
Citation: Du, L.; Yang, Y.; Zhou, L.;

Liu, M. Greenhouse Gas Reduction

Potential and Economics of Green

Hydrogen via Water Electrolysis: A

Systematic Review of Value-Chain-

Wide Decarbonization. Sustainability

2024, 16, 4602. https://doi.org/

10.3390/su16114602

Academic Editor: Yongrok Choi

Received: 25 April 2024

Revised: 23 May 2024

Accepted: 27 May 2024

Published: 29 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sustainability

Review

Greenhouse Gas Reduction Potential and Economics of Green
Hydrogen via Water Electrolysis: A Systematic Review of
Value-Chain-Wide Decarbonization
Lifeng Du 1,2,3,4,* , Yanmei Yang 4, Luli Zhou 4 and Min Liu 5

1 Center for Energy and Environmental Policy Research, Beijing Institute of Technology, Beijing 100081, China
2 Beijing Key Lab of Energy Economics and Environmental Management, Beijing 100081, China
3 School of Management and Economics, Beijing Institute of Technology, Beijing 100081, China
4 China National Institute of Standardization, Beijing 100191, China
5 State Grid Zhejiang Electric Power Co Electric Power Research Institute, Hangzhou 310014, China
* Correspondence: 3120205800@bit.edu.cn

Abstract: Green hydrogen generated via water electrolysis has become an essential energy carrier for
achieving carbon neutrality globally because of its versatility in renewable energy consumption and
decarbonization applications in hard-to-abate sectors; however, there is a lack of systematic analyses
of its abatement potential and economics as an alternative to traditional technological decarbonization
pathways. Based on bibliometric analysis and systematic evaluation methods, this study characterizes
and analyzes the literature on the Web of Science from 1996 to 2023, identifying research hotspots,
methodological models, and research trends in green hydrogen for mitigating climate change across
total value chain systems. Our review shows that this research theme has entered a rapid development
phase since 2016, with developed countries possessing more scientific results and closer partnerships.
Difficult-to-abate sectoral applications and cleaner production are the most famous value chain links,
and research hotspots focus on three major influencing factors: the environment; techno-economics;
and energy. Green hydrogen applications, which include carbon avoidance and embedding to realize
carbon recycling, have considerable carbon reduction potential; however, uncertainty limits the
influence of carbon reduction cost assessment indicators based on financial analysis methods for
policy guidance. The abatement costs in the decarbonization sector vary widely across value chains,
electricity sources, baseline scenarios, technology mixes, and time scenarios. This review shows that
thematic research trends are focused on improving and optimizing solutions to uncertainties, as well
as studying multisectoral synergies and the application of abatement assessment metrics.

Keywords: green hydrogen; full value chain systems; climate change mitigation; carbon reduction
potential; carbon abatement costs

1. Introduction

With carbon neutrality targets, green hydrogen energy has re-emerged with the versa-
tility to drive the transition to carbon neutrality as the cost of renewable energy declines
and global pressures to address climate change increase [1]. Green hydrogen plays an
important role in decarbonization pathways in energy-intensive sectors that are difficult to
electrify while serving as a long-term seasonal storage energy source to balance renewable
electricity supply and demand [2]. Projections and analyses under different scenarios have
been carried out at the global level [3–6]: by 2050, low-carbon hydrogen demand is in
the range of 0.5–6.6 billion tons/year, accounting for 6–16% of total final global energy
consumption and contributing to reductions in greenhouse gas (GHG) emissions in the
range of 8–22%.

GHG emission reductions and the economic benefits of emission reductions from
green and low-carbon technologies replacing conventional technologies can be used as
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reference indicators for technology selection, promotion investment, and the formulation
of market incentive policies [7,8], some of which have already enacted relevant policies for
the substitution of fossil energy fuels by low-carbon fuels [9,10]. As attractive alternatives
to fossil fuels, green hydrogen and its derived electrofuels are critical for climate neutrality;
however, rapidly scaling up the supply is challenging [11]. There are economic issues in the
scale-up of green hydrogen, and scientific accounting and quantification of the emission
reduction contribution from green hydrogen systems, analysis of the economic benefits of
their decarbonization pathways, and support of incentive policies can mitigate or solve the
challenges and issues affecting the development of green hydrogen. Studies that systemati-
cally summarize and analyze the positive role of hydrogen energy in promoting carbon
neutrality and achieving sustainable development (Table 1) show that green hydrogen
plays a multifunctional role in promoting the transition to clean energy.

Table 1. The literature review of the role of hydrogen decarbonization.

Target Research Dimensions Ref. Research Topics Year

Hydrogen

Hydrogen economy and
social

[12] Hydrogen economy 2006
[13] Hydrogen economy and sustainable development goals (SDGs) 2021
[14] Hydrogen economy 2022
[15] Socioeconomic aspects of hydrogen energy 2023

Industry chain of
hydrogen production–
storage and
transportation and
supply chain–application

[16] Hydrogen production impact on climate change 2022
[17] Low-carbon hydrogen projects toward decarbonization 2023
[18] Global trends in low-carbon hydrogen production 2023
[19] Modeling approaches used in the hydrogen supply chain (HSC) 2017
[20] Industrial decarbonization via hydrogen 2021
[21] Applications and industry chain technologies of hydrogen 2022

Low-carbon transition of
energy systems

[22] Role of hydrogen in low-carbon energy futures 2018

[23] Role, cost, and value of hydrogen energy systems for deep
decarbonization 2019

[24] Developing international activity in hydrogen technologies and fuel
cells 2020

[25] Role of hydrogen in the 21st-century energy transition 2021

Green
hydrogen

Hydrogen economy and
social

[26] Green hydrogen economy 2006
[27] “Renewable” hydrogen: prospects and challenges 2011
[28] Green hydrogen economy for a renewable energy society 2021
[29] Green hydrogen research 2022
[30] Green hydrogen market 2022
[31] Policy design for green hydrogen 2023

Industry chain of
hydrogen
production–storage and
transportation and
supply
chain–application

[32] Hydrogen production from renewable and sustainable energy
resources 2016

[33] Hydrogen production from renewable energy, change energy, and
fuel markets 2019

[34] Green hydrogen advances the carbon-free society 2022
[35] Solar and wind-based green hydrogen production systems 2023
[36] Renewable hydrogen production technologies 2023

[37] Renewable hydrogen-based strategies for stationary power
applications 2021

Low-carbon transition of
energy systems

[38] Green and blue hydrogen in the energy transition 2020
[39] Blue and green hydrogen energy to meet decarbonization objectives 2022
[40] Energy decarbonization via green H2 or NH3 2022

These studies focused on the thematic scope of hydrogen energy and green hydrogen,
and the research dimensions can be categorized into three levels: the hydrogen economy
and society; the industry chain of hydrogen production–storage and transportation and
supply chain–application; and the low-carbon transition of energy systems. Currently,
carbon emission reduction analyses of the entire value chain system for green hydrogen to
replace traditional technologies from a climate change perspective are lacking. With the
explosive growth of green hydrogen projects [17], the economic benefits of the green hydro-
gen decarbonization pathway are significant for the sustainable development of industry
and the formulation of market incentive policies, and a basic and comprehensive systematic
analysis is necessary. This systematic overview addresses the following questions:
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(1) What are the hotspots for research on the potential and economics of emissions
reduction from green hydrogen in mitigating climate change in the context of the
entire value chain system? What are the primary influencing factors?

(2) Methodological modeling of carbon emission reduction potential and the cost of green
hydrogen for climate change mitigation. What are each value chain’s assessment
indicators, uncertainties, and solutions? What are the implications of value-chain-
wide mitigation effects?

(3) What are the trends and directions for research on the potential and economics of
green hydrogen emission reduction?

This system provides an overview of the impact of green hydrogen for solar and
wind renewable electricity electrolysis water on global climate change and analyzes the
research hotspots, methodological models, and research trends of green hydrogen carbon
emission reduction from the perspective of climate change mitigation through bibliometric
measurements from 1996–2023; it is oriented to the whole value chain system, improves
the methodology of green hydrogen emission reduction, facilitates the incorporation of
green hydrogen emission reduction into the carbon market, provides a theoretical basis for
policies such as the subsidy of green hydrogen carbon emission reduction, and provides
suggestions for the formulation of an incentive policy for green hydrogen for countries or
regions undergoing energy transition.

