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The activity of sulfide catalysts MI/Si02, MI/WS2, 

(MI,W)/SiO 2 and (Ni,MII)/SiO 2 (M I is a first row 

transition metal, and MII = Nb, Mo, W or Re) in the 

thiophene hydrogenolysis reaction has been studied. 

Activities of mono- and bimetallic catalysts are 

found to change in the same manner depending upon 

the nature of M I. The formation of a sulfide bi- 

metallic species (SBMS) is suggested. 

H3yqeHa aKTMBHOCTb B pea~uHn r'H~poreHonHsa wHo~eHa 

cynbO~b~x KaTanHsaTopoB MI/Si02, MI/WS2,(MI,W)/SiO 2 

(Ni,MII)/SiO2, rne M I MeTann nepBoFo nepexo~Horo 

ps~a, a MII - Nb~ Mo, Wr Re. 06Hapy~eHO CZM6STHOe 

H3MeHeHHe aKTHBHOCTM MOHO- H @HMeTannHqecKHx KaTanM- 

3aTopOB B 9aBHCHMOCTM OT npHpo~bl MeTanna ~.~pe~no- 

naFaeTc~ 06paaoBaHHe cyMb~H~HOFO ~HMeTaa~HqecKoFo 

In recent years, the structure of the active component of 

sulfide catalysts of HDS has been decoded [1,2]. The active 

component is a sulfide bimetallic species (SBMS) having the 

structure of a MoS 2 (WS 2) slab with Ni(Co) atoms localized in 

its edge plane (10T0) [2,3]. Thus, the question arises whether 

structural analogs of the SBMS involving other transition metal 

ions are active in the reaction under consideration. It is known, 
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for example, that NbS 2 [4] and ReS 2 [5] are stabilized in the 

MoS 2 structure; for this reason we used Ni for anchoring on 

its surface. Besides, first row transition metals were supported 

on WS 2 and WS2/SiO 2 by methods described in [6,7]. 

EXPERIMENTAL 

S[nthesis of catalysts. Bulky catalysts were obtained by 

treating commercial WS 2 (SBE T = 7.6 m2/g) with an alcohol solu- 

tion of acetylacetonate (acac) complexes of first row transi- 

tion metals Mi(acac) 2. After metal supporting, the catalyst was 

washed off with alcohol and dried under vacuum. The catalysts 

so obtained contained ca. 0.05 wt.% of the supported metal. 

Supported catalysts were obtained in several stages. First 

SiO 2 (SBE T = 220 m2/g) was treated with a WCI 6 or NbCI 5 solu- 

tion in CCI 4. When washed off with a pure solvent, SiO 2 was 

treated with ethanol, dried under vacuum and then treated with 

H2S at 400~ In the second stage an MiiS2-containing support 

was treated with a Mi(acac) 2 solution in benzene, chloroform 

or alcohol. Ti in the form of tetrabenzylti'tanium was supported 

from solution in heptane. After washing off with a pure solvent 

the catalyst was dried under vacuum and sulfurized. For compar- 

ison, monometallic sulfide catalysts MI/SiO 2 were also prepared 

under identical.conditions. Re catalysts were obtained via 

Re(OC2H5) 3. 

Conditions for sulfurization, determination of catalytic 

properties and registration of X-ray photoelectron spectra 

(XPS) were as described in [6,7]. 

