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Chapter I 

INTRODUCTION 

In the last few decades an increasing amount of research 

on surface and adsorption phenomena, experimental as well as theoret­

ical, has been published. The main motives for these studies can be 

found in the development of semiconductor technology and in the 

importance of heterogeneous catalysis for many chemical processes. 

Recently, the so-called energy crisis has given a strong stimulus 

to the fundamental research on surface phenomena in order to obtain 

a better understanding of heterogeneous catalysis. For instance, 

considerable interest exists in catalysts for the gasification or 

liquefaction of coal, with simultaneous removal of sulfur and 

nitrogen. The exploitation of oil shale and tar sands involves similar 

problems. Also the environmental legislation in the USA has caused 

an important impact on the research of catalysts suitable for 

(automobile) emission control devices. 

The understanding of processes which take place at solid 

surfaces, has been hampered for a long time by the lack of accurate 

and reproducible experimental data. The situation was much improved 

by the advance of vacuum technology, which provided the possibility 

of studying clean surfaces. Even more important was the development 

of various photon, electron and ion spectroscopies, which are able to 

elucidate the atomic and electronic structure of the surface layers 

and to characterize atoms or molecules adsorbed on the surface. For 

example, low-energy electron diffraction (LEED) is used to investi­

gate the crystallographic structure of surfaces. The theory of LEED 

has reached the stage where it is possible to deduce the position 

of adsorbed atoms at the surface as well as the shape of the unit cell. 
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By Auger electron spectroscopy (AES) the chemical composition of clean 

or contaminated surfaces may be investigated. AES is often employed 

to check surface cleanliness. Recently, ion scattering has been used to 

analyze the surface layer and to determine the position of adsorbed 

atoms. Photoelectron spectroscopy (PES) provides information about 

the electronic band structure. Especially ultraviolet photoelectron 

spectroscopy (UPS) is sensitive to surface properties, such as the 

existence of surface states (see Chapter II) at clean surfaces. An­

other important application of UPS to surface studies lies in the 

detection of chemisorption (see below) levels. Similar information can 

be obtained from ion-neutralization spectroscopy (INS), which method 

is even more sensitive to the existence of chemisorption induced 

"resonance" levels. With these and many other techniques (electron 

energy loss spectroscopy, field emission or field ionization, work func­

tion measurements, ellipsometry, reflectance spectroscopy, flash, 

thermal or electron impact desorption) an increasing amount of data 

becomes available on (adsorbate-covered) single crystal surfaces which 

are structurally well-defined. 

The theoretical approach to the surface problem has shown 

a similar evolution. For a long time, due to the loss of three-dimen­

sional periodicity, theoretical models for surfaces had to remain 

much more primitive than the solid-state models used in studying bulk 

properties. The application of computational methods for molecules 

was not feasible, because of the need to use rather large clusters 

for describing the substrate effects appropriately. Rough concepts, 

such as the percentage of d-character in transition metals, or the use 

of rigid-band models, did not provide much more insight into the 

reasons for catalytic activity. The last few years have also shown a 

rapid increase in the number and quality of theoretical studies. The 

application of both solid-state techniques and molecular methods to 

the more complex surface problems has become possible by the develop­

ment of advanced electronic computers. Also the availability of 

reliable and detailed experimental information from the techniques 

mentioned above, has stimulated the development of the theory. In con­

clusion, we can certainly state that, by the interaction between 
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theory and experiment, surface science has grown into a mature science 

by now. 

In discussions concerning the relevance of surface science 

for a better understanding of heterogeneous catalysis, it is often 

pointed out that an important gap exists between these two fields of 

research: Surface scientists generally study adsorption or simple 

reactions on the surfaces of clean single crystals at low temperatures 

and pressures, while industrial catalysis is an enormously complex 

process involving high temperatures and pressures, many simultaneous 

reactions each consisting of many steps, and quite a number of im­

purities and additives. On the other hand, it may be argued that the 

investigation of adsorption and the simplest cases of catalysis on 

well-defined clean surfaces, can provide us with the necessary insight 

to identify those substrate properties which are important to hetero­

geneous catalysis, also under real reaction conditions. In this 

development of concepts applicable to catalytic processes theoretical 

tools are indispensable, since, in many cases, the experimental 

material does not yield direct information about the surface structure, 

adsorption bonding, etc., but requires the aid of some theoretical 

model. Moreover, the interpretation of the experimental data is often 

rather difficult so that qualitative discussions are not conclusive 

but rather extensive calculations are needed. Therefore, the strong 

increase in the theoretical interest in surface and adsorption 

phenomena, which appears from the large number of recent papers on 

these subjects (see the list of references in Chapter II) seems, to a 

large extent, Justified. 

In studying adsorption one may distinguish between physical 

adsorption, which results from Van der Waals forces and shows no 

transfer or "sharing" of electrons between the admolecule and the 

solid, and chemical adsorption or chemisorption, which arises from the 

transfer or sharing of electrons between the adsórbate and the 

adsorbent. The latter type of adsorption generally causes a significant 
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modification in the adsorbed species, which may even result in the 

breaking of some adsórbate bonds ; the chemisorption bond has all 

characteristics of a common chemical bond. Physical adsorption is 

usually weaker than chemisorption and experimentally determined 

heats of adsorption are often used to distinguish between the two 

types. There are systems, however, in which this distinction is not 

clear. 

In this thesis we describe some linear combination of 

atomic orbital (LCAO) studies on chemisorption, in particular models 

for (atomic) hydrogen adsorbed on different sites of the low index 

surfaces of nickel crystals. We intend to obtain a better under­

standing of the adsorption binding with transition metals by this 

research. 

The thesis is composed as follows. In Chapter II we review 

the various theoretical techniques used to investigate surface and 

chemisorption phenomena. We discuss most extensively the more recently 

developed methods which are suited to study adsorption energies, 

(local) densities of states, etc., employing models for real crystals. 

We show how the surface and chemisorption problem is being tackled 

from two sides, by solid-state physicists and by quantumchemists. The 

approximations inherent to the various approaches and their conse­

quences are discussed. Furthermore, the practical feasibility, merits 

and drawbacks of the various techniques are indicated and a direct 

comparison of some methods is discussed. At the end of Chapter II, we 

pay attention to a few important concepts and interesting physical 

phenomena, such as virtual and split-off states, indirect interactions 

between adsorbed particles and dissociative chemisorption. 

In surface and chemisorption theory one often employs a so-

called resolvent or Green's-function technique. In most cases simple 

model crystals, for which the crystal problem can be solved analytical­

ly, are studied. We present in Chapter III a numerical procedure 

developed in our group for applying the resolvent method to more com­

plicated systems. Thus, it is possible to deal with more realistic 

models for transition-metal substrates, considering complete d-bands 

4 



as well as sp-bands. A few other recent (numerical) methods are also 

developing along these lines. Chapter IV contains our results from 

Extended HUckel molecular orbital calculations on finite periodic 

crystals and clusters. For further concise information we refer to the 

summaries of the reprinted articles and the introductory remarks with 

Chapter IV. 

Finally, in the Appendix we give some model Hamiltonians 

originating from solid-state physics and expressed in second-quantized 

form, which are often employed in chemisorption theory, and we indicate 

which approximations are implicit in these Hamiltonians. 
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Chapter II 

THEORETICAL MODELS FOR 
SURFACES AND CHEMISORPTION 

1. Introduction 

Theoretical studies on surface phenomena began with the in­

vestigation of so-called surface states, which are one-electron states 

localized close to the surface with energies lying outside the band of 

the delocalized bulk states. Although the earliest model calculations 

were performed in the 1930*8, the interest in these results was rather 

small, because there was a negligible technological motivation or 

experimental confirmation. The first major technological impetus for 

a more thorough investigation of surface states was provided by the 

rise of transistor technology during the late 1940's, since the 

presence of one-electron states in the forbidden band gaps may strongly 

modify the optical and electrical properties of semiconductors. More­

over, it has been suggested that the surface states play an important 

râle in chemical adsorption by allowing the formation of chemisorption 

states, which are constructed from adsórbate and localized substrate 

levels. However, the current view is that a chemisorptive bond and 

chemisorption states may also be formed without the pre-existence of 

surface states. 

Since the problems regarding the occurrence of localized 

states caused by impurities in the solid and by foreign atoms adsorbed 

on the solid resemble each other, the development in the theoretical 

research of impurity states of interest for properties of semiconduc­

tors and metals, and the study of chemisorption states important for 

chemical adsorption and heterogeneous catalysis, have run parallel. We 

shall restrict ourselves in this chapter, however, to a discussion of 

the theoretical research on surface and chemisorption phenomena. 
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One-dimensional_crystals (chains) 

In the earliest investigations the conditions for the occur­

rence of surface and chemisorption states in strongly parametrized 

one-dimensional semi-infinite or finite model crystals have- been 

examined. Tamm [l] was the first to show that, under certain conditions, 

surface states appear. He used a Kronig-Penney model potential (a 

linear array of б-function repulsive potentials) which was terminated 

at a free surface by a step discontinuity, and he matched the wave 

function and its derivative across the discontinuity. Shockley [2] 

examined the properties of a general one-dimensional periodic potential, 

terminated at its potential maximum by a step. He matched the wave 

functions across the discontinuity and showed that if the bulk bands 

were "crossed", surface states appeared in the forbidden band gaps 

when the surface perturbation was sufficiently small. These surface 

states came to be called "Shockley states" in contrast to the ones 

found in previous studies, which appeared above or below the bulk band 

(provided that the surface perturbation was sufficiently large) and 

which were afterwards called "Tamm states". 

Many calculations of surface states have been performed by 

the tight-binding (ТВ) method , which was used for the first time by 

Goodwin [sj. Various studies investigating the existence conditions 

and number of surface or chemisorption states, were performed on 

linear chains which represented mono-atomic and mixed crystals, with 

and without an adsorbed atom. A survey of these calculations until 

1970 can be found in reference [4]. Also the effect of electron 

In its original concept, this linear combination of atomic orbitale 

(LCAO) procedure used an orthogonal set of orbitale with only one 

orbital per atom, considering merely nearest-neighbour interactions. 

In this way it is equivalent to the Hiickel method known from molec­

ular calculations. The definition has gradually evolved, however, em­

ploying more Orbitals per atom and taking into account nonorthogonality 

and more extensive interactions. 
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correlation [5,6,7] has been examined by means of chain models, as well 

as adatom-adatom interaction [8,9,10] and chemisorption on supported 

metals [ll] . 

Three-dimensional crystals 

A very common procedure for studying the surface properties 

of three-dimensional crystals within the LCAO formalism is known as the 

Green's-function or resolvent technique [4,12]. The method was initial­

ly developed to investigate the influence of impurities and defects on 

the one-electron states in periodic crystal lattices and has been 

applied by Kouteck£ [l3] to establish the existence conditions of 

localized states on the (ideal) surfaces of three-dimensional crystals. 

The properties of chemisorption states, due to the interaction of a 

foreign atom with a crystal, have also been studied [8,14]. Kouteck^ 

and Tomásek [15-19] examined the surface and chemisorption (for the 

case of adsorption of a complete hydrogen layer) states for the low 

index planes of semi-infinite diamond- and sphalerite-type crystals. 

Furthermore, TomaSek [20,2l] investigated the effect of electron cor­

relation in diamond-like crystals by using an alternant molecular or­

bital (AMO) approach. A survey of these semiconductor calculations, 

which could be performed analytically by introducing several simplifi­

cations, such as interactions between specific hybrids only, may be 

found in reference [22]. Later, Freeman [23] showed how the resolvent 

method can be applied to more sophisticated models by performing 

numerical calculations. Levine and Freeman [24] studied by this 

technique the effect of surface reconstruction upon the energies of 

the surface states of zinc blende. Recently, Tomásek and Mikusik [25] 

have obtained Shockley surface states for the (110), (010) and (111) 

planes of bcc iron. 

A second technique which has often been used to investigate 

surface states in three-dimensional crystals, was developed by Heine 

[26-28]. In this method the one-electron wave functions (and their 

normal derivatives) inside the crystal are matched to the solutions 

of the one-electron Schrödinger equation in the vacuum outside the 
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surface. The surface plane is defined by an abrupt potential change be­

tween the perfectly periodic potential inside and a constant potential 

outside the crystal. Since the energies of the (Shockley) surface 

states lie inside the band gaps, the (real) eigenvalues of the crystal 
->• 

Hamiltonian must also be determined for complex wave vector k; these 

are the so-called evanescent solutions which possess a purely imaginary 
-»• -»• 

к , the component of к perpendicular to the surface. For each к , the 

(unchanged) component of the wave vector parallel to the surface plane, 

localized states exist when a match of these eigenfunctions and their 

normal derivatives to the appropriate vacuum wave functions is possible. 

The method described here has been used to study surface states on low 

index planes of semiconductors [29-34] , simple metals [35] and d-band 

metals [36,37]. It is very difficult to investigate surface recon­

struction or chemisorption by the direct matching procedure, since this 

would require an interface region in which the potential varies 

gradually instead of abruptly at the surface plane. 

Many other calculations on surface states have been per­

formed, using a large variety of different techniques; an excellent 

review may be found in reference [4] . In all the earlier approaches 

only existence conditions and energies of pure surface or chemisorption 

states with wave functions localized at the surface and energies out­

side the crystal bulk bands have been calculated. However, most one-

electron states remain within the crystal bands and do not become 

localized, but they are nevertheless affected by surface formation and 

adsorption. As Kouteck^ [l2] pointed out, these bulk or volume states 

should be included in order to obtain surface or adsorption energies 

and many other important properties. 

Recent developments 

In the last few years rapid development in the direction of 

more quantitative calculations on more realistic models, for example 

the transition metals, have become possible by the availability of 

high-speed and large-memory computers. From two sides the surface and 

chemisorption problem is being attacked now: by a "solid-state" 
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approach and by a "molecular" approach. The first group of techniques 

generally starts trom solid-state band calculations on infinite 

periodic crystals, which are subsequently reduced to semi-infinite 

crystals with a surface at which adsorption can take place. The second 

class of methods is of the molecular type. Assuming that the effects 

of surface and adsorption are rather localized, one applies molecular 

orbital methods to a finite cluster of atoms, possibly interacting 

with one or more adsorbed atoms. 

Since no encompassing review is available, we shall discuss 

in the following sections the more recently developed methods which 

are suitable to calculate (local) densities of states, work functions, 

and cohesion, surface and chemisorption energies. A survey of the 

previous calculations can be found in references [4,9,12,22,38,39]. 

We shall not deal with physical adsorption and only in passing dis­

cuss ionic adsorption, where the atomic structure of the solid is 

less important and where continuum models are often used, but we shall 

chiefly pay attention to theoretical treatments of chemisorption with 

mainly covalent bonding. 

In the next sections, the solid-state and molecular approaches 

will be discussed successively. Further, we shall concisely consider 

calculations on thin films or slabs, which are infinite in two direc­

tions but consist of a limited number of layers. 

2. Semi-infinite crystal models 

Several "solid-state" methods have been developed to study 

the surface and adsorption effects on the electronic properties of 

substrate and adsórbate. In all cases semi-infinite crystal models 

are used, but the way in which the solid is actually taken into account 

differs strongly. In the classical image force model, the solid is con­

sidered as a continuous polarizable medium in which image charges are 

induced by adsorbed particles. This model is often used for the in­

vestigation of alkali atoms adsorbed on metals (section 2.1). In the 

"jelHum" model the (continuous) solid is explicitly taken into ac-
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count. It is represented by an inhomogeneous electron gas in a uniform 

background of positive charge. The atomic structure is sometimes intro­

duced by means of some lattice pseudopotential which is dealt with 

perturbationally (section 2.2). It is preferable, however, to consider 

directly the effects of the pseudopotential. This may be done in two 

ways. Firstly, the wave equation can be solved directly in the 

field of the pseudopotential, either by the surface-Green's-function 

method (section 2.3) or by a self-consistent scattered wave method 

(section 2.4). Secondly, one can employ an expansion of the wave 

function into localized basis functions. Some of the most powerful 

methods to deal with the surface and chemisorption problem rest on this 

technique and we shall especially pay attention to them. 

In the LCAO formalism the one-electron wave functions are ex­

panded in localized basis orbitale, while the valence-bond (VB) method 

constructs N-electron states from these localized orbitala. It is very 

easy to incorporate local potential perturbations in both procedures. 

For example, the LCAO method often works with the one-electron Green's 

function, taking optimally advantage of the solution of the unperturbed 

problem (e.g. the infinite crystal). In general, one may discern three 

levels of approximation in the expansion technique: (i) The tight-

binding methods (section 2.5). These do not explicitly take into ac-

count electron repulsion or correlation effects, (ii) The effective 

one-electron Hartree-Fock type of methods (section 2.6). Allowance is 

made in a self-consistent manner for electron repulsions on one or a 

It should be noted that in solid-state physics correlation is mostly 

understood as any effect that originates from an explicit considera­

tion of the electron-electron repulsions. This departs from the custom 

in quantumchemistry or molecular physics, where the correlation energy 

is defined as the difference between the experimental energy (corrected 

for rotational, vibrational and relativistic terms) and the independent-

particle (usually Hartree-Fock) energy. We shall employ the definition 

common to quantumchemists. 
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few atoms only, which are directly involved in the chemisorption bond. 

(iii) Many-body approaches, based on a Heitier-London (valence-bond) 

kind of scheme (section 2.7). Here, also correlation effects are taken 

into account. In section 2.8 we shall compare the various expansion 

techniques and discuss their respective merits. Finally, in the last 

two sections attention is paid to some phenomena which play an im­

portant râle in chemisorption studies, namely the occurrence of 

virtual and split-off states and the indirect interaction between ad­

sorbed atoms. 

2.1 The image force model 

An approach to chemisorption, which is especially suited to 

investigate the (mainly ionic) alkali atom adsorption, stems from 

Gurney [40]. He pointed out that the valence level of an atom ex­

periences a natural broadening as a result of the uncertainty principle 

and the finite lifetime of the atomic state, when the atom is allowed 

to interact with a metal surface. The degree of ionization and hence 

the strength of the dipole moment per adatom, is determined by the 

fractional occupation of this broadened level, which in turn depends 

upon the position of the state relative to the Fermi energy of the 

solid. 

This effect of the interaction of an alkali atom with a metal 

on the originally sharp atomic ns-level, resulting in a so-called 

virtual level (see section 2.9), has been calculated by Gadzuk [41]. 

The interaction of the alkali atom with the metal was represented by 

the classical image potential. So, the effective one-electron Hamil-

tonian contained an attractive interaction between the electron and its 

image charge and a repulsive interaction with the image of the positive 

ion core, besides the direct electron-ion attraction. First-order 

Rayleigh-Schrödinger perturbation theory was applied to obtain the 

shift of the discrete ns-level, while the natural broadening of the 

level was calculated by time-dependent perturbation theory. Later, 

Gadzuk et al. [42] examined the alkali level broadening and shift by 
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Anderson's model [43j which has also been used to study covalent ad­

sorption (see section 2.6). They checked for the occurrence of magnetic 

effects by investigating the occupancy of and the splitting between the 

virtual spin-up and spin-down levels. Although they found a nonmagnetic 

solution, spin correlations did have a definite effect on the position 

of the energy levels and thus on the charge of the adsorbed atom. 

Gadzuk et al. assumed that the chemisorption energy consisted of two 

separate parts: a covalent and an ionic component. The adatom charge 

and the covalent portion of the binding energy were obtained from 

Anderson's model, while the major (ionic) contribution to the adsorp­

tion bond was calculated by the image force method. Recently, Cini [44] 

has shown that both the covalent and ionic energies may be found by 

the solution of a single Hamiltonian of the Anderson form. The electro­

static terms are included by redefining the adatom level position and 

the electron repulsion term. 

Muscat and Newns [45] studied the changes in work function 

with surface coverage of adsorbed alkali atoms on a (transition-)metal 

substrate. They considered a single atom, taking into account the other 

adatoms through their electrostatic field only. Coupling between the 

ne and np alkali valence orbitals and the eigenstates of the semi-infi-
ζ 

nite metal introduced lifetime broadening and hybridization of the ad­

sórbate valence levels. The electrostatic interaction between the dif­

ferent atoms and their images pushed down the adatom orbitals as the 

coverage increased, and polarized the adatom valence shell. 

2.2 The jellium model 

In solid-state physics the jellium model is commonly used to 

study the (surface) properties of simple metals. Many of the semi-in­

finite crystal methods which are reviewed below, are chiefly concerned 

with the interactions between the electrons and the ionic lattice, 

rather than those among the electrons. However, the present method is 

based on an electron gas type of analysis and disregards details of 

the interaction between the (conduction) electrons and the lattice, 
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focusing instead on the electron-electron interaction. In this so-

called "jelHum" model, introduced by Bardeen [4б], the solid is re­

presented by a system of free electrons in a semi-infinite uniformly 

emeared-out background of positive charge, which replaces the three-

dimensional lattice of ions and terminates abruptly at the surface. 

The electronic charge distribution and the potential may then be 

obtained self-consistently by applying the theory of an inhomogeneous 

electron gas, which has been introduced by Hohenberg, Kohn and Sham 

[47,48] and is called the density-functional formalism. The central 

quantity in this theory is the electron density, whose basic râle is 

established by the theorem that the properties of the system, in 

particular the ground state energy, are functionals of this density 

only. The theory includes exchange and correlation effects. Recently, 

a review of the formalism has been given by Lang [49] . 

Using the jellium model and the density-functional formalism, 

Bennett and Duke [so] and Smith [si] have performed approximately 

self-consistent calculations in order to obtain electronic charge 

distributions, work functions and surface potentials for several 

metals. These kind of studies yield for the work function good quali­

tative agreement with experiment over a wide range of densities. The 

calculated surface energy, however, is completely wrong for higher-

density metals [52]. Lang and Kohn [52,53] reintroduced in the uni­

form-background model the actual ionic structure by using perturbation 

theory. They calculated the first-order contributions of the lattice 

pseudopotential to the surface energy and the work function. The 

results were found to be in rather good agreement with experiments 

over the entire range of metallic densities. 

Lang [54] used the density-functional formalism to investi­

gate changes in the work function due to the adsorption of alkali 

atoms. Representing the substrate ionic lattice by a semi-infinite 

uniform positive background, he replaced the array of adsórbate ions 

by an adjoining uniform positive slab. Changes in coverage were 

treated as changes in the density or thickness of the adsórbate slab. 

So, his model was not appropriate to treat low coverages. Recently, 
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a few calculations have been performed which deal with single atom 

adsorption. The adatom was represented by an external point charge, 

which disturbed the metallic surface. Ying et al. [ss] investigated 

H chemisorption, while Huntington et al. [δβ] studied the adsorption 

of a Na atom. In both cases some approximations were introduced in the 

density-functional formalism. A self-consistent, exact calculation for 

single atom chemisorption of H, Li and 0 on a uniform-background sub­

strate has been carried out by Lang and Williams [57]. Gunnarsson et 

al. [se] were able to compare various adsorption sites for the chemi­

sorption of Η on an Al (100) surface by reintroducing the effects of 

the lattice through a weak pseudopotential. 

The previously discussed model for the investigation of 

surface and chemisorption phenomena is a reasonable approximation for 

the simple metals, i.e., those metals which are known to be free-elec­

tron like in the bulk. However, the model is not very realistic for the 

properties of semiconductors or transition metals. 

2.3 The surface-Green's-function method 

As we have mentioned in the introduction, one of the 

methods of calculating surface states is based on matching the wave 

functions at the surface boundary. Garcia-Moliner and Rubio [59,6θ] 

developed a new approach to the matching problem, in which the correct 

boundary conditions are automatically incorporated into the formalism 

and the need to perform a previous calculation of the band structure 
->• 

for complex wave vectors к is eliminated: it is sufficient to know 
->• 

the band structure of the infinite crystal for real к only. Moreover, 

it is not necessary to assume an abrupt termination of a perfectly 

periodic potential at a geometrical plane. 

One starts with a Green's function which contains the 

spectrum of the system without a surface and replaces the change in 

boundary conditions, which occurs in creating a surface, by an equiv­

alent perturbation. So, the method is conceptually similar to the re­

solvent procedure in the LCAO techniques, where a matrix representa­

tion of the resolvent is used (e.g. section 2.5). It is easy to ob-
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tain the surface Green's function (S.G.F.), the restriction of the serai-

infinite crystal resolvent to the surface region, from the Green's func­

tion for the infinite medium. Knowledge of the S.G.F. makes it possible 

to calculate the local density of states and the charge density at the 

surface. The procedure can be applied to all systems consisting of two 

media which are in contact through an interface. Moreover, it may 

easily be extended to systems with two interfaces in order to study 

surface reconstruction, thin films or layers adsorbed on a semi-infinite 

crystal. The method is rather cumbersome, however, and up to now only a 

few (simplified) model systems have been calculated [61-65] . Using a 

simple one-dimensional model, Flores et al. [бз] showed that the results 

of surface state calculations are strongly sensitive to the width of the 

interface which connects the disturbed periodic crystal potential to the 

vacuum level. Ellees et al. [64,65J applied the surface-Green's-func­

tion method to a pseudopotential calculation of the surface band structures 

of (111) diamond and zinc-blende faces. 

2.4 A self-consistent pseudopotential method 

As we have seen, the jellium model for metal substrates does 

not take into account the solid crystallinity. Hence, it is doubtful 

whether it can properly describe the localized covalent chemisorption 

bonding which depends on the atomic structure of the surface. 

Boudreauz [бб] has emphasized the importance of considering both the 

influence of electron-electron exchange and correlation as well as the 

effect of solid crystallinity in discussing the interaction of a 

foreign atom with a plane. He gave an expression for the potential 

felt by an electron near a crystal surface, but did not present a 

prescription for calculating wave functions which satisfy the relevant 

boundary conditions. Appelbaum and Hamann [б?] developed a procedure 

for carrying out self-consistent calculations in which the three-

dimensional lattice is included nonperturbationally. In this method, 

a plane is chosen inside the solid at some distance from the surface 

such that on the inner side of this plane the solid is indistinguish-
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able from the bulk. Such a choice can always be made coneietent with 

the degree of over-all accuracy one desires. In the bulk solid, the 

solutions are appropriate linear combinations of degenerate Bloch 

functions. These must smoothly join solutions of the wave equation 

in the region outside the plane, consisting of the last few atomic 

layers and the vacuum. In this surface region, where the wave functions 

retain periodic symmetry in the parallel direction, the Schrödinger 

equation is solved by a numerical integration technique. The core elec­

trons are supposed to undergo essentially no modification. The potential 

felt by a valence electron consists of a term from the positive-ion 

cores and a self-consistent potential due to the other valence electrons. 

The contribution of the ionic cores is approximated by a superposition 

of identical local model potentials, while the valence-electron con­

tribution is calculated self-consistently using a local approximation 

for the exchange potential. In order to obtain the (valence-electron) 

charge density in this procedure, wave functions must be calculated 

corresponding to a mesh of points in the Brillouln zone. 

By this method Appelbaum and Hamann were able to perform 

self-consistent calculations, for the first time, on the surface 

properties of semiconductors. They obtained the surface potential, 

charge density and energy spectrum of the ideal and relaxed or recon­

structed Si(lll) and (100) surfaces [68-7l] . Moreover, they studied 

the chemisorption of a monolayer of H on the (111) surface of Si and 

calculated the bulk and local density of states [72] . To determine the 

charge density they used a two- or four-point surface Brillouln zone 

(SBZ) scheme. 

The method is appropriate for simple metals and semiconduc­

tors, but is not directly applicable to transition metals and their 

compounds [б?]. 

2.5 Tight-binding methods 

Many of the solid-state techniques which we have reviewed 

in the preceding sections, are not very suitable to study the specific 

properties of transition metals. Since transition metals contain, in 
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addition to the conduction electrons, a set of rather localized d-elec-

trons, one usually has to resort to different techniques. Some simple 

models based on the renormalized-atom approach [73] have been used to 

obtain the bulk and surface densities of states. In this way Levin et 

al. [74] and Fulde et al. [75,76] have investigated the magnetic prop­

erties of nickel surfaces. We shall discuss in this and the next 

sections some methods which are particularly useful to study surface 

and chemisorption phenomena in case of transition-metal substrates. 

In the tight-binding approximation as applied in this sec­

tion, one employs usually an orthogonal, localized atomic orbital (АО) 

or Wannier function basis set. The effective one-electron Hamiltonian 

H is given by means of a matrix H, defined with respect to this basis. 

The matrix elements are the self-energies of the localized orbitale 

and the hopping or resonance integrals 3 for nearest-neighbour (some­

times next-nearest-neighbour) interactions. Often, one considers only 

one orbital per atom and chooses the energy of the free substrate-atom 

as the energy zero. We may define a one-particle Green's function G 

corresponding to the effective one-electron Hamiltonian H as follows: 

0(ε) = lim [(ε+ΙβίΙ-Η]"
1
 , (1) 

s-Ю 

with ε being the energy variable and I the unit operator. 

As we have mentioned in the introduction, the Green's-func­

tion or resolvent method may be used to obtain the existence condi­

tions and energies of localized surface and chemisorption states. It 

is also possible to calculate by this technique the surface and chemi­

sorption energies and charge distribution without explicitly solving 

for the one-electron energies and wave functions. This is due to a 

direct relationship between the (local) densities of states and the 

diagonal matrix elements of the Green's function. Considering only 

one orbital per atom, the average density of states per atom reads: 
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Ρ(ε) = -(ΤΓΝ)" Im Тг G 

= -(πΝ)"
1
 Σ Іт<ф(?-К )|θ|φ(?-Η )> (2) 
i 

= -(πΝ)"
1
 Σ Σ ХпкаСп.к )|G|a(n

(
k )> , 

η к " " 
// 

where Ν is the total number of atoms. We have given the above expres­

sion in terms of an atomic orbital basis {ф(г-Н )} and of a layer 

orbital basis {a(n,k )} when we have a crystal (with a surface) which 

is periodic in two directions (see below). The local density of states 
- > • 

at a particular lattice site R. is defined by: 

P
1
(e) = -π

- 1
 Іт<ф(?-Н

і
)|с|ф(?-Н

і
)> , (3) 

and the local density of states per atom for the N atoms lying in 

plane η by: 

?„(£)= -<
π Ν

/ /
 )~

1 Σ
 Іт<а(п

|
к

//
)|G|a(n

1
k

//
)> . (4) 

It is straightforward to generalize these expressions in case of more 

orbitale per atom. 

In the following we shall start with a discussion of the 

Green's-function technique developed by Kalkstein and Soven. Many of 

the calculations carried out by this method, which requires direct cal­

culation of the Green's function, have employed simplified models like 

cubiurn. Next, we shall discuss two related approaches, appropriate for 

calculations on real transition-metal systems. Both techniques, developed 

respectively by Cyrot-Lackmann and coworkers (the method of moments), 

and by Haydock, Heine and Kelly (the recursion method), use a continued-

fraction expansion of the Green's function, which is truncated at some 

level of approximation. 
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a) The Green'B-function technique 

We create a semi-infinite crystal by "cleaving" a perfect 

(infinite) crystal along an imaginary plane in some crystallographic 

direction. In order to obtain the density of states, the Green's func­

tion for the cleaved crystal has to be calculated. Let H and H be the 

effective one-electron Hamiltonians for the perfect and cleaved 

crystals, respectively, and let G and G be the corresponding Green's 

functions. Then G is given in terms of G and the perturbation 

V = H-Η by Dyson's equation [77] : 

G = G +G V G . (5) 
0 0 

Two different types of terms enter into V. Since H is the Hamiltonian 

of the cleaved crystal, it can have no matrix elements between local­

ized functions centred on different sides of the cleavage plane. This 

statement implies that 

<Ф(г-к
1
)| |ф(г-к )> = -<ф(?-н

1
)|н

о
|ф(?-^)> , (6) 

->• -»-

if R and R are lattice sites separated by the cleavage plane. The 

second contribution to the perturbation V is a consequence of the 

change in the self-consistent field near the surface. If the difference 

between the potentials in the cleaved and uncleaved crystals is denoted 

by U, then V will have the additional matrix elements 

<Ф(?-н
і
)| |ф(?-н

;)
)> = <ф(?-к

1
)|и|ф(г-А )> ., (7) 

->- -*• 

where R and R refer to positions on the same side of the cleavage 

plane. 

The calculations are facilitated by the observation that the 

cleaved crystal preserves lattice translational symmetry parallel to 

the surface. Assuming a single (s-like) orbital on each centre, we ex-

ploit this fact by transforming the set of localized orbitale ф(г-Н ) 

into a set of layer orbitals a(n,k ), which are two-dimensional Bloch 
th " -*• 

functions localized near the η crystallographic plane; к is a 
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wave vector parallel to the cleavage plane. The conservation of the 

two-dimensional translation symmetry is reflected in the relation 

<a(m,k )|G|a(n,k' )> = δ G(m,n,k ) (8) 
ft // Ir lr ' " 

//' // 

for the matrix elements of the Green's function in the layer orbital 

representation. The simplified Dyson equation, which now corresponds 

to a one-dimensional chain problem, can be solved directly for model 

crystals which are not too complicated. The (local) density of states 

can then be calculated according to formula (4) or, instead, one can 

directly obtain the change in the density of states due to the 

(surface) perturbation V by the formula [78,79J : 

Δρ(ε) = - Im ν- In det(I-G V) . (9) 

π 3ε о 

This procedure may easily be extended to investigate the change in the 

density of states caused by chemisorption [80,8l] . 

Kalkstein and Soven [82] calculated for simple cubium 

(= simple cubic lattice with one s-like orbital per atom, including 

only nearest-neighbour interactions) the local density of states (LDS) 

for the surface and the first two interior planes in the (100) and (111) 

crystallographic direction. It appears that the surface LDS bears 

little resemblance to the infinite crystal density of states, being a 

somewhat more sharply peaked function as would be expected from the 

moment rules (see below). As one proceeds into the crystal the LDS 

begins to resemble the density of states function for the infinite 

crystal. Also studying simple cubium, Allan and Lenglart [вз] deter­

mined directly the change in the density of states at a (100) surface 

in order to obtain the effect of the surface on the electronic specific 

heat and the surface entropy. Moreover, they examined the surface pro-

erties of various cubic lattices considering single-band crystals [84] . 

The perturbation potential due to the surface was calculated self-con-

sistently in order to satisfy Friedel's sum rule [ss] . Einstein and 

Schrieffer [79] investigated the chemisorption of a single-level atom 
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on the (100) surface of cubium for A(atop), B(bridge) and C(centred) 

adsorption. (One, two and four substrate atoms are directly involved 

in the chemisorption binding, respectively.) They evaluated numerically 

the chemisorption energies as a function of the filling of the sub­

strate band. A significant dependence on the character of the adsorp­

tion site was found. Furthermore, they studied the appearance of virtual 

and split-off levels (see section 2.9) for different values of the 

hopping integral between the adatom and the substrate atoms. In order 

to interpret photoemission spectra Einstein [80,81] examined the change 

in the electronic (local) density of states due to Α-adsorption on the 

(100) face of cubium. He found that, moving into the bulk, Δρ initial-
in 

ly decreases fairly rapidly, but remains non-negligible for deeper 

layers. In many of the above tight-binding calculations the single non-

degenerate band was intended to represent the d-band of transition 

metals. 

Recently, Ho et al. [86,87] investigated the electronic 

properties of the (100) face of a model two-band crystal with the 

CsCl structure. They calculated directly the change in the density 

of states due to the creation of the surface and obtained the effect 

of the surface on the specific heat and the surface entropy. Further, 

they examined the effect of surface relaxation and reconstruction on 

the electronic free energy. These studies on two-band crystals can be 

used to understand the properties of both semiconductor and insulator 

surfaces, while the one-band calculations are appropriate for metals. 

Ho et al. [ββ] also investigated single atom chemisorption on the (100) 

surface of a one-band bcc "metal". They studied the A- and C-adsorption 

cases and calculated the changes in the densities of states. 

Using a method similar to that proposed by Kalkstein and 

Soven, Falicov and Yndurain [89,9θ] have performed two model calcula­

tions on the electronic properties of the (111) surface in a diamond-

structure solid, with Si as a typical example. Their first model [89] 

consisted of tetrahedrally coordinated atoms with only one s-orbital 

per atom. Later [эо], they considered four sp -hybridized orbitals per 

atom. They accounted for surface layer relaxation and examined the 

electronic structure near the surface by calculating the local density 
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of states at different crystal layers, as well as the bulk density of 

states. Both models have also been applied to a study of the (111) sur­

face of a binary compound in the zinc-blende structure, with GaAs as 

a prototype [9l]. 

Pandey and Phillips [92,93] have performed tight-binding cal­

culations of surface energy bands for the unreconstructed, relaxed 

(111) and (100) surfaces of Si and Ge, and the reconstructed (111) sur­

face of Si. As commonly, they used semi-infinite crystal models, but 

they did not report their calculation procedure. 

b) The method of moments 

Although the direct calculation of the Green's function from 

the Dyson equation (5) provides an elegant procedure to obtain the 

(local) density of states, it is hardly possible to deal with d-band 

metals in this way. Therefore, Cyrot-Lackmann et al. [94-98] developed 

an approximate method to calculate the density of states by using a 

finite expansion in its moments. For the sake of clearness we shall 

restrict our description of their approach to crystals with only a 

single nondegenerate s-band. This treatment may easily be extended 

to d-band systems. 