2. Methodology
2.1. Research Framework

This study assessed the characteristics of the literature on the potential and economics
of GHG emission reductions from green hydrogen from 1996 to 2023 through bibliometric
analysis and a systematic evaluation approach. Figure 1 illustrates the research framework
of this systematic review.
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2.2. Research Scope

Green hydrogen generated from water electrolysis using solar and wind as renewable
energy sources (RES) is called “green hydrogen”. This review considers green hydrogen
production in off-grid and grid-connected modes, where grid electricity is only used as
a storage buffer and a backup supply under strict limitations (no more than 10% of the
electricity supply [41]). Hydrogen production systems mainly include mature alkaline
(ALK) and promising polymer electrolyte membrane (PEM) electrolysis equipment [3].
Combined with a systematic review of the reviewed literature (Table 1), the green hydrogen
decarbonization system includes green hydrogen production, hydrogen storage, trans-
portation and supply chain, hydrogen application, hydrogen integrated energy system,
and green hydrogen decarbonization research at different geospatial levels (Figure 2); the
relevant technology maturity indices related to the production and conversion pathways in
the hydrogen value chain refer to the results of the global state-of-the-art analysis in the
International Energy Agency (IEA) [42].
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In this review, carbon emissions refer to GHG emissions in a broad scope concerning
the concepts and paradigms of ISO’s IWA 42:2022(E) document net-zero guidelines [43].
GHG emission reduction refers to the quantified decrease in GHG emissions related to or
arising from an activity between two points in time or relative to a baseline. In comparison,
the GHG baseline refers to quantified GHG emissions and the removal of an organization
at a specified time against which progress to net zero assessment can be performed between
two points in time or relative to a baseline. Furthermore, the scope of carbon reduction
across the green hydrogen value chain has expanded based on the concept of three types of
climate change mitigation programs proposed by Babacan et al. [44]. Decarbonization of
green hydrogen production, application, and other links in the value chain in the baseline
scenario is carbon avoidance. The synthesis of green hydrogen and CO2 into fuels is carbon
embedding, where the carbon source is defined as carbon dioxide obtained from direct air
capture or biopoint sources [45].
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2.3. Method Implementation

The bibliometric analysis and systematic evaluation consisted of the following five stages:

2.3.1. Stage I: Extraction, Purification, and Review of the Literature

The first stage of this analysis involved the literature extraction, purification, and
review based on a systematic review. The data used for this study were mainly from the
Science Citation Index Expanded (SCIE) and Social Science Citation Index (SSCI) published
in the Web of Science (WOS) core repository. Appendix A Table A1 documents the detailed
three-step process and basic information about the literature reviewed;

2.3.2. Stage II: Bibliometric Analysis and Distributional Characteristics (Section 3)

The second stage of this analysis is an econometric analysis of the literature on green
hydrogen emission reduction. In the first step, the characteristics of the field are analyzed
using bibliometric analysis, which, in general, includes the characteristics of the temporal
and spatial distribution of the research results, the influence of authors and institutions,
collaborative relationships, citations, and keyword analysis [46]. This study uses the
journal impact factor (IF) to measure the journal’s impact, and this paper uses the h-index
to measure the author’s influence [47]. The visualization tool at this stage was the VOS
viewer [48]. In the second step, a typological approach and manual coding analysis [49]
were used to characterize the distribution of the literature across the range of the study
system based on the screening scope of the research literature;

2.3.3. Stage III: Influencing Factors and Research Hotspots (Section 4)

In the third stage, the influencing factors and hotspots of the research topic were
identified. In the first step, a map of research hotspots for green hydrogen carbon reduction
was created using co-occurrence analysis of keywords and network analysis. Bib Excel was
used for network analysis to extract information downloaded from the WOS core repository,
and the Pajek and VOS viewers were used to visualize the analysis results [50]. In the
second step, based on high-frequency words, papers were classified and systematically
analyzed for research hotspots through manual coding analysis to discuss the influencing
factors closely related to the research topic [51];

2.3.4. Stage IV: Systematic Evaluation of the Green Hydrogen Carbon Emission Reduction
Assessment Methodology (Section 5)

The fourth stage of this analysis used the system evaluation method [49] to analyze the
method model of green hydrogen carbon emission reduction assessment from the perspec-
tive of climate change mitigation and the value chain system emission reduction effect. It is
divided into three steps. The first step analyzes the methodological model of green hydro-
gen carbon abatement potential, and the second step analyzes the methodological model of
green hydrogen carbon abatement economic assessment. These two systematic evaluation
steps include analytical carbon emission reduction assessment methods, assessment indica-
tors, baseline scenario analysis, uncertainty analysis, and corresponding decarbonization
links. In the third step, the emission reduction economic data of different value chain
decarbonization links of green hydrogen were extracted, the main factors affecting the
economic impact of emission reduction were analyzed, the emission reduction effects of
different sectoral decarbonization pathways were evaluated, and insights were provided;

2.3.5. Stage V: Identification of Research Trends and Potential Research Directions (Section 6)

The final stage of this analysis was further exploratory research based on the results
of the analyses in Stages II, III, and IV, combining bibliometric analysis and systematic
evaluation methods to identify research trends and potential research directions. It is
divided into two steps. In the first step, the time series graph and the thematic trend graph
of the literature keywords are plotted, in which the thematic trend analysis is performed by
the bibliometrix R-tool [15,52]. In the second step, the research trends and potential research
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directions for green hydrogen carbon emission reduction are systematically evaluated in
each section in terms of the shortcomings of existing studies.

3. Characteristics of the Spatial and Temporal Distributions of the Literature

Based on the extraction, purification, and the literature review, 706 studies
(Appendix A Table A2) on green hydrogen carbon emission reduction were obtained.
The literature spans from 1996 to 2023 and involves 97 journal sources, with an average of
29.51 citations per document, 31,621 total references, 20,836 total citations, 2359 authors, and
1815 authors’ keywords. The econometric analysis of this study focuses on the temporal and
spatial distribution characteristics of the literature as well as the research hotspots of the
hydrogen energy value chain, and the distributions of major journals, research institutions,
and authors are shown in the Supplementary Materials.

3.1. Characteristics of Spatial and Temporal Distributions
3.1.1. Total Number of Articles and Citations by Time

The literature on green hydrogen carbon emission reduction research is divided into
three stages according to the number of publications and citations in time (Figure 3):
stage 1 is 1996–2005, when the relevant research topics began to be published; stage 2 is
2006–2015 when the number of publications was relatively small, and there was not yet a
full awareness of green hydrogen emission reduction; and stage 3, 2016–present, when the
number of publications began to grow, and the 2015–2022 growth rate averaged 67.6%. In
2015, the Paris Agreement, which symbolizes positive global action against climate change,
was officially signed, and 17 United Nations SDGs were established, aiming to thoroughly
address the three dimensions of social, economic, and environmental development in an
integrated manner from 2015 to 2030. The clean energy nature of green hydrogen began
to receive attention from scholars. In 2020, net-zero and carbon-neutral targets received a
global response, and research on green hydrogen–carbon reduction exploded.
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3.1.2. Geographical Distribution of Countries and Manifestations of Cooperation

The 706 research papers on green hydrogen carbon emission reduction involve
80 countries and regions, of which the top nine countries account for approximately 80.74%
of the total number of articles, and nearly 26.25% of the countries have only one biased
article. Table 2 shows the number of publications and citations for the top nine countries.

Table 2. Top nine most productive countries in research. TP is the number of total publications; R (%)
is the ratio of the number of one country’s publications to the total number of publications; TC is the
number of total citations; TC/TP is the number of citations per publication.

NO. Country TP R (%) TC TC/TP

1 CHINA 97 13.739 1763 18.18
2 USA 95 13.456 3839 40.41
3 GERMANY 91 12.890 2795 30.71

4 UNITED
KINGDOM 67 9.490 3601 53.79

5 ITALY 54 7.649 1542 28.56
6 CANADA 45 6.374 2250 50.00
7 AUSTRALIA 42 5.949 2177 51.83
8 SPAIN 42 5.949 1157 27.55

9 SOUTH
KOREA 37 5.241 429 11.59

The U.S. started to study the green hydrogen economy earlier and is in the leading
position regarding the number of publications and citations in this field. China started
its research later and is now in first place regarding the number of publications but only
in sixth place in terms of citations and eighth place in terms of TC/TP indices, reflecting
that the overall academic influence is not high. Developed countries such as Germany,
the United Kingdom, Italy, Canada, and Australia are generally more advanced, whereas
developing countries are lagging. Figure 4 shows the geographical distribution of major
countries and cooperation performance (43 countries with more than five articles published).
The countries with closer cooperation are characterized by six clusters, with developed
countries having closer cooperative relationships.
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3.2. Characteristics of the Distribution of the Study Scope

Based on the scope of systematic research, the expansion is divided into six green
hydrogen value chain segments: (1) hydrogen production; (2) hydrogen storage and
supply chain; (3) decarbonization applications in hydrogen-coupled sectors; (4) hydrogen
integrated energy systems; (5) impacts of green hydrogen on carbon neutrality targets,
such as global and national targets; and (6) social impacts, such as market, policy, and
sustainability, of green hydrogen emission reductions. Figure 5 shows the annual research
highlights and the heat of decarbonization applications in the hydrogen-coupled sector.
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Overall, green hydrogen coupling for decarbonization in hard-to-abate sectors is the
value-chain link of greatest interest (approximately 36%; 253 articles), and green hydro-
gen is becoming an important decarbonization pathway for hard-to-electrify sectors with
increasing research on the economic benefits involved. The most common application of
green hydrogen for decarbonization is in the transportation sector, where land transporta-
tion dominates, navigation increases annually, and aviation is also beginning to appear in
relevant research. Next is the chemical sector, with integrated power-to-gas (PTG)/power-
to-liquids (PTL)/power-to-X (PTX) as the main focus and green ammonia and methanol
as the research focus. Then, in order, there are multisector coupling, the power sector, the
iron and steel sector, and the thermal sector. Among them, the research on the carbon
emission reduction benefits of hydrogen blending in natural gas systems belonging to
the thermal sector is increasing year by year. The final sectors involved are construction,
refining, and cement.

