Hydrogen Storage – Dream or Reality ?

Ph.D Seminar - I

M. Sankaran

Why alternate fuels?

Growing demand

Awareness for equidistribution

Environmental concerns

Economy and processibility

Seth Dunn, Tech Monitor, Nov-Dec (2001) 14

Why Hydrogen?

Heat and energy content

***** Perfectly renewable

***** Light and gas at NTP conditions

M.Conte et al J.Power Source, 100 (2001)171

Comparison of fuel properties

Properties	Hydrogen (H ₂)	Methane (CH ₄)	Gasoline (-CH ₂ -)
Lower heating value(kWhKg ⁻¹)	33.33	13.9	12.4
Self ignition temperature (°C)	585	540	228-501
Flame temperature (°C)	2045	1875	2200
Ignition limits in air (Vol %)	4-75	5.3-15	1.0-7.6
Minimal Ignition energy (mWs)	0.02	0.29	0.24
Flame propagation in air (ms ⁻¹)	2.65	0.4	0.4
Diffusion coefficient in air (cm ² s ⁻¹)	0.61	0.16	0.05
Toxicity	No	No	High

L. Schlapbach et al., Nature, 414 (2001) 353.

4

Transistion to hydrogen

*** Production**

***** Distribution

Production of hydrogen

***** Electrolysis

***** Thermochemical

***** Biochemical

Technology awaited

Why 6.5 wt%?

S.Hynek et al., Int.J.Hydrogen Energy, 22 (1997) 601 7

Storage

ℰ Gas/liquid

Solid

- Metal, intermetallics, alanates

- Porous materials
- Carbon materials

U.Bunger et al., Appl. Phys A, 72 (2001)147

Metal hydrides

🖎 Maximum storage capacity 3 wt%

Experimental parameters not favourable

🖎 Recycling not feasible

🖎 Cost and weight

G.Sandrock et al., J.Alloys Comp., 293-295(1999)877

P-C-T isotherm

Sievert's law $H/M = Ks P^{1/2}$

 $\ln (K_2/K_1) = -\Delta H/R (1/T_2 - 1/T_1)$

Intermetallics

Maximum storage capacity <3 wt% AB (FeTi), A₂B (Mg₂Ni, ZrV₂), AB₅ (LaNi₅)

Hydrogen activator?

Hydrogen absorber?

Schematic representation of hydrogen storage in Metal Hydrides

Storage capacity of metal hydride and intermetallics

Material	P _{des} (atm)	T (K)	H-atoms per $cm^3 (x \ 10^{22})$	weight % of hydrogen
MgH ₂	~10 ⁻⁶	552	6.5	7.6
Mg ₂ NiH ₄	~10 ⁻⁵	528	5.9	3.6
FeTiH ₂	4.1	265	6.0	1.8
LaNi ₅ H ₆	1.8	285	5.5	1.3

Why not ?

P.Dantzer *et al.*, Material Science and Engineering A,**329-331** (2002)313

Alanates

- Favourable hydrogen storage capacity
- Formation
- Bonding
 Bonding
- Experimental conditions
 (catalyst, multi step decomposition, poor kinetics)

Feasibility ?

K.J.Gross et al., J.Alloys.Comps 330-332 (2002) 683 14

Porous materials

Possibilities

(zeolites, glass microspheres)

Experimental parameter not favourable

Storage capacity

Why carbon?

***** Nature's process

***** Light mass and low cost

***** Optional possibilities

Requirement of UCR >1 why?

UCR:- Storage capacity with adsorbent to storage capacity without adsorbent

Storage capacity of adsorbent – high

> How to achieve?

Q.Wang et al., J.Phys.Chem. B, 103 (1999) 4809

Activated carbon

* Typically UCR>1

* Storage is αSA(pore volume)

- * Storage only at low T and High P ---5.2 wt% at 65K &42 atm
 - M.G.Nijkamp *et al.*, Appl.Phys, A, **72**(2001)619 ¹⁸

Fullerenes

Stable stochiometric hydrides

B Electrochemical charging

Activation by alkali metal

Strong bonding

D.V.Schur et al., Int.J.hydrogen Energy 27 (2002) 1063

Carbon Nanomaterials

Herringbone

♦ Inter planar spacing (0.335 nm)

- ♦ Storage capacity (67 wt %)
- \diamond Production and recyclibility.

