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Abstract: Due to the depletion of hydrocarbon resources worldwide, intensive research
is being conducted to identify alternative energy carriers. Hydrogen has emerged as
a promising candidate due to its high energy density and environmentally friendly na-
ture. However, large-scale implementation of hydrogen energy is hindered by the lack of
safe, efficient, and cost-effective storage methods. Among the various materials studied
for solid-state hydrogen storage, boron nitride (BN)-based compounds have attracted
significant attention owing to their high thermal stability, tunable morphology, and po-
tential for physisorption-based storage. This review focuses on recent advances in the
synthesis, functionalization, and structural optimization of BN-based materials, includ-
ing nanotubes, nanosheets, porous frameworks, and chemically modified BN. Although
other boron-containing hydrides such as LiBH4, Mg(BH4)2, and closo-borates are briefly
mentioned for comparison, the primary emphasis is placed on BN-related systems. This
paper discusses various modification strategies aimed at enhancing hydrogen uptake and
reversibility, offering insights into the future potential of BN-based materials in hydrogen
storage technologies.

Keywords: hydrogen storage; boron-based compounds; boron nitride; h-BN

1. Introduction
The world faces urgent problems related to preserving resources, producing energy

efficiently, improving transportation, and ensuring long-term storage solutions. These
challenges are exacerbated by environmental problems, particularly the increased release
of carbon dioxide and other harmful gases, which are intensifying human impact on the
climate [1,2].

As the world moves towards cleaner energy sources (decarbonization), scientific
research is heavily focused on creating innovative, energy-efficient, and environmentally
friendly technologies for the entire energy lifecycle, from production to consumption.
Hydrogen is gaining significant attention as a potential energy carrier due to its high energy
content, clean-burning properties, and diverse production methods [3].

Hydrogen, a pure and non-toxic element, can be produced from various sources like
fossil fuels, biomass, and water, making it adaptable to different technologies. However,
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challenges remain, especially in ensuring the reliability, efficiency, and safety of hydrogen
storage and transportation. Therefore, considerable research is dedicated to developing
new materials and designs that can effectively store hydrogen under realistic operating
conditions [4].

Current hydrogen storage methods involve compressing it, liquefying it, or binding it
to solid materials like carbon nanomaterials, boron and nitrogen compounds, metal–organic
frameworks (MOFs), and covalent organic frameworks (COFs). Using these nanostruc-
tured materials, especially those enhanced with lithium, offers promising possibilities for
developing compact, safe, and energy-efficient hydrogen storage systems [5–7].

In conclusion, hydrogen is a crucial element in the global shift towards sustainable
energy. Continued research and development are essential to improve hydrogen storage
technologies, transportation methods, and their integration into existing energy systems
(Table 1) [7].

Table 1. Hydrogen storage methods [7].

Storage Method Advantages Disadvantages

Ph
ys

ic
al

m
et

ho
ds

Compressed gaseous
hydrogen (300 K, ≤200 bar)
stationary storage systems

and underground repositories;
glass microspheres

and capillaries

Mature and accessible
technology, relatively low cost

Low volumetric capacity
(~7.7 kg/m3 at 100 bar).

High-pressure storage (up to
700 bar) remains
underdeveloped.

Liquid hydrogen (20.4 K) High density (71 kg/m3)

High energy costs for
liquefaction, hydrogen loss

due to evaporation, need for
superinsulation, high cost.

Storing hydrogen in its physical form, either as a liquefied gas at cryogenic temperatures or as a compressed gas under high
pressure, allows for large volumes to be stored. However, this requires specialized equipment capable of withstanding extreme
conditions, such as pressures of hundreds of megapascals and temperatures below the temperature of liquid nitrogen. Although
technically feasible, these storage methods often prove to be disadvantageous in terms of cost, ease of use, and safety.
Liquid hydrogen is stable only in a narrow temperature range between its boiling point (20 K) and freezing point (17 K). As the
temperature rises above the boiling point, it rapidly evaporates and becomes a gas. Although the strength and material
requirements for cryogenic liquid hydrogen tanks are less stringent than for pressure vessels used to store gaseous hydrogen, the
gravimetric density of storage in liquid form is higher. However, the maximum bulk density is limited by the intrinsic density of
liquid hydrogen, which is 70.8 kg/m3.

A
ds

or
pt

io
n

M
et

ho
ds

Cryoadsorption (activated
carbon, 155 K)

Simple and
well-developed technology

Low volumetric capacity
(0.5–20 kg/m3). Requires
cooling and compression.

Zeolites, MOFs Low cost, scalable production,
reusability, low losses (0.1%)

Low hydrogen capacity
(Zeolites: ~0.3 wt.% at RT,
1.8 wt.% at 77 K; MOFs:

1 wt.% at RT, 4.5 wt.% at 70 K)

Carbon nanostructures
(nanotubes, fullerenes)

Technologies in the future can
provide high Potential for

high storage density
(30–100 kg/m3)

Unreliable production
methods, inconsistent

hydrogen retention results.

Hydrogen storage systems that use physical sorption have high storage capacity for their size and weight at low pressures, are
affordable, and are easy to build. Nonetheless, notable limitations exist, such as a low hydrogen capacity—spanning from 1 to
4.5 wt.%—and reduced sorption temperatures, which are generally at the temperature of liquid nitrogen. A common problem with
how hydrogen is stored in various materials like metal–organic frameworks, zeolites, and carbon is that the energy holding
hydrogen to the surface is not strong enough to allow for good storage at temperatures higher than that of liquid nitrogen.
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Table 1. Cont.

Storage Method Advantages Disadvantages
C

he
m

ic
al

M
et

ho
ds

Metal hydrides,
intermetallics, composites

Safe solid-state storage,
well-developed technologies

Limited capacity (≤1.5 wt.%),
heating required, degradation

over time, high cost.

Irreversible hydrides (AlH3,
NH3, methanol)

water-reactive (AlH3, Fe, Al,
Si, water-regulating alloys
based on aluminum and
silicon, NH3, methanol,

ethanol, etc.)

High volumetric density
(~100 kg/m3)

Difficult to reuse
storage media.

It is evident that the metal hydride method can successfully compete with conventional hydrogen storage methods in terms of
compactness, but it is inferior to them in gravimetric performance. The hydrogen content by mass is significantly higher for
high-temperature hydrides of light elements.

Each existing hydrogen storage method has specific advantages and limitations, which
are influenced by both technical parameters (e.g., energy density, reversibility) and eco-
nomic considerations in the target application. Among these, metal and complex hydrides
stand out as promising candidates for hydrogen storage and transport due to their favorable
safety profile, high volumetric density, and tunable thermodynamic properties [8].

