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Why membranes are essential constituent of Fuel cells

» Separates the two electrodes
» Separates the two electrode reactions
» Prevents the mix up of reactants

» Allows the treatment of reactions as separate processes
—no mixed kinetics



Schematic representation of membrane and processes therein
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Pictorial representation of possible processes in a membrane



Role of membrane ?

In reverse osmosis, ultra filtration, micro filtration & dialysis
» To act as a molecular sieve

In electrochemical device
» To separate anode and cathode
» To prevent mixing of the fuel and oxidant

» To provide a conductive pathway



Membranes in electrochemical devices

» Fuel cells - Polymeric proton conducting membranes

» Batteries - Lithium ion cells - Amorphous polyethylene oxide (PEO)
» Water electrolysis - Bipolar ion exchange membranes

» Sensor - Polymeric membranes

» Biosensors — Lipid membranes, enzyme immobilized membranes

Role decides the type of membrane employed



Required and desirable characteristics of
membranes for fuel cell applications

High 1onic conductivity (and zero electronic conductivity)

Long-term chemical stability at elevated temperatures in
oxidizing and reducing environments

Stable under the fuel cell potential window
Good mechanical strength - resistance to swelling
Low oxidant and fuel cross-over

Low cost and ready availability



What Really Matters for Fuel Cell Commercialization?
Grand Challenges & Needed Breakthroughs for Fuel Cells

Bipolar-Plate
Anode]

Gas Diffusion Layer

an  Gas Dilfusion Layer  Bipolar-Plare
with Catalyst (Kathode)

Grand Challenges
« Affordability ( $/kW )
* Durability ( performance
loss ~ time)

Needed Breakthroughs
« Adv. Catalysts
« Adv. PEM Material
* Innovative CCM/MEA mft.
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Cost breakdown for Automobile PEMFC Engine System
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DMFC MEA Raw Materials Cost Analysis

I Cost of Raw Materials/cm? of MEA

Low Volume High Volume

19% _omn SN B =PM
k= ' []=Membrane
[1=GDL

4% 92%

59%




Challenges for Conventional CCM/MEA Technologies

— Non-uniformity of catalyst coating
and limited catalyst utilization

— Random MEA hydrophobicity ~
hydrophilicity structure
= poor H* transportation
* poor e transportation
= poor water transportation
" poor gas transportation

— Limited FC performance
— High cost per kW
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Advantages

» Stable in both oxidative and reductive environments

» Excellent proton conductor ( 0.07 - 0.23 S em™at 100 % RH)

IMH,SO,6=0.08 S cm!

» Why Nafion® is so special as a membrane for fuel cells
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Simplified Nafion® structure according to water content

Dry state of PFSA Water incorporated PFSA Fully swollen PFSA

» Dry membrane is characterized by the presence of isolated spherical ionic clusters

» As water is absorbed in the membrane, its hydrophilic domain size increases —
swells in water

» Swelling induces a modification of the cluster structure which become spherical
water pools - in order to minimize the interfacial energy

» As more water is absorbed in the PFSA membrane, the cluster size is connected to
cach other through the water passage

» Water and hydrophilic solvents can penetrate the membrane through water channel

and it can also provide the passage of protons - Percolation ’

G. Gebel. Polvmer 41 (2000) 5829



Characteristics of Nafion® membranes

Membarne Dry thickness Equivalent weight Area resitance | Conductiviy Water content
(1 m) (gmol/SO;) (Q cm?) (Sem™) at 25°C

Nafion 105 125 1000 - - -
Nafion 112 50 1100 0.07 0.165 20.7 = 0.5
Nafion 1135 89 1100 0.10 0.11 21.1 = 0.6
Nafion 115 125 1100 0.12 0.09 21.9 = 0.6
Nafion 117 175 1100 0.13 0.08 232 + 0.4
Nafion 1110 254 1100 - - 38

Nafion xyzz’

xy - Equivalent weight/100

zz’- Thickness x 25 um

S. Slade et al., J. Electrochem.
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Characteristics of other commercial polymer membranes

Membrane Dry thickness Equivalent Conductiviy | Water content | Manufacturer
(1n m) weight (Scm) (wt %)
(gmol1/SO;)
Dow 125 800 0.114 54 Dow Chemical

