Studies on Molybdena Catalysts

XI. Oxygen Chemisorption on Sulfided Catalysts

W. ZMIERCZAK, G. MURALIDHAR, AND F. E. MASSOTH

Department of Fuels Engineering, University of Utah, Salt Lake City, Utah 84112

Received January 18, 1982; revised May 4, 1982

Catalysts containing Mo or CoMo on various supports were prepared. Oxygen chemisorption on the sulfided catalysts was measured by a flow gravimetric technique. Activities of the catalysts were determined for thiophene hydrodesulfurization (HDS) and hexene hydrogenation in a catalytic microreactor at atmospheric pressure. Oxygen chemisorption increased with adsorption temperature. A definite adsorption was only obtained at -78° C, adsorption at higher temperatures continuing for over 4 hr. For O₂ chemisorption at -78° C: (i) CoMo versus Mo catalysts showed only marginally higher values; (ii) O₂ chemisorption did not correlate with HDS activity; and (iii) O₂ chemisorption showed a reasonable correlation with hydrogenation activity. It is probable that O₂ chemisorption reflects the general state of dispersion of the active Mo phase rather than specific HDS or hydrogenation sites.

INTRODUCTION

Chung and Massoth (1) were among the first to report O₂ chemisorption values for sulfided CoMo/Al₂O₃ catalysts. Using a flow microbalance technique at 0°C, they showed that the O_2 uptake was: (i) proportional to Mo content in Mo/Al₂O₃ catalysts; (ii) small and essentially independent of Co content in Co/Al₂O₃ catalysts; and (iii) essentially independent of Co level in CoMo/ Al₂O₃ catalysts of constant Mo content, and only slightly greater than the comparable Mo/Al₂O₃ catalysts of constant Mo content. The latter result was independent of the mode of catalyst preparation. Subsequent thiophene hydrodesulfurization (HDS) measurements on these catalysts (2) showed appreciable variations in HDS activities of the CoMo/Al₂O₃ catalysts and much lower activity for the Mo/Al₂O₃ catalyst. These results showed that O₂ chemisorption was not directly related to HDS activity, and it was tentatively concluded that if O₂ chemisorption was occurring on active HDS sites, then the presence of Co does not affect the number of active sites but rather their intrinsic activity.

Tauster et al. (3) have employed an O_2 pulse technique at ambient temperature to measure O₂ chemisorption on a number of unsupported MoS₂ samples. They found a direct correlation between O₂ adsorption and HDS activity for dibenzothiophene. On the basis that edge sites of MoS₂ crystals should selectively adsorb O₂ in preference to basal sites, they concluded that the edge sites are the active HDS centers, contrary to earlier findings of Stevens and Edmonds (4). (See also Refs. (5) and (6) on continuing discussion of this point.) In further limited studies, Tauster and Riley have suggested that the pulse O_2 chemisorption technique is also promising for characterization of supported CoMo catalysts (7) and coked catalysts (8).

In an attempt to resolve these differences, we undertook further studies of O_2 chemisorption, in particular, investigating the effect of adsorption temperature, comparison of O_2 chemisorption with catalytic activity for different catalysts, and effects of pyridine and coke.

EXPERIMENTAL

Catalysts containing 8% Mo or 3% Co 8%

Mo on various supports were prepared by incipient wetness impregnation followed by calcination at 540°C. For the CoMo catalysts, Mo was added first (ammonium paramolybdate), and the catalyst was heated to 110°C before adding the Co (cobalt nitrate). The following commercial catalysts were also tested: 2.75% Co 9.7% Mo/Al₂O₃; Topsøe—8% Mo/Al₂O₃ and 3% Co 8% Mo/Al (same Al₂O₃ support); and Ketjenfine 124, 1.5E—3% Co 8% Mo/Al₂O₃.

A flow gravimetric technique (2) was used to measure O₂ adsorption, except that adsorption temperatures of -78, 0, and 24°C were used by application of a suitable bath surrounding the reactor. Measured internal temperatures with a thermocouple were close to the respective bath temperatures. Although helium was purified by passing through a Hydrox purifier followed by a molecular sieve trap, a small and continuous weight gain was observed when passing over the sulfied catalyst at -78° C. This was eliminated by employing an activated charcoal-molecular sieve trap held at liquid N₂ temperature in the He line just prior to the reactor inlet.

