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Abstract: Efficient hydrogen storage is critical for advancing hydrogen-based technologies.
This study investigates the effects of pressure and surface area on hydrogen storage in
three carbon-based materials: graphite, graphene oxide, and reduced graphene oxide.
Hydrogen adsorption–desorption experiments under pressures ranging from 1 to 9 bar
revealed nonlinear storage capacity responses, with optimal performance at around 5 bar.
The specific surface area plays a pivotal role, with reduced graphene oxide and exhibiting
a surface area of 70.31 m2/g, outperforming graphene oxide (33.75 m2/g) and graphite
(7.27 m2/g). Reduced graphene oxide achieved the highest hydrogen storage capacity, with
768 sccm and a 3 wt.% increase over the other materials. In assessing proton-exchange
fuel cell performance, this study found that increased hydrogen storage correlates with en-
hanced power density, with reduced graphene oxide reaching a maximum of 0.082 W/cm2,
compared to 0.071 W/cm2 for graphite and 0.017 W/cm2 for graphene oxide. However,
desorption rates impose temporal constraints on fuel cell operation. These findings enhance
our understanding of pressure–surface interactions and underscore the balance between hy-
drogen storage capacity, surface area, and practical performance in carbon-based materials,
offering valuable insights for hydrogen storage and fuel cell applications.

Keywords: hydrogen storage; graphite; GO; rGO; PEM fuel cells; pressure; surface area;
power density; adsorption–desorption

1. Introduction
Hydrogen can be one of the best alternatives to fossil fuels due to its safe, clean,

abundant, non-polluting, and reasonably economical nature. Hydrogen is considered one
of the most promising energy carriers due to its clean combustion and minimal green-
house gas emissions. Although hydrogen does not exist in substantial quantities in its
elemental form in nature, technological advances in large-scale renewable energy have
created opportunities for green hydrogen production. In particular, water electrolysis
powered by renewables effectively addresses the intermittency and variability of clean
energy sources. This integrated approach not only supplies hydrogen for various applica-
tions but also contributes to global efforts aimed at large-scale deep decarbonization [1].
Even though hydrogen has remarkable properties, it is difficult to store and transport
and possesses risks regarding flammability [2,3]. Many hydrogen storage methods have
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been investigated, and compressed hydrogen, liquid hydrogen, and solid-state hydrogen
storage methods have been proposed [4–6]. However, almost all hydrogen storage methods
have essential disadvantages, such as requirements for a high-pressure tank, cryogenic
storage, and high-cost storage equipment [4]. The solid-state hydrogen storage method
provides economic and safety benefits for hydrogen storage. Metal hydrides are commonly
employed for this purpose, with light metals (Li, Be, Na, Mg, B, and Al) forming various
metal–hydrogen compounds [7,8]. However, metal hydrides used for hydrogen storage
present several limitations, including the need for high temperatures to release hydrogen,
sluggish desorption kinetics, and high sensitivity or reactivity to air and oxygen [7]. Along
with the suggested approaches for storage, there has been a surge of interest in finding and
developing new types of materials to provide alternative solutions for hydrogen storage.
Recently, researchers have investigated new materials to overcome hydrogen storage chal-
lenges. Therefore, new material combinations can exhibit high volumetric/gravimetric
hydrogen adsorption potential and fast kinetics at room temperature. One such material,
carbon, is one of the most effective adsorbents for gases as carbon-based nanostructured
materials have dramatically different and attractive chemical, physical, thermodynamic,
and transport properties [9,10]. Carbon-based materials exhibit interesting morphologies
with highly porous structures, as well as particular interactions between the carbon atoms
and gas molecules [11,12]. One of the most popular carbon materials is graphite, which is
found in nature. Graphite has sp2 hybridization graphite layers that are weakly bonded
by Van der Waal’s forces, which hold the layers together above and below [13]. Density
functional theory (DFT) was used to determine the molecular hydrogen storage of graphite
that has a wider layer distance at room temperature. The hydrogen storage ratio was
determined as 3.48 wt.%, and it was reported at a temperature of 300 K and a pressure of
0.1 GPa [14]. Angela D. Lueking et al. used graphite as a hydrogen storage material and
obtained 1.2% hydrogen uptake at 77 K and 20 bar [15]. Recent studies have demonstrated
that functionalization (through oxygen-, sulfur-, or phosphorus-containing groups) and het-
eroatom doping (with nitrogen, boron, or sulfur) in carbon-based materials can effectively
alter the electron density and binding energies, thus creating additional adsorption sites
and enhancing hydrogen uptake, even under moderate pressures [16,17]. Furthermore,
metal and metal oxide decoration of graphene (e.g., Pt, Pd, and MgO) is known to promote
hydrogen spillover, potentially lowering the operational pressure required for appreciable
storage capacity [18,19]. Despite these advances, many current approaches still depend
heavily on high-pressure hydrogen environments for sufficient storage densities, posing
safety and economic challenges. Addressing this query has direct relevance for proton-
exchange membrane (PEM) fuel cells, which require a stable, high-purity hydrogen supply
to maintain optimal power output and efficiency [20]. By coupling judicious material
designs via doping, functionalization, and defect engineering with moderate-pressure
operation, future research may pave the way for scalable, safer, and more cost-effective hy-
drogen storage systems that seamlessly integrate with PEM fuel cells, ultimately facilitating
the widespread adoption of hydrogen technologies in the clean energy transition.

