10^5$	
Sulfonated styrene-(ethylene- butylene)-sulfonated styrene (SEBSS)/ SiO ₂			$ \begin{array}{c} 8-14 \mu \text{ mol cm}^2 \\ \text{s}^{-1} \end{array} $	DMFC- highest current densities are 74, 229, and 442 mA/cm ² at temperatures 30, 60, and 90°C at a potential of 0.3.
PVA/functionalized SiO ₂ / Glutaraldehyde		10 ⁻¹		
Krytox- SiO ₂ –Nafion [®]	(42)	10 ⁻⁴ (130)		
Nafion [®] /Diphenylsilicate		2.39 x 10 ⁻²		DMFC performance shows OCV of 0.65 V with 1.0 M methanol
Nafion / diphenyldimethoxysilicate	[30]	10 ⁻² (RT)		DMFC-performance is comparable to that of Nafion.
Nafion/Organic SiO ₂ with thiol group 5th july 2007		1.57 x 10 ⁻² (RT) [100]		The DMFC performance at 75°C with 0.2 MPa O ₂ & 1M methanol - Nafion 117 membrane> Nafion/Organic silica with thiol group> Nafion/ silica(unmodified) 78

Membranes	(Water uptake in %) [Swelling %] {IEC}	Conductivity σ (S/cm) (Temp in °C)) [RH %]	Diffusion coefficient/ permeability	Fuel cell performance
Sulfonation of poly(ether sulfone)/ SiO ₂ with phosphonic acid functionality	(28.73) {0.961mequiv. g^{-1} }	6.36 x 10 ⁻²	$4.89 \text{ x } 10^{-7} \text{ cm}^2$ s ⁻¹	Performance of DMFC reaches 30W/cm ² at 70 °C in a cell operating in air mode with 10 psi pressure
PVDF/ SiO ₂ with surface-anchored sulfonic acid		3.6 x 10 ⁻³ (75)		DMFC- OCV value of the cell was 0.66 V & power density 32 mW cm ⁻² at 70 °C
Cs _{2.5} H _{0.5} PWO ₄₀ /SiO ₂ /Nafion [®] NRE-212 membrane				H2/O2 fuel cells with Cs2.5H0.5PWO40- SiO2/Nafion showed better performance than Nafion® NRE-212 membranes at 60 °C and 80 °C.
Alumina as filler				
Nafion/Al ₂ O ₃				DMFC performance- current density of 0.4 A/cm ² at a cell potential of 0.4 V at 130 °C
PVDF-g-PSSA/Al ₂ O ₃	(68)	4.5 × 10 ⁻²	$6.6 \times 10^{-8} \text{ cm}^2 \text{ s}$ -1 Selectivity $6.8 \times 10^5 \text{ S s cm}$ -3	The maximum peak power density DMFC is about 12 mW cm ⁻² with 2.5 M methanol.
poly-vinylidene fluoride/poly- acrylonitrile (PVdF/PAN)/ Al ₂ O ₃		0.10		
poly(vinylidene) fluoride /alumina/ do 5eb aj ulyg200 flosphoric acid		10 ⁻³ (< 50) NCCR		79

