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! lectrolytes are fundamental to the function of batteries. 
They transport ions between the electrodes, while 
remaining inert in the harsh electrochemical environment 
the electrodes create. Designing electrolytes is a 
challenging, multidimensional problem that is unique 

from typical materials discovery or molecular design efforts: for one, 
a candidate electrolyte must satisfy tens of properties simultaneously. 
Second, the design space is immense. Electrolytes are chemical 
mixtures consisting of organic molecules and inorganic salt; thus, 
designing an electrolyte formulation for Li-ion batteries involves 
the combinatorial challenge of selecting a small number of organic 
molecules and a lithium-containing inorganic salt from a seemingly 
endless number of options, while accurately predicting all the key 
properties for each candidate formulation.  

Rick Nason of Dalhousie University famously distinguished 
between complicated and complex challenges: the former are 
processes where the solution is difficult to reach but a rational map 
to the solution exists.1 For the latter, the solution is difficult to reach, 
and no map exists to get you there. Historically, electrolyte design 
has been treated as a complex problem and much of the innovation 
has occurred through happenstance and trial-and-error. However, the 
rapid scaling of data and high-performance computing are poised to 
completely disrupt the process of electrolyte design, turning it from a 
complex and intractable problem into a complicated but deterministic 
and rational problem. The key to reducing the complexity of 
electrolyte design is to recognize that, though electrolytes are made 
up of molecules, this is not a molecular design problem. The most 
important information exists in the cross-terms: how molecules 
interact with each other, and how they interact with the electrodes. 
In this article, we discuss how designing an electrolyte formulation 
in the computing age requires a re-thinking of AI tooling beyond the 
standard molecular property prediction paradigm.

AI- and machine learning-guided materials discovery efforts have 
demonstrated extraordinary progress in the last decade. During that 
time, we have gone through three generations of machine learning 
models for material- and molecular property prediction. The first 
generation of models leveraged handcrafted descriptors to build 
models that can predict the properties of single-component systems 
(i.e., single molecules or homogeneous crystals), an extension of the 
quantitative structure–activity relationship (QSPR) model framework 
developed nearly 60 years ago. The second generation involved 
utilizing graphs, a natural representation for bond connectivity within 
molecules, pairing them with two core machine learning advances 
from image processing—convolution and deep neural networks. This 
family of models, referred to as graph neural networks (GNNs), 
provided unprecedented accuracy and revolutionized the ability to 
screen large libraries of molecules. The third-generation models are 
molecular foundation models which are inspired by the structure 
of natural language and can leverage large swathes of unlabeled 
data (i.e., training on large databases of synthetically accessible 
molecules), using the model to build a more robust representation 
which can be fine-tuned for downstream property prediction. 

We, the authors, have been working on this problem for the past 
decade—initially as academic scientists, and then as cofounders 
of Aionics, Inc., a company that uses AI and high-performance 
computing to develop high-performance electrolytes for diverse 
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electrochemical systems. Beginning in 2014, we have been 
publishing studies developing data-driven and machine learning 
models for predicting battery material properties: first for liquid 
electrolyte electrochemical stability (VV),2 then for solid-state Li-
ion conductivity (ADS),3,4,5,6 dendrite suppression properties (VV),5,7 
then for cathode properties including voltage, capacity, strain upon 
lithiation, and anion redox (VV, ADS)8,9,10 and electrolyte-electrode 
interface kinetics (ADS, 2024).11 Riding this wave of innovation, we 
founded Aionics in 2020 and began developing and commercializing 
machine learning models for battery performance. Working with 
manufacturers of materials, batteries, and battery-powered devices, 
descriptor-based methods were initially found to excel in cases 
where training data was extremely limited due to the expense of its 
generation—notably, for predicting the cycle life of a battery based 
on information about the electrolyte.12 A few years later, Viswanathan 
and colleagues developed a suite of GNN-based electrolyte property 
prediction models with superior performance to descriptor-based 
methods.13 These models were then commercialized by Aionics 
and deployed to the public under the Advanced Material Property 
Prediction Model framework.14 Looking forward to the future, we 
are now developing molecular foundation models. Early data show 
unequivocally that these big-data models can vastly outperform all 
other models on some key tasks.15

Despite the algorithmic advances taking place in both the pure AI/
ML community and the materials informatics community, electrolyte 
design remains a major challenge. Consider the simple case study 
below: we perform an electrolyte screening study of a known 
chemical space, and apply filtering criteria that would seem natural: 
(i) the molecule has to be stable in the battery (i.e., having appropriate 
values for the single component molecular levels—highest occupied 
molecular orbital and lowest unoccupied molecular orbital), and (ii) 
the molecule is a liquid at room temperature, having appropriate 
melting and boiling points. This simple set of screening criteria 
would eliminate ethylene carbonate, one of the most widely used 
electrolyte components. The issue is that the properties of individual 
molecules by themselves do not translate to electrolyte performance: 
information on the rest of the system is required to determine 
whether the formulation will remain liquid, or whether the cell will 
remain electrochemically stable. Thus, methods for incorporating 
information on the intricacies of the formulation and its interfaces 
with the electrodes are required to make significant advances in 
electrolyte formulation design—not just simply predicting the 
properties of molecules alone, no matter how sophisticated the 
algorithms or how accurate the predictions.