Recent publications have extensively surveyed the field of hydrogen storage technolo-
gies, each emphasizing different materials or methodologies. For example, Usman and
colleagues (2022) presented a comprehensive overview of hydrogen storage techniques,
encompassing gaseous, liquid, and solid-state options. Their study underscores the fun-
damental difference between physical storage (compressed gas and cryogenic liquid) and
material-dependent storage approaches like metal hydrides, physisorption materials, and
chemical hydrogen carriers. The researchers highlighted that hydrogen can be stored
through diverse physical and chemical processes, summarizing the pros and cons of each,
especially regarding energy efficiency, safety considerations, and system complexity. How-
ever, their analysis omitted any discussion of boron nitride (BN) or hexagonal boron nitride
(h-BN) materials [9].

Conversely, Scarpati et al. [10] specifically investigated metal hydrides for use in
mobile systems, particularly fuel cell vehicles. Their review offers a thorough comparison
of the most relevant metal hydrides, including their typical reversible hydrogen storage
capacities (ranging from 1.3% to 1.85% by weight) and volumetric densities (approximately
90 g/L), along with reaction enthalpies spanning 25–35 kJ/mol H2. The authors emphasized
the potential of metal hydrides for specialized transportation uses but acknowledged
ongoing challenges related to weight, reaction kinetics, and stability over repeated cycles.
Boron-containing or h-BN-based materials were not considered in this study.

Mahmoud et al. [11] analyzed porous carbon materials—such as graphene, activated
carbons, and carbon nanotubes—for hydrogen storage based on physical adsorption princi-
ples. Their review examines how key material properties, including surface area, pore size
distribution, and surface chemistry, influence hydrogen uptake under moderate pressure.
The authors outlined several strategies, such as introducing heteroatoms and using nanos-
tructuring, to improve both storage capacity and kinetics. Nevertheless, h-BN and other
boron nitride-based systems were not included in their scope.

Similarly, Elyasi et al. [12] concentrated on nanoporous carbons derived from biomass
for solid-state hydrogen storage. They highlighted the importance of pore structure and
surface chemistry in optimizing hydrogen adsorption and desorption. Notably, the review
mentions that incorporating heteroatoms—like boron, nitrogen, and sulfur—can enhance
hydrogen interactions with carbon surfaces. While BN nanotubes are briefly mentioned
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regarding enhanced binding energies, the main focus remains on carbonaceous materials
and their modifications.

Soni et al. provided a critical assessment of carbon-based materials for hydrogen
storage, covering activated carbon, carbon aerogels, graphene, graphite, fullerenes, carbon
nanotubes, and MXenes. The review emphasizes recent engineering techniques aimed at
increasing hydrogen uptake, such as tailoring pore size and functionalization. The authors
underlined that, despite notable advancements, current carbon materials still do not meet
practical requirements. BN or h-BN materials were not considered in their work [13].

Finally, Sutton et al. presented an in-depth analysis of metal–organic frameworks
(MOFs) for hydrogen storage at or near room temperature. The review explores the
limitations of typical MOF-H2 interactions (heat of adsorption around 4–7 kJ/mol) and
suggests methods to improve binding energy using open metal sites, alkali metal doping,
and hydrogen spillover mechanisms. While the study offers detailed comparisons of MOF
performance and modification strategies, it does not address boron-containing or BN-based
materials [14].

This review focuses on the potential of boron-containing materials, especially nanos-
tructured boron nitride, as effective media for hydrogen adsorption, storage, and release.
We provide a systematic analysis of recent experimental and theoretical studies, highlight
key morphological modifications (e.g., doping, functionalization, porosity), and compare
the performance of h-BN with other emerging storage materials. To the best of our knowl-
edge, no recent review has comprehensively addressed the integration of various h-BN
morphologies for hydrogen storage. Therefore, this work aims to fill that gap and contribute
to the growing body of knowledge on boron-based hydrogen storage systems.

2. Key Properties of BN-Based Materials for Hydrogen Storage
BN-based materials, especially in nanostructured form (nanotubes, nanosheets, porous

frameworks), are promising candidates for hydrogen storage due to their high-temperature
and chemical stability, low density, high specific surface area (up to 1500 m2/g), and the
ability to control porosity and surface chemistry through doping and functionalization.
These properties allow BN materials to efficiently adsorb hydrogen at cryogenic temper-
atures (up to 2.6 wt.% at 77 K and 1 bar), while providing safe operation due to a wide
band gap (~5.5 eV) and electrical insulation. In contrast to metal hydrides, which require
high temperatures and have low reversibility, and carbon materials with limited capacity,
BN provides an optimal balance between stability, safety, and the potential for improved
hydrogen storage efficiency.

In the early 21st century, boron nitride (BN) attracted much attention as a promising
hydrogen storage material. This is due to its outstanding physicochemical properties,
such as high thermal and chemical stability, low density, developed porosity, and unique
electronic properties. In 2002, Wang et al. [15] synthesized nanostructured hexagonal BN
(h-BN) by mechanochemical milling in a hydrogen atmosphere. The resulting material
demonstrated hydrogen absorption at a level of 2.6 wt.%, which is approximately 35%
higher than that of nanostructured graphite, which was previously considered a reference
adsorbent. Hydrogen desorption was observed at about 570 K and nitrogen desorption at
about 700 K. No signs of recrystallization of the material were found even when heated to
1173 K. The differences in the behavior of h-BN and graphite during dehydrogenation are
likely due to local differences in the electronic structure near the lattice defects [16].

Despite the favorable properties, the development of BN-based systems in the field
of hydrogen storage lags behind other materials such as MOFs and borane ammine
(NH3BH3) [17–24]. However, the results of computer simulations [25] open up new possi-
bilities for modifying BN to create next-generation hydrogen storage technologies. This
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promising research direction is attracting increasing attention, and the present work aims
to critically evaluate the hydrogen storage potential of modified BN structures, explore
conceptual strategies, and identify key issues.

BN frameworks are composed of equimolar amounts of boron (B) and nitrogen (N)
atoms, forming structures that are isoelectronic to carbon lattices and have similar mor-
phology. Among the polymorphs of BN, hexagonal BN (h-BN) is the most stable under
ambient conditions [25], while cubic BN (c-BN), an analogue of diamond, is known for
its exceptional hardness [25], and wurtzite BN (w-BN) is an sp3-hybridized tetrahedral
structure with various configurations [25]. Structurally, h-BN consists of layers in which B
and N atoms are strongly bonded by covalent bonds, and interlayer interactions are due
to weak van der Waals forces (Figure 1). However, unlike graphite, h-BN has an AB-type
stacking, where the B atoms in one layer are located directly above the N atoms in adjacent
layers, reflecting the polarity of the B-N bonds. The electron density is shifted towards the
more electronegative N atoms, with only partial delocalization of the nitrogen pz electrons
into the boron pz orbital, as opposed to the complete delocalization characteristic of the
C-C bonds in graphite [25].

Figure 1. Structures of h-BN (left) and graphite (right). Reproduced from www.substech.com [25].

