T
o
©
| -
| -
-
@)
ﬂ
Q
i =
=

Chemical Physics

AlIP

é/:. Publishing

RESEARCH ARTICLE | SEPTEMBER 30 2025
A research database for experimental electrocatalysis:
Advancing data sharing and reusability ®©

Special Collection: Data Science for Catalysis

Ruchika Mahajan @ ; Ashton M. Aleman © ; Colin F. Crago © ; Suman Bhasker-Ranganath © ;
Melissa E. Kreider ©© ; Jose A. Zamora Zeledon © ; Johanna Schréder © ; Gaurav A. Kamat;
McKenzie A. Hubert @ ; Adam C. Nielander © ; Thomas F. Jaramillo; Michaela Burke Stevens & © ;
Johannes Voss & © ; Kirsten T. Winther &

’ '.) Check for updates

J. Chem. Phys. 163, 124704 (2025)
https://doi.org/10.1063/5.0280821

&

View
Online

Articles You May Be Interested In

How to extract kinetic information from Tafel analysis in electrocatalysis

J. Chem. Phys. (December 2023)

Epitaxial oxide thin films for oxygen electrocatalysis: A tutorial review

J. Vac. Sci. Technol. A (November 2021)

The surface states of transition metal X-ides under electrocatalytic conditions

J. Chem. Phys. (March 2023)

Export
Citation

Webinar From Noise to Knowledge

May 13th — Register now |y }W
f fta

|
I
WAL
|

W M\
TR

I
\

N\ A/ Zurich Universitat
N\ Instruments  Konstanz

90:60:10 5202 189010 0


https://pubs.aip.org/aip/jcp/article/163/12/124704/3365030/A-research-database-for-experimental
https://pubs.aip.org/aip/jcp/article/163/12/124704/3365030/A-research-database-for-experimental?pdfCoverIconEvent=cite
https://pubs.aip.org/jcp/collection/550852/Data-Science-for-Catalysis
javascript:;
https://orcid.org/0000-0001-9333-3717
javascript:;
https://orcid.org/0000-0003-4698-2807
javascript:;
https://orcid.org/0000-0001-9789-2735
javascript:;
https://orcid.org/0000-0001-9946-3504
javascript:;
https://orcid.org/0000-0003-1750-6860
javascript:;
https://orcid.org/0000-0002-2205-0303
javascript:;
https://orcid.org/0000-0001-5461-4751
javascript:;
javascript:;
https://orcid.org/0000-0002-9987-0748
javascript:;
https://orcid.org/0000-0002-3639-2427
javascript:;
javascript:;
https://orcid.org/0000-0003-3584-0600
javascript:;
https://orcid.org/0000-0001-7740-8811
javascript:;
https://orcid.org/0000-0003-1254-1165
https://crossmark.crossref.org/dialog/?doi=10.1063/5.0280821&domain=pdf&date_stamp=2025-09-30
https://doi.org/10.1063/5.0280821
https://pubs.aip.org/aip/jcp/article/159/22/221501/2928635/How-to-extract-kinetic-information-from-Tafel
https://pubs.aip.org/avs/jva/article/40/1/010801/2846223/Epitaxial-oxide-thin-films-for-oxygen
https://pubs.aip.org/aip/jcp/article/158/12/124705/2881835/The-surface-states-of-transition-metal-X-ides
https://e-11492.adzerk.net/r?e=&s=y69c8NTg7qIS79ntdc_FUJcATh4

The Journal

of Chemical Physics ARTICLE

pubs.aip.org/aip/jcp

A research database for experimental
electrocatalysis: Advancing data sharing
and reusability @

Cite as: J. Chem. Phys. 163, 124704 (2025); doi: 10.1063/5.0280821 @ Lk @
Submitted: 14 May 2025 - Accepted: 20 August 2025 :
Published Online: 30 September 2025

Ruchika Mahajan,'” (' Ashton M. Aleman,’” '/ Colin F. Crago,'” ' Suman Bhasker-Ranganath,'*
Melissa E. Kreider,' * Jose A. Zamora Zeledon,’ Johanna Schroder,'* Gaurav A. Kamat,'?
McKenzie A. Hubert,'* Adam C. Nielander,” Thomas F. Jaramillo,"? Michaela Burke Stevens,”?