Aciplex-S 120 1000 0.108 43 Asahi Chemical
Gore Select 5-20 900-1100 0.028-0.096 32-43 Gore

BAM 3G 140(wet) 375 -920 N/A 87 Ballard

Flemion 50 1000 0.14 38 Asahi Glass

General structure

A polymer containing anion groups(SO;’) on a polymer
backbone or side chain (proton exchange membranes)

Why proton exchange membrane is essential ?
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Limitations of Nafion®

» Dehydrates at T > 80 °C & RH < 100%
» Diffusion of other species

» Lack of safety during its manufacturing and use
(because of fluoro carbon)

» Expensive (~ 1000 $/m?)
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Modified PFSA membranes

Thin and reinforced PFSA membranes
Swelling with low volatile and non aqueous solvents

Composites with hygroscopic oxides

Composites with solid inorganic proton conductors
like zirconium phosphates, heteropolyacids &
metal hydrogen sulfate
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Thin and reinforced PFSA membranes

» To decrease the internal resistance
» To reduce material cost

Nafion with porous polypropylene/polysulfone
» Thickness has been reduced to 5 - 30um

» Has good conductivity & mechanical properties

» Water management is improved

Drawback

» Reduced mechanical strength (under high temp & swelling)

i7
B. Bae et al., J. Membr. Sci., 202 (2002) 245



Swelling with low volatile and non aqueous solvents

» Phosphoric acid (B.P: 158 °C) with Nafion achieved a conductivity
0of 0.05 S ecm! at 150 °C

» Phosphoric acid acts as a Bronsted base & solvates the proton

» Allows high operational temperature >100 °C

» Imidazole (B.P: 255 °C) and benzimidazole (B.P: 360 °C) were
also tried

Limitations

» No significant improvement in conductivity at low humidity

» Imidazole groups are not as water in solvating membrane acid
groups

R. Savinell et al., J. Electrochem. Soc., 141 (1994) L46



Composites with hygroscopic oxides

» S10, and Ti0,
» Internal (self) humidification at low operational temperatures
» Water uptake:

— Pristine Nafion - 27 wt %
— Nafion containing 3 wt % S10, - 43 wt %

» Conductivity in the range of 107 to 10* S ecm™' at 100°C

9
M. Watanabe et al., J. Electrochem. Soc. 143 (1996) 3847



Composites with solid inorganic proton conductors

» Bifunctional particles - both hydrophilic and proton conducting

» Inorganic proton conductors

— Heteropolyacids
— zirconium phosphates

» Decreases the chemical potential of water inside the membrane
» Provides H-bonding sites for water

— Increase in hydration of the membrane
— Decrease in water transport and evaporation
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Nafion/HPA

Properties:

> Increased conductivity than Nafion : 0.012 — 0.015 S cm™ at 35 % RH

» Water uptake:

— Pristine Nafion - 27 wt %

— Nafion/HPA - 95 wt % (Due to increase in protonic sites of the
membrane)

Drawbacks:
» HPA is highly water soluble eventually leaches out from PEM

» Decreased tensile strength (~14 kPa whereas Pristine Nafion ~ 40 MPa )
S. Malhotra et al., J. Electrochem. Soc. 144 (1997) L%



Nafion/o-ZrP

Properties:

» Water insoluble

» Has intercalated hydronium ions with conductivity of 0.1 S cm™ at
100 °C at 100% RH

» Enhanced performance is due to increased water retention
capability

— Replacement of unassociated pore water with hydrophilic a-
ZrP nanoparticles

— Capillary condensation effects due to the smaller dimensions of
the free spaces in a-ZrP filled pores

Drawbacks:

» HT transport properties depend upon humidity

» Water management is difficult

P. Costamagna et al., Electrochim Acta 47 (2002) 1(%53



Alternate sulfonated polymer
membranes

Fluoropolymers

A

Polysiloxanes

Aromatic polymers

Why?

