The Effect of Some Ions on Glucose Oxidase and Their Kinetics

Salih Zeki Bas^{*}, Salih Yildiz

Department of Chemistry, Faculty of Arts and Sciences, Selcuk University, 42031, Konya, Turkey

Corresponding author:

Salih Zeki Bas,

e-mail : szeki@selcuk.edu.tr

Department of Chemistry, Faculty of Arts and Sciences, Selcuk University, 42031, Konya, Turkey. **Abstract:** The enzymatic oxidation reaction of β -D-glucose in aqueous solution by glucose oxidase (GOD) obtained from *Aspergillus niger* was studied by the use of spectrophotometric method depend on oxidation of o-toluidine. Some experiments were carried out using some matters and their kinetic parameters were calculated. It was found that this enzymatic reaction was inhibited by NaNO₃. The results obtained in the experiments carried out with HgCl₂, Hg₂Cl₂, CuCl₂ and CuCl with the same method fitted nonessential activation.

Keywords: glucose oxidase, β -D-glucose, kinetics.

1. INTRODUCTION

Glucose oxidase is a dimeric and glycosilated flavoprotein. GOD is selective for glucose in clinical applications and biological fluids [1-3]. So, GOD has been intensively used in biosensors the determination of glucose concentration [3-5]. GOD catalyzes the oxidation of β -Dglucose by molecular oxygen producing hydrogen peroxide and glucano-δ-lacton which hydrolyzes spontaneously to gluconic acid [6-8]. In the enzymatic oxidation reaction, coenzyme flavin adenin

dinucleotide (FAD) is reduced to FADH₂ in the presence of glucose. FADH₂ catalyzes the reduction of O₂ and FADH₂ is reoxidized to FAD [8-10]. The hydrogen peroxide produced reacts immediately with iodide in the presence of ammonium molybdate catalyst to form triiodide. The absorbance increase followed as spectrophotometric is a measure of oxidation rate of triiodide formation. The iodide obtained forms a colored product with o-toluidine [11,12,16].

The simplest mechanism for enzyme reaction containing one-substrate is indicated as follows.

$$E + S \xrightarrow{k_1} ES \xrightarrow{k_p} E + P$$

and its Lineweaver-Burk equation is

$$\frac{1}{v} = \frac{K_m}{V_m[S]} + \frac{1}{V_m} \tag{1}$$

Henry-Michaelis-Menten equation for competitive inhibition is [13,15]

$$\frac{v}{V_{m}} = \frac{[S]}{K_{m}(1 + \frac{[I]}{K_{i}}) + [S]}$$
(2)

The velocity equation for the inhibition is

The effect of some...by Salih Zehi Bas and Salih Yildiz, Bulletin of the Catalysis Society of India 6 (2007) 67-73

$$\frac{1}{v} = \frac{K_{m}}{V_{m}} (1 + \frac{[I]}{K_{i}}) \frac{1}{[S]} + \frac{1}{V_{m}}$$
(3)

Nonessential activation is a type of activation in which the enzymatic reaction can occur in the absence of the activation.

$$E + S \underbrace{K_{S}}_{k} ES \underbrace{k_{p}}_{k} E + P$$

$$A \qquad A$$

$$K_{A} = K_{A} \underbrace{\|\alpha K_{A} \\ EA + S \underbrace{\alpha K_{S}}_{k} EAS \xrightarrow{\beta kp} EA + P$$

By taking Henry-Michaelis-Menten equation into consideration, the activation equation is [14]

$$\frac{v}{V_{m}} = \frac{[S]}{K_{m} \frac{1 + \frac{[A]}{K_{A}}}{1 + \frac{\beta[A]}{\alpha K_{A}}} + [S] \frac{1 + \frac{[A]}{\alpha K_{A}}}{1 + \frac{\beta[A]}{\alpha K_{A}}}}$$
(4)

2. EXPERIMENTAL

2.1. Materials

GOD (23000 U/g-*Aspergillus niger*), β -Dglucose, o-toluidine were provided Sigma. Other chemicals such as ammonium molybdate, sodium nitrate, mercury(II) chloride, mercury(I) chloride, copper(II) chloride, copper(I) chloride, potassium iodide, sodium acetate, acetic acide were purchased from Merck.