Membranes	(Water uptake in %) [Swelling %] {IEC}	Conductivity σ (S/cm) (Temp in °C)) [RH %]	Diffusion coefficient/ permeability	Fuel cell performance
Zirconia as filler				
Nafion/ ZrO ₂	(24) $\{0.85 \ \text{meq g}^{-1}\}$			H ₂ /air fuel cell - Power density values of 604 mW cm ⁻² and of 387 mW cm ⁻² were obtained at 0.6 V and at $T = 110$ °C (100% of RH) and $T = 130$ °C (85% RH), respectively
Sulfonated poly(ether ether ketone) (SPEEK)/ ZrO ₂		34 × 10 ⁻³ (25)	60-fold reduction of the methanol flux.	
Nafion / sulfated zirconia	(27) $\{0.9-1.1 \\ meq g^{-1}\}$			H_2/O_2 - 1.35 W/cm ² at 80 °C and 0.99 W/cm ² at 120 °C was better than that of Nafion under same condition (e.g. 1.28 W/cm ² at 80 °C, 0.75 W/cm ² at 120 °C).
Titania as filler	•	•	•	
Nafion/TiO ₂	(29) $\{0.93 \text{ meq } g^{-1}\}$	0.15–0.18 (85) [100]		PEMFC- Power density values of 0.514 and 0.256 W cm ⁻² at 0.56 V were obtained at 110 and 130 °C, respectively,
PVA/TiO ₂	(89)	10 ⁻² (30)		The maximum peak power density of the alkaline DMFC is about 7.54 mW cm ⁻² at 60 °C
Nafion [®] /sulfonated titanate 5th july 2007		0.16 (75) NCCR	Permeability of methanol reduced by 38 %, relative to Nafion 115	DMFC-57% higher power density (73.0 mW cm ⁻²) than Nafion 80

Membranes	(Water uptake in %) [Swelling %] {IEC}	Conductivity σ (S/cm) (Temp in °C)) [RH %]	Diffusion coefficient/ permeability	Fuel cell performance	
Titania as filler					
Nafion/TiO ₂	(29) $\{0.93 \ \text{meq g}^{-1}\}$	0.15–0.18 (85) [100]		PEMFC- Power density values of 0.514 and 0.256 W cm ⁻² at 0.56 V were obtained at 110 and 130 °C, respectively,	
PVA/TiO ₂	(89)	10 ⁻² (30)		The maximum peak power density of the alkaline DMFC is about 7.54 mW cm ⁻² at 60 °C	
Nafion [®] /sulfonated titanate		0.16 (75)	Permeability of methanol reduced by 38 %, relative to Nafion 115	DMFC-57% higher power density (73.0 mW cm ⁻²) than Nafion	
Tungten trioxide as filler					
Nafion/ WO ₃	(37)	10 ⁻² (100)		PEMFC- operated at 110 °C- current densities of 300 and 540 mA/cm ² at 0.4 V	
PEO/WO ₃ ·2H ₂ O		$10^{-2}-10^{-3}$ (R.T. to 120)			

Membranes	(Water uptake in %) [Swelling %] {IEC}	Conductivity σ (S/cm) (Temp in °C)) [RH %]	Diffusion coefficient/ permeability	Fuel cell performance
Heteropolyacids as filler				
Nafion/PTA, PMA, STA, SMA	(8)	0.06-0.08 (70) [100]		H_2/air - current density of 0.1-0.9 A/cm ² at a cell potential of 0.6 V at 80 °C and at 75 %RH
Sulfonated poly(arylene ether sulfone)/PTA	(15-40) $\{1.4 \text{ meq g}^{-1}\}$	0.09 - 0.15 (30- 100) [100]		
Poly(vinyl alcohol)/ PTA	(157) {0.794 m mol g ⁻¹ }	10 ⁻⁴	6.16×10^{-7} to 8.31×10^{-10} cm ² s ⁻¹	H_2/O_2 current density of 46 mA cm ⁻² DMFC current density of 80 mA cm ⁻² at 80 °C.
s-Polyether ether ketone (PEEK)/Heteropolyacids(tungstophos phoric acid, $H_3PW_{12}O_{40}$ 29 H_2O (TPA), molybdo-phosphoric acid, $H_3PMo_{12}O_{40}$ 29 H_2O (MPA) and the disodium salt of tungstophosphoric acid, Na ₂ HPW ₁₂ O ₄₀ (Na-TPA)	sPEEK -TPA (600) sPEEK – MPA (320) sPEEK - Na- TPA (400)	sPEEK -TPA 9.5×10 ⁻³ sPEEK - MPA 3.0×10 ⁻³ sPEEK - Na-TPA 5.8 ×10 ⁻³ (100)		
Sulfonated polyethersulfone Cardo/ PTA	(52)	$6.7 \times 10^{-2} (110)$		
Nafion/polyphenylene oxide (PPO)/phosphomolybdic acid (PMA)		0.03	$2.01 \times 10^{-6} \text{ cm}^2 \text{ s}$	DMFC - OCV=0.75 V and current density 160 mA/cm ² 0.35 V.
polyethylene glycol/silica/lacunary heteropolyacid ($H_8SiW_{11}O_{39}$)	$\{2-2.5 \text{ meq } g^{-1}\}$		$1.2 \times 10^{-6} \mathrm{cm}^2 \mathrm{s}^{-1}$	
Nafion®/ Sulfonic-functionalized heteropolyacid/silica nanoparticles 5th july 2007		NCCR		DMFC- The power density was 33 mW cm ⁻² at 80 °C, 39 mW cm ⁻² at 160 °C and 44 mW cm ⁻² at 200 °C, respectively.

