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Abstract
The development and design of energy materials are essential for improving the efficiency,
sustainability, and durability of energy systems to address climate change issues. However,
optimizing and developing energy materials can be challenging due to large and complex search
spaces. With the advancements in computational power and algorithms over the past decade,
machine learning (ML) techniques are being widely applied in various industrial and research
areas for different purposes. The energy material community has increasingly leveraged ML to
accelerate property predictions and design processes. This article aims to provide a comprehensive
review of research in different energy material fields that employ ML techniques. It begins with
foundational concepts and a broad overview of ML applications in energy material research,
followed by examples of successful ML applications in energy material design. We also discuss the
current challenges of ML in energy material design and our perspectives. Our viewpoint is that ML
will be an integral component of energy materials research, but data scarcity, lack of tailored ML
algorithms, and challenges in experimentally realizing ML-predicted candidates are major barriers
that still need to be overcome.

1. Introduction

With challenges brought by climate change and the need for decarbonization, there are significant efforts
globally to cut down reliance on conventional energy [1]. International commitments (e.g. the 2016 Paris
Accord) exemplify this effort, where countries worldwide are coming together to address these global issues
[2–5]. Energy materials are substances or materials that generate, release, convert, or store energy, which can
be used in applications like energy storage devices, energy conversion systems, and energy generators. For
instance, any materials used in batteries, conductors, photovoltaics, thermoelectric, fuel cells, and hydrogen
production are considered energy materials. Such materials are indispensably used in our modern lives, but
they potentially contribute to global warming by emitting or producing environmental-damaging materials
or CO2 during their operations or fabrications [6–10]. In response to these challenges, the ongoing evolution
and development of energy materials over the past few decades have significantly enhanced their energy
conversion efficiency, resulting in less dependence on fossil fuels and their derivatives [11–15]. Therefore,
designing and optimizing energy materials become an important part of addressing global environmental
issues [16].

The performance of energy materials is dependent on many design factors, such as geometrical features,
composition, processing conditions, and environmental factors, leading to large design spaces, which means
that there are numerous possible configurations for their optimization [17–19]. Conducting experiments to
comprehensively search these large design spaces for finding optimal material states is usually too costly and
time-consuming. Hence, researchers have been using simulation tools, such as numerical methods,
first-principles calculations, and atomistic simulations, to design materials and calculate their properties
[20–27]. Nevertheless, exploring such large spaces with different design parameters using conventional
simulation methods can still lead to high computational costs and time. Furthermore, these simulation
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Figure 1. The schematic of a typical workflow to design high-performance energy materials using ML. Researchers need to
prepare datasets to train ML models that can learn the underlying knowledge in data. The trained ML models can be used to
identify high-performance energy materials in large design spaces with the help of optimization algorithms.

methods rely on high-fidelity models to accurately mimic the dynamics of materials [28]. However, models
constructed for the simulations may not fully capture the complexity of real systems, and simulations may be
difficult or impossible in certain fields where established theories are lacking or physical models are too
complicated [29–32].

Data-driven approaches, especially machine learning (ML) [24, 33–37], can establish efficient surrogate
models, which describe design spaces by approximating the relationship between material states and their
performance [38–45], by learning hidden patterns with data. These surrogate models can be used to predict
material properties for given material features (e.g. chemistry, composition, and geometry), and can be
leveraged to help design materials with desirable performance (figure 1) [46–48]. Over the past decade, ML
algorithms have been actively explored to accelerate material designs. For example, Wan et al identified
optimal electrode structures for redox flow batteries using a framework that couples an ML regression model
with a genetic algorithm (GA) for multi-objective optimization [49]. Dave et al [50] used an experimental
design scheme that includes Bayesian optimization (BO) and robotics to optimize non-aqueous Li-ion
battery electrolytes. Li et al [51] designed high-performance perovskite solar cells using ML techniques (e.g.
artificial neural networks) with data collected from the literature. Wu et al [52] used ML algorithms (linear
regression, multinomial logistic regression and boosted regression trees) to accelerate discovering
donor/acceptor combinations for high-performance organic solar cell applications. Feng et al [53] used ML
techniques (random forest, support vector machine and neural networks) to design polymer
nanocomposites for energy storage applications. These examples demonstrate the potential of ML in
designing high-performance energy materials.

In this article, we provide a comprehensive overview of research in energy fields using ML techniques.
First, we introduce basic knowledge of ML, including commonly used ML-based design algorithms, aiming
to inspire the community to consider applying ML techniques in their material design works. Next, we
survey recent successful examples of using ML algorithms in different energy material fields, demonstrating
the potential of ML techniques in high-performance energy material design. At last, we close the review by
discussing the current challenges of ML and our perspectives.