Hexagonal boron nitride (h-BN) possesses remarkable physical and chemical proper-
ties due to its unique structure, including high thermal conductivity, mechanical strength,
electrical insulation, and thermal/chemical stability. Its promising applications across
diverse scientific and technological domains have made boron nitride-based materials a
focus of current research. Boron nitride exists in various structural forms, including those
analogous to carbon structures like diamond (c-BN), lonsdaleite (w-BN), and graphite
(g-BN). Beyond these, BN can form nanosheets, nanotubes, and porous materials, thanks
to the different bonding configurations (sp, sp2, and sp3 hybridization) of boron and
nitrogen [26–28].

Like other cutting-edge substances, BN has been extensively examined in recent years
concerning its nanostructured configurations and related characteristics. The progression
of BN nanomaterials has mirrored that of their carbon equivalents, moving from zero-
dimensional (0D) fullerenes and nanocages, and one-dimensional (1D) nanotubes in the
1990s, to two-dimensional (2D) graphene and nanosheets in the 2000s. This evolution also
encompasses diverse forms like nanomeshes, nanospheres, nanowires, nanoribbons, and
nanoporous BN [29].

The findings acquired by research teams exploring BN and carbon materials for
hydrogen storage using density functional theory (DFT) calculations offer significant data
for mathematical modeling of adsorption/desorption mechanisms. When evaluating the
hydrogen storage capacity of solid-state substances, multiple parameters are considered,

www.substech.com
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including binding energy, adsorption energy, average adsorption energy, and desorption
temperature. Based on computational modeling by scientists from Australia and the
United States, boron nitrides are capable of storing between 6.5 and 8.65 weight percent of
hydrogen. The simulations indicate that each gram of BN can reversibly adsorb and desorb
up to 60 L of hydrogen.

Scientists have utilized diverse DFT-based computational software programs [30],
including VASP, Quantumwise ATK, CASTEP, GAMESS, and Dmol3, to scrutinize hydrogen
adsorption behaviors in BN and carbon nanostructures [31,32]. The following equation is
used to calculate the adsorption energy [33,34]:

Ead = Etot

(
BN
C

+ H2

)
− Etot

(
BN
C

)
− nE f ree(H2) (1)

The average adsorption energy is calculated using the following relationship:

Ead =

{
Etot

(
BN
C

+ H2

)
− Etot

(
BN
C

)
− nE f ree(H2)

}
/n (2)

where:
BN/C denotes the base material of carbon and BN nanomaterials, a Etot

(
BN
C + H2

)
—

is the total energy of hydrogen molecules adsorbed by the system, E f ree(H2)—is the total
energy of a free H2 molecule.

Etot

(
BN
C

)
—the total energy of the base material (carbon and boron nitride nanos-

tructures) is represented, with n indicating the quantity of adsorbed H2 molecules on the
base materials.

The capacity of carbon and boron nitride nanomaterials to absorb hydrogen can be
determined through the following equations [35–38]:

H2(wt%) =
nMH2

(nMH2 + MHost)
·100 (3)

where:
MH2 , MHost и n—and n are the masses of H2, host material (boron nitride and carbon

nanostructure), and the number of H2 molecules, respectively.
To quantitatively analyze the desorption process, the desorption temperature (TD(K))

is estimated using the Van’t Hoff equation [39]:

TD =

(
Eads
Kb

)(
∆S
R

− ln P
)−1

(4)

where:
Kb—Boltzmann constant (1.38 × 10−23 J К−1);
△S = 130 J К−1 Mol−1—change in entropy of H2 from gas to liquid phase at equilib-

rium pressure P = 1 atm;
R(=8.31 J К−1 Mol−1)—gas constant.
Ball milling primarily results in a substantial enlargement of the specific surface area,

the creation of refined microstructures with smaller grain dimensions, the generation of
numerous imperfections (both on the surface and within the bulk material) and phase in-
terfaces, the formation of porous surface textures offering abundant locations for hydrogen
absorption/desorption, a near-consistent hydrogen storage capability compared to the
original material, faster hydrogenation rates, and enhanced thermodynamic attributes.

These microstructural defects act as points where the hydride phase begins to form,
and the expanded boundary area makes it easier for hydrogen to diffuse. These changes
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lead to improved surface activation and hydrogenation speed, decreased activation energy
requirements, lower temperatures for hydrogen release, and faster movement of hydrogen
within the material.

Modern metal hydride-based hydrogen storage systems (HSSs) are generally classi-
fied into the following categories: Alloys based on rare earth metals (REMs), including
mischmetal alloys (which are mixtures of rare earth elements produced during the cre-
ation of pure REM), typically containing 25–35% La, 40–50% Ce, 4–15% Nd, 1–7% Sm+Gd,
and unavoidable impurities such as Fe, Si, Mg, and Al; they also include alloys based on
titanium, zirconium, and magnesium [40–43].

BN nanomaterials, similar to their carbon counterparts, possess notable porosity and
elevated surface area. These characteristics, coupled with remarkable thermodynamic
stability and chemical inertness (h-BN remains stable in air up to 1273 K), the high specific
surface area of nanoparticles, and polar covalent B-N bonds, make them promising for
various applications, especially hydrogen storage [44]. While recent theoretical studies
increasingly emphasize the potential of BN-based structures for achieving high physisorp-
tion capacities, traditionally, h-BN materials have been primarily considered effective for
hydrogen storage through chemisorption processes [45]. Hexagonal boron nitride (h-BN)
is a very stable hydrogen storage material, offering superior performance, excellent cy-
clability, and regeneration capabilities. However, a significant obstacle to the industrial
application of h-BN is the absence of well-defined, cost-effective methods for large-scale
production of nanostructured forms, as well as the creation of straightforward and effective
modification techniques to enhance sorption performance. The exceptional qualities of
this material and its hydrogen storage potential are extensively reviewed in [46–51]. For
instance, BN nanotubes synthesized through the annealing of ball-milled boron-nickel cata-
lyst in a nitrogen/hydrogen gas mixture at 1298 K exhibited hydrogen sorption capabilities
at room temperature, with a predicted storage capacity reaching up to 2.2 wt.% at 6 MPa
pressure [52]. The improved hydrogen storage capabilities of this material can be attributed
to its nanoscale structure and the existence of heteropolar B-N bonds. The ionic B-N bond
generates an extra dipole moment, which enhances hydrogen adsorption strength.

Nanostructured BN possesses unique physical and chemical properties compared
to bulk and micro-sized materials. For instance, BN nanoparticles (BNNPs) can be syn-
thesized through precursor vapor-phase pyrolysis, then adapted into nanostructures by
high-temperature annealing (2273 K). Subsequent ball milling of these nanostructures can
further improve the specific surface area. This process yields hollow BNNPs with porous
shell structures exhibiting a specific surface area of 200.5 m2 g−1 and a total pore volume of
0.287 cm3 g−1, facilitating superior hydrogen accumulation [53].