Hydrogen production is another major research hotspot in the value chain segment
(approximately 32%, 224 articles), involving defining green hydrogen standards and the car-
bon emission reduction benefits of green hydrogen production projects. Hydrogen storage
is currently the main technical bottleneck restraining market development in the hydrogen
energy industry, and HSC optimization is an essential part of carbon emission reduction
(approximately 9%, 66 articles). Green hydrogen production can increase renewable energy
consumption, which can be connected to heat, electricity, and other integrated energy
systems. Its clean energy carrier characteristics promote the low-carbon transformation
of energy systems, and the scope of hydrogen energy system research has covered global,
national, regional, and other models [22] (approximately 6%, 46 articles). Studying the de-
carbonization potential and economic development of green hydrogen at the national and
regional levels under the carbon neutrality goal (approximately 8%, 54 articles) has become
a reference for developing green and low-carbon hydrogen energy policies. More than
30 countries have initiated national hydrogen plans, strategies, and road maps [53]. Green
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hydrogen development is not economical relative to conventional or fossil energy sources.
Market-, policy-, and social-level research promotes the realization of green hydrogen
decarbonization (9%; 65 articles).

4. Main influencing Factors and Research Hotspots

A total of 1815 author keywords obtained from 706 studies were sorted and merged by
abbreviation, singular or plural type, and gender. Figure 6 shows the co-occurrence network
based on high-frequency keywords (more than six). Table 3 presents the classification
of high-frequency words using the hand-coding method. Research hotspots focus on
environmental, techno-economic, and energy system influencing factors.
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Table 3. High-frequency keyword summary categories. Numbers in parentheses before keywords
indicate the number of co-occurrences.

Factor Research Hotspots High-Frequency Keywords

Environmental
• Carbon emission accounting for green hydrogen systems
• Hydrogen emission Global Warming Potential (GWP) and

hydrogen leakage impacts

(61) Life cycle assessment (LCA)
(45) Decarbonization
(28) Carbon emissions
(14) Climate change
(11) GHG emissions
(6) Environmental impact

Techno-economic

• Cost competitiveness of renewable energy hydrogen
production

• HSC network and hydrogen application technology and
economic optimization

• Energy system decarbonization costs

(43) Hydrogen economy
(36) Levelized cost of hydrogen
(LCOH)
(22) Techno-economic analysis
(18) Economic analysis
(6) Techno-economic assessment
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Table 3. Cont.

Factor Research Hotspots High-Frequency Keywords

Energy systems

• Renewable energy intermittency
• Optimization of hydrogen production system capacity

allocation
• Conversion efficiency of RES for hydrogen production,

storage, and synthesis of hydrogen-based products
• Expansion of hydrogen production system based on

renewable energy utilization

(61) Electrolysis
(42) Wind energy
(28) Energy storage
(26) Solar energy
(25) Water electrolysis
(23) PTG
(21) Energy transition
(14) PTX
(7) Energy efficiency

4.1. Environmental Factors

Carbon emissions accounting for the green hydrogen value chain system, which is
the basis of carbon emission reduction research, suffers from inconsistencies in accounting
methods and system boundaries and from uncertainty in accounting data sources. Hy-
drogen production pathways and leakage rates are key levers for a large-scale transition
to a green hydrogen economy to obtain significant climatic benefits [54]. The leakage
rate of hydrogen produced by green hydrogen is greater than that of gray and blue hy-
drogen, and a combination of the leakage rates and long-term global warming trends of
hydrogen should be considered in carbon abatement studies based on traditional hydrogen
production pathways.

4.1.1. Carbon Emission Accounting Methodology and Data Source Issues

Central to the research on green hydrogen definitions [55] and standards [56] are the
carbon emissions of different hydrogen production pathways, with GHG emissions from
green hydrogen being lower than those from gray and blue hydrogens [57]. A discussion of
the methodology for the GHG life cycle assessment of hydrogen systems revealed that most
hydrogen energy systems apply a cradle/door-to-door boundary. The GWP in life cycle
impact assessment is mainly based on the characterization factors of the Intergovernmental
Panel on Climate Change (IPCC) [58]. Method selection variability significantly affects
the results of LCA studies. Valente et al. [59,60] constructed a coordination mechanism for
attribution methods, functional units, system boundaries, and multifunctional methods for
critical method selection, advancing the development of a protocol form for LCA studies of
hydrogen systems. As the scope of LCA systems expands, considering the supply chain for
hydrogen transportation and distribution and conducting optimized GHG accounting is
becoming widespread [61–64], and the environmental footprint assessment of hydrogen-
based chemicals based on green hydrogen is becoming a research direction [65]. A PTX
system’s power and carbon sources are key drivers of environmental impacts. There is a
lack of transparency at both the technical and methodological levels [66].

The main data sources for the background and prospective processes of life cycle
inventory analysis are the scientific literature and life cycle databases; however, the current
dilemma is that there are no or very few large-scale renewable electrolysis plants operat-
ing to collect operational data and plant specifications, and LCA practitioners typically
make simplifying assumptions about steady-state operation under average conditions,
lacking significant differences arising from the physical and thermodynamic constraints of
electrolysis and electrolytic post-treatment in different scenarios [67].

4.1.2. Hydrogen GWP and Hydrogen Leakage Impacts

Hydrogen is an indirect climate gas that induces perturbations in three potent green-
house gases: methane; ozone; and stratospheric water vapor. However, the role of hydrogen
in reducing GHG emissions is uncertain, necessitating a deeper understanding of the GWP
of hydrogen. Figure 7a shows the 100-year global warming potential (GWP100) of hydrogen
emissions; there is a noticeable trend of increasing scholarly attention to the role of hydro-
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gen in the atmospheric greenhouse effect over the long term and in combination. The latest
findings are greater than 5.8 in the IPCC, yet the original data are still used in the Clean
Development Mechanism (CDM)’s just-released water electrolysis hydrogen emission re-
duction methodology [41]. Hydrogen leakage amplifies global warming impacts [68], and
hydrogen depletion occurs throughout the value chain [69]. Figure 7b shows the leakage
rates of hydrogen value chain links (see Table 4 for detailed data). Green, blue, and gray
hydrogen correspond to hydrogen leakage rates ranging from 4.00 to 15.71%, from 1.50 to
13.21%, and from 1.00 to 12.71%, respectively, across the system-wide value chain, which
is higher than the IEA’s net-zero scenario hydrogen demand under a high-risk scenario,
which could result in an economy-wide leakage rate of 5.6% [70]. The future hydrogen
transition scenarios considered by Hauglustaine et al. [54] suggested that a green hydrogen
economy is beneficial for reducing CO2 emissions in policy-relevant time horizons and
leakage rates.
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Table 4. Hydrogen leakage rate data sheet for full value chain systems.

Category Leakage Source Process Hydrogen Leakage Rates Ref.

Production

Gray hydrogen 1.00% [78]

Blue hydrogen
1.50% [79]

0.10–1.00% [68]

Green hydrogen
4.00% [80]

0.10–4.00% [68]
0.20% [81]

Conversion
and storage

Conversion–compression 0.14–0.27% [68]
Conversion–liquefaction 0.15–2.21% [68]
Storage—above-ground liquid 0.05–0.54% [68]
On-board storage 0.30–1.00% [76]

End-use

Natural gas blending 0.90% [82,83]
Chemical synthetic fuels 0.50% [77]
Iron and steel 0.50% [77]
Refineries 0.50% [77]
Other industries 0.50% [77]
Electricity generation 3.00% [82]
Road transport 2.30% [82]
Aviation 3.00% [77]
Shipping 2.30% [77]
FC and on-board system 0.10–1.00% [76]
Buildings 0.80% [84]
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Table 4. Cont.

Category Leakage Source Process Hydrogen Leakage Rates Ref.

Delivery

Pipeline transport and storage 2.00% [85,86]
Transportation–transmission 0.02–0.06% [68]
Pipeline local distribution 0.40% [82,87]
Transportation–distribution 0.0003–0.16% [68]
Truck transport and storage 5.00% [88]
Direct use on-site 0.20% [82,86]
Transportation by shipping 0.00–0.17% [68]
Ship 0.00–2.00%

[76]Pipeline 0.10–5.00%
Truck (transfuse and boil-off) 2.00–5.50%

4.2. Technoeconomic Factors

The techno-economic cost of a green hydrogen system directly determines the eco-
nomic benefits of green hydrogen carbon emission reduction. Considering the environ-
mental benefits of green hydrogen emissions, hydrogen production pathways will have
different cost values [89]. The techno-economic optimization of electric hydrogen systems
aimed at minimizing economic costs [90], optimization of the HSC design with integrated
consideration of the environment and economy [91], and the techno-economic optimization
of hydrogen substitution for traditional energy sources after integrating it into the energy
system [92,93] have advanced the optimal application of green hydrogen decarbonization
pathway options, increasing the economic value of green hydrogen emission reduction.

4.2.1. Cost Competitiveness of Hydrogen Production

The cost of renewable energy has fallen dramatically, and renewable hydrogen pro-
duced from RES through the PTG process has become cost-competitive in market ap-
plications [94]; the cost of green hydrogen synthesized chemical products such as green
ammonia [95], green methanol [96], and related hydrogen-based fuels [97] is mainly af-
fected by the price of electricity, the capital cost of electrolysis tanks, and the capacity factor
of the power plant. Considering conditions such as gains in carbon emission reduction, en-
vironmental benefits, and technological advances, green hydrogen is being scaled up. The
LCOH based on levelized cost of energy (LCOE) has become the most dominant evaluation
metric for comparing hydrogen production pathways and the economics of hydrogen-
based synthetic fuels [98–100]. The levelized cost of carbon mitigation (LCCM), applicable
to the hydrogen production pathway, has also become a new metric for discussion [101].

