
R E V I EW

Uncertainty in inventories for life cycle assessment:
State-of-the-art, challenges, and new technologies

Eric C. D. Tan1 | Qingshi Tu2 | Antonio A. Martins3,4 | Yuan Yao5 |

Aydin Sunol6 | Raymond L. Smith7

1Catalytic Carbon Transformation and Scale-Up Center, National Renewable Energy Laboratory, Golden, Colorado, USA

2Department of Wood Science, The University of British Columbia, Vancouver, British Columbia, Canada

3LEPABE, Faculty of Engineering, University of Porto (FEUP), Porto, Portugal

4ALiCE, Faculty of Engineering, University of Porto, Porto, Portugal

5Center for Industrial Ecology, School of the Environment, Yale University, New Haven, Connecticut, USA

6Department of Chemical, Biological, and Materials Engineering, University of South Florida, Tampa, Florida, USA

7U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, Ohio, USA

Correspondence

Eric C. D. Tan, Catalytic Carbon

Transformation and Scale-Up Center, National

Renewable Energy Laboratory, 15013 Denver

West Parkway, Golden, Colorado 80401, USA.

Email: eric.tan@nrel.gov

Funding information

Canadian Network for Research and

Innovation in Machining Technology, Natural

Sciences and Engineering Research Council of

Canada, Grant/Award Number: RGPIN-

2021-02841; Portuguese National Funding

Agency for Science, Research and Technology,

Grant/Award Number: DL 57/2016; U.S.

Department of Energy, Grant/Award Number:

DE-AC36-08GO28308

Abstract

Uncertainty is a critical factor that can hinder the quality and potential applica-

tions of life cycle assessment (LCA) results. A prominent source of uncertainty

stems from the life cycle inventory (LCI) data. Various methodologies exist to esti-

mate the uncertainty associated with LCI data, primarily based on the widely used

structured pedigree matrix approach or the computationally intensive Monte

Carlo simulation. This perspective review explores how new technologies

(e.g., computational algorithms and data collection methods) from data science

and related fields can contribute to identifying, quantifying, and reducing uncer-

tainty in LCI modeling. A brief overview of the sources of uncertainty in LCI

modeling and how they are addressed in current LCA practice is provided. Addi-

tionally, several new technologies are identified, and the potential benefits of their

implementation in reducing uncertainties in LCI modeling are discussed. This per-

spective review concludes by identifying potential areas that require further

development for these technologies.
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1 | INTRODUCTION

Life cycle assessment (LCA) is currently the most used methodol-

ogy to holistically assess the environmental impacts of a product,

process, or service within a well-defined boundary. The widely

accepted LCA methodology is defined by two ISO standards,

140401 and 14044,2 complemented by other ISO standards, for

example, ISO 14071,3 that define guidelines for performing a criti-

cal review of LCA studies and analyses. The aforementioned stan-

dards are the basis of other ISO standards, such as ISO 140644 and
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14067,5 that deal with the carbon footprint of products, processes,

and services. Other assessments that consider these impacts, as

well as risk evaluations, depend on environmental release informa-

tion and its uncertainty.

Uncertainty in an LCA study can originate from various sources,6

including the definition of allocation criteria/methodologies,7 impact

assessment methodologies,8 and life cycle inventory (LCI) data.9 The

assessment of environmental impacts hinges on accurate LCI model-

ing, which requires an accurate accounting of elementary

(e.g., emissions, minerals extracted from the Earth), energy, material,

and waste flows within and across the system boundary. Conse-

quently, the fidelity of an LCA study is directly tied to the uncertainty

of the LCI data.10

Uncertainty in LCI data may still exist even when primary data

measured directly from the system of interest is used. One example is

the measurement error from sensors due to environmental interfer-

ence, such as temperature fluctuations, humidity, or electromagnetic

disturbances. When using inventory data from secondary sources

(i.e., collected from literature or from dedicated LCI databases), the

level of uncertainty in LCI modeling could be higher, for example, due

to the need to rely on proxies11 and approximations, or the utilization

of data that is only partly suitable.

The issue of data uncertainty has been recognized since the

inception of LCA. The ISO standard 14040 explicitly acknowledges

the necessity of assessing uncertainty in an LCA study, but it does

not provide specific suggestions or guidelines. Despite this, signifi-

cant contributions were made in past decades to address the uncer-

tainty in LCA studies.12,13 While there are guidelines available for

conducting uncertainty analyses,14 their scope is limited, and many

published LCA studies do not include uncertainty analyses. When

conducting an uncertainty analysis, it is essential to begin with the

definition of the goal and scope of the LCA, which is the first step

in the standard LCA framework.1,2 For example, the goal may be to

identify hotspots within the life cycle of a product or to compare

the life cycles of two different products. The intention could also

be to make claims based on the life cycle results. Alongside defining

the scope—what is included and excluded from the systems being

studied—it is important to contextualize the uncertainty analysis.

The various methods presented here should each be considered in

light of how they inform the results and whether the uncertainty

provides differentiated conclusions regarding whether the inten-

tions of the goal have been achieved. Therefore, there is a clear

need for further research to enhance existing methodologies or to

develop new ones that can more appropriately address the uncer-

tainty of LCA.

Over the years, there has been a significant increase in the avail-

ability of affordable computing power. With advancements in data sci-

ence, machine learning, artificial intelligence, and related fields, there

is a potential to improve existing methodologies (e.g., pedigree matrix

and Monte Carlo simulation), or even develop new ones, to improve

uncertainty assessment for LCI. This perspective article discusses the

potential of several such new technologies in identifying and asses-

sing uncertainty in LCI data.

2 | CURRENT METHODS FOR ASSESSING
UNCERTAINTY IN LCA

Before discussing some current methods in assessing uncertainty

(i.e., the lack of knowledge about the true value of a variable, parame-

ter, or model output), it is worthwhile to distinguish it from variability

(i.e., the changeable conditions describing instances of a system) and

to briefly address the two categories of uncertainty: epistemic

and aleatory. Epistemic (or systematic) uncertainty arises from a lack

of knowledge related to underlying fundamentals and is characterized

by alternative models and bounds on the parameters. It is directly

linked to the choices one has to make when performing an LCA study,

particularly when selecting inventory data sets and the associated

vagueness, imprecision, and ambiguity. From a statistical point of

view, this type of uncertainty can be described by Bayesian (subjectiv-

ist) probability perspectives that may involve subjective evaluations.

In contrast, aleatory (also called random) uncertainty refers to inher-

ent uncertainty due to probabilistic fluctuations of parameters and

events, for example, the error associated with sensor measurements.

From a statistical point of view, a classical (frequentist) framework can

be used to characterize this type of uncertainty. Even though both

types of uncertainties can be represented by probability density func-

tions and treated similarly, different methodologies should be consid-

ered when assessing each type, as described in the following sections,

explaining each method in detail, followed by an illustration of its

application to addressing one or both types of uncertainties.

2.1 | Pedigree matrix

The pedigree matrix method is useful for describing data quality and

can be used to define uncertainty distributions for inventory data.15

The method involves practitioners using judgment to assign data qual-

ity scores between 1 (very good quality, e.g., site-specific data for the

process of interest) and 5 (very poor quality, e.g., data does not repre-

sent the technology of interest) for five data quality characteristics:

time coverage, geographic coverage, technological coverage, reliabil-

ity, and completeness.16 Thus, the pedigree matrix indirectly

addresses epistemic uncertainty by evaluating these data quality indi-

cators (DQIs). Similarly, the pedigree matrix does not explicitly

account for aleatory uncertainty. Instead, it focuses on pointing practi-

tioners to use available data of high quality.

The use of uncertainty distributions based on data quality scores

is straightforward. One can evaluate the characteristics of inventory

data and assign data quality scores accordingly. By default, the pedi-

gree matrix method assumes that the uncertainty of a datum follows a

log-normal distribution, although methods have been proposed to

accommodate other distributions.17 The uncertainty distributions are

characterized by geometric standard deviations (GSD), which are fac-

tors that can be multiplied (or divided) by the mean value for a lognor-

mal distribution. These GSD can be applied for each of the quality

characteristics, multiplied (or divided) by the existing distribution so

far developed. The GSD covers the 95% confidence interval; the
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lower limit and upper limit of the interval are the mean value divided

by the GSD and the mean value times the GSD, respectively.18 The

importance of these distributions for describing uncertainty should

not be overlooked, as the GSD is dimensionless and thus applicable to

inventory values of various sizes.

The longstanding pedigree matrix method has recently been

improved by incorporating uncertainty distributions that are defined

for each characteristic and score, with larger uncertainty factors

applied for larger data quality scores.17 Nevertheless, using a dataset

for analysis requires careful evaluation of its quality. If the dataset is

deemed unsuitable due to inaccuracies or biases, it is best to avoid

using it altogether. This topic has been examined in studies pertaining

to both processes and flows.19,20 These studies show that when data

have wide distributions, they can still significantly differ from the tar-

get. It is crucial to consider overall technological development when

identifying key factors21 or evaluating the representativeness of data,

particularly when adjustments to the pedigree matrix are needed.22

Moreover, while the pedigree matrix does not directly characterize

uncertainties, it plays an important role in ensuring reliable data for

LCA. To fully account for uncertainties, additional modeling and analy-

sis techniques are necessary. Techniques such as Monte Carlo simula-

tion or sensitivity analysis help propagate uncertainties through the

LCA model.

