Carbon Dioxide Reduction Catalysis for the Production of Fuels and Chemicals

B. Viswanathan

Department of Chemistry Indian Institute of Technology Madras INDIA

Increasing Atmospheric Levels

Trends in Atmospheric Concentrations & Anthropogenic Emissions of Carbon Dioxide

Global Carbon Cycle (Billion Metric Tons Carbon)

Estimating the risks that would follow from a global climatic change & developing strategies for the prevention of further increase in atmospheric CO₂ concentrations are undoubtedly important tasks!

http://www.eia.doe.gov/oiaf/1605/ggccebro/chapter1.html

Prospect for Future Emissions

*World Carbon Dioxide Emissions by Region, 2001-2025

http://www.eia.doe.gov/oiaf/1605/ggccebro/chapter1.html

*Carbon Intensity by Region, 2001-2025

*U.S. Anthropogenic Greenhouse Gas Emissions by Gas, 2001 * (Million Metric Tons of Carbon Equivalent)

Department of Chemistry

Energy Vs. Emission

Greenhouse Gas Emissions from Electricity Production

World population, energy & electricity demands are ever increasing and are directly related to emission levels

http://www.eia.doe.gov/oiaf/1605/ggccebro/chapter1.html

CO₂ Emission: A Closer Look at the Numbers

Small amount of anthropogenic additions exhibit a large effect on climate change

http://www.eia.doe.gov/oiaf/1605/ggccebro/chapter1.html

Carbon Cycle

Movement of carbon in its many forms, between the biosphere, atmosphere, oceans & geo-sphere

Natural flux of carbon would be imbalanced by anthropogenic additions from fossilized matters

Department of Chemistry

Sources & Sinks

Sources

- Large, concentrated
- Large, dilute
- Distributed

Sinks

- Geologic
- Ocean
- Terrestrial
- Mineral
- Utilization

Example Strategies

- Large Concentrated Sources (e.g., Sleipner)
 - Transport Storage
- Large Dilute Sources (e.g., Power Plants)
 - Capture Transport Storage
- Distributed Sources (e.g., cars, homes)
 - Decarbonization/Capture Transport Storage
 - e.g., hydrogen economy
- All sources
 - Remove from Air Storage
 - e.g., trees, iron fertilization, non-biological

Storage Reservoirs Key Challenges

- Geologic safety
- Ocean environmental acceptability
- Terrestrial permanence
- Mineral economics

The trend towards recovery of CO₂ will probably greatly intensify in the future, leading to the increasing availability of large quantities of this cheap raw material

CO₂-fixation & Calvin cycle

R & D Areas

Department of Chemistry

Challenges: Large-Scale CO₂ Utilization & Sequestration

Two Critical Challenges

Reducing Costs

• Separation and capture costs prime target right now

- Efficient power plants critical starting point
- Essential to reduce energy penalty
- How to judge?
 - Relative to other alternatives
 - Relative to status quo

Developing Storage Reservoirs

- Need to be safe and environmentally acceptable
- Need to be effective, issue of permanence
- Economical
 - Development costs
 - Monitoring costs
 - Location relative to emissions source

Department of Chemistry

Problem Matter or Inexpensive Raw Material?

Comparison of the properties of various C₁ building blocks

Factors	СО	COCl ₂	CO ₂
MAK Value	30 ppm	0.1 ppm	5000 ppm
Toxicology	Affinity for Hemoglobin 210 times that of O ₂	War gas	Danger of asphysiation at 10 vol % in air
Environmental Hazard	Yes	High	Negative
Flammability	12 – 74 vol %	No	No
Boiling point	81 K	291 K	195 K (subl)
Storage	Only at < 3.5 Mpa	Very difficult	No problem
Transport	Gas bottles or tanks kg quantities	Possible	Gas bottles or tanks

12

Attempts at CO₂ reduction

•	Radiochemical		γ-radiation	
		CO ₂	\rightarrow	НСООН, НСНО
•	Chemical reduction	$2Mg + CO_2$	\rightarrow	2MgO + C
		$Sn + 2CO_2$	\rightarrow	$SnO_2 + 2CO$
		$2Na + 2CO_2$	\rightarrow	$Na_2\tilde{C_2O_4}$
•	Thermo chemical		Ce4+	
		CO ₂		$CO + \frac{1}{2}O_2$
•	Photo chemical		1>900°C	
-		CO,	\rightarrow	СО, НСНО, НСООН
•	Electrochemical	2	eV	,,
		$CO_{2} + xe^{-} + xH^{+}$	\rightarrow	CO. HCOOH. (COOH),
•	Biochemical		hacteria	
	Diotinemicui	CO + 4H		CH + 2H O
•	Biophotochemical	$\mathbf{CO}_2 + \mathbf{HI}_2$	hv	$CH_4 + 2H_2O$
	CO ₂	+ oxoglutaric acid	\rightarrow	isocitric acid
•	Photo electrochemical	l	hν	
		$CO_2 + 2e^- + 2H^+$	\rightarrow	$CO + H_2O$
			eV, semicond	
•	Bioelectrochemical		enzyme	·
	CO	P_2 + oxoglutaric acid	l → eV, methylviolo	gen ISOCIUTIC ACIO
•	Biophotoelectrochemi	ical		-
		CO_2	∕. enzyme, p-1n →	^Р НСООН
		2 eV	, methylviolog	en
			- 0	

M. A. Scibioh & B. Viswanathan, Proc. Indn. Natl. Acad. Sci., 70 A (3), 2004.

13

Reduction of CO₂ to provide sources for industrially important products

M. A. Scibioh & B. Viswanathan Proc. Indn. Natl. Acad. Sci., 70 A (3), 2004.

407-462

Department of Chemistry

Selected properties of CO₂

MO diagram for CO₂

Point group	Dah
Ground state	$1\Sigma_{g}^{+}$
Boiling point (°C)	-78.5
LUMO	2π _u
номо	1 π _g
Bond length (Å)	1.16 (C-O)
Bond energy (eV)	5.453
Ionization potential (eV)	13.78
Electron affinity (eV)	-0.6
IR data (cm ⁻¹)	1320, 235, 668

407-462.