2. Introduction toML

2.1. ML techniques
ML, which is a subset of artificial intelligence, aims at learning knowledge with data and algorithms to
emulate the human learning process, steadily enhancing its accuracy. ML algorithms generate surrogates
through training processes to make predictions without explicit physics-based simulations or calculations.
Generally, ML algorithms require data to learn knowledge, but physics-informed ML can leverage both data
and physical principles, which can be beneficial when collecting data is difficult and expensive [54–58]. With
the enhanced surrogate prediction capability, handling a large number of material candidates becomes
possible, allowing us to design energy materials with complex characteristics [59–61]. ML may be divided
into three categories: supervised learning, unsupervised learning, and semi-supervised learning (figure 2)
[60, 62].
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Figure 2. Three main categories of ML algorithms (supervised learning, unsupervised learning, and semi-supervised learning).
Examples of supervised learning: random forest (RF), linear regression, neural network (NN), convolutional neural network
(CNN), and support vector machine (SVM). Examples of unsupervised learning: k-means clustering, generative adversarial
network (GAN), autoencoder, and principal component analysis (PCA).

2.1.1. Supervised learning
Supervised learning algorithms are trained with labeled data, where each piece of data is paired with a known
output value, which allows the algorithms to learn the correlation between inputs and their corresponding
outputs. The supervised ML models are usually used as surrogates to efficiently calculate the output values of
new, unseen input data without the need to perform expensive experiments or physics-based simulations.
Such models have been seen in a wide range of applications, such as image recognition, natural language
processing, material designs, property prediction, and fraud detection [60]. Some examples of widely used
supervised learning algorithms are RF, linear regression, NN, CNN, and SVM. In the materials design
domain, such supervised ML models are commonly used to describe the structure-property relationship to
quickly evaluate new materials.

Some ML models, such as decision trees and linear regression, are transparent, interpretable, and
explainable, offering clear insights into their decision-making processes. For example, Weng et al [63] used
ML regression models to discover new perovskite catalysts that have enhanced oxygen evolution reaction
activities, which play important roles in renewable energy production and storage. They used a symbolic
regression model to identify a key material descriptor, which enabled them to predict the oxygen evolution
reaction activities and discover new catalysts. However, for some complex ML models, the rationale behind
the outputs is not readily interpretable and explainable, making such models a ‘black box’. Despite their
non-transparent properties, black box models remain highly useful for predicting labels once properly
trained. Many complex ML models, such as NN, can be considered black-box models, and they are used for
property predictions, material designs, classifications, and recognitions [64, 65]. Strategy like SHapley
Additive exPlanations (SHAP) values, which provide interpretable means to understand the importance of
features, can be used as post-analysis to interpret and explain the predictions made by black-box models. Fu
et al [66] employed the SHAP analysis to extract synthetic parameters of catalysts by interpreting the impact
of the descriptors of the trained ML model (e.g. k-nearest neighbors, eXtreme gradient boosting, and
adaptive boosting).

2.1.2. Unsupervised learning
Unsupervised learning algorithms learn knowledge from unlabeled data that does not have explicit output
value. These algorithms discover hidden patterns, structures, or relationships within the given dataset,
enabling clustering of similar data points or simplification of datasets to reveal their inherent structures.
These ML models are generally used for data exploration, pattern recognition, and feature extraction [62].
Examples of unsupervised learning algorithms are K-means clustering, generative adversarial network
(GAN), autoencoder-decoder, and principal component analysis (PCA). Unsupervised learning has also
been used in studying energy materials. Liu et al [67] used an unsupervised classification model to classify
whether a given compound has a phonon band gap before conducting transfer learning. Jia et al [68]
designed high-performing thermoelectric materials by grouping half-Heusler compounds using an iterative
unsupervised learning algorithm. Unsupervised learning, however, lacks the ability to predict properties,
although it can sometimes be combined with supervised learning to narrow down the candidate space [67].
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2.1.3. Semi-supervised learning
Annotating properties for various energy materials can prove to be costly and time-consuming, leading to
limitations in collecting sufficient labeled training data for accurate screening. This is especially true for
many materials used in energy applications. For example, designing polymers, characterized by their high
complexity, remains challenging due to limited datasets. This data insufficiency in energy materials is usually
in contrast to other domains where ML has been more active and effective. For instance, datasets such as
PubChem [69] and the Open QuantumMaterials Database (OQMD) [70] boast large volumes (∼million
scale) for drug discovery and inorganic compounds, respectively, but polymers suffer from notable data
sparsity (∼hundred to thousand scale) [71, 72]. This substantial difference in data size poses a significant
hurdle for training generalizable ML models. Moreover, properties of interest, such as gas permeabilities of
polymeric membranes, are often observed less frequently above satisfactory performance thresholds [72],
creating an imbalanced nature in data labels. This imbalance often leads to a false-negative problem in virtual
screening, potentially biasing ML models toward materials of lower interest and causing researchers to
overlook promising candidates for targeted performance. To address the challenges, semi-supervised
learning becomes a promising approach [73], especially given the expense of producing labeled data for
energy materials. Semi-supervised learning deals with situations where there are few labeled training data but
a large number of unlabeled data, which aligns with the constraints of annotating energy materials. We
categorize semi-supervised learning methods into data-centric and model-centric methods. Data-centric
methods focus on improving data quantity and quality, while model-centric methods refine the learning of
model parameters.