Graphene is the most popular carbon material and it exhibits superior properties in
the 2D materials family. It was isolated from graphite in 2004 by Geim and Novoselov.
Graphene has hydrogen storage potential because of its large surface area (2630 m2/g),
high activity, and high thermal conductivity (5000 W/mK) [21]. G. Srinivas et al. showed
that hydrogen adsorption–desorption potential was determined in the temperature range
of 77–298 K and at pressures of up to 10 bar. They determined that graphene oxide (GO)
possessed hydrogen storage potentials of approximately 1.2 wt.% and 0.1 wt.% at 77 K and
298 K, respectively [22]. Byung Hoon Kim et al. obtained a maximum hydrogen storage
capacity of 4.8 wt.% at 9 MPa pressure and 77 Kelvin, and there was an interlayer distance
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of 6.5 Å in the GO structure [23]. Rajveer Singh Rajaura et al. investigated the role of
interlayer spacing and functional groups on the hydrogen storage capacity of reduced
graphene oxide (rGO). They showed that inert-layer spacing provides greater hydrogen
storage potential. In this study, the hydrogen storage capacity of rGO was determined as
1.34 wt.% at room temperature and a pressure of 80 bar [24].

In the present study, the hydrogen storage potential of graphite, GO, and rGO was
determined under different pressures (1–9 bar). In this regard, the hydrogen storage
ability of these materials was compared. The specific surface area of graphite, GO, and
rGO was determined, and its effect on hydrogen storage was observed. In addition, the
effect of hydrogen pressure on hydrogen storage was examined for different groups of
materials. After determining the hydrogen storage potential of graphite, GO, and rGO,
these solid materials were used as hydrogen sources in proton-exchange membrane (PEM)
fuel cells. The hydrogen storage potential of graphite, GO, and rGO in PEM fuel cells was
demonstrated. Furthermore, the effect of solid-state hydrogen storage on the operating
performance of PEM fuel cells was observed.

2. Materials and Methods
2.1. Synthesis of Graphene Oxide and Reduced Graphene Oxide

Graphite powder (99%) was acquired from USA Sigma Aldrich. To prepare GO using
a modified Hummers method, 10 mL of sulfuric acid (H2SO4) was first combined with 1 g
of potassium permanganate (KMnO4) and stirred for 30 min. Next, 2 g of graphite powder
was introduced to the mixture under constant stirring. Following this step, 200 mL of
deionized (DI) water was added until the mixture turned dark brown. Hydrogen peroxide
(H2O2) was then incorporated as the final reagent. Afterward, the resulting mixture was
filtered and dried at 50 ◦C in a furnace, producing a solid mostly composed of graphite
oxide. To enhance layer separation, this dried material was resuspended in DI water and
sonicated for several hours, ultimately yielding GO after separating the exfoliated layers.
Subsequently, a reduction process was carried out to obtain rGO. Specifically, hydrazine
hydrate (N2H4) was employed as the reducing agent by slowly adding 5 mL to 100 mL of
the GO solution, which remained in an ultrasonic bath for 5–6 h. The mixture was then
filtered, washed with distilled water, and dried at 70 ◦C. The resulting solid, confirmed to
be rGO by spectroscopic analysis, exhibited characteristic structural features of reduced
graphene oxide.

2.2. Hydrogen Adsorption–Desorption Processes

Graphite, GO, and rGO were investigated regarding hydrogen adsorption. First, 1 g
of graphite, GO, and rGO was placed into a steel reactor. The whole system was evacuated
before being exposed to hydrogen for 20 min until a 10−2 Torr vacuum removed impurities
such as the adsorbed water, oxide layers, nitrogen, and other gases from the reactor. The
hydrogen adsorption experiments were conducted at a controlled temperature of 25 ± 1 ◦C
using a thermostatically regulated environment to ensure consistency across all measure-
ments. The system was monitored to prevent temperature fluctuations that could affect
hydrogen adsorption behavior. Then hydrogen adsorption was implemented under a
hydrogen pressure of 1, 3, 5, 7, and 9 bar for graphite, GO, and rGO for 30 min. A gas regu-
lator and barometer were used to determine the hydrogen gas pressure. Once the hydrogen
adsorption process had finished, the reactor was placed onto the hot plate at 200 ◦C for
the desorption of hydrogen. The adsorption and desorption of hydrogen were measured
using a mass flow controller (MFC) (standard cubic centimeters per minute—sccm) and
an accurate scale to measure the weight of the adsorbed hydrogen precisely. Ahead of the
real experiments, the system (reactor) was calibrated while it was empty. To do this, the
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empty reactor was pressurized with high-purity hydrogen (99.99%) at various hydrogen
pressures (1–9 bar). Then, the hydrogen in the reactor was evacuated at 200 ◦C to remove
the hydrogen by tracking the hydrogen flow.