4.2.2. Optimization of the HSC and Hydrogen Application Pathways

The economic feasibility of the hydrogen supply was discussed concerning the ap-
plication of decision-making tools for hydrogen transportation routes and distribution
methods [102]. Sustainable large-scale hydrogen transportation projects based on exist-
ing natural gas pipelines are feasible [103,104]. In addition, cross-border green hydrogen
can meet the basic requirements of trading countries [105]. Applying green hydrogen in
emission-intensive sectors, such as steelmaking [106] and transportation [107], is generally
not economical compared to traditional technologies. However, research on optimization
models based on mixed integer linear programming (MILP) provides the most cost-effective
decarbonization pathways for hydrogen [108,109].

4.2.3. The Decarbonization Cost of Green Hydrogen in the Energy System Is Controversial

Hydrogen plays a conflicting role in the global energy scenario [110], and there is
currently controversy regarding the decarbonization cost of green hydrogen. Based on
life cycle economic evaluation, green hydrogen positively impacts the investment payback
period and overall life cycle net profit from renewable energy generation [111]. However,
due to infrastructure investment, the energy supply system transformation costs increase
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when green hydrogen schemes replace traditional hydrogen production methods [92]. In
an integrated energy system model analysis, coupling hydrogen production from various
RES with various industries led to a 13–56% increase in renewable energy generation and a
7–16% decrease in the overall system cost under deep decarbonization scenarios [112].

4.3. Energy System Factors

Green hydrogen production, storage, and conversion to hydrogen-based products are
manifestations of the multifunctionality of hydrogen as an energy carrier. The efficiency of
the energy utilization and energy conversion process is an influential factor that cannot
be ignored, and energy utilization and optimization based on the expansion of the hydro-
gen production system play an important role in economic and environmental aspects.
The expansion and optimization of energy utilization systems increase the difficulty of
environmental–economic analysis, and the carbon emission reduction economics of solar
off-grid water electrolysis hydrogen production systems considering energy storage have
been discussed in the literature on the carbon emission reduction economics of green
hydrogen [113].

4.3.1. Renewable Energy Intermittent Solutions

Renewable energy intermittency and power volatility directly affect green hydrogen
production [114]. Electrolyzers can provide additional flexibility to the grid [115], and green
hydrogen can significantly reduce renewable energy curtailment [116], thus expanding
the emission reduction potential and the role of electrohydrogen systems in the energy
transition. The electrolyzer to renewable energy power ratio and capacity allocation ratio
are key system parameters for the efficiency of green hydrogen production [117], with
ratios ranging from 1:2 to 1:5 in the current findings [98,118].

4.3.2. Energy Utilization and Conversion Efficiency Constrain Overall Effectiveness

Energy utilization losses and the decreasing efficiency of multiple conversions attenu-
ate emission reduction benefits. The amount of electricity needed for water electrolysis at a
low calorific efficiency of 60% is approximately 55 kWh/kgH2 [119]. In an environmental
LCA study of hydrogen production technologies, PEM was identified as a long-term option
for hydrogen production, requiring 54.6 kWh of electricity and 9.1 kg of water to produce
1 kg of H2 [120]. In a feasibility study evaluating CO2 reduction options regarding energy
use, the average energy consumption for hydrogen production by water electrolysis was
201.93 MJ [44]. According to a comparative assessment of renewable energy-based hydro-
gen production methods, the overall energy efficiency of solar photovoltaic (PV)-based
hydrogen production systems was 16.95% [121]. Hydrogen storage systems, although
feasible in current technology, lose 60% to 85% of their electricity owing to losses during
conversion and storage, with electricity-to-hydrogen-to-electricity efficiencies ranging from
15% to 40% [122]. The green hydrogen conversion of hydrogen-based products versus direct
electrification has a final efficiency gap of 2–14 times for different end-use applications [45].

4.3.3. Multiobjective Optimization of the Energy–Environment–Economy for Hybrid
Hydrogen Production Systems

Energy sources determine the entire life cycle of GHG emissions and cumulative
energy demand, and expanding hydrogen production systems based on energy sources
often focus on energy–environment–economy multiobjective optimization problems. Mul-
tiple hydrogen production methods are dominated by renewable electricity [123,124], and
hydrogen production systems have primarily expanded into hybrid systems based on
renewable electricity sources and grid-connected systems based on connections to the
grid [67,124–126]. Hybrid systems include the mixing of wind and PV power sources of
electrical energy [127,128], as well as the mixing of renewable energy systems with energy
storage systems, where the mixing of renewable sources of electrical energy serves to
increase emission reductions, improve the efficiency of the system, and reduce the cost
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of production [129,130]. Hydrogen is combined with short-term energy storage technolo-
gies such as batteries and ultracapacitors to balance efficiency and cost through control
systems and energy management strategies [122]. By setting the optimal size of the energy
storage system capacity to minimize the cost per unit of hydrogen production, carbon
footprint analysis was performed to quantify the carbon dioxide emissions of the proposed
system, and the environment–economy optimization enhanced the benefits of emission
reduction [131].

5. Methodological Study of the GHG Reduction Potential and Economics of
Green Hydrogen
5.1. GHG Reduction Potential of Green Hydrogen
5.1.1. Green Hydrogen Plays an Important Role in Coupling with Carbon Capture and
Storage (CCS) Technology

Carbon sources are important for measuring the potential for emission reduction.
Carbon embedding is part of carbon emission reduction, and green hydrogen emission
reduction is mainly reflected in the synthesis of hydrocarbons from renewable hydrogen
and CO2, in which the carbon source is mainly CCS technology. In the study of hydrogen-
based e-fuel climate change mitigation, carbon capture, and carbon cycling are emphasized
to achieve climate neutrality, and the amount of CO2 from direct air capture utilization
or biomass utilization can be considered part of emission reduction [45]. Taking green
methanol as a study, optimal cross-sectoral cooperation is required for the chemical sector to
achieve a sustainable economic transition, which may eventually become an essential chem-
ical that may be produced exclusively from carbon dioxide obtained from decarbonized
electric power mixes, direct air capture, or from biopoint sources to close the carbon cycle at
this point, taking into account global ecological constraints, as well as economic and social
criteria, the electric power mix, the available sources of carbon dioxide, and the temporal
evolution of natural gas and hydrogen prices to determine the best plan [132].

5.1.2. Methodology for Assessing the Green Hydrogen Emission Reduction Potential
and Uncertainties

The analysis modes of the green hydrogen emission reduction potential can be divided
into two main modes: the bottom–up analysis mode, which is mainly reflected in the
analysis of carbon emission reduction, with common indicators such as unit emission
reduction and total system emission reduction; and the top–down analysis mode, with the
amount of hydrogen demanded or the amount of hydrogen consumed under the carbon
emission target, as well as the amount of hydrogen allocated or the amount of product
substitution under different application scenarios. Decision-makers must carefully analyze
the carbon emission reduction effects generated by different hydrogen application pathways
and explore metrics that can be used to assess the energy savings and emission reduction
effects of specific hydrogen application pathways [133]. Table 5 summarizes methodological
studies of the key literature on the emission reduction potential of green hydrogen.

The climate impact assessment of various hydrogen production routes in the literature
varies widely, which relates to the perception of low-emission hydrogen pathways by
policymakers, investors, and consumers [134], as well as to the fact that the International
Hydrogen Trade Emissions Certification System faces many policy challenges in defining
the boundaries of accounting for hydrogen production emissions [135]. Some studies do
not consider indirect emissions from renewable electricity or default zero-carbon emissions
from renewable power generation [130]. In contrast, studies on green hydrogen emission
reductions relative to different baselines, such as gray and blue hydrogens, discuss the
variability of methodological choices for versatility. When electricity is sourced from
additional RES, the GHG footprint varies depending on the source of the electricity and
distribution choices [134]. The deep decarbonization benefits of renewable hydrogen are
influenced by the intensity and variability of solar or wind resources, the operational
performance of renewable electrolysis equipment, and the energy and GHG emissions
embodied in the global supply chain [67].
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Based on the characteristics of the HSC, the emission reduction analysis model of
hydrogen in the sectoral decarbonization pathway is based on the bottom–up engineering
model, with the baselines mainly based on traditional fossil energy technology. The indica-
tors of the emission reduction potential are mainly the GHG emission reductions per unit of
product, and the emission reduction potentials are reflected by the emission reductions at
the sectoral level and the substitution of the low-carbon products in some studies [136,137].
The analysis model at the regional and global levels is carried out in a top–down manner,
generally analyzing the emission reduction potential under various scenarios or assumed
carbon emission targets and adopting a bottom–up engineering model considering the tech-
nical characteristics of the HSC. The emission reduction potential indicators are regional
or global emission reductions and involve quantitative assessments of green hydrogen
production, demand, and energy consumption. Notably, emission reduction technologies,
such as CCS, are used as the baseline for comparison, reflecting the competition and synergy
between low-carbon and carbon-negative technologies [138]. Uncertainty influences on
carbon reduction potential analysis include uncertainty in scenario analysis assumptions
such as carbon neutral time, environmental targets, energy targets, and economic targets;
uncertainty in hydrogen leakage rates and hydrogen GWP; uncertainty in markets such as
energy prices and hydrogen prices; uncertainty in policy support such as carbon taxes and
carbon budgets; uncertainty in market demand; and uncertainty in resources such as land
use, mineral extraction, and use.

Table 5. Methodological study of green hydrogen emission reduction potential.