Membranes	(Water uptake in %) [Swelling %] {IEC}	Conductivity σ (S/cm) (Temp in °C)) [RH %]	Diffusion coefficient/ permeability	Fuel cell performance
SPEEK/silica/divacant tungstosilicate $[\gamma-SiW_{10}O_{36}]^{8-}$		13× 10 ⁻³ (110) [100]	$\begin{array}{c} 0.8 \text{ x} & 10^{-16} \text{ m}^2 \text{ s}^{-1} \\ {}^{1} \text{ Pa}^{-1} \end{array}$	
Nafion /SiO ₂ /phosphotungstic acid (PWA)	(38)	0.01 (100) [40]		PEMFC- operated at 110 °C- current densities of 540 mA/cm ² at 0.4 V
PBI /PWA/SiO ₂		3.0×10 ⁻³ (100) [100]		
PVA/PWA/SiO ₂	[10-30]	0.017 (RT)	10 ⁻⁷ to 10 ⁻⁸ cm ² /s. Selectivity 0.02 x 10 ⁷	
PVA/silica/silicotungstic acid		$(4.13-8.31) \times 10^{-3}$ (80 to 100) [100]		
PEG/SiO ₂ /PWA	(44.7)	10 ⁻³	$1.05 \times 10^{-7} \text{ cm}^2 \text{ s}^{-1}$	H ₂ /O ₂ FC OCV=900 mV DMFC OCV=650 mV
Nafion [®] /PTA supported on SiO ₂ , ZrO_2 and TiO_2			low crossover compared to recast Nafion®	The MEAs, at 120 °C and 35% RH indicated that the composite membranes had 15% superior conductivity when compared to recast Nafion®
SPEEK/heteropolyacids loaded MCM-41 5th july 2007	(74-83)	6.7-8.1 x 10 ⁻³ (140) NCCR		83

Membranes	(Water uptake in %) [Swelling %] {IEC}	Conductivity σ (S/cm) (Temp in °C)) [RH %]	Diffusion coefficient/ permeability	Fuel cell performance
Polyethyleneimine (PEI)/Tungstosilicate mesoporous materials(Si-MCM-41)		6.1 × 10 ⁻² (100) [100]		Performance at 100 °C and 100% RH OCV= 0.93 V current density= 42.9 mA/cm ² power density=18.3mW/cm ²
Sulfonated polyether ether ketone (SPEEK) /heteropolyacid-loaded Y- zeolite	(70-98)	7.8 x10 ⁻³ (140)		
PVA/zirconium phosphate/silicotungstic acid	[90] $\{0.9 \text{ meq} \\ g^{-1}\}$	10 ⁻² (100) [60]	$5 \times 10^{-7} (\text{cm}^2 \text{ s}^{-1})$	
Zirconium phosphate or Zirconium s	ulphophenyl phosp	ohate (ZrSPP) as fille	er	
Nafion/ zirconium phosphates		0.025 [92]		The power output of Nafion 117 was higher than that of the composite under the same conditions.
Disulfonated poly(arylene ether sulfone)/ Zirconium hydrogen phosphate	(40-60)	0.027 (80) [100]	7.5 × 10 ⁻⁷	
Nafion [®] /Teflon [®] /Zr(HPO ₄) ₂				H_2/O_2 - demonstrated high performance - The cell voltages achieved at 400 mA/cm ² current density were 0.73 and 0.59V, at 80 and 120 °C, respectively under ambient pressure.