Johannes Voss,>? and Kirsten T. Winther*®

AFFILIATIONS

TSUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University,
Stanford, California 94305, USA

2SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA

Note: This paper is part of the JCP Special Topic, Data Science for Catalysis.
2 Authors to whom correspondence should be addressed: mburkes@slac.stanford.edu; vossj@slac.stanford.edu;
and winther@slac.stanford.edu

ABSTRACT

The availability of high-fidelity catalysis data is essential for training machine learning models to advance catalyst discovery. Furthermore,
the sharing of data is crucial to ensure the comparability of scientific results. In electrocatalysis, where complex experimental conditions
and measurement uncertainties pose unique challenges, structured data collection and sharing are critical to improving reproducibility
and enabling robust model development. Addressing these challenges requires standardized approaches to data collection, metadata inclu-
sion, and accessibility. To support this effort, we have developed an extensive data infrastructure that curates and organizes multimodal
data from electrocatalysis experiments, making them openly available through the catalysis-hub.org platform. Our datasets, comprising 241
experimental entries, provide detailed information on reaction conditions, material properties, and performance metrics, ensuring trans-
parency and interoperability. By structuring electrocatalysis data in web-based as well as machine-readable formats, we aim to bridge the
gap between experimental and computational research, allowing for improved benchmarking and predictive modeling. This work highlights
the importance of well-structured, accessible data in overcoming reproducibility challenges and advancing machine learning applications in
catalysis. The framework we present lays the foundation for future data-driven research in electrocatalysis and offers a scalable model for
other experimental disciplines.
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I. INTRODUCTION

The discovery of high-performing catalysts is needed to
improve the energy efficiency and price competitiveness of electro-
chemical energy technologies, including water splitting for clean H,
production, electrochemical CO; reduction toward carbon-based
and liquid fuels, electrochemical N, reduction to ammonia, and
power generation in electrochemical fuel cells. To advance these
technologies, stable, active, and selective catalyst materials must
be discovered and tested in conjunction with the electrochemi-
cal cell, which includes the catalyst material, catalyst matrix and

conductive support, electrolyte, polymeric binder/ionomer, promot-
ers, and proton/anion exchange membranes. Therefore, optimizing
electrocatalytic performance is a highly complex task with a vast
parameter space. In this regard, there is an opportunity for data-
driven methodologies to accelerate the discovery of not only opti-
mized catalyst material composition but also electrocatalytic cell
configuration and operation parameters. However, artificial intel-
ligence (AI) methodologies are relatively under-utilized in experi-
mental heterogeneous catalysis,' where a significant limitation for
the successful application of AI is the availability of consistent,
well-structured, and reliable experimental datasets.
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Over the past decades, the field of materials science has
seen a tremendous advance in the generation, curation, storage,
and distribution of open materials data. Important repositories
include the Inorganic Crystal Structure Database (ICSD),” the Cam-
bridge Structural Database (CSD),” and the International Center
for Diffraction Data (ICDD)," providing crystallographic refine-
ment data for inorganic and organic compounds, which serve
as valuable reference data for material characterization. In par-
allel, computational materials repositories have been developed,
with an overall focus on crystallographic, i.e., periodically rep-
resentable, materials, including the Materials Project,” the Open
Quantum Materials Database (OQMD),° Materials Cloud,” and
more.” The increasing availability of open and structured data has
also aided the development of ML-based methodology for material
property prediction’ and discovery,'’ enabling the application of
deep learning that requires a larger amount of training (1000+ data
points as a guideline).

While these databases have steadily grown to support com-
plex and large-scale datasets, they often focus on domain-specific or
well-structured data types, particularly computational data for crys-
talline materials. At the same time, broader efforts have been made
to integrate diverse materials data into unified platforms. One such
example is the Materials Data Facility (MDF), which was introduced
as a flexible and scalable infrastructure to support the publication,
discovery, and reuse of diverse materials data.'’ However, MDF has
faced challenges in achieving accelerated growth in data submissions
over time. This may be due to its broader scope, the complexity of
its metadata requirements, and limited engagement from the user
community. These limitations suggest that offering a generalized,
all-purpose platform may not be sufficient on its own. Considering
these challenges, we believe successful data structures are more likely
to gain wider adoption and long-term utility when they are tailored
to the specific needs of their intended user communities. Learning
from these experiences is essential in designing future platforms that
can achieve lasting impact and broader adoption.

