ARE CARBON MATERIALS APPROPRIATE FOR SOLID STATE HYDROGEN STORAGE?

Ph.D Seminar II

M. Sankaran CYD01012

23.08.06

Options available for hydrogen storage

- High pressure gas cylinders
- Liquid hydrogen in cryogenic tanks

Hydrogen storage by solid state materials appears better option

Requisites for a solid state hydrogen storage medium

- ✓ Favourable thermodynamics
- ✓ Fast kinetics (quick uptake and release)
- ✓ Large storage capacity (gravimetric and volumetric density)
- ✓ Effective heat transfer
- ✓ Higher cycle number for hydrogen sorption/desorption
- ✓ Desirable mechanical strength and durability
- ✓ Safe under normal use

Hydrogen storage capacity

Solid state materials for hydrogen storage

Metal hydrides (MgH₂, BeH₂, TiH₂) **Decomposition temperature**

Intermetallics (AB (FeTi), A₂B (Mg₂Ni, ZrV₂), AB₅ (LaNi₅)) Maximum storage capacity <3 wt%

Complex metal hydrides (Alanates, Borohydrides) Catalytic, multi step decomposition, poor kinetics

Porous materials (MOF, Oxides, glass microspheres) Experimental parameters not favourable

Intermetallics

MOF

Zeolite -Y

Carbon materials ..!

Louis Schlapbach and Andreas Züttel, Nature 414 (2001) 353

Why carbon materials for solid state hydrogen storage?

- Coordination number is variable/expandable
- Promote new morphologies
- Covalent character retention
- ***** Variable hybridization possible
- Geometrical possibilities/size considerations
- Meta-stable state
- Similar to biological architectures "Haeckelites"
- Boron and nitrogen doped graphitic arrangements promise important applications.

Hydrogen storage capacity reported in carbon nanostructures (5)

Material	Temp (K)	Pressure (bar)	Wt%	Group
GNF (Herring bone)	RT	113.5	67.6	Chambers et al., (1998)
Graphitic Nano Fibers	RT	101	10	Fan <i>et al</i> ., (1999)
Graphitic Nano Fibers	RT	80-120	10	Gupta <i>et al.</i> , (2000)
SWNTs (low purity)	273	0.4	5-10	Dillon et al., (1997)
SWNTs (high purity)	80	70-180	8.25	Ye et al., (1999)
SWNTs (50% purity)	RT	101	4.2	Liu et al ., (1999)
SWNTs (high purity + Ti alloy)	300-600	0.7	3.5-4.5	Dillon <i>et al.</i> , (1999)
Li-MWNTs	473-673	1	20	Chen <i>et al.</i> , (1999)
Li-MWNTs (K-MWNTs)	473-673	1	2.5 (1.8)	Yang et al., (2000)
MWNTs	RT	Ele.chem	<1	Beguin <i>et al.</i> , (2000)
CNF	RT	1-100	0.1-0.7	Poirier <i>et al.</i> , (2001)
SWNTs	300-520	1	0.1	Hirscher et al., (2000)
Various CNM	RT	35	<0.1	Tibbets <i>et al.</i> , (2001)
SWNTs (+ Ti alloy)	RT	0.8	0	Hirscher et al., (2001)

Situation and Questions

- Production, storage and application challenges of hydrogen economy
- Solid state storage remarkable but not reproducible
- ✤ 6.5 wt% desired level (DOE)
- Demands consistent and innovative practice
- (i) Are the carbon materials appropriate for solid state hydrogen storage?
- (ii) If this were to be true, what type of carbon materials or what type of treatments for the existing carbon materials are suitable to achieve desirable levels of solid state hydrogen storage?
- (iii) What are the stumbling blocks in achieving the desirable solid state hydrogen storage?
- (iv) Where does the lacuna lie? Is it in our theoretical foundation of the postulate or is it in our inability to experimentally realize the desired levels of storage?