2.2 | Monte Carlo simulation

When uncertainties can be represented by a probability distribution

function, the distribution of outcomes (i.e., dependent variables) can

be obtained through a portfolio of probability combination methods,

such as the combination of expected value and variances, moment-

based methods, transformation methods, and Monte Carlo

(MC) simulation.23 The latter is more commonly used in practice,12

and it is even implemented in existing LCA software, such as Sima-

Pro.24 The MC method allows repeated sampling from the probability

distribution function of uncertain variables to calculate the

probability distribution of dependent variables. Sampling often

assumes independence between random variables, relies on classic

probability theory, and continues until the variations in the average

value of the dependent variables approach an asymptotic value suit-

able for the particular analysis. This type of uncertainty analysis is

suited for aleatory uncertainty, which is usually associated with mea-

surements. While MC simulation primarily focuses on aleatory uncer-

tainties, it indirectly accounts for epistemic uncertainties by

considering parameter variations. The impact of epistemic uncer-

tainties can be assessed by comparing simulation results using differ-

ent parameter values or models.25

The standard procedure for MC involves sampling the LCI data

for the various products and processes included in a system and

calculating the values of the environmental impacts for each case.

This methodology can be very computationally demanding, as it

requires extensive sampling of LCI databases and a large number of

simulations to properly sample the LCI datasets, especially in a

process system that includes hundreds or thousands of inputs and

outputs.26 This may limit the applicability of the MC methodology

to small and medium-sized systems, making it beyond the reach of

most practitioners as extensive computational resources would be

necessary for large industrial processes or systems involving com-

plex supply chains. This is due to the computational nature of an

LCA study. Considering the matrix formulation,26,27 each time a

simulation is performed with the MC methodology, it is necessary

to perform a matrix inverse, a very computationally intensive

operation.

Pomponi et al.28 examined the sample size such that additional

MC calculations would not affect the results. Their calculations

showed that for the LCA of construction materials, a sample of

10,000 points is sufficient regardless of the probability density

function and size of the data sets. Similar conclusions were reached

by Ross and Cheah,29 who also analyzed the sample size necessary

to adequately address the uncertainty of the utilization phase of

electric appliances. The results show that larger samples lead to

more statistically precise results, yet the marginal return in preci-

sion decreases with an increasing number of samples. Even though

the form of the probability distribution function does not influence

the sample size, the uncertainty values obtained depend on the

selection made. Heijungs23 also analyzed the required sample size

to ensure meaningful results. Based on the study results, the author

recommends using large samples from the input distributions

(i.e., collected data), but restricting the number of MC simulation

iterations to a number not greater than the input sampling. The

issue created by using a large number of MC runs is that inaccurate

inputs will be translated to the LCA results, but an MC simulation

with too many runs will describe it as having excellent precision.

Moreover, Heijungs23 also concluded that if the parameters for the

input distributions are obtained by a procedure (e.g., pedigree

matrix) and not by sampling, then MC simulation should not be

used. One can consider that the MC results are not statistically sig-

nificant as the input distributions have been assumed rather than

determined through data. A proposed conservative approach by

Edelen and Ingwersen16 would use the highest pedigree matrix

score possible for each data quality characteristic, which can be

combined with intentionally using few MC runs so as not to overly

narrow the precision of the results.

While considering the points mentioned above, LCA practi-

tioners who opt for MC simulation should be aware that guidelines

for developing estimators of the mean, variance, and other statisti-

cal descriptors can be found in the literature.30 However, in many

cases, direct estimation of these parameters may not be feasible.

As an alternative, practitioners often rely on standard probability

density functions, such as the normal distribution. These distribu-

tions are often practical and adequate for modeling uncertainty,

and their parameters can be estimated from inventory data or infor-

mation obtained from the process or databases.31 In many cases, it

would be wise for practitioners to state the assumptions and

methods used in their studies and warn readers not to overinter-

pret uncertainty results.
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2.3 | Non-probabilistic methodologies

In LCA practice, data uncertainty is usually modeled using classical

probability theory, on which MC and related methods are based.12

When the uncertainty is due to the natural randomness (aleatory

uncertainty) that occurs in measurement, the approach that considers

MC and related methodologies is adequate. However, when the

uncertainty arises from the inherent ambiguity linked to the choices

made when doing an LCA study (epistemic uncertainty), different

approaches are required. In this case, the uncertainty is not entirely

random, as incomplete information is used to make choices.

Various forms to represent epistemic uncertainty have been pro-

posed in the literature; for example, fuzzy set theory, Bayesian proba-

bility, or Dempster's theory of evidence.6,32 Following Tan et al.,33

this type of uncertainty corresponds to the imprecision associated

with ambiguity due to subjective actions. In this context, possibility

theory can be used to account for that fuzziness by assigning a possi-

bility value that is proportional to the expectation of a particular out-

come. The values assigned are not probabilities in the classical sense,

as the information used to define them limits the possible values.

According to Tan et al.,34 there are three main reasons to use pos-

sibility theory instead of methods based on classic probability theory.

First, possibility theory allows a more rigorous description of certain

types of uncertainty that are described as ambiguous or imprecise

rather than random. Second, possibility theory is more compatible

with subjective and/or heuristic information that may have a non-

quantitative nature or have a decision aspect linked to its utilization.

Examples include the utilization of expert judgment or surrogate data,

in which subjective judgments are normally involved, as is the case

when converting linguistic terms (e.g., good, bad) to numerical

values.35 The determination of adequate probability density functions

to use in MC and related methodologies may be impossible when data

appears to be contradictory, a situation that possibility theory allevi-

ates by introducing subjective assumptions and/or decisions that

allow the generation of adequate fuzzy numbers. Finally, for complex

process systems, possibility theory can significantly reduce computa-

tional effort associated with the uncertainty evaluation. Even though

it is less rigorous when compared with classic probability theory, pos-

sibility theory is simpler to apply for poorly described process systems

where information is limited.

Some studies have analyzed and applied possibility theory princi-

ples, usually using fuzzy set theory to describe and make uncertainty

calculations. Benetto and coworkers36,37 have analyzed how possibil-

ity theory can be applied in LCA alone or coupled with decision-

making methods. The authors concluded that possibility theory is an

adequate form of dealing with uncertainty when the analysis involves

human judgment and specialist perceptions and may be advantageous

when analyzing LCA study results and decision-making based on

them. André and Lopes38 have analyzed the mathematical basis of

implementing possibility theory and determined adequate conditions

to use it when compared to other methodologies, in particular proba-

bilistic ones. Heijungs and Tan39 have analyzed the implementation of

fuzzy methods in the LCA methodology using the matrix formulation

to determine which conditions can be applied. Clavreul et al.40 also

reached similar conclusions; in particular, the authors determined that

methods based on possibility theory focused more on the information

available instead of on how one has to represent it. Thus, probability-

based methods are easily used when information is abundant and ade-

quate, but in other situations methods based on possibility theory are

useful.

However, non-probabilistic methodologies should not only be

used as a substitute for the lack of data. To fully reap its benefits,

possibility theory should be considered when there are two or

more distinct possible scenarios. Instead of evaluating them sepa-

rately, the idea is to use all available information in a single com-

bined analysis. Moreover, possibility theory can be used to assign

weights to data, applying quality factors to scenarios rather than

making a binary decision about whether to include or exclude cer-

tain data. Some examples of studies involving possibility theory,

normally combined with fuzzy sets, can be found in the literature.

Tan et al.33,34,41 used this approach to compare the life cycle

impacts of alternative fuels. A comparison of the possibility theory/

fuzzy sets and MC to assess the life cycle impacts of biodiesel made

from coconut oil concluded that similar results are obtained by both

methodologies. The authors concluded that the uncertainty evalua-

tion methodology based on possibility theory was faster than

MC. Based on this fact, Meng et al.42 have proposed an improved

life cycle-based methodology to assess the environmental perfor-

mance of products, in which fuzzy set theory is combined with MC

for a quicker assessment. Li et al.43 used fuzzy set theory to incor-

porate uncertainty in the assessment of distributed renewable

energy systems, concluding that the methodology is fast.

Reza et al.44 developed a methodology to assess the sustainability

performance of a paved road system. Although not exactly an LCA

study, as the energy was evaluated, the uncertainty due to the inven-

tory was assessed and propagated using fuzzy-based methods, which

were easier to implement than complex analytical expressions. Bene-

tto et al.36 have applied fuzzy sets to assess the environmental

impacts of noise, which are notoriously hard to evaluate. The fuzzy

nature of possibility theory lets one use data with a quality metric

applied as a factor, instead of deciding in a binary fashion that the

data is used or not.