RESULTS AND DISCUSSION 

Activities of sulfide catalysts MI/SiO2, MI/WS 2 and 

(MI,W)/SiO 2 changed in the same manner producing two maxima at 

Cr and (Co, Ni) (Fig. I). Similar dependences of activity on i 

the nature of the first row transition metal have been reported I 

for reactions of synthesis and conversion of S-containing mol- I 

ecules and C-S, C-O and C-N bond hydrogenolysis [8-12]. i 

72 



RODIN et a l . :  THIOPHENE HYDROGENO[YSIS 

i i i i I * I 1 1 

li V Cr Mn Fe Co Ni Cu Zn 

I 

O 

E 

Fig. I. Activity of supported sulfide catalysts MI/WS 2 

(c. I), MI/SiO 2 (c. 2) and (MI-W)/SiO 2 (c. 3) 

vso metal nature. Atomic ratio 

i = MI/MI+W in (MI,W)/SiO 2 catalysts is close 

to 0.3 

A salient feature of the SBMS is an increase in binding 

energy of M I 2P3/2 on Ni(Co) atoms in comparison with NiS 

(Co9S 8) [13-15]. Incorporation of Ni(Co) atoms into the edge 

plane (10T0) of the MoS 2 (WS 2) slab compensates an excess nega- 

tive charge of terminal sulfur atoms, thus making the entire 

fragment electroneutral [16]. An analogous situation seems to 

occur upon addition of Ni, Co or Cu to WS 2, and also Ni to ReS2, 

since XP-spectra indicate an increase in BE of M I 2P3/2 (Table 

I) in comparison with binary sulfides of these metals. None- 

theless, the tendencies in catalyst activity changes are oppo- 

site, i.e., Ni and Co increase the activity of WS 2 and Cu de- 

creases its activity, while Ni decreases the activity of ReS 2 

(Fig. I). Similarly, addition of Cu to W/SiO 2 and Ni to Re/SiO 2 

leads to a non-additive decrease in activity (Fig. 2). A non- 

additive increase in activity has been observed upon addition 
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Fig. 2. Activity of SiO2-supported bimetallic sulfide 

catalysts vs. catalyst composition 

Table I 

XPS data on the state of M I in bimetallic sulfide catalysts 

Catalyst BE (eV) of electrons in the levels 

C Is Ni 2P3/2 Co 2P3/2 Cu 2P3/2 Refs. 

NiS 852.9 13,14 

Ni/~S 2 854.0 13 

Ni/WS 2 284.8 854.7 this work 

Ni/ReS 2 284.8 853.9 this work 

Co9S 8 284.6 778.4 15 

Co/MoS 2 284.3 779.0 15 

Co/WS 2 284.8 780.1 this work 

Cu2S 284.8 931.8 this work 

Cu/WS 2 284.8 933.2 this work 

of Ni to Nb/SiO 2 [17], a maximum synergistic effect being ob- 
Ni 

served in the region ~ = Ni+Nb - 0.35 (Fig. 2)~ 
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The data obtained can be interpreted in terms of the SBMS 

formation both on the surface of bulky WS 2 and ReS 2 and on SiO 2. 

changes in activity of the MI/WS 2 and (MI,W)/SiO 2 systems 

(Fig. I) can be explained by the "electron effect" [18], i.e., 

when the key role in the activation of the S-containing mole- 

cule is played by its interaction with the M I ion. For the 

Ni-NbS 2 systemf NbS 2 is known to be active in hydrogenation 

reactions only at sufficiently high temperatures [19]. One can, 

therefore, suppose that a low value of synergism (in comparison 

with Ni-WS 2 and Ni-MoS 2) is due to a more difficult activation 

of dihydrogen. Antagonism in the Ni/ReS 2 system seems to result 

from a change in the reaction mechanism. In fact, Re catalysts 

possess higher activity than Ni, Mo and W samples; however, 

in contrast to these latter, the products of thiophene hydro- 

genolysis always contain tetrahydrothiophene (THT) in large 

amounts. The addition of Ni resulted in a decrease in content 

of THT in the reaction products and its complete disappearance 

at I > 0.5 . 

The principles of changes of the properties of sulfide 

catalysts with a presumable SBMS structure are in good agree- 

ment with the literature data; however, for a deep insight into 

the mechanism of their catalytic action, further in situ in- 

vestigations of the adsorption of reacting molecules and theo- 

retical calculations of their activation in the coordination 

sphere of the SBMS ar~ n~d~d. 
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