The initial experimental synthesis of BN nanotubes via arc discharge was accomplished
in 1995 by Chopra et al. [54]. The tight-binding theoretical model had predicted BN
nanotube existence in 1993 by Rubio et al. [55], followed by Blase et al. the subsequent
year, who employed ab initio pseudopotential methods to predict both single-walled
and multi-walled BNNTs [56]. BN nanotubes are considered promising materials due to
their enhanced Young’s modulus (~1.2 TPa), exceptional thermal stability, and chemical
inertness. Defects such as vacancies and Stone–Wales defects commonly occur during
nanostructure formation; consequently, defect engineering is widely employed to modify
nanomaterial properties [57,58]. Several reports exist on BNNT synthesis. The selection of
boron precursor, catalyst, temperature, heating regime, and duration is a critical factor in
the synthesis process. The length and dimensions of BNNT may fluctuate based on these
conditions. This section provides a concise overview of the synthesis methods and the
characteristics of the resulting BNNTs. The precursors utilized in the synthesis of BNNT,
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along with the mechanisms of formation, applications, and physical properties (such as
diameters and lengths), are compiled in Table 2 [59].

Table 2. The literature outlines the reaction conditions, growth mechanisms, and applications of
BNNT [59].

Precursor T [◦C]; t [h] Substrate Method Growth
Mechanism

Physical
Properties Modification Application Ref.

B, h-BN,
NH3

<1100; 2
iron deposits

alumina
ball milling
(20 h), CVD

base-growth

40–100 nm diam.,
bamboo-like

– – [60]
1200; 2 40–100 nm diam.,

cylindrical shape

B:FeO:MgO
(2:1:1), NH3

1200; 0.5

Si/SiO2
mechanic.

mixed CVD

base-growth
30 nm diam.,

random direction,
closed tip ends

– – [61]1300; 0.5 tip-growth
60 nm diam.,

random direction,
closed tip ends

1400; 0.5 mixed-
growth

10 nm diam.,
flower-like, closed

tip ends

B:FeO:MgO
(1:1:1), NH3

1300; 0.5 tip-/base-
growth

100–500 nm diam.,
closed tip ends

[62]
B:FeO:MgO
(4:1:1), NH3

1300; 0.5 tip-/base-
growth

50–150 nm diam.,
closed tip ends

B2O3, CaB6,
Mg, NH3

1150; 6 – CVD base-growth 150 nm diam.,
>10 µm length – –

h-BN, N2
1250–1300;

10 – ball milling
(100 h), CVD –

30–60 nm diam.,
cylindirical shape,

500 nm length

covalent
with

NH4HCO3

reinforced
material for
Al-matrix
composite

[63]

B, FeO, MgO 1100–1700; 1 – ball milling,
CVD

metal
catalytic
growth

50–80 nm diam., up
to 10 µm length,

straight nanowires

noncoval.
polyaniline/

Pt/GOX

amper. glucose
biosensor [64]

B, iron
particle, N2

1100; 15 Si/SiO2
ball milling
(50 h), CVD

metal
catalytic
growth

50–200 nm diam.,
up to 1 mm length,

bamboo-like
–

insulators for
electromechan-

ical systems
[65]

MWCNT,
H3BO3, NH3

1300; 3 – substitution – 40–50 nm diam.

noncoval.
trioctylam.,
tributylam.,

triph-
enyphos.

gel nanocom-
posite [66]

B, Co(NO3)2,
N2, H2

1100; 0.5–3 stainless
steel

ball milling,
CVD – bamboo-like – superhydrophobic

surface [67]

B, N2 1200; 16 – ball milling
(150 h), CVD –

20–50 nm diam.
cylindrical,

cylindrical capped
by iron,

bamboo-like

– – [68]

BH4, NH4CI,
N2

1200–1300;
5–10 – CVD –

10–30 nm diam., up
to 5 µm length,

bamboo-like
– – [69]

B, Fe2O3,
NH3

1200–1300;
2.25 – CVD – 64–136 nm diam.,

bamboo-like – – [70]

MWCNT,
H3BO3, NH3

1080; 6 – substitution – 10–100 nm diam.,
10 µm length

coval. PVA
and

HP-MEC

imp.
mechanical

performance of
polymer

[71]
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Table 2. Cont.

Precursor T [◦C]; t [h] Substrate Method Growth
Mechanism

Physical
Properties Modification Application Ref.

mmon.
borane,

ferrocn., N2

1450; 1

graphite
crucible

(graphite
paper

inner line)

CVD

(large diam.
catalyst)

300 nm diam.,
10 µm length,
bamboo-like

– – [72]vapor–
liquid–solid
(small diam.

catalyst)

15–200 nm diam.,
100 µm length,

cylindrical shape

B, Fe2O3,
NH3

600; 1 – CVD –

20–60 nm diam.

– hydrogen
storage [73]B, Fe3+-

MCM-41,
NH3

2.5–4 nm diam.

YB6, N2/Ar – – arc discharge mixed-
growth

4–10 nm diam.,
4–6 µm length,

closed or open tip
– – [74]

In conclusion, due to its special structure and physicochemical characteristics, boron
nitride (BN) remains one of the most promising materials for hydrogen storage. The diver-
sity of its structural variations—from zero-dimensional nanoparticles to two-dimensional
nanosheets—combined with high thermal stability, chemical inertness, and wide pos-
sibilities of surface modification, makes it attractive for both physical and chemical
hydrogen sorption.

Recent studies, including both experimental work and DFT calculations, demonstrate
the high capacity of BN for hydrogen storage, as well as its potential application in compos-
ites with LiBH4 and other boron-based hydrides to destabilize and improve the reversibility
of hydrogen storage processes [75–78].

Despite the existing limitations, progress in creating nanostructured forms of BN
opens up new prospects in hydrogen energy and requires further in-depth research aimed
at improving the efficiency and scalability of such solutions.

One area of interest is using h-BN as an additive to improve the hydrogen release
(dehydrogenation) of lithium borohydride (LiBH4). The structural features of h-BN, such as
the lone pair of electrons on nitrogen, defects in the crystal lattice, and interactions between
B-H and B-N, contribute to destabilizing LiBH4 [79].

Several studies have explored this application:
Nanoporous h-BN: Zhu et al. [79] used nanoporous h-BN to create a LiBH4 composite

that released 13.9 wt.% H2 at 400 ◦C. However, the hydrogen storage capacity decreased
over cycles, stabilizing at 7.6 wt.% H2 after five cycles, due to the formation of Li2B12H12

(leading to irreversibility) and LixBN (important for rehydrogenation).
Acid-treated h-BN: Muthu et al. [80] employed acid-treated h-BN to prevent particle

clumping during rehydrogenation. This composite released hydrogen between 110–150 ◦C
and retained 85.7% of its initial capacity after four cycles.

Tu et al. [81] explored the synergistic influence of hexagonal boron nitride (h-BN) and
niobium pentachloride (NbCl5) in destabilizing lithium borohydride (LiBH4), resulting
in highly pure hydrogen liberation. NbCl5 functioned as a catalyst, diminishing the
dehydrogenation activation energy to 122 kJ/mol. Niobium hydride (NbH) particles,
created in situ, acted as nucleation centers and decreased the solid–liquid interface during
LiBH4 breakdown.