2.3. Characterization of Graphite, Graphene Oxide, and rGO

The crystallite quality and phase composition of the samples were analyzed using
X-ray diffraction (XRD) with a PANalytical-EMPYREAN instrument, NL operating at
a wavelength of 1.5406 Å. Raman spectroscopy was performed with a Renishaw inVia
Spectrometer, UK, offering a spectral resolution of approximately 1 cm−1 and employ-
ing a 633 nm excitation wavelength. Surface morphology was examined using a ZEISS-
GeminiSEM scanning electron microscope (SEM), Germany. The specific surface area and
porosity of the materials were determined via the Brunauer–Emmett–Teller (BET) method.
Additionally, gas desorption behavior was evaluated using a mass flow controller (MFC).

2.4. PEM Fuel Cell Application

The hydrogen gas was introduced to the system from a reactor, and to facilitate its
transport, the reactor was connected to the cell station. The reactor with hydrogen adsorbed
in H-Gr, H-GO, and H-rGO materials was integrated into the system from the hydrogen
inlet of the PEM fuel cell. Before the stored hydrogen was sent to the system, fuel cell
activation was achieved by sending 100 sccm of hydrogen for 30 s. The anode side was
completely sealed from the ambient atmosphere to ensure that the hydrogen in the tube
was sent to the fuel cell without leakage.

During the experiments, commercially available membrane electrode assembly (MEA),
stainless steel bipolar plates, and end plates were utilized. The bipolar plates had dimen-
sions of 55.25 mm width, 92 mm length, and 2 mm thickness, which were specifically
chosen to match previously fabricated and experimentally investigated flow plates [25]. To
enhance electrical conductivity, stainless steel bipolar plates were coated with a 50 nm gold
layer using magnetron sputtering.

Fuel cell power measurements were conducted using a Brand Test Station (Arbin
Instruments, FCTS-800, College Station, TX, USA) with the cathode side exposed to the
ambient atmosphere. The operating temperature was maintained at 75 ◦C. Once the system
reached the desired temperature, the cells were supplied with humidified hydrogen and
air. The test setup employed Nafion™ XL-based five-layer membrane electrode assemblies
(MEAs), each with a platinum catalyst loading of 0.5 mg/cm2 on both the anode and
cathode sides. Silicon gaskets were used for sealing, and gold-plated copper was utilized
for current collection. Aluminum T6 end plates were included for structural support. The
active area of each MEA was approximately 25 cm2.

3. Results
3.1. Hydrogen Storage Properties of Graphite

Raman spectroscopy is an important tool for determining the sp2 and sp3 hybridization
of carbon atoms in graphitic structures. In this regard, the structural investigation of
graphite (Gr) and hydrogen-adsorbed graphite (H-Gr) was performed using a Raman
spectrometer. Carbon-based materials mainly show three main bands, D, G, and 2D, in
their Raman spectrums. The D band is associated with defects and impurities in the
graphitic structure. The G band shows the crystalline quality of carbon and arises due to
vibrations of sp2 carbon atoms [26,27]. The 2D band can be used for thickness identification
and is due to two phonons with opposite momentums [28]. The Raman spectra of Gr and
H-Gr are given in Figure 1a and Raman band position are presented in Table 1. One of the
most noticeable items in the spectra is the appearance of a D’ band. The D’ band appeared
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at 1620 cm−1 after hydrogen adsorption and was not observed in pristine graphene. This
band is associated with impurities in the carbon structure [29,30]. In addition, the FWHM of
the 2D band slightly expanded and the intensity decreased in contrast to the G band. Thus,
the I2D/G ratio of Gr is higher than H-Gr, which is due to the hydrogen atoms potentially
causing distortion in the structure. The D band was detected at 1332 cm−1 and 1329 cm−1

for Gr and H-Gr, respectively. The development of the D band’s intensity in H-Gr can be
attributed to the interruption of π electron delocalization resulting from the formation of
C-H sp3 bonds due to hydrogen adsorption [31].
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Table 1. Raman band positions of Gr and H-Gr.