In general, electrolyte performance is a function of two sets 
of properties: innate properties of the formulation itself (ex situ) 
and properties of the formulation interacting with the chemical 
environment of the battery (in situ). The former are mixture 
properties, whereas the latter are interface properties. In both cases, 
molecular information alone is insufficient. Predicting the properties 
of mixtures requires information on the interactions of molecules 
with each other, while predicting the properties of interfaces requires 
information on the interactions of molecules with the electrode. No 
amount of information on individual molecules in vacuum can infer 
these cross-terms. Thus, a new class of ML models is required to 
supplement the simplified “molecule-only” framework.

(continued on next page)
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The canonical electrolyte design challenge involves adding a 
small amount of an additive to a baseline electrolyte formulation that 
otherwise works well under most of the required operating conditions. 
The goal of the additive is then to provide improved functionality in 
one or more axes (e.g., fast charging or lower temperature operation) 
while not affecting any of the other properties (e.g., cycle life). Thus, 
to minimize the overall cost of the formulation as well as to ensure that 
the majority of the properties of the baseline electrolyte formulation 
are carried forward, additive amounts are limited to 5% or less. The 
question then arises: how will the addition of a small amount of a new 
molecule change the overall properties of the electrolyte?
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The simplest theory to predict the properties of a chemical mixture 
is linear mixing (i.e., the mixture properties are a molar-weighted 
average of the component properties). However, assuming linear 
mixing creates a big challenge here: adding a mere 5% additive will 
not substantially alter any linear property. As an example, assume 
that the melting point of the baseline electrolyte is -20oC and an 
additive with a melting point of -100oC is added at the 5% molar 
level. If the additive and baseline electrolyte linearly mix, then the 
new electrolyte formulation will have a melting point of -24oC, a very 
small decrease of 4oC in the overall electrolyte performance despite 
identifying an additive component that has an 80oC difference in 
melting point. The goal then is to find additives which break the linear 
mixing rule for their given formulation. Fortunately, many properties 
are not naturally linear, though the direction and magnitude of the 
nonlinearity is often not obvious a priori. For example, in Fig. 1 
we plot the predicted melting point of a set of electrolyte mixtures 
based on a linear mixing model versus the experimentally observed 
melting points. The correlation is poor; the components clearly do 
not linearly mix.

The deviation from linear mixing is called the excess property, 
and thus, designing functional electrolyte formulations requires 
identification of molecular mixtures that have large excess properties. 
We must understand how the additive and formulation interact, and 
then design new additives that mix super-linearly for the beneficial 

properties while mixing sub-linearly for harmful properties. 
Information on the individual molecules alone is an incomplete piece 
of the puzzle.

Excess properties have been at the heart of chemical mixtures 
but have not been widely used in battery electrolyte design until 
recently. Excess functions have been formulated, with Redlish-Kister 
polynomials being one of the popular polynomial expansions that 

leverage the permutation invariance property of mixtures. 
Even for simple mixtures, there can be significant 
excess properties as molecular interaction amongst the 
components plays a critical role.

This situation highlights the need for incorporating 
additional physics into otherwise “straightforward” 
molecular ML models. Recently, we found a way to 
merge the two worlds: (i) machine learning advances 
involving graph convolution and (ii) mixture physics. The 
core insight involves learning the coefficients of mixture 
physics laws using machine learning, and then using these 
coefficients to add corrections from linear mixing. These 
coefficients are directly linked to the molecular identity 
of each of the constituent molecules, leading to mixture-
specific corrections.  

To realize this idea, the mixture physics laws need to 
be written in a differentiable programming framework, 
and then we can chain this to all the machine learning 
advances. This novel idea, which we called DiffMix,16 has 
been put to test to design a high conductivity electrolyte 
formulation. DiffMix was used to navigate a ternary 
chemical space and the predictions were then validated 
using experiments in our robotic test stand, Clio.17 The 
optimization trajectory measured from the robotic 
electrolyte setup, Clio, matched the predictions of the 
DiffMix model (Fig. 2).