Membranes	(Water uptake in %) [Swelling %] {IEC}	Conductivity σ (S/cm) (Temp in °C)) [RH %]	Diffusion coefficient/ permeability	Fuel cell performance
Nafion/PTFE/zirconium phosphate		2.38 x10 ⁻³ (70- 80)	1.64x10 ⁻⁴ for composite membranes 8.77x10 ⁻⁴ Nafion- 117 (wt% cm hr ⁻¹)	Decreased fuel cell performane compared to Nafion
zirconium phosphate/ divinylbenzene (DVB) crosslinked, sulfonated, polystyrene grafted poly(ethylene-alt- tetrafluoroethylene)/poly(vinyl difluoride)	{1.8-2 meq g ⁻¹ }	40 x10 ⁻³ (130) [90]		
Nafion/ZrSPP		10 ⁻¹ (110) [98]		H_2/O_2 -current density of Nafion/ZrSPP 20 wt% was 700 mA/cm ² at 100 °C, it was four times higher than that of Nafion at the same voltage of 0.4 V.
Polybenzimidazole/ zirconium tricarboxybutylphosphonate		3.82 × 10 ⁻³ (200)		
$\begin{array}{l} PVDF/Zirconium\\ sulfophenylenphosphonate,Zr(SPP),\\ Zr(HPO_4)_{1.0}(O_3PC_6H_4SO_3H)_{1.0})\end{array}$	(46)	2 x10 ⁻³ (120) [90]		
SPEEK/zirconium phosphate sulfophenylenphosphonate		0.03 (60) [100]		

Membranes	(Water uptake in %) [Swelling %] {IEC}	Conductivity σ (S/cm) (Temp in °C)) [RH %]	Diffusion coefficient/ permeability	Fuel cell performance
Sulfonated poly(etheretherketone) cardo/ zirconium phosphate sulfophenylenphosphonate	(10-40)	10 ⁻² (22) [100]	45×10^{8} (cm ² s ⁻¹) reduced by one order of magnitude compared to Nafion	
Poly (fluorinated arylene ether)s/ Zirconium phosphate sulfonated	(85.6)	1.63 × 10 ⁻² (RT)		PEMFC- current densities 760 mA/cm ² and 470 mA/cm ² at 0.6 V
sPEEK/ZrPh/PBI	[0.6]	11.5 x10 ⁻³ (25)	4.0 × 10 ³ barrier (1 barrer = 10^{-10} cm ³ [STP] cm/(cm ² s cmHg))	DMFC at 110 °C and 138% RH - power density value of 14.7 mW/cm ² for 58.8 mA/cm ²
PVA/zirconium phosphate/ Cesium salt of silicotungstic acid	(100) [85] {3 meq g ⁻¹ }	10 ⁻² (100) [50]	2×10 ⁻⁶ (cm2 s-1)	DMFC- maximum power density of 6mWcm ⁻² OCV (0.652 V) is higher compared to Nafion [®] 115 (0.610 V)
SPEK/ZrP/ZrO ₂	(21.5) [100]	0.8 (25)	9.75 × 10 ³ barrer 8247 g h ⁻¹ m ⁻²	DMFC- exhibits lower performance compared to Nafion