The application of possibility theory, usually coupled with fuzzy

sets,45 requires information to perform the uncertainty analysis. In

practice, this can be done either using data from the process system

and the literature or by applying judgment or the consensus of spe-

cialists. For the former, the methodologies that can be used to define

the probability density functions used in the MC methodology may be

used, but without the need to calculate statistical parameters, as a

qualitative analysis suffices many times. For the latter, one can utilize

experts to define probability distributions, making the assessment

based solely on their expertise and judgment rather than relying on

data.46 Some authors have obtained the required information in a

more analytical way, for example, Gavankar and Suh47 proposed

a methodology to combine data from various sources, either qualita-

tive or quantitative.

4 of 11 TAN ET AL.
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Despite the advantages of possibility theory for specific types of

uncertainty, its application in LCA studies has been very limited when

compared with probabilistic-based methodologies.6,12 This may be

due to the perceived lack of rigor in possibility theory as compared to

MC and related methods, which may explain why no current commer-

cial and open-source LCA software packages have implemented meth-

odologies based on possibility theory6,48 to the best of the authors'

knowledge. Nevertheless, some works describe the implementation of

possibility theory for uncertainty assessment. An example is the article

of Tan et al.,34,41 which implemented the methodology in spread-

sheets aimed at the evaluation of transportation fuels. Another exam-

ple is the work of Clavreul et al.,40 in which possibility theory was

implemented in MATLAB using fuzzy intervals and used in the analy-

sis of willow cultivation for bioenergy production. They also compared

the results using Monte Carlo sampling and a mixed methodology that

combines random sampling with fuzzy intervals, concluding that this

depends on the availability of information. If the information is abun-

dant, a statistical representation is sufficient; however, when the

information is limited, it is often more effectively conveyed through

possibility distributions. Groen et al.49 compared different uncertainty

evaluation methods, particularly random sampling methods and fuzzy

interval arithmetic, to define possibility functions with the latter. They

considered three case studies: two regarding electricity generation,

one more complex involving whitefish trawling fishery, and the LCA

and uncertainty that were based on the matrix-based LCA calculation.

The results show that the fuzzy interval arithmetic method requires

less memory when compared to sampling methods, but the conclu-

sions are less explicit.

3 | IMPROVED AND NEW METHODS

3.1 | Improving the Monte Carlo simulation
method

As stated before, the current application of MC simulation in LCA is

computationally intensive, in particular for large process systems with

many inventory items for which many runs and sampling from many

probability density functions must be performed. Various authors

have analyzed MC to improve computational performance and speed

up the effort, focusing on the nature of the calculations and the prop-

erties of the mathematical objects involved. Peters50 has demon-

strated that when the matrices involved in the computational

evaluation of the environmental impacts are sparse (containing mostly

zeros), a situation that occurs for large process systems and/or with

many inventories and environmental releases, significant reductions in

computational time are possible using algorithms designed specifically

to invert sparse matrices, in particular iterative methods. The latter

strategy was implemented in SimaPro Version 8 and subsequent ver-

sions.24 Saab26 also considered the question of memory allocation

and how to invert matrices for large process systems with parallel pro-

gramming methods. The author explored strategies to avoid inverting

matrices by streamlining the calculations as much as possible.

Other researchers have focused on aspects related to sampling

the probability distribution functions and their impact on the uncer-

tainty calculations. Qin and Suh51 conducted a thorough analysis of

the most suitable probability density distributions to represent inven-

tory data, an important aspect not only for simplifying MC simulation

and reducing computational efforts but also for ensuring the credibil-

ity of the results. The authors concluded that log-normal distributions

were appropriate for describing the datasets used from the Ecoinvent

3.1 LCI database,52 employing a statistical method based on random

sampling of the datasets. This methodology can be extended to other

distribution-fitting algorithms, such as neural networks, thereby

broadening its practical implications.

Qin and Suh53 analyzed using pre-calculated distribution/

uncertainty values calculated from random sampling of the LCI Ecoin-

vent 3.1 database instead of a full MC simulation. The results show

that the utilization of pre-calculated values is adequate, particularly if

the pre-calculated values were evaluated using a large enough sample.

Lesage et al.54 analyzed the utilization of aggregated datasets to

reduce the computational effort and time in uncertainty evaluation in

LCA studies. They concluded that independent sampling is not possi-

ble in most cases, as most datasets in LCI databases are intercon-

nected. The study results show that the correlations between

datasets should be taken into account and that no single correction

factor exists to account for those effects.

Related methods are used to improve the performance of MC

simulation. Many of these methods rely on sampling the probability

distribution functions, taking into account the data and/or process

system characteristics. When sampling from a large number of proba-

bility distribution functions (multidimensional), MC simulation can be

too cumbersome and require too much computational effort,55 and

one may need to rely on variance reduction techniques.56 Another

option to minimize size and effort difficulties involves the application

of Markov models. In particular, Markov Chain Monte Carlo (MCMC)

sampling is a class of algorithms for systematic random sampling from

high-dimensional probability distributions that allows for more optimal

sampling when compared with standard MC simulation. Unlike MC

sampling methods that draw independent samples from the indepen-

dent distribution, in MCMC methods the samples are interdependent,

forming a Markov chain.55,57 This allows better sampling, in particular

when a large number of random variables are involved, as is the case

in LCA studies involving large systems. The methodology is used in

other scientific and technical areas for uncertainty analysis, such as

groundwater modeling,58 geosciences,59 and energy economics.60

Yet, MCMC sampling is not extensively used in the practice of LCA.

Existing examples include the work of Jin,61 who analyzed the life

cycle emissions in managing sewer pipelines; of Vázquez-Rowe

et al.,62 who considered the land use impacts of crop rotation in

Luxembourg, in which a Markov chain was used to estimate future

environmental impacts based on historical data; Paras and Pal,63 who

analyzed clothes reused in Nordic countries; Tian et al.,64 who evalu-

ated the environmental impacts of circular economy systems; and Yue

et al.,65 who analyzed the agricultural nitrogen emissions in China

from a life cycle perspective, focusing on the influence of the crop
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trade. This represents an opportunity to further develop the appli-

cation of this methodology in an LCA context. Moreover, there is

potential to couple MCMC with other methodologies, for example,

machine learning or using the expertise from other areas in apply-

ing the MCMC methodology for uncertainty evaluation, which will

further streamline uncertainty analysis based on the sampling of

the inventory probability distributions. Moreover, MCMC may bet-

ter handle the interactions and/or interdependencies between

variables.

3.2 | Other uncertainty assessment methods

Global sensitivity analysis (GSA) has been used in many LCA studies

to address the uncertainty/variability of input parameters.66 For

emerging technologies, the descriptions of input parameters can be

challenging, affecting the robustness of the GSA results. To address

this challenge, Lacirignola et al.67 developed a method that calculates

several GSA to identify key parameters and understand how the

descriptions of these parameters affect GSA results. The authors

applied the method to an enhanced geothermal system and demon-

strated how the description of each input affects its ranking and con-

tributions to the variance of the outputs. The authors called for

careful use of GSA in LCA and emphasized the need to investigate the

stability and confidence of parameter assumptions. Piano and

Benini68 reviewed uncertainty in LCA and were proponents of Sobol

sensitivity analyses to account for uncertainty.69 While computation-

ally expensive, this methodology can provide valuable information, in

particular the contributions of the inputs to output variance.

Cucurachi et al.70 developed a moment-independent global sensitivity

analysis method that can accommodate the presence of correlations

in the input to LCA models and the multimodal output of LCA models.

This new uncertainty evaluation method identifies and ranks the

important contributors to the uncertainty of the model outcome, and

it has been implemented in “The Activity Browser,” an open-source

LCA software based on the Brightway LCA framework.71–74

Machine learning (ML) methods have also been used to overcome

incompleteness or uncertainty in data to deliver actionable recom-

mendations for LCA.75,76 Dai et al.77 developed a streamlined inven-

tory creation and uncertainty evaluation method that outputs the

mean value and the corresponding uncertainty interval for the inven-

tory data of interest. This method first quantifies the correlations

among existing data across temporal, geographic, and taxonomic

dimensions, followed by applying the Gaussian process regression, a

machine learning algorithm, to predict the results for the LCI data of

interest. No assumption of a pre-defined distribution (e.g., log-normal

distribution) for the predicted LCI data is needed, as the uncertainty

interval is generated by directly sampling the posterior distribution of

the predicted LCI data. This new uncertainty evaluation method

avoids the need for manually specifying the distribution (which is

required by the Pedigree matrix method15), reducing the subjectivity

in uncertainty analysis. This shift of uncertainty from the user input of

data quality indicators (DQI) of the pedigree matrix method to that

of the trained Gaussian process regression model is an example of

converting input parameter uncertainty to model uncertainty.

Computationally intensive methods like Monte Carlo, commonly

used in uncertainty analysis, can become impractical due to the asso-

ciated computational burden, especially as the complexity of models

and the number of variables increases. These complex models may be

physics-based, modeled at different levels of granularity, and include

several processing steps. Furthermore, these models are usually non-

linear functions of a large number of variables that have varying signif-

icance and interact with each other. In such complex, computationally

burdensome, and intractable cases, along with variable reduction

methods, surrogate models offer a practical and efficient solution.

These models treat the mechanistic simulation model or plant data as

a black box and develop an explicit lower-order meta-model from an

implicit complex mechanistic model or noisy manufacturing or proces-

sing plant SCADA (Supervisory Control and Data Acquisition) system.