Let H be the Hamiltonian of an electron that interacts with 

a lattice of N atoms represented by a superposition of atomic poten­

tials V(r-R ): 
N
 + -

H = Τ + Σ V(r-R ) . (10) 
i=l 

If the eigenvalues of Η are written as ε., the density of states per 

atom reads : 

ρ(ε) = -ì Σ δ(ε-ε
λ
) = ̂  Тг δ(ε-Η) . (11) 

Α 

The moment of order ρ of ρ(ε) is defined by: 

= 1 μ
ρ
 = Ι ε

Ρ
 ρ(ε) d

e
 = ̂  Тг H

P
 . (12) 
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The knowledge of the entire set of moments determines uniquely the den­

sity of states through the characteristic function f(x): 

e<
e
>
 =

έ e f(x) dx (13) 

with 

f (χ) = Σ
 ι ' μ . (14) 

ρ=0
 Ρ

'
 Ρ 

We assume now that each atom i has only a single s-orbital 
-*• -»-

φ. = ф(г-Н.) with energy ε , which satisfies 

{T + Vi?-^)} Φί?-^) = ε
ο
 φί?-^) . (15) 

and that the atomic orbitals are mutually orthogonal. The moment у 
Ρ 

given by (12), can then be written as: 

μ

η

 =
 Ν

 Σ <
Фі 1

Н
К
 >

 ··• "Φΐ I
H
I*1

 >
 ·

 ( 1 6 ) 

Р
 і,,..і 1 2 ρ 1 

i p 

In expression (16) only two types of integrals are retained, the 

crystal field integrals α and the resonance or transfer integrals β: 

Η = ε + Σ <φ |V(r-R )|φ > = ε + Σ o(R-R) , (17) 
1 1 0 1?! 1

 *
 1 0 1*1 1 1 

H
ij

 = < ,
t

|
il

v
^-R

i
)l

(
t

,
j

>
 = ^(Rj-Ri) · <

1 8
> 

For simple cubium it is very easy to obtain exact expressions for the 

various moments by a walk-counting technique [94]. In case of d-band 

metals, however, this technique becomes rapidly more complicated for 

the higher moments, so that one can calculate only a restricted number 

of moments. 

The shape of the density of states curve is determined by the 

respective moments as follows. The first moment fixes the average shift 

of the band with respect to the zero level ε , while the second moment 

is related to the width of the band. The higher order moments give in-

24 



formation about the asymmetry, extension of the wings and fine struc­

ture. If all the moments are known, existence and uniqueness theorems 

guarantee the existence of a positive density of states under certain 

conditions [se] . Equations (13) and (14) provide a way to actually 

construct the density of states. However, the formulae are useless when 

only a finite number of moments are known. With its ρ first moments, a 

density of states curve can be approached by assuming for ρ(ε) a func­

tion of a given form f(λ.,..λ ¡ε) with ρ parameters. These parameters 

are determined by equating the ρ moments of ρ(ε) and those of 

f (λ
1
,..λ ;ε). To calculate physical properties such as cohesion energy, 

surface tension, etc., which are given by an integral over the density 

of states, ρ(ε) may adequately be approximated by a truncated Edgeworth 

series, i.e., a gaussian multiplied by a polynomial [94,95,99]. Using 

only the first two or four moments, Cyrot-Lackmann and Ducastelle cal­

culated in this way the electronic charge distribution of d-orbitals 

[ б] and the binding energies of 5d transition-metal atoms adsorbed 

on the (100) and (111) planes of 5d transition metals [loo]. Allan and 

Lannoo [lOl] investigated the relaxation of transition-metal surfaces. 

In these studies only the effect of the d-band was taken into account; 

the contribution of the s-band and of s-d mixing was neglected. 

The_continued-fraction expansion 

In order to calculate the density of states more accurately, 

one needs more than four moments. Moreover, the truncated Edgeworth 

series is not adequate to uncover details of the density of states 

function, such as singularities or band gaps. For this reason, Gaspard 

and Cyrot-Lackmann [9θ] have developed the following procedure to re­

construct the density of states from its moments, which uses a continued-

fraction expansion of the Hilbert transform of p(e'), which is equal to 

the Green's function 0(ε): 
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G(e) = i ^ - d e · 
ε - ε ' 

— OD 

αι 
α 2 α 3 

α 2 + ε " " \ * Λ 
a i + aA+£ · ( 1 9 ) 3 4 

The coefficient α, is a function of the moments μ ,u u. .. The frac-
k о 1 k-1 

tion is truncated at level ρ and written out as a sum of single fractions: 
Ρ »ι 

G(
E
) = Σ - — — . (20) 

i=l
 e
 " i 

The parameters w and ε. are obtained by using the fact that approxi­

mating the Hilbert transform by a fraction with ρ levels is equivalent 

to approximating the integrated density of states Ν(ε) by a step func­

tion Ν (ε) with ρ steps [э ]. It can be shown that the exact N(e) 

crosses all the steps of the function Ν (ε). So, we may write 
Ρ 

Σ w <_ Ν(ε ) < Σ w , (21) 

І J
 j ·' 

e
j

< e
i
 E

j^i 

where the ε. are the positions of the steps in Ν (ε) and the w. their 
i p i 

values. The 2p unknown quantities ε and w are determined by assuming 

that the 2p known moments of the true p(e), μ ,...μ„ ,, are equal to 
o 2p-l 

those of the derivative of Ν (ε), leading to the following set of equa-
P 

tions: 
p
 к 
Σ w ε = μ , к = 0,...2ρ-1 . (22) 
1=1

 1 1 κ 

Smoothing and subsequently differentiating of the step function Ν (ε) 
Ρ 

fixed by the ε and w , yields ρ(ε). The coefficients a and b 

defined by 

η 2n-l 2n 

b = a a 
η 2n 2n+l 

(23) 
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шау be used to study precise details of the density of states, such as 

singularities or gaps. If split-off states occur, there are some 

isolated poles e. outside the band structure, with w giving the weight 

of the corresponding state. 

Cyrot-Lackmann et al. [юг] studied, by this procedure, the 

local densities of states at the outer three planes of a (100) and a 

(111) surface of narrow-band cubium, using 30 moments. Further, they 

examined 3 adsorption sites (A-, B- and C-adsorption) on a (100) sur­

face, calculated the variation of the local densities of states on the 

adatom as a function of the binding position and the hopping integral 

between the adatom and its nearest surface atom(s), and gave a detailed 

discussion on the occurrence of virtual bound states and split-off 

states (see section 2.9). Very recently, Desjonquères and Cyrot-Lack­

mann [юз] used the method of moments and continued-fraction analysis 

to make a detailed study of the local densities of states on clean low 

index surfaces of fee Ni, hep Co and bec Fe. The d-band degeneracy was 

fully taken into account and up to 26 moments were calculated. The 

influence of a surface perturbation potential, determined self-con­

sistently by using Friedel's sum rule [β5J and the conservation of the 

total electronic charge, was investigated. Desjonquères and Cyrot-

Lackmann [104] also calculated the aspherical charge densities of 

d-electrons around the atoms at low index surfaces of fee Ni, hep Co and 

bee Fe in order to achieve a better understanding of adsorption and 

catalysis phenomena. 

c) The recursion method 

In the tight-binding model, the effective one-electron 

Hamiltonian is defined by its matrix elements over a set of localized, 
-v -»• 

orthogonal orbitale ψ. = ф(г-К ). The recursion method, developed by 

Haydock et al. [105-107], sets up a new (orthogonal) basis in which 

the Hamiltonian has a trldiagonal representation H—, by generating a 

unitary transformation U such that 
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U
t
 H U = І ^ . (24) 

The matrix elements of H _ are given by: 

a η = m 
m 

ы b η = m+1 

I (25) 
b η = m-1 
m-1 
0 otherwise 

Thus, the recursion procedure (discussed below) transforms the three-

dimensional lattice to a fictitious chain of "atoms" with nearest-

neighbour interactions. 

From such a tridiagonal matrix IL_ it is particularly simple 

to derive various matrix elements of the Green's function. For example, 

if φ is a member of the localized orbital basis, we can evaluate the T
o 

local matrix element 

G <e> = <Φ
η
|(ε-Η)-

1
|φ > 

= (εΙ-IL)"
1 

L — -TD _|< 

(26) 

if we ensure that φ remains as the first member of the new basis (see 

below). Let D be the determinant of the matrix ε^-íL and D 

(n = 0,l,2,..) be the determinants of the matrices derived from e^-H_ 

after rows and columns 0 to η have been eliminated. Then we can write: 

G (e) = D /D . (27) 

oo о 

Since the following recursion relation holds among the determinants D : 

D = (e-a ,) D , - lb J
2
 D . , (28) 

η n+1 n+1 ' n+l' n+2 ' 
we can expand G (ε) in a continued fraction by the repeated applica-

oo 
tion of relation (28): 
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D ! 

G (e) г ; . (29) 
(e-a ) D - Ib I D, e-a - |b | D./D 

о о ' o' 1 о ' o' l o 

The recursion method calculates the (a.,b ) from i = 0 to N (where N 

Is of the order of 10 to 50). The resolvent Is then computed by 
th 

fixing D„ ,/D„ and inserting this ratio at the N level of the con-
N+l a 

tinued fraction. 

The coefficients a and b 

Starting from any normalized state $ (i.e., any normalized 

linear combination of the localized orbitals ψ ) we may construct an 
m 

ordered orthonormal basis {ψ } with 
m 

φ = Σ φ U , (30) 
m
 τ

η nm 
η 

which has φ as its first member and which tridiagonalizes H. We put 

3> = φ . the orbital considered in eq. (26). The next state φ, is 
ο ο 1 
given by: 

b*|V = н|ф
о
> - а

о
|ф

о
> , (31) 

where the coefficients a and b are chosen so that they orthogonalize 

φ- to φ and normalize φ., respectively. The higher φ 's are defined 

similarly by repeated operations with H, orthogonalizing to all 

previous φ (r < n) and normalizing: 

bnlw = ні - »Jv - "n-ilW · (32) 

The fact that н|ф > is automatically orthogonal to all the states 

|ф > with m<n-l, which implies that Η is tridiagonal with respect to 

the basis {φ }, can be proved easily. Since the matrix elements of Η 
m — 

(the representation of H in a basis of the localized orbitals) are 

known, we can obtain the coefficients a and b by a repeated applica­

tion of the recursion formula (32). 
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The recursion relation (28) gives a continued-fraction ex­

pansion of the resolvent that is exact to all orders. In practice, one 

computes only the first (N+l) pairs (a.,b ) of coefficients and approx-
th 

imates the remainder of the continued fraction beyond the N level. 

The (a.,b ) tend towards asymptotic values denoted by (a^b ). By 

setting (a .b ) = (a ,b ) for a>N, which fixes D„ ,/D„, we can evaluate β
 η η «» » N+l Ν' 

the remainder t(c) of the continued fraction analytically: 

D /D = 
N + r N u 12 _ _ 

e-Vl-|bN+ll Л + І 
(33) 

= ΐ ( ε ) = 
e- ·- - l b „ | 2 t(e) 

In this manner we terminate the continued fraction at level N. Since 

a simple relation exists between the coefficients a. of Cyrot-Lackmann 

and the coefficients (a ,b ) of Haydock et al., this corresponds to 

calculating the first 2(N+1) moments of the density of states. 

In reference [l07] a discussion of the physical and 

mathematical background of this method, its applications and extensions, 

and the relation to other similar approaches is presented. 

Haydock et al. [ΐΟβ] used this procedure to compare the widths 

of the d-band at different surfaces of transition metals with that of 

the bulk density of states in order to explain experimentally (by INS 

and UPS) determined bandwidths. Haydock and Kelly [іОб] were the first 

to obtain local densities of states at atoms on the low index surfaces 

of real fee, hep and bec d-band metals. They effectively took 8 moments 

into account. The density of states at atoms in subsurface layers was 

also calculated and the effect of surface dilation was investigated. 

Moreover, they examined the density of states of an adatom of the 

same type placed at a lattice site above the (100) surface of a bec 

crystal. The recursion method was used by Bortolani et al. [юэ] to 

study the electronic structure of the (111) surface of silicon. They 

calculated the local density of states of an atom in the surface layer, 

in the first and second sublayer and in the bulk. Yndurain et al. [lio] 
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calculated the local densities of states of tetrabedrally coordinated 

solids by a very similar method, which uses a finite cluster of atoms 

connected to an infinite Bethe lattice [ill]. 

From all these results it may be concluded that the local 

density of states at a specific lattice site depends mainly on the 

interaction with a small environment of neighbouring atoms. It should 

be remarked, however, that taking into account a finite number of 

moments or setting the higher coefficients a and b constant, is not 

entirely equivalent to considering a finite cluster. Apart from the 

effect of the cluster boundaries (in self-consistent charge calcula­

tions) , many of the long paths in the walk-counting technique in fact 

wind around the origin, rather than wander far away. Such paths are 

contained entirely in a small cluster, but contribute also to the 

(neglected) higher moments. 

2.6 Hartree-Fock type of methods 

The tight-binding methods considered in the previous sec­

tion do not explicitly take into account the electron-electron repul­

sion. We shall now discuss a model for the chemisorption of a foreign 

atom on a semi-infinite metal substrate, which allows for the electron-

electron repulsion on the adatom in a self-consistent manner by the 

Hartree-Fock approximation. It has been developed by Grimley [liz] and 

Newns [из] and is based on a method introduced by Anderson [43] for 

the investigation of localized magnetic impurities. 

Anderson's Hamilton!an 

We consider a basis set consisting of a single adsórbate 

orbital φ and the eigenstates φ. of the unperturbed semi-infinite sub­

strate. The states φ. are supposed to be orthogonal to φ . (One can 

к a 

make two objections at this point. Firstly, the strong chemisorption 

binding is due to the overlap between the adatom and substrate orbitale, 

which may therefore not be neglected. Secondly, the eigenstates of the 

31 



semi-infinite crystal form a complete set. So, φ should be a linear 

combination of these states and cannot be orthogonal to all of them. 

We shall return to both points afterwards.) Moreover, we assume that 

φ contains one electron in the free atom. It is straightforward to 

extend the formulae to cases, where the adatom possesses more 

(degenerate) orbitale and electrons [114]. The Anderson Hamiltonian 

for the adsorbate-substrate system may now be written in second-

quantized form as follows (see Appendix): 

Η = Σ ε η + Σ e, η, 
a α,σ к κσ 

σ к,α 
(34) 

+ Σ 
it,α 

V с с + V c c 
ak ao ka ka ka aa 

+ U η η 
aa а, -σ 

in which a denotes spin. Here с and с are the fermion creation and 
r
 aa aa 

destruction operators referring to an electron in orbital φ with spin 
л.

 a 

α and η = с с is the corresponding number operator : cj , c, and 
aa aa aa

 r
 ka' ka 

η have an analogous meaning for the crystal orbitale φ . The first 

two terms correspond with that part of the one-electron energy which 

is due to the (partial) occupation of the unperturbed eigenstates φ 

and φ with eigenvalues ε and ε, . The third term of Η introduces the 

one-electron hopping integrals coupling these eigenstates, while the 

last term describes the Coulomb repulsion between electrons of 

opposite spin in the adatom orbital. 

We shall employ the unrestricted Hartree-Fock approximation 

to expression (34). The two-particle interaction Un η is re-
r
 aa a,-a 

placed by Uη < η >. where the occupation number <n > has to 

' aa a,-a ' a,-a 

be calculated self-consistently. Then the Fock Hamiltonian Η has the 

form 
Η = ε η + Σ ε, η, + Σ 

α aa к ka к к 
V , с

+
 с, + Η.с. 

ак aa ка 
(35а) 

where 

ε = ε + U <η > . (35b) 
a а а,-a 
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The adatom local density of states 

We introduce the one-electron Green's operator corresponding 

to the Hamiltonian H : 

G
a
(e) = [(ε + 1β)Ι-Η

σ
]"

1
 , (36) 

where s is a positive infinitesimal quantity and I the unit operator. 

The matrix equation for G is 

(ε I - Η
σ
) 0

σ
(ε) = I . (37) 

This equation may easily be solved in the representation of the un­

perturbed eigenstates φ and φ to yield the element G = <φ [θ |φ >: 

a ιε aa a a 

(38) 

G
!«<

e
> - [ε-

ε
--4<

ε
)]"

1 

aa *• σ 

= [ε-e -α(ε) +іГ(е)]"
1
 , 

where the "chemisorption function" q(e) is given by: 

q ( e ) = Σ e + it-ε = α(ε)
 ~

 ІГ(Е:)
 *

 (39) 

к к 

If we define a weighted density of states function w(s) by: 

wie) = Σ |V
ak
|

2
 δ(ε-ε ) , (40) 

к 

we obtain for the imaginary and real parts of q(e): 

Γ(ε) = *w(e) , (41) 

α(ε) = Ρ * # * · · 

where Ρ denotes the Cauchy principal value. Γ(ε) and α(ε) are called 
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the "level-width" function and "level-shift" function, respectively. 

The result (38) can be Interpreted by saying that the effect of the 

chemisorptive interaction is to replace ε by ε +α - i Γ , i.e., to 
а о 

shift the level in the free atom by U<n > + α and to broaden it by 
a,-a 

the imaginary part Γ. Mote that the situation is in fact rather com­

plicated, since α and Γ depend on ε'. 

If the equation 

ε-ε -α = 0 (43) 

о 

has a solution ε. lying within the substrate band (i.e., the range 

of energies ε.), then because Γ does not vanish there, the result of 

the atom-metal interaction is to change the discrete atomic level into 

a virtual level at ε, , the width of which is determined by Γ. On the 
la 

other hand, if the solution ε. lies outside the band, it is a 
la 

discrete level, since Γ=0. The state which belongs to ε. is local­

ized in the region of the adatom and is called a split-off state. (The 

virtual and split-off states are more extensively discussed in section 

2.9.) 

The local density of states or spectral weight function for 

the adatom orbital φ is given by (see formula (3) ) : 
a 

Paa
( e ) =

 -*
 I m G

a a
( E ) 

(44) 
_ 1 Щ) 

π
 [ε-ε

σ
-α(ε)]

2
 + Γ

2
(ε) 

Self-consistency and chemisorption energy 

The occupation numbers <n > can be calculated by integrating 
aa 

the local density of states: 

Note that the "virtual level" concept, very common in chemisorption 

theory, has no relationship with the "virtual orbital" concept, known 

from quantumchemistry. 
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<n > 

ασ 
- f · : (ε) de (45) 

Substitution of eqs. (44) and (35b) gives <n > as a function of 

<n >. Similarly, we get <n 

л,-о a 

> as a function of <n >. 

-σ aa 

These 

coupled equations represent the self-consistency conditions which 

determine the solutions of the HF eigenvalue equation. For magnetic 

solutions <n > f <n 
aa a, 

> and for nonmagnetic solutions 

In the latter case, only one self-consistency con­

dition has to be obeyed. 

<n > = <n 
aa a,-a 

The chemisorption energy, the difference between the total 

energies of the perturbed and unperturbed systems, is given by: 

ΔΕ 

m,a 
Locc 

ma 
U<n ><n > 

aa a,-a 
2 Σ 

к 
L ОСС 

e, + ε 
к а 

(46) 

employing the Hartree-Fock expression for the total energy. Usually, 

one does not solve for the one-electron energies, but one calculates 

the (local) densities of states from the Green's functions. There­

fore, we rewrite eq. (46) as follows: 

e
F 

(47) ΔΕ = Σ 

α 

where 

Δρ (e) ε de - U<n ><n > - e 

α aa a,-a а 

Δρ (e) = Ρ** (e) + Δρ (e) , 
a аа и 

(48) 

with Δρ being the disturbance which the adsorbed atom causes in the 
M 

density of states for spin σ electrons in the metal. Obtaining eq. (47) 

from eq. (46) leads to the following difficulty. In general, the Fermi 

level e_ changes with chemisorption in order to conserve electrons. 

However, since self-consistency is only achieved in the adsórbate and 

not in the adsorbent, it is convenient to keep ε fixed during the 

self-consistent procedure. Consequently, a slight change Δη occurs in 
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the number of electrons in the system when the chemisorption bond is 

formed. So, Friedel's sum rule [85] is not obeyed and an extra term, 

-ε Δ η, should be added to the binding energy in order to correct for 

this deficiency. 

Approximations to w(e); the surface molecule concept 

In order to calculate the chemisorption energy and other 

physical properties one needs an expression for the weighted density 

of states w(£). In general, this function cannot be obtained in 

analytical form. Therefore, Newns [ll3j used a semi-elliptical, ap­

proximate form for w(e), which is the analytical solution for a chain 

of atoms with a single atomic orbital each. Via this approximation 

he calculated the adatom charge and adsorption energy of hydrogen on 

Ti, Cr, Ni and Cu [ііз] and also the adsorption energy of "5d atoms" 

on tungsten [lis]. For the latter problem, Thorpe [ll4] used an ex­

pression for w(e) with maxima above and below the Fermi level. Davison 

and Huang [lie] calculated the chemisorption energy of oxygen on Si, 

Ge and III-V semiconductors, employing the w(e) for an AB chain. 

The chemisorption model discussed here may considerably be 

simplified by using the concept of a surface molecule. This concept 

implies that the adatom interacts strongly with a limited number of 

atoms in the surface of the metal, thus forming a surface molecule 

which only weakly interacts with the rest of the metal. The adatom 

orbital may couple, for example, with a group orbital φ , which is a 
S 

linear combination of atomic orbitale on the substrate having the 

appropriate symmetry for interaction with the adatom on a given site. 

Since the group orbital is coupled to the rest of the metal, it becomes 

a virtual resonance in the substrate band with a partial density of 

states ρ (ε), in the same way as the adatom orbital becomes a virtual 

e 

state in case of a weak chemisorption binding (see section 2.9). 

Neglecting the interaction between φ and the orbitals dif­

ferent from φ , the weighted density of states function w(s) can be 

written as: 
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w(e) = |<Ф
а
| |ф

8
>|

2
 p

g
(

e
) . (49) 

(Note that the ρ (ε) in this equation represents the partial density 
β 

of states of φ before the chemisorption interaction is switched on. 

We shall return to this point.) If the coupling of φ to the rest of 

e 
the metal is weak, ρ (ε) has a sharp resonance and the closer it re-

e 

sembles a б-function the better the surface molecule approximation 

becomes. Strong coupling results in a broad, featureless group orbital 

density. The form of the group orbital resonance is therefore the 

criterion which decides whether the surface molecule concept can be 

used [114,117] . 

To illustrate this point, let us replace w ^ ) by a 6-func­

tion at ε and write <ф І Іф > = γ. Then: 
g a'

 |Y
g 

w ^ ) = |γ|
2
 ό(ε-εJ (50) 

g 

and, using eq. (42): 

ο(ε) = |γ| /<e-e
g
> · (51) 

Equation (43) for the levels of the system becomes 

(ε-ε
σ
)(ε-Ε

Β
) = |γ|

2
 . (52) 

This is simply the secular equation for the energies e
1
 and e

0
 of the 

bonding and antibonding molecular orbitale formed from two atomic 

orbitals, one with energy ε , the other with ε , and interacting through 

γ [117,118]. The chemisorption problem now resembles that of a diatomic 

molecule. This diatomic molecule might be called the surface molecule; 

the metal is represented by the level ε , and the atom-metal coupling 

by the energy γ. Because of its Interaction with the metal, however, 

the Hartree-Fock theory of the surface molecule is different from that 

of an ordinary molecule. The surface molecule need not contain an inte­

gral number of electrons ; it is an open system with the chemical 
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potential of the electrons (the Fermi level) fixed, not their number. 

The metal acts as a source or a sink for electrons [114,118]. 

Using the surface molecule limit, Grimley studied the ad­

sorption of Na and S on nickel [lis] and of H on tungsten [ll?]. Grimley 

and Thorpe [114,119] calculated the binding energy of 5d transition 

atoms adsorbed on tungsten. Including overlap between the orbitale of 

the admolecule and those of the metal Doyen and Erti [l20] investigated 

the adsorption of CO on some transition metals, represented by a single 

crystal orbital. Gadzuk [l2l] calculated the group orbital virtual 

resonances in the surface molecule picture for some model systems and 

obtained the resulting adatom density of states. 

In a few studies, the applicability of the surface molecule 

concept has been examined. Penn [122] calculated the metal density of 

states at the adsórbate site. His opinion is that this level density 

should resemble that of an atom, i.e., exhibit a small number of well-

defined peaks as a function of energy. The width of these peaks must 

be small compared to the metal band width in order to obtain a surface 

molecule. Kelly [l23], on the other hand, regarded it necessary that 

the group orbital on the substrate displays atomic-like properties. He 

calculated [l23,124] the group orbital spectrum (density of states) 

ρ for different adsorption geometries, using the recursion method of 

Haydock et al. [l05-107] . If ψ is chosen as φ , the orbital φ., is 

precisely ψ (section 2.5). Kelly concluded that the surface molecule 
К 

picture is of restricted validity and formulated a criterion to decide 

whether it is applicable to specific cases. According to him, a semi-

elliptical group orbital spectrum, instead of the ¿-function required 

for the surface molecule limit, would offer a better assumption for 

adsorption on a close-packed substrate. 

The above criteria for the validity of the surface molecule 

concept, which are based on the electronic properties of the metal sub­

strate before adsorption, are not completely adequate. Instead of 

demanding that the group orbital resonances in the substrate band are 

narrow before chemisorption, it would be better to check whether sharp 

bonding and antibonding levels, originating from a small adsorbate-
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adsorbent complex, occur after chemisorption. This situation, where 

one could also speak of a surface molecule, may certainly arise when the 

adatom-group orbital coupling is stronger than the interactions inside 

the substrate. Actually, this has been confirmed by Grimley and Pisani 

[125], who studied the chemisorption of hydrogen on cubium, using the 

complete (local) substrate density of states in w(e). They found that 

the widths of the virtual bonding and antibonding molecular orbitale 

of an embedded diatomic molecule Η-M were small, although no previous 

sharp peaks in the (local) substrate density of states were present. 

Overlap effects and overcompleteness 

Grimley [l26-128] investigated the effect of overlap between 

the adsórbate atomic orbital φ and the crystal orbitale φ. . It 

appears that the various formulae obtained by treating Anderson's 

Hamiltonian in the Hartree-Fock approximation are easily changed to in­

clude overlap. The chemisorption function has to be redefined. Further­

more, one has to distinguish between net and gross occupations and 

level densities, analogously to the definitions of such quantities in 

quantumchemistry. 

As remarked previously, another problem connected with the 

inclusion of overlap effects should now be considered, namely the over-

completeness of the basis set {ψ ,φ }. The eigenstates of either the 

adsórbate or the semi-infinite metal alone are complete sets. We may 

avoid the problem on the admolecule by limiting the set {φ } to those 

orbitale only which are important in bonding, according to our chemical 

experience, but we cannot easily limit the set ίφ,} because they form 

a quasi-continuous spectrum going up through the vacuum level. Let us 

assume that the one-electron functions ψ for the adsorbate-adsorbent 

system can be expanded as follows: 

φ = Σ c
a
 ф

а
 + Σ c

k
 ф

к
 . (53) 

а к 

Now, one can take into account the overcompleteness of the basis set 
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by imposing the auxiliary conditions 

Σ <φ |φ > с = 0 , V a (54) 

к 

which assure uniqueness of the expansion coefficients. These conditions 

amount to adding a non-Hermitian pseudopotential to the Fock operator 

[127-129]. Grimley and Newton [ΐ3θ] have performed in this manner some 

calculations on the chemisorption of hydrogen on free-electron Al. 

The problem of overcompleteness may be avoided by introducing 

a set {φ } of atomic orbitale localized on the metal atoms instead of 
m 

the set {φ.}. The basis set {φ ,φ } will usually be limited to those 
к a m 

orbitale which are important in the chemical bonding, and it will 

therefore be incomplete as well as nonorthogonal. The overlap effects 

may be taken into account in a straightforward way [l25j. 

The embedding problem 

While the Anderson Hamiltonian restricts the electron-elec­

tron interactions to the adatom, some attempts have been undertaken to 

include the electron repulsions to a larger extent. Grimley and Thorpe 

[114,131] calculated the binding energy of 5d transition atoms adsorbed 

on tungsten using Hubbard's Hamiltonian [l32] in the Hartree-Fock ap­

proximation (see Appendix) to describe the surface molecule. The 

results were much better than for the Anderson surface molecule and the 

experimentally observed binding energy trend could be reproduced. 

In these calculations [ll4,13l] the diatomic surface molecule 

was only affected by the underlying metal via an adjustment of the 

number of electrons so that the proper Fermi level was obtained. How­

ever, one can also treat the embedding problem more explicitly in one 

of the following ways [125,129]: 

(i) Start with the noninteracting semi-infinite solid and the adsórbate, 

so that the adsorbent cluster is already embedded correctly in the 

surface of the solid, and then switch on the coupling between the ad­

sórbate and the adsorbent cluster, so that the formation of bonds be-
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tween the adsórbate and the embedded cluster is studied. 

(ii) Start with the adsorbate/adsorbent cluster, and the indented 

solid (indented because the adsorbent cluster has been "removed"), and 

then switch on the coupling between them so that the cluster becomes 

correctly embedded in the solid surface. 

Results obtained by the first scheme may easily be re-interpreted 

in terms of the second one, and conversely. 

The first procedure has been used by Crimley and Pisani 

[125] to investigate the adsorption of a hydrogen atom on the (100) 

face of simple and face-centred cubium. The adsorbate/adsorbent cluster 

consisted of two atoms, A and B, to which the self-consistency problem 

was confined, while the solid was handled in the tight-binding approx­

imation. Overlap effects were included and it was assumed that the 

perturbation matrix describing the chemisorption interaction, has non­

zero elements over the diatomic molecule AB only. Grimley and Pisani 

concluded that, for on-site adsorption of hydrogen, it is hardly satis­

factory to confine the self-consistency problem to the diatomic molec­

ule AB. Further, they compared their results with those of Paulson 

and Schrieffer [іЗЗ], who used a Heitler-London type of scheme (see 

next section). The Hartree-Fock calculations gave a significantly 

polar bond, so that a stronger chemisorption binding was found than by 

the Heitler-London method, which only describes a purely covalent bond. 

The second approach to the embedding problem has recently 

been discussed by Hyman [l34] and Grimley [l29]. In his model, Hyman 

includes screening effects by metal electrons caused by the induction 

of image charges in the metal in response to the excess charge in the 

surface complex. 

Madhukar [l35] has developed a formalism for chemisorption 

on transition-metal surfaces, which includes the electronic interac­

tions on both the substrate atoms and the adatom by using a Hubbard 

[l32j -type of Hamiltonian in the HF approximation. He represented 

the narrow d-band of the substrate by a single s-band and accounted 

for the nonorthogonality between the adatom and metal wave functions. 
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The inclusion of the intra-atomic Coulomb repulsion on the substrate 

atoms leads to an additional self-consistency relation for the sub­

strate levels, which is absent in the Anderson-type approach. The 

model provides a criterion for the existence of a localized magnetic 

moment on the chemisorbed atom. Although formal solutions for the 

(local) densities of states and occupancies have been obtained, prac­

tical calculations were difficult to perform without the introduction 

of simplifying approximations, such as the replacement of the self-con­

sistent substrate levels by a single energy at the centre of the 

narrow "d-band". 

Apart from the calculation of chemisorption energies and 

local charge and spin distributions, the Hartree-Fock type of model 

has also been used to study the effect of chemisorption on the field 

[іЗб] - and photo [іЗТ.ІЗв] -emission from metal surfaces. 

2.7 Many-body approaches 

The SCF molecular orbital schemes give a reasonable picture 

of the chemisorption bond when the bond is very strong, but over­

estimate the Coulomb interactions between electrons when the bond is 

weak. There is a competition between the one-electron terms in the 

Hamiltonian which tend to delocalize the electrons, and the Coulomb 

repulsion between electrons which leads to localization by keeping them 

far apart. The importance of correlation effects in bonding is measured 

by the ratio of the effective Coulomb interaction U (the difference be­

tween the intra-atomic and the nearest-neighbour interatomic electron 

repulsions) and the splitting energy Δε between the bonding and anti-

bonding molecular orbitale. For U/Δε > 1 correlation effects are im­

portant [ІЗ9]. In the chemisorption problem the width of the virtual 

level (weak chemisorption bond) or the separation between the bonding 

and antibonding virtual or split-off levels (intermediate and strong 

chemisorption bond) plays the rôle of the molecular splitting energy. 

Since U « 5 - 10 eV, correlation effects are likely to be rather im­

portant in some chemisorption systems. We shall discuss in this section 
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a few techniques which have been developed for including correlation 

effects, with special attention paid to the induced covalent bond 

method of Schrieffer et al. [l40,141,133]. 

Pollard [142], using a Heitier-London treatment, showed that 

a single-configuration wave function for the homopolar state M-A, 

which is composed of the singly occupied orbital of an adatom A and 

the doubly occupied band states of the metal M, leads to a repulsive 

exchange interaction. He took account of the nonorthogonal ity of the 

adatom and metal states and used a simple free-electron model for the 

metal. In order to deal with the attractive forces in chemisorption, 

Toya [143] extended this model by including configurations of the 

ionic states M - A and M - A , as well as excited neutral configura­

tions. Wojciechowski [144,145], studying the adsorption of alkali, Ba 

and Sr atoms on low index planes of tungsten and copper, improved 

Toya's model by taking into account the atomic structure of the metal 

surface. He considered only the ground state configuration for M-A 

and ionic configurations of the type M - A . Since both Toya and 

Wojciechowski did not allow for spin polarization in the substrate, 

they obtained no covalent bonding. Hence, their scheme is similar to 

Mulliken's theory of donor-acceptor complexes with no electron pair 

bond being formed. 

The induced covalent bond method 

We shall now discuss an approach to the theory of non-ionic 

chemisorption, proposed by Schrieffer and Gomer [l40] to treat systems 

in which the intra-atomic Coulomb interaction U on the adsórbate is 

large compared to the strength of the interaction between the adsórbate 

and a metallic substrate. The method proceeds by imitating the Heitler-

London (HL) theory for a diatomic molecule, i.e., one atom of the 

molecule is the adatom, while the other "atom" is the full (N-l)-atom 

solid, including the free surface. For simplicity, it is assumed that 

the solid in the absence of the adatom is well described by the tight-

binding one-electron scheme. 
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In the conventional HL scheme one must couple the spin of the 

adatom electron to an unpaired spin In the solid to form the singlet 

state which is characteristic for a covalent bond. In zero order no 

unpaired spins are present in the solid, however, except when local­

ized spin waves occur near the free surface. So, the framework of the 

HL theory must be enlarged in order to allow for the induction of 

spin density in the surface region of the solid; the induced spin is 

then coupled to the adatom spin forming a bond. Schrieffer and Corner 

[l40] called this an induced covalent bond (ICB). The induced spin 

density has to be sufficiently large to generate an exchange attraction 

which overcomes the exchange repulsion. The formal theory of the method, 

which is appropriate for free radical adsorption, has been worked out 

by Paulson and Schrieffer [133,141]. 

The ICB method for H chemisorption is developed by construct­

ing Slater determinants from the orbitale localized on the subsystems, 

which are used as many-electron basis states. Because of the large 

value of the adatom intra-atomic Coulomb interaction U charge fluctua­

tions on the adsórbate are small so that only neutral adsórbate states 

are included; if necessary, ad-ion states may be added by means of 

perturbation theory. Thus each Slater determinant contains one elec­

tron in the adatom orbital φ with spin σ and N-l electrons distributed 

over the substrate states φ. with spin σ . Except for the doubly oc­

cupied singlet ground state, excited configurations on the substrate, 

corresponding to various higher spin states (due to spin flips), must 

be included to account for the induced spin density. The many-electron 

basis states are labeled by the index α = (σ;η. ) where η. are the 

к к 

occupation numbers (= 0,1) of the substrate spin orbitale. Now, the 

ground state wave function is formed as a linear combination of the 

basis states |a>: 

[Ч
1
 > = Σ с |a> . (55) 1

 o a ' 
a 

As for H_, it is very important to include the overlap between φ and the 

φ. , the latter being mutually orthogonal. The dominant term in the 
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adatom-surface binding i s the anti-ferromagnetic exchange i n t e r a c t i o n 

H ,_ = Γ ΐ J,, . c,+, с, , c + , с (56) 
exch . , , , кк ' .а к'а ко' aö' ао 

к,к' σ,σ ' ' 

between the adatom spin and the spin density in the metal, which con­

tains an exchange integral J,, , analogous to the exchange inter-

kk ,a 
action J . for H„. 

ab 2 

Two limiting cases can be discerned [іЗЗ]. If the adatom-

solid interaction is weak, one can treat this coupling as a perturba­

tion. This, in second-order perturbation theory, leads to the follow­

ing expression for the interaction energy, the so-called weak inter­

action limit : 

A E
WL =

 E
rep

 + E
S ·

 (57) 

Here, E is the exchange repulsion between tbe adatom and the sub-
rep 

strate, which in zero order contains only doubly occupied orbitale. So, 

in first order of energy the adsórbate is repelled by the metal, just 

as would occur for H interacting with He. The exchange attraction 
(2) 

comes from the second-order energy Ε , originating from the admixture 
WIi 

of excited "spin flip" configurations. Paulson and Schrieffer show 

(2) 
that E is proportional to χ , the local spin susceptibility at the 

surface. 