Layered silicate nanoparticles (e.g., montmorillonite, Laponite, and modified montmorillonite) as fillers							
Nafion 115/sulfonated montmorillonite	(93)	0.93	1.14×10^{-6} cm ² s ⁻¹	DMFC - 30 mW cm ⁻² for composite and for Nafion 115 membrane (25 mW cm ⁻¹) at a cell voltage of 0.35 V			
SPEEK/MCM-41		8-16× 10 ⁻³	$3 \times 10^{-17} (m^2 s^{-1} Pa^{-1})$				
SPEEK/laponite		3-10× 10 ⁻³ (90)	$3 \times 10^{-17} (m^2 s^{-1} Pa^{-1})$				
SPEEK/organic-montmorillonite (OMMT)	(150)	1.2×10^{-2} (90) [100]	$10^{-8} \text{ cm}^2 \text{ s}^{-1}$				
Nafion [®] /poly(oxyproplene)/ montmorillonite (MMT)	(32) $\{0.89 \ \text{mmol g}^{-1}\}$	$60-90 \times 10^{-3}$	$0.4 \times 10^{-8} \text{ cm}^2 \text{ s}^{-1}$ Selectivity =5500	DMFC - maximum power density of 13.3 mW cm ⁻² at 0.2 V			
Nafion/organic sultones and perfluorinated sultone grafted montmorillonite (MMT)	$\{0.8-1.1 \ \text{mmol g}^{-1}\}$	0.13 (50) [98]	Reduced by 40% compared to Nafion	passive single cell DMFC - current densities 140 mA cm ⁻² , at 0.3 V			
Polyimide (PI), polyamideimide (PAI), polyvinylidene fluoride PVDF/ styrene–ethylene–butylenes–styrene elastomer (SEBS)/phosphosilicate (P ₂ O ₅ –SiO ₂)		$\begin{array}{c} \text{PI/} (\text{P}_2\text{O}_5-\text{SiO}_2) - \\ 1.6 \times 10^{-2} \ (150) \\ [18] \\ \text{PAI} / (\text{P}_2\text{O}_5-\text{SiO}_2) \\ - 1.5 \times 10^{-3} \ (150) \\ [18] \\ \text{PVdF} / (\text{P}_2\text{O}_5-\text{SiO}_2) \\ - 8.1 \times 10^{-4} \ (130) \\ [25] \\ \text{SEBS} / \ (\text{P}_2\text{O}_5-\text{SiO}_2) - 6.9 \times 10^{-3} \\ (130) \ [25] \end{array}$		PI/ (P_2O_5 -SiO ₂) OCV of 0.9 V 25- and power density of 20 mW cm ⁻² at 150 °C under 4% RH. PAI /(P_2O_5 -SiO ₂) OCV of 0.95 V and power density of 52 mW cm ⁻² at 30 °C under 60% RH PVdF/(P_2O_5 -SiO ₂) OCV of 0.79 V at 130 and 150 °C. Power density of 29 mW cm ⁻² at 130 °C under 25% RH 10 ⁻² - SEBS/ (P_2O_5 -SiO ₂) OCV of 0.72 V at 150 °C 14% RH Power			
5th july 2007		NCCR		density of 34 mW cm^{-2} a 8710 °C under 30% RH			

Membranes	(Water uptake in %) [Swelling %] {IEC}	Conductivity σ (S/cm) (Temp in °C)) [RH %]	Diffusion coefficient/ permeability	Fuel cell performance			
Phosphatoantimonic acid							
Sulfonated polysulfone/ Phosphatoantimonic acid		10 ⁻² (80) [92]					
Noble metals (Pt,Ru)							
(Pt-SiO ₂)nafion coated /SPEEK/PTFE				H ₂ /O ₂ fuel cell - OCV = 0.98 V and maximum power density value of 0.8 W cm ⁻² than 0.94 V, 0.33 W cm ⁻²			
Pt/SiO ₂ / Nafion/PTFE	(54) [6.7]		10 ⁻³ cm ² /s	PEMFC -80 °C (1.65 W cm ⁻²). The cell performance with the Pt– SiO ₂ /Nafion/PTFE- was better than that with the NRE-212			
Pt–ZrP–Nafion		0.06 [RT]		PEMFC performance - 275 mA/cm ² at cell voltage of 0.620 V			
PtRu/Nafion		0.18 (90) [100]		DMFC single cell test - the performance of the composite membrane was approximately 28% and 31% higher at an operating temperature of 30 and 45 °C than the pure Nafion membrane, respectively			
Ag-SiO ₂ /sulfonated poly(biphenyl ether sulfone	(60-100)	NCOD		H_2/O_2 single PEMFCs -exhibits better performance compared to parent polymer			

