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Abstract

To solve problems of hydrogen power engineering, there is an intensive search for materials for hydrogen storage. Thermal desorption
spectrometry (TDS) is one of the effective experimental methods for studying the interaction of structural materials with hydrogen
isotopes. A sample (we consider a thin platemade of amaterial withmetallic properties) pre-saturatedwith dissolved atomic hydrogen is
heated relatively slow in a vacuum chamber. The degassing flux is registered using amass spectrometer. The spectrum is the dependence
of the desorption flux density from a two-sided surface of the sample on the current temperature. Quite often, several local peaks are
registered on the spectrum. Traditionally, this is associated with the reversible capture of various kinds of traps (inhomogeneities of the
material) with different binding energies. However, numerical experiments on models with dynamic boundary conditions describing
the dynamics of surface concentrations show the possibility of a different scenario. The following scheme is possible: The first peak
occurs when hydrogen leaves the surface and the subsurface volume. Then, a large concentration gradient is formed at the surface. For
this reason, and during continued heating, diffusion influx from the volume is significantly activated, which leads to the next peak of
desorption. Recommendations on how to distinguish degassing scenarios corresponding to these essentially different physicochemical
reasons are given. This is fundamentally important for the correct recalculation of modeling results from laboratory samples to real
constructions. The hybrid thermal desorption model can be considered as a computational algorithm for solving a partial differential
system using an approximation by an ODE system (but this is not a straight-line method).
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1. Introduction
Green hydrogen has been increasingly recognized as a critical
solution for decarbonization [1–4]. It is sufficient to operate with
volume-averaged concentrations for many applied problems. This
is quite adequate for porous, powdery materials, when the sample
geometric characteristics are unimportant. We will consider the
models in the context of the thermal desorption spectrometry
(TDS) experimentalmethod. For definiteness, the authors focus on
the capabilities of the experimental equipment described in detail
in [5, 6]. A sample of the material pre-saturated with dissolved
hydrogen is slowly heated under vacuum conditions. The density
of the degassing flux is determined using a mass spectrometer. Let
us narrow down the research object. The sample is a plate made
of a test material with metallic properties (alloy). One can select
the volume and the double-sided surface (we neglect the ends).
Hydrogen dissolves in the atomic state. This is typical for materials
in the applied task of producing extremely pure hydrogen based
on membrane technologies. It can also be a material for storage
systems and protection constructions in reactors (in long-term
and thermonuclear ones). In real time, the experiment can be
performed on thin plates, extrapolating the results to the walls
(layers) of real structures next. At the same time, it is important to

argue for the uniqueness of parameters’ estimates with sufficient
accuracy (depending on the task) for correct recalculation. Varying
the heating law allows modeling the dehydrogenation flux, for
example, of a hydride material in a car fuel tank. A mathematical
model and computational algorithm for describing TDS dehydro-
genation of powder are presented in [7]. In this case, the model
becomes significantly more complicated (Stefan-type boundary
value problem), since it is necessary to take into account the free
(moving) boundary of the phase transition.

The main object of this paper is to present a hybrid model for the
numerical simulation of hydrogen thermal desorption, combining
a model in terms of volume-averaged concentration with a more
detailed model in the form of a diffusion equation with nonlinear
dynamic boundary conditions reflecting processes on the surface.
As a result, we obtain a system of ordinary differential equations.
This system has a relatively low order. The model does not require
the development of specialized software. The presented model
allows us to numerically simulate various situations and operating
conditions of the material in any mathematical package without
significant expenditure of computed machine time. The authors
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used the free distributed package Scilab, the programming lan-
guage of which practically coincides with Matlab. TDS Simulator
forMatlab is presented in [8].

For the more complex model presented in Section 4, we had to
develop our own software. Commercial mathematical packages
do not yet have the corresponding software procedures. The fact
is that the boundary value problem considered there has non-
standard nonlinear dynamic boundary conditions. This leads to
the appearance of fractional derivatives, which characterize the so-
called dynamic systems with memory (actively studied in applied
mathematics in recent times).

In accordance with this paper’s objective, the authors do not
provide a full literature review in the introduction. Reviews are
presented in detail in the cited literature. All relevant material is
presented sequentiallywith the appropriate references throughout.
This is carried out intentionally so that the reader can holistically
comprehend the preparatory argumentation and the detailed con-
clusion of the final hybrid model and computational scheme.

2. A model of reaction order α ∈ [1, 2]

2.1. Diffusion limitation

The classic result is as follows [9, 10]. The sample is a thin plate;
the ends are neglected in the process of degassing. In the volume,
we consider the following diffusion equation:

∂c
∂t

=
∂

∂x

(
D
∂c
∂x

)
= D(T)

∂2c
∂x2

, x ∈ [0, ℓ].

Here, ℓ is the thickness of the plate, and for the diffusion coefficient,
D = D(T(t)) ≡ D[t] is performed, i.e., heating is slow and
uniform (T does not depend on x). We will also use the sign of
identity both as a designation and as an equality by definition.
Usually, linear heating is used. The heating rate in the experiment
is constant β

(
[β] = K/s

)
: T(t) = T0 + βt. Upon reaching a

certain maximum temperature Tmax , further heating discontinues
(T = Tmax, t > tmax). This may be intentional or due to the risk
of overheating of the structure.

A boundary value problem is considered when degassing is strictly
limited by diffusion: ct = D(T(t))cxx [t > 0, x ∈ (0, ℓ)], c = c0 > 0

[t = 0], and c = 0 [t > 0, x = 0, ℓ] ([c] = 1H/cm3).

For the variable

X(t) ≈
1

ℓ

∫ ℓ

0

c(t, x)dx
(
= c(t)

)
(1)

the approximate linearmodel (see [11] formore details) is obtained

Ẋ(t) = −K(T)X(t), X(0) = c0
(
[Ẋ(t)] = 1/cm3s

)
,

K(T) = π
2
ℓ
−2D(T), T = T(t) (= T0 + βt).

The value of X(t) has meaning of the volume-averaged concentra-
tion of the dissolved hydrogen remaining in the sample at t > 0.
The model is functional when the temperature is high enough (to
neglect the rapid processes of dissolution and desorption on the
surface), and we are interested in the integral flux of degassing
without detailing the physicochemical processes. The model takes
the form of a first-order reaction. In this case, the kinetic co-
efficient K(T) is proportional to D(T). This makes it possible to
focus on the data on the diffusion coefficient for an experimental

material and postulate the Arrhenius dependence on temperature:
K(T) = K0 exp{−Q/[RT]}.

The degassing flux density w(t) = −Ẋ(t) is of interest. Here, we
assume 1 = 1H for uniformity, although hydrogen is desorbed in
molecular form (extreme temperatures are not considered). Due
to the one-to-one correspondence t ↔ T(t) during monotonic
heating, it is possible to construct a graphw(T) in the {T,w} axes.
This is the very TDS spectrum that serves as the input information
for further analysis. If heating is stopped, then we further operate
with the graph w(t), t > tmax. Usually, pressure is measured, but
here we will not specify how these data are converted into flux.
This is determined by the specific features of the experimental
apparatus. This paper deals with the hybridmodel; hence, thew(T)
graph is regarded as experimental data. The value of the initial
uniform saturation c0 is determined at the end of degassing (based
on the integral ofw) and the geometry of the sample.

Remark 1: It can be additionally normalized to the initial concen-
tration: X̃ = X/c0, X̃(0) = 1. The ODE will remain unchanged
(a linear homogeneous equation with the same coefficient K(T))
but the dimensionless variable X̃(t) will already have the meaning
of the remaining fraction of c0. It is possible to operate over the
desorbed fraction Y(t) = 1− X̃(t), and then Ẏ(t) = K(T)(1− Y(t)),
Y(0) = 0, w̃(t) = Ẏ(t), and w(t) = w̃(t)c0. Note that such a
simplemodel, when strictly limited only by diffusion, does not react
to c0, but reacts to the geometric parameter ℓ: K(T) = K(T; ℓ).
In nonlinear models, for the reasons listed below, we will not
normalize to the initial concentration (unlike [11]) but will instead
operate with the average concentration in accordance with (1).