The second limit, which is analogous to the surface molecule 

concept in the Hartree-Fock treatments of the previous section, occurs 

when the adatom-substrate interaction is stronger than the coupling 

between substrate atoms near the surface. It is called the Strong in­

teraction limit. In this case, one starts with the formation of a sur­

face molecule. An electron is localized in a surface cluster orbital 

ψ. which has a strong overlap with the adatom orbital φ . Then a 
1 a 

Heitler-London bond is formed between ψ, and φ . This surface molecule 
1 a 

subsequently rebinds to the remaining "indented solid" via the hopping 

of electrons from the indented solid to ψ and vice versa, which is 

again treated in second-order perturbation theory. The chemisorption 

energy in the strong coupling limit reads: 
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(2) 
Ä ESL = /ie2 + eioc + ESL ' ( 5 8 ) 

where Δε„ is the HL binding energy of the surface molecule; ε is 

the energy required to localize an electron in the surface orbital 

(2) 
ψ, on the clean surface and E 1 

second-order perturbation theory. 

(2) 
ψ, on the clean surface and E is the "rebinding energy" up to 
1 SL 

Paulson and Schrleffer [ізз] have employed the ICB formalism 

to study the adsorption of a Η atom on the (100) surface of simple 

cubium, which was treated in the tight-binding approximation. Atomic 

orbitale of a simple gaussian form were used and the effect of the 

"size" of the metal atoms was examined by varying the exponents of the 

substrate atomic orbitale. The binding energy for chemisorption above 

two symmetric sites of the surface layer, viz. over a single substrate 

atom and on a bridge site between two surface atoms, was calculated as 

a function of the adatom-surface separation for both the weak and 

strong interaction limits. From the results, it was concluded that the 

surface molecule point of view is a good starting point in the vicinity 

of the binding curve minimum. 

Finally, one remark about the importance of ionic states; 

When the intra-atomic Coulomb interactions on the adsórbate are screen­

ed by the metal, the admixture of ionic states into the HL scheme may 

become necessary. Therefore, in case of sufficiently strong coupling, 

the molecular orbital method might be more appropriate. 

Some other approaches 

Newns [l46] has studied electron correlation effects in the 

chemisorption of 5d atoms on a tungsten substrate, using a two-centre 

Hubbard model. One atom was chosen to represent the tungsten surface 

and the binding energy was calculated as a function of the number of 

d-electrons on the other atom for a range of values of the intra-atomic 

Coulomb interaction. It appeared that the electron correlations tended 

to make the adsorption energy vary as the triangular peaked curve 
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which is observed experimentally. 

Bagchi and Cohen [l47J have set up a formalism to deal with 

the problem of hydrogen chemisorption on the surface of a metal, which 

takes overcompleteness and nonorthogonality of the wave functions as 

well as electron correlation into account. The atom-metal system was 

described in terms of an overcomplete basis set consisting of the 

eigenstates (both occupied and unoccupied) of the metal and the 

occupied electronic state on the adatom. The theory was applied to the 

situation where the intra-atomic Coulomb repulsion is small so that 

hydrogen chemisorbs in a nonmagnetic configuration and the ground 

state is nondegenerate in the spin. Newns' model for hydrogen chemi­

sorption [lis] could be derived as a limiting case of the present 

formalism when the Hartree-Fock approximation is used, the overlap of 

the adsórbate orbital with the metallic wave functions vanishes and 

certain simplifying assumptions are made about the various matrix 

elements. 

Madhukar and Bell [ΐ4θ] have investigated the screening and 

polarization effects which occur in case of chemisorption on transition-

metal surfaces, using the Anderson model without introducing the Hartree-

Fock approximation. They have demonstrated that the Green's function 

matrix element G (ε) in this case possesses two different poles, as-
aa 

sociated with the adatom ionization and electron-affinity levels 

respectively, in contrast to the single-pole HF approximation (see 

eq. (38) ). However, when the intra-adsorbate Coulomb interaction U 

becomes small with respect to the adsorbate-substrate coupling V , the 

two peaks merge into a single peak at some intermediate energy - just 

the situation described by Hartree-Fock. Further, Madhukar and Bell 

have shown that the free-adatom ionization level ε must be shifted up-
a 

wards due to screening and polarization effects in order to explain 

the experimentally (by photoemission and ion-neutralization spectros­

copy) determined bonding levels. 

Van Santen [l49] has discussed the changes in the heat of 

chemisorption of a hydrogen atom upon alloying a group VIII metal with 

a group IB metal, using the Anderson model and considering one orbital 
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per atom. The ensemble effect which ascribes changes in the heat of 

chemieorption exclusively to changes in the geometry of the adsorption 

complex (e.g. the number of neighbours), as well as the ligand effect 

which takes into account variations in bond strength due to a different 

intrinsic activity of the binding metal atoms, have been investigated. 

Simple models have been used to calculate the effect of alloying, which 

is represented by changes in the d-band width and in the electron con­

centration in the orbital on the atom(s) involved in the chemisorption 

bonding. 

2.8 Comparison of the methods 

Up to now, calculations for the adsorption on real d-band 

systems have only been performed by means of tight-binding methods. 

The more advanced Hartree-Fock and Heltler-London like approaches have 

only progressed to the study of cubium-like systems or had to make 

drastic assumptions, for example about the structure of the d-band. 

Moreover, the embedding of a self-consistent cluster into a tight-

binding substrate causes a number of problems, while in the ICB scheme 

the intermediate case between the weak and strong limits waits for a 

direct approach. 

In order to compare the different methods a few calculations 

have been performed on simple linear model systems. Blyholder and 

Coulson [l50] have examined a six-atom linear chain, where one of the 

end atoms represented a chemisorbed atom. Each atom contributed one 

valence electron in a s-type orbital. A simple tight-binding (Hiickel) 

model of the chain showed both the localized Tamm state and the main 

bonding features of a semi-infinite chain. A more elaborate 

SCF-LCAO-MO calculation for a linear chain of six hydrogen atoms 

yielded results so similar to those obtained by the simple tight-bind­

ing technique that Blyholder and Coulson concluded that the latter 

method is semi-quantitatively adequate for the prediction of localized 

states and the changes in such properties as charge and bond order. 
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Einstein [l5l] has applied the Anderson model to a chain of 

four atoms, one representing the adatom, the other three the substrate, 

to compare the methods of Grimley/Newns and Schrieffer with the exact 

solution. Each site possessed a spherical orbital and the band was 

taken to be half-filled. The total spin state was assumed to be a 

singlet. The following Anderson-type Hamiltonian was considered: 

H = e E n + U n η - V Σ ( с , с + Н . с . ) 
а ао ао л,-с „ 1σ аа 

σ σ 

2 ( 5 9 ) 

- Τ Σ E ( c î c + H.c . ) ; 
1 « 1 σ 1 σ i + 1 , C I 

ε is the energy level of the singly occupied adatom, U the intra-
a 

atomic Coulomb repulsion on the adatom, Τ the tight-binding hopping 

parameter for the three-atom substrate chain and V the hopping integral 

between the adatom and the first atom of the chain. The diagonal 

energies of the chain atoms were taken as zero, thus fixing the zero 

level at the centre of the "bulk" states. The calculations were restrict­

ed to the so-called Anderson symmetric model, in which ε = -hü. For 
a 

the half-filled band case considered here, this ensures the occupation 

numbers of all atoms to be equal to one and the adsorption bond to be 

purely covalent. 

In this model, the eigenstates of the Hamiltonian (59) can 

be found analytically, so that Einstein could calculate the exact 

chemisorption energy as a function of adatom Coulomb repulsion, adatom-

substrate hopping and substrate band width. He has also performed cal­

culations by four approximate methods, which are here summarized. 

When the chemisorption interaction is weak, the binding 

energy is approximated by the second-order perturbation contribution 

of 
H V = - V Σ ( C

L
 С
а

0

 + Н
-

с
-> <

6 0
> 

σ 

to the eigenstate of the V=0 Hamiltonian. For strong V, the rebonded-

surfасе-complex (RSC) picture is more appropriate. In this case, the 

end atom separates from the substrate chain to form essentially a 
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diatomic molecule with the adatom. The dimer then reblada to the in­

dented chain. The diatomic surface complex and the indented chain are 

treated exactly. The subsequent rebonding of the surface complex to 

the chain is described by: 

H
T

=
-

T Σ ( C
L

 с2а + Я · 0 ^ · (61) 

σ 

which is again handled by second-order perturbation theory. 

In the Hartree-Fock approximation the Hamiltonian given by 

formula (59) is transformed into a one-electron operator, which is to 

be determined self-consistently: 

+ 2 

H ! L = ε η - V ( c T с + Н . с . ) - Т Σ ( с , с, , + Н . с . ) (62) 
НГ ао аа 1σ ао i o i + Ι , σ 

with 

e = ε +U<n > . (35b) 
βσ a a,-o 

In the Anderson symmetric model, the adatom stays neutral and the 

self-consistency condition becomes 

<n > + <n > = 1 . (63) 
ao a,-a 

Calculations have been performed for the restricted (RHF), 

<n > = <n > = І, as well as for the unrestricted (UHF) case. 
aa a,-σ 

Exact and approximate results have been obtained for three 

values of the adatom Coulomb repulsion U. In all these cases it has 

been found that there is a smooth transition from the regime where the 

weak limit holds to that where the rebonded surface complex (RSC) is 

valid. The interpolated curve for the interaction energy versus hopping 

parameter V is nearly equal to the exact curve and more accurate than 

the UHF one. The UHF solution underestimates the binding energy. 

Nonetheless, it gives a reasonable account of the interaction energy, 

as RHF does for strong hopping parameter V. For small V RHF fails com-
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pletely, however, as can be expected. 

So, from the model calculations of Einstein it may be con­

cluded that for purely covalent bonding the valence-bond type of 

approach of Schrieffer yields better results than the (un)restricted 

Hartree-Fock approximation. Furthermore, HF requires an iterative 

solution, whereas the weak limit and RSC results can be obtained 

directly. 

2.9 Virtual and split-off states 

In this section we shall delve in detail into the possible 

effects of the chemisorption interaction on the originally discrete 

level ε of the adatom and on the total density of states. As we 

have seen in section 2.6, the local density of states for the 

single adatom orbital φ can be expressed (using an Anderson type 

of model) as: 

Ρ
σ
 (e) = i ^ , (44) 

π
 [ε-ε -α(ε)]

2

 +
 Γ

2
(ε) 

' • ο 

with ε being defined by eq. (35b), while Γ(ε) and α(ε) are given 

by eqs. (40), (41) and (42). One can qualitatively understand the 

local density of states by looking at two limiting cases [l39]. 

Suppose the solid has a single energy band of width W and centred 

at ε . If V . is weak , then Γ(ε) and α(ε) are small compared 

with W and ρ (ε) has a narrow peak near ε which is well approxi-
aa σ 

mated by evaluating Γ and α at ε = ε . If ε lies within the band, 

ρ (ε) is a Lorentzian function of half-width Г(е ) centred at 

aa σ 
ε + α(ε ), i.e., a virtual state or resonance level occurs. If ε 

σ σ σ 
is outside the band, we see from eq. (41) that Γ(ε ) = 0. So, ρ (ε) 

o aa 

is a δ-function, a sharp bound state which differs little from the 

adatom orbital itself and occurs at an energy slightly shifted 

from ε . 
σ If V . is sufficiently strong, so that Γ(ε) over most of the 

band is large compared with both W and the difference between ε and 
σ 
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ε . the level shift function a(e) Is large near the band. For ε above 
с 
the top of the band the level shift Is positive, while for ε below the 

bottom of the band α(ε) Is negative [іІЗ.ІЗЭ]. This feature leads to 

two sharp peaks of ρ (ε), one below the bottom of the band and one 
aa 

above the top. The eigenvalues are just the bonding and antibonding 

levels arising from the adatom orbital φ mixing with a linear com­

bination of localized orbitale on the solid. Thus, one has a surface 

complex formed from the adatom and a cluster of surface atoms with 

the bonding state of the complex below the band and the antibonding 

state above the band [іІЗ.ІЗэ]. These localized levels are called 

split-off levels. 

As we shall see below, these limit cases are not the only 

possibilities. For intermediate V slightly broadened bonding and 

antibonding levels can appear inside the band. 

Some quantitative calculations have been performed. Cyrot-

Lackmann et al. [l02J have examined the adatom local density of states 

for a single-level atom adsorbed on the (100) surface of narrow-band 

cubium, using the method of moments. They first investigated the case 

for which the adatom and the substrate possess the same atomic energy 

level. For atop adsorption the local density of states is symmetric 

since the odd moments are zero. It is not symmetric for adsorption at 

a bridge or centred site. The asymmetry is stronger for the centred 

site than for the bridge site because the number of paths (see section 

2.5) with an odd number of steps is greater. For a weak adatom-sub-

strate atom hopping integral β' the local density of states has the 

shape of a broadened δ-peak. When β' is increased with respect to the 

substrate hopping parameter β (or the band width) two virtual states 

with increasingly sharp maxima appear. These maxima approach the 

band edges and for some critical value of ß'/ß, strongly depending on 

the adsorption position, split-off states with a finite weight, which 

are strictly localized near the adatom, appear : the adatom and its 

nearest neighbours form a surface molecule. The weights of the split-

off states asymptotically converge to 0.5 for all three adsorption 
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Sites. Cyrot-Lackmann et al. [lOZ] have also considered an aton adsorbed 

in the on-site position with an atomic energy level ε different from 

the substrate level. The local density of states is no longer symmetrical. 

When B'/0 increases and ε is in the lower half of the band, then first 

one split-off state appears below the band and finally a second state 

emerges above the band. If ε lies below the band, there is always a 
a 

split-off state below the band, the second one appearing above the 

band for a sufficiently large value of fî'/fî· If ε is positive with 

respect to ε , the behaviour is reversed. 

Einstein [80,8l] has examined the changes in the total den­

sity of states 

Δρ = Δρ
Μ
 + p

a a
 (64) 

caused by chemisorption of an atom in the atop position above a (100) 

cubium surface, using the model of Einstein and Schrieffer [79]. The 

behaviour of Δρ for different strengths of the adatom-substrate 

coupling appeared to be very similar to that found by Cyrot-Lackmann 

et al. for ρ . The split-off states which correspond to bonding and 
aa 

antibonding states have now unit weight. In order to satisfy the elec­

tron-conservation sum rule 

Δρ(ε) dz = 1 , (65) 

there must be a region of negative Δρ. Indeed, it is found that in 

forming an indented solid, density of states is removed from (the 

centre of) the band region. 

A concept which is directly related to all these findings, 

namely the model of a "virtual surface molecule", was introduced by 

Gadzuk [l2lj in order to explain the structure observed in electron 

spectroscopy of chemisorbed atoms. The basic idea is that the adsórbate 

interacts strongly with the localized group orbital in the tight-binding 

d-band of a transition metal. If the interaction is sufficiently strong, 
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localized states are formed outside the narrow d-band. These states 

correspond to a bonding and antibonding molecular orbital on the ad­

sórbate and the nearest-neighbour substrate atoms. The discrete sur­

face molecule states interact with the remaining indented solid. Since 

these states lie outside the d-band, the most likely interaction is 

a weak decay into the broad s-band. This converts the discrete surface 

molecule states into narrow virtual molecular states. While the 

binding energy is supplied in the surface molecule formation, the 

level width is thus acquired in the weak residual interaction with the 

s-band. By this model, Gadzuk explained how it is possible to have 

simultaneously narrow virtual levels, which implies weak chemisorp-

tion, and also high binding energies as observed experimentally. 

With regard to the assumption of Gadzuk and many others 

concerning a weak coupling with the s-band for chemisorption on a 

transition-metal substrate, it should be noted that the interaction 

with the s-band appears to be strong (see Chapter IV). 

2.10 Indirect interactions between adsorbed particles 

The interactions between chemisorbed atoms or molecules may 

be classified as either direct (through-space) or indirect (through-

bond) interactions. The former includes the short range interaction 

which appears when the adsorbates are close enough together for their 

electron clouds to overlap and the long range Coulomb interaction be­

tween the surface dipoles formed as a consequence of charge transfer 

in chemisorption. As Koutecky [θ] has shown, an important indirect 

interaction occurs due to the sharing of the same electrons between 

the chemisorbed particles and the substrate: one adsórbate distorts 

the electron distribution in the metal, another one interacts with 

this distorted substrate. The direct interactions are of particular 

interest for ionic adsorption. For instance, Bennett [l52j has cal­

culated the effect of direct adatom-adatom interactions on the net 

charge of an alkali atom on a metal substrate, using the semiclassical 

image force model. Since we are especially interested in the covalent 
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adsorption of small particles (e.g. hydrogen atoms), we shall further 

discuss the phenomena of indirect interaction. 

Grimley [1I2] has studied the long range indirect interac­

tion between two adsorbed atoms A and В in the restricted HF approxima­

tion, using a generalization of the Anderson Hamiltonian, which 

accounts for the intra-atomic Coulomb repulsions on the two adatóme. 

With φ and φ. being the atomic orbitale on A and B, respectively, and 
a b 

φ. the one-electron wave functions of the semi-infinite substrate, the 
к 
matrix element G (ε) of the Green's function reads: 

aa 

G
aa

( e ) 

q
ab

 q
ba 

e
-

£
b -

q
b 

(66) 

where 

„ iva,/ 
q
b = ̂ 7T77T^ 

(67) 

l
ab 

V V 
_ ak kb 

QL
 —

 E ; 
Tja , ε + is - ε. к к 

(68) 

ε = ε,. = ε
Λ
 + U <η> 

a b ι 
(69) 

with ε. being the orbital energy of an electron in the free atom. The 

other quantities have their usual meaning. The last term in eq. (66) 

is due to the presence of a second atom on the metal surface. If atom 

В were absent, or if A and В were infinitely far apart, G would be 

aa 

given by eq. (38). To examine the influence of atom В on the level 
density ρ associated with atom A, we separate q . into real and aa ι ν ч

а Ь 

imaginary parts : 

q
a b
 = & - i Δ (70) 

with 

U ( e )
 - I Vak V

kb
 6 ( e

-
E
k> к 

(71) 
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Δ(ε) = iru (ε) (72) 

OD 

[ υ(ε') 
0(ε) = Ρ | ü^-г- αε' ; (73) 

ε - ε ' 

Ρ indicates the Cauchy principal value. Equation (66) can now be written 

as 

G
a a

( e ) = 2 \ e - ε - α - 3 + 1(Γ + Δ) + ε-ε -а + 3 + і( Г - Д ) J "
 ( 7 4 ) 

4
 a a ' 

Since G & G.., t h i s equation can be in terpreted as the s p l i t t i n g in to 
aa Db 

two v i r t u a l l e v e l s 

ε + а - і Г + ( В - і Д ) (75) 
a — 

of two chemlsorbed atoms with degenerate atomic levels at ε . Two 

atoms chemlsorbed without mutual interaction would produce a twofold 

degenerate virtual level at ε + а - і Г ( в е е section 2.6). The level den-

a 

sity associated with eq. (74) is given by: 

= ¿ I U 
.
 ч
 * j Γ + Δ Г - Δ 1 .__. P

aa
( E ) = âï І ; ?

 +
 2 2 I

 <76) 
1
 (ε-ε - α - 3 )

/
 + (Γ + Δ )

ζ
 (ε - e - а + β) + (Г - Δ) > 

a a 

and it is quite clear that two virtual levels have now been produced. 

The Interaction energy of the adatoms is approximately given 

by: 

AW = 2 Γ (ρ(ε) -ρ
(Β
(ε)) ζΛζ , (77) 

—œ 

with ρ(ε) being the density of states for the total system (substrate 

plus mutually interacting adatoms) and ρ (ε) being the total density of 

states when the two chemlsorbed atoms are far apart. In expression (77) 

it is assumed that the Fermi level ε and the occupation number <n> do 

not change when the indirect Interaction is switched on. In this way 

Crlmley [112] has investigated the long range behaviour of the indirect 

interaction, which he found to oscillate with the distance R between the 
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adatoms, the amplitude being proportional to R~ . This value has been 

corrected afterwards (see next paragraph). 

In order to study the effect of the interactions between 

adatoms on the heat of adsorption at low surface coverage, Grimley and 

Walker [l53] have extended the model to a system of N adatoms, still 

retaining only the two-body contribution to AW, however, which deter­

mines the initial slope of the Q (differential heat of adsorption) 

versus θ (surface coverage) curve. Calculations have been performed 

for chemisorption on tungsten, using a free-electron model for the sub­

strate. For the case where the adsorption of a single atom results in 

the formation of a virtual level close to the Fermi energy, an oscil­

latory interaction (attractive or repulsive, depending on distance) was 

-3 
obtained, which at long range falls off as R 

Einstein and Schrieffer [тэ] have studied the indirect pair 

interaction at nearby binding sites, using their tight-binding model 

for the (100) surface of cubium discussed earlier. The calculations 

have been performed for the cases that both adatoms select the same 

binding site, directly above a surface atom, at a bridge site or at a 

centred position. So, the present model includes crystal structure 

effects, as distinct from the one of Grimley and Walker. Since the 

calculations were carried out numerically, the interaction energy AW 

could be obtained as a function of adsórbate separation, even for close­

ly spaced adatoms. In their calculations Einstein and Schrieffer ob­

served that split-off states occur for weaker interaction potentials 

than in the single atom case: a downward-shifted state and an upward-

shifted one are found (cf. Grimley [112]). Further, the strength of the 

pair interaction at nearest-neighbour separation appeared to be about 

an order of magnitude smaller than the adsorption energy of a single 

adatom. The interaction energy showed an oscillatory behaviour and fell 

off exponentially for the first few lattice spacings while its 

asymptotic form appeared to decrease as R" rather than as R" . 

According to Einstein and Schrieffer, this may be explained by the fact 

that the virtual level approximation of Grimley and Walker is probably 

not valid for the parameter values which correspond to the observed 

57 



binding energies, since split-off states occur in this range of 

coupling. 

Using the method of moments, Cyrot-Lackmann et al. [102] have 

investigated the adatom local density of states, when two adatoms are 

adsorbed at nearest-neighbour distance in the on-site position on the 

(100) surface of сubiurn. For a small adsorbate-substrate interaction 

β' (relative to the substrate-substrate interaction β) a splitted 

virtual state appeared which for increasing ß'/ß passed into two pairs 

of split-off states. The first pair occurred for a smaller value of 

ß'/ß and the second for a larger ratio than in the single atom case. 

This result agrees very well with the findings of Grimley and Walker 

and of Einstein and Schrieffer. 

3. Cluster models 

In recent years, cluster calculations have become of increas­

ing interest in dealing with the surface and chemisorption problem. 

This has been promoted by the rapid development of quantummechanical 

methods for molecular calculations, which are made practicable by the 

fast and large electronic computers becoming available. One may now 

perform similar calculations on rather large clusters intended to re­

present the (metal) substrate with or without an adsórbate. Herewith 

it is assumed that local effects, which thus may be computed more 

accurately than by the solid-state methods, play a more important rôle 

in chemisorption phenomena than the collective properties of the bulk 

crystal. A Justification for this assumption may be found in 

theoretical (the surface molecule concept) as well as experimental 

(e.g. ion-neutralization spectroscopy [154,155]) results. 

A difficulty arising in cluster calculations is the appear­

ance of undesirable boundary effects caused by the limited size of the 

cluster. Usually these have been ignored; in some cases one has tried 

to meet this problem by saturating the border atoms with hydrogen 

[156,157], by introducing periodically connected boundary conditions 

[ΐ5β], or by considering the cluster as an open system whose electron 
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content is determined by a fixed Fermi level or chemical potential 

[159]. Actually, the latter type of calculations have also been made 

[114,118] based on a semi-infinite crystal model and, in general, one 

may remark that many of the "solid-state" techniques can in fact be 

conceived as cluster methods with some kind of boundary conditions. 

The method of moments (section 2.5), for instance, takes into account 

only interactions within a distinct cluster, the range being determined 

by the highest moment. In the embedding procedure (section 2.6) a 

small cluster is calculated self-consistently and subsequently embedded 

into a semi-infinite crystal by a Green's-function technique. 

Altogether, we have given less space to the cluster methods, 

since the computational techniques are standard for molecules and have 

extensively been described in (text)books and review articles. Some of 

the results and also the problem of boundary conditions are discussed 

in more detail in the articles reprinted in Chapter IV. 

Ρ
1
? 5?ΐ;5Ηί§*ί:25 methods 

As remarked previously, the methods which are used to in­

vestigate surface and chemisorption phenomena by cluster calculations, 

are similar to those employed to study the properties of organic molec­

ules and transition-metal complexes. However, the application of the 

more advanced methods is somewhat retarded by the large number of elec­

trons present in (transition-metal) clusters, which demands the use 

of large basis sets. 

In order to study the adsorption of hydrogen atoms and un­

saturated hydrocarbons on transition-metal surfaces, Bond [160,161J has 

outlined a qualitative molecular orbital picture, based on the model of 

Goodenough [l62J for the behaviour of the metal atom d-orbitals under 

influence of the crystal field. In the octahedral environment of a fee 

crystal the d-orbitals split into two separate groups, the e and t 

orbitals. The direction of emergence of these orbitale at the (100), 

(110) and (111) planes is established and the chemisorption bond is 

described in terms of the overlap with these directional surface or-
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bitals. A similar model has been used by Knor and Müller [ібз] to 

describe the field-ionization process. Semi-empirical calculations have 

been performed based on Bonds model [164] . Other studies have examined 

its correctness [l65]. Weinberg and Merrill [l66j developed an empirical 

model to study the dissociative chemisorption of small molecules, based 

on the crystal field surface orbital (CFSO) description of Bond and the 

bond-energy bond-order (BEBO) relationships of gas phase kinetics and 

spectroscopy. 

While the older molecular orbital calculations on clusters 

[l67-17l] used the simple Hiickel scheme, the larger part of the more 

recent studies have been performed by the Extended HUckel [172] or the 

CNDO [і73] method, the so-called semi-empirical LCAO-MO methods. Both 

consider all the valence electrons. The Extended HUckel Theory (EHT) 

does not explicitly take into account the electronic repulsions, but 

replaces the exact Hamiltonian by a sum of effective one-electron 

Hamiltonians, the matrix elements of which are obtained from experiment­

al ionization potentials and calculated overlap integrals. The CNDO 

method is an approximation of the SCF-LCAO-MO or Hartree-Fock-Roothaan 

method. Many of the two-electron integrals are neglected or calculated 

approximately, while the one-electron integrals are parametrized with 

the help of experimental data. 

Up to now, only a few SCF-LCAO-MO or ab initio calculations 

[174] have been performed on clusters. Sometimes electron correlation 

is taken into account in such computations. 

During the last few years an increasing number .of calcula­

tions are being done by the Hartree-Fock-Slater (HFS) method. The one-

electron Schrfldinger equation, which contains a kinetic energy, electro­

static potential and exchange/correlation term, is solved numerically. 

Slaters Χα statistical approximation to the exchange/correlation 

[175] is used. In the self-consistent-field Χα scattered wave (SCF-Xa-

SW) formalism the potentials in the cluster are determined by the 

"muffin-tin" approximation [і7б]. Very recently, a few calculations 

have been reported which employ the discrete variational method (DVM) 

[177] and single site orbital (SSO) scheme [l78]. In this procedure 
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the multiple scattering formalism is replaced by a numerical LCAO 

method. This allows one a greater flexibility in the choice of the 

potential function, which is important at the surface. 

Since correlation effects are assumed to play an important 

râle in the process of dissociative chemisorption, valence-bond like 

and multi-configurational methods have been used to study that problem. 

The methods shortly described above, have been employed 

for cluster calculations in order to examine the electronic properties 

of pure solids and the chemisorption on semiconductors, simple metals 

and transition metals. In the following, we shall give a concise, but 

rather complete review of the various problems which have been in­

vestigated. 

Pure (substrate) clusters 

With various goals in mind, the electronic properties of 

pure clusters have been examined. On the one hand, one has attempted 

to simulate the bulk metal properties by considering a finite cluster 

as an approximate model for the infinite crystal. The electronic 

structure and binding energy per atom for lithium with varying cluster 

size has been investigated by EHT [l79], Xa-SW [l80] and ab initio 

[l8l] calculations to determine whether the cohesion energy approaches 

that of bulk lithium. Beryllium clusters were also examined [l81j. 

Further, by a Hückel-like method the relative stability of different 

crystalline lattices (fee, bec and pentagonal) has been studied on 

very large lithium clusters [l82]. (I)EHT and INDO calculations on 

finite and periodic two-dimensional hexagonal boron nitride clusters 

have been performed to examine whether the electronic properties of 

cluster sizes, such as band gap, valence band width and bond energy, 

converge to those of the infinite crystal and to check the effect of 

the boundary conditions [156,183]. The electronic properties of 

transition-metal clusters have been calculated by multiple scattering 

techniques in order to compare them with the crystal properties 
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[184,185]. Computations on cubo-octahedral Cu^ , Ni
 3
, Pu and Pt „ 

clusters gave electronic structures which are remarkably similar to 

the band structures and densities of states for the bulk solids [l85]. 

CNDO studies on nickel clusters have been used to fit parameters for 

further calculations [і8б]. 

On the other hand, computations have been carried out on 

the specific electronic properties (ionization energy, electron affinity, 

d-orbital occupancy, charge and level densities, etc.) of metal 

clusters, which may differ from the corresponding bulk properties be­

cause of the large surface to volume ratio. In this manner, there have 

been attempts to find active sites and to explain the catalytic 

behaviour of metal aggregates, which for example play a rôle in sup­

ported catalysts. (It should be remarked, however, that these parti­

cles actually contain 100 - 100,000 metal atoms and, therefore, are not 

small in the sense used here.) Thus, calculations by the Xot-SW [l80] 

and EHT or CNDO [186-189] schemes have been used to determine: 

(1) what cluster geometry is the most stable, (ii) what is the pos­

sible significance of this geometry and the cluster size to the surface 

and catalytic properties of small (transition-)metal particles. 

Painter et al. [l90] have investigated by the Xa-SW method to what 

extent trends in the bulk densities of states in a series can be used 

in a discussion of surface effects. They found a correlation between 

the observed catalytic activities of surfaces of the iron series 

transition metals (Fe, Ni and Cu) and the calculated electronic dis­

tributions and densities of states near the Fermi energy. It was also 

checked how the charge density at a surface is modified by the presence 

of steps. 

Finally, some semi-empirical cluster calculations have been 

performed on the properties of alloys [188,189], supported catalysts 

[l9l] and the metal-semiconductor interface [192]. 

While the preceding references have tried to clear up 

catalytic behaviour by studying the electronic properties of pure sub­

strate clusters, the following investigations have looked at chemi-
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sorption phenomena directly, by comparing clusters without and with an 

adsorbed species. 

Adsorbate-substrate clusters 

In the older calculations the HUckel method has been used to 

study the adsorption of unsaturated hydrocarbons and other тг-system 

molecules on a small cluster of metal atoms [167-171]. More recently, 

one has obtained (semi)quantitative results for the adsorption of a 

single atom or a small molecule by the EHT, CNDO, Χα and ab initio 

methods. In a few cases the substrate has been represented only by a 

single atom [ 193-205] . For instance, studies by EHT have been done on 

the interaction of CO and Η on transition metals [l95], the adsorption 

of CO on NiO [і9б], the difference between the catalytic activities 

of palladium metal and its salts [l97j, and the transition-metal 

catalysis of olefin isomerizations [l98]. The transition metal-hydrogen 

bond was investigated in detail by LCAO-SCF (+CI) calculations [l99-

205J. In most models, however, the local environment and symmetry of 

the adsorption site was taken into account, more or less completely. 

Moreover, in several calculations it was examined how strongly the ad­

sorption energy varies for different positions in order to explain 

the surface (im)mobility of adsorbates or to predict the most favour­

able adsorption sites. In this manner, one has investigated the ad­

sorption of H, C, N, 0 and F on graphite by EHT and CNDO [206,158], 0 

and H O on graphite by CNDO [l57], H and 0 on boron nitride by CNDO 

[207], H on lithium by EHT [2О8] and ab initio [209], 0 on lithium by 

Xa-SW [159] , H on beryllium ab initio [210], substituted methanes on 

lead by EHT [2II], H on nickel by EHT [l64,165,212], CNDO [21з] and 

Xa-DVM [214], H on copper by EHT [les], 0 on nickel by Xa-SW [215,21б], 

CO on nickel by EHT [217] , Xa-DVM [2I8] and CNDO [219] , H and N on 

tungsten by EHT [220,22l], 0 on various transition metals by EHT [222], 

and ethylene on nickel by Xa-SW [223]. 

In nearly all the calculations enumerated up to now, the ad­

sorption of a single particle was studied. However, in a few cases the 
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surface coverage was varied [211,217] or models for chemisorptlon 

under high coverage conditions were used [159,215]. Further, Grimley 

and Torrini [224] have examined the indirect interaction between two 

bridge-bonded nearest-neighbour H atoms adsorbed on (100) tungsten. 

Dissociative chemisorgtion 

One of the most important functions of several solid 

catalysts is the dissociative adsorption of some molecule as the first 

step of a reaction on the surface of the catalyst. This process is 

much harder to study than the chemisorption of a single atom or molec­

ule and only few semiquantitative calculations are available at the 

moment. Weinberg et al. [166,225-227] have used the CFS0-BEB0 method 

to examine the dissociative adsorption of H , CO, 0 , CO., N 0 and 

ethylene on platinum and of 0 on nickel surfaces. 

In many dissociative chemisorption studies the Extended 

HUckel method has been employed. Moffat [228] has examined the dis­

sociative chemisorption of H on several boron clusters. For some con­

figurations the total energy was less than the combined energies of a 

hydrogen molecule and the boron cluster. Further, an activation energy 

barrier was found. Anderson and Hoffmann [229] have performed calcula­

tions on the adsorption of first row diatomic molecules (Li , B
0
, С , 

N-, O., F , CO, N0) and ethylene on the (100) surface of tungsten and 

nickel. The distance to the surface plane and the internuclear separa­

tion were kept constant and in most cases the diatomic molecules were 

placed perpendicularly to the surface. The dissociation was analyzed 

in terms of charge transfer between adsórbate and substrate, adsórbate 

bond-weakening and bond-formation with the metal atoms. These authors 

have also looked for active sites. Recently, Baetzold [2З0] has 

studied the dissociative adsorption of H on various transition-metal 

substrates (Co, Ni, Cu, Pd and Ag), pure metals as well as alloys. 

The metal-Η distance was kept constant, but the H-Η bond was stretched 

from its equilibrium position. It appeared that the adsorption energy 

depends more strongly on cluster shape and on the orientation of the 
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H molecule, than on cluster size. Baetzold analyzed the dissociation 

in terms of binding energies and found a lower-energy path for H dis­

sociation on group VIII than on group IB metals. He has also investi­

gated the dissociative adsorption of BH.-NH . It should be noted that 

the Extended Hiickel method, as most MO methods, cannot be used to cal­

culate interaction energies over a wide range of interatomic 

distances and gives a wrong dissociation limit, since it does not ex­

plicitly take into account electron repulsion and correlation effects. 

So, this technique is not very suited to study the dissociative 

chemisorption of molecules. 

Deuss and Van der Avoird [23І] have examined the dissocia­

tive chemisorption of H by a simple effective 4-electron Ni.H. 

model, in which the interaction energy was calculated by a perturba­

tion method which took exchange forces into account and is comparable 

with the valence-bond method. They investigated the activity of the 

3d and 4s electrons separately and suggested a possible râle of the 

3d component in the chemisorption binding in lowering the activation 

barrier for H dissociation. This would explain, for instance, the 
2 

different behaviour of nickel and copper. A similar approximate 

valence-bond model has been used by McCreery and Wolken [232] to study 

the chemisorption of H on W(100). Very recently, Melius et al. [23з] 

have investigated the chemisorption of H on nickel, also using a 

Ni
0
H model. The electronic structure was calculated by ab initio 

methods which included electron correlation, the core electrons of Ni 

being replaced by an effective potential. As to the rôle of the 3d 

electrons in the dissociative chemisorption process, they suggested 

that the partly filled d-orbitals in the transition metal provide 

those symmetry states which according to the Woodward-Hoffmann rules 

could lead to dissociation without too high an activation barrier. The 

low activation energy reaction path would not be accessible for copper 

because of its completely filled d-band, which prevents the formation 

of such symmetry states. We refer to Chapter IV for a further discus­

sion of these results. 
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4. Thin films 

In concluding this review of the various theoretical 

approaches to the surface and chemisorption problem we shall briefly 

discuss the relatively few attempts to tackle these problems by con­

sidering thin films or finite slabs. These films consist of a finite 

number of, generally infinite, atomic layers in which the two-dimen­

sional translation symmetry parallel to the surfaces is preserved. 