Membranes	(Water uptake in %) [Swelling %] {IEC}	Conductivity σ (S/cm) (Temp in °C)) [RH %]	Diffusion coefficient/ permeability	Fuel cell performance			
Zeolite							
Nafion /Zeolite (ZSM-5)	(30)	0.14 (RT)	$1.4 \times 10^{-6} \text{ cm}^2 \text{ s}^{-1}$				
Nafion /chabazite and clinoptilolite				DMFC- Maximum power densities of 350–370 mW cm ⁻² and 200– 210 mW cm ⁻² were recorded at 140 °C			
Poly(tetrafluoroethylene) (PTFE)/zeolite	(60-80)	0.01 (RT)		DMFC at 70°C - Maximum current and power densities obtained were $\sim 50 \text{ mA/cm}^2$ and 4 mW/cm ²			
Pt/zeolite–Nafion (PZN)	(38.6)			With dry H_2 and O_2 at 50 °C, 0.65 wt.% of Pt/zeolite shows 75% of the performance obtained at 0.6 V with humidified reactants at 75 °C			
Nafion/mordenite		0.01 (70) [100]		H_2/O_2 - current densities 400 mA cm ⁻² , at a potential of 0.5 V at 100°C			
Phosphates							
Nafion/calcium phosphate composite			$1.8 \times 10^{-6} \text{ cm}^2 \text{ s}^{-1}$				
Nafion/CHP (calcium hydroxyphosphate)	(34)		$0.6 \times 10^{-7} \text{ cm}^2/\text{s}$				
Sulfonated poly(ether ether ketone)/boron phosphate	(50-130)	0.065 (70) [100]					
5th july 2007 SPEEK/PBI/boron phosphate	(25)	5.9 × NCCR		89			

 \checkmark Composite membranes with polyvinyl alcohol as organic matrix and zirconium phosphate and silicotungstic acid as inorganic components were prepared by a simple method

✓ Water uptake, IEC and proton conductivity increased with silicotungstic acid content

✓ Though number of reports are available in literature on stabilizing the HPA in membrane matrix, a combined approach of composite formation with salts of HPA was investigated

✓ These composite membranes exhibited reduced methanol crossover compared to Nafion 115

✓ At 50 % RH, the protonic conductivity of the hybrid membranes was in the range of 10^{-3} to 10^{-2} S cm⁻¹

✓ The open circuit voltage (OCV) for the cell with $PVA-ZrP-Cs_2STA$ hybrid membrane is 0.652 V and that for $PVA-ZrP-Cs_1STA$ hybrid membrane is 0.619 V which is higher compared to the cell with Nafion® 115 (0.610 V) indicating reduced methanol crossover

 \checkmark Though they exhibit little lower proton conductivity it appears as promising materials due to its reduced methanol crossover

5th july 2007

SUMMARY

This presentation aimed to answer the following three questions

- (i) Whether at all is it possible to generate new membranes as alternatives to Nafion[®] at least for fuel cell applications?
- (ii) Why Nafion[®] is so overwhelmingly used as the chosen membrane for fuel cells (Nafion[®] panacea!)
- (iii) If there were to be some alternate membranes to Nafion[®] what parameters and properties become relevant in relation to those of Nafion[®].