2.2. Limitation by desorption

It is assumed that with strict limitation of desorption in the vol-
ume, the concentration is almost uniform: c(t, x) ≈ c(t) ⇒

X(t) ≈ c(t). Then, for reasons of material balance, we can write
ℓẊ = −2b(T)X2, X(0) = c0, and consider b = b0 exp{−Eb/RT} as
the effective recombination coefficient [12] (p. 52). The factor 2 em-
phasizes that desorption occurs from both surfaces (near-surface
volumes) of the plate. The quadrate responds to the combination
of two atoms into hydrogen molecules in the desorption process.

The distribution of concentration c(t, x) is symmetric with respect
to the centre of the plate x = ℓ/2. Approximation c(t, x) ≈ c(t)
is quite acceptable for thin samples with relatively large D (for
membrane technologies). This applies to the case in which the
reaction H + H = H2 is strictly limiting, which according to the
laws of chemical kinetics leads to a second-order reaction model.
For consistency, we consider the density of the volume-averaged
degassing flux in atoms: w(t) = −Ẋ(t), [w] = 1H/(cm3s). Thus,
the value J(t) = b(T)X2(t) can be interpreted as the desorption
flux from a surface unit (two-sided): ℓw(t) = 2J(t), [J] = 1/cm2s
and [b] = cm4/s.

Remark 2: This is the second considered extreme case when diffu-
sion is relatively fast and strictly limited only by desorption. Here,
the kinetic coefficient is K(T) = 2b(T)/ℓ. Instead of D(T), b(T)
naturally appears, and the dependence on ℓ remains. If we turn
to fractions X̃ = X/c0, then dX̃/dt = −K̃X̃2, X̃(0) = 1, and
K̃ = K̃(T; ℓ, c0) = 2b(T)c0/ℓ. An additional dependence on the
initial saturation appears. This has to be taken into account for
metals and alloys. For porous powdery materials, the dependence
of the kinetic coefficient on c0, ℓ, should not be significant. In this

ACADEMIAMATERIALS SCIENCE 2025, 2 2 of 15



https://www.academia.edu/journals/academia-materials-science/about https://doi.org/10.20935/AcadMatSci7591

case, one can formally write the second-order reaction equation
as dX̃/dt = −b̃(T)X̃2, interpreting b̃(T) in this notation as a
coefficient of averaged volume desorption. For these reasons, we
leave the averaged volume concentration X(t) as a variable, and
leave the value c0 in the initial data: X(0) = c0.

2.3. Averaging over diffusion and desorption processes

In a wide range of experimental conditions, diffusion and desorp-
tion from the surface are essentially interdependent. The dynamics
of processes on the surface dictates the boundary conditions for the
diffusion equation.

Synthesising the above reasoning, let us consider the averaged
model, taking into account linear uniform heating T(t) = T0 + βt(
dT = βdt

)
. By virtue of t ↔ T, instead of X(t) we can write X(T)(

≈ c(T)
)
and

dX
dT

= −
K(T)
β

Xα(T), X(T0) = c0, α ∈ [1, 2], (2)

K(T) = K0 exp{−Q[RT]−1}, T ∈ [T0,T∗], T∗ < Tmax.

The parameter α ∈ [1, 2] allows us to take into account the degree
of participation of limiting factors. We apply averaging not only by
concentration, but also by diffusion and recombination processes.
The coefficient K(T) indirectly depends on the fixed parameters
α, ℓ. So, at α ∼ 1 we focus on π2ℓ−2D(T). And for value α ∼ 2,
we use the coefficient 2b(T)/ℓ.

This model was analyzed analytically in the paper [11]. This paper
specifically and additionally considered the normalization X →

X/c0 ∈ (0, 1), t > 0, and only the temperature dependence K(T).
Kissinger’s methodology for estimating K0, Q from experiments
with different heating rates was presented. The procedure for es-
timation from a single heating rate was also described.

Remark 3: In [13], a wide range of models Ẋ ≡ dX/dt = K(T)f(X),
where X(t) is the reacted fraction, and their corresponding appli-
cation techniques are presented. When compared to the notations
above, X = 1 − X/c0 is assumed in [13], where X is the volume-
averaged concentration (1) on the right. If only fractions appear
in the model, then, when solving inverse problems of parametric
identification from experimental data, no significant numerical
dependence of K on the sample geometry (e.g., fine powder) and
on the initial saturation level c0 should be found. If such a depen-
dence is observed, the authors recommend considering the hybrid
model below. The dependence of the kinetic coefficient not only on
the temperature T, but also on the parameters ℓ, c0, is explicitly
highlighted there. It is necessary to take into account what exactly
is used as the phase variableX for the dynamical system of interest.
In this paper, the remaining average concentration is used, as it
clearly determines the further degassing rate.

We note the study [14] on powdered material (ErH3), which
presents a relevant literature review. Models of powder particle
dehydrogenation (high-temperature and diffusion peaks) are pre-
sented in [7]. In [15], the effect of initial saturation is analyzed in
detail. The paper [16] contains an overview, a detailed description
of the model proposed there, and an extensive list of references.
Note also the detailed and thorough reviews with hundreds of
references, including those on membrane technologies [17, 18].

3. Refinement of the kinetic coefficient
For now, we will consider an averaged model for diffusion and
desorption processes for the volume-averaged concentration X

X ≈ ℓ
−1

∫ ℓ

0

c(t, x)dx
∣∣∣
T(t)

= c(T).

We choose, by virtue of T(t, x) = T(t) = T0 + βt, t ↔ T (t < tmax),
the current temperature T as the independent variable. Shown in
(2), the Arrhenius dependence of the kinetic coefficient on T has
so far only been postulated: K(T). For porous, powdery materials,
this can be limited to estimating the values of K0 and Q from
experimental data.

If we deal with metals and alloys, the model must perceive the
geometry patterns (parameters ℓ, c0). Let us represent this depen-
dence in an explicit analytical form. Let us introduce the following
notations:

KD = π
2D(T)ℓ−2

,Kb = 2b(T)ℓ−1
,

D = D0exp{−ED[RT]−1}, b = b0exp{−Eb[RT]
−1}.

We set K(T;α, ℓ) = K2−α
D · Kα−1

b . Then, at α = 1 we obtain KD

(diffusion limitation), and at α = 2 we obtain Kb (desorption
limitation). Intermediate values of α will correspond to a mix of
volume and surface processes. The Arrhenius form in temperature
will be preserved:

K(T;α, ℓ) = K0ℓ
α−3exp{−Q[RT]−1}, (3)

K0 = π
2(2−α) · 2α−1 · D2−α

0 · bα−1
0 ,

Q = ED(2− α) + Eb(α− 1).

At fixed α, we have K0 = K0(D0, b0) and Q = Q(ED,Eb). The
parameter α ∈ [1, 2] is informative: it shows in what proportion
diffusion and desorption have shared their interdependent influ-
ence. Themultiplier ℓα−3 is highlighted; therefore, the experiments
on samples of different thicknesses are highly desirable. If there
is no information on the values of the diffusion and desorption
coefficients, then K0 and Q in (3) can be considered as fitting
parameters when approximating the experimental curves.

Let us note the following drawback, which we try to avoid. If we use
dimensionless fractions

X̃ ≈
1

ℓc0

∫ ℓ

0

c(t, x)dx
∣∣∣
T(t)

∈ [0, 1],

then we obtain the approximation model

dX̃(T)
dT

= −
K
β
X̃α(T), X̃(T0) = 1,

K = K(T)ℓα−3cα−1
0 , K(T) = K0 exp{−Q[RT]−1},

K0 = K0(α,D0, b0) = π
2(2−α) · 2α−1 · D2−α

0 · bα−1
0 ,

Q = Q(α,ED,Eb) = ED(2− α) + Eb(α− 1).