The field of catalysis has also seen significant advances
in the development of computational catalysis data reposito-
ries, with a focus on storing surface slab geometries and calcu-
lated properties.'””"” For example, adsorption and reaction energy
datasets on catalysis-hub.org have aided in the development of
ML models for surface stability and reactivity, including adsorp-
tion energy predictions'”'” serving as surrogate models for DFT
computations. More recently, the large collection of training data
on the Open Catalyst Project database has enabled the training of
ML interatomic potentials to accelerate surface slab simulations, as
well as the training of deep-learning models for adsorption energy
surrogates. " In terms of experimental catalysis, open datasets
have been limited to smaller collections produced by individual
groups or larger, consistent datasets produced through a simpli-
fied protocol in a high-throughput manner. For example, datasets
such as CatTestHub'® for heterogeneous catalysis serve as valu-
able open-access repositories for benchmarking gas-phase ther-
mal catalytic reactions such as methanol dehydrogenation, formic
acid decomposition, and Hofmann elimination. Another significant
effort by Senocrate et al.'’ involved developing a comprehensive
measurement system for electrochemical CO; reduction by inte-
grating commercial analytical instruments and sensors with open
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source software, supporting standardized, high throughput data col-
lection. More recently, Open Catalyst Experiments 2024 (OCx24)
by Abed et al.”’ released one of the largest experimental collec-
tions, comprising 572 synthesized samples and 441 gas diffusion
electrodes tested for the CO; reduction and hydrogen evolution
reactions. There are also several efforts focused on experimental data
in materials science. For example, the Materials Provenance Store
(MPS)*! supports heterogeneous and distributed data from experi-
mental workflows; MaterialsAtlas.org® integrates both experimen-
tal and computational materials data; and the High-Throughput
Experimental Materials Database (HTEM-DB)* collects data from
large-scale combinatorial materials experiments. While the database
platforms discussed above mark a significant step forward, the data
are primarily shared in CSV-based formats, without a programmatic
interface and with limited access to raw measurements, which could
restrict broader reuse and integration.

In parallel, recent advances in self-driven laboratories have
begun to address challenges in data availability and reproducibil-
ity by enabling the generation of large, systematic, and high-quality
datasets in chemistry and materials science.”* Combined high-
throughput synthesis and characterization work has even been used
to screen over 300000 material combinations in a single study.”
Mining data from published peer-reviewed papers is another route
taken by researchers seeking to acquire sufficient data to train
machine learning models, with the difference between experimen-
tal setups and procedures as well as a lack of experimental details
being a large concern for data consistency. Deep language mod-
els have furthermore been applied to extract insights from research
papers;”* >’ however, the ability of such models to accurately com-
pare information across datasets produced at different locations and
with different setups is unclear. Recent platforms such as the Digi-
tal Catalysis Platform (DigCat)’® collect data from published papers
and combine it with models and AI tools. This helps with visual-
ization, comparison, and interactive questions to support reliable
and faster catalyst discovery. However, because DigCat uses data
from different studies, it can have inconsistencies, differences in
experiments, and missing details that may affect model training and
reproducibility.

To advance the development of AT methodology in the field of
catalysis, we need to increase the availability of high-quality datasets,
preferably through data repositories that adhere to best practices for
data curation and sharing. Such best practices have been provided by
the GO FAIR initiative, with the recommendation that data should
be Findable, Accessible, Interoperable, and Reusable (FAIR).*! Find-
able data are generally registered or indexed in a searchable resource,
are assigned unique identifiers such as permanent URLs, and con-
tain additional metadata about the context and quality of the data.
Accessibility can be ensured by making data retrievable under a stan-
dardized protocol, such as an HTTP or FTP request, for example,
through a website. Interoperability means that a formal and broadly
applicable language is used for knowledge representation, such as
having meaningful keywords to represent data as well as making sure
that the data are machine readable. Reusability of data largely comes
down to ensuring sufficient metadata and provenance for users to
understand how the data were produced and the history of the data,
as well as the ability to tell if the data will be useful in another
context.
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All these practices must be improved for experimental catal-
ysis data sharing. Reusability is particularly important in the con-
text of ML model training and for ensuring the reproducibility of
scientific research. Here, a major concern is to provide enough
metadata and granularity to ensure that results can be under-
stood and reproduced. In this work, we present an open research
database for electrocatalysis that allows for the comparison of a
diverse set of experimental setups and testing protocols covering
key reactions such as the oxygen reduction reaction (ORR), oxy-
gen evolution reaction (OER), and hydrogen evolution reaction
(HER). Our platform is designed to follow the FAIR principles,
with a strong focus on standardizing experimental electrocatal-
ysis data formats and making them accessible through an intu-
itive, web-based interface. Users can explore and compare data
directly on the website or access it programmatically via our
publicly available GraphQL API (https://api.catalysis-hub.org) as
well as the CatHub Python API (https://github.com/SUNCAT-
Center/CatHub), supporting both manual exploration and auto-
mated workflows. It supports scalable, standardized data access
through interactive visualizations, cross-study comparisons, and
programmatic APIs—enabling deeper analysis and integration with
machine learning workflows. A detailed description of the data
structure, API features, and visualization tools follows in Sec. 1.

Il. RESULTS

In this work, we report an open research database
for electrocatalysis, made publicly available under https://
experimental.catalysis-hub.org/. An additional outcome of this
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work is the development of a data collection and storage framework
that can capture the complexity of electrocatalytic materials and
testing procedures. In this framework, we collect metrics related
to the composition, morphology, testing, and catalytic perfor-
mance of electrocatalysts, considering all steps of the experimental
workflow as described in Sec. II A. Importantly, we are collecting
and storing a wide selection of data and metadata important for
data reproducibility and reusability. This includes characterization
spectra (XRD, XPS, and XAS) as well as electrochemical testing
(I-V curves), used to assess catalytic performance and stability.