The design of an electrolyte mixture is a balancing act 
among the various components of the mixture. Satisfying 
ex-situ property requirements cannot be accomplished 
by single molecular prediction models; instead a 

Fig. 1. Linear mixing versus reality: We plot the experimentally measured melting point 
of electrolyte mixtures versus the predicted melting point assuming linear mixing of the 
individual components. The data would fall along the diagonal dotted line if linear mixing 
were correct. Instead, the correlation is poor and a substantial deviation from the linear 
mixing line can be seen. We acknowledge Stephanie Tarczynski, Jiayi Wu, Thuy Kim, and 
Varun Kumar for generating this image and data.

Fig. 2. Differentiable battery electrolyte optimization with DiffMix and 
robotic experimentation. Reproduced with permission from ref. [13]. In 
(a)-(c), optimization for ionic conductivity is performed over various 
liquid electroyte compositions. In each optimization case, a batch of four 
trajectories has been simulated starting from the dot sign and ending at 
the cross sign. The white arrows are the gradient information obtained by 
auto-differentiating the ionic conductivity against compositions through 
DiffMix. In (d) the optimization curves of ionic conductivities in (c) is shown 
along the four trajectories, including both DiffMix results and the robotic 
experimentation results generated by Clio. Reproduced with permission from 
ref. [13].   
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sophisticated machine learning stack must be employed that can 
handle mixture physics and the underlying molecular interactions 
amongst the mixture components.
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Of equal or greater importance to the ex-situ properties of 
electrolytes are the in-situ properties of the electrolyte when added to 
a battery. In this case, the properties are determined by the interactions 
of the electrolyte components with themselves but also primarily 
with the electrode surface. Again, the properties of the individual 
molecules alone are insufficient.

Relevant in-situ properties include cycle life, charging rate 
capability, discharging rate capability, internal resistance, coulombic 
efficiency, round-trip efficiency, and self-extinguishing time. 

All these properties require some knowledge of the interactions at 
the electrolyte-electrode interface, where electrolyte molecules may 
reversibly bond with the electrode surface. By extending concepts 
from computational surface science and catalysis, we published the 
first series of studies showing that the properties of batteries can be 
predicted directly from density functional theory (DFT) simulations 
of electrolyte molecules on electrode surfaces.18,19 In these 
simulations, electron transfer is simulated explicitly and breakdown 
of the molecules under the electrochemical and chemical forces of the 
interface can be observed. 

Consider cycle life as an example property. The cycle life of a battery 
is a simple metric of battery life that arises as a multidimensional 
function of many phenomena happening in the bulk of the electrolyte 
solution and at the electrode interface. However convoluted the 
process may be, cycle life is a deterministic function of the electrolyte 
and electrodes and thus should be learnable with sufficient examples. 
In a recent internal study, we built a model to predict the cycle life of a 
Li-ion battery as a function of its electrolyte based on a small dataset 
of under 200 examples. The resulting model had a cross-validation 
error of 41 cycles, meaning the model is expected to predict the cycle 
life of a cell with an arbitrary (in-distribution) electrolyte to within 41 
cycles on average. 

It is instructive to look at the information required to make these 
predictions. We trained the model on a set of proprietary interface-
based descriptors, proprietary mixture descriptors, and open-source 
descriptors; the relative importance of these various descriptors is 

shown in Fig. 3. Instead of focusing on the exact definition of each 
descriptor, the emphasis is on whether the descriptors depend on 
mixture alone or of the mixture and electrode interface. The single 
most important descriptor in the model contains interface information.

Once the appropriate descriptors are identified for in-situ property 
prediction, they must be extracted for the entire chemical space of 
interest to enable large-scale screening. However, this screening 
quickly becomes computationally intractable with traditional density 
functional theory methods. Surface calculations require many atoms, 
some of which are best simulated with Gaussian-type basis sets (i.e., 
the molecules) and some of which require plane wave basis sets 
(i.e., the surface). Many molecular orientations and possible surface 
adsorption sites exist. The computational cost to exhaustively study 
the interfacial effects of all molecules on all relevant surfaces can 
easily reach into the trillions of dollars. Thus, some machine learning 
acceleration is required. 

Using the output of a large, expensive model to train a simpler 
model with minimal accuracy loss is a common task in machine 
learning, and it is a helpful strategy here. This approach of building 
computationally cheap surrogate models is sometimes referred to 
as distillation, pseudo-labeling, or transfer learning, depending on 
the context. In the case of interfacial features, we have found that 
simple models can learn these features efficiently from hundreds to 
thousands of examples and can perform inference on new systems 
with high fidelity and a 106-fold increase in speed over DFT, enabling 
screening across the entire space of molecules for any given interface.
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Currently, there are approximately 1010 molecules that can be 
synthesized commercially, and there may be a total of over 1050 
synthetically accessible molecules. There are many efforts underway 
to study the properties of these known and hypothetical molecules 
for varied kinds of applications, particularly within medicine. 
For electrolyte design, however, this is just the tip of the iceberg. 
Electrolytes cannot be designed successfully without considering the 
effects of combining these molecules into mixtures and explicitly 
considering their interfaces with electrodes. This combinatorial effect 
makes the design space unfathomably large: there are 1055 ways 
to combine all 1010 commercially accessible molecules into two-
component mixtures; when you mix three of them, you have 10165 
options to consider. For comparison, the current age of the universe 
is about 1017 seconds. Like the astronomical universe, the sheer 
size of the mixture universe is staggering, but also a source of great 
opportunity and excitement if it can be successfully navigated. 