Alternate postulates

- ***** Necessity of active sites
- Heteroatom containing carbon materials appropriate candidates?
- Gradation of the carbon materials containing various heteroatoms
- ***** Geometrical positions of the heteroatoms

Heteroatom in carbon materials

Equipotential sites

Standard redox potential (V) for various couples

Ellingham diagram for various species

Catalytic or Stoichiometric? & Possible combinations

Effect of Heteroatoms on Hydrogen interaction

Activating sites - hydrogen adsorption/absorption

- The role of heteroatom substitution in carbon materials
 Density Functional Theory (DFT)
- The effect of various heteroatoms like N, P, S and B for hydrogen activation
- Geometrical positions of heteroatoms

Model

Three Single Walled Carbon nanotubes (SWNTs) of armchair type (4, 4)

- **Each tube having 32 carbon atoms**
- Tube diameter 5.56 Å

Methodology

Interface with three nanotubes – intertubular distance - 3.64 Å

Energy minimization – UFF 1.02 (Cerius2 Software)

Single point energy and bond population analysis - DFT (B3LYP/6-31G*)

The geometric parameters of the optimized clusters

	Avera	ge bond le	ength (Å)	A	verage b	ond angles (deg)		
Cluster		X	-С	< C -	X-C			
Ciustei	C-C	Report ed	Observ ed	Report ed	Observ ed	<x-c-c< th=""><th colspan="2"><c-c-c< th=""></c-c-c<></th></x-c-c<>	<c-c-c< th=""></c-c-c<>	
CNT	1.416	1.385	1.396	120.0	120.9	123.0	123.0	
N CNT	1.409	1.336	1.359	117.4	122.1	121.0	121.6	
P CNT	1.417	1.768	1.710	104.6	103.0	119.2	122.4	
S CNT	1.416	1.790	1.736	99.6	103.2	118.8	122.4	
B CNT	1.420	1.486	1.431	106.6	109.6	120.5	120.8	

Bond length and dissociation energy of H_2 on NCNT ⁽¹³⁾

Substitution	Total Energy (Hartrees)	H ₁ -H ₂ (Å)	Dissociation Energy (eV)
H ₂	-1.175	0.708	4.76
CNT	-3686.5502	-	-
$CNT + H_2$	-3687.7161	0.776	4.51
NCNT	-3702.5908	-	-
$NCNT + H_2$	-3703.5989	0.835	0.22

Character of HOMO

HOMO (Hartrees)	% orbital contribution					
	С		Ν		Н	
	S	р	S	р	s _b	s _t
CNT (-0.1612)	0	100	-	-	-	-
$CNT + H_2$ (-0.1613)	0	100	-	-	0	0
NCNT (- 0.1617)	1	98.30	0	0.18	-	0.56
NCNT + H_2 (-0.1371)	0.52	37.39	1.37	31.91	26.66	2.15

* b- bonded hydrogen to nitrogen and t- terminal hydrogen in the cluster

Bond length and dissociation energy of H_2 on PCNT ⁽¹⁴⁾

Substitution	Total Energy (Hartrees)	H ₁ -H ₂ (Å)	Dissociation Energy (eV)
H ₂	-1.175	0.708	4.76
CNT	-3686.5502	-	-
$CNT + H_2$	-3687.7161	0.776	4.51
PCNT	-3989.1694	-	-
PCNT + H_2	-3990.2550	0.815	2.33

Character of HOMO

HOMO level	% of orbital contribution							
(Hartrees)	С		Р		Н			
Contribution	S	р	S	р	s _b	s _t		
CNT (-0.1612)	0	100	-	-	-	-		
$CNT + H_2$ (-0.1613)	0	100	-	-	0	0		
PCNT (-0.1611)	1	96.85	0	1.71	-	0.53		
PCNT+ H ₂ (-0.1516)	1	85.62	0.04	8.06	4.83	0.49		

* b- bonded hydrogen to phosphorus and t- terminal hydrogen in the cluster

Bond length and dissociation energy of H₂ on SCNT (15)

Substitution	Total Energy (Hartrees)	H ₁ -H ₂ (Å)	Dissociation Energy (eV)
H ₂	-1.175	0.708	4.76
CNT	-3686.5502	-	-
$CNT + H_2$	-3687.7161	0.776	4.51
SCNT	-4046.0020	-	-
SCNT + H_2	-4047.0067	0.817	0.13

Character of HOMO

HOMO level	% of orbital contribution							
(Hartrees)	С		S		Η			
	S	р	S	р	s _b	s _t		
CNT (-0.1612)	0	100	-	I.	-	-		
$CNT + H_2$ (-0.1613)	0	100	I	I.	0	0		
SCNT (- 0.1375)	1	76.87	0	21.17	-	1.16		
SCNT + H_2 (-0.1207)	0.45	41.80	0.35	41.65	14.87	0.88		

* b- bonded hydrogen to sulphur and t- terminal hydrogen in the cluster

The mechanistic pathway for hydrogenation of heteroatom substituted CNTs.