2.2. Instrument

Schimadzu UV-160A spectrophotometer was used in determinations of absorbtion

spectra for the reaction and in examination of the reaction kinetic.

2.3. Preparation of reaction mixture

The reaction mixture containing 0.15 mL o-toluidine (0.075 mgmL⁻¹), 0.10 mL GOD, 1.50 mL %1(w/v) ammonium molybdate, 1.50 mL %0.5(w/v) potassium iodide and β -D-glucose, 0.50 M, pH 5.0 acetate buffer and deionized water is prepared and this mixture is kept at 25 °C for the same time was added in the mixture (final volume is 4 mL) to start the reaction. This procedure was repeated for each series of experiments with inhibition or activator.

3. RESULTS AND DISCUSSION

The main enzymatic reaction is

Glucose + $O_2 \xrightarrow{GOD}$ Gluconic Acid + H_2O_2

and H₂O₂ formed in this reaction enzymically oxidizes I₂ by the use of ammonium molybdate.

 $H_2O_2 + 2H^+ + 2I^- \xrightarrow{Mo(IV)} I_2 + H_2O$

 I_2 formed in the result of this reaction catalyzes the oxidation of o-toluidine to form a colored product having an maximum absorption at 650 nm.

 I_2 + o-toluidine(red) \longrightarrow 2 HI + o-toluidine(ox)

Optimum enzyme concentration was obtained as 0.14 mgmL⁻¹ for 10^{-4} M β -D-glucose. K_m and V_m values of the reaction without inhibitor and activator, a series of experiments were carried out by trying various substrate concentration. After the reaction was started, the increase of absorbance with respect to time was observed until the reaction was completed. For each study, absorbance (A) graph against time (t) graph was drawn, initial rates of the reactions were found from the

slopes on t₀ points of the curves. So, 1/v and 1/[S] graph drawn. The intersection points of the curve on 1/v and 1/[S] axis in the graph are 1/V_m and -1/K_m respectively. The slope of curve is K_m/V_m. V_m and K_m were calculated $3.46 \times 10^{-3} \Delta A sec^{-1}$ and 8.37×10^{-6} M, respectively. For studies with inhibitor or activator, this method was repeated.

For the aim of studying the effect of NaNO₃ on the enzymatic reaction rate, its solution was added into the mixture before the start of the reaction. Data obtained from the experiments were shown in Table 1. The inhibition constant, K_1 , was calculated 3.07×10^{-3} M for NaNO₃.

Table 1 Data obtained from the experiments for NaNO₃.

[NaNO ₃]	[S]	[S] ¹	V ,	v ⁻¹
(M)	(M)	(M ⁻¹)	(Msec ⁻¹)	(secM ⁻¹)
	0.25×10 ⁻⁴	40000	2.47×10 ⁻³	405
	0.50×10 ⁻⁴	20000	2.74×10 ⁻³	365
2.00×10 ⁻⁴	0.75×10 ⁻⁴	13300	3.00×10 ⁻³	333
	1.00×10^{-4}	10000	3.10×10 ⁻³	327
	1.25×10^{-4}	8000	3.11×10 ⁻³	321
	0.25×10 ⁻⁴	40000	2.50×10 ⁻³	400
	0.50×10 ⁻⁴	20000	2.65×10 ⁻³	377
3.00×10 ⁻⁴	0.75×10 ⁻⁴	13300	2.98×10 ⁻³	335
	1.00×10^{-4}	10000	3.12×10 ⁻³	320
	1.25×10 ⁻⁴	8000	3.19×10 ⁻³	313
	0.25×10^{-4}	40000	2.40×10^{-3}	416
	0.50×10 ⁻⁴	20000	2.41×10 ⁻³	414
4.00×10 ⁻⁴	0.75×10^{-4}	13300	2.92×10 ⁻³	342
	1.00×10^{-4}	10000	3.43×10 ⁻³	291
	1.25×10 ⁻⁴	8000	3.07×10 ⁻³	326
200 + 0	10	20	30 [S] ⁻¹ x10 ³	(M ⁻¹)