They are used to study the electronic band structure, as compared to 

that of bulk solids, and the physical properties of thin films per se. 

Further, they provide a procedure to investigate specific surface 

properties (e.g. surface states) and chemisorption phenomena. 

Many of the calculations have employed the tight-binding or 

LCAO method, by which particularly the surface bands of several semi­

conductors have been studied. Using an orthogonal next-nearest-

neighbour as well as a nonorthogonal third-nearest-neighbour LCAO 

scheme, Alstrup [234,235] has extensively examined the occurrence of 

surf ace states on ideal, non-reconstructed Si (111) and (110) surfaces. 

Pandey and Phillips [23б] have reported computations for Si (111) sur­

faces where relaxation of the surface layer was incorporated. In other 

tight-binding calculations the surface states on the (111) surface of 

diamond [23?], the (111) and (100) surfaces of diamond-type semicon­

ductors (C, Si, Ge and a-Sn) [238], and the (110) and (111) surfaces 

of Ge, GaAs and ZnSe [239,240] have been investigated. Cooper and 

Bennett [241] have examined the changes in the nature of d-band states 

in crystals of fee transition and noble metals as the crystals become 

very thin. They studied the size and surface effects for (100) and 

(111) films by performing calculations for the Г.. bands (i.e., the 

bands corresponding to the d atomic states of e -symmetry). 

6 

Messmer et al. [242] have used the EHT to calculate the 

band structure of a two-dimensional graphite sheet. To investigate the 

chemisorption of hydrogen, they introduced the concept of a molecular 

unit cell, consisting of a set of primitive unit cells of graphite 

and an adsórbate atom above the surface. They examined the changes in 
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the density of states caused by the adsorbate-surface interactions, by 

performing band structure calculations for an infinite, periodic array 

of molecular unit cells. We have studied by the EHT the hydrogen mono­

layer adsorption on layer crystals of nickel and copper (see Chapter 

IV). 

Alldredge and Kleinman [243,244] have developed a pseudo-

potential method to calculate both surface and bulk states in thin 

films, which may be used for nearly-free-electron (NFE) metals. The 

crystal potential is described in terms of a nonlocal pseudopotential, 

which contains a superposition of nonlocal atomic pseudopotentials and 

an exchange/correlation term treated by the local approximation used 

in jellium studies [52,53]. By this method Alldredge and Kleinman [244] 

have carried out a self-consistent energy band calculation for a 

13-layer (100) lithium film to study the charge density and surface 

electronic states. Caruthers et al. [245-248] have performed (non self-

consistent) energy band calculations on 13-layer films of (100), (110) 

and (111) aluminum. The results were compared with a projection of the 

three-dimensional energy bands along the appropriate direction in 

order to examine the effects of both the surface and the finite thick­

ness of the film. Caruthers and Kleinman [249] have extended the 

method to transition metals by supplementing the basis set of plane 

waves orthogonalized to the core wave functions, with a set of d-like 

functions defined within a "muffin-tin" radius of each atomic site. 

From their calculations on a 13-layer (100) iron film it appeared that 

the existence and symmetry of transition-metal surface states depend 

strongly on details of the potential, so that self-consistent calcula­

tions are necessary for this study. 

A similar self-consistent pseudopotential method has been 

developed by Cohen et al. [25o]. It has been used to perform self-con­

sistent calculations on Si (111) unrelaxed, relaxed and reconstructed 

surfaces [25l]. Density of states curves for a 12-layer slab were ob­

tained. Also the electronic structure of a metal-semiconductor inter­

face has been investigated, considering a slab of Si with the (111) 

surfaces being exposed to a jellium of Al density on both sides [252]. 
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A third formalism [253-256] to study crystal films follows 

a Green's-function procedure and can be considered as a generalization 

of the Korringa-Kohn-Rostoker (KKR) method [257,258] for band cal­

culations of infinite systems or of the scattered wave formalism [ΐ7β] 

for molecular calculations. An application to a monolayer film of 

copper has been presented by Kar and Soven [25б]. 
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Chapter III 

RESOLVENT METHOD FOR QUANTITATIVE CALCULATIONS 
ON SURFACE STATES AND ADSORPTION 



Resolvent method for quantitative calculations on surface states and adsorption: General 
method 

A van der Avoird, S Ρ Liebmann, * and D J Μ Fassaert 
Institute of Theoretical Chemistry University of Nijmegen, Nijmegen, The Netherlands 

(Received 1 Apnl 1974) 

A new method is presented for the calculation of surface and adsorption effects on one-electron states 
in crystals Conceptually, this method is similar to the Kosler-Slater resolvent method for impurity 
states, which has often been applied to surface states ш semi-infìnite crystals The elaboration is very 
different, however The proposed scheme works for finite crystals, the resolvent matrix is calculated 
numerically instead of analytically, and the applicability of the method depends on a suitable algonthm 
for the numerical solution of the Koster-Slater equations Such an algonthm is described In comparison 
with the resolvent method for semi-infinite crystals, this method permits a more quantitative treatment 
of real crystals, such as transition metals or semiconductors On the other hand, compared with 
standard molecular-orbital methods on finite clusters, it can handle much larger crystals 

I INTRODUCTION 

Although many important processes occur on the 
surfaces of solids, as for instance chemisorphon 
and heterogeneous catalysis on transition metals 
or semiconductors, the understanding of these 
processes is far from being complete. Experi­
mentally, more and more data are becoming avail­
able for adsorption on well-defined surfaces, ' ^ 1 

but the interpretation of these data is very diffi­
cult. From this situation a n s e s a considerable 
need for theoretical calculations on surfaces and 
adsorption and, in particular, for improvement of 
the methods to yield more quantitative information 
on real crystals. 

The majority of the quantum-theoretical methods 
for the study of surface and adsorption states on 
crystals are based on the linear combination of 
atomic Orbitals (LCAO) or tight-binding12 formal­
ism. They can be divided into two types: the "sol­
id-state" approach and the "molecular" approach, 
The first group starts from solid-state band calcu­
lations on infinite periodic crystals (satisfying 
Born-Von Karman cyclic boundary conditions with 
an infinite number of unit cells). These infinite 
crystals are then reduced to semi-infinite crystals 
with a surface, and the influence of the perturba­
tion which effects this surface formation is mostly 
taken into account by a resolvent or Green's-func-
tion technique. A description of these methods can 
be found in several review articles.1 3 '1 4 The r e ­
solvent method applied to this problem is based on 
Koster-Slater treatment of impurity states in c rys­
tals. 15 This lype of approach requires the use of 
an analytical resolvent, to be constructed from the 
infinite-cry s tal solutions For this reason one has 
to introduce \arious approximations such as ne­
glect of nonorthogonality of the basis orbitals and 
of many interactions between them. In practice, 
one often falls back on the use of a model Hamilto-

man depending only on a few parameters, 1 ,~ г з or 
one calculates model crystals with one orbital per 
atom, ^ - 2 8 or even one-dimensional chains . 1 3 ' 2 7 

The same type of model crystals have also been 
studied by different methods, without using the r e ­
solvent technique. 2 e ~" It is doubtful whether such 
models will yield a valuable description of real 
crystals such as transition metals, which have 
rather localized d electrons on the one hand, and 
diffuse conduction electrons on the other. More­
over, these methods only calculate "pure" surface 
or adsorption states with wave functions localized 
at the surface and energies lying outside the crys­
tal bands. Most states, however, remain within 
the crystal bands and are not completely localized, 
but are still affected by surface formation or by 
adsorption. As Koutecky13 points out, these states 
must be included when calculating total surface en­
ergies or adsorption energies: although they shift 
only by infinitely small amounts, we have an infi­
nite number of them (in the semi-infinite crystal 
model). 

The second class of methods is of the molecular 
type Assuming that the effects of the surface or 
adsorption are localized, which is probably true in 
many cases and has been confirmed both by theo­
ry 3 4 " 3 6 and experiment, з·4 '7·1 0 one applies molecu­
lar-orbital methods to a cluster of crystal atoms, 
possibly interacting with one or more adsorbed 
a t o m s . 3 7 - 4 3 Although this approach takes into ac­
count all interactions within a (semiempincal) mo­
lecular-orbital (MO) formalism, it suffers from 
the drawback that the clusters must remain rather 
small (up to about 15 transition-metal atoms or 30 
first- or second-row atoms). This gives rise to 
undesirable boundary effects. One can try to com­
pensate for such effects, for instance, by saturat­
ing the "dangling" bonds with hydrogen atoms or by 
connecting them to other dangling bonds,3" but it 

79 

file:///arious


would be better to increase also the size of the 
clusters. 

As we are especially interested In chemisorpüon 
and catalysis on transition-metal surfaces, in 
which both the d electrons and the conduction elec­
trons play a role, *0,M we have developed a method 
which does not require the simplifying parametn-
zation of the "solid-state" methods and still calcu­
lates larger crystals than the "molecular" meth­
ods. It avoids unwanted boundary effects and, 
moreover, it calculates all one-electron states in 
crystals having a surface, possibly with adsorp­
tion, also those states which are not strictly local­
ized at the surface. By application of the presented 
method one can obtain quantitative information 
about properties of solid surfaces and about ad­
sorption phenomena. This might also be helpful 
for the interpretation and correlation of experi­
mental data for adsorbed atoms and molecules. ^ 1 1 

II DESCRIPTION OF THE METHOD 

The proposed method works for fimte crystals 
(in practice up to about 1000 atoms) with two sur­
faces parallel to a chosen crystal plane. This 
plane is defined by two elementary lattice transla­
tions, І! and 52, which can be the primitive trans­
lations of the bulk crystal or linear combinations 
of them. " The third elementary translation Sj, 
which is nonparallel to the surface, carries from 
one crystal layer to another. The number of lay­
ers is finite; the dimensions of the crystal paral­
lel to the surface could be infinite, but we find it 
advantageous to keep these dimensions finite as 
well, while still avoiding undesirable boundary ef­
fects by imposing Born-Von Karman cyclic bound­
ary conditions on the finite number of unit cells 
(ài, a8). This implies that we assume the crystal 
wave functions to satisfy the relations 

φ(ΐ) = Ψ(Γ - jViS,) Ξ ψ(? - лгг5г), (i) 

Ni and N2 being the number of unit cells in the di­
rections ai and â2, respectively. Working in an 
LCAO model, we denote the basis atomic orbitals 
as 

I X,(»»i, тг, mj» = х,(г - miài - и;2аг - m,â.3), (2) 

where the index p = 1 ν labels the different 
atomic orbitals in one unit cell with the origin 
(»;іаі + »?гаг+иізаз). Now, because of the periodic 
boundary conditions the crystal wave functions can 
be expressed as 

»3 >"l 

with (3) 

"1 "г 

I«•••»(«Л - Σ Σ Ι ΧΛ«!, »Ί. т,»«"*-»·«*·*». 
miai mjml 

The summation over m3 runs over all layers of the 
crystal. The two-dimensional Bloch orbitale 
\o/¡,1'ki(m3)) are called "layer orbitals"; the com­
ponents of the wave vector, *i and кг, must satisfy 

*! = 2vnjNu ki = Зігяг/і г 

with 

η, = 1,2,...,ΛΓ„ » ^ = 1 , 2 , . . . , ^ . 

Expression (3) is equivalent to the statement that 
layer orbitals with different {ku k¡) are noninter-
acting, which is so because they belong to differ­
ent irreducible representations of the finite cyclic 
group that is the translation group of this crys­
tal. So we see that the periodic boundary condi­
tions, besides eliminating end effects, result in a 
considerable simplification of the wave equations, 
also for finite crystals. Actually, this assumption 
of finite, but cyclic, crystals is nonphysical, which 
is probably not very serious, however, as it cor­
responds exactly to collecting a fmite selection 
from the infinite crystal solutions—namely, those 
Bloch waves of which the wavelength is a divisor 
of the total crystal dimensions. 

The method for calculating the one-electron 
states of this crystal now proceeds as follows. We 
start with a Crystal of N3 layers, which is also 
periodic in the third (аз) direction. This complete­
ly periodic crystal is called the "unperturbed" 
system. The extra periodicity facilitates the solu­
tion of the secular equations for this system if we 
use three-dimensional Bloch orbitals as a basis: 

" 3 

|6»1·*!·*3>=Σ Ι β Ϊ ^ Μ β ' * » " » , 

with (4) 

fej = 2ігПэ/ЛГз , я, = 1,2,...,ЛГ, 

We then define a perturbation V= Vs + VT which 
has the following effects· 

(I) Vs removes so many layers from the period­
ic crystal that the two surface layers on both sides 
of the crystal interact only with inside layers. 
Thus we have created two "Shockley" surfaces,4 5 

just as the removal of a segment from a circle 
creates two "ends. " 

(II) V7, adds the effect of a surface potential to 
the atoms near the surface. If this effect is non­
zero, we shall speak of "Tamm" surfaces.4* 

This perturbation effects complete layers so that 
the periodicity parallel to the surface is conserved. 
The influence of the perturbation is taken into ac­
count in an exact way by the resolvent or Green's-
function method, the resolvent being constructed 
from the "unperturbed" periodic crystal solutions. 
The combination of this method with the LCAO 
model was first used by Lifshitz47 and by Baldock30 
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and formulated more generally by Koster and Sla­
ter. l5 In our case, we obtain a set of simultaneous 
equations containing the resolvent matrix and the 
perturbation matrix over layer orbitale, which we 
shall call the "Koster-Slater equations." These 
equations can be regarded as the matrix represen­
tation of a homogeneous integral equation. " The 
Koster-Slater treatment of the LCAO problem, 
which m fact is a way to deal with the effect of "lo­
cal" changes in the secular matrix, also shows 
some resemblance to a matrix-partitioning tech­
nique by Löwdin. *' 

In case of adsorption, we define an extra unper­
turbed problem which consists of a set of secular 
equations for nomnteracting adsórbate layers. 
Adding the interactions between the crystal and the 
adsórbate layers and the interactions among differ­
ent adsórbate layers to the perturbation, ι e., V 
= Vs + VT + л

г we can also take adsorption effects 
into account by the resolvent method. As long as 
the adsorbed layers have the same two-dimension­
al periodicity as the crystal layers, all equations 
can be solved for each (&,, kz) separately. 

Conceptually, this method is similar to the 
semi-infinite crystal treatments. ""'^ The practi­
cal elaboration is very different, however, for the 
following reasons: 

(i) All matrix elements between atomic orbitals 
are calculated explicitly, within a given (possibly 
semiempincal) LCAO model. An arbitrary range 
can be specified, outside which the interactions 
are neglected. (We have used for this range, for 
instance, the fourth-nearest-neighbor distance for 
the fee crystals nickel and copper. ) We work with 
nonorthogonal basis functions because orthogonal 
orbitals, even of the localized type such as Löw-
din50 or Wannier51 orbitals, always involve some 
amount of delocalization This effect is usually 
neglected, but it can be quite large—for instance, 
in case of conduction electrons. 

(n) We do not require the unperturbed problem 
to be solved analytically. Instead, we use a nu­
merical method (matrix diagonalization) to obtain 
these solutions from a set of secular equations. 

(in) The Koster-Slater equations which are con­
structed from a numerical resolvent matrix (and 
perturbation matrix) must be solved numerically 
as well. The dimension of these equations is de­
termined by the number of layers which are direct­
ly affected by the surface or by adsorption; so it 
is smaller than the dimension of the secular prob­
lem over all layer orbitals. Since the Koster-Sla­
ter equations are nonlinear in the energy, how­
ever, the applicability of the method depends on a 
suitable algorithm for their numerical solution. 
We have found one in the procedure developed by 
Williams52 for solving the Kornnga-Kohn-Rostoker 
(KKR) equations"'54 in solid-state band calcula­

tions. Although the physical background of these 
equations is quite différent from the surface or ad­
sorption problem, they have almost the same 
mathematical structure as the Koster-Slater equa­
tions occurring in our problem. In the next sec­
tions the latter equations will be derived for sur­
faces and for adsorption, in a manner which is 
generalized to nonorthogonal basis functions. We 
bring them into a standard form adapted to the al­
gorithm just mentioned and we show the function 
of this algorithm. Because of the special charac­
ter of our problem, where the perturbation has to 
annihilate interactions between different nonorthog-
onal orbitale, the perturbation matrix in the re­
solvent method depends on the (unknown) energy of 
the perturbed problem, and therefore Williams's 
algorithm had to be generalized. 

Ill SURFACES 

Since the periodicity of the crystal permits the 
solution of all equations for each two-dimensional 
wave vector (fci, кг) separately, we shall omit these 
indices in the notation for the layer orbitals 

kMHei 1 ·* 2 ^)), 
and for the Bloch orbitale (S) 

l&JHftp'1 ·*2 · ')· 
Except for the calculation of the matrix elements, 
the three-dimensional-crystal problem becomes 
identical to the calculation of a linear chain. 

The "unperturbed" crystal is described in terms 
of layer orbitals by the following secular equations: 

АГэ ν 

Σ Σ [(at(m)\H\at.(,n,')) 
m'.I р'шІ 

-Εΐα\αρΜ\α,(η>'))}ο№{»,') = 0, 

m = l,...,N,, p=l,...,v. (6) 

The solutions Е\°} and c^Vi ) are numbered by t 
= 1 , . . . , JVji/. The explicit form of the one-electron 
Hamiltonian Я depends on the type of LCAO method 
used. Taking advantage of the periodicity of the 
unperturbed crystal, one can solve, instead of this 
(N3i>)-dimensional secular problem, a set of N3 

secular problems of dimension ν over Bloch orbit­
als: 

Σ [<6ÌI » ι δί·> - £501(*)<6;ι &?.>№>(*)=о, 
P' = l 

p = l,...,v. (7) 

The solutions are now labelled by j -1,..., ν and 
k = 2ІГИЗ/ЛЗ, with Яз = 1 , . . . , Λ,. The solutions of 
Eq. (β) can then be expressed as 

£¡0) = £Í0 )(*), 

сйЧт) = *"-с8Ч*), ( 8 ) 
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where t, j , and k run as indicated above. The ei­
genvectors are orthogonal and are assumed to be 
normalized: 

έ έ c t w ì i #><#}·(*'>=e»·»«·. 
* • ' ' ^ 5 ( 9 ) 

Σ Σ Σ Σ ^'M^Mk'^'KïMm'M,,.. 
mnl й-l m 'a i p'ml 

From now on, we shall work only in terms of layer 
orbitals and introduce a compact matrix notation 
(matrices are denoted by capitals, column vectors 
by small letters). The indices run both over lay­
er s (m = 1 , . . . , N3) and over atomic orbitals (p 
= l,...,v). The unperturbed equations (6) read 

(H í 0 , -£¡ 0 >S' 0 > )c¡ 0 >=0, (10) 

with f i 0 ' and c¡0 ) given by (8). 
For the real system of interest, i . e . , a crystal 

with two surfaces, the energy E and the wave func­
tion с (in terms of layer orbitals) are to be deter­
mined from the equation 

(H-£S)c = 0 . (11) 

The matrices H and S are changed with respect to 
H"" and S(0> only in a few parts . In order to ex­
press these changes in mathematical form, it is 
convenient to distinguish some subsystems in the 
original crystal of N3 layers (see Fig. 1). 

The subsystem (fi contains the layers which are 
removed from the periodic crystal by the Shockley 
perturbation Vs in order to create a crystal with 
two surfaces. The remaining crystal is denoted 
by C. In this crystal a set of outer layers 0 is 
directly affected by this removal (because they 
were interacting with <R) and/or by the Tamm per­
turbation VT. Projection matrices for these sys­
tems ( Р я , P c , Ρ 0 , Ρ 0 " 0 ) are defined as follows": 
Let P™ be a (N}v)x(N3i>) dimensional matrix with 
a vx ν unit matrix on the diagonal for layer m and 
zero otherwise. Then, for a given subsystem SC 

Ρ Χ = Σ Ρ " · (12) 
mei 

These projection matrices are idempotent, mutu­
ally exclusive, and form the following resolution 
of the (Лг3і/)х(ЛГзі/) identity matrix: 

The changes in Η and S can now be written as 

by Vs: AH5 = - р ^ н 1 " ? 0 - Р 0 Н " " Р Д , 

д З 5 = _ p Ä s ( 0 ) P o — pos ( 0>pR · 

by VT: ΔΗΓ = Ρ 0 Τ Ρ 0 , ( 1 4 ) 

Δ£5Τ = 0 

The matrix Τ describes the effects of the surface 

potential VT which are localized in the outer lay­
er s б. If the structure of these outer layers 
would be changed with respect to the bulk struc­
ture, the overlap matrix AS r would be nonzero as 
well. The fact that Η and S are only locally modi­
fied (see Fig. 2) is now expressed by means of 
projection matrices. Because of this fact, it is 
advantageous, instead of solving the new secular 
problem (11), to use the resolvent technique. 1 J · 1 4 

Define the perturbation matrix 

- ΔΗ - EbS,, 

= - Р я ( Н ( 0 , - Е З ( 0 ) ) Р о 

- Ρ ο ( Η ( 0 ) - £S<0))PÄ + P 0 T P 0 , (15) 

and the resolvent matrix 

"s" 

Ο(£)=Σοί0 )(£-£ί0 ,)·1ο< 0 ) ί

) (16) 
— 1.1 — _ ' 

with B¡0> and cj0> being the solutions of the unper­
turbed problem (10). Both V(£) and G(.E) depend 
on the energy E of the perturbed system, which 
must still be determined. Writing the perturbed 
equations (11) as 

V(£)c = - ( H ( 0 ) - £ S ( 0 ) ) ç , (17) 

multiplying this by G(£), and using the relation 

-G(£)(H ( 0 ) -£ 'S ( 0 ) )=J_, (18) 

which is proved by substituting (16), (10), and the 
normalization condition (9), we obtain the Koster-
Slater equations 

G(£')V(£)c=c (19) 

Although this Koster-Slater problem still has the 
same dimension as the secular problem (11), this 

FIG. 1. bchematio drawing of the crystal with ad­
sorbed layers. Layers (R are not shown because they 
are nonphysical, they were only added to make the un­
perturbed crystal periodic. 
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can be easily reduced if we introduce the following 
properties: 

(i) After removal of the layers <R, some solu­
tions of the perturbed equations are localized on 
(R, others on e . We are interested in the latter, 
which satisfy the relations 

Р я с 0, P c ç = c (20) 

(ii) The matrix V(£ ) contains many blocks which 
are zero, as expressed by (15) and shown in Fig. 
2. 

Usually, l 3 ' " Eqs. (19) are projected by P 0 and 
then solved in the subspace 0. In view of our algo­
rithm for numerical solution of these equahons, 
which applies to Hermitian matrices, we multiply 
the equations (19) by P0V(E), substitute (15) and 
(20), and use the properties of the projection ma­
trices (13), to obtain 

P0W(Í )P0c {P0[Vs(£;)P* + V rP0)G(£) 

Χ [ Ρ 0 т + Р Я 5 (Е ) ]Ρ 0 - Ρ 0 V rP0}ç = 0 . 

(21) 
The matrix P 0W(£)P 0 contains zeroes except for 
the submatrix corresponding to the outer crystal 
layers o. Therefore we can reduce Eqs. (21) to a 
smaller set, only over the space 0. 

Wo(£:)ço = 0 , (22) 

where W0(E) is the (Hermitian) nonzero submatrix 
of P0W(E)P0 over the layers 6. The equations for 
the perturbed problem have now been simplified as 
much as possible and prepared into such a form 
that a slightly generalized version of Williams's 
algorithm can be applied to solve for the energies 
£. These can be bubstituted into (21) or (19) and 
the coefficients с can be calculated by standard 
methods (solving a set of homogeneous linear equa­
tions). 

IV ADSORPTION 
On the crystal of the previous section we adsorb 

Л' layers of atomb of a different type. These lay­
ers are assumed to have the same periodicity in 
the li and а г directions as the crystal, so that we 
can construct layer Orbitals 

«,(»)) |<"'г(")> 
Vi \ г 

- Σ Е|х>'і,'»г,«)У<»'""*,'^»( (23) 
m i m i m ош 1 

which obey the same periodic boundary conditions 
(1). Atomic orbitals are labelled by q = 1 , . . . , μ; 
adsorbed layers by η - 1, . . . , Λ'. The space spanned 
by the adsorbed-layer orbitals is denoted by tt, the 
corresponding projection matrix by 

ν 

P A Σ ρ". (24> 
n - l 

FIG 2. Block structure of the perturbation matrix}¿ 

Using a matrix notation, we now imply the indices 
to run over N3 crystal layers with ν layer orbitala 
each and over N adsorbed layers with μ layer or­
bitals. Consequently, the resolution of the identity 
matrix becomes 

^ = Р Я + Р С + Р А , 

= Ρ'ΐ + Ρ 0 + Ρ ι : - 0 + Σ Ρ". (25) 
m l 

Adsorption effects can also be treated by the r e ­
solvent method. Unless N Is very large, it is 
most convenient to define an unperturbed problem 
of isolated adsórbate layers,5 9 in addition to the 
unperturbed crystal problem described by (6) and 
(7). For an adsórbate layer η we write 

Σ «в,(и)|я|в,.(«)> 
«'-1 

-ВІ0>(иХ<і,(И)|в,.(я)))с$(я) = 0, (26) 

where the solutions are numbered by I = 1 , . . . , μ. 
For the total unperturbed system, the secular 
problem reads 

(P R

 + P C )[H ( 0 ) - £;¡0,S(0)](PR + P^çi 0 1 

я 

+ Σ Ρ , Ί Η < 0 ) - £ ί 0 , ( Β ) 8 ( 0 ) ] Ρ ν ί 0 > ( « ) = 0 . (27) 
n - l — ~ 

The perturbation VA which adds the interactions 
between the crystal and the adsórbate layers and 
between adsórbate layers among each other, cor­
responds to the following matrix: 

83 



Л(Е) = ΔΗΑ - £ Δ 8 Α , We have assumed that the direct interactions with 

- ^ н ^ P 0

 + P 0 m raìPA
 + P A iH-ES№ A the adsorbed atoms are restricted to the outer 

= P (H - £S)P +P (H - £S)P +P (H- £S)P c r y s t a l l a y e r s e_ и n e c e s s a r y ; ^ s e t e l g e J t . 
к tended with respect to the previous section. The 

- Σ Р'Ш'0 ' - £S<0>)P". (28) resolvent matrix derived from the unperturbed 
•̂ 1 problem (27) reads 

I 

(
"3» . и .u 

Σ С Н Я - Я П - ' С ^ Н Р ^ + Р 0 ) - ^ Ρ"(Σ С ^ М Я - Е И И Я - ' С ^ Я Л » " » 
1.1 ' ml — ч UI ~ / — 

= G ( £ ) R * C
+ G ( Í ; ) A . (29) 

This resolvent must be substituted into the Koster-Slater equations (19), together with the perturbation 
matrix 

V(E) = V5(E) + VT+VÁ(E) (30) 

given by (15) and (28). Again taking into account the zeroes in this perturbation matrix (see Fig. 2) and the 
fact that the solutions с are now localized on e +α, we obtain, after multiplication by (P* + P 0 )V(£): 

(po + р>»)^г(£)(Рл

 + P°)c ={[P0 Vs (£·)£* + P ^ P 0 + PAVA(£)P0]G(£:)J!*0[P0VA(£;)PA + P0V ,'P0 + PKVS(£')P0] 

+ [Р 0 А ( £ ) Р А + PAVA(£)PA]G(£)',[PAVA(£')PA +PAVA(£)P0] 

- [P'V'P 0 + PAVA(£; )P0 + P0VA(£ )PA + PAVA(£ )PA]} с = 0. (31) 

ι 
Defining W(£)0*A as the nonzero submatnx of z e r o a s a function of E, it always goes from posi-
( P 0 + PA)W(£)(PA + P 0 ) over the layers 0+a, we Ь у е to negative value with increasing E. In other 
can solve a smaller problem—namely the one over words, if λ / £ 0 ) = 0, it follows that 
those layers only: j ^ v 

W(£)o-Aço*A = 0. (32) V ΊΕ ) Е ш В о

 υ · (ЗЭ' 

Since the matrix W(£)0*A is Hermitian, these T h l s I S proved in the Appendix. 
equations are of the type that can be solved by the (") T h e eigenvalues of ЩЕ) have poles, as do 
algorithm described in the next section. t h e matrix elements of W(£) and those of G{E), at 

£=£} 0 ) , the eigenvalues of the unperturbed prob-
V NUMERICAL SOLUTION OF THE KOSTER-SLATER lem. One can prove (see the Appendix) that the 

EQUATIONS number of eigenvalues \¡(E) which have a pole at 
The Koster-Slater equations for a crystal with a certain Ej0) equals the degeneracy d(

(0> of this un-
two surfaces and adsorption have been brought into perturbed energy. Moreover, it can be shown that 
a standard form which can be generalized as at the poles the eigenvalues \j(E ) always pass from 

-*> to +°° with mereasing E. 
W(E)ç=[V(£)G(E)V(£) - V(£)]ç = 0 . (33) T h e s e p r o p e r t l e s e a s l l y l e a d ^ t h e f o l l o w i n g 

In the earUer applications of the resolvent method theorem: The number of zeroes E0 of all eigen-

, to this problem, 1 , - г г one solved Eq. (19) for the v a l u e s X¿E) oi ^ E ) ш a g l v e n e n e r g y m t e r v a l Ei 
energy by searching for the roots of the equabon < ^ 2 l s e q u a l to 

det[G(£;)V(£)-X] = 0. (34) no(^i, ^г) = n,{El) -n,(Ez)+ Σ ^ 1 0 ' , 

Instead, we will search for the zeroes in the (real) *і<'\п<*г (36) 
eigenvalues of the Hermitian matrix W(£), which, when n.(Ei) and п.і^) are the number of positive 
of course, are also the zeroes of det[w(£)] and the eigenvalues of ЩЕ^ and ЩЕг), respectively. 
solutions of Eq. (34) if (Я ) is nonsingular in the Using this theorem, the values of the energy 
subspace considered. These zeroes can be calcu- roots E0 can be determined by repeated bisection 
lated by an elegant algorithm because the matrix of the interval, until the required accuracy is 
W(£) and its eigenvalues \j(E) have some special reached. As the positions of the poles E\0\ and 
properties (the same kind of properties were their degeneracies d(

(0) are known from the unper-
proved for the expectation value of a general re- turbed equations, the only problem that remains is 
solvent by Lò'wdin"): to calculate the number of positive eigenvalues 

(i) When an eigenvalue λ / ί ) passes through n,(E) of the matrix W(£) at given points £. Sever-
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al procedures are possible: (ι) complete diagonal-
ization of the matrix W and counting the number of 
positive eigenvalues; (u) tn-diagonalization of W 
and using the Sturm sequence property" for the 
parameter μ -0; and (in) bringing W into upper-
tnangular form by the Gauss elimination process5 ' 
and counting the number of positive diagonal ele­
ments. This number can be proved to equal the 
number of positive eigenvalues of W (see the Ap­
pendix). 

Applying standard techniques to perform these 
manipulations on the complex Hermitian matrix W, 
It appears that the third procedure is about three 
times faster than the second and about twenty times 
as rapid as the first. (They all increase in time 
with the third power of the dimension of W. ) 

An advantage of the algorithm based on formula 
(36) for calculating the energy solutions of (33) is 
that it also calculates those energies of the per­
turbed system which coincide with an unperturbed 
energy and, thus, with a pole in the resolvent. In 
this case, one or more eigenvalues \i(E) of W(£) 
go to zero, which corresponds to a solution of Eq. 
(33), whereas some other eigenvalues go to infin­
ity. Such solutions cannot be found by the usual 
methods, which look for the zeroes of the determi­
nant in (34). As pointed out in the Introduction, 
this advantage is of practical importance, since we 
wish to calculate also those one-electron energies 
lying within the crystal-bulk bands. 

VI DISCUSSION 

In the previous sections we worked out a method 
for the quantitative calculation of one-electron 
states in finite crystals, with or without adsorp­
tion. We can now compare this method in more 
detail with the more traditional methods men­
tioned in the Introduction. 

In comparison with the resolvent method for 
semi-infinite crystals, this method is more suit­
able for quantitative calculations on real crystals, 
such as semiconductors or transition metals. It 
does not neglect overlap effects between atomic Or­
bitals and calculates all interaction matrix ele­
ments explicitly, up to a given distance. More­
over, it calculates, not merely the strictly local­
ized surface or adsorption states lying outside the 
crystal-energy bands, but all one-electron states. 

One can object to the finite-crystal model on the 
grounds that it does not take into account really 
long-range effects. We do not think that this omis­
sion is very serious, however, because: (i) one 
can treat crystals up to about 10x10x10 atoms; 
(u) one can test the model by comparing crystals 
of different sizes; and (in) the effects of the sur­
face and, particularly, of chemisorption seem to 
be rather localized. Moreover, it could well be 
argued that crystals of this size are already of 

physical interest themselves. 
Compared with quantitative MO calculations on 

finite clusters, we have a great reduction in com­
putation time, which enables us to treat much 
larger clusters and to take into account interac­
tions over a more extended range. This is illus­
trated by the following arguments for crystals with­
out adsorption: Η we have a cluster of J^xNjXAfj 
= N atoms and perform a traditional MO calcula­
tion, the number of matrix elements over atomic 
orbitals that must be evaluated is proportional to 
AT2 = N\NIN\; the time for solving the secular prob­
lem is proportional to N3 = N'NINI. If we impose 
periodic boundary conditions in two directions and 
use two-dimensional Bloch orbitals, as we do m 
our method, we have to calculate a number of ma­
trix elements over atomic orbitals which is propor­
tional to ArijV2A

r3. Transformation to Bloch orbitals 
takes only a negligible time. The time for solution 
of the secular problem then becomes proportional 
to N¡N¡N1. By using the resolvent method, as de­
scribed in this paper, the latter time can be even 
further reduced. The time for solution of the un­
perturbed periodic-crystal problem is proportional 
to A^A^Nj. The dimension of the Koster-Slater 
equations is smaller than the dimension of the sec­
ular problem by a factor N0/N3, where No is the 
number of outer crystal layers directly interacting 
with the surface. The time for solving the Koster-
Slater equations is hard to estimate, as the algo­
rithm contains some steps which are proportional 
to N3

0 and other steps proportional to N3, with χ 
approximately equal to 1.5. At any rate, it follows 
that the Koster-Slater problem increases less rap­
idly with the crystal size than the secular problem, 
but since the Koster-Slater equations are more 
complex, the proportionality constant is larger. 
Therefore we conclude that the application of the 
resolvent method becomes advantageous when the 
ratio N3/Nc surpasses a certain limit. If this is 
not the case, we rather solve the secular problem 
over layer orbitals, which is still much better than 
the traditional cluster calculations both in time 
saved and in the avoidance of undesirable boundary 
effects. 

Besides the general resolvent method for surface 
states and adsorption, we have developed efficient 
special methods for the case where the effects of 
the surface potential (the Tamm perturbation) on 
the one-electron states become negligible. The 
perturbed wave functions themselves may give rise 
to a surface potential, however. These methods 
will be described in a future paper. 

The complete procedure for calculating the one-
electron states of a crystal with two surfaces and, 
possibly, some adsorbed layers, as derived in this 
paper, has been programmed in FORTRAN for an 
IBM 370 computer. The structure of the program 
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is shown schematically In Fig. 3. Calculations 
for hydrogen adsorption on nickel and copper sur­
faces are underway. 
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APPENDIX 

The applicability of the algorithm for numerical 
solution of the Koster-Slater equations rests on a 
number of properties of which the proof shall be 
outlined in this Appendix. 

We wish to find the energies E0 and the coeffi­
cients Co for which the equation 

G(£)V(£)c=c 

becomes an identity: 

G(£o)Y(So)co=Co. 

(Al) 

(A2) 

These solutions are obtained by looking at the ei­
genvalue problem 

ЩЕ)с(Е) = [ПЕ)С(Е)\{Е)-ЩЕ)]с{Е) = \(E)ç(E) 
(A3) 

and searching for those energies E0 for which 
\(E0) = 0. The first property that we invoke reads 

№)..-· (A4) 

WilliamsK has proved this as follows for orthonor­
mal bases and V not depending on E: 

^±cjE)^E)cJE), 

de' dc dW 
(A5) 

For E = E0, we can substitute the identity (A2) to 
obtain 

On the same orthonormal basis the resolvent ma­
trix G(£) reads 

(¿(^ΣοΛΕ-^Γ)- 1 ^ 0 " (A 7) 

and its derivative becomes 

rfG 
— = - 0 0 . (AB) 

Substituting this result into (A6) and using the iden­
tity (A 2) again, we fmd that 

(j¡j\ = - c;VG(£0)G(£0) V c0 = - çÎÇp = - 1. 