Besides h-BN, other boron compounds can also destabilize LiBH4. For example,
Li3BO3 acts as a dehydrogenation catalyst by creating active sites, weakening Li-B bonds,
promoting [BH4]− dissociation, and maintaining spatial proximity between Li, B, and



Crystals 2025, 15, 536 10 of 25

H atoms. Li et al. doped LiBH4 with Nb(OEt)5, which formed Li3BO3 and NbH. This
composite released 7.9 wt.% H2 within 20 min at 400 ◦C [82].

Li et al. [83] introduced niobium ethoxide (Nb(OEt)5) as a dopant to LiBH4, leading
to the formation of Li3BO3 and NbH. This composite yielded 7.9 wt.% H2 in 20 min
at 400 ◦C. Following 30 sorption–desorption cycles, the material maintained 91% of its
original capacity. The decline in reversibility was linked to the emergence of a stable
Li2B12H12 phase.

Wu et al. [84] employed boric acid (B(OH)3), where O-Hδ
+ and B-Hδ

− interactions
promoted LiBH4 dehydrogenation at reduced temperatures. The composite released
5.6 wt.% H2 below 180 ◦C, with minimal H2O production. The main decomposition
product identified was LiB5O9H2. The dehydrogenation occurred swiftly, releasing
4.5 wt.% H2 within 2 min at 180 ◦C. However, the exothermic nature of the reaction
restricted its reversibility.

Eutectic blends of LiBH4 with different metal borohydrides (MBH4) have been widely
researched. These blends exhibit lower melting points compared to their individual con-
stituents, while preserving significant theoretical hydrogen storage capacities, around
10 wt.% H2. The dehydrogenation temperature of these blends is primarily dictated by the
characteristics of the additional component, rather than their melting temperatures [85].

To investigate the destabilization of LiBH4, several borohydrides, such as La(BH4)3,
Er(BH4)3, K BH4, and NaBH4, have been analyzed [86–88]. However, these eutectic com-
binations, when in the bulk state, did not demonstrate sufficient destabilization of LiBH4.
Hydrogen liberation usually took place at temperatures exceeding 300 ◦C, with some
instances surpassing 500 ◦C, rendering them unsuitable for hydrogen storage purposes.

In another study [89], boron nitride nanosheets modified with oxygen, synthesized
using the sol-gel technique, were analyzed. This material demonstrated a hydrogen storage
capability of 5.7 wt.% at ambient temperature and a pressure of 5 MPa. Notably, each
3 × 3 supercell within the BN monolayer could accommodate up to six H2 molecules.
Theoretical modeling suggests that the enhanced hydrogen storage performance is likely
due to the introduction of oxygen into the BN nanosheets. This doping process reduces the
distance between hydrogen molecules and oxygen atoms during adsorption, compared to
pristine BN. The two most important are shown in Figure 2 the low temperature phase of
LiBH4, known as orthorhombic-LiBH4 (o-LiBH4), which transforms into high temperature
hexagonal-LiBH4 (h-LiBH4) phase at ∼388 K.) At ambient pressures, h-LiBH4 exists in SG
P63mc (Figure 3) [89].

Figure 2. (Color online). (a) The room temperature, orthorhombic-LiBH4 (o-LiBH4), transforms into
(b) hexagonal-LiBH4 (h-LiBH4) at ∼388 K). At ambient pressures, the o- and h-LiBH4 exist in space
groups Pnma and P63mc. Li = green, hydrogen = whitish, boron = inside green tetrahedral [89].
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Figure 3. The left image shows three [BH4] tetrahedra in their respective Mg setting and a magnifi-
cation of one tetrahedra with its rotational axes. C3 is the 3-fold 120◦ axis, and C2∥ and C2⊥ are the
2-fold 180◦ axis. The right image shows the crystal structure of γ-Mg(BH4)2 with one interpenetrating
channel. Spheres in orange: Mg-, green: B-, and grey: H-atoms [89].

Additional research [90] focused on evaluating the structural integrity of metal-doped
BN systems and identifying preferred metal adsorption locations on the BN layers. An
examination of sodium-doped BN layers revealed that the electric field formed between
positively charged sodium and negatively charged nitrogen plays a crucial role in strength-
ening the bond between hydrogen and the complex. This enhancement occurs through
hydrogen polarization. Consequently, the sodium-doped layer achieved a hydrogen storage
capacity of approximately 5.84 wt.%.

Magnesium and its alloys have recently attracted increasing attention as promising
hydrogen storage materials due to their significant reversible capacity (up to 7.6 wt.%) and
affordable cost. Among the hydrides used in hydrogen energy, magnesium hydride (MgH2)
stands out for its high energy capacity—up to 9 MJ/kg Mg—and its ability to undergo
reversible hydrogenation/dehydrogenation reactions [91].

Figure 4 shows various dehydrogenation processes (highlighted in blue) and rehydro-
genation reactions (highlighted in red) [92].

Figure 4. Selected hydrogenation (in red) and dehydrogenation (in blue) reactions with
Mg(BH4)2 [92].

Despite its advantages, the use of MgH2 is limited by a number of important factors:
Challenging operating conditions: high temperatures (about 300 ◦C) and pressures

(5–10 MPa) are required for effective hydrogenation.
Kinetic limitations: Slow kinetics of reversible hydrogen binding processes, which

complicates the absorption and release of hydrogen.
Activation issues: High energy barrier for H2 dissociation on Mg surface, resulting in

poor chemisorption.
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Passivation layer formation: The forming MgH2 layer impedes diffusion, making
further hydrogenation difficult.

Oxygen sensitivity: Surface oxidation upon contact with O2 reduces the rate of hydro-
gen uptake.

Cycling degradation: Gradual loss of capacity over repeated hydrogenation /dehy-
drogenation cycles [92].

To improve the performance of hydrogen storage systems, the interaction of magne-
sium hydrides with boranes is studied. It was found that the thermal decomposition of
Mg(BH4)2 in a vacuum is likely to result in the formation of the intermediate compound
Mg(B3H8)2. Similarly, heating Y(BH4)3 under a hydrogen pressure of 1–10 bar allows one
to obtain the compound Y(B3H8)3. Various methods for the synthesis and transformation
of the B3H8

− anion are described in the literature, including the following:
Reactions with diborane under strong reduction conditions, leading to the formation of

intermediate anions B2H62- and BH62-, which are confirmed by NMR spectroscopy [93–95].
Interaction of potassium with THF BH3, resulting in the formation of B3H8

− and BH4
−.

Reactions of BH4
− with B2H6, yielding B3H8

− and releasing hydrogen.
Synthesis of B3H8

− from BH4
− and CH2Cl2 at elevated temperatures.