A. Experimental workflow

The three major thrusts of an experimental workflow in
electrocatalysis research are synthesis, characterization, and cat-
alyst testing (illustrated in Fig. 1). Synthesis involves designing
or following a procedure to create a catalyst material of inter-
est. Characterization involves using techniques (often spectroscopy,
microscopy, and/or crystallography) to understand the composi-
tion, structure, and morphology of the synthesized material. Catalyst
testing involves applying a protocol relevant to catalytic operating
conditions to evaluate the performance of a catalyst. Finally, post-
characterization is done after catalytic testing to identify changes
to the material that happened during electrocatalysis, as cata-
lyst materials are often chemically and structurally dynamic.”
Each step in the experimental workflow generates unique data
metrics that contribute to a holistic understanding of a catalyst
material.
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FIG. 1. Three major thrusts of an experimental workflow for electrocatalysis, including (1) material synthesis, (2) material characterization, and (3) catalyst testing.
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Synthesis methods are chosen depending on the aimed type
and morphology of the catalyst. For more fundamental studies, thin
film catalysts are desirable that intend to minimize the chemical
and structural complexity of the synthesized materials, and thus
they are more analogous to conventional DFT slab models. Thin
films can be fabricated, e.g., with vacuum deposition techniques such
as thermal or electron beam evaporation, physical vapor deposi-
tion,” or reactive sputtering.”* Our key database input parameters
for thin films are the substrate, the targeted deposition rate, film
thickness, and geometric surface area of the sample. Powder or
nanoparticle catalysts, on the other hand, are more often used in
commercial energy conversion devices and are desirable for more
applied studies, as they have a higher surface area and, thus, an
increased number of available active sites. Powder catalysts can be
synthesized from a wide array of wet chemical and thermal pro-
cesses, e.g., our group often uses a colloidal approach. Important
database input parameters for powders regarding the catalyst matrix
are the substrate, the type of conductive support (called henceforth
conductive support ID), the catalyst-support ratio, the catalyst load-
ing, the binder ID and amount, and the geometric surface area of the
sample.

The three main characterization methods in our workflow
are x-ray photoelectron spectroscopy (XPS), x-ray absorption spec-
troscopy (XAS), and x-ray diffraction (XRD). XPS survey spectra
provide insights into surface composition, and high-resolution spec-
tra can be fitted to resolve surface chemical states and oxidation
states.”> For XPS, we collect intensity and binding energy arrays

Measured Data
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for both survey and element-specific high-resolution scans, along
with other necessary parameters and outputs such as the C 1s peak
shift for calibration. Derived data include the fitted atomic surface
composition and oxidation states. XAS spectra provide insights into
bulk chemical composition and structure.’® For XAS, we collect nor-
malized intensity vs energy data into our database, along with the
specified transition (i.e., K-edge or L-edge). Diffractograms from
XRD can identify the bulk crystal structure of a catalyst material.
For XRD, we store the raw intensity vs 2 theta (the angle between
the incident and diffracted beam) in our database, as well as results
derived from our analysis, such as the corresponding ICSD ID,’
space group, and lattice parameter. As mentioned previously, cat-
alyst characterization performed after electrochemical testing can
contribute valuable insight to catalyst restructuring. Although we
are not currently including post-testing characterization data in
our uploaded data, the functionality is accommodated in our data
structure and will be included in future data uploads.

For electrochemical characterization, we use a standard rotat-
ing disk electrode (RDE) system to screen the catalytic activity
with cyclic voltammetry (CV), i.e., electrode potential is swept in
a catalytically relevant window, and the current density response
is measured. We also evaluate electrochemical stability by apply-
ing a constant current density/potential and measuring the resulting
potential/current density over a longer period of time,’” followed by
another CV to reevaluate activity after the stability test. For each of
these electrochemical experiments (pre-CV, stability test, and post-
CV), time, potential, and current density columns are used as input
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FIG. 2. (a) Data structure for experimental catalysis data, including measured data in the form of XPS, XRD, and CV curves. (b)—(d) Derived data and tabulated metrics for

the catalyst material, matrix, and testing, respectively. (¢) Metadata that provide additional context to the data.
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into our database. Furthermore, we extract and tabulate the onset
potential at a range of current densities from the CV curves, together
with the maximum mass-transfer limited current density. We also
track important experimental parameters such as electrolyte ID and
concentration, sparged gas, rotation rate, and reaction of interest
(e.g., oxygen reduction or oxygen evolution).