Energy Considerations

ΔG^{o}_{f} (kJ/mole) for Key Carbon Compounds

C ₆ H ₆ (+130)	
CH ₄ (-51)	
HCHO (-102)	
CO (-137)	
CH ₃ OH (-166)	
HCOOH (-361)	
NH ₂ COOH (-364)	
CO ₂ (g) (-374)	
CO ₂ (aq) (-386)	
CO3 ⁼ (aq) (-527)*	*Need: water to supply energy of hydration
HCO3 ⁻ (aq) (-586)*	
C ₂ O ₄ = (aq) (-671)*	
CaCO ₃ (s) (-1130)**	**Need: alkali to supply neutralization energy

Department of Chemistry

Interaction of CO₂ with Transition Metal Centers

Structural types of metal–CO₂ complexes

Orbital overlapping & electrostatic interaction of coordination modes of CO₂

M. A. Scibioh & B. Viswanathan Proc. Indn. Natl. Acad. Sci., 70 A (3), 2004

Department of Chemistry

Homogeneous Hydrogenation of Carbon Dioxide

Producing Formic Acid or Formate Salts

 $\mathrm{CO}_2(\mathbf{g}) + \mathrm{H}_2(\mathbf{g}) \to \mathrm{HCO}_2\mathrm{H}(\mathbf{l})$

 $\Delta G^{\circ} = 32.9 \text{ kJ/mol}; \Delta H^{\circ} = -31.2 \text{ kJ/mol};$ $\Delta S^{\circ} = -215 \text{ J/(mol K)}$

$$CO_2(g) + H_2(g) + NH_3(aq) \rightarrow HCO_2^{-}(aq) + NH_4^{+}(aq)$$

 $\Delta G^{\circ} = -9.5 \text{ kJ/mol}; \quad \Delta H^{\circ} = -84.3 \text{ kJ/mol}; \\ \Delta S^{\circ} = -250 \text{ J/(mol K)}$

$$CO_{2}(aq) + H_{2}(aq) + NH_{3}(aq) \rightarrow HCO_{2}^{-}(aq) + NH_{4}^{+}(aq)$$

 $\Delta G^\circ = -35.4 \text{ kJ/mol}; \ \Delta H^\circ = -59.8 \text{ kJ/mol}; \\ \Delta S^\circ = -81 \text{ J/(mol K)}$

Addition of a base improves enthalpy of reaction, while dissolution of gases improves the entropy Effective homogeneous catalysts \rightarrow Complexes of 2nd & 3rd row metals of groups 8 - 10, usually with halides or hydride as anionic & phosphines as neutral ligands.

catalyst precursor	solvent	additives	$P_{\mathrm{H}_2/\mathrm{CO}_2} \ (\mathrm{atm})$	${}^{T}_{(^{\circ}C)}$	t (h)	TON	$\begin{array}{c} \text{TOF} \\ (h^{-1}) \end{array}$
Pd(dppe) ₂	C ₆ H ₆	$N(C_2H_5)_3 + H_2O$	25/25	110	20	62	3
$RuH_2[P(C_6H_5)_3]_4$	C_6H_6	$N(C_2H_5)_3 + H_2O$	25/25	rt	20	87	4
PdCl ₂	H_2O	KOH	110/na	160	3	1580	530
Pd(dppe) ₂	C_6H_6	NaOH	24/24	rt	20	17	0.9
$RuH_2[P(C_6H_5)_3]_4$	C ₆ H ₆	Na_2CO_3	25/25	100	4	169	42
RhCl[P(C ₆ H ₅) ₃] ₃	C_6H_6	Na_2CO_3	60/55	100	3	173	58
$[RuCl_2(CO)_2]_n$	$H_2O + i$ -PrOH	$N(C_2H_5)_3$	81/27	80	0.3^{a}	400	1300
K[RuCl(EDTA-H)]	H_2O	-	3/17	40	0.5	na	250
$[Rh(nbd){P(CH_3)_2(C_6H_5)}_3]BF_4$	THF	H_2O	48/48	40	48	128	3
[Rh(cod)Cl]2	DMSO	$N(C_2H_5)_3 + dppb$	20/20	rt	22	1150	52
[Rh(cod)Cl] ₂	DMSO	N(C ₂ H ₅) ₃ + dippe	40 total	24	18	205	11
RhCl[P(C6H4-m-SO3Na)3]3	H_2O	NH(CH ₃) ₂	20/20	rt	12	3439	287
$PdCl_2[P(C_6H_5)_3]_2$	C_6H_6	$N(C_2H_5)_3 + H_2O$	50/50	rt	na	15	na
RuH ₂ [P(CH ₃) ₃] ₄	$scCO_2$	$N(C_2H_5)_3 + H_2O$	85/120	50	1	1400	1400
$RuCl_2[P(CH_3)_3]_4$	$scCO_2$	$N(C_2H_5)_3 + H_2O$	85/120	50	47	7200	150
[RhH(cod)] ₄	DMSO	$N(C_2H_5)_3 + dppb$	40 total	rt	0.8	312	390
$[RhH(cod)]_4$	DMSO	$N(C_2H_5)_3+dppb$	40 total	rt	18	2200	122

P.G.Jessop, Chem. Rev. 95 (2), (1995) 259

Pathway - CO₂ to Formic Acid, Formaldehyde & CO

Normal CO₂ Insertion into an M-H Bond

Abnormal CO₂ Insertion into an M-H Bond

"Dihydride" route

"Unsaturate" route – Coordination of CO₂ before addition of H₂

P.G.Jessop, Chem. Rev. 95 (2), (1995) 259

20

Products Generation!