In the kinetic coefficient K, the multipliers ℓα−3 and cα−1
0 are

explicitly emphasized. ForK(T), we reserved the designation of the
Arrhenius dependence on temperature. Parametric identification
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requires experiments not only at different ℓ but also at different
initial saturation levels c0. Therefore, it is preferable to operatewith
the volume-averaged concentration (without normalization) and
usemodel (2)withX(T0) = c0 and the kinetic coefficientK(T;α, ℓ)
according to Formula (3). The thickness of the sample is known,
and the value of c0 is determined after degassing.

Formally, this model is in the class of ordinary differential equa-
tions (ODEs) with separating variables and integrates in quadra-
tures (but not in elementary functions). Further numerical integra-
tion of quadratures is not simpler than numerical integration of the
original ODE, if we have common mathematical packages in mind
(the authors used the freely available Scilab).

If there is no information about the values of D0, ED, b0, or Eb, we
takeα,K0, andQ as independent fitting parameters. Amodel in the
form of a reaction of order α ∈ [1, 2] is only able to approximate
the unimodal TDS spectrum w(T) = −Ẋ|T = −βdX/dT

(
or the

dependence w̃(T) = −dX̃/dt = −βdX̃/dT
)
. One can also plot

v(T) = −dX/dT if the dimension [v] = 1/(cm3K) is preferred.

If the TDS spectrum w(T) has several local peaks, one usually
proceeds as follows. The dependence w(T) is decomposed into
the sum of reactions of first and second orders, and thereby a
set of values of the pre-exponents K0 and binding energies Q are
estimated. Each local peak is interpreted as a release of hydrogen
trapped by different types of traps. Formally, local reaction peaks
are asymmetric [11], but often nearly symmetric with satisfactory
accuracy. This allows us to automate the decomposition into the
sum of reactions to be automated. In particular, one uses the
decomposition ofw(T) into a sum of Gaussian curves in theOrigin
package.

In general, this is a significant mathematical problem. The decom-
position of a function by powers of the argument is the theory
of power series. The decomposition of a function by harmonics
is the theory of Fourier series. Here, we are faced with a more
difficult problem. The basic functions are the solutions of ODEs
with separable variables. However, quadratures are not expressed
in elementary functions.

4. A model with nonlinear dynamic
boundary conditions

Let us proceed to a more detailed model, explicitly separating bulk
and surface processes (following [19] (Chapter 6, pp. 177–208)).
The vacuum system is considered powerful enough to neglect
resorption. For a thin homogeneous plate of thickness ℓ under
conditions of slow uniform heating, the boundary value problem
of the TDS degassing takes the following form:

∂tc(t, x) = D(T)∂2
x c(t, x), t ∈ (0, t∗), x ∈ (0, ℓ),

dq
dt

≡ q̇(t) = −b(T)q2(t) + D(T)∂xc(t, 0), (4)

c(0, x) = c0, x ∈ [0, ℓ], c0,ℓ(t) = g(T)q(t),

J(t) = b(T)q2(t), T(t) = T0 + βt, β > 0.

Here, q(t) is the surface concentration (1H/cm2); [c] = 1H/cm3;
D, b, and g are the Arrhenius temperature-dependent coefficients
of diffusion, desorption, and rapid dissolution, and the dimen-
sions of these coefficients are cm2/s, cm2/s, and 1/cm; and J(t)

is the degassing (atoms recombined into molecules) flux den-
sity, [J] = 1/(cm2s), where 1 denotes one H atom. We can obtain
J = J(T) by virtue of t ↔ T. Within the context of the model, the
graph (T, J(T)) is the TDS spectrum. Let us emphasize that the sur-
face is explicitly allocated. Therefore, desorption is assigned to the
unit (cm2) part of the surface. The total surface consists of two iden-
tical subsurfaces notionally named left and right (S1 + S2 = 2S).
This should not be forgotten when recalculating the flux per unit
of total area. The left and right subsurfaces will have the same
concentration q0,ℓ(t) = q(t) due to the symmetry of the experiment
and the initial distribution.

The model “diffusion of atomic hydrogen in the volume lattice and
desorption ofmolecular hydrogen from the surface” is adequate for
materials with metallic properties (at not too high temperatures).

In the diffusion equation, it is taken into account that D does not
depend on x, and it can be taken outside the sign ∂x. To simplify
the notation, we can use the short notations D(t) ≡ D(T(t)),
g(t) ≡ g(T(t)), and b(t) ≡ b(T(t)). However, it should be borne in
mind that the temperature is the argument of the coefficients. If the
temperature is already very high and degassing is still significant,
then further heating is usually discontinued (T = Tmax, t > tmax),
and the dependence J(t) is analyzed in the following.

4.1. Comments, clarifications, and summaries

Remark. We assume a uniform initial distribution of concentra-
tion c0. This requires the sample to be kept for a long time at
a sufficiently high constant temperature and pressure of H2. In
terms of numerical methods, there is no problem with the value
c0 = c0(x). However, if we have the inverse problem of parametric
identification in mind, then c0 = const is easily determined by the
results of complete degassing of the sample,while the restoration of
the function c0(x) is much harder. Moreover, if the distribution of
c0(x) is asymmetric with respect to the centre of the plate thickness
(ℓ/2), then different sides will have different desorption fluxes,
while only the sum is measured. If such an applied problem arises,
there is no appreciable complication in the numerical solution of
the direct problem when all the coefficients are given.

The experiment is symmetric. Thus, for a symmetric initial concen-
tration c0(x) we have

c0(t) ≡ c(t, 0) = cℓ(t) ≡ c(t, ℓ), ∂xc(t, 0) = −∂xc(t, ℓ).

The surface concentrations (at x = 0, ℓ) are the same, and we use
one notation q(t) for the number of H atoms that are contained per
cm2 each of the two sides of the plate (the ends are neglected).

The surface is explicitly separated in the model. We leave the same
notation b(T) for the desorption coefficient. In the previous section
(when desorption was strictly limited), it was the effective recom-
bination (volume desorption) coefficient b = bvolume, [b] = cm4/s.
Now, it is the surface parameter b = bsurface, [b] = cm2/s. Their
interrelation is defined by the relation bsurf = g2bvol.

The process of surface–volume interaction can be detailed:

k−(T)[1− c0,ℓ(t)c−1
max ]q0,ℓ(t)−

k+(T)[1− q0,ℓ(t)q−1
max ]c0,ℓ(t) = ∓D(T)∂xc|0,ℓ.

The presence of the threshold factor [1 − c/cmax] leads to the
following. If the concentration of H in the near-surface volume
is close to the maximum possible, then dissolution essentially
stops. The othermultiplier is interpreted similarly, where the value
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θ(t) = q/qmax means the degree of surface occupation. We will
focus on sufficiently high temperatures (hundreds of ◦C). Surface
processes are activatedmuch faster with the growth of T compared
to diffusion.Ona relative scale,wehaveD∂xc ≈ 0 and, additionally,
q ≪ qmax, c ≪ cmax. Then, we obtain g = k−/k+ (c0,ℓ(t) =

g(T)q(t)). If the surface is isotropic (in the terms of Ek− ≈ Ek+),
then g(T) dependsweakly on temperature. The surface and volume
concentrations track each other locally and rapidly. So one can
consider g = const within a sufficiently sharp local TDS peak.

Otherwise, there are four Arrhenius parameters in k±, and the
inverse problem of parametric identification becomes difficult to
solve. It is necessary to keep inmind the limited informativeness of
the TDSmethod and the need for unique estimation of parameters
where applicable. After all, the results from thin plates are extrap-
olated to real structures (e.g., protective walls in ITERs). Thus,
uniqueness of parameter values is necessary for proper revised
estimation. Therefore, further on we will try to take into account
only the most necessary characteristics of the considered dynamic
processes. When borrowing values from the literature, one should
keep inmind that, for example, the diffusion coefficientD obtained
under different boundary conditions (in different boundary value
problems) will have different values when processing the same
experimental material. The similarity of models is necessary to
compare the values of the parameters.