(A9) 
In our problem, with a nonorthonormal basis and 
V_(E) dependent on E, we obtain some extra terms 
in the derivative of Eq. (A6): 

/dV \ ι dV\ 

-feCVJ^.cjfvG-^co 

+ii(i§i\ì<>-s;(§)Ei° (AIO 

Two of these terms cancel after using (A2), so that 

Using the fact that V(£) is linear in E, and that 
[according to Eqs. (15) and (28)] dV/dE equals a 
submatrix of the overlap matrix, and substituting 
the expression (16) or (29) for G(£), we have 
proved, similarly to the proof just given, that 

The second important property of the eigenvalues 
ME) of W(£·) = V{E)G(E)V(E) - V(£) is their be­
havior at the poles E,<0) of G(£ ). In the neighbor­
hood of a pole El"', we write E = E\0) + «, with Í 
very small. For « - 0 all matrix elements of G(E), 
and also those of ЩЕ), go to infinity. In each ma­
trix element of G(.E), given by Eq. (A7), only dj0> 

terms in the sum behave as e*1, whereas the rest 
remains finite. (Remember that dj1" is the degen­
eracy of £ j 0 ) . ) In the limit of € - 0 we can write 
G(£) effectively as 

α{Ε) = ΐ-ιΣ, (A12) 

This matrix projects the total space onto a sub-
space of dimension <í¡0); so it has the rank dj01. 
Also the matrix W(£) must have this rank, because 
the term linear in V(£) is small with respect to í'1 

and the transformation V(£)G(£)V(£) with non-
singular ЩЕ) does not change the rank Conse­
quently, only rfj0' eigenvalues λ(£) behave as <"1, 
while the other remain small Since the matrix 
G{E) given by Eq. (A12) i s positive defmite for 
€ • 0 and negative definite for € 10, we conclude 
that at each pole £¡0 ) just dS0> eigenvalues \{E) 
pass from - « to +« . 

These two properties are sufficient to calculate 
the number of zeroes in the eigenvalues λ(£) of 
W(£) in a given interval [Eu Ег), when the number 
of positive \{E) is known in the end points ^ , Ег 
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Γ' 
this process is performed for all 

energy roots at once, so that no 

intermediate information is lost 

I, ,, 

choose new interval 

/Input 

atomic orbital data 
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adsorbed layer data 
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Bloch Orbitals 
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calculate û H S , ûS S , Δ Η Τ , Δ Η Α , Δ 5 Α 

over layer Orbitals for construction 

of ν(Ε> = ΔΗ.ΕΔ5 

choose mtervrl 

E l . E2 

calculate G(E) and 

W ( E ) - V ( E ) G < E ) V ( E ) - V ( E ) 

forE = E L E J 

FIG. 3. Flow chart of 
the FORTRAN program for 
computing the one-electron 
energies in finite crystals , 
with or without adsorption. 

calculate n + ( E ) for E = E ] , Ep after 

Gauss elimination on W(E) 

calculate η 0 ( Ε ι , E2) 

bisect interval 

- E Ï . E j 

solution E 0 = (E , + E 2 ) /2 
degeneracy η,,ΙΕ,. E2) 
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[Eq. (36)]. 
The fastest method to calculate the number of 

positive eigenvalues of a given complex Hermitian 
matrix W (dimension n) is by the Gauss elimination 
processT5' which brings W into an upper -triangular 
form. The number of positive diagonal elements 
of the triangular matrix equals the number of posi­
tive eigenvalues of W. This is shown most easily 
for tri-diagonal Hermitian matrices W'. For such 
a matrix one can calculate the Sturm sequence for 
any parameter μ, which is the sequence of deter­
minants A ( M ) of the principal minors of W' - ßl_ 
with increasing size, « = 0 ,1, . , . ,η ; Ο0(μ) = 1. It 
has been proved57 that the number of agreements 
in sign between the consecutive elements Α(μ) 
equals the number of eigenvalues of W' which are 
strictly greater than μ. So the number of positive 
eigenvalues of W' is directly calculated by putting 
μ = 0. Actually, this property can be used if we 
bring W into tn-diagonal form—for instance, by 
the Householder method.S9 This method is slower, 
however, than the Gauss elimination process. 

Instead of using the Sturm sequence for μ = 0 
( i . e . , the elements Dt), and counting the agree­
ments in sign, one can count the number of positive 

quotients Dl/D(.1.
,a Now, these quotients are ex­

actly the elements which we obtain on the diagonal 
after Gauss elimination on a general matrix.58 

Thus we have only to prove that the Sturm-sequence 
property also holds for the determinants D{ of the 
principal minors of a general Hermitian matrix W. 
The proof for tn-diagonal matrices57 is based on 
the separation theorem"1 for the eigenvalues of a 
Hermitian matrix and those of its principal minors, 
which for such matrices is valid in the strict 
sense. For general Hermitian matrices it holds 
only in the non-strict sense,9 1 i .e . , with « signs 
instead of <" signs. If none of the determinants Dt 

of the principal minors would be equal to zero, 
however, none of the principal minors can have a 
zero eigenvalues either, and we effectively have 
strict separation around zero. On that condition, 
the Gauss elimination method can be used to cal­
culate the number of positive eigenvalues of W. 
If any of the elements Β{ does equal zero, the 
elimination process would fail anyway. In this sit­
uation, we can invoke the technique of pivoting,5e 

which for our purpose i s only permitted if we in­

terchange rows and columns simultaneously, i . e . , 

keep the s a m e e lements on the diagonal. 
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Resolvent method for quantitative calculations on surface states and adsorption. II. 
Adsorption on Shockley surfaces 

S. P. Liebmann,'A. van der Avoird, and D. J. M. Fassaert 
Institute of Theoretical Chemistry. University of Nijmegen, Nijmegen, The Netherlands 

(Received 4 September 1974) 

Recently, a method has been developed for the quantitative calculation of surface and adsorption 
efTecls on one-electron states in finite crystals This method, which is based on the linear-combmation-
of-atomic-orbitals or tight-binding model, uses the Koster-Slater resolvent method for computing the 
energies and orbital coefficients Since the resolvent malnx is constructed numerically, an algorithm was 
described to solve the Koster-Slater equations numerically as well. The present paper shows a 
particularly efficient manner to prepare the Koster-Slater equations for this algorithm, which is 
applicable to crystals with Shockley surfaces and adsorption 

I. INTRODUCTION 

The electronic properties of solid surfaces and 
the phenomena occurring on adsorption have been 
the subject of much research, both experimental 
and theoretical. Experimentally, more and more 
data are becoming available for adsorption on well-
defined s u r f a c e s , , - u but the interpretation and 
correlation of these data, which should lead to a 
better understanding of adsorption interactions, 
leave many open questions. Theoretically, two 
types of methods have been applied to this prob­
lem, both using mainly the linear-combination-of-
atomlc-Orbitals (LCAO) or tight-binding scheme. 
The first group of methods calculates the surface 
and adsorption states in a semi-infinite crystal 
model . 1 2 " 1 4 Although these methods are very use­
ful for the interpretation of general phenomena, 
such as the occurrence of strictly localized surface 
states, they must introduce various simplifying ap­
proximations and, therefore, they remain rather 
qualitative and cannot do justice to the complexity 
of interesting crystals such as transition metals. 
Particularly, the interpretation of spectroscopic 
data for adsorbed atoms or molecules calls for a 
more quantitative treatment. Also, the calculation 
of total surface and adsorption energies is practi­
cally impossible by these methods. 

A more quantitative approach is followed by the 
methods of the second kind, applying molecular-
orbital (MO) techniques to finite clusters of 
a t o m s . 1 5 " 8 1 Results from such calculations are 
distorted by undesirable boundary effects, how­
ever, because the clusters have to stay rather 
limited in size. 

In a previous paper" we proposed a LCAO meth­
od which works on finite crystals, just as the 
cluster methods, and calculates all interaction 
matrix elements between atomic Orbitals explicitly 
within the (semiempirical) MO scheme that is used. 
By invoking different features from the semi-infinite 
crystal methods, such as periodic boundary condi­

tions parallel to the surface and the application of 
the Koster-Slater resolvent technique, we have 
considerably reduced the time required for actual 
computations. Therefore, we can treat larger 
crystals than the usual cluster calculations and 
take into account interactions over a more extended 
range. Typical aspects of our procedure, de­
scribed in Ref. 22, are the numerical calculation 
of the resolvent matrix and the algorithm for the 
numerical solution of the Koster-Slater equations. 
These are still the most time-consuming steps, 
though, and we must make them as efficient as pos­
sible. In the present paper, we describe simplified 
procedures for finite crystals having two surfaces 
without extra surface potentials and, also, for ad­
sorption on these "Shockley " surfaces. First, we 
shall give a brief account of the general method and 
show in which parts improvements will be made. 

II GENERAL METHOD 

The crystal and the adsorbed layers are assumed 
to be periodic in two directions, a, and aj, with 
finite numbers of unit cells, Λ', and Λτ

2, respective­
ly. Besides eliminating boundary effects in these 
directions, this periodicity implies that, working 
in a LCAO model, we have a set of basis layer 
orbitale 

"ι "г 
I at(n,)) = Σ Σ | х^іи,, тг, »/»e'^i-i'^-s», (1) 

which are noninteracting for different (k^ кг). The 
atomic Orbitals IXpfw,, m2, m)) are centered in the 
unit cell with the origin m^ + mfa ^-»lâ,, the index 
p = l, ..., ν labels different atomic Orbitals in the 
unit cell. On the basis of these layer Orbitals we 
introduce a matrix representation, the matrix in­
dex running over all crystal layer Orbitals (layers: 
m = 1, . . . , Wj,- atomic orbttals: p= 1,. . . , v) and, in 
case of adsorption, also over the adsorbed layer 
orbitals (layers: η = 1, .. ., Ν; atomic Orbitals: 
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9 = 1, . . . , μ). (Capitals denote matrices, small 
letters column vectors.) 

Using the resolvent method in order to find the 
solutions, E and c, of the secular equations for 
this system 

(H-£:S)c = 0 (2) 

we need an "unperturbed " system, which is most 
conveniently defined as the crystal periodic in three 
directions together with some isolated adsórbate 
layers The reason for this choice is that the un­
perturbed equations 

(H< 0 )-£¡0 ,S< 0 ,)c¡0 , = 0 (3) 

are particularly simple for this special system, 
even if they must be solved numerically.22 From 
the numerical solutions of the unperturbed problem 
we can construct the resolvent matrix by a finite 
summation over г = 1 N3v or, in case of ad­
sorption, over ι = 1, . . . , ^ f + Νμ 

0(Ε) = Σ,ϊ\η{Ε -Е?>Гхс?». (4) 

The perturbation which carries the unperturbed 
system into the real system of interest has the 
following effects. 

(a) It removes so many layers R from the peri­
odic crystal, that the remaining crystal С has two 
surfaces, which are only interacting with inside 
layers (just as the removal of a segment from a 
circle creates two ends) These surfaces are 
called "Shockley" surfaces. The perturbation Vs 

which annihilates the interactions between Я and С 
actually has only matrix elements between layers ñ 
and some outer crystal layers O, the inner layers 
C-0 are not directly affected This is so because 
we assume the interaction matrix elements between 
(localized) atomic orbitals to become negligible be­
yond a given distance. 

(b) It adds a surface potential VT which modifies 
the Я-matrix elements of the outer layers О In 
the present paper we shall discuss the case that 
this "Tamm" perturbation VT effectively equals 
zero. 

(c) In case of adsorption, it adds the interactions 
between the adsorbed layers A and the crystal lay­
ers and between adsorbed layers among each other. 
This interaction л is localized within the adsorbed 
layers A and the outer crystal layers O. 

The total perturbation Vs + VT + V* modifies the 
unperturbed secular matrices H<0) and S ( 0 > only in 
certain regions, by amounts ΔΙΙ and AS This is 
most easily expressed by projection matrices P", 
po P c - 0 , and Р л = Е*а1Р", which have unit matrices 
in the diagonal blocks corresponding to the regions 
indicated and zero otherwise. Multiplication by a 
projection matrix Pxmeans restriction of the in­
dices to the layer orbitals contained in the region 

X. Now, we can write the effects of the perturba­
tion as 

ΔΗ* = - р я Н ( 0 > Р о - p0H« l>pR, 

Д8* = - Р н 8 < 0 , Р о - Р о 8 < 0 > Р л , 

ΔΗΤ = Ρ 0 Τ Ρ 0 , (5) 
κ 

ΔΗΛ = ΡΛΗ Ρ 0 + Ρ'Ή νΛ + ΡΑΗ ΡΛ - Σ ΡηΗ ( 0 ,Ρ", 
— — 11.1 

κ 

Δ3 Λ = P^S Ρ 0 + Р'Ъ ΡΛ + P^S Ρ'' - Σ P , ,S ( 0 ,P" . 
— — n.l 

The matrix Τ describes the effect of the surface 
potential on the outer layers 0. If we define the 
matrix 

ν ( £ ) = Δ Η - £ Δ 8 . (6) 

which depends on the energy of the perturbed sys­
tem, the perturbed secular equations (2) can be 
written 

V ( £ ) c = - ( H < 0 > - £ S < 0 , ) c . (7) 

Multiplying these equations by the resolvent matrix 
(4) and using the properties of the latter, г г we ob­
tain the Koster-Slater equations 

G{E)V(E)c = с . (8) 

The dimension of these equations is considerably 
reduced with respect to the original secular prob­
lem (2) if we substitute the matrix V(£) as given by 
(5) and (6) and realize that the solutions с which we 
are seeking are located in the crystal region С (in 
case of adsorption, in the region С +A). This is 
worked out in the following sections. 

At this point we only recall that Eq. (8) can be 
solved numerically for Ь and с by the following 
procedure Equation (β) is multiplied by V(£) to 
obtain 

W(£:)c = [ V(E)G(£)V(E) - V(E)]c = 0. (9) 

Then we search for the zeroes in the (real) eigen­
values of the complex Hermitian matrix W(£), 
which are the energy solutions of (Θ). Substituting 
these into (β) or (9) we calculate the coefficients с 
by standard techniques (solving a set of homoge­
neous linear equations). The algorithm to calculate 
the energies E, which is based on the properties of 
the eigenvalues of W(£), is described in paper I . a 

This algorithm uses a bisection procedure select 
an interval (£„ Ег); calculate the number of roots 
in this interval п^Е^ Ег)·, if п0(£і, Ег) >0 bisect the 
interval, etc., until the required accuracy is 
reached. In each cycle we have to construct the 
matrices G(£) and V(£) for a given energy E and to 
perform the operations required for the calculation 
of W(£) = V(£)G(£)V(£) - V(£). These operations 
are rather time consuming, the more since they 
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have to be performed in complex arithmetic, which 
is a serious limit on the practical applicability of 
this method. In the following sections we show for 
Shockley surfaces and adsorption how to avoid a 
considerable part of these operations and, thereby, 
to make the procedure much more efficient. 

III. SHOCKLEY SURFACES 

According to our procedure for general surfaces 
we would (more precisely) multiply Eq. (Θ) by 
Р'МЕ) with {Е) = У${Е) + _Т, substitute (5) and (6) 
and solve Eq. (9) in the subspace 0.гг If VT equals 
zero, the matrix P0V(£) becomes equal to 
P ^ V ^ P * and its rank is determined by dim(fl), 
the dimension of the space R, which is smaller than 
dim(O). Generally, dim(0) = 2xdim(Ä) because the 
layers R in the unperturbed (periodic) crystal are 
connected with outer layers 0 at two surfaces. 
For this reason the matrix 

just the restriction of G(£) to the layers R, so we 
can omit the matrix operations needed in each bi­
section cycle for the construction of ЩЕ) 
= ЩЕ)С{Е)ЩЕ) - V(E) from G(£:) and ЩЕ). 

According to a proof by Freeman,23 Eq. (13) 
yields all energy roots E0 for the crystal with 
Shockley surfaces. The coefficients с can be cal­
culated by substituting these roots back into (13), 
solving the set of homogeneous linear equations for 
the coefficients dH(E0) and substituting these coeffi­
cients into (11), multiplied by P c: 

с = Ρ c c = Ρ ^ Я к ^ а * ^ ) . (14) 

IV. ADSORPTION 

W00(£) = Р 0 У 5 (£)Р я О(£)Р я У 5 (£)Р 0 (10) 

We want to follow a similar procedure for ad­
sorption on Shockley surfaces. In this case, the 
unperturbed system consists of the periodic crystal 
R +C and some isolated adsórbate layers, n= 1, 
. . . , І , and the resolvent matrix can be written 

к 
С(£) = ( Р Я +Р С )С(£)(Р С + РЯ) + £ РЧКЕ)?" . (15) 

When the Tamm perturbation is zero, i .e., H=H ( 0 > 

for the crystal layers О as well as for individual 
adsorbed layers η ε A, the perturbation matrix 
reads 

becomes singular in the subspace О and we cannot 
apply the algorithm to find the solutions E by look­
ing for the zeroes in the eigenvalues of W(£), since 
half of the eigenvalues are identically zero. This 
difficulty could easily be removed by choosing the 
Tamm perturbation nonzero but very small, so that 
it practically does not influence the solutions of Eq. 
(9). It is more efficient, though, to use a special V(£) = P'ÎVS(£)P0 + P0VS(£)P'Î +V0VA(E)PA 

equation for Shockley surfaces which is much faster „~„ ~ 
to solve than the general one. + p^v^i^P 0 + ¿3 Σ Р" Л(Е)Р"', η' *n 

We start with Eq. (8), substitute V(£:) = VS(£;) _ ».ι »Ci - (16) 
given by (5) and (6) and use the fact that Р ^ = с , According to the general method, we would have to 
because the solutions с are located on the crystal Solve Eq. (9) in the subspace O f A, with the matrix 
C. Use of the relations between the projection ЩЕ) = V(£)G(£)V(£) - V(£) constructed from (15) 
matrices, P sPc=0,· P 0 P C =P 0 , yields and (16). In most practical cases, where we do 

not have too many adsorbed layers, the dimension 
G(£)P V (£)P ç=P с . (11) o f t h i s s u b s p a c e i s larger than dim(fi) + 2xdim(A), 

Multiplying this equation by Р я , denoting the matrix w h i c h a P P e a r s t o » * t h e r a n k o f t h e m a t r i x W(£) in 
Р я О(£)Р я by С я я (£) and incorporating the Shockley t h e s e systems. So we have tried to replace the 
^rturbltion into a new set of coefficients m a t r i x Ш*) ЬУ a s m a l l e r raatrix o f t h e s i z e d i m W 

+ 2xdim(A) and to avoid, at the same time, many 
<ія(£) = Р я а ( £ ) Р 0 с , (12) of the matrix operations required for the construe-
- tion of W(£) from the expressions (15) and (16). 

we are left with the equation We start by substituting (15) and (16) into the 
Koster-Slater equations (8), using the property that 

Gf*(£)d"(B) = 0. (I3) с is now located in C+A: ( Р с + Рл)с = с, and the 
relations between the projection matrices. If we 

This equation can be solved in the subspace Д. The multiply the resulting equations by P", p-*, and P 0 , 
matrix G*"(£) is Hermitian and has the correct respectively, we find the equations - — ~ 
properties, so that the algorithm of Paper I can be 
appUed to G*"(£) instead of W00(£) for the calcula- Р^СІЕ^У^Е^с + Р я С(£)Р с (£)Р''с = 0, ( 1 7 . 
tion of the energy solutions £ . This procedure is 
much faster for two reasons. In the first place, yis л 0 

the dimension of О я я (£) is twice as small as the di- L ™G(£)P"V (£)P с 
mension of W 0 0 (£) and, therefore, the Gauss elim- „ „ 
ination process which is part of the algorithm re- + Σ Σ P"G(£)P"V',(£)P"'c = ΡΛ£, η' *η (17b) 
quires less time. Secondly, the matrix С я я (£) is n.i π·.ι — 
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P^G(E)P^ V s (£)P 0 c + Ρ 0G(£)P« ЧЯ)?Ác = P0c . 
(17c) 

Beiore proceeding with the preparation of these 
equations to suit the algorithm for the calculation 
of E, we introduce some additional definitions. The 
matrices describing the interactions between the 
crystal and the adsorbed layers are denoted as 

Vyl0(£) = P',V',(£)Po
p· ν0Α{Ε) = νλ0(Ε)'. (18) 

The interaction matrix between different adsorbed 
layers, which has zero diagonal blocks, is divided 
into two triangular matrices: 

* n-l 

νΑΛ'(·Ε) = Σ ) Σ Р"УЛ(£)Р"',· Л'Л(Е) = ЛЛ'(Е)\ 
η·1 ηΠ — — 

(1Θ) 
These matrices obey the relations 

AT 
ЛЛ'(,Е) + *'А{Е) = РЛ А{Е)РЛ - Σ P"VX(£)P", 

— π.Ι — 

' P-V^EÌP"' if η' < я (20) 

О . if я ' » п . 
рПуЛ ^ р Л ' 

Different parts of the resolvent matrix are denoted 
as 

С я я (£) = РяО(£:)Ря,· 0,!0(£:) = Р яО(£ ,)Р 0

> etc., 

and the diagonal block matrix over adsorbed layers 
as 

я 
ΟΛ(£:) = Σ Ρ " Ο ( £ ) Ρ " . (21) 

π.Ι 

Using these definitions, (17) reads 

(22b) 

(22c) 

О я я (£)Р я У 5 (£)Р о с+С я о (£;)У о х (£)с = 0, (22a) 

G^CE) V^ 0(£)c + Ол(£) VA A' (£)c 

+ G^(£)VA'jl(£)c =PAç, 

QOR (£)рв y s ( £ ) ρ θ £ + G 0 0 ( £ ) V0 > ,(£)c = P0ç. 

Equation (22c) is replaced by the sum of multiplying 
(22c) by VAO(£) and (22b) by V^'^E). Then we sub­
stitute the new variables: 

dR(£) = P s V s (£)P 0 c , 

dA(£) = [ VA0{E) + Л А ' ( £ ) ] с , (23) 

сА = Р л с, 

which are linearly independent if dim(O)+dim(/4) 
3 dim(fl) + 2xdim(^), obtaining: 

G^WdTiE) + G R 0 ( £ ) V 0 J , ( £ ) C A = 0, 

GA(E)dA(E) + [GA(E)VA'A(E) - Р л ] с л = 0 , (24) 

У л о (£)С о я (£М я (£) + [ νΑΑ'{Ε)αΑ(Ε) - ΡΑ ]dA(£) 

+ [ ν Λ Ο ( £ ) 0 0 0 ( £ ) ν Ο Α ( £ ) 

+ V A V (£)G A (E)y A ' A (£)]c A = 0. 

If these equations are written in matrix form (Fig. 
1) it is easily verified that the matrix multiplying 
the new coefficients is Hermitian. The algorithm 
applied to W(£) in the general method in order to 
find the roots of Eq. (9) can now be applied to this 
matrix. Again, this is more efficient since the 
matrix of Fig. 1 usually has a smaller dimension 
and its construction requires much less operations. 
A large part is just the restriction of G(£) to the 

d'lEI 

d'lEI 

FIG. 1. Structure of 
the equations for adsorp­
tion on Shockley surfaces. 
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subspaces R and A, most of the remaining parts 

are s impler than W(£), which i s readily seen by 

comparison with Eq (31) of Paper I Especia l ly 

when we have just a s ingle adsorbed layer, this 

simplif ication becomes obvious because the matrix 

V ^ ' t E ) does not ex is t . 

V CONCLUSION 

Summarizing the preceding sect ions, we conclude 

that for Shockley surfaces and adsorption the 

Koster-Slater equations (8) may be prepared in 

such a form that the numerical algorithm for the 

calculation of the perturbed energ ies can be ap­

plied The £-dependent matrix multiplying the 

coefficients of the perturbed wave function, or lin­

ear combinations of these [Eq (23)], i s Hermitian 

This i s not attained by multiplication with the per­

turbation matrix yielding the matrix W(£) of Eq 

(9), which i s singular in this case, but by s o m e 

specif ic manipulations and substitutions yielding 

Eqs. (13) and (24) The advantages of the latter 

procedure are that the matr ices in (13) and (24) 

have smal l e r dimensions and are much e a s i e r to 

construct than the matrix W(E) of Eq. (Θ) This i s 
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of crucial importance s ince the construction of 
these matr ices and their Inangulanzat ion must be 
carried out in each cycle of the bisection algorithm 
for determining the energy roots The procedures 
described in this paper were incorporated into the 
computer program of Paper I 

When the Tamm perturbation, accounting for the 
effect of the surface potential on the one -electron 
states does not equal zero, the matrix W(£) i s non-
singular in the subspace O, or О +A for adsorption, 
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Chapter IV 

LCAO STUDIES FOR HYDROGEN CHEMISORPTION 
ON TRANSITION-METAL SURFACES 

Remarks on the adsorption bonding with transition metals; 
rôle of the d- and conduction electrons 

In this chapter three articles have been reprinted which report 

our Extended Hückel LCAO studies on the adsorption of (atomic) 

hydrogen at various surface sites of nickel and, for a few examples, 

also copper crystals. In the first and third paper single atom ad­

sorption on clusters is discussed, and in the second one monolayer 

adsorption on finite periodic crystals is considered. In the following, 

we shall give some additional comments on the results. 

1. We have extensively discussed in section 2.9 of Chapter II the 

changes which occur in model systems in the local density of states on 

the adatom and at the surface as a consequence of the chemisorptive 

interaction. Now, we want to look for these effects in our actual re­

sults. Although the situation is more complicated than for the models 

discussed, because of full monolayer adsorption and the existence of 

both a d-band and an sp-band, analogous effects may be identified. For 

instance, split-off states appear above and below the d-band as well as 

the conduction band, as may be observed from figures 6 and 7 of the 

second paper. So, strong adsorption takes place and one may conclude, 

at least for the adsórbate interaction with the substrate conduction 

band, that correlation effects are perhaps not very important (see 

Chapter II, section 2.7). Further, more than the maximum of two split-

off states found by Cyrot-Lackmann and Einstein, may occur, as well as 

simultaneous virtual states inside the band, because the situation 
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is more complicated in our case (e.g., the number of orbitala involved 

in the surface molecule is larger). 

2. In our paper of 1972 we have noted, for the first time, that the con­

duction (4B) electrons play an important rôle in the chemisorption 

bond. This result has been confirmed since by several other authors 

using quite different techniques such as CNDO [l] and Xot-DVM [2]. Also 

some ah initio calculations on NiH [З-б] and other transition-metal 

hydrides [7-ll] indicate that a strong interaction exists between the 

metal 4s orbital and the hydrogen Is orbital. Therefore, it is also 

necessary to take the conduction band into account in chemisorption 

studies on transition metals, which has up to now often been omitted. 

3. In the first paper we have (also) found a strong interaction be­

tween a single hydrogen atom and a copper cluster. Although the 3d or­

bitale were not involved in the adsorption bond, their absence was com­

pensated by an increased 4s contribution. These findings have been 

confirmed in a few calculations on hydrogen monolayer adsorption on 

finite periodic layer crystals, which are similar to the computations 

described in the second paper. Using copper parameters, we found only 

a very small overlap population between the hydrogen Is and the 3d 

substrate orbitale and a considerable increase (about 50%) of the 

overlap population with the conduction band, as compared to nickel. 

The adsorption energies were rather similar to those for the nickel 

crystals. 

4. From the above mentioned results it appears that the strength of 

the chemisorption bonding does not depend in a simple way on the 

occupation of the d-band. But, if we conclude on the contrary that the 

adsorption bonding with nickel and copper mainly takes place via the 

4s orbitale and not via the 3d band, it is somewhat harder to explain 

the different catalytic behaviour of these metals than one has imagined 

for a long time. There is, for instance, the experimental observation 

that nickel does dissociate H„ at low temperatures and copper does not, 
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although for both metals the adsorption energy of hydrogen atoms is 

sufficiently high to make the dissociation of H. energetically pos-

sible [12,13] . 

Deuss and Van der Avoird [l4], realizing that the adsorption 

interaction mainly occurs via Ni (4s) , proposed a certain rôle of 

the 3d orbitale in lowering the activation barrier for dissociative 

chemisorption of H (see Chapter II, section 3). Melius et al. [4,5] 

also ascribed a similar rôle to the 3d electrons. In contrast to 

Deuss and Van der Avoird, however, they assumed that the 3d orbitale 

do not take part in the adsorption bonding at all, but simply pro­

vide those symmetry states which according to the Woodward-Hoffmann 

rules lower this activation barrier. If the 3d electrons are to in­

fluence the energy along the reaction path, however, they should have 

some coupling with the electrons directly involved in the bonding 

(i.e., metal 4e and hydrogen Is). In any case, it can be concluded 

that the participation of partly filled d-electron shells in the 

chemisorptive Interaction with molecular hydrogen may provide an un-

actlvated reaction path, although their actual contribution to the ad­

sorption bond can be relatively small. 

References 

[l] G. Blyholder, J. Chem. Phys. 62, 31 Э (1975). 

[2] T. Tanabe, H. Adachi and S. Inoto, to be published. 

[3] A.B. Kunz, Ы.Р. Guse and R.J. Blint, Chem. Phys. Lett. 

37, 512 (1976). 

[4] C.F. Melius, Chem. Phys. Lett., to be published. 

[5] CF. Melius, J.W. Moskowitz, A.P. Mortola, M.B. Balille and 

H.A. Ratner, to be published. 

[β] L.G.C. Houben and J.Th.A. Stuart, unpublished results. 

[?] P.S. Bague and H.F. Schaefer III, J. Chem. Phys. 58, 1844 (1973). 

[β] P.R. Scott and W.G. Richards, J. Phys. B: Atom. Molec. Phys. 
7, 500 (1974). 

[θ] P.R. Scott and W.G. Richards, J. Chem. Phys. 63, 1690 (1975). 

[lO] A.B. Kunz, M.P. Guse and R.J. Blint, J. Phys. B: Atom. Molec. 
Phys. 8, L358 (1975). 

97 



[il] R.J. Blint, A.B. Kunz and K.P. Guse, Chem. Pbys. Lett. 

36, 191 (1975). 

[12] C S . Alexander and J. Pritchard, J. С S. Faraday Trans. I 

68, 202 (1972). 

[із] К. ChrlBtmann, 0. Schober, G. Erti and U. Neunann, J. Chem. Phya. 

60, 4528 (1Θ74). 

[14] H. Deuss and A. van der Avolrd, Phys. Rev. В 8, 2441 (1973). 

98 



MOLECULAR ORBITAL MODELS FOR HYDROGEN ADSORPTION 

ON DIFFERENT SITES OF A NICKEL CRYSTAL 

D J M FASSAERT, H VERBEEK* and A VAN DER AVOIRD 
Institute of Theoretical Chemistry, University of Nijmegen, 

Nijmegen, The Netherlands 

Received 23 August 1971, revised manuscript received 26 October 1971 

Model calculations for the chemisorption of hydrogen atoms on nickel (111), (100) and 
(110) surfaces are carried out by means of the Extended Huckel MO method After 
comparison of the results obtained on a cluster of 13 nickel atoms with the properties of 
the metal, adsorption at different surfaces was studied by truncating this cluster and 
adsorbing a hydrogen atom on it, so that the environment of the adsorption site has the 
correct symmetry 
It can be concluded that the adsorption of a hydrogen atom over a surface nickel atom is 
energetically more favourable than adsorption in some surface holes Also the surface 
potential is more negative in the first case The adsorption energy decreases with an 
increasing number of neighbours to the surface atom 
It appeared further that the structure of the "surface molecule" is more important for 
determining which d-orbitals play a rôle in chemisorption than is the interaction with 
the "bulk" metal atoms Moreover, we found that the 4s orbitals are very important for 
covalent adsorption Although the chemisorption of hydrogen atoms on copper is of a 
different type (the 3d orbitals not being involved), the greater binding to the 4s orbitals 
causes the adsorption energy to be comparable with the nickel case 

1. Introduction 

The concept of a "surface molecule", which describes the localized 
bonding between a chemisorbed species and a small number of substrate 
atoms1), has been used by theorists2-13) and experimentalists14) to calculate 
and interpret the phenomena occurring on adsorption Several theoretical 
treatments have checked the validity of this concept for certain systems or, 
more generally, as a function of some typical system parameters15-22) 

The purpose of the present investigation is to obtain some quantitative 
information about atomic hydrogen adsorbed on a transition-metal such 
as nickel, a system which is interesting and relatively well studied experiment­
ally As we intend to obtain these quantitative results by means of a standard 
molecular orbital method, we can only study the interaction of a hydrogen 
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atom with a limited number of metal atoms. Nevertheless, we hope that these 
model calculations will permit us to make some conclusions about the 
degree of localization of the adsorption bond. A further essential object 
of this work is to determine which transition-metal orbitals play a rôle in 
chemisorption and what is the effect of the partly filled d-band and of the 
conduction electrons. We think this knowledge to be useful in order to 
check assumptions on this matter made in previous theoretical treatments 
of the same system2·12·13). It can also help to improve the crude analysis of 
the rôle of multi-centre forces in the dissociation of H2 on nickel13). 

The calculations have been carried out for hydrogen on different crys-
tallographic surfaces of face-centered cubic nickel in order to examine the 
effect of a different environment of the adsorption site. We hope that the 
applied model represents the experimental situation sufficiently well to 
allow some theoretical predictions about the surface potential and the 
adsorption energy. 

2. Description of the model 

2.1 CLUSTERS 

Since the adsorption models only consist of a limited number of metal 
atoms we want to consider first the effect of truncating the crystal. This 
investigation is carried out on a cluster of 13 nickel atoms, representing one 
atom with its complete nearest neighbour environment in the fee crystal 
(fig. la). The symmetry group of this complex is Oh, the nearest neighbour 
distance is taken equal to the metallic value (2.49 Λ = 4.70 atomic units). 

The next calculations were performed on systems of 10, 9 or 8 nickel 
atoms obtained from the original cluster by removing some atoms such that 
the central metal atom has the nearest neighbour environment of an atom 
at the (111), (100) or (110) surface, respectively (figs, lb, с and d). The sym­
metry groups of these clusters are C3,,, C*,, and €2,,. 

Subsequently, we "adsorb" a hydrogen atom on these surface clusters, 
at a variable height above the central nickel atom (figs. 2a, b, c). The resulting 
complexes have Сз , С ^ and C 2 v symmetry, just as the original metal clusters. 
As this symmetry is exactly the same as the symmetry of an isolated hydrogen 
atom adsorbed on a semi-infinite metal crystal, we expect that these models 
can serve to investigate the effect of the (direct) environment on the properties 
of the adsorption site. Actually, the study of neighbour effects is made by 
comparison to an isolated NiH molecule, which is also calculated. 

We have also examined what happens when a hydrogen atom is adsorbed 
on a cluster which is just like one of those in figs, lb or 1c, but inverted. 
The hydrogen atom is now placed in the centre of a "hole" between 3 or 4 
"surface" nickel atoms, respectively, at variable height (figs. 2d and 2e). It 
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Fig. 1. (a) bulk cluster, (b) (111) surface cluster, (c) (100) surface cluster, 

(d) (110) surface cluster. 
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Fig 2. Models for hydrogen adsorption: (a) on the (111) surface, (b) on the (100) 
surface, (c) on the (110) surface, (d) in a (111) surface hole, (e) in a (100) surface hole. 
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must be noted, however, that these surface nickel atoms are not provided 
with their complete nearest neighbour environment, as the central surface 
atoms are in the clusters of figs. 2a, b and с 

2.2. ATOMIC ORBITALS AND VALENCE ELECTRONS 

As we did not wish to make any a priori assumptions about the d-orbitals 
involved in adsorption bonding, we have taken all five 3d orbitals on each 
nickel atom. The 4s orbitals of nickel were included as well, in order to 
represent the conduction electrons. The atomic orbitals are expressed in the 
coordinate system shown in fig. 1 for the central metal atom and parallel 
coordinates on all other atoms. The radial parts of the orbitals, a single 
Slater type function for the 4s and a "double zeta" function for the 3d 
orbitals, are approximate atomic SCF orbitals23) (table 1). Each nickel 

TABLE 1 

Atomic orbitals and valence state ionization energies 

Ni 3d 

4s 
Cu 3d 

4s 
H Is 

Exponents 
(ao-1) 

5.75) 
2.00 \ 
1.50 
5.95 ) 
2.30$ 
1.55 
1.0 

Contraction 
coefficients 

0.5683 / 
0.6292 (f 
1.0 

0.5933 ) 
0.5744 ) 
1.0 
1.0 

α 
(eV) 

8.38 

6.97 
10.60 

7.75 
13.60 

β 
(eV) 

12.97 

8.16 

27.18 

У 
(eV) 

1.76 

0.91 

13.62 

atom has 10 valence electrons and an effective core charge of +10 units. 
For reference purposes we have also made some calculations using only 
the nickel 3d orbitals and taking into account 9 valence electrons (core 
charge +9). A hydrogen atom contains a ls-orbital (exponent 1.0) and 
1 electron. 