16

*** TRANSITION STATE OPTIMIZATION USING DFT**

***** B3LYP/6-31G*

B.Viswanathan, M.Sankaran and R.Ganesan, Prepr. Pap.-Am. Chem. Soc., Div. Fuel Chem. 48 (2003) 943

Energy profile for hydrogen interaction with heteroatom substituted CNT clusters

Transition state optimized parameters of the cluster and values of activation energy

Substitution	E _a I (eV)	E _a II (eV)	H ₁ -H ₂ (Å)	X-H (Å)	C-H ₁ * (Å)	C-H ₂ * (Å)
CNT	10.02	-	0.71	-	-	-
N CNT	3.84	4.58	1.45	1.11	1.70	1.94
P CNT	3.81	3.99	1.51	1.61	1.27	2.33
S CNT	3.65	4.85	1.50	1.75	1.24	2.40

 $E_a = E$ (transition state) – E (reactant)

* Shortest C-H bond distance

M. Sankaran, and B. Viswanathan, Carbon (in press) (doi:10.1016/j.carbon.2006.03.025)

Electron density contour of heteroatom containing cluster before and after hydrogen interaction

Bond length and dissociation energy of H_2 on BCNT ⁽²⁰⁾

Substitution	Total energy (Hartrees)	H ₁ -H ₂ (Å)	Dissociation energy (eV)
H ₂	-1.175	0.708	4.76
CNT	-3686.5502	-	-
$CNT + H_2$	-3687.7161	0.776	4.51
B CNT	-3671.7254	-	-
B CNT + H_2	-3672.9440	0.818	5.95

Character of HOMO

HOMO level	% of orbital contribution						
(Hartrees)	(С		В		H	
Contribution	S	р	S	р	s _b	s _t	
CNT (-0.1612)	0	100	-	-	-	-	
$CNT + H_2$ (-0.1613)	0	100	-	-	0	0	
BCNT (-0.1576)	1	94.87	0	3.59	-	0.5	
BCNT + H_2 (-0.1534)	1	96.26	0.10	1.12	1	0.54	

* b- bonded hydrogen to boron and t- terminal hydrogen in the cluster

Boron substitution in adjacent and alternate positions in carbon nanotubes

Adjacent position

Alternative position

Bond length and dissociation energy of H₂ on BCNTs

Substitution	Total energy	H ₁ -H ₂	Dissociation
	(Hartrees)	(Å)	energy (eV)
$\mathbf{H_2}$	-1.175	0.708	4.76
CNT	-3686.5502	-	-
CNT + H ₂	-3687.7161	0.776	4.51
2B CNT (adjacent)	-3658.6666	-	-
2B CNT (adjacent)+ H ₂	-3659.8092	0.913	3.88
2B CNT (alternate)	-3659.3491	-	-
2B CNT (alternate)+ H ₂	-3660.3594	0.928	0.28

Character of HOMO

	% of orbital contribution						
HOMO level (Hartrees)	С		B		Η		
	S	р	S	р	s _b	s _t	
CNT (-0.1612)	0	100	-	-	-	-	
$CNT + H_2$ (-0.1613)	0	100	-	-	0	0	
2B CNT (adjacent) (- 0.1568)	1.01	96.98	0	1.53	-	0.5	
2B CNT (adjacent) + H ₂ (- 0.1564)	6.26	88.34	0.10	4.67	0.28	0.4	
2B CNT (alternate) (- 0.1540)	12.56	80.41	0.60	5.49	-	1	
2B CNT (alternate) + H ₂ (- 0.1572)	14.67	73.93	0.73	4.48	5.32	0.8 6	

* b- bonded hydrogen to boron and t- terminal hydrogen in the cluster

Mechanistic pathway for hydrogenation of boron substituted CNT in adjacent and alternate positions

*** TRANSITION STATE OPTIMIZATION USING DFT**

***** B3LYP/6-31G*

Energy profile of boron substituted CNT clusters

Reaction coordinate

The transition state optimized parameters of the cluster and the values of the activation energy