A notable data-centric method is pseudo-labeling [74], a semi-supervised learning approach that assigns
pseudo-labels to unlabeled data and incorporates them into the labeled training set. Liu et al [75] utilized
pseudo-labeling in a semi-supervised graph imbalanced regression (SGIR) framework to address sparsity
and imbalance issues in polymer permeability data by utilizing the large unlabeled polymer dataset to
augment the limited labeled training data. SGIR achieved significant prediction error reduction compared to
the conventional vanilla graph neural network (GNN). Challenges in pseudo-labeling include defining
confidence scores and improving uncertainty estimation. Future work may explore integrating active
learning as a complementary approach and developing sampling strategies for pseudo-labels to balance
imbalanced label distributions.

In model-centric methods, self-supervised learning for example, involves fine-tuning learned data
representations from unlabeled data with a labeled dataset to solve supervised learning problems [76].
Self-supervised learning transfers knowledge from unlabeled data to labeled data through model parameters.
Methods for self-supervised representation learning include predictive tasks and contrastive tasks on
unlabeled data, such as masked atom attribute prediction and masked subgraph prediction in graph ML for
polymers. Kuenneth and Ramprasad [77] introduced polyBERT, a polymer embedding tool inspired by
natural language processing concepts, trained through predictive self-supervised learning. The polyBERT
model outperformed existing fingerprint schemes in terms of speed and accuracy. However, self-supervised
learning methods encounter challenges in cross-domain knowledge transfer, mainly due to differences
between unlabeled and labeled data and between self-supervised learning tasks and downstream tasks.
Effective leverage of recent self-supervised learning advancements for energy material screening requires
specific, larger-scale, high-quality datasets and self-supervised learning tasks relevant to material properties,
along with careful examination of potential model bias in labeled datasets.

Over the past decade, these ML techniques have seen increasing use in designing materials and predicting
their properties. To statistically analyze trends in ML application within the materials field, we extracted the
number of relevant publications from the Web of Science using specific keywords in the ‘Topic’ search term.
The keywords include ‘Material’, ‘Design’, ‘Property prediction’, ‘Machine learning’, ‘Supervised learning’,
‘Unsupervised learning’, and ‘Semisupervised (or semi-supervised) learning’. We opted for the keyword
‘Material’ instead of ‘Energy material’ to avoid overly narrowing the search index, as many researchers use the
broader term. Figures 3(a) and (b) illustrate the growing number of publications applying ML to material
design and property prediction, indicating an active adoption of ML techniques in material research fields.

2.2. ML-facilitated material optimization and inverse design
The forward inferences of ML models can be used to predict the properties of candidate materials using
surrogates. However, in many cases, it is required to optimize or inversely design new materials with
desirable target properties. Therefore, ML models are also used with different optimization schemes to
optimize or design new materials.

Inverse design refers to the process of identifying material structures or compositions that exhibit desired
properties or performance characteristics. In traditional design processes, researchers iteratively design and
test until they achieve their goals, which might take a long time. In contrast, the inverse design starts with
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Figure 3. Annual number of publications in the research field of ML for material science. Keywords include ‘Material’, (a) ‘Design’,
or (b) ‘Property prediction’, and those in the figure legend.

Figure 4. (a) The schematic of inverse design, where inverse design starts with the desired properties to find the optimal design.
(b) The schematic of ML force field. Reproduced from [84]. CC BY 4.0.

desired outputs (i.e. characteristics, functionalities, or properties), and then works backward to determine
the optimal structures that satisfy the predefined objectives (figure 4(a)). In energy materials, ML techniques
can be beneficial in constructing reliable inverse design models using various optimization techniques, such
as GAs, BO, and reinforcement learning. These methods explore the vast design space efficiently, guiding the
search towards optimal solutions that meet specific property requirements.