B. Data structure

In correspondence with the collection workflow described
above, we have developed a data structure specific to electrocatal-
ysis, including tabulated properties of the catalyst material, catalyst
matrix, and catalyst testing, as well as metadata, as illustrated in the
schematic in Fig. 2. Higher modality data are collected for XRD and
XPS characterization spectra as well as CV curves in the form of
arrays. The choice of catalyst material serves as an entry point for our
data structure, where the chemical composition, synthesis method,
and morphology are the main entries. We store the assumed chem-
ical composition as targeted by the synthesis together with metrics
extracted and interpreted from characterization spectra. From the
XRD, we derive the crystal space group obtained from a compari-
son to ICSD crystal structure prototypes. In the case of signatures
of more than one crystal symmetry in the XRD diffractogram, we
provide a list of space groups and prototype IDs. From the XPS,
we extract the measured oxidation state and surface composition
for transition metal elements, which will generally differ from the
synthesis target composition. To facilitate data reusability, we are
storing post-processed spectra in separate XRD and XPS tables with
links to the catalyst material ID. For the XPS, we store the survey
spectra (giving an overview of peaks over a larger energy range),
as well as high resolution XPS peaks in a narrower energy range.
We also provide the C 1s shift that was used to correct the XPS
peak positions, which are particularly relevant for reproducibility
purposes.

Moving beyond the impact of the unique catalyst material,
there is significant complexity when considering the full catalyst
matrix, as illustrated in Fig. 2(c). Important catalyst matrix para-
meters include catalyst thin film thickness, substrate, conductive
support, binder/ionomers, and the total catalyst loading, as well as
the ratio between the different components. These parameters can
all have a significant effect on catalyst performance and should be
tabulated to foster data reusability. Furthermore, the prospect of
optimizing catalyst matrix parameters with ML methods further
motivates data collection in this space. For example, our recent
work on developing interpretable ML models for the performance
of binary transition metal antimonates found the catalyst loading
and the conductive support ratio to be key parameters for catalyst
performance.”® For the catalysis testing data, collected parameters
include properties of the reactor, the electrolyte, and the reactants, as
shown in Fig. 2(d). Furthermore, catalytic activity metrics extracted
from the CV curves are tabulated, including the mass-transfer-
limited current density and the onset potential for a range of current
densities.

To add context to the collected datasets, we also assign addi-
tional metadata. Each data point is assigned to a dataset name
(generally chosen based on the chemical composition of the catalyst
studied), as well as the name of the person responsible for adding the
data point to the table. If a data entry is part of a publication, we link
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it to the publication DOL. In addition, we link the ICSD crystal struc-
ture prototype IDs where applicable (where the prototype ID refers
to the crystal structure, while the composition of the ICSD reference
will generally differ). The data collection was carried out by manu-
ally collecting, curating, and labeling entries that were then added to
a shared spreadsheet. We used one main table for tabulated metrics
and separate tables for spectra and CV curves, carefully linking the
data in different tables through unique identifiers.

C. Datasets and availability

To facilitate the access and visualization of our cataly-
sis data collection, we have developed the Catalysis-hub Exper-
imental (CatHubExp) database, a web-based tool available at
https://experimental.catalysis-hub.org. The goal is to provide a com-
prehensive repository that researchers can explore, analyze, and use
to further their research. Currently, 13 datasets are made publicly
available and can be accessed on the Publications page. Here, data are
browsed on a dataset basis, with each dataset corresponding to a dis-
tinct journal publication with an assigned DOI and corresponding
link. Data were collected with a focus on catalyst discovery through
the study of high-performing catalyst compositions and morpholo-
gies. Therefore, the catalytic reaction, synthesis method, material
class, and catalyst matrix generally vary across datasets. Chemi-
cal reactions currently include oxygen reduction reaction (ORR),
oxygen evolution reaction (OER), and hydrogen evolution reac-
tion (HER), with 195, 43, and 03 entries, respectively. A diverse
collection of catalyst materials is sampled, including thin film met-
als and alloys of Ir-Pt,”” Ir-X (X = Sn, Cr, Ti, Ni),"" Ag-Pd,”
and Ag-Cu systems;"! transition metal antimonates;’’ carbon nan-
otubes;*’ metal-organic frameworks;** and Ru-based pyrochlores,*
phosphides,*® and nitrides.**

Consistent with the Catalysis-hub computational data collec-
tion, each dataset is assigned a permanent identifier constructed
from aggregating the name of the first author, the title of the paper,
and the publication year. Clicking a selected publication ID links to
a separate page with detailed dataset information about synthesized
samples, their properties (e.g., chemical, structural, and physical),
experimental methods, different reaction types, material morpholo-
gies, their electrocatalytic performance, and related publications,
among other relevant data, as discussed in Sec. II B.