Substitution	E _a I (eV)	E _a II (eV)	H ₁ -H ₂ (Å)	Х-Н (Å)	С-Н ₁ * (Å)	С-Н ₂ * (Å)
CNT	10.02	-	0.71	-	-	-
2B CNT (adjacent)	2.22	2.98	1.95	1.31	2.59	2.72
2B CNT (alternate)	1.5	2.33	2.95	1.47	1.47	2.34

 $E_a = E$ (transition state) – E (reactant)

* Shortest C-H bond distance

The dissociation energy of the H₂ with heteroatom substitution

Variation of activation energy for the TS I

Fullerenes

Theoretical storage capacity 7.7 wt% (C₆₀H₆₀)

$C_x + x/2 H_2 \iff C_x H_x$

High temperature (400 – 450 °C) & Pressure (60 – 80 MPa)

E_a of hydrogenation and dehydrogenation

Fullerite

Research in hydrogen – Sorption properties of fullerites

Method	Chemical reaction	Conditions: pressure p temperature T
Direct non-catalytic hydrogenation	$C_{60} + H_2 \Rightarrow C_{60} H_{2-18} (2.4 \text{ Wt\%})$	pH ₂ = 50–85 MPa, T = 573–623 K
Reaction of gaseous hydrogen with C_{60} Pd $_{4.9}$	$C_{60}Pd_{4.9} + H_2 \Rightarrow C_{60} H_{2-26} (3.48 Wt\%)$	рН ₂ = 2.0 МРа, T= 473–623 К
Catalytic hydrogenation in toluene solution in the presence of Ru/ C	$C_{60} + H_2 \Rightarrow C_{60} H_{36-48} (6.3 \text{ Wt\%})$	pH ₂ = 2-12 MPa, T= 383–553 K
Radical hydrogenation with promoter, C₂H₅I	$C_{60} + H_2 \Longrightarrow C_{60} H_{\sim 36} (4.8 \text{ Wt\%})$	pH ₂ = 6.9 MPa, T= 723 K
Reduction with lithium in ammonia in the presence of t-BuOH	$C_{60}^{+} H_2^{-} \Rightarrow C_{60}^{-} H_{18-36}^{-}$ (4.8 Wt%)	T = 78 K
Reduction in toluene solution through hydro borating or hydrozirconating	$C_{60} + H_2 \Longrightarrow C_{60} H_{2-4} (0.6 \text{ Wt\%})$	T = 278 K
Hydrogen transfer on the fullerene from the dihydroanthracene	$C_{60} + H_2 \Rightarrow C_{60} H_{18-36} (4.8 \text{ Wt\%})$	T = 623 K
Fullerene hydrogenation in the Zn–conc. HCl– toluene system	$C_{60} + H_2 \Rightarrow C_{60} H_{18-36} $ (4.8 Wt%)	T = 293 K
Electrochemical hydrogenation the 30% KOH solution	C_{60} +x H ₂ + xe \Leftrightarrow C_{60} H _{~x} + xOH	Under normal conditions

Hydrogen activation in heteroatom substituted fullerene molecule

Model

Fullerene (C_{60}) cluster and heteroatom substituted C_{60}

METHODOLOGY

Energy minimization – UFF 1.02 (Cerius2 Software)

Single point energy – **DFT** (B3LYP/6-31G*)

Bond length and dissociation energy of H₂ on the fullerene

	Total Energy	(H ₁ -H ₂)	H ₂ Dissociation
	(Hartrees)	Å	energy (eV)
H ₂	-1.175	0.708	4.74
C ₆₀	-2286.042	-	-
C ₆₀ +H ₂	-2287.211	0.707	4.61
NC ₅₉	-2302.653	_	-
NC ₅₉ +H ₂	-2303.640	0.831	0.36
PC ₅₉	-2589.253	-	-
$PC_{59} + H_2$	-2590.276	0.813	0.64
SC ₅₉	-2646.036	-	-
SC ₅₉ +H ₂	-2647.013	0.815	0.62