Hydrogenation of $CO_2 \rightarrow CO, CH_3OH, CH_4$

Diols and Diol Formates from Oxiranes

 $\begin{array}{lll} \mathrm{CO}_2(\mathrm{aq}) + \mathrm{H}_2(\mathrm{aq}) \rightarrow \mathrm{CO}(\mathrm{aq}) + \mathrm{H}_2\mathrm{O}(\mathrm{l}) & \Delta G^\circ = 11 \ \mathrm{kJ/mol}; \ \Delta H^\circ = 11 \ \mathrm{kJ/mol}; \\ \Delta S^\circ = -0.8 \ \mathrm{J/(mol \ K)} \\ \mathrm{CO}_2(\mathrm{aq}) + 3\mathrm{H}_2(\mathrm{aq}) \rightarrow \mathrm{CH}_3\mathrm{OH}(\mathrm{l}) + \mathrm{H}_2\mathrm{O}(\mathrm{l}) & \Delta G^\circ = -79 \ \mathrm{kJ/mol}; \ \Delta H^\circ = -106 \ \mathrm{kJ/mol}; \\ \Delta S^\circ = -88 \ \mathrm{J/(mol \ K)} \\ \mathrm{CO}_2(\mathrm{aq}) + 4\mathrm{H}_2(\mathrm{aq}) \rightarrow \mathrm{CH}_4(\mathrm{l}) + 2\mathrm{H}_2\mathrm{O}(\mathrm{l}) & \Delta G^\circ = -193 \ \mathrm{kJ/mol}; \ \Delta H^\circ = -230 \ \mathrm{kJ/mol}; \\ \Delta S^\circ = -125 \ \mathrm{J/(mol \ K)} \end{array}$

The thermodynamics are neutral or favorable because of the production of water from hydrogen but economics are unfavorable for the same reason

 CO_2 with methyloxirane in the presence of $H_2 \rightarrow 1,2$ diols & their formates in addition to cyclic carbonate

P.G.Jessop, Chem. Rev. 95 (2), (1995) 259

Products Generation!

Catalytic hydrogenation of CO₂ in supercritical CO₂ in the presence of additional substrates

The hitherto solely highly selective catalytic C–C coupling reaction using CO₂ as substrate can also be realised in compressed CO₂ Cycloco-oligomerisation of CO₂ & alkynes in compressed CO₂

Styrene or cyclooctene react in a catalytic system \rightarrow epoxidation as well as the reaction to cyclic carbonates

- > The potential of this types of catalytic reaction is by no means yet explored.
- **>** The field of homogeneous catalysis in compressed CO₂ will attract major interest in future.
- The development of new CO₂ soluble catalysts, understanding how to prevent deactivation reactions with CO₂ as well as the control of the fine tuning of the reaction parameters in scCO₂ are starting points to discover new selective catalysis in scCO₂

Direct control technologies

Capture, Disposal or Chemical recycling

 $CO_2 + 3H_2 \Leftrightarrow CH_3OH(g) + H_2O(g)$

If pure hydrogen from renewable sources (e.g. hydroelectric power) is available, an easiest method for converting it to methanol with CO_2 is to combine both gases in a thermal reactor at about 220 °C under moderate pressure (20 - 50 bar).

A. Bill, A. Wokaun Energy Convers. Mgmt. 38, (1997) 415

23

CO₂ to hydrocarbons

Catalyst: Fe supported on MY-zeolite (M=Li, Na, K, Rb)

Hydrogenation of CO_2 to hydrocarbons over group VIII metals proceeds in 2 steps. 1. Partial reduction of CO_2 to CO by reverse water gas shift (RWGS) reaction 2. Subsequent F-T synthesis.

Department of Chemistry

Hydrogenation of CO & CO $_2 \rightarrow$ Methanol, Alcohols & HC

(Cu-La2Zr207) \rightarrow Alcohols & HC from CO + H2 & CO2 + H2 feedsAddn. oxides, e.g., ZnO or ZrO2 \rightarrow Good MeOH selectivityAddn. trans. metal promoter like Co \rightarrow C2+ alcohols & C2+ hydrocarbonsCu-La2Zr207 + HY zeolite \rightarrow Mainly C2+ hydrocarbons

R. Kieffer et al., Catalysis Today 36 (1997) 15

25

✓ Fe promoted with Cr & Mn → Conversion of CO₂ ↑& Selectivity of C₂ - C₄ alkenes↑
✓ Zn promoted iron catalyst → Unusually very high selectivity for C₂- C₄ alkenes
✓ With smaller ratio of Zn in Fe:Zn → Alkene selectivity↑