Since much evidence has been put forward to relate the adsorption 
behaviour of transition metals to the number of "holes" in the d-band, we 
thought that it would be worthwhile to use these models tentatively to 
consider this relation. For this reason we have applied some of our original 
calculations to the adsorption of hydrogen on copper. In this qualitative 
study only one calculation was made with the copper atomic orbitals23); 
in most cases we used the nickel orbitals, taking 11 valence electrons. 

2.3. THE MOLECULAR ORBITAL METHOD 

For a study of the surface molecule concept it would be most appropriate 
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to consider the influence of the surrounding crystal as a perturbation. 
Hydrogen adsorption on different nickel surfaces could, for instance, be 
treated as a NiH molecule in different crystal fields. Since, however, the 
influence of the crystal in this system is mainly a covalency or delocalization 
effect, the most convenient way to obtain quantitative information is by a 
Molecular Orbital method. The most serious drawback of this method is 
the difficulty in defining the boundary conditions of relatively small clusters 
such that they represent a semi-infinite, or at least large, crystal. Bennett 
et al.21) found a solution to this problem for layer structures, such as 
graphite, but for a "really three-dimensional" crystal this is still an object 
for further study. In the interpretation of the results presented here we 
have tried to correct for the smallness of the clusters by considering relative 
effects. 

The simplest MO-LCAO method applicable to these models is the 
Extended Hiickel method2 4). The overlap matrix elements Spq of the secular 
equations 

(H - eS) с = 0 (1) 

are calculated with the atomic orbitals χρ specified above. The diagonal 
matrix elements Hpp are set equal to the empirical atomic Valence State 
Ionization Energies (VSIE)25-26); the non-diagonal elements are approx­
imated by the Wolfsberg-Helmholz formula27): 

Hpq = KSpq{Hpp + Hqq)l2. (2) 

Since metallic nickel has 0.6 holes in the d-band, the atomic Valence State 

for nickel was taken as 3d9-4 4s 0 6 , for which the Ionization Energies were 

obtained by linear interpolation (table 1). The Wolfsberg-Helmholz constant 

was usually chosen as K=\.1S; the effect of variations in К has been 
examined. Transformation of the secular equations with the matrix S _ 1 / 2 

and application of an algorithm for the calculation of matrix eigenvalues 
and eigenvectors, yield the orbital energies £; and the molecular orbitals 

<Pi=Y.*PcPi- (3) 
P 

Before relating the results of an Extended Hiickel calculation to experi­
mental quantities as binding energies and dipole moments we have to 
make some comments. The Extended Hiickel method does not explicitly 
calculate the electron-electron or the electron-core interactions. Therefore 
it is impossible to compute exactly the LCAO total energy of a molecule. 
The same restriction holds for molecular binding or dissociation energies, 
which are defined as the energy differences between the molecule and its 
separate parts. It has been shown28), however, that a reasonably good 
approximation to the binding energy can be given in terms of the orbital 

103 



energies : 

AE= Σ «?νΒ-Σ»;4Α-Σ«Ή> (4) 
molecule part part 

AB A B 

where the summations extend over all orbitale of the indicated species, 

multiplied by their occupation numbers, /»¡. This expression is based on 
the assumption that the extra electronic repulsion in the molecule, compared 
with the separate parts, equals the extra internuclear repulsion. Using it 
we must remember two limitations : 
(1) for small distances it underestimates the repulsion because of this 
assumption. 
(2) for large distances it converges, in case of heteronuclcar molecules, to 
the binding energy between ions, just as the exact SCF binding energy 
often does. 

There is enough practical experience, however, to apply this formula 
with some confidence in the region around the chemical bonding distance, 
especially for our aim, which is the calculation of the relative stability of 
bonding between a hydrogen atom and some clusters of metal atoms. 

Another shortcoming of the Extended Hiickel method hinders us if we 
want to calculate the work function change or surface dipole moment. A 
method of doing this approximately would be to compute the Mulliken 
atomic charges29) on the hydrogen and the metal atoms. It is known, how­
ever, that the atomic charges calculated from Extended Hiickel MO's are 
too large. The usual way to correct this is the introduction of a charge-
dependent Η matrix by writing, for instance25): 

HPP = -<χρ- ßplA - рЯІ. (5) 

where ιχρ is the VSIE of the atomic orbital χ^ βρ and γρ describing its charge 
dependence, and <7A is the Mulliken charge of the atom to which χ, belongs. 
The molecular orbitale and the atomic charges are then determined by an 
iterative procedure. This process yields more realistic charges indeed, but, 
as we have observed, it also introduces into our models an unrealistic 
effect in the binding energies given by eq. (4). This can be understood as 
follows: if there is a shift of electron charge from nickel to hydrogen, the 
orbital energies change according to (5). The single hydrogen orbital is 
raised in energy, but all nickel orbitals, including those which are not 
bonding to hydrogen, are lowered by approximately the same amount. This 
leads to a large drop in the average orbital energy and, therefore, to an 
enormous increase in the binding energy calculated by formula (4) with 
the lowered MO's and the original atomic orbital energies. Within the 
framework of the Extended Hiickel method this problem can only be 
solved by assuming that the nickel orbital energies depend considerably 
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less on the atomic charge than the hydrogen orbital energy does, an assump­
tion for which we could not find any evidence in the literature, however. 

For the interpretation of our results we have chosen the following solution. 
By performing some iterative calculations we have confirmed that the 
relative charges do not change by iteration. Therefore we have mostly 
applied the original non-iterative Extended Hiickel method, using the VSIE's 
of the neutral atoms. The effect of the exaggerated ionicity on the binding 
energies is checked. The surface dipole moments can only be interpreted 
relative to each other, as their absolute values are too high. 

3. Results and discussion 

3.1. THE BULK NICKEL CLUSTER 

As we wish, at first, to compare the results of our calculations on relatively 
small clusters to experimental data on large crystals or to band calculations 
on infinite crystals, we would like to use concepts as: band width, occupation 
of bands, Fermi level, etc. These concepts must be defined in terms of our 
discrete set of orbital energy levels and MO coefficients. We shall use the 
following definitions: 

The width of the d-band is the energy difference between the highest 
and the lowest orbital with a strong d-character. The Fermi level is the 
energy of the highest occupied MO. The amount of d-character of the elec­
trons in a definite cluster is: 

Nd= Σ К, (6) 
all atoms 

к 

where Nf is the total gross population29) of the d-orbitals on atom k. An 
analogous formula defines the amount of s-character. If nd is the average 
3d-character per atom, then (10 — nd) is the number of holes in the d-band. 
The charge of an atom 2 9), qk, is the core charge minus .the gross atomic 
population, Nk = N£ + Nj;. 

For comparison of the binding energy calculated for small nickel clusters 
by formula (4) with the experimental cohesion energy of the metal, we must 
note that in the bulk cluster only the central nickel atom has its complete 
nearest neighbour environment, whereas the 12 surrounding atoms only 
have 5 nearest neighbours each. In the surface clusters even part of these 
environments are removed. Considering the nearest neighbour interactions 
as the most important we can "renormalize" the binding energy calculated 
for the cluster by multiplying it by the ratio of the coordination number 
in the metal (12) to the average coordination number in the cluster. If this 
quantity is divided by the number of cluster atoms it can be related to the 
metallic cohesion energy. 

105 



Some results of non-iterative calculations on the four nickel clusters 

shown in fig. 1 are listed in table 2. The "d-band width" of the bulk cluster 

(1.81 eV) is smaller than the values calculated by Fletcher30) (2.7 eV), 

Hanus3 1) (»5eV) and Yamashita et al.32) (»;4eV). To explain this effect 

we have also performed some tight-binding calculations on an infinite 

nickel crystal (space symmetry group Fm3m = Oh) using the Extended 

TABLE 2 

Results for the nickel clusters (the numbering of the atoms is indicated in fig. 1) 

d-band width (eV) 
Fermi level (eV) 
Holes in d-band 
Total binding energy (eV) 
"Renormalized" cohesion energy (eV) 
Atomic charge ̂ (l) 
?(l)surface - ?(l)bulk = Atf (1) 

Δ<7(2) 
Δϊ(3) 
Δί(4) 

Bulk 
cluster 

1.81 
- 7 . 6 4 

0.68 
22.7 

3.8 
2.54 

-
-
-
-

( I l l ) 

surface 
cluster 

1.67 
- 7 . 7 2 

0.67 
17.1 
4.3 
1.37 

- 1 . 1 7 
-0 .01 
+ 0.19 

-

(100) 
surface 
cluster 

1.63 
- 7 . 6 6 

0.59 
15.0 
4.5 
0.12 

- 2 . 4 2 
- 0 . 0 5 
+ 0.44 

-

(110) 
surface 
cluster 

1.59 
-7.69 

0.54 
13.3 
4.7 
0.02 

- 2 . 5 2 
-0 .04 
+ 0.30 
+ 0.35 

Hiickel formalism and the method of Slater and Koster3 3). Taking the 

parameter choice indicated for the clusters we found a d-band width of 

2.8 eV; with a Wolfsberg-Helmholz constant K=2.0 this value becomes 

3.8 eV (compared to 2.44 eV for the bulk cluster). From this result, together 

with evidence in the literature34-35) that the Extended Hiickel method 

yields reasonable valency band widths, we conclude that the narrow 

"d-band" is a consequence of the limited size of the cluster. The 4s "band 

width" of 18.4 eV computed for the bulk cluster is close to the width of the 

conduction band calculated by Hanus3 1) (16.4 eV). This agreement must 

be fortuitous, however, since, in accordance with previous experience34), 

a tight-binding calculation of the infinite crystal yields a conduction band 

which is too broad («90 eV). 

The Fermi level is calculated to be lower ( — 7.64 eV) than the experi­

mental value of « — 5 eV [Farnsworth and Madden3 6) —5.22 eV, Gerlach 

and Rhodin3 7) —4.75 eV]. The position of the Fermi level varies little with 

a different Wolfsberg-Helmholz constant, but is, of course, strongly depend­

ent on the VSIE's substituted in the diagonal elements Hpp. In the bulk 

cluster the "number of holes in the d-band" is 0.68 which agrees well with 

the experimental values lying around 0.6. 
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For the cohesion energy, "renormalized" for the correct number of 
nearest neighbours, we found a value of 3.8 eV per atom, the experimental 
cohesion energy being 4.40 eV38). 

Calculations with only 3d orbitals on the nickel atoms and 9 valence 
electrons yielded a slightly smaller band width (1.75 eV). The Fermi level 
was found to be —7.79 eV. If 4 or 5 extra electrons are added, making 9.3 
to 9.4 d-electrons per atom, then the Fermi level is the same height as that 
from the calculations including the 4s-orbitals ( — 7.64 eV). Apparently, 
in this model there is not much interaction between the 3d and the 4s band. 

From these comparisons we can conclude that the atomic orbitals and 
the parameters used in the Extended Hiickel method are reasonably good. 
The VSIE's are probably somewhat too large, but the relative position of 
the 3d and 4s orbitals is well represented. Conclusions about adsorption 
which are made hereafter, should be checked for their sensitivity with 
respect to changes in the absolute values of the VSIE's and in the Wolfsberg-
Helmholz constant K. 

As mentioned already in the description of the model, the atomic charges 
calculated with the Extended Hiickel method for this relatively small 
nickel cluster are rather high, +2.54 units on the central atom, —0.21 on 
each of its neighbours. Therefore all surface and adsorption effects on the 
charge distribution should be considered relative to this bulk cluster. 

3.2. SURFACE CLUSTERS 

If some atoms are removed from the bulk cluster in order to obtain 
models for the environment of a nickel atom at a (111), (100) or (110) 
surface (figs, lb, 1c, Id), the symmetry of the original system is lowered. 
The orbitals which form a basis for two or three-dimensional representations 
of the group Oh split into doubly or non-degenerate orbitals. No specific 
difference can be observed between the "bulk" t2g and eg orbitals, which 
are bonding and non-bonding, respectively, according to a hypothesis of 
Goodenough39) [used in adsorption models of Bond 40) and Shopov et al.12)]. 
Both symmetry orbitals are present in the top of the "d-band" of the 
bulk cluster and they are affected by the same amount at the occurrence 
of the "surface". 

A distinct effect, however, is found on the charge distribution. Negative 
charge is shifted to the surface atoms, especially to the central nickel atom, 
which is transferred from its bulk surroundings to a surface environment. 
This shift of electrons to the surface increasesin the order(l 11)<(100)<(110), 
with a decreasing number of neighbours to the surface atoms (table 2). 
Some iterative Extended Hiickel calculations using formula (5), show lower 
absolute values of the atomic charges, but the same relative effects. 
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The occurrence of the surface also caused an increase in the amount of 

d-character of the electrons and a larger cohesion energy per nearest 

neighbour bonding. Both effects increased in the order (111)<(100)<(110). 

3.3. HYDROGEN ADSORBED ON THE CENTRAL NICKEL ATOM 

The binding energy of a hydrogen atom adsorbed on the central nickel 

atom of the surface clusters (figs. 2a, 2b, 2c) is calculated according to formula 

(4) by subtracting the energy of the hydrogen atom and the metal cluster 

separately from the energy of the combined system. The results, together 

with the binding energy of a NiH molecule, are shown in fig. 3a as a function 

of the distance between the hydrogen atom and the central nickel atom. 

adsorption r — covalenl adsorption 
energy (eV) energy (eV) 

ι ι ι ι I ι ι ι ι I 

11 13 15 17 1 9 Î 11 Π 15 17 19 I 

distance between hydrogen and the central nickel atom 

Fig. 3. Binding energy for a hydrogen atom adsorbed: on the (111) surface (curve a), 
on the (100) surface (curve b), on the (110) surface (curve c), in a (111) surface hole 
(curve d), in a (100) surface hole (curve e), of nickel (3d and 4s electrons), compared 

with NiH (curve f) 

The binding energy at the equilibrium distance, 1.4 to 1.5 À (the experimental 
distance in nickelhydride is 1.47 Â41), the sum of the covalent radii of Ni 
and H is 1.6 Â), is higher than the experimental adsorption energy of 
hydrogen atoms on nickel42) (2.91 eV). It clearly shows a decrease when 
the nickel atom bound to hydrogen is surrounded by an increasing number 
of neighbours or, in other words, when the surface is more closely packed. 
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In order to analyze this result it is convenient to transform the orbitale 
in all clusters to a set of coordinate systems with the z-axes perpendicular 
to the surface (figs. 2a, 2b, 2c; the hydrogen atom lies on the z-axis of the 
central nickel atom). The most important gross atomic orbital populations, 
atomic charges and overlap populations are given in table 3. From the 
overlap populations it becomes evident that the hydrogen atom is most 
strongly bonded to the central nickel atom, especially to the 3dz2 and 4s 
orbital. The effect of the other nickel atoms on this bond is smaller and 
apparently decreases the bond strength. The overlap population between 
the hydrogen orbital and the central nickel 4s orbital is relatively large and 
rises with increasing binding energy, whereas the overlap population with 
3d22 is smaller and shows the opposite effect; therefore, it is probable that 
the 4s orbital plays an important rôle in the covalent bonding between 
nickel and hydrogen. 

Examining the orbital populations we find a large charge transfer from 
the central nickel 3dz2 orbital to the hydrogen. Compared to this electron 
transfer the other effects of adsorption on the charge distribution are small. 
In describing the model we have noticed already that this accumulation of 
charge on the hydrogen atom is probably enhanced by the Extended Hiickel 
method. Consequently, also the Extended Hiickel binding energies are too 
large, due to an exaggerated shift of electrons from the higher nickel orbitals 
to the lower hydrogen orbital. Therefore we have corrected the calculated 
binding energies by subtracting the atomic orbital energy differences multi­
plied by the charge shifts occurring on hydrogen adsorption. The result, 
which could be called the "covalent binding energy" is plotted in fig. 3b. 
This binding energy does not show a minimum as a function of distance and 
is lower than the experimental adsorption energy. This could be caused by 
the fact that the real situation does not correspond to zero ionicity, but 
lies somewhere in between the results of figs. 3a and 3b. It is striking, how­
ever, that the order of adsorption strengths on different surfaces is unchanged. 

From the negative charge on the hydrogen atom it may be concluded 
that hydrogen adsorption gives rise to a more negative surface potential, 
although the effect is probably smaller than calculated by the non-iterative 
Extended Hiickel method. The variations in this hydrogen charge for 
different clusters are so small that it is not justified to make any conclusions 
about relative effects on various surfaces. 

Calculations with 3d orbitals only and 9 valence electrons per nickel 
atom yield larger binding energies (fig. 4a) and an opposite, although smaller, 
dependence on the number of neighbours of the central nickel atom (com­
pared to the calculations including 4s orbitals shown in fig. 3a). This is not 
in contradiction to our earlier conclusion that the central nickel 4s orbital 
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TABLE За 

Most important orbital populations and atomic charges for hydrogen on nickel; the Ni(l)-H distance is 1.5 A; the numbering of 
the atoms is indicated in fig. 2 

(111) surface (111) surface (100) surface (100) surface (110) surface (110) surface 

cluster cluster + H cluster cluster + H cluster cluster + H 

3d 2 2(I) 

3d, 2(l) 
3dO T(l) 
Sd^.-^d) 
3d I V ( l ) 
total 3d(l) 
4s(l) 
total 3d (2) 
4s(2) 
total 3d(3) 
4s (3) 
total 3d (4) 
4s (4) 

<7Ni(i) 

<7Ni(2) 

9N1(3) 

9NI(4) 

9 H 

1.904 
1.960 
1.960 
1.167 
1.167 
8.158 
0.468 
9 465 
0.753 
9.457 
0.565 

-
-

+ 1.37 
- 0 . 2 2 
- 0 . 0 2 

-
_ 

0.972 
1.967 
1.967 
1.364 
1.364 
7.635 
0.368 
9.457 
0.724 
9.419 
0.663 

-
-

+ 2.00 
- 0 . 1 8 
- 0 . 0 8 

-
- 0 . 6 6 

1.979 
1.759 
1.759 
1.992 
1.913 
9.401 
0.477 
9.635 
0.625 
9.186 
0.584 

-
-

+ 0.12 
- 0 . 2 6 
+ 0.23 

-
_ 

0.928 
1.759 
1.759 
1.992 
1.913 
8.351 
0.391 
9.585 
0.595 
9.314 
0.654 

-
-

+ 1.26 
- 0 . 1 8 
+ 0.03 

-
-0.67 

1.962 
1.860 
1.971 
1.956 
1.744 
9.493 
0.485 
9.635 
0.618 
9.378 
0.535 
9.419 
0.446 

+ 0.02 
- 0 . 2 5 
+ 0.09 
+ 0.13 

_ 

0.931 
1.860 
1.971 
1.961 
1.861 
8.583 
0.415 
9.626 
0.577 
9.420 
0.562 
9.397 
0.582 

+ 1.00 
- 0 . 2 0 
+ 0.02 
+ 0.02 
- 0 . 6 9 



TABLE За (continued) 

(111) surface (111) surface (100) surface (100) surface NiH 
cluster cluster + H cluster cluster + H 

in hole in hole 

3cWl) 
3d„(i) 
3d„(l) 
Sdx.-ï .d) 
3 d „ ( i ) 
total 3d(l) 
4s(l) 
total 3d (2) 
4s (2) 
3d^(3) 
3d„(3) 
Μ,,ς» 
3dz*-yt(3) 

Βα,,Ο) 
total 3d(3) 
4s(3) 
4N1(1) 

«N1(2) 

9NI(3) 

? H 

1.904 
1.960 
1.960 
1.167 
1.167 
8.1S8 
0.468 
9.465 
0.753 
1.959 
1.807 
1.947 
1.983 
1.761 
9.457 
0.565 

+ 1.37 
- 0 . 2 2 
- 0 . 0 2 

-

1.570 
1.967 
1.967 
1.364 
1.364 
8.234 
0.357 
9.522 
0.762 
1.921 
1.824 
1.928 
1.910 
1.762 
9.344 
0.431 

+ 1.41 
- 0 . 2 8 
- 0 . 2 2 
- 0 . 3 8 

1.979 
1.759 
1.759 
1.992 
1.913 
9.401 
0.477 
9.635 
0.625 
1.985 
1.918 
1.633 
1.912 
1.738 
9.186 
0.584 

+ 0.12 
- 0 . 2 6 
+ 0.23 

-

1.748 
1.759 
1.759 
1.992 
1.913 
9.171 
0.331 
9.695 
0.603 
1.960 
1.916 
1.710 
1.836 
1.840 
9.262 
0.468 

+ 0.50 
- 0 . 3 0 
+ 0.27 
- 0 . 3 9 

3d2s 
total 3d 

4s 
?NI 

<?H 



TABLE 3b 

Overlap populations with the hydrogen Is orbital; the Ni(l)-H distance is 1.5 Â; the 
numbering of the atoms is indicated in fig. 2 

3d«.(l) 
4s(l) 
total (1) 
4s(2) 
total (2) 
4s (3) 
total(3) 
4s (4) 
total (4) 

(111) surface 
cluster + H 

0.0600 
0.1399 
0.1999 

-0 .0029 
-0.0021 
-0 .0087 
- 0.0093 

-
-

(100) surface 
cluster + H 

0.0526 
0.1479 
0.2005 
0.0004 
0.0016 

-0 .0089 
-0 .0094 

-
-

(110) surface 
cluster + H 

0.0452 
0.1589 
0.2041 
0.0005 
0.0014 

-0.0087 
-0.0086 
-0 .0080 
-0.0091 

TABLE 3b (continued) 

(111) surface (100) surface 
cluster + H in hole cluster + H in hole NiH 

3d**(l) 
4s(l) 
total (1) 
4s(2) 
total (2) 
3d,.(3) 
3d«(3) 
Sd^O) 
Βΰ,.-,.Ο) 
SdxvO) 
4s(3) 
total(3) 

0.0394 
0.0477 
0.0871 

-0.0071 
-0.0058 

0.0038 
0.0 
0.0079 
0.0158 
0.0 
0.0705 
0.0980 

0.0432 
0.0527 
0.0958 

-0.0066 
-0.0052 

0.0045 
0.0005 
0.0 
0.0162 
0.0 
0.0441 
0.0653 

3d i 2 

4s 
total 

0.0241 
0.2080 
0.2321 

is largely responsible for the covalent bonding of a hydrogen atom; it is the 

consequence of a higher ionicity. If the ionic contribution to the binding 

energy is subtracted, as described previously, the covalent binding energy is 

lower than in the model with 4s orbitals (fig. 4b). That the effect of the 

surrounding nickel atoms is reversed and is smaller can be explained by 

assuming that the main part of this effect is repulsive (in agreement with 

the conclusion from fig. 3) and is caused by the 4s orbitals of these nickel 

atoms. 

3.4. HYDROGEN ADSORBED IN A NICKEL SURFACE "HOLE" 

If a hydrogen atom is adsorbed in a "hole" between 3 or 4 surface atoms 

of a (111) or (100) nickel face, it is placed perpendicularly over the central 
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nickel atom lying in the second layer, which is 2.03 Â or 1.76 Â, respectively, 
below the surface. The other nickel atoms can now, however, certainly 
not be considered as a perturbation, since some of them are at approximately 
the same distance to the hydrogen atom. The models used for hydrogen 
adsorption in these positions are shown in figs. 2d and 2e. In fig. 3a the 

adsorplmn covalent adsorption 
energy (eV) φ ib) ener9ï ,eV l 

в о і а ь — ' — ' — ' , ' ' — ' — ' — e V 
11 13 15 17 А 11 П 15 17 А 
disiance between hydrogen and the central nickel atom 

Fig. 4. Binding energy for a hydrogen atom adsorbed on nickel (3d electrons only), 
compared with NiH. The labeling of the curves is indicated in fig. 3. 

calculated binding energies are plotted as a function of the distance between 
the hydrogen atom and the central nickel atom directly under it. These 
binding energies are lower than the values calculated for hydrogen adsorbed 
over a surface nickel atom. Besides the overlap populations of the hydrogen 
atom with the central nickel atom, also the overlap populations with the 
3 or 4 neighbouring surface atoms are important now. These overlap popula­
tions are smaller than the one between hydrogen and the central nickel 
atom in the clusters of figs. 2a, b and c, although their sum is larger. Also 
the charge transfer effect from nickel to hydrogen is smaller, which might 
provoke the question whether the lower binding energies are not caused 
by a lower ionicity. Fig. 3b, however, where the "covalent binding energies" 
are compared, shows that this is not the case. 

The lowering of the charge transfer (the charge on hydrogen is now more 
equally supplied by the bonding 3d and 4s orbitals) is such a distinct effect 
that we can conclude that hydrogen adsorption in a surface hole causes a 
less negative surface potential than adsorption on the surface atoms. 

Calculations with just the nickel 3d electrons only confirm the previous 
conclusions. 

Several of the calculations for hydrogen adsorption on nickel were 
repeated with different parameters or employing the iterative Extended 
Hiickel method. The Wolfsberg-Helmholz constant was taken as K=2.0 
or A : = 2 - | 5 P , | 4 3 ) instead of the usual value K=IJ5. The VSIE's of the 
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TABLE 4a 

Most important orbital populations and atomic charges for hydrogen on copper; the Cu(l)-H distance is 1 S A, the numbering of the atoms is 
indicated in fig 2 

(111) surface (111) surface (100) surface (100) surface (110) surface (110) surface 
cluster cluster + H cluster cluster + H cluster cluster + H 

3d**(l) 
3d„(l) 
3d ï 2(l) 
sd^-wi) 
ЗахЛО 
total 3d(l) 
4s(l) 
total 3d(2) 
4s (2) 
total 3d(3) 
4s (3) 
total 3d (4) 
4s (4) 
flCu(l) 

<?Cu(2) 

?Cu(3) 

9Cu(4) 

qn 

1 996 
1 991 
1991 
1 978 
1 978 
9 933 
0519 
9 975 
1 134 
9 971 
0 994 

-
-

4 0 55 
- 0 1 1 
4-0 03 

-
-

1 979 
1 991 
1 991 
1 967 
1 967 
9 894 
0 347 
9 978 
1054 
9 967 
0 948 

-
-

4-0 76 
- 0 0 3 
4-008 

-
- 0 82 

1996 
1989 
1989 
1 992 
1957 
9 922 
0 706 
9 980 
1 206 
9 967 
0 940 

-
-

+ 037 
- 0 1 9 
4-009 

-
-

1 846 
1989 
1989 
1 992 
2000 
9816 
0 390 
9 982 
1 232 
9 972 
0 833 

-
-

+ 0 79 
- 0 2 1 
+ 0 20 

-
- 0 72 

1 994 
2000 
1 995 
1989 
1977 
9 955 
0 633 
9 976 
1 291 
9 978 
0 967 
9 964 
1 133 

+ 041 
- 0 27 
+ 0 05 
- 0 10 

-

1 887 
2000 
1995 
1 978 
1977 
9 837 
0 414 
9 980 
1 153 
9 976 
0 990 
9 963 
0 898 

+ 0 75 
- 0 13 
+ 003 
+ 0 14 
- 0 76 



TABLE 4a (continued) 

3dz2(l) 
3d„(l ) 
3dM(l) 
3dXl-V2(.l) 
Sdxvd) 
total 3d(l) 
4s(l) 
total 3d (2) 
4s(2) 
3dM3) 
3dx*(3) 
3dÏZ(3) 
3dl2-V3(3) 
MzyQ) 
total 3d(3) 
4s(3) 
?CU(1) 

?Cu(2) 

ÍCu(3) 

<?H 

(111) surface 
cluster 

1.996 
1.991 
1.991 
1.978 
1.978 
9.933 
0.519 
9.975 
1.134 
1.998 
1.994 
1.992 
1.998 
1.989 
9.971 
0.994 

+ 0.55 
- 0 . 1 1 
+ 0.03 

-

( I l l ) surface 
cluster + H 

in hole 

1.933 
1.992 
1.992 
1.988 
1.988 
9.893 
0.439 
9.976 
1.290 
1.995 
1.996 
1.965 
1.961 
1.990 
9.907 
0.646 

- 0 . 6 7 
- 0 . 2 7 
+ 0.45 
- 0 . 4 1 

(100) surface 
cluster 

1.996 
1.989 
1.989 
1.992 
1.957 
9.922 
0.706 
9.980 
1.206 
1.998 
1.996 
1.988 
1.996 
1.989 
9.967 
0.940 

+ 0.37 
- 0 . 1 9 
+ 0.09 

-

(100) surface 
cluster + H 

in hole 

1.922 
1.989 
1.989 
1.992 
2.000 
9.891 
0.567 
9.977 
1.494 
1.993 
1.990 
1.994 
1.961 
1.989 
9.928 
0.621 

+ 0.54 
- 0 . 4 7 
+ 0.45 
- 0 . 4 6 

3d2* 
total 3d 

4s 
дел 

qu 

CuH 

1.877 
9.877 
0.480 

+ 0.64 
- 0 . 6 4 



TABLE 4b 

Overlap populations with the hydrogen Is orbital; the Cu(I)-H distance is 1.5Â, the 
numbering of the atoms is indicated in fig. 2 

3d22(l) 
4s(l) 
total (I) 
4s (2) 
total (2) 
4s(3) 
total (3) 
4s (4) 
total (4) 

(111) surface 
cluster + H 

-0 .0510 
0.2215 
0.1705 

-0 .0416 
-0 .0444 

0.0004 
0.0000 

-
-

(100) surface 
cluster + H 

-0 .0024 
0.1740 
0.1717 
0.0031 
0.0006 

-0 .0129 
-0 .0135 

-
-

(110) surface 
cluster + H 

-0.0202 
0.1945 
0.1743 

-0.0277 
-0 .0302 
-0.0109 
-0.0118 
-0.0041 
- 0.0045 

TABLE 4b (continued) 

3d,*(l) 
4s(l) 
total(1) 
4s (2) 
total (2) 
3d*>(3) 
3d«(3) 
М гО) 
Sdz.-^O) 
3dxy(3) 
4s(3) 
total(3) 

( I l l ) surface 
cluster -f H in hole 

0.0104 
0.0179 
0.0282 

-0.0188 
-0.0192 
-0.0001 

0.0 
0.0066 
0.0086 
0.0 
0.1194 
0.1345 

(100) surface 
cluster + H in hole 

0.0075 
-0.0442 
-0.0367 
-0.0418 
-0.0422 
-0.0010 

0.0011 
0.0 
0.0046 
0.0 
0.1039 
0.1086 

CuH 

3dz* 0.0123 
4s 0.2185 

total 0.2309 

nickel 3d and 4s orbitals were shifted by an equal amount such that the 

experimental Fermi level in the bulk cluster was reproduced. Although 

these modifications changed the quantitative results somewhat, the effects 

discussed above are unaltered. 

3.5. HYDROGEN ADSORBED ON COPPER 

The greater activity of nickel in many reactions, as compared to copper, 

is usually ascribed to the partly filled d-band. There is, for instance, the 

effect that dissociative chemisorption of H 2 on nickel requires a much 

smaller activation energy tha~ on copper, whereas the adsorption energy 

of atomic hydrogen is not much larger [2.91 eV for nickel42), 2.43 eV for 

copper 4 4 · 4 5)]. We have tried by our model calculations to obtain some 

information which might help to explain the observed effects. 
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The most important change in going from nickel to copper is the extra 
valence electron, filling the d-band- and part of the conduction band. In 
addition there is a change in parameters such as the lattice constant, the 
energies and exponents of atomic orbitals. In most cases we have compared 
the results for hydrogen on nickel to the results obtained when one extra 
electron per metal atom is added. In one calculation (hydrogen adsorbed 
on the (100) surface) we have introduced all the copper parameters (table 1). 
The last calculation showed that for the qualitative comparison of the adsorp­
tion on nickel and copper it is sufficient to go from 10 to 11 valence electrons, 
keeping the other parameters constant. 

The binding energies for hydrogen on "copper" are drawn in fig. 5a. 
The binding energy for hydrogen adsorbed over a surface atom is even 
somewhat larger than for nickel. However, the charge on hydrogen is also 
slightly higher and the covalent binding energies (fig. 5b) are comparable to 
nickel. The binding energy for adsorption in a surface "hole" is considerably 
lower than for nickel. Analyzing the results in terms of orbital and overlap 
populations (table 4) we observe that the metal 3d orbitals do not participate 
in the hydrogen bonding. All the binding that takes place, both covalent 
and ionic, is due to the metal 4s orbitals. This 4s bonding is stronger for 

adsorphon covalent adsorption 
energy (eV) energy ¡eV) 

- 1 0 

00 

10 

20 

30 

10 

SO 

SO 

70 

BO _ 

11 Π 15 17 1 9 І ι : 15 1 
distance between hydrogen and the central copper atom 

Fig. 5. Binding energy for a hydrogen atom adsorbed on copper (nickel 3d and 4s 
orbitals, 1 extra valence electron), compared with CuH. The labeling of the curves is 

indicated in fig. 3. 
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copper than for nickel, which could be explained by the fact that the metal 
4s band is now exactly half filled. The order of the binding energies on 
different surfaces also deviates from the nickel case. 

Although we find a very different bonding behaviour of the 3d electrons 
in copper as compared to nickel, this model gives no direct evidence for 
the greater activity of the latter metal. For the study of this subject we 
should extend it, for instance, to a model for dissociative chemisorption 
of H2, such as described in ref. 13. 

4. Conclusions 

Bearing in mind the approximate nature of the model we think that 
some interesting conclusions can still be drawn. The binding between a 
nickel crystal and a hydrogen atom adsorbed on top of a surface atom is 
similar to a simple NiH molecular bond. The main interaction takes place 
between the nickel 3d22 orbital, pointing towards the H atom, the 4s orbital 
and the hydrogen Is orbital. The adsorption energy decreases slightly with 
an increasing number of nickel atoms surrounding the "surface molecule". 
Whether this result means that the effect of the neighbouring nickel atoms 
is always repulsive or if it is only true for the specific environments in the 
(111), (100) and (110) surfaces is yet to be studied. In any case, the contrary 
result would be obtained if the interaction between a hydrogen atom and 
the nickel atoms were represented by a pairwise interaction potential of 
the Lennard-Jones type48). 

The models for adsorption in a surface "hole" show that this position is 
energetically less favourable. The negative charge on the adsorbed atom is 
smaller than for hydrogen adsorbed over a surface atom, thus causing a less 
negative surface potential. 

Our calculations including all 3d Orbitals do not support the models dis­
cussed by Bond40) and calculated by Shopov, Andreev and Petkov12), based 
on the idea that the d-orbitals which afford the eg representation (dx2_),2 and 
dz2 in the coordinate system of fig. 1) are non-bonding in the metal and 
are therefore particularly suitable for adsorption bonding. We have found 
no indication for a particulary important rôle of these eg orbitals, neither 
in the models for hydrogen adsorption on the surface, nor in those for 
"hole" adsorption. On the contrary, we conclude that among the 3d orbitals 
the transformed dZ2 orbital pointing perpendicularly out of the surface is 
most important for chemisorption on the surface atoms. This is completely 
at variance with Bond's model because at the (111) surface, for instance, 
this orbital is written in the original coordinate system as(άΧί,+άζζ+άίΖ)/^/3 
and thus belongs to the t j , representation of the crystal point group. 
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Generally, we find that the structure of the surface molecule is more signifi­
cant for determining which d-orbitals are primarily involved in chemisorpt-
ion than is the interaction with the "bulk" metal atoms. 

Another interesting effect emerging from our model calculations is the 
important rôle of the 4s orbitale in covalent adsorption bonding. For 
copper, where the 3d orbitale are not involved in the adsorption bond, 
the increased 4s contribution even compensates the decrease in adsorption 
energy. 