Ref. Baseline Main Influencing Factors Decarbonization Chain

[119] Steam methane reformation (SMR) Electricity portfolio Production

[134]
1⃝ Blue hydrogen
2⃝ Gray hydrogen

1⃝ Electricity source
2⃝ Multi-functionality
3⃝ Baseline

Production

[139] Coal-fired power Technological changes Electricity

[140] Conventional natural gas
1⃝ Functional unit
2⃝ Multifunctional methods Chemical

[137] Conventional oil refining Greenhouse gas emission intensity of
electricity (GHGE) Refining

[141] Conventional steelmaking GHGE Cement

[142] Conventional steelmaking
1⃝ Multifunctional methods
2⃝ System boundary Cement

[136] Diesel forklift Social cost of carbon (SCC) Transportation

[143] Truck fuel (gasoline/diesel) Hydrogen supply Transportation

[138]
1⃝ Fossil fuels
2⃝ CCS

1⃝ Carbon source
2⃝ Carbon price
3⃝ Quantity demanded
4⃝ Renewable energy capacity

Transportation

[144] Fossil fuel

1⃝ Construction and operation of power
plants, hydrogen plants
2⃝ GHGE
3⃝ Energy conversion efficiency
4⃝ Hydrogen compression pressure
5⃝ Upstream fossil fuel extraction and

transportation

Transportation

[145] Fuel-efficient vehicle

1⃝ Hydrogen vehicle substitution rate
2⃝ The minimum environmental objective
3⃝ Energy objective
4⃝ Economic objective

Regional (transportation)
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Table 5. Cont.

Ref. Baseline Main Influencing Factors Decarbonization Chain

[146] -
1⃝ Hydrogen prices
2⃝ Hydrogen demand Regional (transportation)

[147] -
1⃝ Time to peak emissions
2⃝ Cumulative carbon budget Country—China

[148] -

1⃝ Future costs and efficiencies of existing
technologies
2⃝ Disruptive new technologies or energy

carriers
3⃝ Aggregate demand for energy and

commodities
4⃝ Other assumptions (policy, trade, market

functioning and integration, social issues,
etc.)

Region—Europe

[54]

1⃝ Blue hydrogen
2⃝ Blue hydrogen and green hydrogen
3⃝ Gray hydrogen, blue hydrogen, and

green hydrogen
4⃝ Blue hydrogen and green hydrogen

1⃝ Hydrogen leakage rate
2⃝ Single or different combinations of

hydrogen source baselines
Global (production)

[149] -

1⃝ Power sourcing and integration
2⃝ Energy conversion and efficiency
3⃝ Siting, land use, mineral extraction and

use, water and electrolytes, electrode
materials for electrolysis, etc.

Global (production)

[150] - Representative concentration pathway (RCP) Global

5.2. GHG Reduction Economics of Green Hydrogen

Green hydrogen abatement costs must reflect value chain characteristics because
in different decarbonization segments, such as hydrogen production, hydrogen storage
and transportation, hydrogen application, and integrated hydrogen energy systems, the
baseline and targets for abatement are different, and the adaptability of the abatement cost
methodology is relatively different. Decision-makers rely on marginal abatement costs
(MAC) to assess feasible strategies and associated costs for achieving emission reduction
targets [151]. Babacan et al. [44] addressed the concept of carbon abatement and proposed
a carbon abatement cost of energy metric to compare the CO2 abatement performance of
different technologies. The reduction in total cost after introducing green hydrogen into
the energy system also indicates the economic benefits of emission reduction [112].

5.2.1. Evolution of Financial Analysis Methods Influenced by Uncertainties

Bottom–up modeling is the dominant approach in studies assessing abatement costs [50].
Finance accounting analysis (expert-based) is predominant in the green hydrogen produc-
tion and application value chain segments. Table 6 summarizes the literature on using
financial analyses to assess the cost of green hydrogen abatement. Granovskii et al. [152]
first analyzed the economic factors of green hydrogen to reduce GHG emissions, and the
financial analysis method was used to assess the abatement economics for hydrogen produc-
tion from underground coal gasification [153]. The LCOH has become an effective indicator
of the economics and competitiveness of different hydrogen production processes [99].
Based on the LCOE [154], the LCCM has been proposed as an indicator of improved cost as-
sessment methods for achieving a net-zero emission world [155]. The LCCM, which applies
to the hydrogen production pathway, has emerged as a new metric for discussion [101] and
has been used in hydrogen-based fuel abatement applications [156,157].
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The green hydrogen value chain system involves multiple paths and is complex, and
financial analysis methods suffer from uncertainties, such as the time-lapse of discounted
costs, changes in the cost of technological advances, behavioral explanations, and market
transactions [158–160]. The main methods used in the literature to address the impact
of uncertainty are scenario analysis and sensitivity analysis. Monte Carlo simulations
also address uncertainty in studying the economics of hydrogen energy abatement [161].
Dynamic abatement costs based on the hydrogen energy value chain and studies consid-
ering the benefits of policy implementation have also been explored [162]. In addition to
improvements in uncertainty resolution, a research trend in financial analysis methods is
an attempt to integrate abatement costs with the impact of climate policies to clarify the
role of derisking policies, including carbon pricing and subsidies, which affect the cost of
capital when incentivizing green-hydrogen low-carbon technologies [162].

Table 6. Economics of green-hydrogen emission reduction using financial analysis methods.

Ref. Energy
Sources Baseline Assessment

Indicators Time Main Influencing
Factors/Uncertainties

Decarbonization
Chain

[113] Solar
energy

1⃝ SMR
2⃝ SMR

with CCS

Carbon
avoidance
cost
(CAC-1)

2030

1⃝ Natural gas–SMR levelized cost
2⃝ Natural gas–SMR process

emissions
3⃝ Location
4⃝ PV capacity factor

Production

[149] Renewable
energy SMR

Marginal
cost of CO2
removal

Now
1⃝ Renewable electricity potential
2⃝ LCOE

Production
(Global)

[163] Offshore
wind SMR

Carbon
abatement
cost
(CAC-2)

Now - Production

[101]

1⃝ Wind
energy
2⃝ Solar

energy

SMR LCCM Now

1⃝ LCOE
2⃝ Electrolyzer technology
3⃝ Capital cost
4⃝ GHGE
5⃝ Overall system efficiency
6⃝ Weighted average cost of capital

(discount rate)
7⃝ Generation technology capacity

factor

Production

[136] Solar
energy SMR

GHG
abatement
cost
(GAC-1)

Now

1⃝ Solar plant lifetime
2⃝ Solar irradiance
3⃝ Solar to electricity efficiency
4⃝ Electrolyzer efficiency

Production

[164] Unspecified
Natural gas
or gasoline
fuel

CAC-1 Now

1⃝ GHG of different supply chains
2⃝ Grid CO2 emissions factor
3⃝ Transmission distance
4⃝ HSC energy penalty
5⃝ Landed cost of hydrogen

End-use:
Multisectoral
(transport,
power,
industry)

[165]

1⃝ Wind
energy
2⃝ Solar

energy

Fossil
MeOH CAC-1 2020–2035

1⃝ Large-scale PEM cost
2⃝ CO2 certificate prices
3⃝ LCOE

End-use:
Synthetic
methanol

[45]
1⃝ Wind

energy
2⃝ Solar PV

1⃝Natural
gas
2⃝Fossil

fuels

MACGHG
(fuel-
switching
CO2 prices)

1⃝
2020–2025
2⃝ 2050

1⃝ Energy efficiencies
2⃝ Life cycle GHG emissions
3⃝ Levelized cost and fuel-switching

CO2 prices of e-fuels

End-use:
Multisectoral
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Table 6. Cont.

Ref. Energy
Sources Baseline Assessment

Indicators Time Main Influencing
Factors/Uncertainties

Decarbonization
Chain

[161] Unspecified Fossil fuels CAC-2 Now

Capital expenditures
1⃝ Operational
2⃝ Exhaust aftertreatment
3⃝ Financing
4⃝ Additional

Operational expenditures
1⃝ Fuel
2⃝ Maintenance
3⃝ Carbon
4⃝ Additional

End-use:
Transportation
(maritime)

[166]

1⃝ Wind
energy
2⃝ Solar

energy

1⃝ Pipeline
imported
natural gas
2⃝ Imported

liquefied
natural gas

GHG
avoidance
cost
(GAC-2)

2020–2050
1⃝ GHG
2⃝ Cost

End-use:
Synthetic
low-carbon
natural gas

[167] Wind
energy

Conventional
oil refining CAC-2 Now

1⃝ LCOE
2⃝ Penetration of renewable energies
3⃝ Capital costs of wind farm

End-use: Oil
refineries

[157]

1⃝ Wind
energy
2⃝ Solar

energy

Oil, gas,
fossil fuels LCCM Now

1⃝ Capacity factor
2⃝ Capital cost
3⃝ CO2 resources price
4⃝ Jet fuel price
5⃝ Electricity price
6⃝ Biomass price
7⃝ Natural gas price
8⃝ Input feedstock intensity
9⃝ GWP of hydrogen

End-use:
Synthetic fuel

[152]

1⃝ Wind
energy
2⃝ Solar

energy

Gasoline
fuel CGHG Now

1⃝ Renewable sources of electricity
2⃝ Hydrogen compression
3⃝ Ratios in costs of electricity

produced
4⃝ Renewable natural gas costs

End-use:
Transportation

[168] Solar PV
Conventional
natural gas
fuel

CAC-1 Now

1⃝ PV size
2⃝ LCOH
3⃝ Energy over-price
4⃝ H2 content

End-use:
Natural gas
system

[169] Renewable
energy

Conventional
natural gas
system

CAC-1 Now

1⃝ Natural gas price
2⃝ Electrolyzer operating time at full

capacity
3⃝ LCOE from RES
4⃝ Injection configurations

End-use:
Natural gas
system

5.2.2. Bottom–Up Engineering Modeling Approach and Its Optimization Recommendations

Regarding decarbonization pathways for hydrogen applications in energy systems,
using system modeling approaches based on engineering-based analytical data is common
in the bottom–up models. A review based on global, multiregional, and national integrated
energy system modeling showed that hydrogen generates higher MAC owing to the higher
cost of hydrogen technologies [22]. Table 7 summarizes the typical literature on engineering
modeling approaches for assessing the cost of green hydrogen abatement.