Table 1. CO ₂ hydrogenation on various coprecipitated iron-metal catalysts ^a												
Catalysts	CO ₂	Selec	tivity			Hydro	carbor	n Distri	bution			_01(%) ^b
	conv.	(Cm	ol %)				(C m	ol %)				(OL+Pa.)
(Fe-M)	(%)	CO	HC	C ₁	C2"	C2	C3"	C3	C₄⁼	C4	C5>	C2-C4
Fe	16.21	36.39	63.61	49.67	0.24	19.26	1.17	16.61	1.15	7.51	4.41	5.55
Fe-V	11.17	27.30	72.70	39.72	1.57	15.02	·	22.05	5,88	8.22	7.54	14.13
Fe-Cr	25.70	21.53	78.47	64.75	1.01	15.54	4.05	7.39	2.10	2.91	2.25	21.70
Fe-Mn	23.15	8.06	91.94	38.06	1.24	17.42	8.00	13.82	5.09	8.84	7.53	26.34
Fe-Zn	26.54	4.35	95.65	24.26	6.95	7,11	19.58	4.92	13.93	5.60	17.29	69,64
⁴ CO ₂ hydrogenation at 1900 ml/g/h, 573 K, and 10 atm, ⁵ Selectivity to olefins (C mol %)												

Catalysts	CO ₂ conv.	Selec (Cm	tivity ol%)			Hydro	ocarbor (C m	n Distri ol %)	bution			<u>Ol (%)</u> ^b (Ol+Pa)
(Fe:Zn)	(%)	CO	HC	C1	C2 ⁼	C ₂	C3 [*]	C ₃	C4	C4	C5>	C2-C4
10:0	16.02	36.39	63.61	49.67	0.24	19.26	1.17	16.61	1.15	7.51	4.41	5,55
9:1	26.54	4.35	95.65	24.62	6.95	7.11	19.58	4.92	13.93	5.60	17.29	69.64
7:3	25.36	14.21	85.79	30.35	3.06	10.04	14.38	7.56	9.57	7.63	17.31	51.61
5:5	24.82	8.02	91.98	43.05	1.93	16.52	9.89	12.09	5.40	6.95	4.18	32.63
3:7	23.27	20.51	79.46	37.84	1.62	15.74	7.54	13.58	7.50	5.75	10.54	32.08
1:9	19.67	22.43	77.57	54.87	0.12	18.38	0.48	14.25	0.44	6.82	4.66	2.25
0:10	4.40	99.31	0.69	73.70	0	7.88	0	<u>1</u> 8.43	-	-	-	0
⁴ CO ₂ hydr ^b Selectivit	<u>0:10</u> 4.40 99.31 0.69 73.70 0 7.88 0 18.43 0 CO ₂ hydrogenation at 1900 ml/g/h, 573 K, and 10 atm, Selectivity to olefins (C mol %)											

Department of Chemistry

CO₂-hydrogenation to EtOH

Well balanced multi-functional FT-type composite catalysts

Difference in alcohol distribution for different catalysts

T.Inui et al., Applied Catalysis A: General 186 (1999) 395

Department of Chemistry

Electrochemical Reduction of CO₂

CO2/CO2 redox potential is -2.21V/(SCE)

$$\begin{array}{ll} \mathrm{CO}_2 + 2\mathrm{H}^+ + 2\mathrm{e}^- & \rightarrow \mathrm{CO} + \mathrm{H}_2\mathrm{O} & \mathrm{E}^{\circ\prime} = -0.52 \ \mathrm{V} \\ \mathrm{CO}_2 + 2\mathrm{H}^+ + 2\mathrm{e}^- & \rightarrow \mathrm{HCOOH} & \mathrm{E}^{\circ\prime} = -0.61 \ \mathrm{V} \\ \mathrm{CO}_2 + 4\mathrm{H}^+ + 4\mathrm{e}^- & \rightarrow \mathrm{HCHO} + \mathrm{H}_2\mathrm{O} & \mathrm{E}^{\circ\prime} = -0.48 \ \mathrm{V} \\ \mathrm{CO}_2 + 6\mathrm{H}^+ + 6\mathrm{e}^- & \rightarrow \mathrm{CH}_3\mathrm{OH} + \mathrm{H}_2\mathrm{O} & \mathrm{E}^{\circ\prime} = -0.38 \ \mathrm{V} \\ \mathrm{CO}_2 + 8\mathrm{H}^+ + 8\mathrm{e}^- & \rightarrow \mathrm{CH}_4 + 2\mathrm{H}_2\mathrm{O} & \mathrm{E}^{\circ\prime} = -0.24 \ \mathrm{V} \end{array}$$

Influence of the Solvent and Electrode on the Reaction Mechanism					
Reaction	Cathode	Solution			
$CO_2 + e^- \rightarrow CO_2^{}$	A11	A11			
$CO_2^{-+}H^{+}+e^{-} \rightarrow HCOO^{-}$ $CO_2^{} \rightarrow CO^{+}O^{}$	In, Pb, Hg	H ₂ O			
$CO+O^++H^++e^- \rightarrow CO+OH^-$	Zn, Au, Ag	H_2O			
$CO_2 + CO_2 \rightarrow (COO)_2^2$	Pb, T1, Hg	Non-aqueous			
$CO_2 + CO_2 + e^- \rightarrow CO + CO_3^2$	In, Zn, Sn, Au	Non-aqueous			

M. A. Scibioh & B. Viswanathan Proc. Indn. Natl. Acad. Sci., 70 A (3), 2004.

Reduction of CO₂ under Protic, Aprotic & Partially aprotic conditions

Aq. solutions leads to formic acid production (C₁ products) Aprotic solvents favor dimerization of CO₂ leading to C_n products

M. A. Scibioh & B. Viswanathan Proc. Indn. Natl. Acad. Sci., 70 A (3), 2004.

29

Solubility of CO₂

Variation of solubility of CO_2 with pressure for several solvents at T = 293K and 333K