For example, Huntington et al.78 have developed surrogate models of

bioproduction paths using flowsheet simulators. Material and energy

balances, which are dependent on key process variables such as feed-

stocks, operating conditions, and properties, are thus empirically mod-

eled. The results of those models correspond to the LCI inputs and

outputs that are then used in LCA studies, reducing the computational

burden and allowing the use of only the most significant variables

along with much simpler explicit lumped models. The most sensitive

parameters are used as decision variables for optimization of the

objective function while formulating the surrogate model, which also

accounts for the interactions between variables.79

In the development of surrogate models, ideally, complex models

should be accurate and optimized. These models are most useful

when design changes are not made. If plant data are available, these

can be further used to tune the complex models prior to developing

surrogate models. Naturally, digital twins can be used to develop sur-

rogate models as well. Explicit surrogate modeling relations can be

developed using data-driven machine learning techniques like sym-

bolic regression.80 Existing LCA modeling relations are, in part, high-

level empirical relations and can serve as starting surrogate models.

Similarly, lumped approximate physics-based modeling relations

employed in optimization methods such as MINLP (Mixed Integer

Non-Linear Programming) may serve as surrogate models.81 Life cycle

models, different libraries, or computational packages such as the

MATLAB optimization toolbox can be very useful for solving these

optimization problems and developing these models. Surrogate

models are implementable using other computationally less demand-

ing but more approximate probability combination techniques, such as

variance combination as utilized by Ghosh.82

Other methods involve the combination of various tools. For

example, a study combining process simulation and the Ecoinvent LCI

database is the work of Calvo-Serrano and Guillén-Gosálbez.83 The

work focuses on the uncertainty characterization of life cycle invento-

ries of chemicals used in the chemical industry, which are limited both

in terms of chemicals included and data quality. This is a relevant

problem due to the economic and environmental relevance of the

chemical sector, in which a significant improvement in environmental
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performance is required. The authors developed a process network of

the petrochemical sector, from which they obtained the information

required to obtain the inventory data. By defining plausible scenarios

and the statistical distributions of relevant inventory parameters, the

authors could evaluate the uncertainty of producing a select set of

chemicals.

4 | BLOCKCHAIN TECHNOLOGY TO
REDUCE LCI UNCERTAINTY

Blockchain technology has the potential to decrease the

uncertainty that arises from data collection. The availability of reliable

supply chain data is fundamental to achieving high-quality LCA

results. However, globalization and market expansion create supply

chain inventory challenges due to the increasingly complex

manufacturing of goods and product portfolios. Both data availability

and uncertainty are associated with product origins, processing, and

transportation, with traceability and data management systems

remaining the main challenges. Blockchain technology is able to pro-

cess data in real time and ensure traceability and transparency at dif-

ferent phases of the LCA framework, that is, inventory analysis and

associated impact assessment.84

Nevertheless, implementing sensors and devices that generate

a considerable amount of data in real time can enable this emerging

technology for LCA. Moreover, blockchain technology can be deci-

sive in creating a proper chain of custody for aggregated materials

and energy, for which evidence exists of who generated the data

and how the data was transferred through the various supply

chains or life cycle parts maintained in a decentralized, secure digi-

tal system. This may provide the metadata necessary as evidence

for a critical review of the data or the LCA study12 and ensure that

the information given by digital environmental labels, such as under

development and implementation of the European Union Digital

Product Passports.85

Blockchain technology is increasingly recognized as a viable solu-

tion for creating and developing efficient information exchange and

traceability systems that can record reliable and up-to-date data

across supply chains.86 There are many benefits to using blockchain in

LCA. It enables real-time data acquisition and processing, ensuring its

traceability and transparency and promoting a more objective study.

Additionally, it offers the potential to protect sensitive data, particu-

larly intellectual property or business secrets, if necessary.

Even with the potential advantages of using blockchain technol-

ogy in LCA practice, currently blockchain has not been widely

adopted.84,87,88 No specific standards or guidelines exist for imple-

menting blockchain technology in the LCA domain.89,90 Such stan-

dards and guidelines are essential to ensure the interoperability of

blockchain systems between different LCA software and data sys-

tems. There are issues regarding how to collect data and the integra-

tion of blockchain with existing company information systems and

across supply chains, in which there can exist a significant heteroge-

neity between the various parts, in particular, the different levels of

operational digitalization between companies, even in the same

sector.

Data availability is also a concern, not just in terms of obtaining

the data, but also in ensuring its quality, representativeness, and suit-

ability for the specific aims and nature of the intended application of

the LCA study, as discussed by D'Eusanio and Petti in relation to

social LCA.91 Existing data quality frameworks, such as the one pro-

posed by Henriksen et al., can be relevant in this regard.22 Moreover,

questions of intellectual property and/or business secrets may hinder

the sharing of data, as blockchain is a transparent technology. To

counter those issues, the possibility of data anonymization and/or

smart contracts between different stakeholders of the supply chain

may minimize the effect of the need for data protection.92,93 Also,

depending on the complexity of the product and the associated sup-

ply chain questions, the amount of data generated may be significant,

and proper data management may be complex and expensive (even

though it may create opportunities to extract knowledge from the

data gathered).

Other questions concern the lack of incentives at the organiza-

tional level, mainly due to the novelty of blockchain technology, the

lack of people with adequate expertise, and the potential costs

involved, which can be significant for small-size companies. There is

also a lack of incentives, guidelines, and regulations to frame and

assist companies and other stakeholders in the implementation of

blockchain and similar technologies in practice, an issue that may be

very relevant, for example, in the development of Digital Product

Passports in the European Union. Also, depending on how the block-

chain technology is implemented, the significant environmental

impacts may be substantial due to the energy-intensive nature of the

technology. Hence, special care must be taken into account in

the implementation of blockchain into the LCA framework, particu-

larly the nature of the data being transferred and the various parts of

the supply chain.94,95

Despite the current limitations, a few studies have explored the

application of blockchain in LCA. For example, Lin et al.92 proposed a

blockchain-based LCA in which the blockchain technology is adapted

to obtain inventory data from suppliers and other upstream supply

chain partners, showing that the accuracy and automatic data update

can be improved. Teh et al.96 analyzed how blockchain can be com-

bined with LCA to support the definition and adjustment of company

strategies to promote their contribution to sustainable development,

particularly to reach their goals regarding a more sustainable and envi-

ronmentally friendly performance. Carrières et al. assessed the value

of using blockchain for LCA studies of textile products, focusing on

the potential for data traceability.97 The results showed that using

data traceability can significantly improve data quality, in particular by

providing specific data to allow a more representative assessment.

5 | COMPUTATIONAL IMPLEMENTATION

A proper computational implementation may significantly reduce the

resources and the time needed to perform an uncertainty analysis in
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an LCA study, increasing the size and complexity of the studies that

can be done in practice. Moreover, it may allow a more accessible and

straightforward automatization of LCA inventory analysis and/or cal-

culations.98 Most methods reviewed in this study handle uncertainty

characterization in a standalone procedure (i.e., not part of LCI model-

ing). The implementation of these methods is not within the common

LCA software (e.g., openLCA, SimaPro, and Gabi) yet, indicating a

challenge for the wide adoption of these new methods by the LCA

community. On the other hand, several of these methods are imple-

mented mostly using the Python programming language, which shows

their potential to be integrated with the LCA models. For example,

Jolivet et al.99 have developed and implemented a package to perform

uncertainty analysis in the Brightway framework,100 a Python-based,

open-source LCA software package.74 The package implements the

MC simulation method using symbolic calculus to simplify the defini-

tion of parametric inventories and to accelerate the calculations

required for the uncertainty analysis. The package includes post-

application capabilities, particularly a factor contribution analysis used

to generate simplified arithmetic models that can make a fast estimate

of environmental impacts for the process system. Cucurachi et al.70

have implemented their methodology in both the Activity

Browser71,72 and the Brightway framework.74

Despite the relevance of the new open-source packages, their utiliza-

tion may be more complex than existing commercial software, as they

require specific programming skills to be properly used. Moreover, the lack

of manuals and/or case studies limits their utilization, making it harder and

time-consuming to use. However, changing the code opens the possibility

of using other methodologies in uncertainty analysis, including data sci-

ence,machine learning, and artificial intelligencemethods.

Another interesting future evolution that requires improvements in

computational implementation is LCA automation, either standalone or

combined with other software, in particular internal information sys-

tems of companies. The increase in the integration and networking

between internal and external companies makes it possible to perform

LCA calculations almost in real time by incorporating them into the

information system of the organization. For example, it is now possible

to combine process data obtained from sensors with data from sup-

pliers or life cycle inventory databases, allowing the real-time calcula-

tion of the environmental impacts of products and processes, the

immediate identification of the system aspects that need to be

improved, and primary sources of variability and/or uncertainty.101–104

This is also relevant for environmental reporting, either in a business-

to-business or at a company level, fulfilling the future requirements of

non-financial reporting and disclosure, for example, the European

Union Directive on Corporate Sustainability Reporting.105

6 | SUMMARY AND RECOMMENDATIONS

Uncertainty is a significant factor in LCA. A major source of uncertainty

in LCA is the life cycle inventory data. This study reviewed common

uncertainty methods and recent methodological developments in

uncertainty analysis for LCI modeling. Practitioners are urged to

adequately describe input uncertainty and not calculate excessively

precise output uncertainty. For quantifying the uncertainty associated

with input data, efforts have been focused on improving the pedigree

matrix method, non-probabilistic methods, GSA, interval analysis com-

bined with MC simulation, machine learning, and scenario analysis.