Catalyst charges of about 150 mg of 20-40 mesh size, contained in a fine mesh gold cylinder, were used in the microbalance. Catalysts were sulfided in 9% H₂S/H₂ at 400°C for 2 to 4 hr, followed by a 1- to 2hr flush in He. After lowering to the desired adsorption temperature in He, a 5% air/He mixture was admitted at a flow of about 125 cm³/min, and the weight gain recorded. Preliminary results showed no difference in O₂ chemisorption values with air/He mixtures between 5 and 20% air. Some physical adsorption of O_2 on the catalysts at $-78^{\circ}C$ was evidenced by a weight loss ($\sim 0.9 \text{ mg/g}$ for the CoMo Topsøe catalyst) after switching back to He. The net chemisorption was usually taken as the difference in weight in He before and after O_2 exposure. In some cases, the weight data were corrected for physical adsorption to generate chemisorption curves. All chemisorption values reported were obtained at -78° C.

For the effect of pyridine on O_2 chemisorption, the presulfided catalyst was subjected at 350°C to an He stream saturated with pyridine at 0°C. Following a 1-hr He flush to remove weakly bound pyridine, the temperature was lowered to -78°C and O_2 adsorbed as before. Different amounts of added pyridine were accomplished by varying the time of exposure.

Adsorption of O_2 was also measured on sulfided catalysts after exposure to a thiophene/H₂ mixture at 350°C for an overnight period. The latter hydrodesulfurization reaction is accompanied by a small amount of coke on the catalyst. These tests were done in the flow microbalance reactor under identical conditions as employed in the catalytic activity tests.

Catalysts were tested for HDS and hydrogenation activity in a fixed bed microreactor at atmospheric pressure as previdescribed (9). Catalysts ously were presulfided in 9% H₂S/H₂ at 400°C for 2 hr, followed by a 1-hr flush in He. Conversion of thiophene to butenes and butane, and hexene-1 to hexane was used to assess HDS and hydrogenation activities, respectively. A catalyst charge of 0.5-1.0 g of 20-40 mesh size mixed with 3 g of glass beads was employed. Catalysts containing CoMo were tested at 350°C, and Mo catalysts at 400°C. Conversions were measured after exposing the catalyst to a thiophene/H₂ flow overnight to achieve catalyst line out. Appropriate rate constants were calculated from the conversion data as described previously (9).

RESULTS

The effect of adsorption temperature on the rate of O_2 adsorption for Topsøe Mo and CoMo catalysts is shown in Fig. 1. The first point to note is that with either catalyst, a definite weight line out was obtained at -78° C, but not at the higher temperatures, even after 4 hr. Second, virtually the same uptake was obtained for the two catalysts at -78° C, although at the higher temperatures, the CoMo/Al₂O catalyst gave

FIG. 1. Oxygen chemisorption on Topsée CoMo/ Al₂O₃ (-----) and Mo/Al₂O₃ (--) catalysts. Weights corrected for physical adsorption of O_2 .

greater weight pickup. The chemisorption values at -78° C were 0.97 mg/g for the Mo catalyst and 0.94 mg/g for the CoMo catalyst. Chemisorption measurements on samples of the same catalysts using a volumetric technique at -78° C gave values of 1.44 and 1.11 mg/g, respectively (10). Although the values for the two techniques were somewhat different, the presence of Co did not significantly affect O₂ chemisorption.

Pyridine poisoning tests were performed on the Cyanamid CoMo/Al₂O₃ catalyst. Figure 2 shows that preadsorbed pyridine reduced the O₂ adsorption capacity of the catalyst in an almost linear manner.