Solubility of CO₂ with temperature for several solvents used in electrochemistry

2004,407-462

M. A. Scibioh & B. Viswanathan, Proc. Indn. Natl. Acad. Sci., 70 A (3),

30

CO₂ electroreduction on sp group metal electrodes

Cathode metal	Potential vs SCE /V	<i>НСООН</i> /%	CO 1%	H_2 /%
In	-2.0	87.6	6.8	4.9
	-2.4	83.2	4.2	13.2
Pb	-2.0	72.9	2.0	15.6
	-2.4	78.9	2.1	14.3
Zn	-2.0	46.6	35.6	12.4
	-2.4	53.4	16.8	35.2
Sn	-2.0	67.5	9.1	29.9
	-2.4	37.6	4.2	61.6

Electrode	$E_{\rm c}$ vs SCE/V	Oxalate	Formate	Glyoxylate
Graphite	-0.900	100	_	_
	-1.05	10	78	12
	-1.26	17	74	7
	-1.70	15	72	_
	-1.88	6	65	28
Pb	-1.26	44	55	_
	-1.40	9	90	_
	-1.49	25	74	_
	-1.65	1	62	35

d

Mechanism of CO₂ electroreduction on sp group metal electrodes. Neutral hydrated CO₂ molecules (a) undergo electronation to yield qadsorbed CO₂ radicals; (b) the latter react with adsorbed water molecules to form adsorbed HCO₂ radicals and OH⁻ ions; (c) HCO₂ radicals remain adsorbed at the electrode surface and undergo further reduction to formate ions; (d) the negatively charged HCOO⁻ ions are rejected from the electrode surface

С

M. Jitaru J. Appl. Elec.Chem 27 (1997) 875

Periodic table for CO₂ reduction products

At -2.2 V /SCE in low temperature, 0.05 M KHCO₃ solution

Y Hori et al., J Chem Soc Chem Commun (1987) 728

Department of Chemistry

Metals	Produ	cts
	Aqueous medium	Non-aqueous medium
	sp group metals	
Cu, Zn, Sn	HCOOH	-
In, C, Si, Sn, Pb, Bi, Cu, Zn, Cd, Hg	HCOOH, CO, hydrocarbon	-
In, Sn, Pb, Cu, Au, Zn, Cd	-	Hydrocarbon, CO, CO32-
In, Sn, Au, Hg	-	CO
In, T1, Sn, Pd, Pd, Zn, Hg	-	Oxalic acid
	d group metals	
Ni, Pt	-	CO, CO ₃ ²⁻
Ni, Pd, Rh, Ir	HCOOH, CO	-
Fe, Ru, Ni, Pd, Pt	Hydrocarbon	-
Ti, Nb, Cr, Mo, Fe, Pd	-	Oxalic acid
Mo, W, Ru, Os, Pd, Pt	MeOH	-
Zr, Cr, Mn, Fe, Co, Rh, Ir	со	-

M. A. Scibioh & B. Viswanathan Proc. Indn. Natl. Acad. Sci., 70 A (3), 2004.

33

Influence of Pressure on Mechanism – An Example

Comparative mechanism of high-pressure CO₂ electroreduction (A) & Electroreduction of CO₂ at atmospheric pressure (B) on Ni cathode

M. Jitaru J. Appl. Elec.Chem 27 (1997) 875

34

Electrocatalytic Reduction of CO₂

(a) Molecular electrocatalysts in solution;(b) Cathodic materials modified by surface deposition of molecular electrocatalysts

M. A. Scibioh & B. Viswanathan Proc. Indn. Natl. Acad. Sci., 70 A (3), 2004.

35

Electrochemical reduction of carbon dioxide in copper particle suspended methanol

Transition metal complexes – Electrocatalysts to reduce CO₂

Categories: > *Phthalocyanine complexes*

- > Porphyrin complexes
- ► Metal complexes of 2,2'-bipyridine & related ligands
- Phosphine complexes
- Metal clusters and polymetallic complexes
- > Biphenanthroline hexaazacyclophane complexes
- Azamacrocylic complexes
- > Macrocyclic ligands related to macromolecular functions

Porphyrins and phthalocyanines

Tetraaza macrocyclic complexes

J.P. Collin & J.P. Sauvage Coord. Chem. Rev. 93 (1989) 245

Department of Chemistry

J. Costamagna et al., Coord. Chem. Rev.: 148 (1996) 221 38

Coordination compounds with acyclic ligands

General cycle for the generation of CO₂ reduction products with various complexes of acyclic ligands as electrocatalysts [Also valid for electrocatalysis with macrocyclic ligands]

J. Costamagna et al., Coord. Chem. Rev.: 148 (1996) 221 39

Coordination compounds with macrocyclic ligands

Cyclic voltammograms of cyclotetradecane derivative complexes in N_2 (·····) and CO₂ (-----): (a) glassy carbon electrode; 0.1 M NaClO₄ (pH 6.2), 0.1 V s⁻¹; (b) hanging mercury drop electrode; acetonitrile water, 0.1 M NaClO₄, 0.02 V s⁻¹; (c) hanging mercury drop electrode; acetonitrile water, 0.1 M NaClO₄, 0.1 V s⁻¹; (d) glassy carbon electrode; 0.5 M Na₂SO₄, 0.2 V s⁻¹.

