Fabrication and characterization of uniform TiO₂ nanotube arrays by sol–gel template method

T MAIYALAGAN, B VISWANATHAN* and U V VARADARAJU

Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, India

MS received 11 October 2005; revised 18 September 2006

Abstract. TiO_2 nanotubes have been synthesized by sol-gel template method using alumina membrane. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy, UV absorption spectrum and X-ray diffraction techniques have been used to investigate the structure, morphology and optical properties of TiO_2 nanotubes. SEM image showed that TiO_2 nanotubes obtained were ordered and uniform. The diameter and length of the nanotubes were decided by the pore size and thickness of alumina template. Raman and XRD measurements confirmed the crystallinity and anatase phase of the TiO_2 nanotubes. The optical absorption measurement of TiO_2 nanotubes exhibits a blue shift with respect to that of the bulk TiO_2 owing to the quantum size effect.

Keywords. TiO₂ nanotubes; Raman spectra; template synthesis; alumina template.

1. Introduction

Titanium dioxide (TiO₂) has been widely investigated as a key material for applications in photovoltaic cells, batteries, chemical sensing (Varghese et al 2003), optical emissions, photonic crystals, catalysis, photocatalysis (Livraghi et al 2005) and environmental purification (Homyara et al 2001). Anatase TiO₂ electrodes are used in solar cells, lithium batteries and electrochromic devices (Hagfeldt and Gratzel 1995; Kavan et al 2000; Gratzel 2001). Nanocrystalline form of anatase TiO₂ is a promising electrode material for Li-ion batteries, owing to its good Listorage capacity, cycling-stability and safety against overcharging (Huang et al 1995). Non-toxicity, environmental compatibility and low price are other practical advantages of TiO₂. As a catalyst and/or catalyst support, it is employed in the processes of photo degradation of chlorine hydrocarbons. Recently, efforts have been directed to obtain nanostructured TiO₂-based materials with a large specific surface area. The energy band structure becomes discrete for titanium dioxide of nanometer scale, and its photophysical, photochemical, and surface properties are quite different from those of the bulk ones due to the quantum size effect. TiO2-based nanotubes have attracted wide attention owing to their potential for application in highly efficient photocatalysis (Adachi et al 2000), lithium ion batteries (Zhou et al 2003), photovoltaic cells (Poulios et al 1998; Adachi et al 2002; Uchida et al 2002) and environmental applications (Quan et al 2005).

Many approaches such as template-assisted method (Sander et al 2004), electrochemical anodic oxidation of pure titanium sheet (Gong et al 2001; Macak et al 2005), and methods involving chemical treatment of fine titania particles (Kasuga et al 1998; Du et al 2001) have been reported to fabricate TiO₂ nanotubes. There are respective advantages and limitations in each of the above-mentioned methods. However, technical problems may arise from the difficulties in achieving uniform inner diameter of titanium oxide nanotubes. In addition, oriented nanostructures of the TiO₂ nanotubes are often more desirable for applications in photovoltaic cells, sensing, catalysis and photocatalysis. Template-synthesis method has been used to prepare nanotubes or fibrils of electronically conductive polymers (Martin et al 1993), metals (Martin 1996), semiconductors (Lakshmi et al 1997) and carbon nanotubes (Maiyalagan and Viswanathan 2005). This method entails synthesis of a desired material within the pores of an alumina membrane, which has cylindrical pores with monodisperse diameters. The tubule of the desired material is obtained within each pore. This template approach is proving to be a versatile method for synthesizing nanomaterials because the aspect ratio of the nanostructures prepared via this method can be controlled.

In this article, we report the sol-gel template synthesis of ordered TiO_2 nanotube of uniform diameter using alumina membrane as a template. The composition and crystallinity of these structures were determined by transmission electron microscopy (TEM), scanning electron microscopy (SEM), Raman spectroscopy and powder X-ray diffraction (XRD). The optical absorption spectra of these ordered TiO_2 nanotube arrays have also been investigated.

^{*}Author for correspondence (bvnathan@iitm.ac.in)

2. Experimental

2.1 Materials

All the chemicals used were of analytical grade. Titanium isopropoxide (Aldrich), 2-propanol (Merck) and Degussa P-25 titanium dioxide (Germany) were used as received (BET surface area, $50 \text{ m}^2/\text{g}$ and anatase:rutile ratio, 80:20). Anodisc alumina membranes with a pore size of 200 nm and thickness of $60 \mu \text{m}$ were purchased from Whatman (catalog no. 6809-6022; Maidstone, UK).