The resulting B3H8
− can further participate in reactions leading to the formation of

more complex borane clusters (B9, B10, B12, etc.):

4B3H8
− → B9H14

− + 3BH4
− + 3H2, ∆H = −413 kJ/mol

4B3H8
− → B10H10

2− + 2BH4
− + 9H2, ∆H = −49.8 kJ/mol

These reactions are thermodynamically favorable and are accompanied by a significant
entropy increase, particularly at elevated temperatures. The concurrent formation of
BH4

− provides an additional thermodynamic driving force for these transformations
(Figure 5) [96].

 
Figure 5. Experimental (bold) and theoretical formation enthalpy values for neutral (red), monoan-
ionic (black), and dianionic (blue) species. Closo species, circles; nido, #; arachno, crossed squares. Data
from [97–102]. For closo ions BnHn

2−, data (blue circles) from two different studies reveal systematic
differences. All monoanionic species (in black) have negative formation enthalpies, while all neutral
boranes (in red) have positive formation enthalpies [96].

Heating Mg(B3H8)2 combined with 4MgH2, whether or not hydrogen is present, re-
sults in a conversion of up to 88% back to Mg(BH4)2, along with the formation of some
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MgB12H12. This process facilitates the development of closed synthesis/decomposition
cycles for hydrides, aiming to improve the effectiveness of hydrogen storage systems.
The B3H8

− ion can also serve as a building block for producing multi-component solid-
state ionic conductors. For example, highly ionically conductive materials such as
Na4(B10H10)(B12H12) can be synthesized. This synthesis pathway involves transform-
ing NaBH4 into (Et4N)BH4, followed by a reaction with CH2Cl2, a thermal transformation
into toluene, and exchange reactions using sodium tetraphenylborate [103–105].

3. Summary of Hydrogen Storage and Release in h-BN-Based Materials
The current body of research reveals a notable lack of empirical information con-

cerning the hydrogenation and dehydrogenation mechanisms of hexagonal boron nitride
(h-BN). Most studies primarily employ computational modeling. Further experimental
investigations, concentrating on the release of hydrogen from h-BN-based compounds,
are of significant importance. A considerable number of publications neglect to examine
the reusability of BN materials after undergoing dehydrogenation/desorption, or to elu-
cidate the impact of hydrogen storage and release at the relevant temperatures on their
characteristics [106,107].

Hydrogen adsorption phenomena have been explored extensively on various nan-
otube types and their modified versions over the last ten years. Different approaches have
been used to explore hydrogen molecule adsorption on boron nitride nanotubes (BNNTs),
including those functionalized with metals [108] like Rh, Ni, and Pd. The adsorption of
hydrogen molecules on Al-doped BNNTs (5,0) and (3,3) has also been examined, with data
given on the quantity of adsorbed hydrogen molecules and mean adsorption energies [109].

Multiple studies have established that metallic magnesium’s surface is critical for
hydrogen absorption, promoting the separation of H2 molecules and facilitating hydrogen
atom diffusion into the material’s core (Table 3). Ball milling, which involves mechanically
processing magnesium or its hydride using high-energy techniques, represents cutting-
edge methods for improving and accelerating hydrogenation–dehydrogenation processes.
This approach is widely used to enhance the surface properties of metal hydrides [110].

Table 3. Hydrogen absorption/desorption properties of selected magnesium-based metal hydrides
and their alloys [110].

Material Method Temperature
(◦C) Pressure (MPa) Kinetic (min) Cyclical

Stability
Max.%

(mas.) H2
Ref.

Mg/MgH2-
5%

(мaс.) Ni

Wet chemical
method Tabs. 230–370 Pabs. and Pdes.

0.4–0.14 tabs. 90 800 cycles,
stable 6.0 [111]

MgH2-
0.2%

(мoл.)
Cr2O3

BМ Tabs. and Tdes.
300

Pabs. and Pdes.
0.1–0.2

tabs. 6
tdes. 10–35

1000
cycles, stable 6.40 [112]

MgH2 BМ
Tabs. 300

and
Tdes. 350

Pabs. 0.3–1.0
Pdes. 0.015

tdes. 12.5
tdes. 50
tabs. 420

- 7.0 [113]

MgH2-1%
(aт.) Al

BМ
benzene

or
hexane

Tbs. 180
Tdes. 335–347 Pabs. 0.06 - 7.30 [114]

DFT was utilized to explore how structural defects and substitutional doping affect
the ability of BNNTs to adsorb hydrogen. The results indicated that the binding energy
significantly increased when compared to the ideal BN structure. It was also shown that
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the projected desorption temperature is approximately 123 K, and hydrogen diffuses more
slowly in BNNTs with smaller diameters than in those with larger diameters. The binding
energy of BN nanotubes is also about 40% higher than that of carbon nanotubes [115]. The
impact of Pt modification on BN nanotubes, which results in a high average adsorption
energy of hydrogen molecules at −0.365 eV, was examined using DFT simulations in [116].

The connection between the Pt atom and the BN nanotube was shown to be weakened
by the adsorptive hydrogen molecule. The formation of a Pt dimer after two Pt atoms
are doped onto a BN nanotube weakens the Pt-BN connection and lowers the adsorption
energy of hydrogen molecules on the Pt dimer. A theoretical study of the structure, stability,
and hydrogen storage capabilities of hydrogenated h-BN sheets doped with lithium was
also carried out in [117]. Li atoms on h-BN sheets were shown to act as binding sites,
absorbing up to 6 weight percent hydrogen at lower temperatures (<198 K). Ab initio
modeling suggests a hydrogen desorption temperature of ∼398 K. In addition to pure
lithium, its compounds have also been shown to be effective modifiers for increasing the
hydrogen storage capacity of h-BN. The calculated gravimetric hydrogen density of 2(OLi3)-
decorated h-BN for storing H2 molecules can reach 9.67 wt.% [118]. −0.175 eV, the average
adsorption energy per H2 molecule, is the ideal window for reversible uptake-release at
room temperature.

Composites of Ti powder that had been mechanically milled with h-BN at a mass
ratio of 1:1 achieved a hydrogen adsorption capacity of 4.2 wt.%. The observed value is
consistent with the theoretical calculations for hydrogen uptake by Ti, indicating that Ti is
essential for hydrogen absorption in the analyzed mixture [119]. DFT calculations were
used in a different study (Chen et al., 2012) [120] to investigate the adsorption of transition
metals, including Sc, Ti, V, Cr, Mn, Fe, Co, and Ni, on carbon-doped h-BN sheets and
the B12N12 cage. Sc, V, Cr, and Mn exhibited favorable energetics for dispersion on the
sheet and CN-BN cage, with a hydrogen absorption capacity of up to 6 wt.%. It has been
demonstrated that carbon dopants in h-BN can function as potential traps for metal atoms,
preventing their clustering [120].

A new method for hydrogen storage utilizing pure h-BN bubbles, which are emerging
convex structures on the h-BN surface, through plasma treatment has been proposed [121].
To identify the type of gas trapped inside the h-BN bubbles, low-temperature atomic force
microscopy (AFM) measurements were conducted to monitor how the bubbles responded
to temperature changes. This experiment was inspired by recent research on bubble
structures in bulk transition metal dichalcogenides.