Various design models have been used to integrate with ML algorithms, such as active learning, inverse
design, and black box models [64]. Collecting a lot of training data to build solid models by training ML
algorithms can be costly and challenging, and a lack of training data often leads to suboptimal predictions or
classifications. These challenges (i.e. sparsity and imbalance issues in the dataset) generally come from the
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limited availability of experimental/computational data (compared to the oftentimes large design space). The
disproportionate representation of different classes or ranges of values can lead to biased models, resulting in
inaccurate predictions. To overcome this challenge, ML-aided active learning algorithms have gained
popularity in materials design and optimization. These active learning algorithms iteratively select the most
informative samples during an optimization cycle. Hence, the algorithms gradually update their models by
selectively incorporating informative data points labeled by an oracle, which is an entity that provides
expertise in labeling or evaluating data. The updated dataset is used for the next iteration, guiding further
data collection. Active learning enables the iterative improvement of the model’s performance with a
minimal number of training data. Thus, it can reduce optimization costs. Hence, active learning is widely
used for the purpose of optimal designs, such as material design and system optimizations [78–81].

Force fields are mathematical models used to estimate the potential energy of a system of atoms or
molecules, essential for molecular dynamics simulations and materials modeling [82]. Developing accurate
force fields involves parameterizing the model to capture the interactions between atoms accurately [83]. ML
techniques have been increasingly applied to force field development, where models are trained on
high-quality data from quantum mechanical calculations (figure 4(b)) [84, 85]. This approach enhances the
accuracy and transferability of force fields, enabling more reliable simulations of complex material systems
[84, 85].

2.3. Data preparation
Data preparation is an important step for ML [86]. Training data used for ML can be collected from
experiments, reported results, computations, and databases. Using reported data can minimize costs for
generating training data, but it is essential to consider many factors besides the target property of interest in
material designs (i.e. experimental conditions, measurement techniques, or design baseline). There often can
be large deviations between data from different literature even for the same material. Hence, researchers are
increasingly using computational simulations where users can have more control of the data production
procedure. Although computations are usually more efficient than experiments, they can still be
time-consuming. To address this limitation, researchers have shared data from their experiments and
computations in publicly accessible databases, aiming to assist other users with their ML tasks. This is
becoming more common with many journals mandating data sharing. However, these data usually have
different formats and are not easy to mass download. There are some databases that are for general use or
more specialized (e.g. for gas permeability) for material designs. These include: Materials Project (MP),
OQMD, Materials Cloud, National Renewable Energy Laboratory Materials, inorganic crystal structure
database (ICSD), superconducting critical temperatures (SuperCon), Harvard Clean Energy Project (HCEP),
Materials Commons, Cambridge Structural Databases, Materials Data Facility, Nano-HUB, Pearson Crystal
Data, AiiDA, novel materials discovery (NOMAD), AFLOWLIB, computational materials repository, Crystal
Open Database, PubChem, Protein Data Bank (PDB), CRYSTMET, Fireworks, PoLyInfo, and MatWeb [29,
87–91].

As ML techniques have been more frequently applied in material science, the importance of data
preparation has increased. To statistically analyze trends in data preparation, we retrieved the number of
publications from the Web of Science using the keywords ‘Material’, ‘Machine learning’, ‘Experiments’,
‘Simulation’, ‘Database’, ‘Materials Project’, ‘Inorganic crystal structure database’, and ‘Materials Commons’.
Figure 5(a) shows that ‘Experiments’, ‘Simulation’, and ‘Database’ have been increasingly utilized to prepare
data, highlighting an increasing use of representative databases in figure 5(b).

Both data quality and quantity are critical to the performance of the trained ML models. Although these
databases can support the training of many good ML models, there may be a lack of specific properties of
particular interest to certain users. Hence, additional data may be required to further improve the quality and
quantity of training data for these cases. If it is challenging to collect a large number of training data because
of difficulties in experiments or computations, data augmentation strategies may be applied, which however
are more popular for image data [90, 92, 93]. Recently for graph-type data, which can be described by graphs
such as molecules [94], polymers [95] and crystals [96], techniques like node feature masking, edge
dropping, and subgraph replacement are also emerging for data augmentation [76, 97, 98].

2.4. Training and evaluatingMLmodels
With the data prepared, ML models of choice can be trained. Available datasets are usually split in a certain
ratio into training, validation, and testing sets. Training stays largely as an art, which involves experience in
hyperparameters (e.g. epoch, batch size, learning rate, momentum, cost function, hidden unit, regularization
parameter and iteration) tuning using different techniques (e.g. grid search, random search, or advanced
optimization methods) to optimize the model quality [99]. After training, the built models are usually
evaluated using a validation set to ensure performance by mitigating underfitting or overfitting problems.
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Figure 5. Annual number of publications to prepare data for ML in the material field. Keywords include (a) ‘Material’, ‘Machine
learning’, and (b) ‘Material’, ‘Machine learning’, ‘Database’, and those in the figure legend.