For a direct numerical modeling problem, an increase in the num-
ber of given parameters is not critical, since the boundary value
problem is one-dimensional in spatial variables. This does not de-
tract from its complexity, since we deal with non-standard nonlin-
ear dynamic boundary conditions. A time derivative is present not
only in the diffusion equation, but also in the boundary conditions.
In generalized form, we have a functional differential equation
(FDE) of the form q̇(t) = F(t, q(t), q[0,t], q̇[0,t], q̇[0,t]). The current
state q(t) and the rate q̇(t) are affected not only by the background
of q[0,t], but also by the background of the derivative q̇[0,t]. Formally,
we obtain q̇[0,t] = G(q[0,t]). But due to the incorrectness of the dif-
ferentiation operation, the formal equation q̇(t) = H(t, q(t), q[0,t])
will not have the properties of the operatorH necessary for numer-
ical analysis. Without dwelling on the analytical transformations,
we only note that the transfer of the derivative in the right-hand
side of the equation bymeans of the integration-by-parts operation
leads to the occurrence of divergent series. In general terminology,
such equations belong to the so-called neutral type and require the
development of a more complex mathematical apparatus [20].

The actual TDS spectrum (the dependence of the desorption
flux density J(T) on the current temperature) often contains
several local peaks. They are usually associated with different
kinds of traps (material inhomogeneities) with different bind-
ing energies. However, at least a two-peak spectrum can also
be described by a dynamical model in which there are no traps
[6] (Figures 7 and 8). In the paper [6], a three-stage exper-
iment “breakthrough–flow–thermodesorption” is implemented.
This significantly increases the informative value of solving the
inverse parametric identification problem.

In addition to traps, local peaks can be formed by the interaction
between volume (diffusion without reversible trapping) and sur-
face (desorption). Schematically, this occurs as follows:

1. Desorption from the surface and near-surface volume gives a
local flux peak and depletes the subsurface layer of hydrogen,
which further leads to a local flux drop.

2. During continued heating, diffusion intensifies in response to
the large concentration gradient near the surface.

3. Atomic hydrogen influx from the volume generates an addi-
tional peak.

We emphasize that such a situation is numerically observed if the
activation energies of diffusion and desorption are in ranges where
neither of the factors is the only limiting one.

Of course, in reality, diffusion, desorption from the surface, and
traps with different binding energies interact. This generates a
multi-peak spectrum. The problem of distinguishing the physico-
chemical causes of local peaks arises.

Let us complicate the diffusion equation, taking into account re-
versible trapping in traps of different types (almost uniformly
distributed in the volume, see [11] for more details):

∂tc = D∂2
x c−

m∑

ν=1

[
a−
ν [1− Zν ]c(t, x)− a+

ν zν(t, x)
]
,

∂tzν = a−
ν (T)[1− Zν ]c(t, x)− a+

ν (T)zν(t, x). (5)

Here, zν(t, x) are the concentrations of atomic hydrogen H (1/cm3)
trapped by defects of various types (microcracks, grain boundaries,
etc.); a∓

ν are coefficients of H absorption and emission by traps
(1/s); and Zν ≡ zν(t, x)/max zν .

Such a model contains too many parameters to guarantee the
uniqueness of estimates from experimental data of limited infor-
mative value. The importance of solving the direct problem is that
qualitative questions can be investigated, for example, what the
sensitivity of desorption to variations in certain parameters and
their combinations is. This problem is difficult to solve within
mathematical packages because of the non-standardized boundary
conditions. This overall impedes the application of algorithms for
numerical modeling.

5. A hybrid model of thermal desorption
Let us turn to themain content of this paper. Let us set the problem
of combining the two considered classes of models. The main
mathematical complexity is related to the system of equations in
partial derivatives. But the samples (plates) are usually thin. This
leads to a reasonable experiment time and corresponds to the prob-
lems of membrane technologies. In particular, various alloys are
investigated in order to increase the throughput for the extraction
of particularly pure hydrogen from gas mixtures. Therefore, it is
reasonable to move to volume-averaged concentrations.

In order not to clutter the calculations, we restrict ourselves to one
type of trap (e.g., grain boundaries) with concentration z(t, x). Let
us write the diffusion equation

∂tc(t, x) + ∂tz(t, x) = D(T)∂2
x c(t, x), T = T(t). (6)

It is possible not to refer to the above model, but simply limit
ourselves to material balance considerations: the change in total
concentration c + z is determined by the diffusion flux density
Jd = −D∂xc. The diffusion Equation (6) follows from the conti-
nuity equation ∂t(c+ z) = −∂xJd.
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Let us integrate the Equation (6) over variable x ∈ [0, ℓ]:
∫ ℓ

0

∂c
∂t

dx+
∫ ℓ

0

∂z
∂t

dx

=
d
dt

∫ ℓ

0

c(t, x)dx+
d
dt

∫ ℓ

0

z(t, x)dx = D(T)
[
∂c
∂x

∣∣∣
ℓ
−

∂c
∂x

∣∣∣
0

]
.

Let us introduce volume-averaged concentrations

X(t) =
1

ℓ

∫ ℓ

0

c(t, x)dx, Y(t) =
1

ℓ

∫ ℓ

0

z(t, x)dx.

By the symmetry ∂xc(t, 0) = −∂xc(t, ℓ), we obtain

Ẋ(t) + Ẏ(t) = −2D(T)
∂c
∂x

∣∣∣
0
· ℓ−1

.

Here, we apply the expression forD∂xc|0 to the equation for surface
concentration (4):

dq
dt

≡ q̇(t) = −b(T)q2(t)−
ℓ

2

[
Ẋ(t) + Ẏ(t)

]
.

And for the variables X, Y we assume average models. For X,

Ẋ(t) = −K(T)Xα(t), X(0) = c0,

K(T) ≡ K(T; ℓ, α) = K0ℓ
α−3exp{−Q[RT]−1}.

The values of K0 and Q are determined by the balance of the
diffusion–desorption interaction in accordance with the expres-
sions in (3). If there is no a priori knowledge of the orders
D0, b0,ED, Eb, we consider K0 and Q to be variable fitting coef-
ficients, as is α. Having estimated them from experimental data,
we obtain information about the values of the quantities

D2−α
0 · bα−1

0 , ED(2− α) + Eb(α− 1).

The cases α = 1 and α = 2 are not excluded, and then we deter-
mine, respectively, the diffusion and desorption coefficients D(T)
and b(T) = bvol(T) (see above). In this section, b(T) = bsurf(T). If
c(t, x) ≈ c(t), α = 2 (limiting by desorption), then

bq2 = bg−2g2q2 = bg−2c2 ⇒ bv = bsg−2 ⇒ bsurf(T).

If a low-temperature peak is considered, one can fix α = 2. At high
temperatures, α = 1. However, for such a choice there must be
specific physical considerations about the material under specific
experimental conditions.

The initial heating is less informative than the neighborhood of
the TDS peak. We focus on the operating temperature range of
100–500 ◦C (for membrane technologies). Low and cryogenic tem-
peratures are not considered. In our case, we assume that the traps
are far from being filled, so that the value z/zmax can be neglected
compared to 1 (z/zmax ≪ 1).

We now integrate over x ∈ [0, ℓ] the equation for z:

∂tz = a−(T)c(t, x)− a+(T)z(t, x), z(0, x) = z0

⇒
d
dt
Y(t) = a−(T)X(t)− a+(T)Y(t), Y(0) = z0.

Let us write the model in compact form. The dynamics of the
concentrations (on the surface and in the volume) are as follows:





dq
dt

= −b(T)q2(t) +
ℓ

2

[
K(T)Xα(t)− a−X+ a+Y

]
,

d
dt
X(t) = −K(T)Xα(t), K(T) = K(T;α, ℓ),

d
dt
Y(t) = a−(T)X(t)− a+(T)Y(t).

(7)

The initial data (at uniform equilibrium initial saturation of the
sample) are

q(0) = q0, X(0) = c0, c0 = g(T0)q0,

Y(0) = z0, a−(T0)c0 − a+(T0)z0 = 0.

Note that the initial values of concentrations q0, c0, and z0 are
not independent within the model. In a direct numerical modeling
problem, it is sufficient to set the value of q0. The values of c0, z0
are determined by q0 and coefficients g(T0) and a±(T0). But when
solving the inverse problem by the results of complete degassing,
only the sum 2q0 + ℓ[c0 + z0] will be known.