Figure 6a presents an optical image of bubbles on an h-BN flake. After transferring the
sample into a vacuum chamber equipped with AFM, it was gradually cooled. Topographic
AFM images of the same region at 34 K and 33 K are shown in Figure 6b. It is evident that
the bubbles are inflated with gas at 34 K but collapse at 33 K. As illustrated in Figure 6c,
height profiles taken along the dashed lines in Figure 6b demonstrate that the bubble is
visible at 34 K but disappears at 33 K.

This inflation–deflation behavior was reversible and reproducible upon heating and
cooling. The highest temperature at which the bubbles flattened was defined as the
transition temperature (Ttransition). A histogram was then constructed (Figure 6d), showing
the distribution of Ttransition values with 1 K intervals.

The Ttransition values followed a Gaussian distribution, with an average of 33.2 ± 3.9 K,
which closely matches the known transition temperature of hydrogen (33.18 K). This
strongly suggests that the gas trapped inside the h-BN bubbles is hydrogen [121].
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Figure 6. Swelling and deflating processes of the h-BN bubbles containing hydrogen. (a) An optical
image of bubbles on an h-BN flake, taken under ambient conditions, scale bar: 20 µm. (b) Topographic
AFM image of a bubble pointed out by an arrow in (a) was measured at 34 and 33 K, respectively,
scale bars: 3 µm. (c) The height profiles of the line-scan at the same place (indicated by dashed lines
in (b)) where the bubble remains at ~34 K and disappears at ~33 K. (d) Histogram of the transition
temperature (Ttransition) at which bubbles collapse. The red line is a Gaussian fit to the data. The
yellow line is the histogram cumulative function (right axis) [121].

These bubble structures, created from methane plasma, exhibit diameters between
2 and 4 µm and heights reaching up to 8.5 nm. The stability of hydrogen bubbles, influenced
by geometric evolution, indicates that the diameters of all bubbles typically maintain
stability for approximately 30 weeks in ambient conditions. This approach shows potential
for hydrogen preservation; however, the extraction aspect is still not addressed.

A comparison of various BN-based materials in terms of their hydrogen storage
capacity is presented in Table 4 [122].

Table 4. Comparison of BN-based materials for hydrogen storage [122].

Storage Ability,
wt%

Morphology Material’s Features
Storing Conditions

References
P, MPa T, K

Experimental data

2.9 Nanofibres 30–100 nm width and
several µm length 10 293 [123]

1.8 Multifalled nanotubes 10 293 [124]

2.5 Flower-type
nanostrucrures

Specific surface area about
180 m2 g−1 10 298 [125]

2.6 Bamboo-like
nanotubes

10–80 nm width and
>µm length 10 293 [126]

3.0 Bamboo-like
nanotubes

Specific surface area about
180 m2 g−1 10 298 [127]

0.2 Bulk powder - 10 293 [123]

0.1 Bulk powder - 6 293 [123]

2.6 Nanostractured
milled powder Fine-milled (80 h) 1 293 [126]

4.2 Collapsed nanotubes Catalyzed by the Pt 10 293 [127]
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Table 4. Cont.

Storage Ability,
wt%

Morphology Material’s Features
Storing Conditions

References
P, MPa T, K

5.7 o-doped Nanosheets with
2–6 atomic layers 5 293 [127]

2.57 Porous microsponge Ultrahigh surface area up
to 1900 m2 g−1 1 77 [128]

5.6 Micro/meso-porous

High surface area pf
1.687 m2 g−1, pore volume

of 0.99 cm3 g−1, rich
structural defects

3 298 [129]

2.3 Porous microbelts High surface area up to
1.488 m2 g−1 1 77 [130]

Theoritical modeling data

1.5 Pristine - 5 293 [131]

1.9 o-doped Interlayer distance 7–7.5 Å 5 293 [132]

5.5 o-doped - N/a [126]

2.81 Pt-doped sheets - N/a [131]

4.82 Pt-doped sheets - N/a [131]

6.33 C-doped nanosheets
modified with Ti - 0.5 298 [132]

5.1 Porous Ultrahigh surface area
3.260 m2 g−1 N/a [133]

7.5 Li-decorated porous One-side decoration N/a [133]

8.65 Li-doped nanosheets Distance between sheets
8.3 Å 0.1 300 [131]

9.67 h-BN monolayer 2(Oli3)-decorated N/a [134]

3.4 h-BN bilayer Sorption in the
interlayer spacing N/a [135]

6.7 h-BN bilayer Sorption on the h-BN
surface N/a [136]

3.86 eh-BN Expanded h-BN 20 243 [137]

11.21 O-B2N2 monolayer Decorated by Ti atoms - [138]

The ability of materials to store hydrogen is strongly influenced by their specific
surface area and, consequently, their structural arrangement. A larger specific surface
area encourages the development of imperfect structures, featuring multiple layers and
exposed edges on the surface. Among high-surface-area forms of h-BN nanostructures,
nanotubes are particularly promising for hydrogen storage at room temperature. Research
indicates that chemisorption is generally more prevalent than physisorption in BN nan-
otubes. This results in a requirement for greater energy inputs to remove hydrogen (during
the dehydrogenation process).

BN nanofibers, with diameters between 30 and 100 nm and lengths spanning sev-
eral micrometers, exhibit a hydrogen storage capacity of roughly 2.9 wt.% at 293 K and
100 bar. However, it is worth noting that only a small fraction of the stored hydrogen,
about 20 wt.%, is released at room temperature, representing the physisorbed portion. To
release the chemisorbed hydrogen, a temperature of 573 K is needed. Similar findings were
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reported, where bamboo-like BN nanotubes retained approximately 70% of the stored hy-
drogen after pressure reduction, suggesting chemisorption as the predominant mechanism.
Complete release of adsorbed hydrogen only occurred upon heating the sample to 573 K. In
subsequent cycles, the hydrogen uptake capacity remained consistent, indicating reversible
adsorption–desorption processes. This suggests that imperfect structures enhance chemical
interactions with hydrogen, leading to the creation of stable bonds.

According to Ma et al. (2002a) [124], hydrogen adsorption on multi-walled BN nan-
otubes (specific surface area: 150 m2/g) and bamboo-like BN nanotubes (specific surface
area: 210 m2/g) at 293 K and 100 bar reached 1.8 wt.% and 2.6 wt.%, respectively. Moreover,
experimental studies show that the hydrogen storage potential in h-BN nanostructures
increases with hydrogen pressure. For instance, straight-walled BN nanotubes (specific
surface area: 210 m2/g) exhibit an enhanced capacity of 2.7 wt.% under the same condi-
tions, while flower-like BN nanostructures (specific surface area: 180 m2/g) demonstrate
a maximum hydrogen storage capacity of 2.5 wt.% at around 100 bar. The bamboo-type
nanotubes, featuring the highest specific surface area (230 m2/g), also exhibit the highest
hydrogen uptake (3.0%).