In addition to the Publications page entry point, data can be
browsed through the Catalyst Material page (both linked via but-
tons on the main page), which enables users to filter data based on
catalyst composition and visualize data entries across publications.
Researchers can use an interactive periodic table for element-based
and formula-based searches to explore materials. After a search,
a material table appears as shown in Fig. 3, displaying key prop-
erties such as composition, DOI, morphology, reaction, pH, and
onset potential as default visible columns. Users can customize the
table view by selecting additional columns through the “Manage
columns” option directly within the table. This feature also pro-
vides advanced filtering options to refine data by functionalities,
e.g., search for any keywords across the table, direct DOI links
connected to source publications, and a CSV “Export Table” that
allows users to download filtered datasets. In addition, users can
sort the material table columns or search the data using various
filters, such as material properties, reaction types, onset potential,
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Characterization spectra

X-ray diffraction (XRD) and photoelectron spectroscopy (XPS) results are shown below.
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Electrochemical testing

Cyclic voltametry (CV) curves are shown below. Select the current density value in the legend below to re-calculate the onset potentials.

CV curve
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FIG. 3. Advanced catalyst materials search: Researchers can select materials with checkboxes to analyze their electrochemical properties. Here, all Mn-based materials
were selected, filtered by ORR reaction type, and further refined by the highest onset potential. Based on the selection, only the corresponding XRD, XPS, and CV graphs
are displayed, facilitating detailed data analysis.
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etc. A subset of the data entries corresponds to repeated electro-
chemical measurements for already existing catalyst morphologies
and testing parameters. This is indicated by the “Replicate” col-
umn, where entries are assigned an integer number if one or more
repeated measurements exist. For these entries, we report the aver-
aged onset potentials as well as error bars (standard deviations) in
a separate column, shown as MEAN+/-STD. Including such statis-
tics is valuable for assessing the data uncertainty and quality. They
improve transparency, provide a precise measure of variability, and
help assess the reliability of the data.

Finally, researchers are invited to contribute data to foster
database scalability and collaboration. As will be mentioned in the
following, our developed data structure and storage framework is
flexible enough to accommodate additional columns for derived tab-
ulated data. In addition, the data structure allows for empty/null
values of columns, since some metrics might not be relevant for
all catalyst systems. Moreover, to promote transparency and long-
term data reliability, if a data entry is later found to be flawed either
by contributors or users, it will not be removed from the database.
Instead, such entries will be retained and clearly marked with a
label and clarifying note in the metadata to indicate the issue. This
policy ensures reproducibility, allows users to make informed deci-
sions about data quality, and helps in building trust in the database
over the long term. In Sec. II D, we will briefly describe the system
architecture and implementation details of the underlying developed
system and demonstrate the key features of CatHubExp.

D. System architecture

The CatHubExp database platform consists of several enti-
ties that handle different stages of the data flow, as illustrated in
Fig. 4. First, data are manually collected, curated, and organized in
a spreadsheet-based tabular workspace, using standardized tables
with well-defined column names corresponding to our developed
data structure shown in Fig. 2. Different data modalities, such as
key-value pairs, characterization spectra, and CV curves, are stored
in separate tables and linked through unique material and sample
identifiers.

Data are subsequently transferred to a cloud database, using
a customized Python workflow to parse data from regular tables
to a structured query language (SQL) format. The structured data
format efficiently manages relationships between catalyst material,
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testing samples, CV, and characterization tables and has enhanced
capabilities for data retrieval through tailored queries. With a Post-
greSQL database backend, we obtain a good compromise between
structure and flexibility, utilizing the JSONB format to accommo-
date an unlimited number of key value pairs that enable additional
table columns in the future.

Next, a Python web API is used to create the GraphQL end
point (https://api.catalysis-hub.org), now providing access to experi-
mental as well as computational Catalysis-hub data. The application
enables flexible querying of complex data structures, efficient data
fetching by selecting specific fields, and simplified frontend inte-
gration. It also provides a machine-readable data interface, making
it accessible in a JSON-like format through an HTTP request.
Experimental data are found in publicationExp, materials, samples,
echemical, xps, and xrd tables. For instance, materials can be queried
by publication (publd), as illustrated in Fig. 5.

Finally, the front-end application (https://experimental.
catalysis-hub.org) serves as the main user interface. It is archi-
tected using modern web technologies with React.js, a JavaScript
framework. It is a component-based architecture that allows the
application to efficiently manage dynamic user interfaces (UI)
by reusing components and maintaining a virtual document
object model (DOM) for fast rendering. This modular approach
enhances scalability and simplifies development, making it easier
to extend functionality in the future. The frontend system uses
the Material-UI library for data display and management and the
Apollo GraphQL client for data fetching from the backend services.
Important features include interactive data visualization, search by
materials and publications, and filtering capabilities. The applica-
tion also displays experimental data through customizable graphs
and tables and provides data export functionality for enhanced
usability.