Here, hyperparameters can be finely adjusted to further enhance the model performance. Afterward, a test
set is employed to test the ML model’s accuracy, estimating the performance of the trained ML model with
new and unseen data. The performance can be evaluated by comparing known values with predicted results
from the ML model. Several metrics are used to measure the accuracy of the ML models, for instance,
accuracy, receiver operating characteristic—area under the curve (ROC-AUC), root mean squared error
(RMSE), mean absolute error (MAE), and coefficient of determination (R2) [100]. Typically, accuracy and
ROC-AUC are used for classification tasks:

Accuracy = C/N (1)

where C is the number of correct predictions and N is the total number of predictions. The ROC is a
graphical curve that illustrates the performance of a classification model by plotting true positive rate against
false positive rate at classification threshold settings. The AUC quantifies the two-dimensional area under the
ROC curve, serving as an indicator of the model performance.

On the other hand, MAE, RMSE, and R2 are widely used to evaluate the performance of regression
models,

MAE=
1

n

n∑
i=1

|ŷi − yi| (2)

RMSE=

√√√√1

n

n∑
i=1

(ŷi − yi)
2 (3)

R2 = 1−
∑n

i=1 (ŷi − yi)
2∑n

i=1 (ȳ− yi)
2 (4)

where n is the total number of data, yi presents true value for ith data point, ŷi presents the predicted value
for ith data point, and ȳ represents the mean of true values. Lower values for MAE and RMSE (closer to 0)
are preferable, indicating better performance of ML models. In contrast, a higher R2 score (closer to 1)
indicates that the ML model fits well.

2.5. ML-aided design models used for energy materials
In this section, we highlight three optimization algorithms that have been used for energy material
optimization and design.

2.5.1. Neural network
NNs also known as artificial neural networks (ANNs), are a class of ML algorithms inspired by the structure
and functioning of organismic neural networks. The basic unit of ANNs is the artificial neuron and
information flows through the network as the weights of connections between neurons are adjusted during a
training process. NN can have various architectures and can be generally classified into several categories,
which are multi-layer perceptron (MLP), convolutional neural networks (CNNs), recurrent neural networks
(RNNs), GNNs, and attention-based network networks.

In the domain of energy material studies, MLP stands out as a prevalent NN structure, due to the
simplicity of the model structure and limited dataset sizes of energy materials. MLP is constructed from
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Figure 6. The schematic of GNNs, illustrating how to update the representation of nodes based on the features of its neighboring
nodes and the edges connecting them.

perceptron, which is the basic unit that processes the weighted sum of inputs through a chosen activation
function to generate an output. Comprising an input layer, one or more hidden layers, and an output layer,
the MLP’s interconnected neurons allow for customization in terms of the number of hidden layers and
neurons, with the activation function determining the linearity or nonlinearity of its operations. Common
nonlinear activation functions, such as Sigmoid, Hyperbolic Tangent, and Rectified Linear Unit, are widely
used, enabling the model’s universality [101, 102]. Various loss functions, including cross-entropy (for
classification task) and RMSE (for regression task), are used to quantify the disparities between predictions
and actual values [103]. The optimization of MLP weights regarding the loss function utilizes various
techniques, with gradient descent recognized for its stability and efficiency [104].

Deep neural networks (DNNs) are multi-layer MLPs capable of learning intricate data representations
through various levels of abstraction [105]. DNNs have demonstrated diverse capabilities in various domains
and can be generally categorized into CNNs for grid-like data, RNNs for sequential information, GNNs for
graph-like structures, and attention-based networks for the selective focus on different parts of the data.
CNNs utilize convolutional and pooling layers to automatically extract hierarchical features from grid-like
data, commonly applied in image-related tasks like classification and recognition [106]. RNNs are designed
for processing data points sequentially related across time or space. It incorporates information from
previous time steps to capture temporal dependencies. This makes RNNs suitable for handling
time-dependent phenomena as well as text-based data [107]. GNNs specialize in analyzing graph-like data by
considering the inherent structural relationships between nodes and edges, frequently employed in
chemistry, biology, and social network analysis [108]. For example, graph data can represent molecules’
structural information where atoms are nodes and bonds are edges, providing a natural and intuitive way to
model the complex relationships in molecular and crystalline structures. Here, graph data allows for the
identification of functional groups, the detection of cycles and rings, and the analysis of molecular stability
and reactivity, showing better predictive performance than traditional fingerprinting methods. Furthermore,
in crystalline structures, GNNs help model and predict properties such as conductivity, thermal stability, and
heat capacity [109–111]. GNNs generally operate by iteratively updating the representation of each node
based on its neighbors’ features and the edges connecting them (figure 6). This process allows the network to
learn complex interactions within the material structures, making it suitable for predicting the properties
and behaviors of materials. Attention-based networks introduce a dynamic and adaptive mechanism that sets
them apart from other DNN architectures. Unlike conventional models that process the entire input
uniformly, attention-based networks selectively focus on specific elements of the input, assigning varying
levels of importance based on their relevance to the task [112]. This makes attention-based networks
particularly powerful in scenarios where nuanced attention and context-aware processing are crucial, such as
machine translation, sentiment analysis, image captioning, and material science [113–115].

