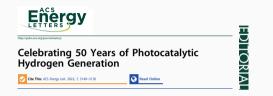
Wavelength-Tailored Photon-Assisted Catalysis: Optimizing Interfacial Dynamics for Solar Fuel Production

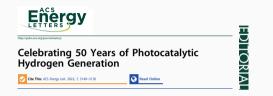
Hariprasad Narayanan

National Centre for Catalysis Research Indian Institute of Technology Madras

Research Ideas Discussion with


Professor Kazunari Dōmen University Professor The University of Tokyo

January 23, 2025



 The refinement of methods to aid photogenerated charge separation in photocatalyst particles (via heterojunction formation or crystal-facet dependent potentials) remains required to ensure high solar-to-hydrogen conversion efficiency.

- The refinement of methods to aid photogenerated charge separation in photocatalyst particles (via heterojunction formation or crystal-facet dependent potentials) remains required to ensure high solar-to-hydrogen conversion efficiency.
- Understanding and improving the robustness and stability of low-bandgap photocatalytic systems will be needed to bring this technology into the practical application.

- The refinement of methods to aid photogenerated charge separation in photocatalyst particles (via heterojunction formation or crystal-facet dependent potentials) remains required to ensure high solar-to-hydrogen conversion efficiency.
- Understanding and improving the robustness and stability of low-bandgap photocatalytic systems will be needed to bring this technology into the practical application.
- Computer-aided material discovery

Statement of Problem

This time we have to check whether what we followed in the last five decades in right or not?

• Limited Understanding: Complex interplay between material properties, light characteristics, and catalytic performance

Statement of Problem

This time we have to check whether what we followed in the last five decades in right or not?

- Limited Understanding: Complex interplay between material properties, light characteristics, and catalytic performance
- **Traditional Focus**: Emphasis on material modification while overlooking crucial role of wavelength and intensity of incident photons

Statement of Problem

This time we have to check whether what we followed in the last five decades in right or not?

- Limited Understanding: Complex interplay between material properties, light characteristics, and catalytic performance
- **Traditional Focus**: Emphasis on material modification while overlooking crucial role of wavelength and intensity of incident photons
- **Systematic Studies**: Lack of comprehensive research on photon characteristics-catalytic performance relationship

This time we have to check whether what we followed in the last five decades in right or not?

- Limited Understanding: Complex interplay between material properties, light characteristics, and catalytic performance
- **Traditional Focus**: Emphasis on material modification while overlooking crucial role of wavelength and intensity of incident photons
- **Systematic Studies**: Lack of comprehensive research on photon characteristics-catalytic performance relationship
- Methodology Gaps: Fragmented efforts and absence of standardized material design protocols

This time we have to check whether what we followed in the last five decades in right or not?

- Limited Understanding: Complex interplay between material properties, light characteristics, and catalytic performance
- **Traditional Focus**: Emphasis on material modification while overlooking crucial role of wavelength and intensity of incident photons
- **Systematic Studies**: Lack of comprehensive research on photon characteristics-catalytic performance relationship
- Methodology Gaps: Fragmented efforts and absence of standardized material design protocols

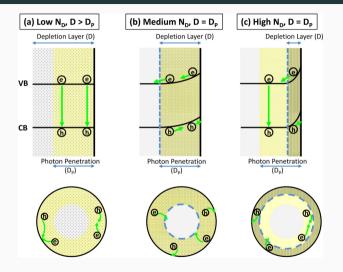
Need for a Paradigm Shift

Move from material-centric approaches towards comprehensive understanding of light-matter interactions in catalytic processes

Key Concepts

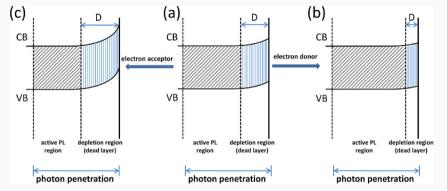
- Primary process: Charge carrier excitation under controlled light conditions
- Photon absorption follows exponential decay:

Photon Intensity $\propto e^{-lpha x}$


• Penetration depth (skin depth):

$$\delta = rac{1}{lpha} ext{ or } lpha^{-1}$$

Material Examples Penetration depth


- Fe₂O₃: 118 nm (at 550 nm)
- CdTe: 106 nm (at 550 nm)
- Si: 680 nm (at 510 nm)