Transition state path ways for hydrogen interaction

Substituted fullerenes

Optimized geometrical parameters of the simple cluster

***** Transition state optimization using **DFT**

***** B3LYP/6-31G*

	X-C ₁	X-C ₂	X-C ₃	C ₄ - C ₁ - X	C ₂ -X-C ₁	$C_4 - C_1 - X - C_2$	$C_5 - C_1 - X - C_3$
Cluster	Å	Å	Å	deg	deg	deg	deg
UNSUB	1.35	1.43	1.43	122.63	122.63	0.00	0.00
N-SUB	1.35	1.42	1.40	124.54	120.31	-8.83	9.28
P-SUB	1.60	1.68	1.69	124.90	101.48	-32.59	34.25
S-SUB	1.58	1.70	1.70	124.38	101.49	31.73	-31.73

The transition state optimized parameters for various clusters and E_a for each pathway

	*E _a I	E _a II	E _a III	H_1 - H_2	X-H ₁	C ₁ -X	C ₂ -X	C ₃ -X
Substitution	(eV)	(eV)	(eV)	Å	Å	Å	Å	Å
Carbon	18.49	-	-	0.70	-	-	-	-
Nitrogen	3.24	3.15	3.08	1.85	1.04	1.44	1.50	1.50
Phosphorus	1.73	1.52	1.52	1.85	1.26	1.48	1.62	1.62
Sulphur	2.56	6.48	1.86	1.13	1.60	1.70	1.70	1.70

***** = E (each transition state) – E (reactant)

K. Muthukumar, M. Sankaran and B. Viswanathan, Eurasian. Chem. Tech. Journal 6 (2004) 139
Boron substituted fullerene

METHODOLOGY

Energy minimization – UFF 1.02 (Cerius2 Software)

Single point energy – **DFT** (B3LYP/6-31G*)

Geometrical parameters of the boron substituted fullerene (C₆₀) molecule employing UFF 1.02

- **X** Single boron substitution
- X, 2 Boron substituted at adjacent positions

X, 3 - Boron substituted at alternate positions

Substitution	X-2	X-6	X-9	2-3	2-12	3-4	<x-2-3< th=""><th>< 9-x-2-3</th><th><6-x-2-3</th></x-2-3<>	< 9-x-2-3	<6-x-2-3
	Å	Å	Å	Å	Å	Å	deg	deg	deg
C ₆₀	1.400	1.400	1.420	-	-	-	108.1	0.0	0.0
Single (X)	1.656	1.589	1.580	-	-	-	116.4	7.1	-7.3
2 'B' (adj) (X, 2)	1.516	1.580	1.569	1.569	1.581	-	78.1	1.7	1.7
2 'B" (alt) (X, 3)	1.486	1.591	1.637	1.472	1.313	1.620	111.4	30.0	-59.8

Bond length and dissociation energy of hydrogen on fullerenes

	Total energy	(H-H)	H ₂ dissociation
Substitution	(Hartrees)	Å	energy (eV)
H ₂	-1.175	0.708	4.74
C ₆₀	-2286.042	-	-
$C_{60} + H_2$	-2287.211	0.707	4.61
BC ₅₉	-2272.764	-	-
BC ₅₉ +H ₂	-2273.908	0.818	3.92
2BC ₅₈ (Adj)	-2259.506	-	-
2BC ₅₈ (Adj) +H ₂	-2560.567	1.126	1.66
2BC ₅₈ (Alt)	-2259.487	-	_
$2BC_{58}$ (Alt) +H ₂	-2260.477	1.016	0.28

Proposed mechanistic pathways for hydrogenation ⁽³⁹

Adjacent substitution

Alternate substitution

- *** TRANSITION STATE OPTIMIZATION USING DFT**
- ***** B3LYP/6-31G*

Geometrical parameters of the simple cluster

Cluster	X-2	X-6	X-9	2-3	2-12	3-4	<x-2-3< th=""><th>< 9-x-2-3</th><th><6-x-2-3</th></x-2-3<>	< 9-x-2-3	<6-x-2-3
	Å	Å	Å	Å	Å	Å	deg	deg	deg
C ₆₀	1.400	1.400	1.420	-	-	-	120.0	0.0	0.0
cluster	1.352	1.431	1.431	-	-	-	122.6	0.0	0.0
2 'B' (adj)	1.568	1.509	1.509	1.509	1.509	1.483	121.4	0.0	0.0
2 'B" (alt)	1.453	1.571	1.527	1.527	1.395	1.566	113.7	-16.1	-15.4