Fig. 1. Effect of NaNO₃ on the enzymatic oxidation reaction rate (\bigstar :without NaNO₃, $\equiv:3.0 \times 10^{-4}$ M NaNO₃, $\triangleq:2.0 \times 10^{-4}$ M NaNO₃, $\odot:4.0 \times 10^{-4}$ M NaNO₃)

It was determined that HgCl₂, Hg₂Cl₂, CuCl₂, CuCl activated the enzymatic oxidation of β -D-glucose by GOD in the experiments done and data obtained from the experiments were shown in Table 2,3,4,5. The results obtained in the experiments with HgCl₂, Hg₂Cl₂, CuCl₂, CuCl fitted nonessential activation. The activation contstants, K_A , for HgCl₂, Hg₂Cl₂, CuCl₂, CuCl were 7.76×10^{-5} M, 3.26×10^{-4} M, 1.12×10^{-4} M, 1.88×10^{-4} M, respectively.

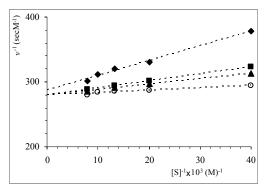

[HgCl ₂] (M)		[S] ¹	v	v ⁻¹
	(M)	(M ⁻¹)	(Msec ⁻¹)	(secM ⁻¹)
	0.25×10 ⁻⁴	40000	3.51×10 ⁻³	285
	0.50×10 ⁻⁴	20000	3.77×10 ⁻³	265
0.25×10^{-4}	0.75×10 ⁻⁴	13300	3.93×10 ⁻³	254
	1.00×10 ⁻⁴	10000	4.10×10 ⁻³	244
	1.25×10 ⁻⁴	8000	4.22×10 ⁻³	237
	0.25×10^{-4}	40000	4.03×10 ⁻³	248
	0.50×10^{-4}	20000	4.22×10 ⁻³	237
0.50×10^{-4}	0.75×10 ⁻⁴	13300	4.31×10 ⁻³	232
	1.00×10^{-4}	10000	4.35×10 ⁻³	230
	1.25×10^{-4}	8000	4.42×10 ⁻³	226
	0.25×10 ⁻⁴	40000	4.59×10 ⁻³	218
	0.50×10^{-4}	20000	4.63×10 ⁻³	216
0.75×10^{-4}	0.75×10 ⁻⁴	13300	4.61×10 ⁻³	217
	1.00×10^{-4}	10000	4.83×10 ⁻³	207
	1.25×10 ⁻⁴	8000	4.90×10 ⁻³	204
(1-W00) (1-W00				, e

Table 2 Data obtained from the experiments for HgCl₂.

Fig. 2. Effect of HgCl₂ on the enzymatic oxidation reaction rate (\star :without HgCl₂, \equiv : 0.25×10⁻⁴ M HgCl₂, \triangleq : 0.50×10⁻⁴ M HgCl₂, \circ : 0.75×10⁻⁴ M HgCl₂)

Table 3 Data obtained from the experiments for Hg₂Cl₂.

[Hg ₂ Cl ₂]	[S]	[S] ⁻¹	v	v ⁻¹
(M)	(M)	(M^{-1})	(Msec ⁻¹)	(secM ⁻¹)
	0.25×10 ⁻⁴	40000	3.10×10 ⁻³	323
	0.50×10^{-4}	20000	3.31×10 ⁻³	302
0.25×10 ⁻⁴	0.75×10 ⁻⁴	13300	3.40×10 ⁻³	294
	1.00×10^{-4}	10000	3.00×10 ⁻³	333
	1.25×10 ⁻⁴	8000	3.46×10 ⁻³	289
	0.25×10 ⁻⁴	40000	3.19×10 ⁻³	313
	0.50×10^{-4}	20000	3.37×10 ⁻³	297
0.50×10 ⁻⁴	0.75×10 ⁻⁴	13300	3.44×10 ⁻³	291
	1.00×10^{-4}	10000	3.49×10 ⁻³	286
	1.25×10 ⁻⁴	8000	3.60×10 ⁻³	278
	0.25×10 ⁻⁴	40000	3.40×10 ⁻³	294
	0.50×10^{-4}	20000	3.48×10 ⁻³	287
0.75×10 ⁻⁴	0.75×10 ⁻⁴	13300	3.49×10 ⁻³	286
	1.00×10^{-4}	10000	3.52×10 ⁻³	284
	1.25×10 ⁻⁴	8000	3.57×10 ⁻³	280

