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Ammonia (NH3) is widely used in the production of vital
chemicals such as synthetic fertilizers and nitric acid. It has
recently attracted great attention as an energy carrier due to its
high hydrogen content (17 wt.% H), ease of transportation, and
stability over time. However, for ammonia to fulfil this promise,
a more efficient and sustainable method for its synthesis and
decomposition must be developed. Significant scientific efforts
have been devoted to achieving this via an in-depth under-
standing of the reaction mechanisms. This mini-review dis-
cusses the most relevant developments in heterogenous
catalysts for ammonia synthesis and decomposition over the
past two years, which has centered on structural and electronic
modifications, single atom catalysis, and the use of dual/mul-
tiple catalytic sites for N2 and H2 activation to overcome the
scaling relationship, and thereby achieve moderate reaction
conditions.
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Ammonia synthesis
The vast majority of ammonia is produced via the
Haber-Bosch (HeB) process, which involves a thermo-
catalytic reaction between nitrogen and hydrogen
(N2 þ3H2 ⇔ 2NH3) [1e3]. Although the HeB process
has been highly optimized over the last 100 years, it is
energy- and cost-intensive. While ammonia synthesis
from the elements is exothermic, hence should occur at
ambient conditions, industrially, the reaction is
performed at high temperature and pressure (>450 �C,
100 bar) over transition metal-based catalysts (typically

Fe and Ru) [1,2]. The elevated temperature is needed
to overcome the high dissociation energy (945 kJ mol�1)
of the stable triple bonds of N2. The high temperature
necessitates high pressure to shift the equilibrium
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towards ammonia formation [3]. There is a great inter-
est in developing alternative technologies that enable
ammonia synthesis at moderate conditions. Electro-

chemical, plasma-based, and photochemical methods
are being explored as a replacement for the HeB pro-
cess [1,4]. However, these technologies are in their in-
fancy and suffer from low yield, especially the
electrochemical approach which requires high over-
potentials. Given that the thermocatalytic approach can
thermodynamically occur at ambient conditions, intense
efforts have been devoted to developing new catalyst
materials that can activate N2 molecules under mild
conditions (�400 �C and �10 bar).

Ammonia synthesis on transition metal (TM) catalyst
surfaces generally proceeds as follows: i. (dissociative)
adsorption of N2 and H2, ii. reaction of adsorbed N* and
H* species, and iii. the desorption of ammonia [5e9].
The dissociative chemisorption of N2 has been identi-
fied as the rate-limiting step on TMs [2,10e12].
Following the Sabatier principle, the ideal catalyst
should not only dissociate N2 easily but also have a
relatively weak to moderate binding strength for the
intermediate NHx (x = 0, 1, and 2) species [6,13].
However due to the scaling relationship, the binding

strength of N2 on a metal surface scales with those of the
intermediate NHx and NH3. Hence, their interaction
with TM surfaces cannot be independently tuned [6].
Consequently, despite the huge research effort over the
last 100 years Ru and Fe remain the most active catalysts
for this process. The most recent developments are
geared towards the use of structural and electronic
modifications, and dual/multiple catalytic sites for N2

and H2 activation to overcome the scaling relationship,
thereby NH3 synthesis under moderate conditions [14].

Structural modifications via size reduction
Ammonia synthesis catalysts often exhibit structure-
dependent activity [15,16]. Hence their catalytic ac-
tivity can be improved by changing their structure to

increase the concentration of catalytically active facets
or sites. For instance, the Fe C7 sites (Fe surface atom
with seven nearest neighbors) and the Ru B5 sites (step
sites on the Ru(001) surface) have been identified as
the main sites for N2 adsorption and dissociation, and
thus exhibit higher activities [9,16,17]. Tuning the
particle sizes has been the major approach to exploit
such structure sensitivity because the concentration of
Fe C7 and Ru B5 atoms depends on their particle sizes.
This results in the adsorption, stabilization, and hydro-
genation of molecular N2 to NH3 on the Ru clusters
urrent Opinion in Green and Sustainable Chemistry 2024, 50:100965
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[18]. Such improved catalytic activity has also been
recently reported for Ru3 clusters supported on g-C3N4

[19,20] and Sm2O3 [21], and in atomically dispersed Co-
based catalysts where low coordinated Co atoms lead to
catalytic active sites such as unoccupied Co 3d charges
and tetrahedral cobalt(II) [22,23].