With respect to reducing the uncertainty associated with input data,

blockchain can provide high-resolution inventory data (e.g., temporal,

spatial). Some of the above-mentioned methods can be implemented

using commercial (e.g., SimaPro, Gabi) and open-access software

(e.g., OpenLCA, ActivityBrowser). Those applications often involve

manually modifying the configuration of the software platform. Other

implementations, although typically having the advantages of automa-

tion and higher flexibility in investigating different sources of uncer-

tainty, need to be implemented as code scripts, which require LCA

practitioners to possess a certain level of programming skills. Finally,

potential areas that require further development include integrating

blockchain technology with inventory modeling, standardizing uncer-

tainty analysis methodologies, developing user-friendly software plat-

forms, and integrating multiple uncertainty analysis approaches. These

developments can enhance the reliability and credibility of LCA results

and promote their wider adoption in decision-making processes.

ACKNOWLEDGMENTS

This work was authored in part by the National Renewable Energy Lab-

oratory, operated by Alliance for Sustainable Energy, LLC, for the

U.S. Department of Energy (DOE) under contract no. DE-

AC36-08GO28308. Qingshi Tu was partially supported by the Natural

Sciences and Engineering Research Council of Canada (NSERC)

(RGPIN-2021-02841). Antonio Martins gratefully acknowledges the

Portuguese national funding agency for science, research, and technol-

ogy (FCT) for funding through program DL 57/2016–Norma transitória.

DATA AVAILABILITY STATEMENT

Data sharing not applicable to this article as no datasets were gener-

ated or analysed during the current study.

DISCLAIMER

The views expressed in this article are those of the authors and do

not necessarily represent the views or policies of the

U.S. Environmental Protection Agency, the U.S. Department of

Energy, or the U.S. Government. The U.S. Government retains and the

publisher, by accepting the article for publication, acknowledges that

the U.S. Government retains a nonexclusive, paid-up, irrevocable,

worldwide license to publish or reproduce the published form of this

work, or allow others to do so, for U.S. Government purposes.

ORCID

Eric C. D. Tan https://orcid.org/0000-0002-9110-2410

Raymond L. Smith https://orcid.org/0000-0002-5885-0687

REFERENCES

1. ISO 14040:2006. Environmental management—life cycle assessment—
principles and framework. 2006.

8 of 11 TAN ET AL.

 19447450, 0, D
ow

nloaded from
 https://aiche.onlinelibrary.w

iley.com
/doi/10.1002/ep.14644, W

iley O
nline L

ibrary on [13/05/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://orcid.org/0000-0002-9110-2410
https://orcid.org/0000-0002-9110-2410
https://orcid.org/0000-0002-5885-0687
https://orcid.org/0000-0002-5885-0687


2. ISO 14044:2006. Environmental management—life cycle assessment—
requirements and guidelines. 2006.

3. ISO 14071:2014. Environmental management—life cycle assessment—
critical review processes and reviewer competencies: additional

requirements and guidelines to ISO 14044:2006. 2014.

4. ISO 14064-1:2018. Part 1: Specification with guidance at the organi-

zation level for quantification and reporting of greenhouse gas emis-

sions and removals. 2018.

5. ISO 14067:2018. Greenhouse gases—carbon footprint of products—
requirements and guidelines for quantification. 2018.

6. Igos E, Benetto E, Meyer R, Baustert P, Othoniel B. How to treat

uncertainties in life cycle assessment studies? Int J Life Cycle Assess.

2019;24(4):794-807. doi:10.1007/s11367-018-1477-1

7. Cherubini E, Franco D, Zanghelini GM, Soares SR. Uncertainty in

LCA case study due to allocation approaches and life cycle impact

assessment methods. Int J Life Cycle Assess. 2018;23(10):2055-2070.

doi:10.1007/s11367-017-1432-6

8. Qin Y, Cucurachi S, Suh S. Perceived uncertainties of characteriza-

tion in LCA: a survey. Int J Life Cycle Assess. 2020;25(9):1846-1858.

doi:10.1007/s11367-020-01787-9

9. Mba Wright M, Tan ECD, Tu Q, et al. Life cycle inventory availability:

status and prospects for leveraging new technologies. ACS Sustain-

able Chem Eng. 2024;12(34):12708-12718. doi:10.1021/

acssuschemeng.4c02519

10. Bamber N, Turner I, Arulnathan V, et al. Comparing sources and

analysis of uncertainty in consequential and attributional life cycle

assessment: review of current practice and recommendations. Int J

Life Cycle Assess. 2020;25(1):168-180. doi:10.1007/s11367-019-

01663-1

11. Takkellapati S, Gonzalez MA. Application of read-across methods as

a framework for the estimation of emissions from chemical pro-

cesses. Clean Technol Recycl. 2023;3(4):283-300. doi:10.3934/ctr.

2023018

12. Barahmand Z, Eikeland MS. Life cycle assessment under uncertainty:

a scoping review. World. 2022;3(3):692-717. doi:10.3390/

world3030039

13. Lloyd SM, Ries R. Characterizing, propagating, and analyzing uncer-

tainty in life-cycle assessment: a survey of quantitative approaches.

J Ind Ecol. 2007;11(1):161-179. doi:10.1162/jiec.2007.1136

14. EU-JRC. International Reference Life Cycle Data System (ILCD)

Handbook: General Guide for Life Cycle Assessment—Detailed

Guidance. 2010.

15. Weidema BP, Wesnæs MS. Data quality Management for life cycle

inventories—an example of using data quality indicators. J Clean

Prod. 1996;4(3):167-174. doi:10.1016/S0959-6526(96)00043-1

16. Edelen A, Ingwersen WW. The creation, management, and use of

data quality information for life cycle assessment. Int J Life Cycle

Assess. 2018;23(4):759-772. doi:10.1007/s11367-017-1348-1

17. Ciroth A, Muller S, Weidema B, Lesage P. Empirically based uncer-

tainty factors for the pedigree matrix in ecoinvent. Int J Life Cycle

Assess. 2016;21(9):1338-1348. doi:10.1007/s11367-013-0670-5

18. Tan ECD. Sustainability Benefits of Valorizing Associated Flare Gas for

The Production of Transportation Fuels. Harvard University; 2022.

19. Henriksen T, Astrup TF, Damgaard A. Linking data choices and con-

text specificity in life cycle assessment of waste treatment technolo-

gies: a landfill case study. J Ind Ecol. 2018;22(5):1039-1049. doi:10.

1111/jiec.12709

20. Laner D, Feketitsch J, Rechberger H, Fellner J. A novel approach to

characterize data uncertainty in material flow analysis and its appli-

cation to plastics flows in Austria. J Ind Ecol. 2016;20(5):1050-1063.

doi:10.1111/jiec.12326

21. Langkau S, Steubing B, Mutel C, et al. A stepwise approach for

scenario-based inventory modelling for prospective LCA (SIMPL). Int

J Life Cycle Assess. 2023;28(9):1169-1193. doi:10.1007/s11367-

023-02175-9

22. Henriksen T, Astrup TF, Damgaard A. Data representativeness in

LCA: a framework for the systematic assessment of data quality rela-

tive to technology characteristics. J Ind Ecol. 2021;25(1):51-66. doi:

10.1111/jiec.13048

23. Heijungs R. On the number of Monte Carlo runs in comparative

probabilistic LCA. Int J Life Cycle Assess. 2020;25(2):394-402. doi:10.

1007/s11367-019-01698-4

24. PRé Consultants. SimaPro. Accessed March 5, 2025. 2019 https://

simapro.com/

25. Pia, M. G.; Begalli, M.; Lechner, A.; Quintieri, L.; Saracco, P.Epistemic

and systematic uncertainties in Monte Carlo simulation: an investi-

gation in proton Bragg peak simulation. arXiv 2010.10.48550/

ARXIV.1012.3329.

26. Saab F. ParallelLCA: a foreground aware parallel calculator for life cycle

assessment. masters. �Ecole de Technologie Supérieure; 2019.

27. Heijungs R, Suh S. The Computational Structure of Life Cycle Assess-

ment. Springer Science & Business Media; 2002.

28. Pomponi F, D'Amico B, Moncaster AM. A method to facilitate uncer-

tainty analysis in LCAs of buildings. Energies. 2017;10(4):524. doi:10.

3390/en10040524

29. Ross SA, Cheah L. Uncertainty quantification in life cycle assess-

ments: exploring distribution choice and greater data granularity to

characterize product use. J Ind Ecol. 2019;23(2):335-346. doi:10.

1111/jiec.12742

30. Weidema BP, Cappellaro F, Carlson R, et al. Procedural guideline for

collection, treatment, and quality documentation of LCA Data.