Finally we want to point out two possible improvements of this model 
which can be made in order to consolidate its conclusions. Firstly, the 
effect of truncating the nickel crystal must be taken into account more 
elegantly. Secondly, the Extended Hiickel method insufficiently prevents 
charge accumulations on certain atoms, whereas the iterative procedure 
with charge dependent orbital energies is unsatisfactory as these modified 
orbital energies enter directly into the binding energy. It would be preferable 
to replace the Extended Hiickel formalism by a MO method which takes 
the electron repulsion explicitly into account. 
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The model we have used to study hydrogen chemisorption on nickel surfaces is a tight-
binding Extended Huckel method applied to finite (periodic) crystals up to about 250 
atoms, the non-orthogonal basis set comprising five 3d orbitals, one 4s orbital and three 
4p orbitals per atom After calculating the band structure of fee nickel, we have examined, 
by this model, the effect of the (100), (110) and (111) surfaces on the local density of 
states and the charge distribution The results agree closely with moment calculations of 
the density of states in semi-infinite crystals and with experimental (XPS, UPS and INS) 
spectra Extensive studies have been made of the influence of adsorption on the (partial) 
densities of states m order to illuminate the nature of the chemisorption bond Particularly, 
we have concluded that both the 3d electrons and the conduction electrons take part in 
this bond Equilibrium positions for adsorption on various sites have been determined 
and the adsorption energy has been computed and compared with experimental data We 
find that the stability of adsorption decreases in the order (110) > (100) > (111) and 
Atop > Bridge > Centred 

1. Introduction 

The last few years have shown a rapid increase in the number of quantum theoreti­
cal calculations on surfaces and adsorption stimulated mainly by the following two 
causes From the experimental side an increasing amount of data become available 
from many different techniques, mostly spectroscopical, on single surfaces which 
are structurally well-defined, for instance, by simultaneous LfcbD studies On the 
other hand, the computational methods for solids and molecules have advanced so 
far, that one is ready to attack the surface problem Especially the surfaces of semi­
conductors and transition metals, in view of their practical interest, are studied quite 
intensively 

The quantum theoretical approaches to surfaces and adsorption can be divided 
into two categories The first group of methods is based on a semi-infinite crystal 
model, the second group on model clusters of limited size 

The first model has been developed by Grimley [1] , Koutecky [2] and others [3] , 
and can now be applied to calculate adsorption energies, explicitly taking into account 
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the effect of eleclron repulsion on the adsorbed atom and some nearby surface 
atoms [4—6] This has been performed by Grimley and Pisani [4] in the Hartree 
Fock scheme and by Paulson and Schneffer [6] in a Valente-Bond formalism Al­
though one has found an elegant way to deal with the band structure of the under­
lying solid in the form of a Green function or resolvent, this treatment is still so 
complicated that it has only been applied to hypothetical "cubium" crystals 
(Cubic crystals with one s-type orbital per atom, described by a tight binding scheme 
with only nearest neighbour interactions ) In applications to real d-electron systems 
(transition metals) the form of the d-band was greatly oversimplified For instance, 
the density of d-states is replaced by a simple δ-function [7], a semi elliptical distri­
bution [8] or other approximations [9,10] 

The only semi-infinite crystal studies which incorporate the real structure of the 
d-band in fee, bec or hep transition metals are those of Cyrot-Lackmann et al [ I l ­
ls] and Heine [16], Haydock et al [17—19] They calculate the d-band density of 
states by a moment expansion technique or by a continued-fraction expansion of the 
(local) Green function The d band is described by a tight-binding scheme, and the 
effect of the conduction electrons and d-band/conduction band hybridization are 
neglected When discussing our results, we refer in more detail to these calculations, 
which also include some treatments of adsorption 

The second type of methods use a cluster model for the surface or adsorption site 
These methods which are now applied to clusters up to 30 light atoms such as carbon 
or 15 transition-metal atoms, are the same as those used for large organic molecules 
or transition-metal complexes the Extended Huckel method [20], the CNDO method 
[21] and the SCF Χα Scattered Wave method [22-24] Although the semi-empirical 
methods are always hampered by some arbitrariness in the choice of parameters, one 
has collected so much material from molecular calculations by now, that a realistic 
interpretation of the results is nevertheless possible The main difficulty with these 
limited-size clusters is that they should be embedded in a larger crystal with covalent 
bonding occurring between the atoms This embedding is usually omitted or simulated 
by some artificial boundary conditions, the effects of which are not known 

The calculations presented in this paper provide a link between the two different 
approaches of the surface problem We have calculated finite crystals by the LC АО 
or tight-binding method, approximating matrix elements over atomic orbitals by the 
Extended Huckel scheme This enables a direct comparison with cluster model re­
sults On the other hand, by imposing Born-Von Karman periodic boundary condi­
tions on the crystal in directions parallel to the surface and transforming the secular 
matrix to Bloch type "layer orbitals", we have simplified the calculations to a large 
extent Thus, we have treated transition-metal crystals up to about 250 atoms, with 
9 orbitals per atom The periodicity imposed on the crystals prevents the occurrence 
of undesired boundary effects and the crystal size permitted by this method is already 
sufficient to calculate the band structure, the density of states, etc , which can be 
compared with (semi-)in finite crystal results 

As a typical example of practical importance we have studied the adsorption of 
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hydrogen atoms on different low index surfaces of fee nickel as a function of the 
adatom position. Besides the 3d orbitals, 4s and 4p orbitals have been included since 
we know that, via hybridization, they have an effect on the band structure [25] and, 
particularly, we have found also [26] that they can strongly take part in adsorption 
bonding. Therefore, it seems better to include these orbitals than to omit them com­
pletely [4—19], although we realize that a tight-binding description of the conduc­
tion bands does probably not optimally represent all physical properties of the metal. 
We have given particular attention to the adsorption energies on different sites and 
to the effect of surface formation and hydrogen adsorption on the (local) charge 
distribution and density of states. Besides the possibility of comparing our results 
with either of the two traditional approaches, we also gain some insight into the 
localized character of the adsorption bond. 

2. Description of the method 

2.1. The model 

In order to test the tight-binding Extended Hiickel method and its parametriza-
tion, we have first performed some calculations of the bulk band structure of fee 
nickel. The non-orthogonal atomic orbital basis set {iXp(r - Rm)),p = 1,..., 9}, 
five 3d, one 4s and three 4p orbitals localized on the centres Rm, has been trans­
formed into Bloch orbitals, after imposing Born—Von Karman cyclic boundary 
conditions over )Vj, Λ̂ 2, Л̂ з unit cells. In order to obtain the one-electron states of 
the crystal a 9-dimensional (complex arithmetic) secular problem can be solved for 
each wave vector к independently. Usually in solid state theory one takes Nl (i= 1, 
2, 3) infinitely large and calculates, in principle, all к points in the first Brillouin 
zone [27]. In practice, the calculation of any physical quantity has to be performed 
by summation over a certain number of representative points. In our model, since 
we intend to calculate surface and adsorption effects on finite crystals, we have studied 
both infinite and finite JV,-. The latter choice corresponds to collecting a finite selec­
tion from the infinite crystal solutions, namely those Bloch waves of which the wave 
length is a divisor of the crystal dimensions. The effects of this selection are discussed. 

For studying a specific surface plane, for instance (100), (110) or (111), we have 
chosen two of the lattice vectors,«] andfl2. parallel to this plane and simply omitted 
the cyclic boundary condition in the third, ay, direction. Thus we have produced a 
crystal with two parallel surfaces which consists of /Vlayers. UN is sufficiently large, 
which has been verified in our calculations, it can be assumed that these surfaces do 
not influence each other. In our crystal the bulk structure is continued up to the 
surfaces, but it is very simple to include the effect of surface dilation as long as the 
two-dimensional unit cell ( j j , aj) is not perturbed. Also perturbations which double 
the unit cell dimensions, such as may occur by surface reconstruction or by half-
monolayer adsorption, can be treated without too much difficulty. 
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We can benefit by the periodicity parallel to the surface if we introduce a basis of 
two-dimensional Bloch orbitals characterized by Лц = (frj, ^3) and the layer number 
m and solve the following W-dimensional secular problems over these "layer orbitals": 

N 9 

Σ Σ [Hm-p;mq(.l<ô - ^»)5m>;OTÍ ,(* l |)] ^ ( Ä , ) = 0 , (la) 

with 

Hmp;mq(kí)= ^ Σ ε χ ρ ^ * ^ + к2т2)] 
Ш,-1 /«2 = 1 

X <Хр(г - m'a^H^ir - mìal - mjfli - "Мз)>. (Ib) 

and a corresponding expression for the overlap matrix elements. 
For studying hydrogen adsorption on the different nickel surfaces we have pro­

ceeded as follows. An adsorption site is characterized by an (arbitrary) position vec­
tor a with respect to some surface atom. By means of the vectors al and 02 one 
generates a complete monolayer of hydrogen atoms on equivalent adsorption sites 
with the same periodicity as the surface. By adding one extra layer orbital charac­
terized by the same Лц, which is composed of hydrogen 1 s orbitals, to the secular 
problem (la), we describe the finite crystal with an adsorbed monolayer of hydrogen. 
This can easily be generalized to several monolayers and the resulting secular pro­
blems, with or without adsorption, can be solved by direct diagonalization or by 
invoking the resolvent methods of refs. [28, 29]. In practice, we have used the direct 
diagonalization method, except in some test cases, since these calculations involve a 
relatively small number of layers whereas the range of direct interactions between 
conduction band orbitals is rather large (see section 2.2). The resolvent method be­
comes advantageous when the number of layers is increased or nearest neighbour 
interactions are considered only. 

2.2. Calculation of integrals 

The overlap and //-matrix elements between atomic orbitals, which occur for 
instance in (lb), have been approximated by the Extended Hiickel scheme, as we 
did in earlier cluster calculations [26]. The nickel nearest neighbour distance has 
been taken equal to 2.49 K. The overlap elements Spq(R) = (XpirMXqir R)) have 
been computed on the basis of Slater type orbitals, with double exponent for the 
3d orbitals. single exponent for 4s and 4p, the exponents and contraction coeffi­
cients being given in table 1. We have assumed that the 4s and 4p orbitals in the 
nickel metal are somewhat less diffuse than in the free atom. For the hydrogen Is 
orbital an exponent of 1.0 has been chosen, though we have performed some test 
calculations with a value of 1.2 which yielded quite similar results. 
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Table 1 
Atomic Orbitals and valence state ionization energies 

N1 3d 

4s 
4p 

H Is 

Exponents 

too) 

{ 5 75 
l 2 00 

2 1 
2 0 
1 0 

Contraction 
coefficients 

rO 5683 
X0 6292 

1 0 
1 0 
1 0 

VSIE 
(eV) 

- 8 38 

- 6 97 
- 3 34 

- 1 0 0 

The diagonal Я-matrix elements Hpp(R = 0) = (Хр(г)|Я|хр(г)> have been approxi­
mated for the nickel orbitals by Valence State Ionization Energies [30], assuming a 
valence state configuration in the metal of 3 d 9 4 4 s 0 6 (see table 1) For hydrogen 
the neutral atom value is -13 6 eV, but this value would result in a considerable, non-
physical electron transfer from nickel to hydrogen This effect can be avoided by 
adjusting the orbital energies to the atomic charges m an iterative Extended Huckel 
calculation This iterative method is more time consuming, however, and yields un­
satisfactory results for the adsorption energy [26] Therefore, we have chosen the 
simpler solution to use a modified VSIE of— 10 0 eV for hydrogen only, since we 
expect that the single hydrogen orbital is more affected by charge transfer than the 
large bulk of nickel orbitals In an iterative method this would correspond to a hy­
drogen charge of about —0 3 units, which is also the charge that we have actually 
found in our calculations The experience of Anders et al [31], who have also used 
this value and compared their results with iterative Extended Huckel calculations 
justifies our assumption The non-diagonal elements 

Я и ( А ) = <х р(г) |Я|Х ( 7(г-/г)), with ρ Фц or R * 0 , 

have been approximated by the Wolfsberg—Helmholz formula 

Hpq(_K) = KSpq{R)[Hpp{R = 0) + Hqq{R = 0)]/2 , (2) 

with the usual value of K= 1 75 
Since the magnitude of these matrix elements SpJR) and Hp (R) decreases with 

increasing interatomic distance R u is not necessary to consider all atom pairs in the 
entire crystal On the other hand, the inclusion of only nearest neighbour interac­
tions appeared definitely insufficient for those elements involving 4s and 4p orbitals 
We have found that a range of 2 nickel nearest neighbour distances (5 0 A) which 
allows every nickel atom in the bulk to interact directly with 4 shells of neighbours 
(54 atoms), is satisfactory The same range has been used for the nickel-nickel, the 
nickel—hydrogen and the hydrogen—hydrogen interactions Increase of this range 
to 3 nickel nearest neighbour distances (176 bulk atoms) yielded no visible im­
provement of the results Once the matrix elements over atomic orbitals have been 
calculated, they are easily transformed into integrals over Bloch or layer orbitals 
[formula (lb)] 
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2.3. Adsorption energy 

One of the quantities we have calculated is the adsorption energy per hydrogen 
atom. According to the usual Extended Hückel scheme this energy can be defined 
as: 

AE^ = (Etf/V - Σφή/Ν* - eH , (3) 

where e,- , N¡ and ef, N¡ are the orbital energies and occupation numbers for the 
finite crystal, with and without hydrogen adsorption, respectively, ./VH is the total 
number of hydrogen atoms and eH the energy of an isolated hydrogen atom. If the 
adsorption energy were thus calculated we would obtain a reasonable estimate in 
the neighbourhood of the chemisorption equilibrium positions. These positions are 
not known, however, particularly for adsorption over surface holes where the equili­
brium heights cannot even be guessed reliably. Neither can they be calculated, be­
cause the Extended Hückel method often fails to predict an energy minimum as a 
function of the bond length. Therefore, the results would strongly depend upon 
rather arbitrary assumptions about the equilibrium positions unless we can improve 
our method to predict these positions correctly. 

BINDING ENERGY (eVl CORE REPULSION (eV) 
-20 

-2 2 

- 2 1 

- 2 6 

-2 8 

-30 

-32 

-31 

-3 6 

-36 

- 1 0 

- 4 2 

11 13 15 17 19 21 23 25 . 

»I») 
Fig. 1. Effect of nickel core repulsion on the Extended Huckel binding energy of NiH. 
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One reason for this defect of the Extended Hiickel method is that it only accounts 
for the valence electrons. As we can observe from fig. 1 an Extended Hiickel calcula­
tion of NiH including 3d, 4s, 4p on Ni and Is on H predicts an ever increasing attrac­
tion in the range where the energy minimum should be. Including the fully occupied 
core orbitals 3s and 3p on Ni such a minimum is obtained. According to Anders et al. 
[31] we have fitted the (short range) core repulsion thus calculated by an exponential 
function, a exp(-W?) with R being the Ni—H distance, and added this pairwise poten­
tial between the nickel and the hydrogen atoms to the adsorption energy calculated 
by (3). 

2.4. Density of states, population analysis 

In solid state physics the total density of states is usually calculated by summation 
over a large number of specific [32] or random [33] points in the Brillouin zone. For 
finite crystals we can also calculate this quantity directly from its definition by simply 
counting the number of levels per energy interval. 

The local density of states is commonly defined by: 

« p ( e ) = E | c p / | 2 6 ( e - e 1 ) , (4) 
i 

where cpi is the coefficient of a given localized basis orbital (an atomic or layer or­
bital) |χρ> in the crystal orbital | ψ,·>. In case we have more than one orbital \Xp) per 
atom, (4) defines the partial (local) density of states of type χ „; the total density of 
states is obtained by summation over p. Although these definitions apply for an 
orthogonal basis set | χ^) they can be transferred to a non-orthogonal basis as well 
[34]. Because of overlap contributions, we obtain then a quantity which does not 
add up to the total density of states when summed over the complete basis IXp>. For 
this reason, we define instead for a non-orthogonal basis: 

nJe)= E f k J 2 + Σ R e í c ! , ^ , ^ ) 
Ρ' ЯФР ^РГ РЧ' 

Не - e,) , (5) 

where £„ is the overlap integral between the basis orbitals Ιχ^) and Ιχ.). When inte­
grated up to the Fermi level this definition of η (e) yields the Mulliken "gross orbital 
population", whereas definition (4) would yield the "net orbital population" [35]. 

3. Results and discussion 

3.1. The periodic nickel crystal 

The results of our band structure calculations with interactions included up to 
fourth order neighbours (54 atoms) in the fee lattice are plotted in figs. 2, 3 and 4. 
We have also allowed for interactions up to ninth order neighbours (176 atoms) but 
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Fig. 2. Band structure of fee nickel calculated by the Extended Húckel method. Only the first 
conduction band is shown. Group theoretical symbols for the pomts and axes in the Brillouin 
zone are taken from ref. [36]. 

this did not change the figures visibly. We have made the density of states curves 
somewhat less dependent on the finite number of levels, the specific choice of TVj, 
N2, N3 and the positions of the energy intervals in the histogram by applying the 
following smoothing procedure: for any interval of 0.1 eV we count the number of 
levels in the interval plus the number of levels in some neighbouring intervals multi­
plied by decreasing weight factors (0.09 : 0.24 : 0.34 : 0.24 : 0.09 according to a 
gaussian distribution). 

We have found that the band structure is in fair agreement with the results of 
more elaborate band calculations on nickel, applying the light-binding d-band plus 
nearly free electron conduction band model [25], the APW scheme [37] or the 
ab initio LCAO-SCF method [38,39]. The d-band is somewhat too narrow, although 
we have included 3d-4s-4p hybridization, and its position is somewhat too low re­
lative to the conduction band. Also the Fermi level is found too low (-7.13 eV) in 
comparison with experimental values [40,41]. At first, we have tried to correct for 
these differences by adjusting the nickel VSIE's in the Extended Hiickel method, but 
it appeared that the relative populations of the 3d and conduction band became 
somewhat less realistic, 3d8·6 (4s 4p)1·4, than the original populations, 3d9·2 (4s 4p)0·8, 
and that the charge transfer effects when forming a surface became improbably large. 
Therefore, we have maintained the usual Extended Hiickel parametrization. Anyway, 
we may notice that in the other band structure calculations of nickel the absolute 
position of the bands is not computed at all [25,37,39] or is too low as well [38], 
the Fermi level being at -6.69 eV in the latter case. 

The partial density of states distributions in fig. 4 demonstrate that all d-orbitals 
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Fig. 3. Effect of fc-point selection (periodic crystal dimensions) on the density of states of the 
3d and conduction bands in fee nickel. The Fermi-level is indicated by £"p. 

yield important contributions to the entire d-band. but that specifically the І2„ 
type d-orbitals show extra peaks at the bottom and the top of the band, the top 
peak being more pronounced. This is in accordance with the conclusion from other 
band calculations [25,42] about a prominent peak of І2„ character at the top of 
the band, which causes the І2„ preference of the magnetic form factor in nickel [43]. 
There is also very close agreement between our results and the moment expansion 
calculations of Ducastelle and Cyrot-Lackmann [12], which lead, for instance, to the 
conclusion that the "І2„ band" has a larger second moment than the " e . band" in 
fee crystals. These conclusions support the general notions about the non-bonding 
nature of the e g orbitals and the bonding/anti-bonding character of the t2f, orbitals 
(although this difference should not be understood too strictly), but they do not 
justify the simplified band picture by Goodenough [44]. 
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-10 В -6 
energy(eV) 

I ig 4 Partul density of states for the eg and t™ orbitals in the d-band of fee nickel (point 
group Oh) 

Table 2 
Gross orbital populations for the bulk crystal (JV, = N2 = N3 = 5) and for the surface layer of dif­
ferent S-layer crystals (N1 = Мг = 5), local coordinate systems have been used at the different 
surfaces, the z-axes perpendicular to the surface, the x- and.y-axes as in fig 8 

3 d 2 2 

3<>χ2-ν* 
3d*v 
3<1χΖ 

4 s 
4 Ρ* 
4 p v 

4 P Z 

bulk 

1 913 
1 913 
1 794 
1 794 
1 794 
0 668 
0 042 
0 042 
0 042 

(100) 

1928 
1 946 
1693 
1914 
1914 
0 694 
0 048 
0 048 
0 026 

(110) 

1 925 
1 884 
1 841 
1 912 
1 948 
0 680 
0 040 
0 048 
0 020 

(111) 

1 907 
1 827 
1 827 
1 935 
1 935 
0 733 
0 048 
0 048 
0 038 

From the orbital populations in table 2 it is easily calculated that the d-electrons 
in the metal have a slightly preferential e character (41 6% compared with 40% in 
the free atom) Also this value agrees very well with the 42% calculated by 
Desjonquères and Cyrot-Lackmann [15] The absolute orbital populations cannot 
be compared because these authors assume a total d-electron number of 9 

The density of states distributions which have been produced for finite, rather 
small numbers of unit cells, JVJ , Л^. N^ = 5 or 6, are not very different from the 
results obtained with the usual solid state techniques, where these numbers are in­
finitely large, in principle It is interesting to note that the curves are relatively bet­
ter when the jV,-values are different, because this leads to a larger number of indepen-
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dent A-points in the Brillouin zone, independent in the sense that they are not con­
nected by point group symmetry operations. Since the results even for values as 
small as N¡ = 5 give a good impression of the band structure (if one does not wish to 
interpret every individual small peak), we can confidently use these finite values for 
studying surface and adsorption effects. All further conclusions have been tested 
with respect to their jVj-dependence, moreover. The same smoothing procedure for 
the density of states curves has been used throughout this paper. 

3.2. The surfaces (100), (110) and (111) 

The nickel lattices we have calculated to study these surfaces are periodic in the 
directions parallel to the surface over 5X5, 6X6 or 7X7 unit cells and consist of 
5 or 6 layers. In fig. 5 the local densities of states in the surface layers are compared 
to the bulk densities from the periodic crystal and in figs. 6 and 7 the specific partial 
contributions to the d-band are analyzed. Table 2 shows the orbital populations at 
the surface and in the bulk. 

- 3 d - |4s.4pl-

y W ^ АІААШкМ 
(100) surface 

^r, ^ A ^ A W W V A ^ 

11111 surface 

^^./члЛХ/ ЛЛ... 
-io 6 β Hl 

energy (eV) 

Fig. 5. Local densities of states in the (100) and (111) surface layers, compared with the bulk 
density of states in fee nickel. 
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The results from fig. 5 are in excellent agreement with the conclusions from 
moment calculations [11-19] and from experimental UPS [45], XPS [46] and 
INS [47,48] data: the total d-band width is unaltered by the presence of the sur­
face, but the second moment of the density of states distribution is reduced by a 
smaller slope at the edges. The d-band adopts more the shape of one central peak. 
The moment calculations, which include only d-orbitals with nearest neighbour 
interactions, predict that the second moment of the surface density of states is 
proportional to Z, the number of nearest neighbours of a surface atom. Indeed, we 
have found a larger band width reduction for the (100) surface (Z = 8) that for the 
(111) surface (Z = 9). 

The effects of the surface on specific d-orbital densities, which can be observed 
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.12 -W -β -6 -12 -10 -ί -6 -12 -10 -S -6 -12 -10 -β -6 

energy Іе ) 
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Fig. 6. Surface and adsorption effects on the partial local densities of states at the (100) surface. 
(a) Surface layer density of states of different 3d orbitals, denoted by the representation sym­
bols of the point group C^; for comparison the bulk density of states is given, (b) Surface layer 
density of states of the 4s and 4p orbitals. (c) Local density of states m the adsorbed hydrogen 
layer, as compared to the density of states of an isolated H layer with the same periodicity. 
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in figs. 6 and 7, are quite well understandable if one remembers the former bonding 
character of these d-orbitals in the bulk (e or І2„) and visualizes their orientation 
with respect to the surface. So, the orbitals protruding from the (100) surface, d2i, 
dxz, AyZ> are more strongly influenced than the orbitals lying in the surface plane, 
dx2_v2, AXy\ the І2„ orbitals άχζ, d„r and d™ are more affected than the e. orbitals, 
dz2 and ахг_уг. In case of the (111) surface, the local dz2 orbital pointing perpen­
dicularly out of the surface, which is written as (aXy + Λχζ + dyZ)/\/3 in the bulk 
coordinate system (and thus belongs to the X^a representation), is more influenced 
than the rest of the d-orbitals. 

By integrating the partial density of states up to the Fermi level we have calculated 
the orbital occupation numbers in table 2. The latter give a direct measure of the 
aspherity of the d-electron charge distribution at the surface, which was recently 
calculated also by Desjonquères and Cyrot-Lackmann [15] using their momenl „A.-
pansion method. For the (100) surface where the results can be directly compared, 
they are in good agreement: the order of the occupation numbers is the same except 
for the very small difference between dr2 and d^, ayZ ; the significantly lower occupa­
tion of AXy is obtained from both calculations. Note again that the absolute values 
differ because of Desjonquères and Cyrot-Lackmann's assumption of 9 d-electrons. 
For the (110) and (111) surfaces the relative occupation numbers cannot be com­
pared directly, since Desjonquères et al. have expressed the d-orbitals always in the 
bulk coordinate system, whereas we have used d-orbitals adapted to the local sym­
metry at the surface. 

3.3. Adsorption 

The different sites on which hydrogen atoms have been adsorbed at the (100), 
(110) and (111) surfaces are shown in fig. 8. They can be denoted as A (atop), В 
(bridge) and С (centred). At the (110) surface two bridge positions are possible, B-
longand B-short;at the (111) surface we have adsorption over an octahedral hole, 
C-oct., or over a tetrahedral hole, C-tet., with a nickel atom lying directly below the 
surface. The two-dimensional periodicity involved 5 X 5 , 6 X 6 or 7 X 7 unit cells, 
the number of nickel layers has been taken as 5 or 6. At each site the adsorption 
energy per hydrogen atom has been calculated according to the method of section 2.3 
as a function of the height over the surface and plotted in figs. 9a, b, с The binding 
energies, hydrogen atomic charges and overlap populations at the equilibrium posi­
tions are collected in tables 3,4 and 5. In order to get a more detailed insight into 
the nature of the chemisorption bond, the effect of adsorption on the local densities 
of states at the surface and in the hydrogen layer have been included in figs. 6 and 7. 

The adsorption energy for various sites agrees fairly well with experimental values: 
an adsorption energy of 23 kcal/mole for molecular hydrogen [49—52] corresponds 
to a binding energy of 2.75 eV for hydrogen atoms. This value changes little over a 
rather large range of surface coverages; for a discussion of the heat of adsorption at 
monolayer coverage as compared with the initial heat of adsorption we refer to 
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Fig 8 Schematic representation of different adsorption sites at the three low index surfaces 
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paper II. For comparable sites А, В or C, those surfaces are most favourable, (110) 
> (100) > (111), where the surface atoms have the smallest number of nearest 
neighbours This seems to be at variance with the experimental results [49—52], 
which are nearly equal for the three low index faces However, the differences in 
our calculated values are not very pronounced Moreover, we find an opposite effect 
from the 3d and the conduction electrons, as can be observed from the overlap 
populations in table 5, so that, for instance, a slight overestimate of the conduction 
band contribution could explain this difference For adsorption on different sites, 
we find that the stability decreases in the order A > В > С The maximum stability 
of the A-position is confirmed by some experimental data for hydrogen on Raney 
nickel [53] 

The same qualitative conclusions have already been drawn from our earlier 
cluster calculations [26], but the differences between А, В and С sites are less pro­
nounced now we have calculated equilibrium positions (which are quite different 
from the ones we had assumed for C-sites) The comparison with more recent cluster 
calculations is given in paper II Comparison with semi-infinite crystal calculations is 
difficult since those treatments which incluile real d-band systems [11-19] do not 
compute the adsorption energy, whereas other calculations are concerned with 
the hypothetical solid "cubium" [4,6,54,55] or other approximate models [7-10, 
56] The results of the latter calculations depend strongly on the parametrization 
and it is hard to say which parametnzation corresponds with the actual system of 
hydrogen adsorbed on nickel 

The atomic charge on the hydrogen atoms according to Mulhken's definition is 
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found to have a maximum value for Α-sites (about -0.35 unit charges) and to be 
somewhat smaller for B- and C-sites (-0.30 to -0.25 unit charges). The same effect 
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Table 3 
Adsorption energies at equilibrium positions of the hydrogen atoms; distances are given with 
respect to the nearest surface Ni atom; periodicity Nl = У 2 = 5 

A 
В 
С 
A 
В-short 
B-long 
С 
A 
В 
C-tet. 
C-oct. 

Ni-H 

distance (A) 

1.50 
1.70 
1.91 
1.50 
1.70 
1.86 
2.19a 

1.50 
1.70 
1.81 
1.81 

A^ads (eV) 

5 layers 

-2.60 
-2.50 
-2.32 
-2.80 
-2.60 
-2.48 
-2.38 
-2.46 
-2.23 
-2.18 
-2.24 

6 layers 

-2.49 
-2.39 
-2.24 
-2.81 
-2.59 
-2.44 
-2.30 
-2.38 
-2.13 
-2.08 
-2.14 

a The Ni-H distance for the Ni atom directly below the hole is 1.60 A. 

Table 4 
Η-atom charges at equilibrium positions; 5-layer crystals, Nl = N2 = 5 

(100) (110) ( H I ) 

A-ads. -0.36 -0.41 -0.33 
B-ads. -0.30 r - 0 . 3 3 a -0.25 

"•-0.33 
C-ads. -0.25 -0.27 r - 0 . 2 3 b 

1 - 0 . 2 4 

a B-short and B-long, respectively. 
Ь C-tet. and C-oct., respectively. 

was qualitatively found from cluster calculations [26]. The average magnitude of 
this hydrogen charge justifies the assumption of a hydrogen VS1E of -10.0 eV 
(section 2.2) which corresponds rather well with a self-consistent result, although 
self-consistency has not been imposed. 

From the partial density of states curves in figs. 6 and 7 we can clearly observe 
the interactions between the hydrogen orbitals and the nickel 3d, 4s and 4p orbitals 
Some shifting and broadening of the hydrogen layer levels occurs and the positions 
of these peaks in the hydrogen density of states correspond with new peaks in the 
3d, 4s and 4p densities of the metal caused by adsorption. Since the shifts of these 
peaks are relatively large compared with their broadening, one can hardly speak 
about "virtual" hydrogen levels [9]. This phenomenon points to a strong covalent 
bonding [57] of the hydrogen orbitals both to the conduction band orbitals 4s and 
4p and to some of the 3d orbitals. Which specific d-orbitals take part in adsorption 
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Table 5 
Overlap populations between an H atom (at equilibrium position) and the nearest surface Ni atom; 
5-layer crystals, TV, = Af, = 5 

3d 
4s + 4p 
3d 

4 s + 4 p 

3d 

4 s + 4 p 

(100) 

0.066 
0.214 
0.039 

0.108 

0.023 

0.049 

(110) 

0.052 
0.236 

r0.035 a 

'L0.029 
r0.113 a 

4092 
r0.009b 

b.oso 
r0.025 b 

l 0.127 

(111) 

0.074 
0.211 
0.043 

0.097 

r0.032<: 

^о.озг 
rO.065 c 

^О.Обб 

a B-short and B-long, respectively. 
Ь Overlap population with the nearest surface atom and the atom directly below the hole, re­

spectively. 
c C-tet. and C-oct., respectively. 

bonding is determined by the environment of the adsorption site, rather than by the 
properties of the isolated surface. For instance, one observes very clearly from fig. 6 
that on the (100) surface the dz2 orbital mainly contributes to A-type adsorption, 
the dxz, dy, combination to B-type and dx2_y2 to C-type. (Note again that these d-
orbitals are expressed in a local coordinate system with the z-axis perpendicular to 
the surface plane, as shown in fig. 8.) From fig. 7 it follows that for the Α-site at the 
(111) surface it is also the local dz2, which is written in bulk coordinates as 
(dxv + dxz + dyZ)l\/3, that yields the main contribution. 

In relation to those models [58—60,15] which predict specific adsorption sites 
by considering the properties of the bulk metal or the isolated surface, we can make 
the following remarks. No specifically stable adsorption shows up on those sites, A 
and С at (100), where the interaction occurs with the former non-bonding (eg) Or­
bitals from the bulk. Neither those t2g orbitals which are protruding from the surface 
("dangling bonds"), at the B-site on (100) or the Α-site on (111), show any particular 
activity. Also the occupation numbers of specific d-orbitals at the free surface [15] 
do not represent a good measure for the adsorption stability (which is not surprising 
since hydrogen chemisorption is primarily covalent, even though some charge trans­
fer takes place). On the contrary, it is the structure (symmetry) of the "surface 
molecule" Ni„H with и = 1, 2, 3 or 4 and its (direct) environment which determines 
the nature and relative stability of the chemisorption bond. More concrete informa­
tion on the localized character of this bond is discussed in paper II. 

Most calculations have been performed for a 5-layer nickel lattice with a 5 X 5 
unit cell periodicity parallel to the surface. We have checked the conclusions from 
this model by repeating some of the calculations with 6 layers and 6 X 6 or 7 X 7 
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periodicity. The results of these tests demonstrate that the absolute adsorption ener­
gies vary a little, with the largest differences being found between odd and even 
numbers of layers. For Α-site adsorption on the (100) surface we find, for instance, 
—2.56 eV for a 6 X 6 crystal, —2.64 eV for a 7 X 7 crystal as compared to —2.60 eV 
for a 5 X 5 crystal with 5 layers; a 5 X 5 crystal with 6 layers yields the value of 
-2.49 eV. The results of table 3 indicate, though, that all relative effects discussed 
in this section are invariant to the size of the crystal. Also the adsorption of two 
hydrogen layers on the opposite surfaces of a 5-layer crystal has not shown any 
mutual effects, so that we may safely assume that the finite, rather small, dimensions 
of our model systems do not significantly influence our conclusions for surface and 
adsorption effects. 

4. Conclusions 

Summarizing the main conclusions from the preceding sections we can make the 
following observations. Both the 3d electrons and the conduction electrons in the 
4s—4p band of nickel take part in the chemisorption bond with hydrogen. Although 
the effect of the 4s and 4p orbitals may be somewhat overemphasized by the Ex­
tended HQckel method, since this method is strongly.based on overlap criteria, our 
calculations do not justify the complete omission of the conduction electrons which 
is a starting point in many calculations for adsorption on transition metals [4-19]. 

Still, in those calculations which include all five 3d orbitals on the nickel atoms 
[11-19] the conclusions about surface effects on the'd-band structure and on the 
aspherity of the d-electron charge distribution agree very closely with our results. 
Apparently, the neglect of d-band/conduction band hybridization does not affect 
these (relative) conclusions. The agreement between these results is the more interest­
ing since our method (working in finite Ä-space with finite crystals) is quite different 
from the approach of Cyrot-Lackmann et al. [11-15] and Haydock et al. [17-19] 
(who use a semi-infinite crystal model and calculate the density of states by a con­
tinued-fraction expansion of the Green function). Unfortunately, not many results 
for adsorption on transition metals are available yet from these authors. 

The stability of adsorption on different low index planes, (100), (110) and (111), 
increases with a decreasing number of nearest neighbours to the surface atoms. These 
differences are not very pronounced, however. Different sites on the same surface, 
show the following decrease in adsorption stability: A (atop) > В (bridge) > С (centred). 

Finally it can be concluded that the stability and the nature of the chemisorption 
bond on nickel is not so much determined by the properties of the bulk metal or by 
the characteristics of the clean surface, but rather by the structure of the "surface 
molecule". This conclusion has been further elaborated by a comparison with cluster 
calculations in paper II, where also the localization of the chemisorption bond and 
the effect of the boundary conditions on the "surface molecule" are discussed. 
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The adsorption of single hydrogen atoms, investigated by means of cluster calculations, 
has been compared with the adsorption of hydrogen monolayers on periodic crystals 
(paper I) From the similarity of the adsorption energy curves we conclude that the 
(direct and indirect) interactions between adsorbed hydrogen atoms are relatively small 
up to monolayer coverage For adsorption on different sites of ideal low index surfaces 
the stability decreases in the order Atop > Bridge > Centred For Atop adsorption it in­
creases with a decreasing number of nearest neighbours to the nickel atom in the NiH 
"surface molecule", thus leading to especially strong adsorption sites at the edges of a 
stepped surface and to low stability in the notches In general, we find that the NinH 
"surface molecule" with η = 1, 2, 3 or 4 determines the equilibrium positions for Η ad­
sorption, the inclusion of one shell of neighbours to the nickel atoms is sufficient to 
explain the differences in adsorption energy The Extended Huckel method is not well 
suited to study dissociative chemisorption of H2, although some qualitative trends are 
correct 

1. Introduction 

In a previous paper [1] (henceforth called paper I) we have reported a number of 
calculations on the adsorption of hydrogen layers on ideal low index surfaces of 
nickel crystals with a finite periodicity in the two directions parallel to the surface 
and consisting of a limited number of layers We wished to compare these tight-
binding Extended Huckel calculations on periodic crystals with cluster calculations 
in order to examine the degree of localization of the chemisorption bond, the concept 
of the "surface molecule" and the, possibly disturbing, effect of the boundaries of 
the clusters Thus we wanted to investigate which properties are correctly represented 
by cluster models and to what extent they can be used to gain insight in chemisorp­
tion phenomena and to make theoretical predictions Our earlier cluster calculations 
[2] are difficult to compare with the results of paper I, because we have somewhat 
improved the parameter choice in the latter paper and also included 4p-functions 
Moreover, we have now calculated equilibrium positions for the adsorbed atoms 
after taking into account the repulsions between the Η atom and the Ni atom cores 
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Therefore, we have performed a new series of cluster calculations 
Except for studying the adsorption of a H atom on models for ideal low index sur­

faces, we wanted to search especially for active adsorption sites, the structure and 
occurrence of which are of interest for heterogeneous catalysis, and to investigate 
the molecular adsorption of H2 which has been studied formerly by another model 
[3] 

2. Description of the model 

2 1 The clusters 

As before, we have started with an octahedral cluster of 13 nickel atoms, repre­
senting one atom with its complete nearest neighbour environment in the fee crystal 
Next, we have truncated this parent cluster by removing some atoms, such that the 
central metal atom obtained the nearest neighbour environment of an atom at the 
ideal (100), (110) and (111) surfaces respectively The symmetry groups of these 
clusters, consisting of 9, 8 and 10 nickel atoms, are C^, C2V and Сз Subsequently, 
we have adsorbed a hydrogen atom on these surface clusters, at a variable height 
above the central nickel atom, A(atop)-adsorption Pictures of these clusters have 
been given in figs 1 and 2 of ref [2] In order to investigate the size effect we 
extended the (100) cluster with 4 extra surface atoms Further, we have calculated 
the case that the adsorbed H atom forms a bridge between two N1 atoms, B(bridge) 
adsorption, at the (100) surface, represented by a cluster of 14 atoms (see fig 1) 
As before, we have taken care that the two N1 atoms directly involved in the ad­
sorption bonding, are provided with a complete nearest neighbour environment 
The adsorption of a H atom above a surface hole, C(centred)-adsorption, has been 
examined in a model obtained by inverting the 9-atomic (100) cluster In this case, 
however, the four surface N1 atoms which interact directly with the H atom, do not 
possess a complete nearest neighbour environment. For all the surface clusters the 
z-axis is chosen to be perpendicular to the surface 

о о 

· · 

- 0 1 2° 

· · 
О о 

Fig 1 Schematic representation of the cluster used to study B-site adsorption of H atoms and 
dissociative chemisorption of Hj on the (100) surface (o) metal atoms in the first (surface) 
laser ( · ) metal atoms in the second layer 
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Fig. 3. Model cluster (11 atoms) for H adsorption 
in the notch of a stepped (100) or (110) surface. 