These examples and others, demonstrate the efficacy of

structural modification via size reduction (sub-nano-
metric, atomic clusters, and single-atom), as a promising
strategy to tune the catalytic activity of TMs in
ammonia synthesis (Table 1). Particularly worth high-
lighting is single-atom catalysis which has been gaining
increasing attention recently due to the profound
changes that can occur in the electronic and structural
properties, and hence the catalytic performance of cat-
alysts, upon reduction of a TM catalysts to a single atom.
For example, single-atom Ru catalysts were recently
shown to exhibit associative, rather than the normal

dissociative N2 activation mechanism observed for Ru
nanoparticles [18,24]. A similar observation has also
been reported for Fe and Co. However, it is important to
note that the exact impact of the catalyst structure and
size can be obscured by the different catalyst supports
and even additives used in the studies, which are also
known to influence catalytic performance profoundly as
will be explained in the next section.

Electronic and structural effects via promotors and
supports
Promotors and dopants are often used to improve the
catalytic performance of transition metals in ammonia
synthesis [25,26]. The use of basic compounds such as

alkali and alkaline earth metal oxides (e.g. K2O and
Cs2O) [9,27e29] as promotors are well-established due
to their ability to donate electrons easily to TMs. These
basic promotors are still the most widely used, although
Table 1

Overview of the catalytic activities of recently published TM-based N

Catalyst (Ea)
(kJ mol−1)

Temperature (�C)

Ru SAC 64 400
Ru ACCs 59 400
Ru-2.8 nm 98 400
Ru-7.5 nm 98 400
Ru cluster/CeO2 81 400
Ru NPs/CeO2 54 400
Ru/CeO2-w 52 400
Ru/LaCoSi 50 400
Ru/BaAl2O4-xHy 66 340
Co/BaAl2O4-xHy 49 340
Co/C12A7:e− 62 340
Co–N CNs – 300
Co2-ACCs 49 400
Co SAC 400
Co NPs 75 400
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other classes of dopants such as metal hydrides and ni-
trides are being explored. Dopants are added in minute
quantities, and they are usually a metal (also metal
halide or oxide) which can form an alloy with the TM
catalysts or form a dual catalytic site. It is often not
trivial to disentangle the role of promotors/dopants and
supports because they both can influence the structure
and electronic properties of a catalyst.

The chemical nature of catalyst supports, especially the
acidity, determines the type of interaction with catalyst
particles and the reactants/products, thus influencing
the performance of catalysts via electronic and structural
promotion, and stability (sintering and agglomeration).
Electronic interaction with the catalyst can modify the
adsorption strength of N2 and the NHx on the catalyst,
thereby influencing the catalytic activity. Metal oxides
(typically MgO, CeO2) have been the main class of
catalyst support but other materials such as lanthanides,

various carbon materials [30,31], perovskites [32e34],
graphene-carbon nitrides [20], oxyhydrides [35,36] and
electrides [35,37e39] have recently attracted interest.

Feng, J. et al. recently reported that supporting sub-
nanometer Ru clusters on ceria nanorods leads to
higher catalytic activity toward ammonia at moderate
temperatures than other metal oxide supports [40].
This was attributed to electron donation from ceria to
Ru clusters which facilitates N2 activation as well as
limits hydrogen poisoning of Ru, which is known to

deactivate Ru via the competitive adsorption with N2

(Figure 1a) [35]. Li et al. further demonstrated that the
synthesis method of the ceria influences the reaction
rates [41] which was later linked to the strength of the
basic sites on the ceria support [42]. Strong basicity
leads to strong electron donation to the TM, as was
recently shown for Co-based catalysts supported on
H3 synthesis catalysts (Ea [ activation energy).