2.2 Synthesis of TiO_2 nanotubes

Titanium isopropoxide (5 ml) was added to 25 ml of 2propanol (mole ratio $[Ti^{4+}]/[2-propanol] = 1:20$). The solution was stirred for 3 h at room temperature (298 K). The alumina template membrane was dipped into this solution for 2 min. After removal from the solution, vacuum was applied to the bottom of the membrane until the entire volume of the solution was pulled through the membrane. The membrane was then air-dried for 60 min at 303 K and then placed in a furnace (in air) with a temperature ramp of 2°C min⁻¹ to 873 K for 2 h. The temperature was then decreased at a ramp rate of 2°C min⁻¹ to room temperature (303 K). The ordered TiO₂ nanotube arrays were obtained by dissolving the alumina template in 3 M aqueous NaOH for several minutes. TiO₂ nanotubes thus formed were then washed several times with distilled water to remove the dissolved anodic alumina membrane and remaining NaOH solution.

2.3 Characterization methods

The scanning electron micrographs were obtained after the removal of alumina template using a JEOL JSM-840 model, working at 15 keV. For transmission electron microscopic studies, the nanotubes dispersed in ethanol were placed on the copper grid and the images were obtained using Phillips 420 model, operating at 120 keV. The UV*vis* absorption spectra were obtained on a Cary 5E spectrophotometer. The X-ray diffraction patterns were obtained on a Philips PW 1820 diffractometer with CuK_{α} (1·54178 Å) radiation. Micro-Raman scattering experiments were performed on a Bruker FRA106 FT-Raman at room temperature in a quasi-backscattering geometry with parallel polarization incident light. The excitation source used was an Argon ion laser operating at 514·5 nm with an output power of 20 mW.

3. Results and discussion

The scanning electron microscopic (SEM) image of the TiO_2 nanotubes obtained after dissolving the 200 nm alumina template membranes is shown in figure 1a. It can be seen that an ordered array of nanotubes with uniform diameter and length is formed. The individual TiO_2 nanotubes were characterized by TEM after dissolving the alumina membrane template. The open end and the hollow nature of the TiO_2 nanotubes have also been confirmed by transmission electron microscopic (TEM) image as shown in figure 1b. The TEM image shows that the single

Figure 1. SEM image (a) and TEM image (b) of TiO_2 nanotubes obtained by sol-gel method calcined at 650°C for 2 h.

TiO₂ nanotube is straight and dense. The outer diameter of the nanotube is ca. 200 nm, retaining the size and near cylindrical shape of the pores of the aluminium oxide membrane. This indicates that the diameter of the nanotube synthesized is controlled by the pore size of aluminium oxide membrane. This result is in agreement with other reports on the sol-gel based template method (Lee *et al* 2004).

Figure 2 shows the UV-*vis* absorption spectrum of the anatase TiO_2 nanotube compared with that of the Degussa TiO_2 . The spectral lines for both TiO_2 nanotubes and Degussa TiO_2 exhibit only one characteristic absorption band, which is assigned to the intrinsic transition from

Figure 2. UV-*vis* absorption spectrum of (a) Degussa TiO_2 and (b) anatase TiO_2 nanotube.

Figure 3. X-ray diffraction patterns of (a) Degussa TiO_2 as a reference and (b) TiO_2 nanotubes obtained by sol–gel method calcined at 650 °C for 2 h anatase phase.

the valence band (VB) to the conduction band (CB). An absorbance below 370 nm was observed for the TiO_2 nanotubes, which is ascribed to bulk anatase TiO_2 . Here the blue shift of absorption maximum with higher band energy of TiO_2 nanotubes compared with that of the bulk Degussa TiO_2 can be attributed to the quantum-size effect (Takagahara and Takeda 1992).

The powder XRD was used to investigate the phase of TiO_2 nanotubes. The X-ray pattern of the TiO_2 nanotube arrays is shown in figure 3(b). The diffraction peaks of (101), (004), (200), (105) and (211) correspond to the anatase TiO_2 phase. The peak positions and their relative intensities are consistent with the standard powder diffraction pattern of anatase- TiO_2 and there is no preferred orientation. Figure 3 shows that the crystal phase of TiO_2 nanotubes is polycrystalline anatase structure whereas the Degussa P-25 contains a mixture of anatase and rutile phases. Further, no peaks for the amorphous alumina membrane were observed in the TiO_2 nanotubes.