The models discussed so far have been used to study the adsorption on ideal low 
index surfaces. Since we wanted to find out whether particularly active sites occur 
at stepped or indented surfaces, we have calculated some clusters representing the 
adsorption of a H atom at an edge or in a notch. A model for the edge is obtained by 
cleaving the (100) and (111) surface clusters along a second plane [truncating of the 
(110) cluster gives the same results as the (100) cluster], providing clusters of 6 and 
7 Ni atoms, respectively. For the adsorption in an indentation we get a model system 
by removing 2 atoms from the 13-atomic parent cluster. Pictures for the 6- and 11-
atomic clusters are given in figs. 2 and 3. In both cases the Ni atom which directly 
binds with the H atom is surrounded by the complete set of nearest neighbours which 
it possesses in the real physical situation. The most stable adsorption positions have 
been found by varying the angle θ and the distance between the Η atom and the 
central Ni atom. 

Finally, we wanted to examine to what extent it is possible to study the dissocia­
tive adsorption of molecular H2 by the Extended Hückel method. To this end we 
have used the 14-atomic (100) surface cluster of fig. 1. Truncating of this cluster 
along a second plane supplied a model for the adsorption of H2 at an edge. 

2 2 The molecular orbital method; the parameters 

For our calculations we have used the Extended Hückel method with a non-
orthogonal basis set, consisting of 3d, 4s and 4p orbitals for nickel and a Is orbital 
for hydrogen. The same parameters have been chosen as in paper I, as well as the 
same definition for the adsorption energy Δ/Γ^, including the extra term which 
accounts for the repulsion between the Η atom and the cores of the Ni atoms in 
order to calculate equilibrium positions. The nickel nearest neighbour distance has 
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been taken equal to 2.49 Â, as before. The Mulliken population analysis was used to 
calculate atomic charges and overlap populations. 

3. Results and discussion 

3.1. Adsorption on low index surface clusters 

The energy curves obtained for Α-site adsorption of a H atom on the ideal low 
index surface clusters have been plotted in fig. 4. It is striking that they agree very 
closely with the curves for a full H layer adsorbed on a periodic surface (fig. 9a of 
paper I), the equilibrium distances and adsorption energies being (nearly) the same 
(table 1). In principle, it cannot be excluded that this similarity between the periodic 
crystal results and the data from cluster calculations is caused by the cancellation of 
two different effects: the (direct and indirect) interaction between the hydrogen 
atoms in the periodic layer and the boundary effects in the clusters. This cancella­
tion is quite improbable, however, since the similarity occurs in all examples calcu­
lated (also for B- and C-site adsorption, as will be discussed below), the clusters have 

ADSORPTION ENERGY |(V| , 
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Fig. 4. Adsorption energy of a H atom on different surface clusters, as compared to the binding 
energy of NiH. The small dashed curve indicates the effect of extending the (100) surface cluster 
with 4 extra atoms. 

A - site adsorption 
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Table 1 
Comparison of the adsorption energies, the distances axe given with respect to the surface, the 
clusters are described in the text and the periodic crystals are 5 X 5 periodic systems consisting 
of 5 layers (see paper I) 

(100), A-site 
(110),A-site 
(111), A-site 
(100), B-site 
(lOO.C-site 

Cluster 

Equü dist (A) 

154 
154 
1 54 
1 20 
0 70 

A^ads ( e V) 

- 2 66 
- 2 77 
- 2 5 1 
- 2 59 
- 2 23 

Periodic crystal 

Equü dist (A) 

153 
154 
1.52 
1 19 
0 74 

Aí'ads (eV) 

- 2 60 
- 2 80 
- 2 46 
- 2 50 
- 2 32 

different sizes and, particularly, the extension of a given cluster with 4 extra atoms 
did not yield a significant difference in the adsorption energy curve Therefore, we 
can practically rule out this possibility and conclude from our calculations that the 
adsorption energy for hydrogen atoms does not vary significantly up to full mono­
layer coverage. In other words, the direct and indirect interactions between adsorbed 
hydrogen atoms are relatively small. This result agrees with other model calculations 
[5,8] and also the recent experimental data from flash desorption and work func­
tion measurements on ideal single crystal surfaces [4—7] show that the adsorption 
energies are nearly constant This holds for coverages up to about half of the 
saturation coverage [7]. The only incertainty which is still present m the different 
measurements concerns the saturation coverage of chemisorbed hydrogen. From 
flash desorption experiments Lapujoulade and Neil [4—6] obtained a saturation 
coverage ôm a x from 0 15 to 0.4 for the three surfaces, while Christmann et al. [7] 
observed a saturation population of about one H atom per Ni atom and May and 
Germer [9] estimated 0m a x on the (110) plane to be in the range between 1 6 and 
2 2 We would tentatively suggest that the strong decrease of the adsorption energy 
observed by Chnstmann et al starts after filling completely one of the possible ad­
sorption sites (the ßj-stete [7] ) and that it is caused by the lower adsorption energy 
of the second adsorption site (the ßj-state [7] ) and, possibly, by a repulsion between 
the adsorbed H atoms which are now at shorter distances from each other than the 
nickel nearest neighbour distance. 

From the recent experimental results and our theoretical calculations it may be 
concluded that the older experimental results on metal powders, wires, films or 
supported catalysts [10] which show a stronger decrease of ΔΕ^ with increasing 
coverage, must be caused by the inhomogeneity of the surface, which makes that 
sites with many different adsorption energies are available (see also section 3.2). 

From table 2 it appears that the overlap populations for A-site adsorption on the 
clusters and the periodic crystals are essentially the same. The considerable differences 
in magnitude between the populations from the 3d electrons on the central Ni atom 
and those from the 4s electrons are due to corresponding differences in the overlap 
integrals. Therefore, we do not believe these overlap populations to form an absolute 
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Table 2 
Comparison of the overlap populations with the hydrogen Is orbital for Α-site adsorption, the 
Ni(l)-H distance is 1 5 A Ni(l) is the central Ni atom and Ni(2), Ni(3), Ni(4) are nearest neigh­
bours from the first (= surface), second and third layer, respectively The z-axis points perpen­
dicularly to the surface 

(100) (110) (111) 

Cluster Periodic Cluster Periodic Cluster Periodic 
crystal crystal crystal 

3d
z2
(l) 

4s(l) 

4p
2
(l) 

total (1) 

3d(2) 

4s + 4p(2) 

total (2) 

3d(3) 

4s + 4p(3) 

total (3) 

3d (4) 

4s + 4p(4) 

Total (4) 

0 0756 

0 1649 

0 0393 

0 2798 

0 0020 

0 0002 

0 0022 

-0 0003 

-0 0020 

-0 0024 

-
-
-

0 0662 

0 1723 

00419 

0 2804 

0 0017 

-0 0055 

-0 0038 

-0 0006 

-0 0018 

-0 0024 

-
-
-

0 0688 

0 1719 

0 0449 

0 2855 

0 0017 

-0 0001 

0 0016 

0 0002 

-0 0023 

-0 0020 

-0 0011 

-0 0017 

-0 0028 

0 0523 

0 1870 

0 0491 

0 2884 

0 0015 

-0 0071 

-0 0056 

-0 0003 

-0 0018 

-0 0022 

-0 0010 

-0 0015 

-0 0025 

0 0798 

0 1593 

0 0403 

0 2793 

0 0015 

-0 0010 

0 0006 

-0 0005 

-0 0018 

-0 0023 

-
-
-

0 0739 

0 1661 

0 0451 

0 2851 

0 0012 

-0 0066 

-0 0054 

-0 0007 

-0 0016 

-0 0024 

-
-
-

measure for the bond strength Nevertheless, we thmk that they indicate that the 
conduction electrons contribute strongly to the chemisorption bond As can be seen 
from fig 4, the Α-site adsorption energy decreases in the order (110) > (100) > (111), 
i.e. with an increasing number of nearest neighbours Apparently, these neighbours 
cause a repulsive effect as may be concluded from a comparison with the NiH binding 
energy, too. This seems to be at variance with the experimental results [4-7], which 
are nearly equal for the three low index faces As we remarked already in paper I, 
the differences in our calculated values are not very pronounced, however, and may 
be caused by a slight overestimate of the relative contribution of the conduction 
electrons, which are responsible for the repulsive effect of the neighbouring nickel 
atoms [2] 

The effect of the cluster size has been examined by extending the original (100) 
cluster with four extra Ni atoms at the surface Although the charges on the metal 
atoms are very different (table 3), the adsorption energy (fig 4) and the overlap 
populations are the same So, we may conclude that our clusters are sufficiently 
large to study the chemisorption bonding of a H atom and that the boundary effects 
do not influence the adsorption energies 

For cluster calculations on B-site and C-site adsorption at the (100) surface the 
adsorption energies at equilibrium distance are given in table 1, the adsorption energy 
curves have not been plotted since Ihey are again very similar to the curves obtained 
for the periodic crystals It appears that for these clusters, the adsorption is favoured 
in the order A > В > С just as for the periodic crystals 
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Table 3 
Comparison of the charges on the 9- and 13-atomic (100) surface clusters with Α-site adsorption; 
the Ni(l)-H distance is 1.5 A. Ni(l) is the central Ni atom, Ni(2) and Ni(3) are nearest neigh­
bours from the first (= surface) and second layer, respectively, Ni(4) is a next nearest neighbour 
from the first layer 

Ni(l) 
Ni(2) 
Ni(3) 
Ni(4) 
H 

(100)-9Ni 

-0.140 
-0.178 

0213 

-
-

(100)-9Ni + H 

0.613 
- 0 131 

0 076 

-
- 0 392 

(lOOHSNi 

0.634 
-0.032 

0 207 
- 0 334 

-

(100>13Ni+H 

1.212 
0 027 
0 128 

-0.359 
-0.394 

The maximum stability of Α-adsorption has been confirmed by experimental 
data [11], but has not been found in recent cluster calculations by Blyholder [12], 
who concluded from CNDO results that the adsorption over a surface hole is more 
favourable. Since we have calculated equilibrium positions for adsorption now, we 
can assert that the discrepancy with the CNDO results is not due to our former as­
sumptions [2] about these positions, as Blyholder suggested. Instead, we think that 
the explanation must be found in the size and shape of his clusters, several of which 
do not possess a complete nearest neighbour environment for the Ni atoms directly 
binding with the H atom. Actually, some of the adsorption site models do not even 
reflect the symmetry of the surface, which implies that these nickel atoms possess 
strongly different numbers of nearest neighbours. 

Since the conclusions for adsorption on our periodic crystals and clusters are 
quite similar, we have searched for active sites for the adsorption of H atoms and 
investigated the dissociative adsorption of molecular H2 by means of further cluster 
calculations. 

3.2. Adsorption on non-ideal surface clusters 

Adsorption at non-ideal surfaces has been studied on clusters which form a model 
for an edge or an indentation in the crystal. The H atom was directly bonded to the 
central N1 atom, because the largest adsorption energy has been found for A-site 
adsorption. Thus we wanted to investigate the occurrence of active sites, which may 
be of interest for heterogeneous catalysis. 

Somorjai et al. [13,14] examined the adsorption of fy, O2 and some other mole­
cules on stepped and high index surfaces of platinum. They found that the chemi-
sorption characteristics are markedly different from those of low index platinum 
surfaces, the chemisorption taking place much more readily. In their opinion the 
reason for the increased chemical activity of the stepped surfaces lies in the differing 
atomic structures at the steps. A molecule adsorbed in the notch of a step has a larger 
number of nearest neighbour metal atoms than a molecule at a flat surface and there­
fore, there is an increased availability of metal atom orbitals at the stepped surface 
for adsorption and reaction. 
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Table 4 
Adsorption energies foi A-site adsorption on different clusters; the Ni-H distance is 1.5 A; for 
the adsorption on non-ideal surfaces, the angle θ is optimized (see figs. 2 and 3) 

Afads (cV) 

Notch-llNi -2.48 
Ideal (lllHONi -2.51 
Ideal (100)-9Ni -2.66 
Ideal (110)-8Ni -2.77 
Edge-7Ni -2.81 
Edge-6Ni -2.82 
NiH -3.08 

From our calculations it may be concluded that the adsorption of a Η atom at an 
edge is more favoured than in an indentation (the adsorption energies at the equili­
brium positions are given in table 4). In other words, we find also in these cases that 
those sites are the most active ones for hydrogen adsorption, of which the Ni atom 
binding directly with the H atom, is surrounded by the least possible number of near­
est neighbours (see table 4). These neighbours cause a repulsive effect. While we think 
our conclusions to originate mainly from covalent bonding. Anderson and Hoffmann 
[15] have reached similar conclusions from cluster calculations on the basis of charge-
transfer considerations. Hydrogen chemisorption is primarily covalent, though. 

Although we agree with Somorjai et al. [13] on the special activity of stepped 
and high index surfaces, our results do not confirm their hypothesis about the reason 
for the increased chemisorption activity. We find the most stable position for 
hydrogen adsorption to be on the edge. However, this conclusion may not hold for 
heavier atoms such as carbon, nitrogen and oxygen, which may prefer to form multi-
center bonds. An indication for this can be found in the work of Anders et al. [16, 
17], who concluded that a hydrogen atom adsorbs on top of a metal atom on the 
(100) surface of tungsten, whereas the nitrogen atom prefers the position above the 
surface hole. 

3.3. The (dissociative) adsorption of Η 2 

The dissociative chemisorption of molecular hydrogen has been studied previously 
by Deuss and Van der Avoird [3] by means of a perturbation theory for exchange 
forces which is comparable with the valence-bond method. The activity of the 3d 
and 4s electrons was examined separately by a simple effective 4-electron model, 
representing two nickel and two hydrogen atoms. It appeared that the 3dr2 orbitals 
protruding perpendicularly from the surface, could enable a H2 molecule to become 
dissociatively chemisorbed without an activation energy, whereas the 4s electrons 
alone did not chemisorb a H2 molecule unless a high activation-energy barrier was 
surmounted. By the Extended Hiickel method it is possible to study much larger 
and more realistic systems. On the other hand, the Extended Hiickel formalism may 
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Fig. 5. Extended Huckel results foi dissociative chemisorption of H2. 

be less suited to investigate the process of dissociative adsorption of fy. Firstly, the 
distance between H2 and the metal surface may not become too large, since the ad-
sorbate-metal system then dissociates into ionic parts (as usually in the MO-formalism). 
Secondly, the H-Η interaction in free H2 is not well represented, the binding energy 
being 1.7-2.3 eV too large in the range from 0.74 to 2.0 A, while the molecule col­
lapses for shorter distances. Nevertheless, we have examined how far it is possible to 
study the dissociative chemisorption of molecular hydrogen by our cluster models. 

The results for two H atoms symmetrically adsorbed parallel to the surface above 
the two central Ni atoms of the 14-atom (100) surface cluster (fig. 1) are given in 
fig. 5 for 3 H—H distances and 3 distances between the H atoms and the central 
metal atoms. The adsorption energy was computed with respect to the nickel cluster 
and a free H2 molecule with the experimental equilibrium distance (0.74 Â). As can 
be seen from fig. 5, at larger distances from the surface a H2 molecule is relatively 
more favourable and at shorter distances (the Ni—H equilibrium distance 1.54 A) 
2 separate Ni-H bonds are more stable; between these two states exists an activa­
tion barrier, however. From the overlap populations between the H atoms (see table 5) 

Table 5 
H-Η overlap population for H2 adsorbed on the 14-atomic (100) surface cluster 

Ni-H 
distance 

1.54 A 
1.75 A 
2.00 A 
Free Hj 

H-H distance 

0.74 A 

0.4030 
0.4268 
0.4370 
0.4294 

1.60 A 

0.0874 
0.1175 
0.1481 
0.2559 

2.49 A 

0.0067 
0.0123 
0.0109 
0.1056 
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it appears that a considerable weakening of the H—H bond occurs, compared with a 
free H2 molecule. It should be noted, though, that in all cases the adsorption energy 
is positive, i.e. the adsorbate-metal complex is always energetically instable The 
positive adsorption energy can be caused by the stability of fy, which is too large, 
whereas the Ni-H bond energy is about correct. This may also explain the activation 
barrier which is predicted in contrast to our earlier calculations involving 3d electrons 
alone [3] and expenmental experience. So, from the energy curves and the popula­
tion analysis we find a distinct tendency to dissociative adsorption, the results being 
quantitatively wrong, however. 

We have also calculated two cases of non-symmetrical H2 adsorption, one atom 
adsorbing directly above a central N1 atom and the other one lying above a neigh­
bouring surface hole or forming a bridge between the two central N1 atoms. In both 
cases the H atoms were placed in the equilibrium positions obtained for the single 
atom adsorption. Now, even less stability was found than for two H atoms adsorbed 
on top of the central N1 atoms at equilibrium distances Finally, we have studied the 
molecular adsorption at an edge. A model system was obtained by truncating the 
cluster of fig. 1 along a second plane. The adsorption is somewhat more stable now, 
although the adsorption energy for molecular H2 remains positive yet. 

4. Conclusions 

The results which we have obtained by cluster and penodic-crystal calculations 
agree very well, qualitatively as well as quantitatively. Going from the adsorption 
of a single H atom on a cluster to the adsorption of a full H monolayer on a finite 
crystal, the adsorption energies do not change significantly. So there exists now 
both theoretical and expenmental [7] evidence that the adsorption energy varies 
only slightly over a considerable range of coverage Θ. The rather fast decrease of the 
adsorption energy with increasing coverage which was observed in older experiments 
on catalyst samples, etc [10], must have been caused by the inhomogeneity of the 
surface. 

Enlarging of the (100) cluster did not change the adsorption energy nor the over­
lap populations with the H atom. Therefore, we conclude that our clusters are suf­
ficiently large to describe the chemisorption bonding, in spite of the charge effects 
occurring at the boundaries. Furthermore, the adsorption bond is rather localized 
as follows from the similar behaviour of the clusters and periodic crystals The 
equilibrium positions of the adsórbate depend only upon the configuration of the 
directly bonding metal atoms For instance, it appears from paper I that the equili­
brium distances are equal for the three adsorption sites directly above a metal atom. 
for the three bridge positions between nearest neighbours and for the two surface 
holes at the (111) surface. This confirms the usefulness of the concept of the "sur­
face molecule" to study chemisorption phenomena 

In our model, the adsorption energy tor the ditferent low index surfaces decreases 
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in the order (110) > (100) > (111), whereas the experimental values are about equal 
[4—7] However, the differences in our results are much smaller than those found 
by Blyholder [12] For the different sites the adsorption was found to become less 
favourable in the senes A (atop) > В (bridge) > С (centred) This is at variance with 
Blyholder's order, but agrees with the results obtained by Anders et al [16] for the 
adsorption of a hydrogen atom on (100) surface clusters of tungsten Also the data 
obtained from recent inelastic neutron scattering experiments support the preference 
for A-sites [11] 

With regard to the adsorption of molecular hydrogen, we found a qualitative ten­
dency to dissociation from the adsorption energies and the H—H bond weakening 
The quantitative results are not very good, however This may probably be ascribed 
to the Extended Huckel method, which yields too much binding energy for the H2 
molecule and too large an ionic contribution when the N1—H distance increases 

In agreement with experimental evidence, we find a special activity on stepped 
surfaces and high index planes While Somorjai et al [13] supposed that the increased 
adsorption activity was caused by the enlarged number of metal atoms at a step 
available for interaction, from our criculations it is concluded that the most active 
sites for hydrogen adsorption are edges and protrusions, the least active ones being 
notches However, this conclusion may only hold for hydrogen atoms and not for 
heavier atoms, preferring the formation of multicentre bonds 
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Appendix 

MODEL HAMILTONIANS IN 
CHEMISORPTION THEORY 

The exact n o n - r e l a t i v i s t i c Наш!1tonian describ ing a system 

of N e l e c t r o n s can be wr i t ten as 

N N N 
H(l N) = Σ £ ( i ) + è Γ Σ g ( i , J ) ( A l ) 

i = l i = l j = l 

ί.2 z β 

* " 2 _ у _SL i d ) = - ^Г Vf - Σ 2m i г J 

α a i 

e2 

g(i,J) = — · 
i j 

In solid-state physics Η is usually expressed in second-quantized form 

[l,2j, which we can obtain as follows: 

(i) Choose an orthonormal basis of spinorbitale In one-electron space: 

{|ψ >, k = l,...,r}. The identity operator for electron i reads: 

r 

I(i) = Ζ |ψ.(1)><ψ.(1)| . (A 2) 
k=l

 K
 * 

In the N-electron space, which is an N-fold (tensorial) product 

of one-electron spaces, the identity operator is given by: 

N 

I
W
(1,...,N) = Π I(i) . (A3) 

N
 i=l 

(ii) In order to construct an N-electron function corresponding with 

a given occupation of spinorbitais (electron configuration), we 

define a creation operator с generating an electron in |ψ >: 
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|ф
и
(і)> = с^ |Ψ > 

| т
к к ' vac 

+ t Ψ . (1,2)> = с^ с^ Ιψ > 
к
і'

к
2 ,

 к
і "г

 а с 

with ΙΨ > being the so-called vacuua state, a fictitious ι
 v a c 

"zeroth-order determinant" in which no one-electron state is 

occupied. If we require the с to satisfy the anticoBBUtation 

relations 

i c
k'

c
t

} = C
k

 C l + CA C
k

 = 0
 '

 < Α 5 β ) 

we ensure that |ψ(1
#
...,Ν)> is an antlsyniietric (Slater determi­

nant) function. We may also introduce the adjoint operator c. 

which destroys an electron in |ψ > or annihilates |Ψ(1,...,Ν)> 

altogether, if this state contains no electron in |ψ >. Now the 

following additional anticommutation relations hold: 

Í Ck , C* } = 0 < A 5 b ) 

{cl'ci} " 6kt (A5C) 

and the number operator n. is given by: 

\ ' \ \ • <A β) 

For the one-electron part of the Rami1tonian we find, using 

the orthonomallty of the basis: 
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¿г f(i) = IN ( ¿ι f(i) ) ΙΝ 

(А 7) 

г Ν 
= Σ <ψ (1)|ί(1)|ψ (1)> Σ |ψ (1)><φ (i)| . 

к,1=1 κ l 1=1 * * 

Since the operator Σ |ψ (1)><ψ (i)| acting on an arbitrary N-elec-
i=l

 K
 *• 

tron configuration wave function replaces a one-electron state |ψ.> 

by |ψ.>, if |φ.
>
 le occupied, and yields zero otherwise, it can be 

written in second-quantized form: 

N 
Σ 
i=l 

и
 + 

Σ |Ψ
Κ
(1)><Φ

)1
(1)| = c¿ cl . (A 8) 

Substituting this expression into (A 7) and following an analogous 

derivation for the two-electron operators, we obtain the N-electron 

Hamlltonlan in second quantization: 

H(l Ν) = Σ <4»
k
(l).|f(l)|4<

t
<l)> c¿ ci + 

k,l 
(A 9) 

І Σ <*
к
(1)*

і
(2)|

8
(1

І
2)|ф

и
(1)ф

п
(2)> с^ cj c

n
 с

и
 . 

к,г,m,η 

Separating the spinorbitals |ψ.> into a spatial part |φ > and a spin-

function |σ> (= |α> or |β>), we write: 

H = Σ Σ <φ <l)|f(l)U <1)> с ^ e
 + 

k.í. σ 

(AIO) 

è Σ Σ <ф
к
(1)ф

г
(2)|

К
(1,2)|ф

т
(1)ф

і)
(

2
)>

 с
+

а
 cj c

n o
, cu 

к,г,m,η σ,σ' 

156 



1. The Anderson Hamiltonian 

In order to study the effects of magnetic impurities, 

Anderson [з] has introduced an approximate Hamiltonian, which is also 

used very often to investigate the interaction between an adsorbed atom 

and a metal substrate. The set {φ, ,φ } is chosen as the orthonormal 

k a 

orbital basis for the total system. The functions φ. are delocalized 

eigenstates of an effective one-electron Hamiltonian for the unper­

turbed semi-infinite metal with eigenvalues ε.; φ is the localized 

adatom orbital with energy ε . Expressine the Hamiltonian (A 10) in 

a 

this basis, we find the Anderson Hamiltonian, if the following as­

sumptions are made: 

<ф
к
(1)^(1)|ф

г
(1)> =

 e k
 6

к г
 , (Alla) 

<φ (1)|ί(1)|φ <1)> = £_ , (A lib) 
a a a 

with f being the one-electron Hamiltonian after chemisorption. Ibis 

implies that the effects of chemisorption on ε and ε are neglected. 

Furthermore, no electron repulsions are considered, except between 

two electrons in φ .So, the Anderson Hamiltonian reads: 

a 

Η = Σ ε Ι η ^ + Σ ε η + U n η + 
, к κσ а ла aa β,-σ 
k,a σ ' 

E (V . c
+
 с. +V. с^ с ) , 

,_ ak aa ka ka ka aa 
к,a 

(A 12) 

with U and V , defined as 
ak 

U = <ф (1)ф (2)|
К
(1,2)|ф (1)ф (2)> 

ак
 = ^a(l)|í(l)Uk(l)> 

The Hartree-Fock approximation to this Hamiltonian amounts 

to replacing the two-particle interaction U n η by the average 

β,-σ aa 
repuls ion term U <n > η , which i s a one-par t ic le operator: 
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HÍL = (ε + и <n >) η + Ζ ε, η, + 
HF a β,-σ ασ к ka 

(А 13) 

Σ (V . с
+
 с. +V. с^ с ) . 

ак аа ka ka ka βσ к 

2. The Hubbard Haailtonian 

This second approximate Hamiltonian has originally been in­

troduced to examine electron repulsion effects in narrow energy bands 

[4]. The orthonormal basis consists of the atomic orbitale 
-•• -»• 

φ = ф(г-Н ) localized on the various sites in the crystal. Electron 
Ρ Ρ 
repulsions are only taken into account for both electrons occupying 

the same atomic orbital, so that the Hamiltonian reads: 

i r = Z E T c c + i I E n n (A 14) 
- „ „ РЧ Ρ σ 40 ρσ ρ,-σ 
p,q α ρ,σ 

with 
T pq = «y^l^Uqi1» 

I = <φ ( l > < b ( 2 ) | g ( l , 2 ) | . * (1)φ (2)> . 
Ρ Ρ P P 

In the Hartree-Fock approximation: 

= Σ Τ c
+
 с + Ι Σ η <n > . (A 15) 

pq ρσ qa pa ρ,-σ 
p.q Ρ 

In order to study adsorption, the Hamiltonian (A 14) must be 

extended by the extra terms : 

Σ ε η + $ υ Σ η η + 
a aa aa a,-a 

(A 16) 

Σ (V c
+
 с +V c

+
 с ) . 

ар aa pa pa pa aa 
p,a 
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SUMMARY 

This thesis deals with a theoretical investigation of the 

electronic properties of solid surfaces and the phenomena involved in 

chemisorption. We have paid particular attention to the adsorption of 

(atomic) hydrogen on various surfaces of nickel and copper crystals. 

Our intention was to obtain a better understanding of the chemisorption 

binding with transition metals and to explain the variations in the 

activity of different sites on the surface in the hope of getting more 

insight in the processes which occur in heterogeneous catalysis. 

We have started (Chapter II) with a review of the recent 

theoretical developments. It is shown how the surface and chemisorption 

problem is being tackled both by solid-state physicists and by quantum-

chemists. The merits, restrictions, applicability and mutual relation­

ship of the various methods are discussed, as well as a few important 

concepts in chemisorption theory (virtual and split-off states, in­

direct interaction between adsorbed particles). In Chapter III we have 

described a numerical resolvent procedure suitable to study realistic 

models for transition metals and semiconductors by accounting for the 

existence of multiple bands. Finite periodic layer crystals are con­

sidered, which may be conceived as an intermediate case between the 

semi-infinite crystal models used in solid-state techniques and the 

cluster models originating from the molecular approach. The results of 

our Extended HUckel molecular orbital calculations on the adsorption 

of hydrogen monolayers on finite periodic nickel crystals and of single 

hydrogen atoms on nickel or copper clusters have been presented in 

Chapter IV. We were able to draw conclusions about the rôle of d- and 

conduction electrons in the adsorption bonding and the dissociative 

chemisorption on transition-metal surfaces. Since Chapter III and 

Chapter IV (mainly) consist of reprinted articles, we refer to the 

respective summaries for further concise information about our resolvent 

technloue, about the systems investigated and the computational results. 
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SAMENVATTING 

Dit proefschrift handelt over een theoretisch onderzoek naar 

de elektronische eigenschappen van vaste stof oppervlakken en de ver­

schijnselen die optreden bij chemisorptie. In het bijzonder hebben we 

aandacht besteed aan de adsorptie van (atomaire) waterstof op verschil­

lende oppervlakken van nikkel en koper kristallen. Hierbij was het de 

bedoeling om het mechanisme van de chemisorptieblnding met overgangs­

metalen beter te begrijpen en om de variaties te verklaren in de akti-

viteit van de verschillende oppervlakken, hetgeen kan leiden tot een 

beter inzicht in de processen die plaatsvinden bij heterogene katalyse. 

We zijn begonnen (Hoofdstuk II) met een overzicht van de 

recente theoretische ontwikkelingen. We laten zien hoe het oppervlakte­

en chemlsorptievraagstuk zowel door vaste stof fysici als door kwantua-

chemlcl wordt aangepakt. De verdiensten, beperkingen, toepasbaarheid 

en het onderlinge verband van de verschillende methodes worden bespro­

ken, evenals enkele belangrijke begrippen uit de chemisorptietheorie 

(virtuele en uit de energieband afgescheiden toestanden, indirekte 

wisselwerking tussen geadsorbeerde deeltjes). In Hoofdstuk III hebben 

we een numerieke resolvent procedure beschreven welke geschikt is 

om realistische modellen voor overgangsmetalen en halfgeleiders te be­

studeren, doordat rekening wordt gehouden met het voorkomen yan meer­

voudige banden. Hierbij worden eindige periodieke laagkristallen be­

keken, die kunnen worden opgevat als een overgangsgeval tussen de 

halfoneindlge kristalmodellen in de vaste stof technieken en de klus-

termodellen afkomstig uit de molekulalre aanpak. De resultaten van 

onze Extended HUckel molecular orbital berekeningen aan de adsorptie 

van enkelvoudige waterstoflagen op eindige periodieke nikkel kristal­

len en van geïsoleerde waterstofatomen op nikkel of koper klusters 

zijn gepresenteerd in Hoofdstuk IV. We waren in staat om konklusies 

te trekken aangaande de rol van d- en geleldingselektronen in de ad-

sorptleblnding en de dissociatieve chemisorptie op overgangsmetaal-
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oppervlakken. Oadat Hoofdstuk III en Hoofdstuk IV (voornamelijk) be­

staan uit reeds gepubliceerde artikelen, verwijzen we naar de res-

pektievelijke samenvattingen voor verdere beknopte informatie over 

onze resolvent techniek, de onderzochte systemen en de rekenresul­

taten. 
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STELLINGEN 

I 

De verklaring van Kunz et al voor het verschillende katalytische gedrag van 
nikkel en koper bij "supported catalysts" en de manier waarop de trend in 
de aktiviteit van de metalen uit de tweede overgangsreeks hieruit wordt af­
geleid, zijn aanvechtbaar 

AB Kunz, MP GuscandRJ Blint, Chcm Phys Lett 37,512(1976) 

II 

De verwachting dat een sterk geparametnseerde semi-empinsche methode 
als MINDO/3 kan dienen als een praktisch chemisch instrument op terreinen 
die (momenteel) ontoegankelijk zijn voor ekspenmenteel onderzoek, is il­
lusoir 

RC Bmgham.MJS DewarandDH Lo, J Am Chem Soc 97,1285(1975) 

III 

Brush maakt zijn bewering dat de golftheone van de warmte van belang is 
geweest voor de ontdekking van "de wet van behoud van energie", onvol­
doende waar 

S G Brush, The British Journal for the History of Science 5, 145 (1970) 

IV 

Ons kenmsverwerven van de natuur geschiedt met objektief, omdat het 
wordt bemiddeld door een waarnemend subjekt De praktische aktiviteit 
van het met de natuur in wisselwerking tredende subjekt vindt niet onafhan­
kelijk van de maatschappelijke kontekst plaats Hierdoor is de natuurweten­
schap met waardevrij, maar bezit zij een ideologische komponent, die onder 
meer tot uiting komt in haar keuze van te verzamelen feiten, uit te voeren 
ekspenmenten en theoretische interpretatiekaders 



ν 

Binnen de natuurwetenschappelijke opleiding behoort een permanente re-
flektie plaats te vinden over de relatie tussen natuurwetenschap en maat 
schappij Zonodig dienen praktische konsekwenties hieruit getrokken te 
worden, zowel wat betreft inhoud en organisatie van de opleiding en het 
wetenschappelijk onderzoek als wat betreft het maatschappelijk handelen 
Centrale doelstelling hierbij moet zijn de bevrijding van uitbuiting en onder­
drukking en een toenemende beheersing van de natuur ten behoeve van en 
door de mensheid in haar totaliteit 

VI 

Vanwege de samenhang die bestaat tussen milieuproblematiek en maat­
schappelijke struktuur, moet de aan de takulteit W & N in Nijmegen op te 
richten afdeling milieukunde uitgaan van een projektgewijze en interdisci­
plinaire aanpak Dit betekent dat zowel de natuurwetenschappelijke als 
maatschappelijke aspekten geïntegreerd aan bod dienen te komen Bo­
vendien moet een dergelijke afdeling een ondersteuning vormen voor de 
praktische aktiviteiten van miheu-aktiegroepen 

VII 

De visie dat de wetenschap van nature progressief is en daarom een natuur­
lijke bondgenoot vormt in de strijd voor het socialisme, gaat uit van een zich 
autonoom ontwikkelende wetenschap, aldus de wisselwerking tussen weten­
schap en maatschappelijke verhoudingen veronachtzamend Verder hangt 
deze visie samen met een objektivermg in het marxisme, waarbij de dialek 
tiek van een bewust en aktief in de maatschappelijke werkelijkheid ingrij­
pende mens vervangen is door een interpretatie van de wereld als een vanzelf 
volgens objektieve wetten veranderende wereld 

VIII 

Wanneer Fisher de energieknsis in de V S aan het begin van de zeventiger 
jaren in belangrijke mate wijt aan de milieubeweging, gaat hij eraan voorbij 
dat zowel energieknsis als milieuproblematiek hun oorzaak vinden in de 
wijze waarop in een kapitalistische maatschappij de produktie georganiseerd 
IS 

J C Fisher, Physics Today december 1971 bb 40 



IX 

Het feit dat Van den Doel zijn inaugurale rede voorziet van een citaat uit 
Engels' Der Ursprung der Familie, des Privateigentums und des Staats dat 
uit zijn verband is gerukt en verkeerd is weergegeven, wijst op een gebrek 
aan inzicht in het marxisme, waarvan Van den Doel een groot kenner be­
weert te zijn, ofwel er is sprake van citaatvervalsing 

l· Engels Der Ursprung der hanulie, des Privateigentums und des 
Staats (Duitse uitgave Dielz, Berlin, 1973 blz 198/199, Nederland­
se uitgave Pegasus Amsterdam, 1973, blz 217) 
J van den Doel, Ekonomie en demokratie in het staatsbestuur (Klu 
wer Deventer, 1973 blz 3) 
Vrij Nederland, 30 augustus 1975, blz 9 

X 

De "Berufsverbote" in de BRD, welke een fundamentele aantasting vormen 
van de demokratische rechtsorde, zijn uitdrukking van een toenemende 
politieke onderdrukking Wanneer de ekonomische knsis blijft voortduren 
en er een verscherping van de maatschappelijke tegenstellingen plaatsvindt, 
kan deze repressie gemakkelijk de wegbereider worden voor een hernieuwd 
fascisme, doordat zij potentieel verzet daartegen van zijn basis heeft beroofd 

Nijmegen, 13 mei 1976 D J M fassaert 