» To lower the material cost

» To improve the operating temperature

» Polymers should have high chemical and thermal stability

» Alteration of conducting property

» Preferential transport characteristics
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Fluoropolymers 5;

SOH

» Sulfonated polystyrenes - first generation polymer electrolytes for
fuel cells

» Suffers from a short lifetime — mechanical/chemical stability
» Partially fluorinated polymer

— Poly(tetrafluoroethylene-hexafluoropropylene) (FEP)

— Poly(vinylidene fluoride) (PVDF)
» Prepared by grafting and then sulfonating the styrene groups

» High water uptake & high proton conductivity

24
S. Hietala et al., Mater. Chem., 8 (1998) 1127



Polysiloxanes

» Organic modified silicate electrolyte (ORMOLYTE) by using
arylsulfonic anions or alkylsulfonic anions grafted to the benzyl
group were attempted

» Exhibit a proton conductivity of 10 S cm™! at RT
» Chemically and thermally stable up to 200 °C

» Water uptake alteration are possible

V. D. Noto et al., Electrochimica Acta 50 (2005) 4007 25



Aromatic polymers N

» Cost effective and ready availability
» Good oxidation resistance of aromatic hydrocarbons
» Electrolyte for high temperature range ( > 100 °C)

» Investigated systems

— polyetheretherketone (PEEK)

— polysulfones (PSF) or Polyethersulfone (PES)
— polybenzimidazoles (PBI)

— polyimides (PI)

— polyphenylenes (PP)

— poly(4-phenoxybenzoyl-1,4-phenylene) (PPBP)
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Sulfonation of polymers

» By direct sulfonation in concentrated sulfuric acid, chlorosulfonic
acid or sulfur trioxide

» By lithiation-sulfonation-oxidation

» By chemically grafting a group containing a sulfonic acid onto a
polymer

» By graft copolymerization using high energy radiation followed
by sulfonation of the aromatic component

» By synthesis from monomers bearing sulfonic acid groups

27



I
Modification of S-PEEK @OQO@“%

S-PEEK

» Has excellent thermal oxidation resistance with a glass transition
temperature of 143 °C

» Conductivity, G ;ypc =8 x 10°S em'at 100 % RH

S-PEEK/SiO,

» S-PEEK containing 10 wt% S10, — Exhibited best mechanical and
electrical characteristics (o ;ypc =9 x 102S ecm™)

S-PEEK/ZrO,

» S-PEEK containing 10 wt% ZrO, — Exhibited low permeability and good
conductivity (G ;g = 4.5 x 102 S em™)

S-PEEK/HPA

» S-PEEK containing 60 wt% TPA — Increased glass transition temperature,
humidity and conductivity (¢ ;,p.c = 0.1 S em™) 28



Microstructures

Nafion 117
O :-SO,
@ : protonic
charge
carrier
O :H,0
Wide channels .
More separated .
Less branched .
Small -SO;/-SO;" separation .
pKa ~ —6 °
Dyeon = 2-91 % 1076 cm?/s .

Narrow channels

Less separated

Highly branched

Large -SO;-/-SO;" separation
pK, ~-1

Doy = 6-57 x 1078 cm?/s

K. D. Kreuer, J. Membr. Sci. 185 (2001) 29
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Limitations of sulfonated polymers

Highly deliquescent
Hard to recover from solution

Has a temperature limit at 200 °C

H" conductivity decays due to decomposition of the SO;H groups

High sulfonation results in high swelling and therefore poor
mechanical properties

30



Acid-Base Polymer membranes

Two Approaches:
» Basic polymer with excess acid

» Acidic polymer with excess base (sulfonated polymer with absorbed
imidazole, benzimidazole or another appropriate proton acceptor)

Basic polymers Acids
Polybenzimidazole (PBI) H,PO,
Poly-(ethylene oxide)s (PEO) H,S0O,
Polyvinyl alcohol (PVA) HCI
Polyacrylamide (PAAM) HNO,
Polyethylenimine (PEI) HCIO,

Nylon

31



Acid doped polybenzimidazole (PBI)

» High thermal and mechanical stability E
» Very low solvent permeability ‘2’ s [
(electroosmotic drag ~ 0) § 106
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D. Jones et al., J. Membr. Sci., 185 (2001(#%1