Remark 4: Note that the change from the original boundary value
problem (4) (with traps (5)) to the averagedmodel (7) reduced the
dimensionality of the inverse parametric identification problem.
This is natural due to the replacement of the distribution c(t, x),
which provides more complete information, by the averaged X(t).
We may introduce the parameter ḡ from the condition c0 = ḡq0
as a relation of the equilibrium concentrations after initial uniform
saturation of the sample. The value of ḡ depends not only on the
material but also on p̄, T̄ (H2 pressure and saturation temperature).
We will not go into detail because the preliminary stage depends
significantly on the specifics of the experiment and is formally
outside the degassingmodel. Theoretically, the informationg(T(t))
is not superfluous. It allows us to compare the near-surface volume
concentration c0,ℓ(t) = g(T)q(t) in the original boundary value
problem with the averaged X(t), estimating the degree of upward
convexity of the distribution c(t, x).

We are interested in the desorption flux density from the (two-
sided) surface J(t) = b(T(t))q2(t). In axes (T, J), we have the TDS
spectrum: a plot of the function J(T) under monotonic heating
when t ↔ T(t), t ≤ tmax.

The first equation describes the dynamics of the surface concen-
tration, which is affected not only by the current value of q(t) itself,
but also by the dynamics of the volume-averaged concentrations
(diffusively mobile and trapped H atoms). The equation can be
written as

d
dt

[
q+ 1

2
ℓ
(
X+ Y

)]
= −b(T)q2(t) (b = bsurf).

This is a material balance: except for the rate of change in the
number of H atoms on the cm2 surface (accumulation or loss at
the surface), the total flux of H release is carried away by surface
desorption from both sides of the plate.

Formally, we have a system of three ODEs (ordinary differential
equations). But in truth, the equations are numerically integrated
sequentially. First, we calculate X(t) from the second equation. By
applying it to the third equation, we obtain a linear ODE for Y(t).
These equations are integrated in quadrature, but for consistency
it is better to use the procedures for the numerical integration of
ODEs. With the known dependencies X(t) and Y(t), it remains
to integrate the first equation for the concentration q(t). It has
quadratic nonlinearity (Riccati equation) and, in general, is not
integrable in quadrature. We solve it numerically.
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6. The initial simplifications of the
computational scheme
Two extremes are described in Section 2 above: strict limitation by
diffusion or desorption (recombination H+H=H2). In this case, if
α = 1, then

K(T) = K(T; ℓ) = KD = π
2D(T)ℓ−2

,

and the model (7) clearly includes the diffusion coefficient. The
second equation does not include the effective recombination co-
efficient b = bvol(T). But the surface desorption coefficient b(T) =
bsurf(T) is present in the first equation, so that desorption is not
forgotten and b(T) is more informative, since it is introduced in a
more accurate model with explicit surface separation. In the con-
ventionally considered range 100–500 ◦C, it is mostly diffusion-
limited. But there is an initial heating stage (T0 typically room
temperature). Diffusion equations quickly forget the initial data.
This means that the initial data have a weak influence on the
neighborhood of the desorption peak. Therefore, we limit ourselves
to α ∈ [1, 3/2], starting the investigation from α = 1 (K = KD).
As α increases, we take KD as the initial approximation and shift
slightly toward Kb = 2b(T)/ℓ, b = bvol.

If there are no order-of-magnitude estimates for D and bvol, we
are guided by Formula (3), assuming that K0 and Q are fitting
parameters (however, we fix themultiplier ℓα−3).We can postulate
the mean value α = 3/2 right away. The parameter g(T) depends
weakly on T; hence, in the neighborhood of the TDS peak we
assume g = ḡ = const (102 − 104 1/cm). For the averaged model,
this is an independent parameter. It is indirectly related to themore
accurate distributed model by the relation ḡ = g(T0).

The next simplification is as follows. The release of H from traps
prevails under monotonic heating. We assume a− = const
(10−3 − 10−2 1/s). And we consider the H release coefficient to
be Arrhenius-dependent on temperature, with a− ≪ a+(T) at
T > 100 ◦C. The value Ea ≡ Ea+ is important for estimating the
energy barrier of trap confinement. An obviousmodification of (7)
in the presence of different traps is to replace the third equation for
Y(t) by several single equations for Yi(t).

In general, the proposed model includes the range where diffu-
sion in the volume and desorption from the surface significantly
influence one another. From the computational point of view, the
transition to volume-averaged concentrations in the lattice (diffu-
sively mobile H) and in traps for thin sample plates allows us to
operate not with a system of partial derivative equations, but with
a consistently solved system of ODEs. This makes it possible to use
any package of standard numerical methods, does not require spe-
cialized software, and allows us to quickly calculate the spectrum
(T, J(T)) with minimum requirements for computing capacity.

Let us present the model for the initial numerical analysis, tak-
ing into account the simplifications adopted (the temperature-
dependent parameters are the Arrhenius parameters):





dq
dt

=−b(T)q2(t)+ ℓ

2
[K(T)Xα(t)−a−X(t)+ a+(T)Y(t)],

d
dt
X(t)=−K(T)Xα(t), K(T;α, ℓ)=K0ℓ

α−3exp
{
−

Q
RT

}
,

d
dt
Y(t) = a−X(t)− a+(T)Y(t), a− = const.

Initial data are the following: g = ḡ = const,

q(0) = q0, X(0) = c0, c0 = ḡq0,

Y(0) = z0, a−c0 − a+(T0)z0 = 0.

There are independent varying parameters:

b = bsurf[b0,Eb]; ℓ; α ∈ [1, 3/2]; β; K0,Q;

[α = 1 ⇒ K = KD, K0 = π
2D0, Q = ED];

a+[a+
0 ,Ea]; a− = const[10−4 − 10−2 1/s];

ḡ = const[102 − 104 1/cm]; q0 [⇒ c0, z0].

All parameters of the model b, K, α, a±, and ḡ have a meaningful
physical meaning. The values K0/ℓ

2 at α = 1 (pre-exponent in
K(T)) and a± are frequency factors (1/s).

7. The numerical modeling results
For certainty, we focus on published data for nickel and steel
(12Cr18Ni10Ti grade) [21]. The parameter estimates depend signif-
icantly on the experimental conditions and sample preparation, so
we take the values as modeling values for numerical illustrations.
The general values are as follows:

ℓ = 0.1 cm, T0 = 300K, Ṫ = β = 0.5K/s.

The assumed parameter values for nickel are as follows:

b0 = 3.4 · 10−15 cm2/s, [E] = kJ/mole,

Eb = 43, D0 = 4.8 · 10−3 cm2/s, ED = 78,

g0 = 20 cm−1
, Eg = 0, c0 = 1018 cm−3

.

The parameters for steel are as follows:

b0 = 5.05 · 10−9 cm2/s, Eb = 97.14,

D0 = 3.09 · 10−4cm2/s, ED = 27.78,

g0 = 100 cm−1
, Eg = 0, c0 = 9.96 · 1017 cm−3

.

Using these parameters, we numerically plot the spectra
(Figure 1) with the application of the model in the form of a
boundary value problem (4) (curves with black circular markers).
We emphasize that trapping is absent in the model. Nevertheless,
two-peak curves are obtained: for nickel, the peaks are relatively
isolated, while for steel the local maxima are pronounced but
observed at relatively close temperatures. The same figures show
the numerical spectra using the hybrid model (lines with black
square markers). Varying the reaction order α in numerical
experiments showed that α ∼ 1 should be used to approximate the
two-peak spectra in the temperature range considered. The hybrid
model without defects (a± = 0, z0 = 0) assumes a sequential
solution of two ODEs: the first (Ẋ = . . . ) determines the dynamics
of the volume-averaged concentration, and the second (q̇ = . . . )
determines the desorption from the surface, taking into account
the inflow of H atoms due to changes in the volume-averaged
concentration. For steel (Figure 1, right), at the beginning of
the experiment (300–470K), there is a slight excess of influx
from the volume to the surface (curve with white square markers)
over the desorption flux. This leads to an initial increase in the
concentration at the surface.
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T, K

J 10-13, H/[s cm2]..