Dopant Concentration and Band Bending

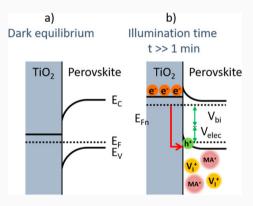
Chemical Reviews, 2012, 112(10), 5520-5551

Surface Band Bending of TiO₂

Electron donor molecules (1-C₄H₈, C₃H₆, C₂H₅C \equiv CH, CH₃C \equiv CH, C₂H₄, HC \equiv CH, H₂O, H₂); electron acceptor molecules (O₂, N₂O)

Chem. Rev. 2012, **112**, 5520–5551; Bull. Chem. Soc. Jpn. 1991, **64**, 543; J. Am. Chem. Soc. 1988, **110**, 4914

Current Practice


- Use of broad spectrum sources
 - AM1.5
 - Xe lamps
 - Hg lamps

Resulting Issues

- Non-uniform penetration depths
- Variable charge carrier generation
- Increased recombination rates
- Poor control over excitation region

Focus only on bandgap excitation

Important Consideration Penetration depth should match space charge layer thickness

ACS Energy Lett. 2017, 2, 5, 950–956

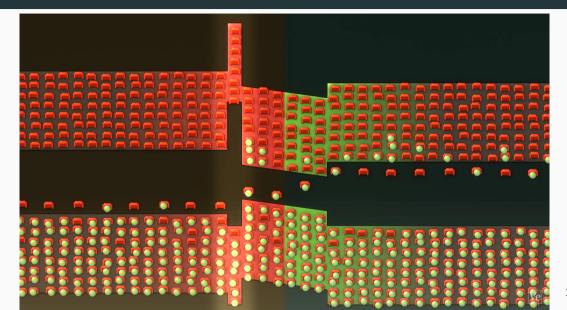
- Short 1 s light pulse can change the interfacial dynamics, meaning that ions can somewhat rearrange themselves at the interface in that time scale.
- Enhances the interface stability

Impact of Material Modifications

Factors Affecting Space Charge Layer

- 1. Doping
 - Alters electrical properties
 - Modifies space-charge layer extent
- 2. Metal Deposition
 - Creates Schottky junctions
 - Influences charge separation
- 3. Molecular Adsorbents
 - Modify surface states
 - Affect band bending

Iron Oxide Case Iron Oxide Band Gap : 2.2 eV (564 nm) $|Fe_2O_3$: 118 nm (at 550 nm)


Key Insight

Monochromatic, tailored wavelength selection is crucial - not arbitrary choice

The Design of Photocatalyst: Current Paradigm

Current Approach	Proposed Idea
Bandgap, band edge matching	Match photon penetration with space charge layer
Broad spectrum light	Monochromatic, tailored wavelength, Intensity Optimization, Pulse Radiation
Static material design	Dynamic consideration of surface modifications
Overlooked surface changes	Consider adsorbate-induced band bending
Less attempt to prepare high quality de- fect less photoelectrode	MOCVD

Reversing Blue LED Mechanisms for Photoelectrocatalysis

- Material Optimization via MOCVD: Utilize Metal-Organic Chemical Vapor Deposition (MOCVD) to modify and optimize heterostructures for photoelectrochemical water splitting, ensuring alignment between photon penetration depth and SCL thickness.
- Band Structure and Interface Engineering: Engineer the band structure and interfaces of wide bandgap semiconductors to enhance charge separation efficiency, minimizing electron-hole recombination.
- Surface Modifications and Co-Catalyst Development: Develop and apply surface treatments and integrate co-catalysts to facilitate efficient water splitting reactions, ensuring compatibility with holistic light management strategies.

The approach emphasizes the critical alignment of photon penetration depth with the SCL, ensuring that electron-hole pairs are generated within the region where internal electric fields can effectively separate them. This involves:

- Wavelength Tailoring: Selecting specific wavelengths to match the absorption coefficient and penetration depth with the SCL thickness, optimizing spatial charge separation.
- Intensity Optimization: Balancing light intensity to generate sufficient charge carriers without inducing band flattening, thereby maintaining effective charge separation.
- Temporal Control: Implementing pulsed illumination to mitigate photocatalyst degradation and manage carrier dynamics, enhancing both efficiency and longevity.

Thank You for Your Time and Attention Your insightful questions and comments have been invaluable. I welcome any suggestions or opinions you may have to further improve this research proposal.