Doping with organic and inorganic bases

H ’H
N~ N
HIT LY
1 §
H

CH,
Membrane Conductivity (S cm™)
PBI-S 42 x 104
SO3H
PBI-S/NH,OH 1.5x 102
PBI-S/imidazole 79x 103 N-benzylsulfonate grafted PBI (PBI-S )
PBI-S/LiOH 1.2 x 102
PBI-S/NaOH 1.2 x 1072
PBI-S/KOH 1.7 x 102
PBI-S/CsOH 1.7 x 102

T. Roziere et al, Solid State Tonics 145 (2001) 61



Advantages
» High temperature oxidative stability of the blank PBI (~300 °C)

» Good chemical stability and mechanical properties of the blank
PBI

» Exhibits good conductivity
» Ease of fabrication of the composite

» Less fuel (Hydrogen) cross-over than Nafion 117

Disadvantages

» Long-term stability and reliability based on composite PBI

membranes must be proven
» Conductivity of PBI-H,PO, 1s 10 times < Nafion 117

» Diffusion of H;PO, out of the PBI limit membrane performance
34



Inorganic Organic composite membranes

Justification:

» To improve self-humidification of the membrane
» To reduce the electro-osmotic drag

» To suppress fuel crossover

» To improve mechanical strength

» To improve thermal stability

» To enhance the proton conductivity

35



Organic component Inorganic component

Perfluorosulfonic acid (PFSA) Oxides (Silica, titania &
Poly-(ethylene oxide)s (PEO) Zirconia)

Polybenzimidazole (PBI) Inorganic proton conductors

(zirconium phosphates,
Sulfonated polystyrene heteropolyacids, metal

Sulfonated polysulfone (SPSF) hydrogen sulfate)

Sulfonated polyetheretherketone
(SPEEK)

Requirement - Stability under fuel cell operating conditions

36



Effect of adding an inorganic component to a
polymer membrane

» Thermodynamic changes due to hygroscopic nature

» Changes in capillary forces and the vapour liquid equilibrium as
a result of changes 1n the pore properties

» Surface charge interactions between the composite species
» Changes the morphology of the membrane
» Membrane architecture is possible

» Membrane casting conditions allowed

37



Zirconium phosphates

a-Zr(HPO,),"H,0

» Exhibits H" conductivity upto 300 °C

» Transport mechanism is dominated

by surface transport than bulk

’k\;-f" = £? ) i=§|,b?_ﬁo
,,' %) ' il
G—=" S—fH—+ »

v (ZrPO,[O,P(OH),]- nH,0)
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Attempts to enhance the proton conductivity

» Intercalation of functional groups (zirconium phosphate
sulfophenylenphosphonate)

v HPO, groups of the a-type Zr(HPO,),.nH,0 and the O,P(OH),
groups of y-type ZrPO,0,P(OH),.nH,0 are replaced with O;POR or
O,PR’R- groups

v" R and R’ are organic moieties containing a proton-generating
function such as -COOH, -PO;H, -SO;H, or NH,

» Composites a-ZrP membranes
» External surface area maximization (mechanical and colloidal synthesis)

» Internal surface area maximization (sol—gel synthesis and pillaring)

39



Intercalation of functional groups

Layered ZrP and phosphonates

c (S em!) at 100°C, 95% RH

a-Zr(0O,P-OH), . H,0O *
v-ZrPO,[O,P(OH),]. 2H,O0*
Zr(O,P-OH), . nH,O ¢

Z1(O4P-OH), s(O4P-C,H,SO,H), 5 §
Zr(0,P-OH)(O,P-C,H,SO;H) nH,0 §

1.8 x 10

2 x 104
1-5x 1073
0.9-1.1 x 102
0.8-1.1 x 10!

* Crystalline; § Semicrystal: § Amorphous

40



Composites a-ZrP membranes

| 100°c
1075
£ ] b)
@ .
@]
1074
a)
10— —
60 65 70 75 80 85 90
% relative humidity

(a) s-PEK membrane (thickness 50 um)
(b) s-PEK filled with 35 wt% of Zr(O,P-OH)(O,P-C.H,SO,H).nH,O

P. Costamagna et al., Electrochimica Acta 47 (2002) 1023



Heteropolyacids - H,PM,,0,,

(cluster species)