Ni

T, K

J 10-13, H/[s cm2]..

boundary value problem

hybrid model

(  /2)K(T)X  

     = 1

boundary value problem

hybrid model

(  /2)K(T)X  

     = 1

Steel

Figure 1 • Comparison of model fluxes: boundary value problem vs hybrid model.

For the numerical fluxes presented in Figure 1, we compare the
averaged and boundary concentrations, see Figure 2. All concen-
trations are presented in fractions of the initial concentration. For
the boundary value problem, we illustrate thickness-averaged con-
centrations (the curves with white circular markers) and boundary
volume concentrations (the curves with black circular markers).

For the hybridmodel, volume-averaged concentrations (the curves
with white square markers) and an analogue of the volume bound-
ary concentrations (the curves with black square markers) are
shown. In the hybrid model, there is no c0,ℓ(t), and, in general,
gq(t) does not coincide with X(t) at t > 0.

T, K

Ni boundary value problem

hybrid model

                 X /c0

                 gq(t) /c0

с(t,x)dx /с0

c0,  (t) /c0

T, K

boundary value problem

hybrid model

                 X /c0

                 gq(t) /c0

с(t,x)dx /с0

c0,  (t) /c0

Steel

Figure 2 • Comparison of the model concentrations: boundary value problem vs hybrid model.

The figures show that at degassing under heating conditions, the
boundary concentrations in the boundary value problem differ
significantly from the averaged concentrations, i.e., the volume
concentration profile c(t, x) is not a horizontal shelf. The gq ana-
logue boundary concentrations for the hybrid model (in the form
of sequentially solved ODEs), in general, well approximate the
boundary concentrations in boundary value problems with non-
linear dynamic boundary conditions. However, there is a possible
effect when at the beginning of degassing the value of gq for
the hybrid model increases slightly: the influx to the surface has
already activated due to the changes in the averaged concentration,
while desorption from the surface is still insufficient. As a result, we
observe (Figure 2, right) a short-lived excess of gq of the initial
level on the graph. Further, when degassing, the function gq in the
hybrid model approximates well the boundary concentration c0,ℓ
of the boundary value problem. Comparing the averaged concen-
trations (the curves with white markers in Figure 2), close curves
are observed in the figure on the right; on the left, the difference
between the averaged concentrations is significantly greater. The

reason for this lies in the larger curvature of the H concentration
profile in the boundary value problem.

Figure 3 illustrates the effect of the reaction order α on the
numerical spectra obtained using the hybrid model. The α values
are given in decreasing order of maximums. At the beginning of
degassing, a gluing of rising fronts is observed. The fractional
value of α allows us to take into account the influence of surface
processes and diffusion from the volume. Thus, at α = 1 we
observe two pronounced peaks: the first, low-temperature peak
due to desorption from the (sub)surface, and the second, high-
temperature peak due to inflow from the volume. As α increases,
the degree of influence of the surface increases, and the second
peak shifts to the lower-temperature zone. At α = 2, the degassing
process is strictly limited by the surface. We observe a single-peak
(unimodal) spectrum with the largest peak flux. If we keep track of
the decreasing α, we notice that bifurcation occurs with increasing
influence (fraction) of diffusion: a two-peak structure emerges and
develops. There are no traps in the model for now.
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T, K

J 10-13, H/[s cm2]..

Ni = 2, 1.75, 1.5, 1.25, 1.1, 1 Steel = 2, 1.75, 1.5, 1.25, 1.1, 1

T, K

J 10-13, H/[s cm2]..

Figure 3 •Hybrid model, effect of α.

Figure 4 shows the flux plots in the overall flux balance at the
surface (first equation of the hybrid model) due to changes in the
averaged concentration. As the α parameter increases, the peak
shifts to the low-temperature zone and becomes narrower. As α

increases, the volume “empties” faster. As α decreases, we observe
a more gentle rising front; diffusive inflow to the surface requires
more heating to reach the peak value.

Let us illustrate the effect of parameters that can be varied in the
experiment. Figure 5 shows the change in the plots when the

heating rate is varied. A lower heating rate corresponds to a spec-
trum with a smaller subgraph area. Material balance is obtained;
however, the time of the experiment varies. The spectrum is a plot
of J(T), not J(t). Qualitative changes in the spectra correspond to
changes in the application of the model in the form of a boundary
value problem.

Figure 6 shows the variation in the spectrum (hybrid model) when
varying the initial concentration. As the initial concentration in-
creases, more pronounced peak maxima are observed in the graphs.

Ni = 2, 1.75, 1.5, 1.25, 1.1, 1

T, K

   10-13, H/[s cm2]..(  /2)K(T)X  

Steel

T, K

= 2, 1.75, 1.5, 1.25, 1.1, 1

   10-13, H/[s cm2](  /2)K(T)X  . .

Figure 4 • Influx to the surface corresponding to a decrease in the averaged concentration.

= 0.25, 0.4, 0.5, 0.6, 0.75 K/s

J 10-13, H/[s cm2]..

Ni

T, K T, K

= 0.25, 0.4, 0.5, 0.6, 0.75 K/sSteel

J 10-13, H/[s cm2]..

Figure 5 •Hybrid model, effect of heating rate.
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T, K

J 10-13, H/[s cm2].

.

.

Ni
 

с0 = {10, 8, 6, 4, 2} 1017 H/cm3

T, K

J 10-13, H/[s cm2]..

Steel .
 

с0 = {10, 8, 6, 4, 2} 1017 H/cm3

Figure 6 •Hybrid model, effect of initial concentration.

Figures 7–9 illustrate the effect of sample thickness on the spec-
trum. Figure 7 shows the curves at α = 1 when diffusion is
limiting. The first and second peaks behave differently when the
thickness is varied. As the thickness increases, the area of the
second subgraph increases (it is proportional to ℓ). The maximum
is reached at a higher temperature, because more time is required
for diffusive influx to the surface. For steel (Figure 7 right) at
ℓ = 0.01 cm, we observe one peak in the low-temperature zone, and
the plate volume is negligible. At ℓ = 0.05 cm, a low-temperature
peak is observed at approximately the same temperature, but has
a significantly larger peak value. There is no pronounced second
peak yet: only a hint of a shoulder and a more gentle downward
front. At ℓ = 0.1 cm, isolated peaks are identified. The high-
temperature peak becomes more pronounced. Varying the thick-
ness of the sample allows us to distinguish the causes of the peaks,
and see that the surface and diffusion peaks behave differently.

Remark 5: It is possible to approximate each peak separately by
reactions of 1–2 orders (traps with different binding energies) in
terms of volume-averaged concentration. Typically, the Gaussians
sum decomposition in Origin is used. However, strictly speaking,
the model reaction peaks are not perfectly symmetric. Then, the
response of the peaks to the sample volume would be qualitatively
commensurate. This is characteristic of powdery, porousmaterials.

If the first peak is stable for a metal plate and the second peak
significantly grows in terms of area with increasing ℓ, then this
is in favor of the surface–volume interaction scenario from Sec-
tion 4.1. A problem arises at the qualitative level, namely, how to
distinguish between the scenarios, reversible trapping in traps or
the interaction of desorption with diffusion, when neither factor
is strictly limiting. The experiments with different ℓ allow us to
clarify the picture. Naturally, in reality it is more complicated,
especially for the multi-peak spectra with many different scenarios
superimposed. This is a typical difficulty of the inverse problems.
However, even for the two-peak spectra, the simulations show that
the high quality of approximation alone is not sufficient to explain
the physicochemical causes of peaks.

Figure 8 shows the change in spectra atα = 2. The gluing of rising
fronts is noted on the spectra. Desorption is strictly limited by the
surface, and single-peak (unimodal) spectra are observed. In thin
samples, the peak flux value is reached at lower temperatures.