Janzen et al. [170] evaluated the GHG emission levels and MAC of renewable or low-
carbon energy supply options as alternatives to conventional fossil energy technologies in
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oil sands using a long-range energy alternative planning system (LEAP). Wang et al. [156]
used the levelized cost of carbon abatement as an indicator of the economic benefits of
an urban hydrogen energy system with a multisectoral application using an engineering
model to conduct system cost discussion and optimization. Davis et al. [171] investigated
the GHG abatement potential and cost-effectiveness of blending hydrogen and natural gas
for economy-wide end-use energy consumption based on the LEAP model in conjunction
with an HSC model, considering a range of hydrogen production technologies, natural gas–
hydrogen blending rates, infrastructure strategies, and carbon policies. Yang et al. [172]
conducted a comprehensive dynamic least-cost modeling analysis of the role of clean
hydrogen in hard-to-abate sectors, such as heavy industry and heavy transportation, using
the multimodal prompt learning model, which encompasses the decarbonization potential
and abatement cost of green hydrogen, demonstrating that clean hydrogen can be used
as both a primary energy carrier and feedstock to significantly reduce carbon emissions
from heavy industries. Zhang et al. [173] addressed hydrogen decarbonization pathways
in multiple sectors of electricity, transportation, and heating, and abatement economics
were discussed in multiple aspects with indicators such as total system cost, the absolute
cost of abatement, and the marginal cost of abatement, and the impacts of technological
learning, energy efficiency, natural gas prices, and renewable energy subsidies on abatement
economics were analyzed in detail.

MAC curves can be optimized using the modeling tool EnergyPLAN [174,175]. The
EPLANopt MAC, a methodology used to determine the least-cost decarbonization pathway
for sectorally coupled energy systems, has been expanded and applied [176] and was used
in the study of hydrocarbon economics of transitioning from natural gas-fired generation
to 100% renewable energy generation [177]. Compared with financial analysis methods,
engineering modeling methods are more accurate, have a smaller margin of error, and
are more influential when used to guide policy [178]. Furthermore, green hydrogen car-
bon abatement cost modeling and optimization studies can be conducted based on the
EPLANopt MAC methodology in conjunction with minimum MAC curves for carbon
abatement strategies [179].

5.2.3. Economic Valuation of Emission Reductions Based on the SCC

One of the most important concepts in the economics of climate change is the SCC,
which refers to the economic cost of each additional ton of carbon dioxide or its equivalent
emissions. Estimates of the SCC are a measure of climate-policy objectives; however, there
is uncertainty about the value of the SCC. Over the past 10 years, the estimated SCC has
increased from USD 9 per ton of CO2 to USD 40 per ton of CO2 at a high discount rate and
from USD 122 per ton of CO2 to USD 525 per ton of CO2 at a low discount rate [180].

Emission reductions from renewable energy substituting for fossil energy and residual
renewable electricity electrolyzing hydrogen to replace fossil fuels were evaluated as
alternatives by establishing an economic linkage through the profit gained from short- and
long-term SCC concepts to assess the economics of emission reductions [181]. Specifically,
for fuel cell commercial vehicles (FCCVs) in the transportation sector, the economic value
model of life cycle carbon emission reduction was proposed by evaluating their life cycle
carbon emission reduction benefits; the carbon emission reduction effect of the life cycle
of FCCVs ranged from 14.53% to 70.19%, with an economic value of 0.02 to 1.19 RMB/kg
H2, which provides a scientific reference for the inclusion of hydrogen energy in China’s
carbon trading system, and policy provides a scientific reference [182].
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Table 7. Economics of green hydrogen emission reduction using bottom–up engineering modeling
approach.

Ref. Energy
Sources Baseline Assessment

Indicators Time Main Influencing
Factors/Uncertainties

Decarbonization
Chain
(End-Use)

[170]

1⃝ Wind
energy
2⃝ Solar

energy
3⃝ Other

low-carbon
energy

Traditional
technolo-
gies based
on fossil
energy

MACGHG 2019–2050

1⃝ Cost variance parameter
2⃝ Capital cost
3⃝ Natural gas price
4⃝ Industry growth
5⃝ Carbon credit values

Refining (oil
sands)

[138]

1⃝ Wind
energy
2⃝ Solar

energy

Fossil fuels GAC-1 2050 - Transportation

[156] Solar
energy

Conventional
fossil
energy

LCCM Now
1⃝ Capital costs
2⃝ PV penetration level

Multisectoral
(transportation,
industry)

[173] Unspecified
Fossil
energy
combustion

1⃝ Total
system costs
2⃝ Absolute

abatement
costs
3⃝ MAC

Now

1⃝ Technology learning
2⃝ Energy efficiency
3⃝ Natural gas prices
4⃝ Renewable energy subsidies
5⃝ Carbon abatement

Multisectoral
(electricity,
transportation,
heating,
industry)

[172]

1⃝ Wind
energy
2⃝ Solar

energy

Traditional
technolo-
gies based
on fossil
energy

CAC-2 2020–2060
1⃝ Green hydrogen production scale
2⃝ Green hydrogen blending ratio
3⃝ Traditional technology scale

Multisectoral
(cement, steel)

[171] Unspecified

Baseline
scenarios
with
different
carbon
prices

MACGHG 2021–2050

1⃝ Electrolysis learning rate
2⃝ Plant lifetime
3⃝ Natural gas supply emission

intensity

Natural gas
blending
systems

[183]

1⃝ Wind
energy
2⃝ Solar

energy

Baseline
scenario for
district
heating

CAC-2 2040
1⃝ Share of hydrogen
2⃝ Overall efficiency of hydrogen

boilers

Building
heating

5.3. Insights into the Economics of Decarbonization Pathways in the Green Hydrogen Value Chain

The green hydrogen abatement costs for each decarbonization step in Tables 6 and 7
were extracted (Figure 8), and the different currency units were harmonized. In addition, the
conditions for the energy sources, different baselines, and times were labeled accordingly.

The relatively higher abatement cost of green hydrogen from solar energy sources
compared to wind power sources is partly due to the consideration of higher emission
factors for solar power; the relative abatement is not as large as that for wind power,
which is consistent with the results in the hydrogen production segment as well as in the
continuation to the decarbonization application sector. In the time-scenario analysis, the
abatement cost of the green hydrogen decarbonization pathway decreased substantially,
considering the cost reductions due to technological advances. A comparison of the baseline
scenarios shows that the natural gas fuel baseline has a higher abatement cost than the
fossil fuel baseline, which is related to both the cleanliness and cost of natural gas, reflecting
the role of natural gas in driving energy transition and economic issues.
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Among decarbonization applications in hard-to-abate sectors, negative abatement
costs occur for green methanol synthesis (USD −131.6 tCO2e−1) (2020–2035), natural gas
systems (USD −16 tCO2e−1) (2021–2050), and refining (USD −41 tCO2e−1) (2020–2060).
This study shows that abatement cost in the above sectors will reach zero by approximately
2030, indicating that it is competitive with the baseline scenario.

Moreover, the average abatement cost of the chemical sector for the green methane
industry is less than USD 726 tCO2e−1; the average abatement cost of the iron and steel
industry is USD 176 tCO2e−1, and the average abatement cost of the cement industry is
USD 38 tCO2e−1; thus, prioritizing the green hydrogen decarbonization pathway is feasible
for these three industries.

In addition, the abatement cost range for the transportation sector is large, with a range of
USD 0–3200 tCO2e−1 for land transportation, an average of USD 964 tCO2e−1 for shipping, a
maximum of USD 1733 tCO2e−1 for shipping, and a range of USD 1776.8–1953.3 tCO2e−1 for
heating in buildings. The relative abatement costs of the transportation and building sectors
are large, and the two sectors need to consider the timing of green hydrogen decarbonization
applications and improvements in green hydrogen technologies as appropriate. Sectors must
consider the timing of green hydrogen decarbonization applications and improvements in green
hydrogen technology, where appropriate.
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Notably, the green hydrogen-coupled multisector decarbonization application considers
integrated system effects, and the research methodology modeling involves multipath combina-
tions and different scenario settings, resulting in the widest range of abatement costs. The cur-
rent abatement cost is USD 0–4700 tCO2e−1, with an average range of USD 203–2500 tCO2e−1.
With technological advancements and integrated system optimization, the average abatement
cost of the integrated multisectoral system decreases to USD 20–270 tCO2e−1 under different
baseline scenarios in the time-scenario analysis for 2050.

6. Trends in Green Hydrogen Emission Reduction Research

Based on the results of the analysis of phases II, III, and IV, we further explore and
analyze the uncertainty of the assessment of carbon emission reduction and determine
the trend and potential research direction of green hydrogen emission reduction research
by combining the econometric analysis of the literature and the systematic evaluation
method. Figure 9 is the authors’ keyword co-occurrence network time series diagram with
the evolution of the theme diagram after network analysis in BibExcel. Co-occurrence
network graph Using Pajek and VOSviewer to visualize the analysis results, we created a
co-occurrence network time series graph (Figure 9a) using the R language tool bibliometrix
to analyze the literature, term deletion, and synonym list processing. The cut point of the
time slice was based on the spatiotemporal characteristics of the literature, with 2015 and
2020 as two entry points, to derive the topic evolution data and construct a topic evolution
map (Figure 9b).