» Exhibit high proton conductivities;
— 0.18 S em™! for H;PW,,0,,.29H,0
— 0.17 S em! for H;PMo,,0,,.29H,0
» Thermally stable at temperatures of interest, < 200 °C

» Greater water uptake, but decreased tensile strength than
Nafion 117

» Water soluble — need to be immobilized

42
S. Malhotra et al., J. Electrochem. Soc. 144 (1997) L.23



Proton transport in polymer/nano particle
composite membranes

& Water +8 Hydronium . Nanoparticle (HPA)

» Increases the swelling of the membranes at lower relative
humidity

» Increases the resistance to fuel crossover

» Increases the proton transport through the water phase and
reduces methanol permeability
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Hydrogen sulphates, MHSO,

M - Rb, Cs, or NH,"

» H-bonded solid acids with disordered phases show high
conductivity

» Upon slight heating changes to disordered structure

» Proton transport 1s due to reorientation of SO, groups in the
disordered structure

Drawbacks

» Water soluble

» Poor mechanical strength

» Volume expansion at raised temperatures

» SO, reduced under H, atm "



Proton transport mechanism in CsHSO,

S

» CsHSO, consist of oxyanions, linked together through hydrogen bonds

» At 141°C it undergoes a “superprotonic” phase change (from monoclinic
to tetragonal structure)

» Undergoes rapid reorientation - time scale 10! ! sec
» Proton conductivity 10 S cm!

45
S. M. Haile et al, Nature 410 (2001) 1589



Hybrid Organic Inorganic Composite

membranes
Organic Inorganic
PVA, PEG, GPTS Si0,, Zr0O,, TiO,
Active Moiety

POM
Value adding i



Conceptual representation of Hybrid Composite
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Characteristics of Hybrid Inorganic-Organic Composites

» Hybrid membranes — Isotropic, flexible, amorphous nanocomposite
materials

» Material properties can be widely controlled
» Thermal stability can be improved

» The composite is flexible and homogeneous

48



Systems investigated

» GPTS*-STA"-SiO, 2| ]
» GPTS-STA-ZrP
3 - _
» GPTS-S10,, H" conductivity
1x107 - 3.6x10°Scem™at | = | S~ P
20 - 100°C >
> GPTS-SiO, with 30 wt% .l p— D
. . —m— GPTS-30STA-SI02
STA, H" conductivity 1.4 x . —o— GPTSMSTAZP,
10°-1.9x 102 S em™! at A N -
20 — 100°C °f Do | S sttt
» GPTS—ZrP 30 wt% STA, H' “-\,ﬁ\&
conductivity 2 x 102 S em™! at T
100°C .
10T (°K")
*3-glycidoxypropyltrimethoxysilane
49

# silicotungstic acid



» Inorganic additives enhanced
thermal stability and water uptake

» The proton conducting path is
through the pseudo-polyethylene
oxide network

= Si(CH,),;OCH,
CH, CH O
P AR N 8 S AL
i % / \ P \\
CH O CH,
= Si(CH,),0CH,

JU
Y. Park et al., Solid State Ionics 145 (2001) 149
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Challenges ahead for the development of membranes for
DMFC

» Membranes with controlled methanol permeability represents a primary goal

» Nafion - Instability at T > 80°C & RH < 100%, diffusion of other species and
cost (~ 1000 $/m?)

» Alternative membranes - sulfonated polysulfones (PSU), polybenzimidazole
(PBI), sulfonated polyetherketones (SPEK), & sulfonated polyetheretherketones
(SPEEK)

» Sulfonation of these polymers leads to the formation of water-soluble polymers
at high sulfonation levels

» The procedure and the reaction conditions are sometimes extreme

» Compromise needs to balance the hydrophilicity and the hydrophobicity

51



Why Hybrid Organic-Inorganic Composites?