Table 1 presents results of O_2 adsorption for various catalysts exposed to thiophene/ H_2 at 350°C overnight. Values of coke added are also given. It is clear that significant additional O_2 chemisorption on the coked catalysts occurred, although these did not directly relate to the amount of coke added. As shown in Fig. 3, further slow continued uptake of O_2 was observed for these catalysts after an initial rapid pickup, in contrast to the sulfided catalysts (-78°C curves in Fig. 1). The values reported in

TABLE 1

Effect	of	Coke	on	Oxyger	1	Chemisorption	for
Different Catalysts							

Catalyst	Oxy chemis [mį	Amount of coke [mg/g]	
	Sulfided catalyst	Coked catalyst	
γ-Al ₂ O ₃	0.00	0.22	12.1
$Co/\gamma - Al_2O_3$	0.00	0.13	0.1
$Mo/\gamma - Al_2O_3$ (Topsøe)	0.97	2.55	2.5
CoMo/γ-Al ₂ (Topsøe)	0.94	1.29	2.3

Table 1 were estimated by extrapolation of the slow adsorption line back to meet the fast adsorption line.

Catalysts containing Mo and CoMo on different supports and the commercial catalysts were tested for thiophene HDS and hexene hydrogenation activities. Table 2 lists the catalysts employed and the resultant O_2 chemisorption values on the sulfided catalysts. Except for the Topsée catalyst, O_2 chemisorption values for the laboratory-prepared catalysts were somewhat higher when Co was present. Figures 4 and 5 present correlations of HDS and

FIG. 2. Oxygen chemisorption as a function of pyridine loading on American Cyanamid catalyst.

TABLE 2

Oxygen Chemisorption on Different Catalysts

	Catalyst	O ₂ chemisorption (mg/g)		
No.	Support			
		Mo ^a	CoMo ^b	
1	γ-Al ₂ O ₃	0.58	0.76	
2	10% SiO ₂ -Al ₂ O ₃	0.48	0.70	
3	25% SiO ₂ -Al ₂ O ₃	0.36	0.59	
4	75% SiO ₂ -Al ₂ O ₃	0.19	0.36	
5	SiO ₂	0.05	0.11	
6	75% SiO ₂ -MgO		0.47	
7	TiO ₂	_	0.13	
8	5% Zn-Al ₂ O ₃ ^c	_	0.64	
9	γ -Al ₂ O ₃ (+5% Zn) ^d		0.63	
10	American Cyanimid		0.87	
11	Topsøe	0.97	0.94	
12	Ketjenfine		0.64	

^a 8% Mo.

^b 3% Co 8% Mo.

^c 5% Zn impregnated on γ -Al₂O₃.

^d 5% Zn impregnated on catalyst 1.

hydrogenation rate constants versus O_2 chemisorption for the Mo and CoMo catalysts, respectively. Triplicate runs on the CoMo catalyst 1 gave $k_{\rm T} = 32.5 \pm 0.9 \,{\rm cm^3/g}$ min atm and $k_{\rm H} = 64.2 \pm 2.8$ cm³/g min atm. For both sets of catalysts, the HDS plots show curvature, whereas, the hydrogenation plots are linear. Despite the fact that the Mo catalysts were tested at a higher temperature than the CoMo cataylsts, the dramatic promotional effect of Co on HDS activity (Fig. 4A vs B) is not reflected in O_2 chemisorption for the two sets of catalysts. This was further confirmed by testing the Topsøe Mo catalyst at the same temperature (350°C) as the Topsøe CoMo catalyst; $k_{\rm T}$ values of 1.1 and 33.5 were obtained, respectively. Thus, although O₂ chemisorption was the same for these two catalysts. HDS activity was greatly promoted by the presence of Co.

DISCUSSION

The results of Fig. 1 show that sulfided, supported catalysts containing Mo or

CoMo are sensitive to the chemisorption temperature used. We take the constancy in weight at -78° C to be a true indication of the O_2 chemisorption capacity. At higher temperatures, continued O₂ addition indicates slower oxidation of the sulfide phases is taking place, with possible sulfate formation. Brinen and Armstrong (11) have reported the presence of sulfate by ESCA on a sulfided CoMo/Al₂O₃ catalyst after exposure to air. Vyskocil and Tomanova (12) have also indicated similar difficulty with continued oxidation of sulfided catalysts using a pulse technique. Tauster and Riley (7) refer to a "quasi-invarient" residual uptake, possibly due to surface oxidation, which they have corrected for in their correlations.