Figure 9 illustrates the effect of sample thickness when fractional
α is used in the hybrid model. For nickel (Figure 9 on the left),
surface processes play a major role (α = 1.75). For steel (Figure 9
on the right), the main contribution is made by the diffusion from
the volume (α = 1.25). Varying the plate thickness in the experim
ent can help to reveal the physicochemical causes of the peaks.

T, K

J 10-13, H/[s cm2]..

Ni = 0.01, 0.02, 0.05, 0.1, 0.2 cm

= 1

T, K

J 10-13, H/[s cm2]..

= 0.01, 0.05, 0.1, 0.2 cmSteel

= 1

= 0.05

= 0.2

= 0.1

= 0.01

Figure 7 •Hybrid model, effect of sample thickness, α = 1.

ACADEMIAMATERIALS SCIENCE 2025, 2 10 of 15



https://www.academia.edu/journals/academia-materials-science/about https://doi.org/10.20935/AcadMatSci7591

T, K
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= 2

T, K

J 10-13, H/[s cm2]..

Steel = 0.01, 0.02, 0.05, 0.1, 0.2 cm
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Figure 8 •Hybrid model, effect of sample thickness, α = 2.

T, K

..J 10-13, H/[s cm2]

Ni = 0.01, 0.02, 0.05, 0.1, 0.2 cm

= 1.75

T, K

..J 10-13, H/[s cm2]

Steel

= 1.25

= 0.01, 0.05, 0.1, 0.2 cm

Figure 9 •Hybrid model, effect of sample thickness at fractional α.

Figure 10 shows the numerical spectra (boundary value and hy-
brid models) when defects are taken into account. Figure 10 for
nickel shows the spectrum, taking into account defects of “micro-
cavity type” (Ea± = 0). The initial concentration of the defects is
determined from the equilibrium conditions. Defects in the volume
have a weak effect on the low-temperature surface peak. The influx
from microcavity defects to the surface (curve with white rhom-
buses,Figure 10 on the left) is intensified simultaneously with the
influx to the surface, corresponding to a decrease in the volume-
averaged concentration (curve with white squares). Figure 10 on
the right illustrates the effect of “hydride inclusion type” defects.

Hydrogen release from the hydride begins when the temperature
reaches 900K. The flux from the defects is indicated by the white
rhombuses inFigure 10 on the right. This leads to a small jump in
the thermodesorption flux for the hybrid model (T = 900K, curve
with black squaremarkers) and amore gentle downward front. The
taking into account of different types of defects is possible both
in the model in the form of a boundary value problem and in the
hybrid model. There are no fundamental difficulties: additional
summands are added to the model and the technical calculations
become only more lengthy.

T, K

J 10-13, H/[s cm2]..

 

hybrid model

(  /2)K(T)X  ,     = 1

(  /2)(a+
Y-a

-
X)

a
- = 0.01,  a+ = 0.02

Ni

hybrid model

boundary value problem

T, K

J 10-13, H/[s cm2]..

.

Steel

(  /2)K(T)X  ,     = 1

(  /2)(a+
Y-a

-
X),

a
+ = 0.02, Ea+=35,

z0 = 5 1016 cm-3

Tcrit = 900 K

boundary value problem

Figure 10 •Hybrid model, effect of defects: left—microcavity; right—hydride inclusions.
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Figure 11 illustrates the decomposition of the two-peak numerical
spectrum (boundary value problem without traps) into the sum of
two reactions. The low-temperature peaks are well approximated
by the second-order reaction, limited by desorption. At high
temperatures, diffusionmakes a larger contribution (α < 1.5). The
figures show the corresponding fractions of desorbed hydrogen
(initial conditions) for each peak, the temperatures at which
the flux maximum is reached, and the corresponding activation
energies Q. The kinetic parameter K is not independent, K =

K(α, Tmax,Q, ℓ). What is the point of such a decomposition if the
initial spectrum is based on a model without traps? We emphasize
once again that the approximation does not solve the question of
the physicochemical interpretation of the spectrum.

Figure 12 shows the variation in the model flux as a sum of
two reactions when the heating rate is varied. The rising fronts
of the low-temperature flux are glued together. The qualitative
changes in the peaks are the same. Varying the heating rate does
not unambiguously reveal the causes of the peaks. The differences
in the area of the subgraphs are explainedbydifferent experimental
times.

Figure 13 shows the change in the numerical spectra (sum of two
reactions) when varying the initial concentration. The changes in
the low-temperature and high-temperature peaks are similar. No
noticeable shift in peak maximum temperatures is observed.

Figure 14 shows the effect of sample thickness on the model of
the two-peak spectrum as a sum of reactions. On the left side of
Figure 14, two relatively isolated peaks are observed for nickel.
For the low-temperature peak, a gluing of rising fronts is noted.
As the thickness increases, the flux maxima of the peaks increase,
the temperature of themaximum of the second peak shifts towards
higher temperatures, and the rising front of the second peak be-
comes more gentle. For steel, Figure 14 on the right, one or two
peaks are observed depending on thickness. At ℓ = 0.01 cm, the
flux intensifies faster (the rising front is steeper, the temperature of
the flux maximum is smaller, and the peak flux value is small). The
spectrum is single-peaked: the contribution of the second diffusion
peak to the sum is hardly noticeable. As the thickness increases,
the (ℓ = 0.05 cm) becomes more pronounced, and then the second
peak is isolated (ℓ ≥ 0.1 cm). It is interesting to compare these
results with the plots in Figures 7–9.

T, K

J 10-13, H/[s cm2]..

Ni

Peak #1

Peak #2

boundary value problem

the sum of two reactions

boundary value problem

the sum of two reactions

    1 = 2

Q1 = 42 kJ/mol

T 1
max = 521 K

X1(0) = 0.434c0  

    2 = 1

Q2 = 60 kJ/mol 

T 2
max = 1295 K

X2(0) = 0.566c0  

J 10-13, H/[s cm2]..

Steel

    1 = 2

Q1 = 75 kJ/mol

T 1
max = 565 K

X1(0) = 0.296c0  

    2 = 1.4

Q2 = 42 kJ/mol

T 2
max = 751 K

X2(0) = 0.704c0  

Peak #1

Peak #2

T, K
Figure 11 • Decomposition of the numerical spectrum (boundary value problem) into the sum of reactions.

= 0.25, 0.4, 0.5, 0.6, 0.75 K/s

T, K

J 10-13, H/[s cm2]

Ni = 0.25, 0.4, 0.5, 0.6, 0.75 K/s

T, K

J 10-13, H/[s cm2]

Steel

. . . .

Figure 12 • Sum of reactions, effect of heating rate.
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Ni

J 10-13, H/[s cm2]. .

T, K

.
 

с0 = {10, 8, 6, 4, 2} 1017 H/cm3

T, K

J 10-13, H/[s cm2]. .

Steel .
 

с0 = {10, 8, 6, 4, 2} 1017 H/cm3

Figure 13 • Sum of reactions, effect of initial concentration.

Ni

T, K

J 10-13, H/[s cm2]. .

= 0.01, 0.02, 0.05, 0.1, 0.2 cm Steel

T, K

J 10-13, H/[s cm2]. .

= 0.01, 0.02, 0.05, 0.1, 0.2 cm

Figure 14 • Sum of reactions, effect of sample thickness.

8. Conclusions
The general conclusion from the computation results is as follows.
The hybrid model has shown adequate consistency with physical
representations both at qualitative and quantitative levels. In par-
ticular, it is possible to estimate the degree of influence of vari-
ations in various model parameters and experimental conditions
on the degassing flux. Further, everything depends on the specific
formulation of the applied problem and specific experimental ma-
terial. If it is necessary to reveal qualitative differences at the level
of volume capture or surface dynamics, then experiments with
samples of different thicknesses are themost informative.We have
materials with metallic properties in mind (an experimental test
sample in the form of a thin plate), where it is possible to clearly
identify both the volume and surface.

The model in a sense takes an intermediate position. Models in the
form of first- and second-order reactions, often used in practice
to decompose the spectrum into a sum of unimodal peaks, lead
to quadrature. The main problem is decomposition by bases. The
result is interpreted as the release of hydrogen trapped by different
kinds of traps with different binding energies. This is not always
valid, at least for metals and alloys.