Accessed March 5, 2025. 2004 https://lca-net.com/files/V2004_

ProceduralLCA.pdf

31. Heijungs R, Frischknecht R. Representing statistical distributions for

uncertain parameters in LCA. Relationships between mathematical

forms, their representation in EcoSpold, and their representation in

CMLCA (7 pp). Int J Life Cycle Assess. 2005;10(4):248-254. doi:10.

1065/lca2004.09.177

32. Krause P, Clark D. Representing Uncertain Knowledge: an Artificial

Intelligence Approach. Springer Science & Business Media; 2012.

33. Tan RR, Culaba AB, Purvis MRI. Application of possibility theory in

the life-cycle inventory assessment of biofuels. Int J Energy Res.

2002;26(8):737-745. doi:10.1002/er.812

34. Tan RR, Culaba AB, Purvis MRI. POLCAGE 1.0—a possibilistic life-

cycle assessment model for evaluating alternative transportation

fuels. Environ Model Softw. 2004;19(10):907-918. doi:10.1016/j.

envsoft.2003.10.004

35. Sadiq R, Khan FI. An integrated approach for risk-based life

cycle assessment and multi-criteria decision-making: selection,

design and evaluation of cleaner and greener processes. Bus

Process Manag J. 2006;12(6):770-792. doi:10.1108/

14637150610710927

36. Benetto E, Dujet C, Rousseaux P. Fuzzy-sets approach to noise

impact assessment (7 pp). Int J Life Cycle Assess. 2006;11(4):222-

228. doi:10.1065/lca2005.06.213

37. Benetto E, Dujet C, Rousseaux P. Integrating fuzzy multicriteria anal-

ysis and uncertainty evaluation in life cycle assessment. Environ

Model Softw. 2008;23(12):1461-1467. doi:10.1016/j.envsoft.2008.

04.008

38. André JCS, Lopes DR. On the use of possibility theory in uncertainty

analysis of life cycle inventory. Int J Life Cycle Assess. 2012;17(3):

350-361. doi:10.1007/s11367-011-0364-9

39. Heijungs R, Tan RR. Rigorous proof of fuzzy error propagation with

matrix-based LCI. Int J Life Cycle Assess. 2010;15(9):1014-1019. doi:

10.1007/s11367-010-0229-7

40. Clavreul J, Guyonnet D, Tonini D, Christensen TH. Stochastic and

epistemic uncertainty propagation in LCA. Int J Life Cycle Assess.

2013;18(7):1393-1403. doi:10.1007/s11367-013-0572-6

41. Tan RR, Culaba AB, Purvis MRI. Possibilistic uncertainty propagation

and compromise programming in the life cycle analysis of alternative

TAN ET AL. 9 of 11

 19447450, 0, D
ow

nloaded from
 https://aiche.onlinelibrary.w

iley.com
/doi/10.1002/ep.14644, W

iley O
nline L

ibrary on [13/05/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

info:doi/10.1007/s11367-018-1477-1
info:doi/10.1007/s11367-017-1432-6
info:doi/10.1007/s11367-020-01787-9
info:doi/10.1021/acssuschemeng.4c02519
info:doi/10.1021/acssuschemeng.4c02519
info:doi/10.1007/s11367-019-01663-1
info:doi/10.1007/s11367-019-01663-1
info:doi/10.3934/ctr.2023018
info:doi/10.3934/ctr.2023018
info:doi/10.3390/world3030039
info:doi/10.3390/world3030039
info:doi/10.1162/jiec.2007.1136
info:doi/10.1016/S0959-6526(96)00043-1
info:doi/10.1007/s11367-017-1348-1
info:doi/10.1007/s11367-013-0670-5
info:doi/10.1111/jiec.12709
info:doi/10.1111/jiec.12709
info:doi/10.1111/jiec.12326
info:doi/10.1007/s11367-023-02175-9
info:doi/10.1007/s11367-023-02175-9
info:doi/10.1111/jiec.13048
info:doi/10.1007/s11367-019-01698-4
info:doi/10.1007/s11367-019-01698-4
https://simapro.com/
https://simapro.com/
info:doi/10.48550/ARXIV.1012.3329
info:doi/10.48550/ARXIV.1012.3329
info:doi/10.3390/en10040524
info:doi/10.3390/en10040524
info:doi/10.1111/jiec.12742
info:doi/10.1111/jiec.12742
https://lca-net.com/files/V2004_ProceduralLCA.pdf
https://lca-net.com/files/V2004_ProceduralLCA.pdf
info:doi/10.1065/lca2004.09.177
info:doi/10.1065/lca2004.09.177
info:doi/10.1002/er.812
info:doi/10.1016/j.envsoft.2003.10.004
info:doi/10.1016/j.envsoft.2003.10.004
info:doi/10.1108/14637150610710927
info:doi/10.1108/14637150610710927
info:doi/10.1065/lca2005.06.213
info:doi/10.1016/j.envsoft.2008.04.008
info:doi/10.1016/j.envsoft.2008.04.008
info:doi/10.1007/s11367-011-0364-9
info:doi/10.1007/s11367-010-0229-7
info:doi/10.1007/s11367-013-0572-6


motor vehicle fuels. J Adv Comput Intell Intell Inform. 2004;8(1):23-

28. doi:10.20965/jaciii.2004.p0023

42. Meng Q, Li F, Zhou L, Li J, Ji Q, Yang X. A rapid life cycle assessment

method based on green features in supporting conceptual design. Int

J Precis Eng Manuf-Green Tech. 2015;2(2):189-196. doi:10.1007/

s40684-015-0023-x

43. Li C, Wang N, Zhang H, et al. Environmental impact evaluation of

distributed renewable energy system based on life cycle assessment

and fuzzy rough sets. Energies. 2019;12(21):4214. doi:10.3390/

en12214214

44. Reza B, Sadiq R, Hewage K. A fuzzy-based approach for characteri-

zation of uncertainties in Emergy synthesis: an example of paved

road system. J Clean Prod. 2013;59:99-110. doi:10.1016/j.jclepro.

2013.06.061

45. Tan RR. Using fuzzy numbers to propagate uncertainty in matrix-

based LCI. Int J Life Cycle Assess. 2008;13(7):585-592. doi:10.1007/

s11367-008-0032-x

46. O'Hagan A. Expert knowledge elicitation: subjective but scientific.

Am Stat. 2019;73(sup1):69-81. doi:10.1080/00031305.2018.

1518265

47. Gavankar S, Suh S. Fusion of conflicting information for improving

representativeness of data used in LCAs. Int J Life Cycle Assess.

2014;19(3):480-490. doi:10.1007/s11367-013-0673-2

48. Mahmood A, Varabuntoonvit V, Mungkalasiri J, Silalertruksa T,

Gheewala SH. A tier-wise method for evaluating uncertainty in life

cycle assessment. Sustainability. 2022;14(20):13400. doi:10.3390/

su142013400

49. Groen EA, Heijungs R, Bokkers EAM, de Boer IJM. Methods for

uncertainty propagation in life cycle assessment. Environ Model

Softw. 2014;62:316-325. doi:10.1016/j.envsoft.2014.10.006

50. Peters GP. Efficient algorithms for life cycle assessment, input-

output analysis, and Monte-Carlo analysis. Int J Life Cycle Assess.

2007;12(6):373-380. doi:10.1065/lca2006.06.254

51. Qin Y, Suh S. What distribution function do life cycle inventories fol-

low? Int J Life Cycle Assess. 2017;22(7):1138-1145. doi:10.1007/

s11367-016-1224-4

52. Frischknecht R, Jungbluth N, Althaus H-J, et al. Implementation of

Life Cycle Impact Assessment Methods. Data v2.0 (2007). Ecoinvent

Report No. 3; INIS-CH--10091; Ecoinvent Centre, 2007. Accessed

July 10, 2021. http://inis.iaea.org/Search/search.aspx?orig_q=RN:

41028089

53. Qin Y, Suh S. Does the use of pre-calculated uncertainty values

change the conclusions of comparative life cycle assessments?—an

empirical analysis. PLoS One. 2018;13(12):e0209474. doi:10.1371/

journal.pone.0209474

54. Lesage P, Mutel C, Schenker U, Margni M. Uncertainty analysis in

LCA using precalculated aggregated datasets. Int J Life Cycle Assess.

2018;23(11):2248-2265. doi:10.1007/s11367-018-1444-x

55. Murphy KP. Machine Learning: A Probabilistic Perspective. MIT Press;

2012.

56. Diwekar UM, Ulas S. Sampling Techniques. Kirk-Othmer Encyclopedia

of Chemical Technology. John Wiley & Sons, Ltd; 2007. doi:10.1002/

0471238961.sampdiwe.a01

57. Gilks WR, Richardson S, Spiegelhalter D. Markov Chain Monte Carlo

in Practice. CRC Press; 1995.