In general, NN excels in capturing intricate patterns in data, making them well-suited for predicting
complex material properties and optimizing material structures. They can automatically learn relevant
features from the input data, eliminating the need for manual feature engineering. This is advantageous
when dealing with high-dimensional and unstructured materials data, thus it has been increasingly utilized
in energy material research. For example, Li et al [116] designed battery thermal management systems using
ANN models. Kaya and Hajimirza [117] optimized ultra-thin organic solar cells using an NN-based
surrogate model. These examples show that NN is useful for energy material design. However, NN also has
limitations, for example, it usually requires large amounts of labeled data for training mainly because of the
complexity of the model structure, and the quality of predictions heavily depends on the diversity and
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representativeness of the training dataset. Moreover, the complex, non-linear nature of NN often results in
models that are challenging to interpret.

2.5.2. Genetic Algorithm
GAs are stochastic search techniques inspired by evolutionary biology, encapsulating procedures such as
inheritance, mutation, selection, and crossover to explore the broad regions of the solution space and avoid
local minima. After determining the fitness values for all chromosomes, the algorithm selects two elite
chromosomes, which exhibit the highest fitness values. These are then subjected to a single-point crossover
operation, executed with a crossover probability, to produce offspring. This newly formed offspring
subsequently undergoes a uniform mutation, with a mutation probability, resulting in the creation of a
modified offspring, which is then incorporated into the new population. The entire process, encompassing
selection, crossover, and mutation, is methodically repeated for the current population until the composition
of the new population is fully realized. Chromosomes in GAs for energy material design are the objectives in
the GA evolutions, which represent key parameters of material structures, such as atomic composition,
crystal structure, or structural configuration. The encoding of material structural features usually involves
transforming the parameters into a genetic format (i.e. binary encoding, or integer encoding). This encoding
process ensures that GAs can effectively manipulate and optimize the material structures through mutation,
crossover, and selection. At the end of the optimization, the optimized chromosomes are decoded into
corresponding material structures, providing a pathway to discover materials with enhanced energy-related
properties.

Benefiting from the outstanding performance in problem domains characterized by complex fitness
landscapes, GAs have been widely applied for design problems, which also include the designing of energy
materials. Mayer et al [118] employed GAs to optimize the geometric parameters of flat-plate solar thermal
collectors, which led to the maximized solar absorption rate and minimized thermal emissivity with a much
lower computational cost. The adaptability of GAs was also shown by Lin and Phillips, who utilized GAs for
optimizations of random diffraction gratings in thin-film solar cells [119]. Their findings enhanced the light
coupling and trapping effects for a broad range of the solar spectrum, where a 29% improvement over flat
cells and 9% improvement over the best periodic gratings were observed. With the development of
computational science, researchers have explored the integration of GAs with other advanced techniques to
facilitate material design. Patra et al introduced a novel approach combining NN with GAs [120]. This
strategy harnessed the learning capability of NN to guide the evolutionary search of GAs, leading to
accelerated material discovery by allowing the algorithms to search as well as learn from the search process.
Such a combination was later widely applied to design high-temperature energy capacitors [121], desiccant
cooling systems [122], and multilayer microwave radar absorbing material [123]. Zhou et al [124] developed
a molecular-dynamics (MD) based GA to design polyethylene–polypropylene copolymers with high thermal
conductivity, indicating the potential of the MD-GA computational framework for accelerating the design of
co-polymeric materials. A noteworthy contribution to this domain was the development of the GAMaterial
software [125]. This software provides a convenient platform for researchers to apply GAs for material design
and discovery.

Generally, GAs are prized for their robustness and ability to handle complex, nonlinear problems, but
they also have limitations. Binary representations can lead to intractable string lengths and precision issues,
while continuous problems may require specialized crossover and mutation operators to maintain genetic
diversity. Moreover, the risk of converging to local optima and the computational cost of simulating many
generations can be significant, especially for high-dimensional problems where the time complexity can
become prohibitively high.