The data of Table 2 show that the presence of cobalt does not greatly affect O_2 chemisorption, despite large differences in thiophene HDS activity, as seen in Figs. 4A and 5A. If O_2 selectively adsorbs on HDS sites, then it must be concluded that the number of these sites is not greatly affected by Co, but rather the intrinsic activity of the sites is increased, as has been proposed earlier (2). However, in a series of catalysts

FIG. 3. Oxygen chemisorption on Al_2O_3 catalysts after reaction in thiophene/H₂. (A) Al_2O_3 support, (B) Co/Al₂O₃, (C) Mo/Al₂O₃, (D) CoMo/Al₂O₃. Weights corrected for physical adsorption of O₂.

having the same Co/Mo ratio, a rough correlation between HDS activity and O₂ chemisorption may be obtained (as indicated in Fig. 5A) if the promotional effect is the same. The appreciable scatter in Fig. 5A may be due to somewhat different promotional activity for the Co in these catalysts. A more consistent plot is obtained for the Mo catalysts in this regard. Then the O_2 chemisorption and catalytic activity reflect the general degree of dispersion of the active molybdenum sulfide phase. Thus, a lower dispersion would result in less HDS sites (and lower HDS activity) and a lower O_2 adsorption, even though the latter may not truly represent adsorption on HDS sites. A further argument against O_2 measuring HDS sites comes from the Zn-containing catalysts (8 and 9 of Table 2). Whether added to the support first or to the catalyst, Zn caused only about a 15% lowering in O₂ chemisorption compared to the catalyst without Zn (1 of Table 2), whereas, the HDS activity was drastically reduced, the more so when Zn was added to the cata-

FIG. 4. Catalytic activity at 400°C of different Mo catalysts versus O₂ chemisorption. (A) $k_{\rm T}$, rate constant for HDS, cm³/g min atm, (B) $k_{\rm H}$, rate constant for hydrogenation, cm³/g min. Numbers refer to catalysts listed in Table 2.

FIG. 5. Catalytic activity at 350°C of different CoMo catalysts versus O_2 chemisorption. Symbols same as in Fig. 4

lyst. We may interpret this as indicating that the Zn does not radically affect the Mo dispersion, but rather poisons HDS sites or perhaps the Co-promotional effect.

The hydrogenation activity plots show reasonable linear correlations with O₂ chemisorption (Figs. 4B and 5B). Also, the Zncontaining catalysts correlate well. Only the commercial Cyanamid catalyst deviates appreciably from the correlation in Fig. 5B. One may be tempted from this to conclude that O_2 chemisorption is directly related to hydrogenation sites. However, the fact that the correlation for the Mo catalysts does not pass through the origin (Fig. 4B) would seem to cast doubt on this conclusion, although somewhat surprisingly, the CoMo data do extrapolate to the origin. Millman and Hall (13) have reported a failure of their linear O_2 chemisorption versus vacancy concentration plot for reduced Mo/Al₂O₃ catalysts to pass through the origin, which they attributed to single vacancy sites on

the assumption that dual sites may be required to adsorb O_2 . If this is the case with the sulfided catalysts, cobalt may have increased the number of dual adsorption sites at the expense of single ones. It is also possible that Mo catalysts contain two hydrogenation sites, one on which O_2 chemisorbs and the other which does not chemisorb O_2 , and the presence of cobalt eliminates the latter, resulting in only the site which adsorbs O_2 .

In view of the better correlation of hydrogenation activity with O_2 , chemisorption appears to more closely relate to hydrogenation sites than HDS sites. If O₂ absorbs at edge sites, then hydrogenation sites might well be involved since Tanaka (14) and Voorhoeve and Stuiver (15) have proposed that the edge sites are active for hydrogenation. Also, Stevens and Edmonds (6) have proposed that basal plane sites are active for HDS. If this is correct, then with decreasing dispersion of the active phase, both HDS and hydrogenation activity would be expected to decrease, as would O_2 chemisorption, and a rough correlation would obtain for both catalytic functions with O_2 adsorption, as observed, but O_2 would only be adsorbed at the edge hydrogenation sites and correlate with hydrogenation activity.