E. Data analysis

In this section, we will briefly discuss the interactive tools,
allowing researchers to select data entries for further analysis,
perform real time calculations, and visualize results through
dynamic graphs and filtering options.

The platform provides high-quality plots for XRD and XPS
material characterization spectra, which offer deeper insights when
multiple materials are selected simultaneously, as shown in Fig. 3.

1) Local Repository 2) Cloud Database

3) Web API 4) Front Page

1

Database Server
(PostgresSQL)

Tabular Workspace
(Spreadsheet Utility)

.

https://experimental.catalysis-
hub.org/

https://api.catalysis-hub.org/
graphal

1
materials(publd: "Deolnterpretable2024") {

GraphQL

' Python Flask
Application

ReactJS
JSA Application

FIG. 4. Schematic representation of the flow of data, illustrating the connections between the database server, backend, and frontend applications.
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11 1
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{
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{
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1,
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Weal TAN. HAQDT

FIG. 5. Example of a GraphQL query for a materials search by publication ID executed in the AP| web interface. The web API can be accessed at hiips:/api.catalysis-

hub.org/graphq.

We note that spectral intensities are normalized to allow for easier
comparison. In addition, the platform supports the visualization and
straightforward analysis of cyclic voltammetry (CV) curves, includ-
ing both forward and reverse sweeps. Researchers can select the
current density value from the CV graph’s legend to recalculate
the onset potentials. As shown in Fig. 6(a), a current density of
-0.1 mA/cm’® is selected by default, and the graph provides a
real time updated onset potential. Furthermore, comparing mul-
tiple graphs across different materials facilitates in-depth data
analysis.

Another key feature allows users to visualize ORR/OER per-
formance for a selected publication across different onset poten-
tials. As shown in Fig. 6(b), the graph displays onset potentials

at three different current densities (+/-0.01, +/-0.05, and +/-0.1
mA/cm?®) for various materials within the selected publica-
tion, enabling a comprehensive comparison of electrochemical
performance.

Moreover, one can see the x-axis and y-axis data points by
hovering over any graph, which makes the visualizations easier to
understand and interact with. As an added capability, all graphs
can be downloaded as high-quality PNG images, and the plat-
form includes features such as zoom in, zoom out, autoscaling, and
advanced filtering options to refine the visual analysis. Overall, the
platform provides a range of tools for analyzing and comparing
data, making it easier for researchers to explore and interpret their
results.
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FIG. 6. (a) Cyclic Voltammetry (CV) curve with forward and reverse sweeps. Users can select a current density value from the legend to recalculate the onset potential.
Here, an example is shown for —0.1 mA/cm?. (b) Catalyst performance visualization for electrochemical analysis, shown here for the ORR onset potential.

I1l. DISCUSSION

One of the overarching goals of this work is to improve data
availability in electrocatalysis to leverage ML-guided catalyst design,
where surrogate models are applied to identify and explore catalyst-
reaction spaces of high interest. Generating and curating training
data from experiments is resource-intensive and remains the major
bottleneck for applying ML and deep learning to experimental catal-
ysis. Although literature mining and combining data from different
experimental setups can help expand datasets, ensuring their con-
sistency remains a significant hurdle. Consequently, models trained
on limited and incompatible data are prone to making inaccurate
predictions, particularly when extrapolating to unknown spaces. For
example, ML models trained on features based on catalyst composi-
tion are unlikely to perform well across datasets, particularly when
the catalyst matrix structure and testing conditions impact perfor-
mance. Moreover, uncertainty measures such as error bars can be
used in machine learning models to help them learn better and make
more reliable predictions.

Thus, a main deliverable of this work is to improve repro-
ducibility and comparability in electrocatalysis research, creating a
platform for publishing datasets with sufficient (meta)data to com-
pare results from different sources, including high-performing and
low-performing systems. The inclusion of catalyst characterization
spectra and CV curves serves as an important means to improve
the reproducibility and comparability of data and the ability to build
more generalizable models.

Through the inclusion of catalyst characterization informa-
tion in our database, we also enable a close connection to com-
putational modeling, for example, by integrating experimental
features with DFT-based features in ML models (e.g., from high-
throughput computations). While atomic features capturing peri-
odic trends, thermodynamics, and physical properties are often
inexplicit, descriptors from theory, such as structural, energetic,
vibrational, and electronic properties derived from DFT, provide
higher fidelity in describing catalytic reactivity. Here, important
computational metrics include surface adsorption and reaction

energies as well as atomic structures, such as those stored on our
computational database counterpart at www.catalysis-hub.org. In
addition, phase diagrams and Pourbaix stability predictions are
highly relevant for electrocatalysis, where the pH- and voltage-
dependent restructuring and phase changes can be predicted with
computation.