Sample G Band
Position

2D Band
Position

D Band
Position

D’ Band
Position I2D/G

Gr 1574 cm−1 2660 cm−1 1332 cm−1 - 0.32

H-Gr 1571 cm−1 2653 cm−1 1329 cm−1 1620 cm−1 0.25

The XRD patterns of Gr and H-Gr are given in Figure 1b and the structure was assigned
to JCPDS (00-041-1487) hexagonal graphite. The diffraction pattern of Gr and H-Gr has
the most intense peaks, appearing at 2θ = 26.65◦ and 2θ = 26.69◦ and corresponding to the
(002) plane of graphite. Additionally, there is another peak in both diffraction patterns,
indicating (004) planes [32]. However, the peak observed at 44.55◦ in the 2θ range for
H-Gr corresponds to the contribution of the graphite (101) peak within the hexagonal
graphite structure. Furthermore, the presence of the (101) peak from the rhombohedral
symmetry phase indicates deformations within the hexagonal graphite structure [33]. This
deformation could potentially be attributed to interactions between carbon and hydrogen.
Additionally, Scherrer’s formula [34] was employed to calculate the crystallite size based on
the full width at half maximum (FWHM) values. The FWHM values of crystallite sizes, as
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shown in Table 2, demonstrate an increase following hydrogen adsorption. This outcome is
attributed to the deformation of the carbon structure.

Table 2. The FWHM value of the (002) diffraction peak was extracted from the XRD data and used to
calculate the crystallite size using Scherrer’s equation.

Sample 2θ
(◦)

FWHM
(◦)

Crystallite Size
(nm)

Gr 26.65 0.23 37.09
H-Gr 26.69 0.32 26.66

BET is another essential approach for determining surface area and pore size; therefore,
the nitrogen adsorption isotherm at 77◦K was obtained for Gr and H-Gr. The isotherms
are shown in Figure 2a and mesoporous structures were determined in these samples,
with a type IV curve indicating their presence. The BET surface area and pore size were
determined to be 7.27 m2/g and ≤66.67 nm, respectively. The BET surface area and pore
size are in good agreement with both theoretical predictions and experimental findings
reported in the literature [35,36]. Figure 2b displays the SEM micrograph of Gr, revealing
its surface morphology. The observed layer-by-layer structure in Gr is associated with the
underlying bulk carbon arrangement. Additionally, a predominance of closely packed flake
layers exhibiting a smooth and uniform surface is evident in the image.
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3.2. Hydrogen Storage Properties of GO

The Raman spectrum of GO and hydrogen-adsorbed GO (H-GO) are shown in Fig-
ure 3a. GO has two main peaks, the D peak at 1350 cm−1 and the G peak at 1603 cm−1,
with a corresponding ID/IG ratio of ~0.97. In comparison to GO, a decrease in the intensity
of the G peak and an increase in the intensity of the D peak were observed in the Raman
spectrum of H-GO. H-GO’s peak positions were determined as 1339 cm−1 for the D peak
and 1588 cm−1 for the G peak, with a corresponding ID/G ratio of ~1.11. The increasing
D peak intensity is attributed to increasing defect states in the structure. In addition, the
H-GO, D, and G bands shifted to a lower Raman shift for 11 cm−1 and 5 cm−1, respectively.
In addition, the ID/G ratio increased to ~1.36. This increase in the ID/G ratio in H-GO
indicates the deterioration of the carbonaceous structure after hydrogenation. Otherwise,
the broadening of the G band in H-GO may be related to the hydrogenation of the carbon
structure [37].
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The crystal structure of the synthesized GO and H-GO was determined by analyzing
the XRD patterns. The XRD pattern of GO is shown in Figure 3b, and it has a sharp and high-
intensity peak at 2θ= 10.43◦, which corresponds to the (001) plane [38,39]. The additional
peaks of GO are located at 2θ =20.59◦ and 2θ = 42.46◦, corresponding to the (002) and (101)
crystallographic planes, respectively (indexed as per JCPDS No: 00-004-0345 and JCPDS
No: 01-075-2078) [39]. Table 3 shows that the crystal structure of H-GO displays distinct
properties compared to GO. The 2θ peaks have high intensities at lower 2θ values for H-GO,
and the FWHM of the peak has increased. These results can be attributed to a higher degree
of disorder in GO [33]. In addition, the heteroatom relationship in the graphene structure
gives rise to defect sites and destruction in the carbon lattice. These results are associated
with low crystallinity, and very small changes occur in the 2θ values [40]. Additionally,
H-GO exhibits additional peaks at 2θ = 31.84◦ and 2θ = 36.00◦, which are attributed to the
presence of hydrogen within the structure (referenced as per JCPDS No: 98-006-2015). These
peaks could potentially be associated with interactions between carbon and hydrogen.

Table 3. The crystallite size was determined using Scherrer’s equation, based on the FWHM of the
(002) diffraction peak extracted from the XRD data.

