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Setting the Context
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= Computer-aided material discovery
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Need for a Paradigm Shift
Move from material-centric approaches towards comprehensive understanding of

light-matter interactions in catalytic processes



Background: Light-Matter Interactions

Key Concepts Material Examples

. . o Penetration depth
= Primary process: Charge carrier excitation

under controlled light conditions = FeyO3: 118 nm (at 550 nm)

= Photon absorption follows exponential decay: = CdTe: 106 nm (at 550 nm)
= Si: 680 nm (at 510 nm)
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Dopant Concentration and Band Bending
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Surface Band Bending of TiO,
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Electron donor molecules (1-C4Hg, CsHg, CoHsC = CH, CH3C = CH, C,H4, HC = CH, H,0,
H>); electron acceptor molecules (O2, N,O)

Chem. Rev. 2012, 112, 5520-5551; Bull. Chem. Soc. Jpn. 1991, 64, 543; J. Am. Chem. Soc. 1988,
110, 4914



Current Challenges in Photon Management

Current Practice Resulting Issues

= Use of broad spectrum sources = Non-uniform penetration depths

= AML5 = Variable charge carrier generation
= Xe lamps N

= Increased recombination rates
= Hg lamps

= Poor control over excitation region
= Focus only on bandgap excitation

Important Consideration
Penetration depth should match space charge layer thickness



Pulsed lllumination

a) b) = Short 1 s light pulse can change the
Dark equilibrium lllumination time . . . .
: interfacial dynamics, meaning that
t>>1min

ions can somewhat rearrange
TiO, | Perovskite . )
themselves at the interface in that

time scale.

= Enhances the interface stability

ACS Energy Lett. 2017, 2, 5, 950-956



Impact of Material Modifications

Factors Affecting Space Charge Layer
1. Doping
= Alters electrical properties
= Modifies space-charge layer extent
2. Metal Deposition

= Creates Schottky junctions
= Influences charge separation

3. Molecular Adsorbents

= Modify surface states
= Affect band bending

Iron Oxide Case
Iron Oxide Band Gap : 2.2 eV (564 nm)| Fe2O3: 118 nm (at 550 nm)

Key Insight 9
Monochromatic. tailored wavelength selection is crucial - not arbitrarv choice



The Design of Photocatalyst: Current Paradigm

Current Approach Proposed Idea

Bandgap, band edge matching Match photon penetration with space
charge layer

Broad spectrum light Monochromatic, tailored wavelength,
Intensity Optimization, Pulse Radiation

Static material design Dynamic consideration of surface
modifications

Overlooked surface changes Consider adsorbate-induced band
bending

Less attempt to prepare high quality de- MOCVD

fect less photoelectrode
10




Reversing Blue LED Mechanisms for Photoelectrocatalysis

Ik
(N A

Ll jee®

o0 g0 0@ "amwf
® plope0el®
e ®e®®p0e
o 00 0®00
Cloo0l@® s. .
elceop0®e
o @00 G000
ol® 000 eel®

eceoCoece®e
| @ L] e 0@ iv.
o0 epe @@

| 00 0000

e®eoe00® roo
oL eoiege
0® o000 o

©® o000 @
eceoCo00 0



Key Research Objectives

= Material Optimization via MOCVD: Utilize Metal-Organic Chemical Vapor
Deposition (MOCVD) to modify and optimize heterostructures for
photoelectrochemical water splitting, ensuring alignment between photon
penetration depth and SCL thickness.

= Band Structure and Interface Engineering: Engineer the band structure and
interfaces of wide bandgap semiconductors to enhance charge separation
efficiency, minimizing electron-hole recombination.

= Surface Modifications and Co-Catalyst Development: Develop and apply
surface treatments and integrate co-catalysts to facilitate efficient water splitting

reactions, ensuring compatibility with holistic light management strategies.
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Innovative Approach: Holistic Photon Management

The approach emphasizes the critical alignment of photon penetration depth with the
SCL, ensuring that electron-hole pairs are generated within the region where internal
electric fields can effectively separate them. This involves:

= Wavelength Tailoring: Selecting specific wavelengths to match the absorption
coefficient and penetration depth with the SCL thickness, optimizing spatial
charge separation.

= Intensity Optimization: Balancing light intensity to generate sufficient charge
carriers without inducing band flattening, thereby maintaining effective charge
separation.

= Temporal Control: Implementing pulsed illumination to mitigate photocatalyst
degradation and manage carrier dynamics, enhancing both efficiency and longevity.
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Moving Forward

Thank You for Your Time and Attention
Your insightful questions and comments have been invaluable.
| welcome any suggestions or opinions you may have to further
improve this research proposal.
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