There is one more important set of considerations in electrolyte 
design: commercial requirements. Fortunately, this is the only set 
of properties where information on each molecule individually is 
sufficient. Cost, synthetic accessibility, feasible vendors, supply chain 
resiliency and more can all be inferred directly from the structure of 
each component alone. This has been a historically overlooked area 
of electrolyte design, but some capabilities are beginning to emerge: 
for example, models have been trained to predict the cost to procure 
a small sample of a molecule by learning directly on its molecular 
structure and by considering its retrosynthetic pathway.20,21 

In sum, the recipe for reducing electrolyte design from a complex 
problem to a merely complicated one then requires not just knowing 
the properties of molecules; it requires knowing the excess properties 
of their mixtures and understanding their interactions with electrode 
interfaces. Molecular property prediction can be done using existing 
methods, but mixture and interfacial properties require new methods 
that incorporate these complex interactions. Then, a second layer 
of machine learning models must be deployed to decrease the 
computational cost of these predictions such that a significant portion 
of the space of mixtures can be traversed. 

This philosophy underpins the Aionics electrolyte design platform, 
which has been built and deployed to accelerate electrolyte design 
for many battery designs and applications. Our platform contains 
a library of over 1010 molecules and their predicted physical and 
commercial properties, plus the ability to predict values for new 

Fig. 3. Importance of mixture and interface information for cycle life 
prediction. A model is trained on battery cycling data to learn to predict 
cycle life as a function of electrolyte composition. Proprietary interface 
features, proprietary mixture features, and open source mixture features 
are used. The features in the trained model are ranked by their importance. 
The single most important feature, by far, is an interface descriptor. We 
acknowledge Drs. Noushin Omidvar, Handong Ling, and Mohamed Elshazly 
for generating this image and data.

(continued on next page)
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molecules that are not yet commercially known. Relationships with 
chemical suppliers have enabled the development of models for 
predicting how cost will scale with volume. Most importantly, the 
platform supports computationally combining these molecules into 
any possible mixture so that their emergent mixture and interfacial 
properties can be predicted. Millions of variants on existing mixtures 
can be simulated and assessed in the span of minutes. To illustrate this, 
in Fig. 4 we show predictions of the flash point of approximately 18 
million unique electrolyte formulations, each of which is composed 
of one of 36 variants of a baseline formulation plus any one of 
approximately 500,000 commercially available additives. These 
computations execute at a rate of approximately 3,000 mixtures per 
second on modest CPU resources; this map of 18 million mixtures 
took less than two hours of wall time to generate. This capability 
represents one of the largest databases of electrolyte formulations 
and their physical properties, and to our knowledge is the only major 
database of electrolytes that also contains commercial properties. The 
methods described in this article—molecular property prediction, 
mixture excess property prediction, interface interaction surrogates, 
and price prediction—are among the key advances underlying this 
state-of-the-art electrolyte design platform. All relevant intellectual 
property that we developed in the university setting has been licensed 
exclusively to Aionics.22

Looking forward to the future, we encourage the development 
of new methods that capture the cross-terms that are inherent in 
electrolyte design solutions: molecule-molecule ex-situ interactions, 
and molecule-surface in-situ interactions. Despite the massive space 
of molecules available to us, we believe that approaching the problem 
as merely a molecular design challenge is an oversimplification. The 
space of mixtures made up of these molecules is orders of magnitude 
larger, raising the prospect that we can discover new, high performance 
electrolyte blends for any electrochemical cell. Existing efforts in 
molecular property ML models, particularly by the pharmaceutical 
chemistry community, have laid a solid foundation; it is now up to the 
computational electrochemistry community to develop the domain 
specific models that are required to push the field forward.

Fig. 4. High-throughput flash point optimization. Using a flash point model 
trained on experimental data and the DiffMix framework, the Aionics 
platform computes the predicted flash point of approximately 18 million 
modifications of a baseline formulation. Each modification contains one 
novel molecular additive and a unique ratio of the baseline components. 
Many of the sampled variations have mixture flash points around 30C, 
but there are notable outliers with substantially higher and lower flash 
points. Mixture models that contain excess property physics like DiffMix 
are necessary to identify these unintuitive and highly important outliers. We 
acknowledge Drs. Mohamed Elshazly and Shreyas Honrao for generating 
this image and data.
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