Sample 2θ
(◦)

FWHM
(◦)

Crystallite Size
(nm)

GO 10.43 1.32 6.31
H-GO 11.58 2.83 2.95

BET isotherms were applied to measure the specific surface area of GO, and the results
are shown in Figure 4a. The specific surface area and pore size of GO were determined
as 33.75 m2/g and ≤73.57 nm, respectively, as these values are in agreement with the
literature [41–44]. Moreover, GO exhibits a type IV curve with a hysteresis loop. The
isotherms are shown as mesoporous structures in these samples, which indicates their
presence [38]. The morphological analyses of GO were examined using SEM (Figure 4b).
The layered structure, along with the wrinkled areas of GO, clearly appears because of the
chemical exfoliation of graphite. In addition, crumpled GO layers are randomly aggregated
and connected with each other.
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3.3. Hydrogen Storage Properties of rGO

The Raman spectra of rGO and hydrogen-adsorbed rGO (H-rGO) are shown in
Figure 5a. The intensities of the D and G bands are shifted after hydrogen adsorption.
The positions of the D, G, and 2D bands are around 1331 cm−1, 1593 cm−1, and 2639 cm−1

for rGO, respectively. These results indicate the formation of new sp2 structures instead
of functional groups and thus an increase in the amount of regular structures. After the
hydrogen adsorption of rGO, the positions of the D, G, and 2D bands are around 1328 cm−1,
1588 cm−1, and 2635 cm−1, respectively. The D band and G band of rGO were found to be
shifted by 3 cm−1 and 5 cm−1, respectively. This shift is attributed to hydrogenation in the
carbon structure. In addition, after the hydrogen adsorption process, the band’s position
can be shifted downwards due to increasing electron concentrations. When comparing
rGO and H-rGO peak intensities, the D band of rGO is much stronger than H-rGO’s D
band. The ID/G ratio is 1.48 and 1.56, respectively. The higher value of the intensity ratio
can be attributed to the presence of defects in the structure [24,45].

Hydrogen 2025, 6, x FOR PEER REVIEW 8 of 17 
 

 

 

Figure 4. BET analysis of surface area for GO (a) and SEM image of GO (b) (* The 1 µm scale bar 
shown here is based on the SEM’s calibration at 10 kV and a working distance of 10.5 mm, and 
may have minor deviations due to sample tilt or instrumental settings). 

3.3. Hydrogen Storage Properties of rGO 

The Raman spectra of rGO and hydrogen-adsorbed rGO (H-rGO) are shown in Fig-
ure 5a. The intensities of the D and G bands are shifted after hydrogen adsorption. The 
positions of the D, G, and 2D bands are around 1331 cm⁻1, 1593 cm⁻1, and 2639 cm⁻1 for 
rGO, respectively. These results indicate the formation of new sp2 structures instead of 
functional groups and thus an increase in the amount of regular structures. After the hy-
drogen adsorption of rGO, the positions of the D, G, and 2D bands are around 1328 cm⁻1, 
1588 cm⁻1, and 2635 cm⁻1, respectively. The D band and G band of rGO were found to be 
shifted by 3 cm⁻1 and 5 cm⁻1, respectively. This shift is attributed to hydrogenation in the 
carbon structure. In addition, after the hydrogen adsorption process, the band’s position 
can be shifted downwards due to increasing electron concentrations. When comparing 
rGO and H-rGO peak intensities, the D band of rGO is much stronger than H-rGO’s D 
band. The ID/G ratio is 1.48 and 1.56, respectively. The higher value of the intensity ratio 
can be attributed to the presence of defects in the structure [24,45]. 

 Figure 5. Raman spectra of rGO and H−rGO (a) and XRD patterns of rGO and H−rGO (b).



Hydrogen 2025, 6, 22 9 of 17

Figure 5b presents the XRD patterns of rGO and H-rGO, with diffraction peaks as-
signed to carbon phases indexed according to JCPDS card number 98-018-2760. The XRD
pattern of rGO exhibits a prominent peak at 2θ = 24.42◦, corresponding to the (002) plane,
and a secondary peak at 2θ = 43.16◦, attributed to the (100) plane [22,46,47]. In addition,
H-rGO showed similar carbon peaks and positions to rGO. However, after hydrogenation,
new peaks appeared at 2θ = 27.82◦ and 2θ = 33.26◦ which were attributed to hydrogenated
carbon (H-Carbon) according to JCPDS card number 98-006-2005. In addition, rGO and
H-rGO have another peak at 2θ = 9.73◦. This peak is attributed to H2MnO2 according to
JCPDS card number 98-005-3951. This peak is related to the chemical reaction used in the
rGO synthesis process. Nevertheless, its role in hydrogen adsorption will be negligible.
The amount of H2MnO2 is relatively low, and its presence does not significantly alter the
specific surface area of rGO. Furthermore, H2MnO2 does not have a porous structure; thus,
it will not play an important role in hydrogen adsorption via desorption processes. In addi-
tion, the FWHM value of the (002) diffraction peak and the crystallite size are illustrated in
Table 4 and changed after hydrogen adsorption. These results are attributed to the removal
of the functional group from rGO’s structure [24].