* where X = boron atom

Transition state optimized parameters and the E_a for the proposed pathway 19=

Substitution		E _a I	H ₁ -H ₂	B ₁ - H ₁	B ₂ - H ₂	C-H ₁ *	C-H ₂ *
		(eV)	(Å)	(Å)	(Å)	(Å)	(Å)
Adjacent	(X, 2)	2.26	1.98	1.19	1.29	2.52 (C ₂)	1.43 (C₄)
Alternate	(X, 3)	0.50	2.95	1.27	1.23	1.25 (C ₂)	1.97 (C ₅)

E_a = **E** (each transition state) – **E** (reactant) * = Shortest C-H bond distance

M. Sankaran, K. Muthukumar and B. Viswanathan, Fullerene, Nanotubes and Carbon Nanostructures, 13 (2005) 43

Outcome

- Substituted heteroatom acts as an active centre for hydrogen activation
- For the effective hydrogenation and hydrogen storage, the heteroatoms should be incorporated geometrically and chemically into the carbon network

Experimental studies Effect of heteroatom on hydrogen interaction

- * Experimental setup ----- Low Pressure & High Pressure
- * Hydrogen adsorption studies on activated carbon and modified activated carbon
- Preparation of nitrogen containing carbon nanomaterials by different methods - Hydrogen storage capacity
- * Synthesis, characterization and hydrogen storage capacity of boron containing carbon nanomaterials

Hydrogen adsorption study by volumetric method

Low pressure hydrogen adsorption (glass)

Experimental procedures

- Sample evacuated (10⁻⁵ Torr) at 300°C for 6h
- Pressure change monitored with respect to volume of gas adsorbed
- Dead space calculated using He gas
- H₂ adsorbed at various temperatures thermodynamic data
- **❖** Surface area − N₂ adsorption at 77 K BET equation

High pressure adsorption apparatus

where **Z** = Compressibility factor

Activated carbon and modifications

- 1. Activated carbon (CALGON & CDX-975)
- 2. Metal supported CALGON
- **3.** Chemical treatments on CDX-975

Determination of surface area by BET method

- **CDX-** 975 500 mg taken dried in oven at 100 °C
- **Catalyst dead space calculations done at 77 K (He gas)**
- **Nitrogen adsorption carried out at 77 K**

Adsorption data:

Equilibrium pressure (mm Hg)	Volume adsorbed (cm ³ /g)	P/P _o	P/V(P _o -P) x 10 ⁻³
98	78.25	0.13	1.89
137	85.55	0.180	2.57
187	95.11	0.246	3.43
244	105.85	0.321	4.46
288	114.53	0.379	5.32
335	122.78	0.462	6.42

 $P/V(P_0-P)$ Vs P/P_0 linear plot (in range of 0.05-0.30)

Surface area:

 $SSA_{BET} = V_m x N_o x \sigma x 10^{-20} m^2 / M$

From Graph :

Intercept = 1.8×10^{-4} Slope = 0.0132Slope + intercept = 0.0134 $V_m = 1/slope + intercept = 74.80$

0.5 0.4 P/ V(P₀-P) 10⁻³ 0.3 0.2 0.1 0.0-0.1 0.2 0.3 0.4 0.0 0.5 P/P_o

 $S = 6.023 \times 10^{23} \times 16.2 \times 10^{-20} \times 74.80 \text{ m}^2 / 22414 \times 1 \text{ g}$

Surface area = $326 \text{ m}^2/\text{ g}$

Hydrogen adsorption activity of activated carbon (CALGON granules) at various temperatures

50

Heat of adsorption -6 kJ / mol

Nickel supported on carbon

XRD pattern of Ni supported on carbon

Hydrogen adsorption activity of 20 wt% Ni/C at various temperatures

Heat of adsorption of 20 wt% Ni/C -59 kJ / mol

Hydrogen adsorption activity of 2 wt% Ni/C at various temperatures

Treatment of CDX-975

Amine treatment of CDX-975

Acid and amine treatment of CDX-975

Hydrogen adsorption capacity at 1 atm pressure

	Calgon	Nick (kel/Cart Calgon)	oon	CDX	T-CDX	A-CDX	TA-CDX
		20 wt%	5 wt%	2 wt%	- 975			
Surface area (m ² /g)	931	616	750	1066	325	224	129	124
	Hydrogen adsorption at 1 atm (cm ³ /g)							
77K	137.7	54.4	44.5	120.8	28.1	27.3	8.2	10.4
298K	0.70	0.5	-	-	0.53	-	-	0.7
373K	0.43	3.14	1.4	1.53	2.83	3.17	3.03	2.97
423K		1.95	1.7	2.05	4.18	4.25	4.30	
473K					5.0	4.60		
523K					4.80	6.36		