6.1. Spatiotemporal Scenario Analysis to Address the Effects of Uncertainty

Carbon abatement costs have been applied as a reference indicator for the analysis and
formulation of support policies for green and low-carbon technologies [50]; however, due
to uncertainties, abatement costs have a limited impact on policy guidance. Table 8 is based
on the collation of uncertainties in Tables 6 and 7. Considering technological changes and
regional differences, technical recommendations and low-carbon development pathways
have substantial biases in different countries [57]. The environmental and economic impact
assessment of the green hydrogen value chain system, with full consideration of temporal
technological progress or spatial and geographic differences as well as optimization studies,
is a research trend that addresses the uncertainty of the benefits of green hydrogen carbon
emission reduction.

6.1.1. Impact of Technological Advances over Time

The mitigation strategy with the lowest abatement cost of the currently available
options is not necessarily the correct answer. Dynamic costs can better justify policy devel-
opment for costly abatement technologies as learning-by-doing and technology improve-
ment [184]. Green hydrogen abatement benefits are influenced by the rate of technology
learning for renewable power generation and hydrogen production electrolyzers; a reason-
able rate of technology learning significantly reduces the total cost and land area required
to achieve deep abatement, largely owing to projected decreases in wind, solar PV, and
electrolysis costs [173]. The combination of learning curve modeling and Monte Carlo
methods effectively describes current changes in hydrogen production technology and
uncertainties in technological progress [185].

In industrial chain applications, green hydrogen policy designs can be based on
the cost trajectories of relevant future technologies [31]. For the application of fuel cell
electric vehicles, the impact of learning-by-doing on abatement costs, the evolution of
dynamic costs, the suboptimal trajectory of the “deployment” perspective, and the start-up
date are discussed in terms of the impact of learning-by-doing on abatement costs, the
evolution of dynamic costs, the suboptimal trajectory of the “deployment” perspective,
and the start-up date to discuss the pathway of the green technology that is learning-by-
doing to gradually replace the old technology [186]. The internalization of learning by
doing has been emphasized in energy systems research. Exploring the potential of low-
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carbon and renewable hydrogen to decarbonize the European energy system allows for
reducing endogenous costs based on deploying technologies in a dynamic programming
formula for investment strategies [148]. Without dynamic “learning-by-doing” modeling
of electrolysis costs, the scale-up of electrolysis is significantly delayed, the total system
costs are overestimated by up to 13%, and the LCOH is overestimated by 67% [187].
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Table 8. Key uncertainties and solutions in green hydrogen carbon emission reduction assessment.

Categorization Uncertainties Solutions

Environmental analysis

• LCA methodology
• Carbon accounting for

green hydrogen systems
• Emissions intensity of

the power supply
• Green hydrogen system

value chain leakage rate
• GHG of hydrogen

• Scenario analysis
• Sensitivity analysis
• Monte Carlo simulation

Technical and cost

• Technology learning
(Electrolysis learning
rate)

• LCOE (LCOE from RES)
• Capital and operational

expenditures
• Wind and solar energy

generation technology
capacity factor

• Plant lifetime
• Hydrogen compression
• Transmission distance

Energy resources, energy use,
and conversion efficiency

• Resource conditions
(land, minerals, water,
etc.)

• Production potentials of
renewable electricity

• Electricity and
electrolyzer efficiency

• HSC energy penalty
• Penetration of renewable

energies

Energy markets and market
demand

• Energy price (natural gas
prices etc.)

• Hydrogen prices
• Market demand and

response
• Weighted average cost of

capital (discount rate,
etc.)

Policy support

• Carbon price
• Renewable energy

subsidies
• SCC

Baseline, data sources, and
scenario setting

• Baseline scenario
• Data assurance
• Scenario setting

(temporal scenarios etc.)

Tools for evaluating the cost of
carbon emission reductions • Methodological tools

6.1.2. Impact of Spatial Geographic Variability

In comparing various options for decarbonizing industrial activities through metrics
related to the levelized energy cost, it is argued that geographic and asset-specific factors
play a role in selecting options [155]. The levelized abatement cost of green hydrogen based
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on the LCOE is also affected by geospatial factors because renewable energy generation
capacity factors heavily depend on the location’s climatic conditions and renewable en-
ergy resource distribution, and there is also spatial geographic variability in the demand
and consumption of green hydrogen. Hydrogen infrastructure planning should consider
multiple spatial constraints, and a high spatial resolution is required for system capacity
expansion decisions to identify sites with high-quality renewable resources connected to
demand centers [188,189].

Geographic information system (GIS) tools are the most commonly used tools in
research on supply chain spatial optimization strategies [190]. It is mostly combined with
MILP with the lowest cost as the optimization objective. It is used to help design and
plan HSC networks under different CO2 reduction policies [191]. Furthermore, based on
the GIS approach and considering different scenarios of the supply chain and supply and
demand sides, calculating the cost of the green hydrogen value chain system for a region
is more realistic. This reduces the impact of uncertainty [192,193]. In addition, a study on
integrating open-source tools for designing and evaluating green hydrogen production
opportunities proposed a comprehensive four-tier framework that fully considers spatial
geography and system integration optimization to compare green hydrogen production
potentials and costs [194]. Similarly, complex energy system models increasingly require a
high spatial resolution [195].

6.2. Multisectoral Synergies and Application of Abatement Assessment Metrics
6.2.1. Sectoral Coupling and Synergies

Sectoral coupling and synergistic effects are reflected in the supply of the electricity
sector for renewable energy penetration at the source end of green hydrogen, the decar-
bonization of the green hydrogen end-use sector, and the synergistic decarbonization effects
of multisectoral coupling at the supply and demand ends. Electricity–hydrogen sector
coupling can accelerate technological learning, reduce the capital cost of solar PV by up to
4%, increase renewable energy penetration in primary power generation by nearly 5%, and
reduce electricity curtailment by less than 5% by 2060 [196]. In assessing the role of green
hydrogen in future energy transition scenarios, there is a trend for energy modelers and sys-
tem planners to consider in more detail the unique flexibility characteristics of the HSC. For
a higher share of RES or hydrogen, a more flexible but less energy-efficient large-scale HSC
could benefit the power sector by reducing renewable energy power abandonment [197].

Wind–lithium–electron battery–alkaline electrolyzer–grid interactive coupled green
hydrogen systems applied to steelmaking [106] and hybrid wind–PV–battery–hydrogen
storage systems for residential power supplies [198] have achieved significant emission
reduction benefits after economic and technical optimization and standardized sequencing.
Considering the effectiveness of coupling the application-side demand with the power sec-
tor, renewable energy generation increases by 13–56%, and the total system cost decreases
by 7–16% in deep decarbonization scenarios [112]. Moreover, in terms of the synergistic
aspects of green hydrogen emission reduction, the synergistic effects of the byproduct
oxygen used to reduce the cost of CCS in the decarbonization process of cement clinker pro-
duction [199], the synergistic clean energy diffusion of green hydrogen, and the promotion
of sustainable industrial development have also been verified [200].

6.2.2. Policy Application of Assessment Indicators

Green hydrogen abatement potential and abatement cost can be used as important
reference indicators for the competitiveness of investment in green hydrogen production
projects, the application of green hydrogen to decarbonize hard-to-abate sectors, and the
promotion of green hydrogen to build a new type of zero-carbon energy system, which
has a guiding role in the development of incentive policies, such as subsidies for green
hydrogen projects, the inclusion of green hydrogen abatement in the carbon market, and
the pricing mechanism of carbon-neutral hydrogen [20].
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Green hydrogen abatement market mechanisms are similar to those of carbon markets
and can be categorized into hydrogen price and quota mechanisms. Impact studies on the
renewable hydrogen quota mechanism have shown that hydrogen quotas lead to a signifi-
cant expansion of renewable energy generation capacity to produce renewable hydrogen
and synthetic methane using electricity-to-gas technology and that the quotas lead to a
redistribution of welfare from these consumers to renewable energy generators and natural
gas producers, leading to a significant reduction in total welfare [201]. However, hydrogen-
pricing mechanisms involve subsidy policies. Carbon contracts for difference (CFDs) have
been used to practically apply green hydrogen [202] to provide cost-competitive supplies
of green hydrogen in the transportation and industrial sectors, and sector-specific carbon
taxes are needed [203]. Based on the emission reduction mechanism of clean hydrogen, a
hydrogen credit trading framework, similar to carbon credits in the international market,
was proposed to explore the incentives of the global hydrogen economy and develop new
ways to achieve a carbon-neutral future [204]. Wang et al. [205] utilized system dynamics
to model the “green hydrogen market–national carbon trading market–electricity market”
relationship for modeling and simulation to enrich the green hydrogen trading model and
establish a multimarket linkage mechanism.

Notably, at the whole value chain level, the HSC’s carbon abatement strategy under
a cap-and-trade policy [206] and a study of whole-system value-chain optimization [207]
show that carbon abatement efficiency, the hydrogen price, and the carbon trading price
have a significant impact on the optimal decision-making of production planning and
carbon abatement and that policymakers must pay attention to the abatement benefits of
each link of the whole-system value chain to advance incentive policymaking for hydrogen
energy technologies.