Table 4. The 2θ, FWHM value and crystallite size of rGO.

Sample 2θ
(◦)

FWHM
(◦)

Crystallite Size
(nm)

rGO 24.42 7.59 1.59
H-rGO 24.42 7.61 1.12

The BET isotherms were used under the same parameters as with Gr and GO. The BET
isotherms are shown in Figure 6a, and the specific surface area and pore size of rGO were
determined to be 70.31 m2/g and ≤6.46 nm, respectively. Furthermore, these results are
comparable with the literature [48]. Furthermore, rGO displays a type IV isotherm with a
pronounced hysteresis loop, which confirms the mesoporous nature of the samples [49,50].
The surface area of GO is smaller than that of rGO, which could be due to partial stacking
of the graphene sheets. The morphological analysis of rGO is shown in Figure 6b. The
SEM analysis shows that rGO has high porosity. The layered structure, together with
the wrinkled areas of rGO, clearly appears due to the chemical exfoliation of GO and its
reduction of rGO.
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3.4. Hydrogen Storage Potential of Graphite, GO, and rGO

Hydrogen was adsorbed on graphite at different pressures (1–9 bar). As the pressure
increased, the hydrogen storage potential of Gr increased up to a pressure of 5 bar, as shown
in Figure 7. In addition, pressure increases can affect the increase in hydrogen storage on
the surface. However, the pressure increase did not affect the hydrogen storage potential
after it reached 5 bar. Hydrogen adsorption in carbon at high pressures is not efficient due
to the large proportion of excluded volume. In addition, Gr indicated the highest adsorbed
hydrogen at 5 bar, with values of 190 sccm and 1.03 wt.% [51].
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The hydrogen storage potential of GO was investigated at different pressures. The
highest hydrogen storage ratio measured was 742 sccm and 2.90 wt.% at a hydrogen
pressure of 7 bar. After this, the increases remain close to each other. These results are
attributed to Langmuir isotherm behavior for carbon-based materials [22,52]. In addition,
carbon adsorption is limited at low pressures, but as the pressure increases, saturation is
reached [53].

The same hydrogen storage parameters were then used for rGO. The hydrogen storage
ratio increased up to a hydrogen pressure of 7 bar for rGO. It showed high hydrogen storage
potential at 7 bar, with values of 768 sccm and 3 wt.%. rGO can adsorb more hydrogen at
7 bar than at 9 bar. This situation is mainly attributed to the hydrogen molecules inside
the structure. The defects in graphene, such as topological defects, are an essential factor
for enhancing hydrogen adsorption [24,54]. In rGO synthesis, the acidic treatment of
the functionalized group on the graphene structure can cause topological defects, and
this situation tends to increase hydrogen adsorption. In addition, the chemical oxidative
processes of the carbon nanotube have shown higher hydrogen adsorption when compared
to pristine carbon nanotubes in the literature. This means that defects on the surface
provide more reactive surface sites for improving hydrogen adsorption potential [55,56].
This situation contributes to the total hydrogen storage at low pressures and characterizes
the exceptional binding mode for hydrogen confined in rGO.

When comparing the hydrogen storage potential of Gr, GO, and rGO, rGO showed
attractive properties under the same hydrogen storage conditions. Hydrogen storage is
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related to the surface area of materials and is well-known in the literature [57–59]. Our ex-
perimental findings are in agreement with theoretical and experimental studies reported in
the literature. Chan et al. utilized applied mathematical modeling to investigate hydrogen
storage in graphene–oxide frameworks (GOFs), with the measured hydrogen capacity of
1.85 wt.% for graphene sheets being in good agreement with previous theoretical estimates
of 2.0–6.33 wt.% derived from ab initio and grand canonical Monte Carlo calculations [60].
Additionally, another research work on mesoporous graphene oxide demonstrated that hy-
drogen storage may be significantly enhanced by way of a two-dimensional potential well
mechanism to yield a determined storage density of 4.65 wt.% for hydrogen at 40 atm and
room temperature [61]. This enhancement is due to delocalized hydrogen gas permeation
through the void spaces rather than regular site-specific adsorption. Similarly, our rGO
samples synthesized with a high defect density and optimized porosity are also anticipated
to improve other hydrogen desorption. Throughout our research, although we did not use
external ligand-supported GOF structures, our rGO samples showed a high defect density
and specific surface area (70.31 m2/g) that improved hydrogen adsorption. Our rGO was
proven by BET analysis to possess a specific surface area of 70.31 m2/g, which provides
additional adsorption sites. The structural vacancies and oxygen-containing functional
groups in rGO may also be responsible for enhanced hydrogen binding energy, which in
turn explains the enhanced adsorption capacity.