Additionally, a proposed mechanism allows for the regeneration of triflic acid during
operation, ensuring gradual hydrogen release over time. In comparison, Pt-catalyzed
collapsed BN nanotubes release 5% of adsorbed hydrogen in the 353–413 K range and the
remaining 95% in the 573–723 K range [125].

The researchers Tang et al. (2002) [127] investigated the hydrogen storage potential of
various BN configurations at 10 MPa and room temperature. Their findings highlighted
that BN nanotubes, when collapsed, exhibit a significantly improved hydrogen adsorp-
tion capacity compared to conventional multi-walled nanotubes. This enhancement was
attributed to an increased density of dangling bonds and a substantial elevation in specific
surface area, which rose from 254.2 m2/g to 789.1 m2/g. The observed hydrogen uptake
ranged from 0.9 to 4.2 wt.%. Further studies [128] showed that approximately 89% of the
hydrogen stored in oxygen-doped h-BN nanosheets could be released at room temperature
simply by reducing the pressure to ambient conditions. Furthermore, the hydrogen absorp-
tion capacity experienced only a slight decrease, from 5.7 to 4.79 wt.%, over 15 cycles of
adsorption and desorption.

The capacity of nanomaterials for hydrogen sorption is significantly affected by chem-
ical functionalization. Oxygen-doped h-BN nanosheets (2–6 layers), created through
the sol-gel method [130], can store up to 5.7 wt.% hydrogen at room temperature and
5 MPa. This material exhibited remarkable cyclic stability, maintaining its performance over
15 hydrogen uptake and release cycles. Another study (Zhang et al., 2015) [134] un-
derscored the potential of porous boron nitride (p-BN) as a promising structure for
hydrogen storage.

Theoretical investigations using first-principles calculations suggested that pristine h-
BN bilayers could function as hydrogen storage materials, providing a maximum capacity
of 3.4 wt.% with desorption temperatures ranging from 139 K to 279 K, contingent on the
quantity of adsorbed H2 molecules [136]. DFT calculations indicated that a Ti-decorated
orthorhombic diboron dinitride (o-B2N2) monolayer could attain a storage capacity of
11.21 wt.% with a 396 K desorption temperature [137].

Releasing chemisorbed hydrogen (including hydrogen from hydrogenated functional
groups) from BN-based materials often demands additional energy due to the strong bonds
involved. For instance, nanostructured h-BN powder, capable of storing 2.6 wt.% hydrogen,
requires heating to 570 K for complete release [138]. Chemisorbed hydrogen within BN
nanotubes typically necessitates temperatures exceeding 623 K for release. However, triflic
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acid can catalyze this process, facilitating efficient dehydrogenation at modestly elevated
temperatures (313–323 K) [139–142].

A novel structure, B20N24 [143], designed via the CALYPSO code, presents itself as
a potential hydrogen storage candidate, with simulations indicating a 6.8 wt.% storage
capacity corresponding to 19 adsorbed H2 molecules. First-principles quantum-chemical
calculations reveal that C-doped p-BN can achieve a maximum hydrogen uptake of
5.1 wt.%, while Li-doped p-BN can adsorb up to 7.5 wt.% hydrogen. Similar analyses
apply to materials like Li-functionalized BC2N monolayers and boron/carbon-doped struc-
tures. Furthermore, dispersion-corrected semi-empirical methods suggest that B96N96

nanocages can exhibit the highest hydrogen uptake at 12.01 wt.%. Notably, theoretically
designed TM-fullerenes B24N24 (TM = Sc, Ti) demonstrate gravimetric hydrogen densities
of 7.74 wt.% (Sc6B24N24) and 7.50 wt.% (Ti6B24N24), with hydrogen release temperatures
falling within the 243–408 K range [144–146]. These combined theoretical and experimental
results provide optimism for the development of effective hydrogen storage devices based
on nanostructured h-BN.

The mechanisms of hydrogen uptake and release in hexagonal boron nitride (h-BN)
are still not fully understood, with current research heavily dependent on computational
simulations [147]. There is a significant lack of experimental evidence concerning the
ability of h-BN to be reused following hydrogen liberation, as well as data on how the
material’s characteristics change after dehydrogenation. Recent work has focused on how
hydrogen is adsorbed onto boron nitride nanotubes (BNNTs) and their altered versions,
like those with added metals or aluminum. To boost hydrogen adsorption, metal hydrides
like magnesium-based compounds have been used, with mechanical milling techniques
improving the speed and amount of hydrogen absorbed.

Computational studies employing DFT have shown that adding metals, such as
platinum (Pt), can greatly improve how well hydrogen sticks to BN structures. It has been
reported that adding lithium can raise the hydrogen storage capability of h-BN to as much
as 9.67 wt.%. Additionally, experimental research indicates that hydrogen storage capacities
differ depending on the shape of the h-BN, with bamboo-like BN nanotubes exhibiting the
highest capacity (3.0 wt.% at 298 K), but hydrogen release necessitates temperatures close
to 573 K.

New materials, including doped h-BN and B20N24 clusters, have demonstrated con-
siderable potential. Theoretical models suggest effective hydrogen storage and release
between 243 and 408 K. These results, drawn from both theoretical calculations and exper-
imental observations, offer a solid base for the ongoing development of nanostructured
h-BN as a potential advanced material for storing hydrogen.

4. Conclusions
Current scholarly investigations suggest that boron nitrides stand out as particularly

appealing substances for hydrogen storage applications. Both computer simulations and
real-world tests highlight the considerable promise of hydrogen storage systems built
around h-BN materials. According to these findings, strategies for boosting the hydrogen
absorption capabilities of h-BN materials involve enlarging the effective surface area,
creating structural imperfections to change the crystal structure, and possibly changing the
distance between layers. Additional methods include adding other elements to BN and
creating metal-based coatings on the surface through functionalization (for example, using
Ti, Li, etc.).

Nevertheless, several key issues have slowed the advancement of BN as a material
for hydrogen storage. First, major scientific interest in BN is a fairly recent phenomenon,
with initial research appearing in the early 2000s. Its development has been slow compared
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to materials found later. Secondly, there is significantly more theoretical work (based
on computational methods) than experimental research. These theoretical studies have
improved our understanding of how BN absorbs hydrogen and have suggested different
ways to improve it. However, the absence of experimental confirmation has made it harder
to use BN as a hydride in practice.

Therefore, the most effective way to create high-performing hydrogen storage systems
based on BN is to conduct a series of experiments that focus on layer-by-layer ball milling.
This method results in a bigger specific surface area, a microstructure with smaller grains,
many flaws (both on the surface and inside), the creation of phase boundaries, and a porous
surface structure with numerous active sites for hydrogen absorption and desorption. These
changes can greatly improve how fast hydrogenation happens and its thermodynamic
features while keeping the hydrogen storage capacity almost the same.

Moreover, it is necessary to continue in-depth studies on how hydrogen is released
and how well BN-based materials can be recycled after many cycles of adding and
removing hydrogen.
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