» Hybrid organic—inorganic composites show controllable physical properties
(thermal & mechanical) by combining the properties of both organic polymers
and inorganic compounds

» Composite membranes - Proton conductivity of polymer electrolyte
membranes can be considerably improved by incorporating fast proton

conductors

» Fast proton conductors - Zirconium phosphate, Titanium phosphate,
Calcium phosphate, Heteropolyacids, Boron phosphate (BPO,)

» The strong interaction between the organic polymer and inorganic mineral is
expected to result in a hybrid with markedly improved properties
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Objective

To develop a simple and controllable fabrication method

To develop self-humidifying membrane

To develop cost effective membrane with appreciable

conductivity and thermal and mechanical stability

53



PVA-ZrP-SWA (10,20 & 30%) composite membranes

PVA is cost effective polymer

HPAs are generally water-soluble

Composite matrix reduces the leaching of HPA
Zirconium phosphate - suppress crack formation

- mitigates HPA solubility
- contributes to protonic conduction

54



Preparation of Zirconium phosphate

10 M H,PO,

1M ZrOCl,.8H,0

Stirred for 3 h

v

o - Zt(HPO,),. H,0

Dried at 95°C for 2 h and stored at 100 % RH
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Preparation of PVA-ZrP-SWA composite

PVA
« H,0O
/1P >
Refluxed for 6h |+« POM
Clear
solution
« Gelated

Clear viscous gel

56



Cu K, XRDpatterns of composite membranes and its components for
comparison

» 2 0 =20° corresponds to the (101) plane of PVA
» 2 0 =20to40° - overlap of the diffraction lines of ZrP and SWA

» Absence of any sharp diffraction line - uniform distribution.
57
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FT-IR spectra of composite membranes

Characteristic bands of PVA - 3260 cm™! and 2900 cm™! represent O—H stretching and
—CH, stretching; 1420 cm™! is for —~CH; bending

Characteristics of ZrP - 500 cm! and 1050 cm! are due to Zr-O and P-O, asymmetric
stretching; 969 cm-! is due to P-OH asymmetric stretching

Band of W-Ob-W blue shift from 779 to 790 cm™!; W-O, bond red shifted from 926 to
918 cm™!
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TGA analysis of composite embrarnes 1T a temperature range from 50 to 800 °C

» At 100 °C - loss of absorbed water molecules
» At 200-300 °C - decomposition of polyvinyl alcohol

» >300 °C - decomposition of silicotungstic acid to respective metal
oxides combined with loss due to phase transition

59



Water uptake, swelling and IEC values for different hybrid
membranes with a 250 um thickness

Membrane Water uptake (wt %)| Swelling (%) IEC(meq/g)
PVA-ZrP-SWA(10%) 204 90 0.902
PVA-ZrP-SWA(20%) 388 170 0.958
PVA-ZrP-SWA(30%) 482 230 1.07

[EC = VM
dry

IEC - Ion-exchange capacity (meq g™1),

V' - Added titrant volume at the equivalent point (ml),
M - Molar concentration of the titrant &

W4y -The dry mass of the sample (g)
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Surface morphology

PVA-ZIP-SWA(10%)  PVA-ZrP-SWA(20%)  PVA-ZrP-SWA(30%)
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Proton conductivity at 60 % RH as a function of temperature

Frequency: 10 Hz to 1 MHz
Amplitude: 5 mV
at 60 % RH
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Methanol cross over studies

0.05

—&— Nafion 115

1 —@—PVA-ZrP-SWA(10%)
—A—PVA-ZrP-SWA(20%)
—¥—PVA-ZrP-SWA30%)

&

=

=
]

0.03

0.02 -

0.01

Crossed methanol concentration (M)

———— v

0.00

20 40 60 80 100 120 140 160 180

Time (min)

Concentration of crossed methanol as a function of crossover time



4.0x10°
3.5x10° i
3.0x10° !
2.5x10° i
2.0x10° !

1.5x10° 1

Methanol permeability (cmzs'l)

1.0x10°° -

5.0x10"

0.0

Nafion 115

PVA-ZrP-SWA(10%)

PVA-ZrP-SWA(20%)

PVA-ZrP-SWA(30%

Methanol permeability of hybrid membranes compared with Nafion 115
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PVA-ZrP-CsHPA (Cs salt of SWA)

composite membranes

HPA solubility
v forming composites

v ion exchanging protons of HPA with larger cations like Cs™,
NH,", Rb" and TI"
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Preparation of salts of silicotungstic acid