As expected, the hydrogen adsorption potential increased with the rising BET surface
area [22,62]. Consequently, rGO exhibited a higher hydrogen storage capacity compared to
Gr and GO due to its greater BET surface area. It is important to note that the enhanced
BET surface area of rGO provides a larger number of hydrogen ion storage sites within
the internal layer structure of macro-, meso-, and micropores in the material, in contrast
to GO [46]. In addition, the O and OH groups in rGO contribute to hydrogen storage by
helping to overcome large lattice strains in the structure [23]. In addition, GO has a higher
hydrogen storage potential than Gr for similar reasons. Increasing the hydrogen pressure
did not affect the hydrogen storage potential of the materials beyond the optimum pressure
values. These situations are associated with carbon adsorption behavior at lower pressures
for Gr, GO, and rGO, as well as a linear increase for higher hydrogen pressures attributed
to hydrogen physisorption on the carbon surface [53].

In terms of the adsorption and desorption balance for all materials, measurements
indicate that the amount of desorbed hydrogen was slightly lower than the adsorbed
amount. This discrepancy is likely due to hydrogen retention in micro- and mesoporous
structures, as well as minor structural changes in the material during repeated cycles.
The desorbed gas was primarily hydrogen, although trace amounts of oxygen-containing
species may have originated from residual functional groups in GO and rGO.

Figure 8 presents the simulated hydrogen mass flow rate (sccm) as a function of time
for the desorption processes of graphite, GO, and rGO. The adsorption curves indicate that
rGO exhibits the highest and fastest hydrogen uptake with a peak flow rate of approxi-
mately 768 sccm in a shorter duration, consistent with its higher surface area and defect
density. GO also shows high hydrogen absorption (742 sccm), while graphite reaches a
lower peak value (190 sccm) over a longer time. The desorption curves show that rGO
releases hydrogen more quickly than GO and graphite, indicating faster desorption kinetics.
Graphite, however, shows a slower release of hydrogen, which is consistent with the longer
power output duration observed in the PEM fuel cell experiments. These dynamic profiles
validate the hydrogen storage behavior already described and also support the conclusion
that surface area and structural defects are determining factors for desorption rate and
adsorption capacity.
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3.5. Utilization of Hydrogen-Adsorbed Graphite, GO, and rGO in PEM Fuel Cells

The hydrogen storage performance of carbon-based materials was further investigated
using a PEM fuel cell. Figure 9 shows the power density with time, and the power density
reaches the maximum power density of 0.082 W/cm2 for H-rGO. H-Gr and H-GO showed
lower power densities of 0.071 and 0.017 W/cm2, respectively. These results are related to
the hydrogen flow ratios for hydrogen-adsorbed materials. The PEMFC polarization curve
indicated a maximum power density of 0.082 W/cm2 at 250 mA/cm2 with an open-circuit
voltage (OCV) of 0.97 V, indicating minimal hydrogen crossover and uncompromised
membrane integrity. To ensure precision in our measurements of the hydrogen flow rate,
MFC was used to monitor the actual time taken for hydrogen consumption during the
PEMFC test. For an estimation of efficiency, we plotted the experimentally obtained current
versus the theoretical maximum current according to Faraday’s law for comparison from
the hydrogen flow rate. In the calculation, 88.5% of the hydrogen utilization was consistent
with results given by the literature values of similar standard PEMFCs under corresponding
conditions [63,64]. In an additional test to determine the feasibility of H-rGO as a source
of hydrogen, we compared its performance to that of standard hydrogen sources, such as
pressurized gas cylinders and balloons containing hydrogen. Their polarization curves
were found to be barely different, which suggests that the adsorbed hydrogen system is as
efficient as standard hydrogen sources under normal operating conditions.