2.5.3. Bayesian Optimization
Gradient-based optimization strategies, suitable for continuous variables and smooth landscapes, can be
ineffective in cases involving discrete variables. This is a prevalent issue in material science, where aspects like
chemical composition, processing methods, and structural configurations are inherently discrete or
categorical. In this context, BO emerges as a robust and efficient method for navigating these complex and
multidimensional spaces. BO is considered a non-derivative algorithm, which uses mechanisms (Bayes’
theorem) rather than relying on gradient information to explore solution spaces. Non-derivative algorithms
are particularly advantageous for objective functions that are discontinuous, noisy, or have multiple local
minima, where gradient information is either unavailable or unreliable. BO, which is a non-derivate and
iterative algorithm, uses Bayes’ theorem to formulate the parametric space, and employs an acquisition
function (e.g. expected improvement) to estimate the best input parameters for the next optimization cycles
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Figure 7. Illustration of BO. BO with EI acquisition function is applied to minimize the test problem
f(x) = sin(5x) ∗ (1− tanh(x)2) over three iterations. The left column of the plots illustrates the mean and confidence intervals
as predicted by the GP model for the objective function. While these plots also display the actual objective function, it is
important to note that this function is typically unknown in real-world scenarios. In the right column, the acquisition functions
are depicted as green curves. These functions attain high values in regions where the model anticipates a high objective function
value, indicating opportunities for exploitation. It is noteworthy that the far-left region remains unexplored in the sampling. This
is because, despite its high uncertainty, the model accurately forecasts minimal improvement in this area compared to the highest
observed value so far.

[126]. The process begins with defining objective functions and decision variables, followed by initiating
preliminary experiments using space-filling samples like Latin hypercube designs. The core of BO is
updating a Gaussian process (GP) surrogate model, f(x)∼ GP(m(x) ,k(x,x ′)), with experimental [127] or
computational data [128], which then informs the optimization of an acquisition function, such as Expected
Improvement (EI), for selecting the next sampling point. This iterative method continues with experiments
and data enhancement until achieving objectives or resource depletion. BO hinges on a probabilistic
surrogate model and an acquisition function [129], where the surrogate model encapsulates initial beliefs
about an unknown function and data generation, evolving through iterative queries into a more informative
posterior. This approach efficiently navigates the multidimensional design spaces (see figure 7 as an
example).

In recent years, BO has emerged as a pivotal tool in the field of energy materials, revolutionizing the way
researchers approach optimization and discovery [130, 131]. Shang et al [127] employed BO with a hybrid
dataset of literature-reported and experimental data to enhance the power factor of AgSe-based
thermoelectric materials, achieving double the power factor with approximately ten experimental iterations.
Saeidi-Javash et al [132] applied BO to optimize flash sintering parameters for silver-selenide thermoelectric
films, considering both continuous variables like voltage and pulse duration, and discrete variables like the
number of pulses. Zhang et al [133] integrated a latent variable GP model with BO, tackling both qualitative
and quantitative variables in material design. This approach enhanced optimization in complex material
design challenges, such as Hybrid Organic-Inorganic Perovskite design. Each of these studies underscores the
diverse and potent applications of BO in energy material science.

These representative design models have been widely employed in material research. Figure 8 shows the
growing trend of utilizing these models in material design. Notably, NN has seen rapid growth in use in
recent years due to enhanced computational power, which enables the effective handling of large datasets for
training.
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Figure 8. Annual number of publications using ML-aided design models in the material field. Keywords include ‘Material’,
‘Design’, and those in the figure legend.

2.6. Quantum annealing-aided active learning for material design
In many energy material design tasks, binary optimization can be an efficient strategy as material states can
be described using discrete variables. For example, in the design of optical materials, planar multilayered
geometry can be represented as a binary vector by assigning a binary number to each layer according to the
corresponding material. Similarly, metasurfaces or stratified gratings geometries can be represented as a
binary vector by discretizing the unit cell into pixels and assigning a binary label to each pixel depending on
the material. As the material configuration directly determines the material performance, the design task can
be transformed into binary optimization (i.e. combinatorial optimization problems). However, increasing
the number of variables (e.g. the number of layers or pixels in the material structures) will exponentially
increase the total possible combinations, resulting in an explosion of the combinatorial design space. For
example, the design space size is 220 (=1,048,576) if there are 20 binary variables for the input vector
(assuming each layer or pixel has two options in material choice), while the design space size is 230

(=1,073,741,824) for 30 binary variables. Exploring such large design spaces to find the best input state is
extremely challenging or impossible because of computational limitations. To overcome this limitation, one
can transform material design tasks into quadratic unconstrained binary optimization (QUBO) problems,
where QUBO can be efficiently solved by a quantum computer [134, 135]. In particular, a quantum annealer,
which is specially designed for solving combinatorial optimization problems by providing quantum speedup
against classical counterparts by taking advantage of quantum physics (quantum tunneling), can efficiently
be used to solve QUBO problems [136]. Then, the quantum annealer can find the ground state and the
corresponding binary state of the given QUBO within a fraction of a second, even if the problem size is large
[137]. A key to leveraging quantum annealing for material optimization is to formulate QUBO models as
surrogates to describe the relationship between material states and their corresponding performance metrics
since quantum computing is compatible with the QUBO model.