7. Conclusions and Prospects
7.1. Conclusions

Through bibliometric analysis and systematic evaluation methods, this study system-
atically analyzes the research hotspots of the environment, technoeconomics, and energy
systems that affect the benefits of carbon emission reduction from green hydrogen from the
perspective of responding to climate change, discusses the assessment methods, assessment
indices, uncertainties, and solutions of carbon emission reduction potential and carbon
emission reduction cost, and analyzes the emission reduction effects of the green hydro-
gen value chain system and obtains revelations. Simultaneously, the trends and potential
research directions for the economics of green hydrogen carbon emission reduction are
proposed, and the following conclusions are drawn:

(1) After the Paris Agreement was officially signed in 2015, the decarbonization of
green hydrogen began to gain attention, and green hydrogen climate change mitigation
research expanded from 2020 to the present. Developed countries have clear scientific
research strengths, excellent research results, and close partnerships. The application of
decarbonization in sectors that have difficulty reducing emissions and the production of
green hydrogen is the most important value chain research link; the most common green
hydrogen decarbonization application sectors are the transportation, chemical, electric
power, iron and steel, and thermal sectors, in which multisector coupling has become a
research hotspot;

(2) The hotspots for research on green hydrogen carbon emission reduction are the
three main impacts of the environmental, techno-economic, and energy system aspects
that are closely related to it. Carbon emission accounting methods and system boundaries
are currently not harmonized, and the GWP of hydrogen emissions and the impact of
hydrogen leakage on the entire system value chain cannot be ignored. Hydrogen from
renewable sources will soon be cost-competitive, with optimization models represented
by MILP guiding economically optimal solutions for hydrogen decarbonization pathways.
However, the cost of decarbonizing green hydrogen in an energy system is controversial.
The key to renewable energy intermittent solutions lies in optimizing system configurations,
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and the energy utilization and conversion efficiency of the green hydrogen value chain
system constrains the economics of green hydrogen carbon abatement. The multiobjective
optimization of the expansion of the hydrogen production system can improve the economic
value of green hydrogen abatement;

(3) Based on the characteristics of the hydrogen energy value chain, the methodology
for assessing the potential for green hydrogen carbon emissions reduction and the cost of
carbon emissions reduction mainly adopted a bottom–up analysis model. Green hydrogen
carbon emission reduction, which includes carbon avoidance and a carbon-embedded
carbon cycle, has great potential; however, there is no perfect emission reduction methodol-
ogy or economic assessment system for emission reduction to support incentive policies.
The indicators and factors affecting the potential for green hydrogen carbon emissions
reduction vary along the value chain, and the research process should clarify the use
of indicators and scientifically consider the impact of uncertainties. Many uncertainties
constrain the role of green hydrogen carbon abatement cost indicators in guiding policies,
primarily based on financial analyses. The bottom–up engineering modeling approach can
be further improved by considering the characteristics of the hydrogen value chain. To a
certain extent, the economic value assessment method of emission reduction based on the
SCC promotes the integration of green hydrogen carbon emission reduction with carbon
market mechanisms;

(4) The emission reduction effect of green hydrogen decarbonization varies greatly,
with renewable power sources, time scenarios, and baseline scenarios being the main
influencing factors. The economic impact of emission reduction should be fully considered
when promoting the application of green hydrogen. In the application of decarbonization
in sectors that have difficulty reducing emissions, green methanol, natural gas systems, and
the refining industry have the prospect of prioritizing the application of green hydrogen,
as the cost of emission reduction will be zero by 2030 and will be negative in future
scenarios. The steel and cement sectors can also prioritize green hydrogen decarbonization
applications. The transportation and construction sectors have relatively large abatement
costs, and multisector abatement applications have the widest range of abatement costs,
considering the integrated system effects and the large number of pathways and technology
combinations involved;

(5) The trend of research on green hydrogen carbon emission reduction is, on the one
hand, the improvement of its methodological model, especially the solution of uncertainty
factors, and on the other hand, the synergistic expansion of green hydrogen emission
reduction and the applied research of assessment indicators. Time-technological progress
and spatial–geographical variability are research trends and potential directions for ad-
dressing the uncertainty in assessing the benefits of green hydrogen emissions reduction.
The expansion of green hydrogen system-wide value chain emission reduction involves the
synergistic effect of its value chain and the co-benefits of sustainable development and other
social benefits. Indicators for assessing the benefits of green hydrogen emission reductions
are widely used, and policymakers should focus on the benefits of emission reductions in
all parts of the system-wide value chain to guide the development of incentive policies for
green hydrogen energy technologies.

7.2. Research Prospects

Through this systematic review, the following problems exist in the study of abatement
potentials and economics for climate change mitigation in the green hydrogen total value
chain system, and a research outlook is proposed based on these problems:

(1) Study on the Emission Reduction Effect of Green Hydrogen Scale-up Transition
Based on top–down integrated assessment modeling. Studies based on the bottom–up
approach models to analyze the abatement effects of green hydrogen in the decarbonization
sector and integrated energy systems have been gradually conducted and have served
as a guide for green hydrogen promotion. To achieve carbon neutrality, there is a lack
of research on the comprehensive impacts of green hydrogen energy scaled up from an
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emission reduction perspective at the national, regional, and global levels. Top–down
integrated modeling can compensate for this lack of research, and macroinput–output
modeling studies can also reflect the interactions between the scale-up of green hydrogen
developments in different regions;

(2) Research on market mechanisms and international trade impacts based on the green
hydrogen carbon emissions reduction methodology. The green hydrogen carbon emission
reduction methodology involves basic carbon accounting methods, baseline scenarios,
additionality, and other research issues, and a scientific and reasonable methodological
system must be established. The definition of the green hydrogen standard has never
stopped being debated in many countries or organizations worldwide, and the market or
policy application of the green hydrogen emission reduction methodology and emission
reduction targets also needs further research. At the same time, as an energy carrier and
as a secondary energy source, the impact mechanism of energy prices and carbon tariffs
between countries also needs to attract the attention of scholars;

(3) Research on global or regional co-benefits, such as the ecological and social benefits
of green hydrogen emissions reduction and sustainable development, should be conducted.
While addressing the environmental, economic, and energy dimensions, the potential and
economics of emission reduction do not encompass the broader impacts of climate change
mitigation. The scaled-up development of green hydrogen is also expected to generate syn-
ergies or co-benefits with global or regional ecological and social dimensions. In addition,
the sustainable development of green hydrogen is an important future research direction.
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GHGE Greenhouse gas emission intensity of electricity
GIS Geographic information system
GWP Global Warming Potential
GWP100 The 100-year global warming potential
HSC Hydrogen supply chain
IEA International Energy Agency
IF Impact factor
IPCC Intergovernmental Panel on Climate Change
LCA Life cycle assessment
LCCM Levelized cost of carbon mitigation
LCOE Levelized cost of energy
LCOH Levelized cost of hydrogen
LEAP Long-range energy alternative planning system
MAC Marginal abatement cost
MILP Mixed integer linear programming
PEM Polymer electrolyte membrane
PTG Power-to-gas
PTL Power-to-liquids
PTX Power-to-X
PV Photovoltaic
RCP Representative concentration pathway
RES Renewable energy sources
SCC Social cost of carbon
SCIE Science Citation Index Expanded
SDGs Sustainable development goals
SMR Steam methane reformation
SSCI Social Science Citation Index
WOS Web of Science

Appendix A

Table A1. Principles and results of the literature extraction, purification, and review.

Steps Principles Results Description

Develop a search string to
ensure that all relevant
papers are extracted

TS = (“Renewable hydrogen” OR “Green Hydrogen” OR “Low
Carbon Hydrogen” OR “Electrolytic water Hydrogen” OR “Clean
Hydrogen” OR “Hydrogen*”) AND TS = (“Climate Change “OR
“Energy transition” OR “Climate* Change Mitigation “OR
“decarbonization*” OR “Environmental*”OR “Carbon*Reduction” OR
“Sustainability” OR “Emission* reduction”) AND TS = (“ Abatement
Costs” OR “benefit” OR “Economy* “OR “Cost*” OR “Cost
effectiveness”)

Extracted 7060 documents
from 1996 to June 2023

The field label
TS (=Topic) containing the
title, abstract, and keywords
is used to create the query,
and was created on 17
August 2023.
The earliest publication in the
literature that matched the
research topic search is 1996,
so the timeframe begins in
1996.
The deadline is 30 June 2023.
The research language and
type are restricted to ‘English’
and ‘Article’, respectively.

The literature purification

WC = (Energy Fuels or Environmental Sciences or Green Sustainable
Science Technology or Engineering Environmental or Environmental
Studies or Economics or Meteorology Atmospheric Sciences or
Operations Research Management Science or Management or
Behavioral Sciences or Urban Studies or Social Sciences
Interdisciplinary or Political Science or Development Studies or
Construction Building Technology or Ecology or Social Issues or
Business Finance)
AND SC = Energy Fuels or Engineering or Environmental Sciences
Ecology or Science Technology Other Topics or Business Economics or
Meteorology Atmospheric Sciences or Behavioral Sciences or
Development Studies or Operations Research Management Science or
Social Issues or Social Sciences Other Topics

Access to 4189 published
documents

The literature review The researchers conducted a full-text review of each of these studies,
excluding irrelevant studies.

706 publications were
screened for relevance to the
research topic
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Table A2. Information on the literature on the economics of green hydrogen carbon emission
reductions, 1996–2023 (as of 30 June 2023).

The Literature Data

Timespan 1996:2023
Sources (Journals) 97
Documents 706
Annual growth rate % 19.17
Document average age 2.76
Average citations per doc 29.51
References 31,621
Authors’ keywords (DE) 1815
The sum of the times cited 20,836
Authors 2359
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