Similarly, the power density behavior of H-Gr and H-GO materials follow analogous
decreasing trends over time, albeit with slightly lower initial power densities. This is a
common trend in carbon-based materials and highlights the changing nature of power
generation as the PEM fuel cell operates. In addition, the power density decreased over
time due to hydrogen consumption as a result of hydrogen desorption in the materials.
rGO has a higher hydrogen storage capacity than graphite and GO due to its larger specific
surface area, resulting in a higher power density. Although H-rGO showed a higher power
density compared to the others, its cell performance was limited by a shorter operating time
compared to H-Gr and H-GO. This result can be attributed to the faster desorption time of
H-rGO. Despite its high hydrogen storage capacity, the rapid desorption time of H-rGO
resulted in a higher power density only at a high hydrogen flow rate within a short time
frame. Conversely, H-Gr has the lowest power density due to its lower hydrogen storage
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capacity. However, it delivered a longer-lasting performance than the other materials. This
extended performance can be attributed to the slower hydrogen desorption of H-Gr, which
allows for a longer operating time.
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The rapid desorption of hydrogen from H-rGO largely determines the steady-state
performance of PEM fuel cells. While rGO possesses the highest hydrogen storage capacity
(3 wt.%), the rapid desorption rate results in the power density first reaching a sharp peak
and then decaying quickly with the fast consumption of hydrogen. This phenomenon can
limit the stability and long-term usage of the fuel cell. The rate of hydrogen desorption
is governed by a range of factors, such as the binding energy, defect density, and surface
functional groups in rGO [65,66]. It is worth emphasizing that high surface areas and
topological defects facilitate the speedy release of hydrogen, leading to fluctuations in
the power output of the PEM fuel cell. In order to provide more descriptive information,
we have used quotations from comparative studies describing the behavior of hydrogen
desorption rates to electrochemical performances in fuel cells. Such studies have described
how rapid desorption affects current density stability, power output, and efficiency in
fuel utilization. Theoretical models have been presented specifically by quoting models
related to Langmuir desorption kinetics and hydrogen spillover mechanisms to describe
this phenomenon.

In summary, the power density decreased over time as a result of hydrogen desorption
and consumption within the materials. The high specific surface area of rGO resulted in
an increased power density due to its superior hydrogen storage capacity compared to
graphite and GO. Despite the superior power density of H-rGO, its shorter operating time
compared to H-Gr and H-GO can be attributed to its faster desorption rate. In Figure 9,
all samples exhibit an initially high power density, followed by a steep decline. This
immediate drop is primarily attributed to hydrogen consumption and the rapid desorption
characteristics of the carbon-based materials. Importantly, the performance decay observed
in our measurements is not related to the intrinsic degradation of the PEM fuel cell stack, but
rather to the limited amount of hydrogen stored in the solid-state adsorbent materials. Once
the stored hydrogen is depleted, the power output naturally drops due to the insufficient
fuel supply. Among the tested materials, H-Gr showed the lowest power density due
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to its limited hydrogen capacity, but it provided a longer operating time thanks to its
slower hydrogen desorption rate. This resulted in more sustained, albeit lower, power
delivery. In contrast, the poor and fluctuating power characteristics observed in H-GO
and H-rGO stem from discontinuous hydrogen flow and the rapid depletion of available
hydrogen. Despite the low absolute power densities, these results confirm the viability
of using solid-state hydrogen storage materials as hydrogen sources for PEM fuel cells.
It is important to note that the data presented here reflect performance based on a small
quantity of hydrogen-storing material.

4. Conclusions
Hydrogen storage plays a crucial role in various hydrogen applications. In this

study, we aimed to explore the impact of hydrogen pressure and surface area on storage
capabilities. As part of this investigation, we found that the increase in hydrogen pressure
enhances storage up to 7 bar, beyond which the material reaches saturation. Notably, carbon-
based materials followed the Langmuir isotherm, indicating that the hydrogen pressure
does not significantly alter the hydrogen storage potential. However, it is important to
consider this aspect for all adsorption processes conducted at room temperature. While
the effect of the hydrogen pressure is relatively limited, the surface area of the materials
emerges as a critical factor influencing hydrogen storage potential. Remarkably, a larger
surface area led to greater hydrogen storage potential in rGO (70.31 m2/g) compared to
GO (33.75 m2/g) and graphite (7.27 m2/g). rGO showed a higher hydrogen capacity of
768 sccm and 3 wt.% than other adsorbent materials. In summary, the surface area exerts a
more substantial influence on hydrogen storage compared to pressure for Gr, GO, and rGO.

The power density over time was observed, and it was found that the power density
gradually increased until it reached its peak value. For H-rGO, the maximum power
density attained was 0.082 W/cm2. In contrast, both H-Gr and H-GO exhibited lower
power densities, determined as 0.071 W/cm2 and 0.017 W/cm2, respectively. On the
contrary, H-Gr exhibited the lowest power density, which is attributed to its comparatively
lower hydrogen storage capacity. Nonetheless, it showcased a prolonged and sustained
performance when compared to the other materials under consideration. This extended
operational performance of H-Gr can be attributed to its slower hydrogen desorption rate.
This slow desorption of hydrogen release enables H-Gr to maintain its operating capacity
for an extended period.

In the future, both the adsorption capacity and desorption kinetics must be balanced
in real-world hydrogen energy applications. rGO could be a good candidate for low-
pressure hydrogen storage, but testing over several cycles and tuning of the material will
be required to enable stability and scale-up in operational applications. By integrating
rGO-based storage with PEM fuel cells, cost-effective, flexible, and cleaner power solutions
are potentially attainable, particularly if future research refines defect engineering or
functionalization techniques to enhance both storage capacity and fuel cell performance
over long-term utilization.
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