Silicotungstic acid solution

Neutralized with
cesium carbonate

v

Salts of silicotungstic acid

Dried at RT

v

Crystal of Cs-SWA

Kept in constant-humidity air until constant mass was attained 66



Water uptake, swelling and IEC values for PVA-ZrP-Cs,SWA and
PVA-ZrP-Cs,SWA hybrid membranes with a 180 um thickness
compared with Nafion 115

Membrane Water uptake Swelling (%) IEC (meq/g)
(o)
PVA-ZrP-Cs SWA 260 100 3.2
PVA-ZrP-Cs,SWA 140 85 3
Nafion®115 22 12 0.9
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Cu K, XRD patterns of PVA-ZrP-Cs,SWA and PVA-ZrP-Cs,SWA hybrid membranes

»  The broad hump in the 20 range 20 to 35 is due to the presence of PVA
and zirconium phosphate
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Assignments of main absorption bands for PVA-ZrP-Cs,SWA and
PVA-ZrP-Cs,SWA hybrid membranes

Vibration frequency (cm-1) Bond Assignment
PVA-ZrP-Cs,SWA PVA-ZrP-Cs,SWA
981 cm! 969 cm-! W=0; stretching
917 cm-! 916 cm! X-0 stretching
876 cm-! - corner sharing
W-0O,-W
744 cm! 793 cm! edge sharing
W-0O,-W
3274 cm! 3257 cm! O-H stretching
2906 cm-! 2907 cm-! —CH,, stretching
1426 cm! 1413 cm! —CH, bending
504 cm-! 525 cm! Zr-O symmetric stretching
1018 cm™t 1085 cm-! P-O, symmetric stretching
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Scanning electron micrographs of PVA-ZrP-Cs,SWA and PVA-ZrP-
Cs,SWA hybrid membranes
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Crossed methanol concentration (M)

0.05
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Concentration of crossed methanol as a function of crossover time
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0.030 4 — =— -Nafion® 115 -3
—— PVA-ZrP-Cs SWA SN
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g
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Comparison of conductivity and permeability for various membranes

Membrane RH | Temperature | Conductivity | Permeability References
(%) (°C) (Sem™) (cm’s)
PVA-ZrP-Cs, SWA 50 100 0.013 2x 10 J. Power Sources (2006,
Inpress)

PVA-ZrP-Cs,SWA 50 100 0.02 3x10°¢ "

Nafion® 115 100 90 0.03 3.5x 10 "

Nafion®115/Cs*,NH4*, Rb* 35 120 0.016 - J. Membr. Sci., 217

and TI* modified PTA (2003) 5

SPEK/ZP/ZxO, 100 70 23x 1073 - Solid State Ionics, 162—

(70/20/10 wt %) 163 (2003) 269-275.

PVA/PWA/SIO, - - 0.004-0.017 107to 1078 Solid State Ionics, 171
(2004) 121-127

PEG/SiO,/SWA 100 80 0.01 10°to10° J. Power Sources, 139
(2005) 141-151

PEG/SiO,/PWA - - 1073 to 1073 10°6to1077 J. Membr. Sci., 254
(2005) 197-205

PVA-SiO,—SWA 100 100 4.13x 1073 - J. Membr. Sci., 275
(2006) 105-109

SPEEK/PWA 100 100 1.7x 1072 - J. Membr. Sci., 254

(2005) 197-205
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Conclusions

v" Composite membranes with polyvinyl alcohol as organic matrix and
zirconium phosphate and silicotungstic acid as inorganic components were
prepared by a simple method

v" Water uptake, IEC and proton conductivity increased with silicotungstic acid
content.

v Though number of reports are available in literature on stabilizing the HPA in
membrane matrix, a combined approach of composite formation with salts of HPA
was investigated.

v These composite membranes exhibited reduced methanol crossover compared
to Nafion 115

v' At 50 % RH, the protonic conductivity of the hybrid membranes was in the
range of 10~ to 10> S cm’!

v The open circuit voltage (OCV) for the cell with PVA-ZrP—Cs,STA hybrid
membrane 1s 0.652 V and that for PVA-ZrP—Cs,STA hybrid membrane is 0.619
V which 1s higher compared to the cell with Nafion® 115 (0.610 V) indicating
reduced methanol crossover.

v Though they exhibit little lower proton conductivity it appears as promising
materials due to its reduced methanol crossover. 76
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