Pressure (bar) Activity
(mmol NH3 g

−1 h−1)
Ref.

10 4.69 [18]
10 7.42 [18]
10 2.87 [18]
10 2.50 [18]
10 28.00 [40]
10 15.90 [40]
10 22.62 [41]
1 3.4 [39]
9 13.30 [35]
9 8.3 [35]
9 2.5 [35]
10 85.3 [22]
10 8.5 [23]
10 4.6 [23]
10 2.6 [23]
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Figure 1

a) Calculated fractional coverage of a Ru/CeO2 of major adsorbed reaction species as a function of temperature [48] and b) the apparent activation
energies and NH3 synthesis rates of various Co-based catalysts [35]. Reproduced with permission from Jiang et al., Movick et al. [35,48].
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several mixed oxides with different basic sites [43].

Likewise, the presence of anionic (oxygen) vacancies in
partially reduced transition metal perovskites (barium
niobate) [32] was recently shown to improve the cata-
lytic properties of Ru via electron donation and mitiga-
tion of the detrimental effects of hydrogen poisoning of
Ru [44].

Electrides are a relatively new class of catalyst supports
for ammonia synthesis [35,38,45,46], with calcium
aluminum-based oxide “C12A7:e�“ the most investi-
gated so far [38,45]. Although the exact role is still
under debate, most experimental and computational

results suggest that the catalytic enhancement of elec-
trides stems from their ability to readily donate the cage
electrons to TMs, resulting in decreased activation
energy and increased NH3 synthesis rate (Figure 1b)
[35,47,48]. It has also been hypothesized that the
electrons aid the formation of hydride ions (H�), which
readily react with dissociated N atoms. This avoids high
Figure 2

Model representation of a) ammonia synthesis reaction over Ru/La-TM-Si wit
metal center to the electride support [39]. and b) the activation of N2 over the T
Reproduced with permission from Gong et al., Wang et al. [39,62].
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hydrogen coverage on Ru and consequently suppresses

its poisoning/deactivation [45,46,48e50].

On the other hand, a recent work by Gong et al. on a
series of intermetallic electrides based on La-TM-Si
[37,39] suggest a dual catalytic role (Figure 2a). Their
results show that although electron donation from
electrides generally promotes the rate-determining step
(RDS), i.e., N2 splitting, these ternary electrides also
serve as the hydrogenation center for N atoms which
becomes the new RDS because N2 splitting is greatly
enhanced. These results show that the role of electrides
in ammonia synthesis is an important fundamental topic

for further investigation.

The existence of the dual-site mechanism suggested for
electrides has also been hypothesized for some TM-
based catalysts when combined with lanthanum(La) or
lanthanum nitride (LaN). Specifically, using experi-
mental and DFT results Ye et al., recently credited the
h N2 bond weakening and hydrogen poisoning mitigation from the Ru
M, followed by the N* transfer and hydrogenation on LiH to NH3 [61,62].

urrent Opinion in Green and Sustainable Chemistry 2024, 50:100965
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dual-site mechanism for the remarkable catalytic per-
formance observed for LaN/Ni and LaN/Co in NH3

synthesis, where H2 is believed to be activated on the Ni
or Co site, and nitrogen vacancies generated in the LaN
are responsible for the activation of N2 [51]. However,
more recent works using model catalysts based on LaN
and poor catalytic materials (Co and Ni) nanoparticles
suggest that the profound increase in their catalytic ac-

tivity stems from spin-promotion effect induced by the
LaN on these ferromagnetic metals, rather than from
dual-site mechanism [44,52]. Computational results
show that LaN quenches/modifies themagneticmoment
of the adjacent cobalt or Ni centres thereby enhancing
their catalytic activity for nitrogen cleavage. This dem-
onstrates that suppressing or altering the magnetic
properties of magnetic-based catalysts is an attractive
approach to tune their catalytic performance. A similar
explanation goes for the improved performance when
these TMs are combined with metal hydride promotors

[44,52] These new findings highlight the fact that the
exact roles of promotors are not yet well understood
because their functionality seems to be highly dependent
on the properties of the particular catalyst system.