Cyclam & cyclam derivatives

J. Costamagna et al., Coord. Chem. Rev.: 148 (1996) 221 40

Department of Chemistry

NICO IL CO

co,

Porphyrin and phthalocyanine derivative complexes

Cyclic voltammograms of porphyrin and phthalocyanine derivative complexes

(a) porphyrin fixed on a glassy carbon electrode; phosphate buffer (pH 6.86), 0.001 V s⁻¹;

(b) glassy carbon electrode; 0.1 M dimethylformamide; $(C_2H_5)_4NClO_4$, 0.1 V s⁻¹; (c) hanging mercury drop electrode; 0.1 M $(C_2H_5)_4NClO_4$, 0.1 V s⁻¹.

J. Costamagna et al., Coord. Chem. Rev.: 148 (1996) 221 41

CO₂ Activation by Metal Complexes- Perception

- Binding of CO₂ to a metal centre leads to a net electron transfer from metal to LUMO of CO₂ & thus leads to its activation.
- \blacktriangleright Hence, coordinated CO₂ undergoes reactions that are impossible for free CO₂.
- ➤ Many stoichiometric & most catalytic reactions involving CO₂ activation proceed via formal insertion of CO₂ into highly reactive M-E bonds → formation of new C-E bonds.
- These reactions might not necessarily require strong coordination of CO₂ as in stable complexes, but are generally initiated by nucleophilic attack of E at Lewis acidic carbon atom of CO₂.
- Weak interaction between the metal & the lone pairs of one oxygen atom of CO₂ may play a role in supporting the insertion process.
- Although we are more knowledgeable about CO₂ activation, the effective activation of CO₂ by transition metal complexes is still a goal!

Department of Chemistry

At the surface of semiconducting materials; p-Si, p-CdTe, p-InP, pGaP, n-GaAs

Three principles of photocatalytic cycles of CO₂ reduction

Photoreduction of CO₂

Energy band modes of an n-type semiconductor with a Schottky-type barrier:

(a) band-band transition;

(b) surface state population transition. Vs and Vs⁰, surface potential difference; CB, conduction band; VB, valence band; Et, surface state level; *E*F, Fermi level.

Pd/RuO₂/TiO₂ photoreduction of CO₂

T. Xie et al., Mater Chem Phy 70 (2001) 103

44

Role of the Nanoscale in Surface Reactions: CO₂ on CdSe

The total energy of a CO₂ molecule chemisorbed in a Se vacancy on the CdSe1010 surface as a function of the vertical distance between C atom & ideal truncated surface

Electron transfer from surfaces or nanocrystals to the CO_2 molecule. The localized energy level near the valence band edge is caused by a Se vacancy

L. G. Wang et al., Phy. Rev Let. 89 (7) (2002) 075506-1

Department of Chemistry

Direct Solar Reduction of CO₂ to Fuel

 $CO_2 + h\nu$ or heat $\rightarrow CO + \frac{1}{2}O_2$

Converter assembly for direct solar reduction of CO₂

Energy conversion goals for a direct solar reduction system based on 100 kW initial solar input

A. J. Traynor & R. J. Jensen Ind. Eng. Chem. Res. 41 (2002) 1935

46

Photocatalytic reduction of CO₂

Photocatalytic reduction of CO_2 with H_20 on the anchored titanium oxide

47

Photocatalytic reduction of CO₂ : Formation of MeOH

Reaction time profiles: To produce CH₄ (a) & CH₃OH (b) on TiO₂/Y-zeolite

Product distribution: Photocatalytic reduction

CO₂ with H₂O: anatase TiO₂ powder (a), Imp-Ti-oxide/Yzeolite (10.0 wt% as TiO₂) (b), Imp-Ti-oxide/Y-zeolite (1.0 wt% as TiO2) (c), Ex-Ti-oxide/Y-zeolite (1.1 wt% asTiO2) (d), Pt-loaded ex-Ti-oxide/Y-zeolite (e) catalysts.

> H. Yamashita et al., Catalysis Today 45 (1998) 221

The yields of CH₄ and CH₃OH in the photocatalytic reduction of CO₂ with H₂O TiO₂ powder (a), TS-1 (b), Ti-MCM-41 (c), Ti-MCM-48 (d), Pt-loaded Ti-MCM-48 (e)catalysts.

48

PHOTOCHEMICAL REDUCTION OF CO₂

-Ru^{*}(bpz - Ru(bpz), TEOA 💯 Ru Oxidation Ru(bpz)* 00_{2} Products

Formation of HCOOH

Formation of methane

J.P. Collin & J.P. Sauvage Coord. Chem. Rev. 93 (1989) 245

49

HOMOGENEOUS SYSTEM

Light driven catalytic cycle reducing CO₂. Light reaction: terphenyl (TP) - photocatalyst, triethylamin (TEA) - reductive quencher (electron donor). Dark reaction: cyclam cobalt complex -electron relay (a) oxidising - terphenyl radical anion & (b) reducing CO₂.

MICROHETEROGENEOUS SYSTEM

Light driven carboxylation of lactic acid to form malic acid (MV²⁺, methylviologen dication, FNR, ferredoxin-NADP-reductase; ME, malic enzyme).

J.P. Collin & J.P. Sauvage Coord. Chem. Rev. 93 (1989) 245

50

Unsolved Problems!

- TON (mol reduction product of CO_2 / mol catalyst) are still low
- Efficiencies of the reactions is unsatisfactory-both the amount of reduction products of CO₂ (usually C1 products) & oxidation products of the sacrificial donor
- The tuning of the single components w.r.t. their redox potentials, life times and selectivity is not well understood.
- Necessary to device systems which do not require sacrificial donors light energy is also used for degradation of sacrificial donors, influencing the energy balance of the reactions unfavorably
- Macrocyclic complexes of transition metal ions- satisfy the requirements of a useful relay. They may play a dual role as a catalysts and relays
- Even with transition metal complexes Reduction products have not been of great economic value (usually only C1 products)
- Multicomponent systems containing photoactive center, electron relays and/or molecular electrocatalysts in addition to possible microheterogeneous systems will be discovered.