In the absence of experimental data, ML models trained
on DFT-derived descriptors enable high-throughput screening of
chemical spaces to guide experiments and further refine predictions
based on feedback. However, integration of experimental descrip-
tors into the ML model training can significantly enhance the power
for the prediction of realistic catalytic performance.

Our study on binary transition metal antimony oxides high-
lights the value of incorporating experimental descriptors into ML
model training.”® By integrating atomic, theoretical, and experimen-
tal descriptors with human-interpretable models to predict the ORR
onset potential, catalyst loading and conductive support-to-catalyst
ratio emerged as key experimental features. Electronegativity and
metal-oxygen bond length were identified among atomic and the-
oretical descriptors. Despite being trained on limited experimental
data combined with bulk descriptors, ML models effectively capture
trends in electrochemical performance.

Descriptors computed from surface slab models representing
thin-film morphologies and nanoparticle facets will offer a more
realistic depiction of active sites. Incorporating surface descrip-
tors is expected to improve predictive accuracy. In this regard, the
experimental database can further enhance ML models by

1. Using crystal structure(s) and high-symmetry facets derived
from XRD to inform the model surface structures used for
computed surface descriptors.

2. Use XPS and XAS insights to further refine the computa-
tional structural models, considering oxidation states, binding
modes and adsorption sites of chemical intermediates, and
catalyst-support interactions.

3. Integrating data from non-static models generated through
molecular dynamics (MD) simulations with experimental
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post-characterization data to capture catalyst structure evolu-
tion under reaction conditions.

ML models can also be trained to identify correlations between
spectral features and catalyst structure-activity relationships, using
the data of experimental spectra alone or in combination with the
data of simulated spectra from high throughput computations.*’
These models enable automated spectral interpretation, streamlin-
ing the reverse engineering of promising catalysts through spectral
inversion techniques.

While our data collection is relatively small (considering the
volume of data needed to train ML models), we hope that our data
collection framework, data structures, and ontologies can serve as
inspiration for other researchers. Furthermore, we are continuously
expanding our database with new datasets generated in the SUN-
CAT group, and datasets will generally be available after submission
or acceptance of the corresponding publications. While our cur-
rent data collection is highly focused on oxygen-based reactions
(OER/ORR), a future goal is to expand the structure to carbon and
nitrogen chemistries, such as CO, reduction to CI and C2 prod-
ucts (CO;R) as well as nitrogen and nitrate reduction (N>R, NO3R).
For these reactions, an additional complexity lies in optimizing the
selectivity of the catalyst with respect to the desired products.*’
Therefore, a future goal is to expand our data structure to include
tabulated selectivity metrics. Moreover, establishing a centralized
repository to systematically organize all relevant experimental data
and metrics for a specific reaction ensures adherence to standard-
ized protocols and minimizes the risk of false positives, such as those
highlighted in Ref. 49 for the electrochemical reduction of nitrogen
to ammonia. We encourage the broader experimental community to
share their data, even if it follows different formats. The idea is that,
as long as metadata are available, it is feasible to build a centralized
database either via APIs or using Al tools to integrate and analyze
such diverse datasets. A successful example is our computational
counterpart of Catalysis-hub (CatHub), which focuses on compu-
tational data and has grown steadily over time. We hope to enable a
similar trajectory for experimental data in catalysis. An additional
goal for our future data collection is the inclusion of post-testing
characterization spectra. While this functionality is already accom-
modated in the data structure, it has not been prioritized in the data
collection effort so far.

IV. CONCLUSION

In our database, we are advancing the standards of data collec-
tion, storage, and sharing for experimental electrocatalysis through
the open web-based platform at https://experimental.catalysis-
hub.org. Recognizing the importance of making experimental
datasets accessible to the broader scientific community for repro-
ducibility and machine learning model development, we systemat-
ically identify and collect data on key features relevant to catalyst
synthesis, characterization, and testing. Currently, our database
hosts electrocatalysis data for widely studied reactions such as the
oxygen evolution reaction and oxygen reduction reaction. The plat-
form catalogs unique entries from individual experiments, including
details on the catalyst material, matrix, testing conditions, and
metadata. In addition, a key feature of the platform is its abil-
ity to store multimodal information from various measurement
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techniques, including XRD, XPS, and CV curves. With a simple
query, users can seamlessly access and import datasets spanning
different material classes and publications directly from the web
interface. We hope that our open database and ontology for experi-
mental electrocatalysis will serve as inspiration for other researchers
and facilitate a broader sharing of data in the community.
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