Metal hydride-mediated ammonia synthesis
Metal hydrides are perhaps the most recent new cata-
lytic materials for NH3 synthesis. Alkali and alkaline
earth metal oxides and hydroxides have been the typical
promotors for ammonia synthesis [53e56]. Their hy-
dride counterparts have lately garnered much attention
as effective promotors for NH3 synthesis due to their
ability to improve catalytic activity at moderate condi-
tions in both the chemical looping ammonia synthesis

(CLAS) and normal catalytic routes. In the CLAS, the
scaling relationship is overcome by decoupling the N2

activation and hydrogenation steps via TM nitride for-
mation (TM-N) followed by hydrogenation to NH3 and
the TM or TM hydride. The addition of LiH and BaH2

to Ru was recently shown to improve the hydrogenation
kinetics of transition metal nitrides (TM-N) to NH3 in
CLAS [57,58]. This was accredited to the formation of
catalytic active complexes or intermediates such as
Li4RuH6 and Ba2RuH6 [57,58]. While Li4RuH6 was
found to assist the reaction by stabilizing the interme-

diate NXHY species, Ba2RuH6 facilitates the dissociation
of both N2 and H2. Extending the study to other alkali
and alkaline earth metals (AMs) showed the following
activity trend: Na < K < Ba < Li < C, suggesting that
decreasing the AM-NXHY bond strength increases the
activity toward ammonia synthesis [59,60].

Metal hydrides have also been shown to increase the
catalytic activity of TMs in direct ammonia synthesis via
the dual-site mechanism (Figure 2b) [62]. The efficacy
of hydrides is attributed to the reactive hydridic atoms

from the metal hydrides which provide both the elec-
trons and atomic hydrogen to break the dinitrogen bond
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and hydrogenate it to ammonia respectively [21,62e64].
Furthermore, in the presence of H2 and N2, alkali and
alkaline earth metal hydrides can form a variety of
amides and imides (A-M-H) which can further decom-
pose into ammonia and the corresponding metal hydride
[55]. Hence, the catalytic mechanism can go via TM-N
or A-M-H depending on the stability of the
intermediates.

The promotion effect of alkali and alkaline earth metal
hydrides has been generally attributed to their role as a
second active centre [53,55,61,65]. However, some
metal hydrides have recently shown impressive catalytic
activity at moderate conditions without transition
metals, making them TM-free catalysts. The pioneering
work of Chang et al. on potassium hydride-intercalated
in graphite (potassium hydride carbide; KHxCy)
showed that this TM-free catalyst is active for NH3

synthesis at 300 �C and 10 bar (Figure 3a) [5]. A com-

bination of experimental and DFT suggests that N2

activation on the catalyst follows the associative mech-
anism, as reported for the Ru clusters and single-atom
catalysts. The fact that the N2 is not dissociatively
adsorbed lowers the overall energy barrier for NH3

synthesis. Following this report, a similar observation has
been reported for 2D electride of Ba2N with anionic
electrons in the interlayer spacings (Figure 3c) [66].
Also, for CLAS, both LiH [67] and BaH2 [68] have
shown impressive catalytic activities without a TM
(Figure 3b). These results demonstrate that metal hy-

drides are a fascinating new class of ammonia synthesis
catalysts. However, characterization of hydride-
containing materials is challenging due to their air
sensitivity. This renders it difficult to unravel the exact
catalytic mechanism(s), hence a major interesting sci-
entific challenge.
Ammonia decomposition
Ammonia decomposition has also attracted attention
due to the renewed interest in the compound as a carrier
for green hydrogen fuel [69]. The decomposition reac-
tion is endothermic, hence it occurs at higher temper-
atures (300e700 �C). The conversion rate is influenced
by the catalyst and the reaction condition such as the
feedstock concentration (dilution), the pressure, and
the temperature. While at low temperatures (300e
500 �C) and high NH3 feed concentrations, the reaction

is mainly limited by NeN bond formation, the NeH
bond cleavage becomes rate limiting at higher temper-
atures and lower ammonia concentrations [9]. Ru on
carbon nanotubes (Ru/CNT) has long been used as a
model catalyst and promotors based on nitrates and
other oxygen-containing salts of alkali and alkaline earth
metals, promotors with lower electronegativity were
found to be the best [30]. This promotional trend was
observed for alkali oxide and hydroxide promotors but a
different trend (Li> K>Na) was found for alkali metal
www.sciencedirect.com
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Figure 3