Fig. 3. Effect of Hg₂Cl₂ on the enzymatic oxidation reaction rate (\bigstar :without Hg₂Cl₂, \equiv :0.25×10⁻⁴ M Hg₂Cl₂, \triangleq :0.50×10⁻⁴ M HgCl₂, \circ : 0.75×10⁻⁴ M Hg₂Cl₂)

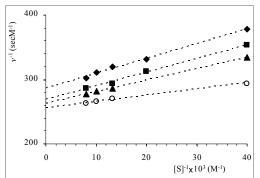
[CuCl ₂]			xperimei	
10001/1	[S]	[S] ⁻¹	v	v ⁻¹
(M)	(M)	(M ⁻¹)	(Msec ⁻¹)	(secM ⁻¹)
	0.25×10 ⁻⁴	40000	2.78×10 ⁻³	359
	0.50×10 ⁻⁴	20000	3.19×10 ⁻³	313
0.25×10^{-4}	0.75×10^{-4}	13300	3.30×10 ⁻³	303
	1.00×10^{-4}	10000	3.40×10 ⁻³	294
	1.25×10 ⁻⁴	8000	3.47×10 ⁻³	288
	0.25×10 ⁻⁴	40000	3.70×10 ⁻³	270
	0.50×10^{-4}	20000	3.19×10 ⁻³	313
0.50×10^{-4}	0.75×10^{-4}	13300	3.78×10 ⁻³	264
	1.00×10^{-4}	10000	3.70×10 ⁻³	270
	1.25×10^{-4}	8000	3.80×10 ⁻³	263
	0.25×10 ⁻⁴	40000	3.42×10 ⁻³	292
	0.50×10^{-4}	20000	3.88×10 ⁻³	258
0.75×10 ⁻⁴	0.75×10^{-4}	13300	3.91×10 ⁻³	256
	1.00×10^{-4}	10000	3.80×10 ⁻³	263
	1.25×10^{-4}	8000	4.00×10 ⁻³	250
- ⁴⁰⁰ 7				
300	▲ ♠	• • • • • • •		▲ ▲

 Table 4 Data obtained from experiments for CuCl₂.

Fig. 4. Effect of CuCl₂ on the enzymatic oxidation reaction rate (\bullet :without CuCl₂, \equiv :0.25×10⁻⁴ M CuCl₂, \blacktriangle :0.50×10⁻⁴ M CuCl₂, \circ : 0.75×10⁻⁴ M CuCl₂)

4. CONCULIONS

The enzymatic oxidation reaction of β -D-glucose in aqueous solution by GOD was investigated by using NaNO₃, HgCl₂, Hg₂Cl₂, CuCl₂ and CuCl. In the experiments, competitive inhibition of NaNO₃ was observed. Besides, it was found that the enzymatic reation was activated by $HgCl_2$, Hg_2Cl_2 , $CuCl_2$ and CuCl.


In the studies which were done to explain the inhibition mechanism of GOD, it was found that there was an interaction between the FAD group of GOD and the inhibitor when a competetive inhibitor was added to the reaction mixture. This interaction changed the polarization of enzyme around FAD group and inhibited the enzyme reaction.

Different explanations were done on the determination of the activation mechanism of GOD. GOD containing two moles of FAD group per mole forms ESS inactive complex with substrate. But it forms EAS complex which is more active when activator is added in the reaction mixture.

Activator makes a conformation change by forming a complex with FAD which forms active center of the GOD. This change facilitates the transfer of electrons from the substrate to the electron acceptor.

Table 5 Data	obtained	from the	experiments	for	CuCl
I ubic c Dutu	ootunica	monn une	/ enpermients	101	CuCI.