58. Hassan AE, Bekhit HM, Chapman JB. Using Markov chain Monte

Carlo to quantify parameter uncertainty and its effect on predictions

of a groundwater flow model. Environ Model Softw. 2009;24(6):749-

763. doi:10.1016/j.envsoft.2008.11.002

59. Tilmann FJ, Sadeghisorkhani H, Mauerberger A. Another look at the

treatment of data uncertainty in Markov chain Monte Carlo inver-

sion and other probabilistic methods. Geophys J Int. 2020;222(1):

388-405. doi:10.1093/gji/ggaa168

60. López-Gonzales JL, Castro Souza R, da Leite Coelho Silva F, Carbo-

Bustinza N, Ibacache-Pulgar G, Calili RF. Simulation of the energy

efficiency auction prices via the Markov chain Monte Carlo method.

Energies. 2020;13(17):4544. doi:10.3390/en13174544

61. Jin Y. Estimating life cycle emissions in managing practical sewer

pipeline projects. J Environ Manag. 2019;231:605-611. doi:10.1016/

j.jenvman.2018.10.055

62. Vázquez-Rowe I, Marvuglia A, Flammang K, Braun C, Leopold U,

Benetto E. The use of temporal dynamics for the automatic calcula-

tion of land use impacts in LCA using R programming environment.

Int J Life Cycle Assess. 2014;19(3):500-516. doi:10.1007/s11367-

013-0669-y

63. Paras MK, Pal R. Application of Markov chain for LCA: a study on

the clothes ‘reuse’ in Nordic countries. Int J Adv Manuf Technol.

2018;94(1):191-201. doi:10.1007/s00170-017-0845-5

64. Tian X, Xie J, Xu M, Wang Y, Liu Y. An infinite life cycle assessment

model to re-evaluate resource efficiency and environmental impacts

of circular economy systems. Waste Manag. 2022;145:72-82. doi:

10.1016/j.wasman.2022.04.035

65. Yue W, Yu S, Su M, et al. Gaseous reactive nitrogen losses of agricul-

tural systems in china influenced by crop trade. Environ Res Lett.

2022;17(10):104040. doi:10.1088/1748-9326/ac9424

66. Cucurachi S, Borgonovo E, Heijungs R. A protocol for the

global sensitivity analysis of impact assessment models in life

cycle assessment. Risk Anal. 2016;36(2):357-377. doi:10.1111/

risa.12443

67. Lacirignola M, Blanc P, Girard R, Pérez-López P, Blanc I. LCA of

emerging technologies: addressing high uncertainty on inputs' vari-

ability when performing global sensitivity analysis. Sci Total Environ.

2017;578:268-280. doi:10.1016/j.scitotenv.2016.10.066

68. Lo Piano S, Benini L. A critical perspective on uncertainty appraisal

and sensitivity analysis in life cycle assessment. J Ind Ecol. 2022;

26(3):763-781. doi:10.1111/jiec.13237

69. Saltelli A, Ratto M, Andres T, et al. Global Sensitivity Analysis: The

Primer. John Wiley & Sons; 2008.

70. Cucurachi S, Blanco CF, Steubing B, Heijungs R. Implementation of

uncertainty analysis and moment-independent global sensitivity

analysis for full-scale life cycle assessment models. J Ind Ecol. 2022;

26(2):374-391. doi:10.1111/jiec.13194

71. GitHub. LCA-ActivityBrowser. Accessed June 18. 2024 https://

github.com/LCA-ActivityBrowser

72. Mutel C. Brightway: an open source framework for life cycle assess-

ment. J Open Source Softw. 2017;2(12):236. doi:10.21105/joss.00236

73. Steubing B, de Koning D, Haas A, Mutel CL. The activity browser—
an open source LCA software building on top of the Brightway

framework. Software Impacts. 2020;3:100012. doi:10.1016/j.simpa.

2019.100012

74. Brightway LCA. Software Framework—Brightway documentation.

Accessed 18 June. 2024 https://docs.brightway.dev/en/latest/

75. Algren M, Fisher W, Landis AE. Machine learning in life cycle assess-

ment. In: Dunn J, Balaprakash P, eds. Data Science Applied to Sustain-

ability Analysis. Elsevier; 2021:167-190. doi:10.1016/B978-0-12-

817976-5.00009-7

76. Ghoroghi A, Rezgui Y, Petri I, Beach T. Advances in application of

machine learning to life cycle assessment: a literature review. Int J Life

Cycle Assess. 2022;27(3):433-456. doi:10.1007/s11367-022-02030-3

77. Dai T, Jordaan SM, Wemhoff AP. Gaussian process regression as a

replicable, streamlined approach to inventory and uncertainty analy-

sis in life cycle assessment. Environ Sci Technol. 2022;56(6):3821-

3829. doi:10.1021/acs.est.1c04252

78. Huntington T, Baral NR, Yang M, Sundstrom E, Scown CD. Machine

learning for surrogate process models of bioproduction pathways.

Bioresources Technol. 2023;370:128528. doi:10.1016/j.biortech.

2022.128528

79. Cheng K, Lu Z, Ling C, Zhou S. Surrogate-assisted global sensitivity

analysis: an overview. Struct Multidiscip Optim. 2020;61(3):1187-

1213. doi:10.1007/s00158-019-02413-5

10 of 11 TAN ET AL.

 19447450, 0, D
ow

nloaded from
 https://aiche.onlinelibrary.w

iley.com
/doi/10.1002/ep.14644, W

iley O
nline L

ibrary on [13/05/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

info:doi/10.20965/jaciii.2004.p0023
info:doi/10.1007/s40684-015-0023-x
info:doi/10.1007/s40684-015-0023-x
info:doi/10.3390/en12214214
info:doi/10.3390/en12214214
info:doi/10.1016/j.jclepro.2013.06.061
info:doi/10.1016/j.jclepro.2013.06.061
info:doi/10.1007/s11367-008-0032-x
info:doi/10.1007/s11367-008-0032-x
info:doi/10.1080/00031305.2018.1518265
info:doi/10.1080/00031305.2018.1518265
info:doi/10.1007/s11367-013-0673-2
info:doi/10.3390/su142013400
info:doi/10.3390/su142013400
info:doi/10.1016/j.envsoft.2014.10.006
info:doi/10.1065/lca2006.06.254
info:doi/10.1007/s11367-016-1224-4
info:doi/10.1007/s11367-016-1224-4
http://inis.iaea.org/Search/search.aspx?orig_q=RN:41028089
http://inis.iaea.org/Search/search.aspx?orig_q=RN:41028089
info:doi/10.1371/journal.pone.0209474
info:doi/10.1371/journal.pone.0209474
info:doi/10.1007/s11367-018-1444-x
info:doi/10.1002/0471238961.sampdiwe.a01
info:doi/10.1002/0471238961.sampdiwe.a01
info:doi/10.1016/j.envsoft.2008.11.002
info:doi/10.1093/gji/ggaa168
info:doi/10.3390/en13174544
info:doi/10.1016/j.jenvman.2018.10.055
info:doi/10.1016/j.jenvman.2018.10.055
info:doi/10.1007/s11367-013-0669-y
info:doi/10.1007/s11367-013-0669-y
info:doi/10.1007/s00170-017-0845-5
info:doi/10.1016/j.wasman.2022.04.035
info:doi/10.1088/1748-9326/ac9424
info:doi/10.1111/risa.12443
info:doi/10.1111/risa.12443
info:doi/10.1016/j.scitotenv.2016.10.066
info:doi/10.1111/jiec.13237
info:doi/10.1111/jiec.13194
https://github.com/LCA-ActivityBrowser
https://github.com/LCA-ActivityBrowser
info:doi/10.21105/joss.00236
info:doi/10.1016/j.simpa.2019.100012
info:doi/10.1016/j.simpa.2019.100012
https://docs.brightway.dev/en/latest/
info:doi/10.1016/B978-0-12-817976-5.00009-7
info:doi/10.1016/B978-0-12-817976-5.00009-7
info:doi/10.1007/s11367-022-02030-3
info:doi/10.1021/acs.est.1c04252
info:doi/10.1016/j.biortech.2022.128528
info:doi/10.1016/j.biortech.2022.128528
info:doi/10.1007/s00158-019-02413-5


80. Schmidt M, Lipson H. Distilling free-form natural Laws from experimen-

tal data. Science. 2009;324(5923):81-85. doi:10.1126/science.1165893

81. Guillén-Gosálbez G, Grossmann I. A global optimization strategy for

the environmentally conscious Design of Chemical Supply Chains

under uncertainty in the damage assessment model. Comput Chem

Eng. 2010;34(1):42-58. doi:10.1016/j.compchemeng.2009.09.003

82. Ghosh T, Bakshi BR. Designing hybrid life cycle assessment models

based on uncertainty and complexity. Int J Life Cycle Assess. 2020;

25(11):2290-2308. doi:10.1007/s11367-020-01826-5

83. Calvo-Serrano R, Guillén-Gosálbez G. Streamlined life cycle assess-

ment under uncertainty integrating a network of the petrochemical

industry and optimization techniques: Ecoinvent vs mathematical

modeling. ACS Sustainable Chem Eng. 2018;6(5):7109-7118. doi:10.

1021/acssuschemeng.8b01050

84. Karaszewski R, Modrzyński P, Müldür GT, Wójcik J. Blockchain tech-

nology in life cycle assessment—new research trends. Energies.