Ammonia synthesis activity of transition metal-free catalysts a) potassium hydride (carbide) and ruthenium-based catalysts as a function of temperature
at 10 bar and N2:H2 1:3 gas flow (thermocatalytic) [5], b) a comparison of NH3 production rates of BaH2 at 450 �C and 1 bar via thermo-catalysis and
chemical looping processes, and c) the differences in activation energy for different metal-nitrides compared to a ruthenium-based catalysts [66].
Reproduced with permission from Chang et al., Zhang et al., Guan et al. [5,66,68].
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amides, showing a clear dependence of the promotion
mechanism on the chemical nature of the alkali metal,
(e.g. hydride, hydroxide, or oxides) [70].

Recent focus has shifted away fromRu towards the use of
other TM as well as TM-free catalysts. Alkali amides/
imides, especially Li-based (LiNH2 and Li2NH), have
been shown to lower the activation barrier significantly

by stabilizing the intermediates M�N bonds [71,72].
Recent theoretical works have further confirmed the
relevance of the surface disorder dynamics of these (non-
stochiometric) lithium amide compounds (Li2-
x(NH2)x(NH)1-x) for TM-free catalysts, indicating
possible differences compared to the mechanism of TM-
based catalysts [73,74]. Similar to the TM-free NH3

synthesis catalysts [5], lithium amide/imide are also
active for ammonia decomposition with and without
transition metals [75,76], increasing the conversion at
440 �C from 54% up to 86% by adding TM to LiNH2, and

their performance also depends on the ammonia flow
[5,78,79]. Similar to the multi-component catalysts for
ammonia synthesis, the synergy between TM particles
and imide compounds allows the separation of different
mechanistic steps, i.e. a dual-site mechanism, combined
with a promotional effect [77]. Synonymous with
ammonia synthesis, electron donation from the basic
sites of supports and promotors increases the catalytic
performance of Ru in ammonia decomposition [78,79].
This was recently demonstrated using XCeO3 (X: Mg,
Ca, Sr, Ba) perovskite oxides as supports for Co, but was

here limited to conversions up to 29% at 450 �C [34]. In
summary, although not studied extensively as ammonia
synthesis, recent progress on ammonia decomposition
research is also centered on structural and electronic
modifications of TMs, especially Ru, through alkali and
alkaline earth-based promotors and basic supports.
www.sciencedirect.com C
Conclusion and outlook
This mini-review shows that the most recent de-

velopments in thermocatalytic ammonia synthesis and
decomposition are centered on strategies that can
modify the interaction strengths of N2 and NHx on
TMs (especially Ru) and thereby improve the cata-
lytic activity at moderate temperatures and pressure.
The most promising approaches are structural and
electronic promotion via size effects (nanoclusters/
single atoms), support effects, promotors, and doping/
alloying with other metals. Electrides, metal hydrides,
and oxide perovskites have emerged as efficient
promotors and/or supports. Other interesting new

developments are chemical looping which can over-
come the scaling relationship, and non-TM-based
catalysts such as KHxCy which can activate N2 at
moderate temperatures via associative mechanism.
The impressive and often intriguing results, especially
from electrides and metal hydride-based catalysts,
show that there is still much to understand in cata-
lytic NH3 synthesis and decomposition. The
increasing use of computational approaches such as
DFT and machine learning, will be crucial for
achieving a more in-depth understanding of the cat-

alytic mechanism and the discovery of new catalysts
with improved performance.
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