The Raman spectra of fabricated anatase TiO₂ nanotubes and Degussa TiO₂ are shown in figure 4. The result of XRD analysis is supported by the Raman spectra of TiO₂ nanotubes as shown in figure 4(b). The vibration mode symmetries of the anatase are indicated. Raman peaks at 156·9, 206, 408·48, 529·54, 649·54 and 801 cm⁻¹ were assigned to E_g , E_g , B_{1g} , A_{1g} , E_g and B_{1g} , respectively. The positions and intensities of the six Raman active modes correspond well with the anatase phase of TiO₂ (Bersani and Lottici 1998; Lei *et al* 2001). A weak overtone scattering (B_{1g}) at 801 cm⁻¹ was observed in this study. Overtone can be found in both bulk Degussa TiO₂ and nanotube, but the intensity of overtone is very less in bulk Degussa TiO₂. This is due to the large intensity ratio of

Figure 4. Raman spectrum of (a) Degussa TiO_2 and (b) fabricated anatase- TiO_2 nanotube (The vibration mode symmetries of the anatase are indicated).

fundamental peak to overtone one makes it difficult to be observed. While for nanotube, the decreasing ratio makes it easy to be observed. No significant broadening and shift of Raman spectra were found when one compared the obtained anatase-TiO₂ nanotube with that of the bulk Degussa TiO₂.

4. Conclusions

In summary, highly ordered TiO_2 nanotubes and nanofibrils have been synthesized by sol-gel chemical method within the pores of anodic alumina template membrane. The results of SEM and TEM show that the synthesized nanotubes have a uniform length, diameter and form a highly ordered array and the XRD measurements confirm the presence of polycrystalline anatase phase in the TiO_2 nanotubes. This method can be employed for obtaining large surface area TiO_2 for use in photocatalysis and as electrodes in solar cells.

Acknowledgements

We thank the Council of Scientific and Industrial Research (CSIR), India, for a senior research fellowship to one of the authors (TM).

References

Adachi M, Murata Y and Yoshikawa S 2000 *Chem. Lett.* **8** 942 Adachi M, Okada I, Ngamsinlapasathian S, Murata Y and Yoshikawa S 2002 *Electrochemistry* **70** 449

Bersani D and Lottici P P 1998 Appl. Phys. Lett. 72 73

Du G H, Chen Q, Che R C, Yuan Z Y and Peng L M 2001 Appl. Phys. Lett. **79** 3702 Gratzel M 2001 Nature 414 338

- Gong D, Grimes C A, Varghese O K, Hu W, Singh R S, Chen Z and Dickey E C 2001 J. Mater. Res. 16 3331
- Hagfeldt A and Gratzel M 1995 Chem. Rev. 95 49
- Homyara H et al 2001 Thin Solid Films 386 173
- Huang S Y, Kavan L, Gratzel M and Exnar I 1995 J. Electrochem. Soc. 142 142
- Kasuga T, Hiramatsu M, Hoson A, Sekino T and Niihara K 1998 Langmuir 14 3160
- Kavan L, Attia A, Lenzmann F, Elder S H and Gratzel M 2000 J. Electrochem. Soc. 147 2897
- Lakshmi B B, Patrissi C J and Martin C R 1997 *Chem. Mater.* **9** 2544
- Lee S, Jeon C and Park Y 2004 Chem. Mater. 16 4292
- Lei Y, Zhang L D and Fan J C 2001 Chem. Phys. Lett. 338 231
- Livraghi S, Votta A, Paganini M C and Giamello E 2005 *Chem. Commun.* **4** 498
- Macak J M, Tsuchiya H and Schmuki P 2005 Angew. Chem. Int. Ed. 44 2100
- Maiyalagan T and Viswanathan B 2005 Mater. Chem. Phys. 93 291
- Martin C R 1996 Chem. Mater. 8 1739
- Martin C R, Parthasarathy R and Menon V 1993 Synth. Met. 55 1165
- Poulios I, Kositzi M and Kouras A 1998 J. Photochem. Photobiol. A: Chem. 115 175
- Quan X, Yang S, Ruan X and Zhao H 2005 Environ. Sci. Technol. 39 3770
- Sander M S, Cote M J, Gu W, Kile B M and Tripp C P 2004 Adv. Mater. 16 2052
- Takagahara T and Takeda K 1992 Phys. Rev. B46 15578
- Uchida S, Chiba R, Tomiha M, Masaki N and Shirai M 2002 Electrochemistry **70** 418
- Varghese O K, Gong D W, Paulose M, Ong K G, Dickey E C and Grimes C A 2003 Adv. Mater. 15 624
- Zhou Y, Cao L, Zhang F, He B and Li H 2003 J. Electrochem. Soc. 150 A1246