2021;14(24):8292. doi:10.3390/en14248292

85. Dossett J. What is a digital product passport and how does it affect

me?Accessed June 18. 2024 https://www.impinj.com/library/blog/

what-is-a-digital-product-passport

86. Carrières V, Lemieux A-A, Pellerin R. Opportunities of blockchain

traceability data for environmental impact assessment in a context

of sustainable production. In: Dolgui A, Bernard A, Lemoine D, von

Cieminski G, Romero D, eds. Advances in Production Management

Systems. Artificial Intelligence for Sustainable and Resilient Production

Systems. Springer International Publishing; 2021:124-133. doi:10.

1007/978-3-030-85874-2_13

87. Farooque M, Jain V, Zhang A, Li Z. Fuzzy DEMATEL analysis of bar-

riers to blockchain-based life cycle assessment in China. Comput Ind

Eng. 2020;147:106684. doi:10.1016/j.cie.2020.106684

88. Zhang A, Zhong RY, Farooque M, Kang K, Venkatesh VG. Block-

chain-based life cycle assessment: an implementation framework

and system architecture. Resour Conserv Recycl. 2020;152:104512.

doi:10.1016/j.resconrec.2019.104512

89. Digital Watch Observatory. Guidelines for blockchain adoption.

Accessed March 05. 2025 https://dig.watch/resource/guidelines-

for-blockchain-adoption-saudi-arabia

90. European Commission. Ethical guidelines for blockchain systems.

Accessed March 05. 2025 https://blockchain-observatory.ec.

europa.eu/news/ethical-guidelines-blockchain-systems-2024-05-

15_en

91. D'Eusanio M, Petti L. Blockchain technology and social life cycle

assessment: synergies and implications. Int J Life Cycle. 2024.

https://doi.org/10.1007/s11367-024-02338-2

92. Lin X, Li X, Kulkarni S, Zhao F. The application of blockchain-based

life cycle assessment on an industrial supply chain. Sustainability.

2021;13(23):13332. doi:10.3390/su132313332

93. Zhang L, Fröhling M. Integration of blockchain and life cycle assess-

ment: a systematic literature review. Int J Life Cycle Assess. 2025;

30(1):1-19. doi:10.1007/s11367-024-02371-1

94. Sedlmeir J, Buhl HU, Fridgen G, Keller R. The energy consumption of

blockchain technology: beyond myth. Bus Inf Syst Eng. 2020;62(6):

599-608. doi:10.1007/s12599-020-00656-x

95. Mulligan C, Morsfield S, Cheikosman E. Blockchain for sustainability:

a systematic literature review for policy impact. Telecommun Policy.

2024;48(2):102676. doi:10.1016/j.telpol.2023.102676

96. Teh D, Khan T, Corbitt B, Ong CE. Sustainability strategy and

blockchain-enabled life cycle assessment: a focus on materials indus-

try. Environ Syst Decis. 2020;40(4):605-622. doi:10.1007/s10669-

020-09761-4

97. Carrières V, Lemieux A-A, Margni M, Pellerin R, Cariou S. Mea-

suring the value of blockchain traceability in supporting LCA

for textile products. Sustainability. 2022;14(4):2109. doi:10.3390/

su14042109

98. Köck B, Friedl A, Serna Loaiza S, Wukovits W, Mihalyi-Schneider B.

Automation of life cycle assessment—a critical review of develop-

ments in the field of life cycle inventory analysis. Sustainability.

2023;15(6):5531. doi:10.3390/su15065531

99. Jolivet R, Clavreul J, Brière R, et al. LCA_algebraic: a library bringing

symbolic calculus to LCA for comprehensive sensitivity analysis. Int J

Life Cycle Assess. 2021;26(12):2457-2471. doi:10.1007/s11367-

021-01993-z

100. GitHub. Oie-Mines-Paristech/Lca_algebraic. Accessed June 18, 2024.

2024 https://github.com/oie-mines-paristech/lca_algebraic

101. Ingrao C, Evola RS, Cantore P, et al. The contribution of sensor-

based equipment to life cycle assessment through improvement of

data collection in the industry. Environ Impact Assess Rev. 2021;88:

106569. doi:10.1016/j.eiar.2021.106569

102. de Oliveira FB, Nordelöf A, Sandén BA, Widerberg A, Tillman A-M.

Exploring automotive supplier data in life cycle assessment—
precision versus workload. Transp Res Part D. 2022;105:103247.

doi:10.1016/j.trd.2022.103247

103. Clements A, Duvall R, Greene D, Dye T. The enhanced air sensor

guidebook. Accessed March 5, 2025. 2022 https://cfpub.epa.gov/

si/si_public_record_report.cfm?Lab=CEMM&dirEntryId=356426

104. Schöggl J-P, Rusch M, Stumpf L, Baumgartner RJ. Implementation of

digital technologies for a circular economy and sustainability man-

agement in the manufacturing sector. Sustainable Prod Consumption.

2023;35:401-420. doi:10.1016/j.spc.2022.11.012

105. Europian Union. Directive (EU) 2022/2464 of the European Parlia-

ment and of the Council of14 December 2022. Amending Regula-

tion (EU) No 537/2014, Directive 2004/109/EC, Directive

2006/43/EC and Directive 2013/34/EU, as Regards Corporate Sus-

tainability Reporting (Text with EEA Relevance). Accessed 18 June,

2024. 2022 http://data.europa.eu/eli/dir/2022/2464/oj/eng

How to cite this article: Tan ECD, Tu Q, Martins AA, Yao Y,

Sunol A, Smith RL. Uncertainty in inventories for life cycle

assessment: State-of-the-art, challenges, and new

technologies. Environ Prog Sustainable Energy. 2025;e14644.

doi:10.1002/ep.14644

TAN ET AL. 11 of 11

 19447450, 0, D
ow

nloaded from
 https://aiche.onlinelibrary.w

iley.com
/doi/10.1002/ep.14644, W

iley O
nline L

ibrary on [13/05/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

info:doi/10.1126/science.1165893
info:doi/10.1016/j.compchemeng.2009.09.003
info:doi/10.1007/s11367-020-01826-5
info:doi/10.1021/acssuschemeng.8b01050
info:doi/10.1021/acssuschemeng.8b01050
info:doi/10.3390/en14248292
https://www.impinj.com/library/blog/what-is-a-digital-product-passport
https://www.impinj.com/library/blog/what-is-a-digital-product-passport
info:doi/10.1007/978-3-030-85874-2_13
info:doi/10.1007/978-3-030-85874-2_13
info:doi/10.1016/j.cie.2020.106684
info:doi/10.1016/j.resconrec.2019.104512
https://dig.watch/resource/guidelines-for-blockchain-adoption-saudi-arabia
https://dig.watch/resource/guidelines-for-blockchain-adoption-saudi-arabia
https://blockchain-observatory.ec.europa.eu/news/ethical-guidelines-blockchain-systems-2024-05-15_en
https://blockchain-observatory.ec.europa.eu/news/ethical-guidelines-blockchain-systems-2024-05-15_en
https://blockchain-observatory.ec.europa.eu/news/ethical-guidelines-blockchain-systems-2024-05-15_en
https://doi.org/10.1007/s11367-024-02338-2
info:doi/10.3390/su132313332
info:doi/10.1007/s11367-024-02371-1
info:doi/10.1007/s12599-020-00656-x
info:doi/10.1016/j.telpol.2023.102676
info:doi/10.1007/s10669-020-09761-4
info:doi/10.1007/s10669-020-09761-4
info:doi/10.3390/su14042109
info:doi/10.3390/su14042109
info:doi/10.3390/su15065531
info:doi/10.1007/s11367-021-01993-z
info:doi/10.1007/s11367-021-01993-z
https://github.com/oie-mines-paristech/lca_algebraic
info:doi/10.1016/j.eiar.2021.106569
info:doi/10.1016/j.trd.2022.103247
https://cfpub.epa.gov/si/si_public_record_report.cfm?Lab=CEMM&dirEntryId=356426
https://cfpub.epa.gov/si/si_public_record_report.cfm?Lab=CEMM&dirEntryId=356426
info:doi/10.1016/j.spc.2022.11.012
http://data.europa.eu/eli/dir/2022/2464/oj/eng
info:doi/10.1002/ep.14644

	Uncertainty in inventories for life cycle assessment: State‐of‐the‐art, challenges, and new technologies
	Abstract
	1  |  INTRODUCTION
	2  |  CURRENT METHODS FOR ASSESSING UNCERTAINTY IN LCA
	2.1  |  Pedigree matrix
	2.2  |  Monte Carlo simulation
	2.3  |  Non‐probabilistic methodologies

	3  |  IMPROVED AND NEW METHODS
	3.1  |  Improving the Monte Carlo simulation method
	3.2  |  Other uncertainty assessment methods

	4  |  BLOCKCHAIN TECHNOLOGY TO REDUCE LCI UNCERTAINTY
	5  |  COMPUTATIONAL IMPLEMENTATION
	6  |  SUMMARY AND RECOMMENDATIONS
	ACKNOWLEDGMENTS
	DATA AVAILABILITY STATEMENT
	DISCLAIMER
	ORCID
	REFERENCES