A.Chambers et al., J.Phys.Chem. B, 102 (1998) 4253

Platelet

Storage capacity (53.68 wt%)

S Production and recyclibility

0.34 nm

0.29 nm

S.Orimo et al., Appl.Phys.Lett., 75 (1999) 3093

Hydrogen Storage capacity of Graphitic nanofiber

Materials	Pressure	Temperature	Wt % of H ₂
	(MPa)	(K)	
GNFs (herring bone)	12	298	67.55
GNFs (platelet)	12	298	53.68
GNFs (tubular)	12	298	11.26
GNFs (Heat treatment)	12	298	1.1 - 1.4
CNFs	10	300	~5

H.M. Cheng et al., Carbon 39 (2001)1447

Carbon nanotubes

F.Lamari Darkrim et al., Int.J.Hydrogen Energy, 27(2002)193

TEM picture of single walled carbon nanotube

A.C. Dillon, et al., Appl. Phys. A, 72 (2001) 133

Interaction of Hydrogen in Carbon Nanotube

G.E.Froudakis et al., Nano Lett., 1 (2001) 179

Hydrogen storage capacity of SWNTs & MWNTs

Materials	Pressure (MPa)	Temperature (K)	Wt % of H ₂
SWNTs	0.04	133	5-10
SWNTs (pure)	0.067	Ambient	3.5-4.5
SWNTs ~50 %	10	300	4.2
SWNTs (pure)	12	80	8.2
MWNTs	Ambient	300-700	0.25
MWNTs (aligned & opened)	4	80	1.97

Modification of nanotubes

***** Addition of metals and alloys

***** Addition of metal oxides

R.T.Yang, Carbon 38(2000) 623

Hydrogen storage in modified carbon nanotubes

Materials	P(MPa)	T(K)	Max Wt% H ₂
Li-CNT	0.1	473-673	21 (Wet H ₂)
			1.8 (Dry H₂)
K-CNT	0.1	313	12 (Wet H ₂)
			2.5 (Dry H ₂)
Li-CNT	0.1	473-663	0.7342
SWNT -Fe	0.08	Ambient	<0.005
SWNT-TIAl _{0.1} V _{0.04}	0.067	Ambient	~7
SWNT –	0.08	Ambient	1.47
Ti-6Al-4V			
SWNT –	Ambient	600	0.65
NiO-MgO			28

Hydrogen storage capacity of different storage methods

Storage method	Hydrogen capacity (Wt %)	Energy capacity (KW/Kg)	Possible application areas
Gaseous H ₂	11.3	6.0	TR,CHP
Liquid H ₂	25.9	25.9 13.8	
Metal hydride	~ 2-6.6 0.8-2.3		PO,TR
Activated carbon	6.2	2.2	_
Zeolites	0.8	0.3	_
Glass spheres	8	2.6	_
Nanotubes	4.2-7	1.7-3.0	PO,TR
Fullerenes	~8	2.5	PO,TR

TR-Transportation, PO- Portable, CHP- Power production. 29

What alternative?

Revert back to Nature – Heteroatom?

Heteroatom containing nanomaterials?

Activation of hydrogen by heteroatom?

Ellingham diagram of the various Species

Standard redox potential in volts of various species

Model

Cluster model (the heteroatoms are substituted in positions 26,33,50,57,15 and 6)

Methods: Energy minimization – UFF 1.02 Single point energy – DFT B3LYP/6-31G(d)

Results

Heteroatom	Mode of substitution	H ₂ Energy (eV)	Bond length (H-H) Å	H ₂ Dissociation energy (eV)
Hydrogen	-	-31.96	0.708	4.74
Unsubstituted CNT	-	-31.97	0.708	4.76
Nitrogen substituted CNT	1 N + 1 H ₂	-26.90	0.84	0.31
(Each ring 1N)	3 N + 1 H ₂	-26.89	0.84	0.32
	$3 \mathrm{N} + 3 \mathrm{H}_2$	-26.88	0.84	0.33
(Each ring 2N)	6 N + 1 H ₂	-27.78	1.08	0.56
	6 N + 3 H ₂	-27.70	1.08	0.50
Phosphorus substituted CNT	1 P + 1 H ₂	-29.27	0.81	2.06
(Each ring 1P)	$3 P + 1 H_2$	-28.57	0.82	1.36
	3 P + 3 H ₂	-28.72	0.82	1.51
Sulphur substituted CNT	$1 \mathrm{S} + 1 \mathrm{H}_2$	-27.48	0.81	0.27
(Each ring 1S)	$3 \mathrm{S} + 3 \mathrm{H}_2$	-28.24	0.81	1.03
	3 S + 3 H ₂	-27.46	0.81	0.25

Variation in bond length, hydrogen energy and dissociation energy

Conclusions

 Critical components still await development

Scientific understanding immature

Possibilities seem promising.