It is interesting that preadsorbed pyridine decreased O₂ uptake. The slope of the line in Fig. 2 corresponds to about 13 molecules of pyridine adsorbed for each O chemisorption site covered (assuming one O per adsorption site). This would indicate that the major part of the pyridine adsorbs on sites inactive for O_2 adsorption or that O_2 adsorbs on only a fraction of the active sites. Since pyridine is known to be a poison for both HDS and hydrogenation activity of these catalysts (16, 17), we cannot distinguish whether the O₂ adsorbs on HDS or hydrogenation sites by this experiment. Nevetheless, the fact that O₂ adsorption decreases along with catalytic activities as pyridine is added implies at least an indirect relationship between O₂ adsorption and either HDS or hydrogenation sites, or both.

An opposite effect was observed with coke on the catalyst. Now, larger O_2 uptakes were obtained, and the uptake continued even at -78° C. This certainly indicates adsorption of O_2 on or partial oxidation of the coke, and places in doubt the general utility of this technique for assaying active sites on coked catalysts. It is interesting to note that Co/Al₂O₃ effectively suppressed coke formation compared to the Al₂O₃ support (Table 1), demonstrating the hydrogenation ability of sulfided Co; however, its effect was considerably less in the presence of Mo.

In summary, it must be concluded that no clear evidence comes from our study which establishes a direct relationship between O_2 chemisorption and either thiophene HDS or olefin hydrogenation sites, invalidating the technique for quantitatively measuring active sites for these reactions on sulfided catalysts. It is more probable that O_2 chemisorption is generally related to the state of dispersion of the active phase which is only indirectly related to active sites.

ACKNOWLEDGMENTS

This work was supported by the Department of Energy and the State of Utah. The authors wish to acknowledge the technical assistance of Mr. B. G. Johnson and thank Dr. C. H. Bartholomew and Mr. T. A. Bodrero for the volumetric chemisorption measurements.

REFERENCES

- Chung, K. S., and Massoth, F. E., J. Catal. 64, 332 (1980).
- Massoth, F. E., and Chung, K. S., Proc. 7th Inter. Cong. Catal., 629, Tokyo (1980).
- Tauster, S. J., Pecoraro, T. A., and Chianelli, R. R., J. Catal. 63, 515 (1980).
- 4. Stevens, G. C., and Edmonds, T., J. Less Common Metals 54, 321 (1977).
- Chianelli, R. R., and Tauster, S. J., J. Catal. 71, 228 (1981).
- Stevens, G. C., and Edmonds, T., J. Catal. 71, 230 (1981).
- 7. Tauster, S. J., and Riley, J. L., J. Catal. 67, 250 (1981).

- 8. Tauster, S. J., and Riley, J. L., J. Catal. 70, 230 (1981).
- 9. Cable, T. L., Massoth, F. E., and Thomas, M. G., *Fuel Proc. Tech.* 4, 265 (1981).
- 10. Bartholomew, C. H., private communication, manuscript in preparation.
- 11. Brinen, J. S., and Armstrong, W. D., J. Catal. 54, 57 (1978).
- 12. Vyokocil, V., and Tomonova, D., React. Kinet., Catal. Lett. 10, 37 (1979).
- 13. Millman, W. S., and Hall, W. K., J. Catal. 59, 311 (1979).
- 14. Tanaka, K., and Okuhura, T., Catal. Rev. Sci. Eng. 15, 249 (1977).
- 15. Voorhoeve, R. J. H., and Stuiver, J. C. M., J. Catal. 23, 228 (1971).
- Desikan, P., and Amberg, C. H., Canad. J. Chem. 42, 843 (1964).
- Cowley, S. W., and Massoth, F. E., J. Catal. 51, 291 (1978).