Preparation of nitrogen containing carbon nanomaterials and their hydrogen storage capacity

Preparation of nitrogen containing carbon nanomaterial

XRD, SEM and TEM images

TEM image

Nitrogen content 7.7% by CHN analysis

SEM images

Carbon prepared by microemulsion polymerization ⁶² method

Nitrogen content 4.6% by CHN analysis

Preparation of carbon nanomaterials - various templates

Ceolite - Y

- Pillared clay
- Alumina membranes

1. Carbon prepared using Zeolite –Y

SEM and TEM images of carbon nanomaterials prepared using zeolite as template

SEM image

TEM image

C/Zeolite

SEM and TEM images of nitrogen containing carbon ⁶⁷ nanomaterials

SEM images

TEM image

NC/zeolite

2. Preparation of carbon nanomaterials using clay

68

Pillared Clay: Process of pillaring

- Acetylene gas (carbon source) 5 ml/min flow rate (C/Clay)
- Acetylene + pyridine (nitrogen containing material) (NC/Clay)
- Carbonized 900 °C Ar atmosphere
- **Treated with 48% HF for 24h washed with distilled water.**

A. Gil et al., Catal. Rev-Sci. Engg. 42 (2000) 145.

SEM and TEM images of carbon nanomaterials prepared using clay as template

SEM images

C/clay

Nitrogen containing carbon material (NC/ clay)

SEM images

3. Preparation of carbon nanomaterials using alumina membrane as template

SEM and TEM images of carbon nanotube (CNT) prepared from Poly phenyl acetylene

0.5 µm

SEM image

TEM image

73 **Preparation of nitrogen containing carbon nanotubes** (NCNT) **Alumina Membrane Pyrrole (0.1M) PTSA (0.2M)** FeCl₃.6H₂O (0.2M) **Polymerization at RT for 3h PPY/Alumina** Carbonization 1173K Ar,4h

Carbon / Alumina

48% HF 24h

SEM and TEM images of nitrogen containing carbon nanotube (NCNT) prepared from polypyrrole

SEM image

TEM image

Nitrogen content 6.5% by CHN analysis

Hydrogen interaction study

• METHODS

Hydrogen storage capacity of CNTs - Measured by Evolved Gas Analysis (EGA) 75

***** Desorbed gases - quadruple mass spectrum

• EXPERIMENTAL CONDITIONS FOR EGA

***** Adsorption of hydrogen at room temperature and 1 atm pressure

***** Evacuation of the chamber - 10⁻⁵ Torr

• **PRETREATMENT CONDITIONS**

Heated 120 °C for 15 min – remove moisture

EGA profiles

NCNT

CNT

- Formation of ammonia observed from EGA
- Interaction of Nitrogen with Hydrogen -Formation of Ammonia
- Recycling of catalyst-decrease of Ammonia participation of Nitrogen.

NCNT recycled

M.Sankaran and B.Viswanathan, Bull. Catal. Soc (India), 2 (2003) 9

INDEPENDENT EXPERIMENT

Confirmation of ammonia by spectrophotometry using Nessler's reagent 0.085mL/mg (in gas phase volume).
(1/3rd of the total nitrogen content in the sample)

Nitrogen content 4.3 % by CHN analysis

***** Theoretically about 1wt% of hydrogen could be adsorbed for 20% of Nitrogen present in the carbon network.

Specific surface area and amount of hydrogen adsorbed at 1 atm & different temperatures