Department of Chemistry

Photobiological Hydrogen Fuel Production & CO₂ Mitigation

Photo-bioreactor technology

(ii) absorbing solar light as their energy source.

http://herc.ucla.edu/PilonJay.html

Cyanobacteria

52

PHOTOELECTROREDUCTION OF CO₂

ON SEMICONDUCTORS - CATALYSED BY MOLECULAR SPECIES

J.P. Collin & J.P. Sauvage Coord. Chem. Rev. 93 (1989) 245 53

A study on photoelectroreduction of CO₂

 $CO_2 aq \Rightarrow CO_2 ads$ $CO_2 ads + e^- \Rightarrow CO_2^- ads$ $CO_2^- ads + H_2O + e^- \Rightarrow HCOO^- + OH^-$

Photovoltomogram $\lambda = 560 \text{ nm} (0.5 \text{ mW cm}^{-2})$

Catalyst	Current Density ^a	µl CO/minute	Products Detected	Efficiency
bare	9.8	5.64	co	92%
			H ₂	10%
bare	9.63 ^c	<0.2 ^d	H2	100%
bare	0.12 ^e	<0.2 ^d	H ₂	95%
bare	0.11 ^{c,e}	<0.2 ^d	Ho	998
Ni	9.06	3.24	cô	69%
			HCOO"	148
			Ho	15%
Ru	10.00	6.14	cô	102%
			Ho	1%
Te	10,63	2.76	cõ	62%
			HCOO"	198
			H ₂	17%
Pt	11.04	2,10	cô	448
			HCOO-	2.7%
			H ₂	35%
Pt	0.09°	<0,2 ^d	H ₂	938
Pt	0.11 ^e	<0.2 ^d	H ₂	97%
Zn	10,04	1.30	cõ	31%
			HCOO"	318
			Ho	45%
Fd	9.84	0.52	cõ	13%
			HCOO-	35%
			H ₂	548

a averaged for one hour

^b includes both gaseous products and those dissolved in solution

^C under Ar atmosphere

- d limit of GC detection
- e under dark condition

J, O'M. Bockris & J. C. Wass Mater Chem Phys, 22 (1989) 249

Department of Chemistry

Study on photoelectroreduction of CO₂

Metal islet catalysts deposited on a p-CdTe electrode in DMF-0.1 M TEAP/5% H₂0

MPc catalysts adsorbed on a p-CdTe electrode in DMF-0.1 M TEAP/5% H₂0

J, O'M. Bockris & J. C. Wass Mater Chem Phys, 22 (1989) 249

Catalyst	Current Density ^a	μ l CO/minute	Products Detected	Efficiency
Pc	10.88	4,43	CO	68%
			HCOO-	5%
			H ₂	25%
CoPc	11.94	7.79	cõ	104%
			HCOO-	28
			H ₂	<1%
CoPc	11.44 ^c	<0.24	H ₂	97%
CoPc	0.24 ^e	<0.2 ^d	H ₂	92%
CuPc	10.83	6.14	cõ	96%
			HCOO-	3%
			H ₂	1%
NiPc	7.20	1.02	cõ	77%
			HCOO ~	6%
			H ₂	16%
ZnPc	9.40	2.30	cõ	88%
			HCOO-	2%
			H ₂	15%
MnPc	9.95	2.07	cõ	75%
			HCOO-	48
			H ₂	18%
VOPc	8.20	2.04	cõ	89%
			HCOO-	38
			H ₂	5%
FePc	8.00	2.05	cõ	92%
			HCOO-	48
			Ho	8%

a averaged for one hour

^b includes both gaseous products and those dissolved in solution

under Ar atmosphere

limit of GC detection

^a under dark condition

Product analysis results for CO₂ reduction on phthalocyanine/p-CdTe

CoPc, the best phthalocyanine catalyst for CO₂ reduction

Department of Chemistry

Study on photoelectroreduction of CO₂

Catalyst	Current Density ^a	µl CO/minute	Products Detected	Efficiency ^b
Ru3(CO)12	8.73	4.25	CO	88%
			HCOO -	6%
			CH30H	1 %
			H ₂	48
Ru3(CO)12	8.61 ^c	<0.24	H ₂	97%
Ru3(CO)12	0.31 ^e	<0.2d	H ₂	94%
			HCOO "	3 %
			CH ₃ OH	18
Fe3(CO)12	9.61	1.41	co	20%
)		HCOO~	10%
			CH30H	1 %
			H2	21%
$Os_3(CO)_{12}$	9,67	1.74	CÖ	64%
			HCOO-	7%
			сн3он	2.8
			H2	30%
$H_4Ru_4(CO)_{12}$	7.45	0,95	CO	46%
			HCOO ⁻	12
			сн3он	2%
		d	H ₂	38%
$H_4Ru_4(CO)_{12}$	6.94 ^c	<0.24	н2	998

a averaged for one hour

b includes both gaseous products and those dissolved in solution

c under Ar atmosphere

d limit of GC detection

e under dark condition

Product analysis results for CO₂ reduction on carbonyl/p-CdTc

Iron carbonyl is the best among the three carbonyls studied

J, O'M. Bockris & J. C. Wass Mater Chem Phys, 22 (1989) 249

56

Department of Chemistry

Current-potential curves for trinuclear carbonyl catalysts adsorbed on a p-CdTe electrode in DMF-0.1 M TEAP/5% H₂0.