[CuCl]	[S]	[S] ⁻¹	v	v ⁻¹
(M)	(M)	(M ⁻¹)	(Msec ⁻¹)	(secM ⁻¹)
	0.25×10^{-4}	40000	2.83×10 ⁻³	353
	0.50×10^{-4}	20000	3.19×10 ⁻³	313
0.25×10^{-4}	0.75×10^{-4}	13300	3.40×10 ⁻³	294
	1.00×10^{-4}	10000	2.60×10 ⁻³	385
	1.25×10^{-4}	8000	3.50×10 ⁻³	286
	0.25×10 ⁻⁴	40000	2.98×10 ⁻³	335
	0.50×10^{-4}	20000	3.30×10 ⁻³	303
0.50×10 ⁻⁴	0.75×10 ⁻⁴	13300	3.49×10 ⁻³	286
	1.00×10^{-4}	10000	3.54×10 ⁻³	282
	1.25×10^{-4}	8000	3.60×10 ⁻³	278
	0.25×10^{-4}	40000	3.40×10 ⁻³	294
	0.50×10^{-4}	20000	3.60×10 ⁻³	278
0.75×10 ⁻⁴	0.75×10^{-4}	13300	3.70×10 ⁻³	270
	1.00×10^{-4}	10000	3.77×10 ⁻³	265
	1.25×10 ⁻⁴	8000	3.80×10 ⁻³	263

Fig. 5. Effect of CuCl on the enzymatic oxidation reaction rate (\bullet :without CuCl, \blacksquare :0.25×10⁻⁴ M CuCl, \blacktriangle :0.50×10⁻⁴ M CuCl, \circ : 0.75×10⁻⁴ M CuCl)

Acknowledgements: The authors are grateful for the financial support provided by the Selcuk University Research Foundation (BAP) under Project 2000/025.

REFERENCES

- [1] H.V. Malmstadt and S.I. Hadjiioannou, Anal. Chem. **34**(1962) 452.
- [2] T. Atalay, S. Yildiz, Chimica Acta Turcica **17**(1988) 127.
- [3] L. Betancor, F. Lopez-Gallego, A. Hidalgo, N. Alonso-Morales, G. Dellamora-Ortiz, J.M. Guisan, R. Fernandez-Lafuente, Journal of Biotechnology 121(2006) 284.
- [4] D.D. Borole, U.R. Kapadi, P.P. Mahulikar, D.G. Hundiwale, European Polymer Journal **41**(2005) 2183.
- [5] Xianhua Pan, Jinqing Kan, Limin Yuan, Sensors and Actuators B 102(2004) 325.

- [6] Liu J.Z., Huang Y.Y., Liu J., Weng L.P., Ji L.N., Lett Appl Microbiol. 32(2001) 16.
- [7] J. Miron, M.P. Gonzalez, L. Pastrana, M.A. Murado, Enzyme and Microbial Tech. 31(2002) 615.
- [8] V. Leskovac, S. Trivic, G. Wohlfahrt, J. Kandrac, D. Pericin, The International Journal of Biochemistry & Cell Biology 37(2005) 731.
- [9] M.T. Sulak, Ö. Gökdoğan, A. Gülce, H. Gülce, Biosensors and Bioelectronics 21(2006) 1719.
- [10] Songqin Liu, Huangxian Ju, Biosensors and Bioelectronics 19(2003)177.
- [11] E. Graf and J.T. Penniston, Clin. Chem. 26(1980) 658.
- [12] H.V. Malmstadt and H.L. Pardue, Clinical Chemistry, 8(1962) 606.
- [13] E. Zefren and P.L. Hall, The study of enzyme mechanism, A Wiley Interscience Publication, 1973.
- [14] I.H.Segel. Behavior and analysis of rapid equilibrium and stead state enzyme systems, A Wiley Interscience Publication, 1975.
- [15] Jesús Mirón, M Pilar González, José A. Vázquez, Lorenzo Pastrana, M.A. Murado, Enzyme and Microbial Technology 34(2004) 513.
- [16] R.H. Thompson, Clinica Chimica Acta, 13(1966)133.