	Surface area (m²/g)	Hydrogen adsorption (cm ³ /g) at 1 atm and at various temperatures (°C)				
		-196	25	100	150	200
NC (mesoporous)	93.0	20.2	0.34	0.90	-	-
NC (emulsion)	182	64.4	-	2.78	-	-
C/Zeolite	633	28.0	-	3.42	4.23	-
NC/Zeolite	646.5	-	-	-	-	-
C/ Clay	48.8	-	-	3.0	3.22	-
N/ Clay	66.4	7.45	-	2.4	-	-
NCNT/Membrane	246	47.5	-	6.11	-	9.5

Hydrogen storage capacity at various pressures

M.Sankaran and B.Viswanathan, Prepr. Pap.-Am. Chem. Soc., Div. Fuel Chem. 51 (2006) (accepted)

Effect of heat treatment at 800 °C in Ar atm

High pressure adsorption study on carbon nanomaterials prepared using clay as template (C& NC/ Clay)

Synthesis, characterization and hydrogen storage capacity of boron containing carbon nanomaterials

Using hydroborane polymers

Preparation :

The percentage of boron present in the carbon is 4.12% (after the carbonization of the polymer estimated by colorimetric method).

Micrographic images of boron containing carbon

SEM image

TEM image

Shows spherical morphology with particle size of 100 nm

¹³C NMR, SAED and XRD pattern of boron containing carbon

XRD - d = 3.16 (calculated from 2 Θ value)

SAED - d = 3.2 (from the diameter of the ring pattern)

¹¹B NMR & XP Spectrum of boron containing carbon

86

presence of boron in carbon

Preparation of boron containing carbon material by ⁸⁷ crosslinking phenol polymers (PBC)

Chemical vapor deposition of borane gas + acetylene mixture over template

SEM and TEM images of boron containing carbon ⁽ materials

SEM images

89

TEM image

BC / Zeolite

SEM images of boron containing carbon materials

BC / Clay

Boron containing carbon nanotubes prepared using alumina membrane

SEM and TEM images of boron containing carbon nanotubes

SEM images

TEM images

BCNT/ Membrane

XRD, IR and Raman spectrum of boron containing carbon nanomaterials

CP MAS ¹¹B NMR spectra of boron containing carbon nanomaterials

Hydrogen adsorption activity of boron containing carbon nanomaterials at 1 atm

Carbon nanomaterial	Surface area (m²/g)	Amount of hydrogen adsorbed (cm ³ /g) at 1 atm & at various temperatures (°C)				
		-196	25	100	150	
BC	11.9	3.63	0.6	3.63	4.68	
PBC	429.9	73	-	2.90	3.02	
BC/Clay	32.7	1.09		1.7		
BC/Zeolite	62.3	3.22	_	2.38	4.73	

Hydrogen storage capacity of boron containing carbon materials

96

Boron containing carbon nanotubes prepared with polymer precursor, show different boron chemical environments and structural morphology. This configuration has a bearing on hydrogen sorption characteristics.

M.Sankaran, B.Viswanathan and S. Srinivasa Murthy, Bull. Catal. Soc (India), 5 (2006) 56

Hydrogen storage capacity of heteroatom substituted carbon nanomaterials

Carbon Materials	Surface area (m²/g)	Hydrogen storage capacity at room temperature		
		Pressure (bar)	Wt%	
Calgon	931	100	0.18	
CDX-975	325	80	0.35	
C/Zeolite	633	100	0.2	
NC/Zeolite	647	100	0.17	
HNC/Zeolite	-	100	0.72	
BC/Zeolite	62	80	0.18	
C/Clay	49	80	0.48	
NC/Clay	66	80	1.75	
BC/Clay	33	100	0.2	
NCNT/Membrane	246	100	1.2 (0.6)	
BCNT/Membrane	-	80	2.03	

Morphology and the hydrogen storage capacity

EPILOGUE

- The anxiety of Scientists to achieve the required hydrogen storage in solid state for commercial exploitation appears to be a far cry.
- However, the hope and possibility are favourable and it is only a matter of time before one can achieve the desired levels of storage.
- It is unfortunate that at this stage, a more positive feasibility could NOT be realized.
- The scientific journey for this goal has to continue till further for some more time.....

Acknowledgement

Grateful thanks are due to

- Prof. B. Viswanathan
- Prof. S. Srinivasa Murthy
- The Heads of Department of Chemistry and Deans
- The Doctoral committee members and faculty of the Department of Chemistry
- The authorities for providing the various facilities
- The supporting staff, fellow research scholars and friends