The model in the form of a boundary value problem with dy-
namic boundary conditions is more detailed. Different stages and
subprocesses of degassing are singled out: diffusion, dissolution,
desorption, etc. But such a non-standard problem, when the time

derivative is included not only in the diffusion equation, but also in
the boundary conditions, requires special software.

The hybrid model combines the following. The model contains
coefficients reflecting the processes of diffusion, dissolution, des-
orption, and reversible trapping by traps. However, instead of
volume distribution, an averaged concentration is used. It is an
acceptable approximation for thinmembranes (plates). It allows us
to fundamentally simplify numerical modeling as well as reveal the
limiting factors in various applied problems. It is necessary to nu-
merically integrate the low-order ODE system. This can be carried
out in any package of standard mathematical programmes. In a
short time (andwithout the need for programming), it is possible to
accumulate large statistics in order to correct experimental studies.
The estimation of parameters from data on thin samples allows
us to recalculate the results for real structures and conditions not
available in a real-time experiment.

Funding
The authors declare no financial support for the research,
authorship, or publication of this article.

Author contributions
All authors have read and agreed to the published version of the
manuscript.

ACADEMIAMATERIALS SCIENCE 2025, 2 13 of 15



https://www.academia.edu/journals/academia-materials-science/about https://doi.org/10.20935/AcadMatSci7591

Conflict of interest
The authors declare no conflict of interest.

Data availability statement
Data supporting these findings are available within the article, at
https://doi.org/10.20935/AcadMatSci7591, or upon request.

Institutional review board statement
Not applicable.

Informed consent statement
Not applicable.

Additional information
Received: 2025-03-05

Accepted: 2025-03-28

Published: 2025-04-01

Academia Materials Science papers should be cited as Academia
Materials Science 2025, ISSN 2997-2027, https://doi.org/
10.20935/AcadMatSci7591. The journal’s official abbreviation is
Acad. Mat. Sci.

Publisher’s note
Academia.edu Journals stays neutral with regard to jurisdictional
claims in published maps and institutional affiliations. All claims
expressed in this article are solely those of the authors and do
not necessarily represent those of their affiliated organizations, or
those of the publisher, the editors and the reviewers. Any product
that may be evaluated in this article, or claim that may be made by
its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright
© 2025 copyright by the authors. This article is an open access
article distributed under the terms and conditions of the Creative
Commons Attribution (CC BY) license (https://creativecommons.
org/licenses/by/4.0/).

References
1. Yin S. Challenges and future directions for green hy-
drogen development. Acad Green Energy. 2025;2. doi:
10.20935/AcadEnergy7564

2. Vallejos-Romero A, Cordoves-Sanchez M, Cisternas C, Saez-
Ardura F, Rodriguez I, Aledo A, et al. Green hydrogen and
social sciences: issues, problems, and future challenges. Sus-
tainability. 2022;15(1):303. doi: 10.3390/su15010303

3. Pleshivtseva Y, Derevyanov M, Pimenov A, Rapoport A.

Comprehensive review of low carbon hydrogen projects to-
wards the decarbonization pathway. Int J Hydrog Energy.
2023;48(10):3703–24. doi: 10.1016/j.ijhydene.2022.10.209

4. Guo L, Su J, Wang Z, Shi J, Guan X, Cao W, et al. Hydro-
gen safety: an obstacle that must be overcome on the road
towards future hydrogen economy. Int J Hydrog Energy.
2024;51:1055–78. doi: 10.1016/j.ijhydene.2023.08.248

5. Zaika YuV, Sidorov NI, Rodchenkova NI. Aggregation of
experiments for estimation of hydrogen permeability pa-
rameters. Int J Hydrog Energy. 2018;43:8333–41. doi:
10.1016/j.ijhydene.2018.02.137

6. Zaika YV, Sidorov NI, Fomkina OV. Identification of
hydrogen permeability parameters of membrane materi-
als in an aggregated experiment. Int J Hydrog Energy.
2020;45:7433–43. doi: 10.1016/j.ijhydene.2019.04.098

7. Zaika YV, Rodchenkova NI. Boundary-value problem with
moving bounds and dynamic boundary conditions: diffusion
peak of TDS-spectrum of dehydriding. Appl Math Model.
2009;33:3776–91. doi: 10.1016/j.apm.2008.12.018

8. Garcia-Macias E, Harris ZD, Martinez-Paneda E. TDS Sim-
ulator: a MATLAB App to model temperature-programmed
hydrogen desorption. Int JHydrog Energy. 2024;94:510–24.
doi: 10.1016/j.ijhydene.2024.11.014

9. Shewmon PG diffusion in solids. Cham: Springer Interna-
tional Publishers; 2016. doi: 10.1007/987-3-319-48206-4

10. Crank J. The mathematics of diffusion. Oxford: Clarendon
Press; 1975.

11. Zaika YV,KostikovaEK,Nechaev YS. Peaks of hydrogen ther-
mal desorption: simulation and interpretation. Tech Phys.
2021;66(2):210–20. doi: 10.1134/ S1063784221020250

12. Pisarev A. Hydrogen gas-driven permeation through the
membranewith asymmetric surface conditions. JMembrSci.
2009;335:51–7. doi: 10.1016/j.memsci.2009.02.041

13. Lototskyy M, Denys R., Nyamsi SN, Bessarabskaia I, Yartys
V. Modelling of hydrogen thermal desorption spectra. Mater
Today. 2018;(5):10440–9. doi: 10.1016/j.matpr.2017.12.375

14. Ma M, Wang L, Wan R, Tang B, Tan X. Phase-structural
transformation of erbium trihydride studied by thermal des-
orption spectroscopy. Int J Hydrog Energy. 2023;48(37):
13913–21. doi: 10.1016/j.ijhydene.2022.12.328

15. Diaz A, Cuesta II, Martínez-Pañeda EM, Alegre Calderon
JM. Influence of charging conditions on simulated
temperature-programmed desorption for hydrogen in
metals. Int J Hydrog Energy. 2020;45(43):23704–20. doi:
10.1016/j.ijhydene.2020.05.192

16. Polyanskiy V, Arseniev D, Chevrychkina A, Yakovlev Y. Hy-
drogen Skin Effect vs. Hydrogen Diffusion. Prog Contin
Mech. 2023;196:377–410. doi: 10.1007/978-3-031-43736-
6_22

17. Lider A, Kudiiarov V, Kurdyumov N, Lyu J, Koptsev
M, Travitzky N, et al. Materials and techniques for
hydrogen separation from methane-containing gas
mixtures. Int J Hydrog Energy. 2023;48:28390–411.
doi: 10.1016/j.ijhydene.2023.03.345

ACADEMIAMATERIALS SCIENCE 2025, 2 14 of 15



https://www.academia.edu/journals/academia-materials-science/about https://doi.org/10.20935/AcadMatSci7591

18. Lanjekar PR, Panwar NL. Hydrogen gas separation through
membrane technology and sustainability analysis of
membrane: a review. Emergent Mater. 2023;6:3. doi:
10.1007/s42247-023-00561-5

19. Zakharov AP, editor. Hydrogen interaction with metals.

Moscow: Nauka; 1987. (In Russian)

20. Hale J. Theory of functional differential equations. New
York/Heidelberg/Berlin: Springer-Verlag; 1977.

21. Yukhimchuk AA, editor. Isotopes of hydrogen. Basic and
applied research. Sarov: RFNC-VNIIEF; 2009. (In Russian)

ACADEMIAMATERIALS SCIENCE 2025, 2 15 of 15


	Introduction
	A model of reaction order [ 1,2]
	Diffusion limitation
	Limitation by desorption
	Averaging over diffusion and desorption processes

	Refinement of the kinetic coefficient
	A model with nonlinear dynamic boundary conditions
	 Comments, clarifications, and summaries

	A hybrid model of thermal desorption
	The initial simplifications of the computational scheme
	The numerical modeling results
	Conclusions