Study on photoelectroreduction of CO₂

Catalyst	Current Density ^a	µl CO/minute	Products Detected	Efficiency ^b
24-crown-8	8.29	1.62	со	87%
			CHOOH	68
			H ₂	6%
18-crown-6	9.46	5.12	CÔ	85%
			CH3OH	138
			H ₂	1%
18-crown-6	9.24°	<0.2 ^d	H ₂	95%
18-crown-6	0.10	<0.2 ^d	H ₂	988
15-crown-5		460	ດັ	
			CH3OH	14%
			H ₂	2%
15-crown-5	8.75 ^c	<0.2d	H ₂	948
15-crown-5	0.13 ^e	<0.2 ^d	H ₂	96%
12-crown-4	9.04	2.22	cõ	888
			CH30H	5%
			н2	48

averaged for one hour

includes both gaseous products and those dissolved in solution

^c under Ar atmosphere

d limit of GC detection

^a under dark condition

Current-potential curves for crown ether catalysts added to the electrolyte for a p-CdTe electrode in DMF-0.1 M TEAP/S% H20.

Product analysis results

J, O'M. Bockris & J. C. Wass Mater Chem Phys, 22 (1989) 249

Catalytic shift (ΔE)

Department of Chemistry

CARBON MANAGEMENT

Proposals to mitigate anthropogenic climate change through planetary engineering projects

Cloud seeding to "terraforming" of the planet Mars!

- Fertilization of open waters to increase primary production & hence to absorb more carbon in fixed form
- Disposal of captured carbon dioxide directly into oceanic waters
- ✓ Injection of captured CO₂ into sub-seabed geological formations

Matthews, B. (1996) Climate Engineering: University of East Anglia, Norwich, UK.

Department of Chemistry

Disposal of CO₂ into ocean waters

Capture of carbon dioxide from power station/industrial process flue gases

Energy demanding components & Generation of waste streams

Current Energy Penalties!

(Reduction in utility output as a result of using the process)

- Gas fired plant 15 24%
- Conventional coal fired plant 27 -37%
- Advanced coal plant 13-17%

Absolute reductions in efficiency of up to 35%

Greenpeace Research Laboratories, UK Technical Note 01/1999

60

CO2 into ocean - Technical approaches to deep sea disposal

Introduction by pipeline into deepwater
followed by dissolutionDispersion following discharge of dry-ice blocksFormation of a lake of liq. CO2 in deep ocean
or liquid CO2 from a ship

Greenpeace Research Laboratories, UK Technical Note 01/1999

Major oceanic domains

Pathways for carbon dioxide in the oceans

Science, 305 (2004) 352

62

Global CO₂ recycling

K. Hashimoto et al. Mater Sci Eng. A304–306 (2001) 88 63

Global CO₂ recycling – Material Search

Department of Chemistry

Substantiation of the idea of the global CO₂ recycling

The CO₂ recycling plant built on the roof of the IMR, Tohoku University

K. Hashimoto et al. Mater Sci Eng. A304–306 (2001) 88

65

A comparison of CO₂ emissions between the global CO₂ recycling & LNG combustion without CO₂ emission control in a 1GW power plant for 1 year

K. Hashimoto et al. Mater Sci Eng. A304–306 (2001) 88

Reduction of CO₂ emissions by global CO₂ recycling is 79% of CO₂ Emissions from an LNG combustion power plant, i.e., 2.62 Mt/year

66

CO₂ Storage in Underground

The concept of CO₂ sequestration in reservoir rocks underground

Sleipner Main platform & CO₂-processing plant

S.Holloway Annu. Rev. Energy Environ. 26 (2001)145

Department of Chemistry

Barriers to wider implementation

- High cost of capturing, processing, & transporting anthropogenic CO₂
- Incomplete understanding of reservoir processes
- Underdeveloped monitoring & verification technologies
- Unclear emissions trading regulations
- > Potential conflicts of interest between sequestration & EOR or natural gas recovery

Public perception

- The technology is in its infancy and unproven
- The technology is too costly
- ✤ Not enough is known about the long-term storage of CO₂
- ***** The capture and storage of CO₂ are seen as being energy intensive
- ***** The option presents an enormous engineering and infrastructure challenge
- It is not a long-term solution

Barriers can only be overcome by research and design & effective demonstration of the technology

Department of Chemistry

- Two big challenges
 - Reducing Costs
 - Developing Storage Reservoirs
- Utilization scores well on these two big challenges, but opportunities are limited
- Utilization will play an important role on initial sequestration projects
- Utilization will play a very minor role for longerterm, large-scale sequestration projects

Utilization

Opportunities

- Helps economics
- Eliminates "storage" issues
- Why is Large-Scale Use of CO₂ such a Challenge?
 - Market Sizes
 - Transportation Costs
 - Product Life-times
 - Energy Considerations

Transportation Costs

- Many production sources
 - CO₂ expensive to transport well in small quantities
 - Use sources of opportunity (e.g., process by-product, natural wells)
- Example US 1997 capacity for liquid CO₂
 - 9.7 million metric tons
 - 93 plants
 - Largest: 900 metric tons/day
 - Average: 300 metric tons/day

CO₂ Utilization & Recovery - Market Research

Chemists, chemical engineers, biotechnologists, process engineers, microsystem technologists in the chemical and pharmaceutical industry & academia, as well as manufacturers of analytical instruments, will find this technology extremely interesting and useful as a rapidly developing field!

Department of Chemistry

GRATEFUL THANKS ARE DUE TO

Dr M Aulice Scibioh

For her help in preparing this presentation

72
Thank you all for your kind attention

73

Department of Chemistry