Factorization machine (FM) is a model that can be directly used to formulate the QUBO model (Q) by
employing the model parameters after training FM [79]. FM was proposed by Rendle, and can be used as a
supervised learning algorithm [138], which is designed to handle sparse and high dimensional data for
classification and regression tasks. FM includes linear and factorization models, allowing the capture of the
relationships between individual features and target variables (i.e. linear model) as well as interactions
between features (i.e. factorization model). FM can learn feature interactions efficiently without explicitly
enumerating all possible combinations and can be trained with gradient descent methods, enabling relatively
short training times. Owing to these advantages, FM can be widely applicable to real-world problems that
have sparse data, enabling us to design energy materials efficiently [138, 139]. Since input vector x is
discretized into n variables, FM is suitable for combinatorial optimization problems. Individual features and
interactions of FM can be trained with linear and quadratic models as the following equations:

ŷ(x) = w0 +
n∑

i=1

wixi +
n∑

i=1

n∑
j=i+1

⟨vi,vj⟩xixj, (5)

where n is the number of variables of x, w0 is global bias, w is linear coefficients presenting individual
features and

〈
vi,vj

〉
models the interactions between xi and xj of size k. Factorizing the quadratic model
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〈
vi,vj

〉
can significantly reduce computational complexity (from O

(
kn2
)
to O(kn)) by reformulating

complex interaction models into linear ones:
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In a QUBO matrix (Q), diagonal elements are formulated from linear coefficients (w), and off-diagonal
elements are formulated from quadratic coefficients (v) of the FM model. Then, quantum computers can be
leveraged to find the ground state and corresponding binary state of the given QUBO problem:

ŷ(x) = xTQx (7)

where x is the input binary vector, Q is a given QUBO, and ŷ(x) is the objective function.
Active learning algorithms that integrate FM with quantum annealing have recently been utilized to

design energy materials, such as multi-layered photonic structures, metamaterials for thermal management,
and metamaterials for thermophotovoltaic applications [79, 134, 140–142]. These algorithms demonstrate
potential in designing complex structures that pose large optimization spaces.

3. Design of energy materials usingML

In the previous section, we have discussed different ML schemes used in energy materials design with
examples for each of them. In this section, we discuss several types of energy materials that have seen most
ML activities.

3.1. Radiative cooling materials and structures
Passive radiative cooling, emitting thermal radiation into cold space (∼3 K) through an atmospheric window
(AW; wavelength: 8–13 µm), has attracted enormous attention as an efficient solution to reduce cooling
energy consumption in response to climate change [143–145]. However, optimal design of radiative cooling
materials is challenging as there are multiple design parameters such as dimensions and material
composition. ML has been introduced to enable the optimization of such design parameters to achieve
high-performance radiative cooling materials. Li et al [146] optimized material compositions and layer
thicknesses for daytime radiative cooler using ML (light gradient boosting machine) and genetic algorithm
(figure 9(a)). They demonstrated that time consumption for the optimization could be significantly reduced
from 7783.37 s to 115.81 s (∼67 times acceleration) by using ML instead of using an analytical method
(transfer matrix method). The optimized structure showed high reflectivity in the solar spectrum range and
high emissivity in the AW (figure 9(b)), allowing to emit thermal radiation efficiently, leading to high cooling
power (∼140.38 W m−2) and daytime temperature reduction (∼9.08 ◦C) compared to the ambient
temperature. Guan et al [147] designed a transmissive colored radiative cooling film by optimizing film
structures (layer configuration and thicknesses) with ML techniques (mixed-integer memetic algorithm and
tandem NN, figure 9(c)). ML substituted the time-consuming 3D optics simulations, which led to significant
acceleration for the optimization. The optimized film presented better visible light transmissivity compared
to other colored radiative cooling films. Furthermore, the film showed a high emissivity in the AW
(figure 9(d)), yielding a good cooling performance with a cooling power density of 126.6 W m−2.

ML-aided optimization is getting more challenging as the design space is getting larger. To overcome this
computational limitation, Kiati et al [134] proposed a structural optimization method (called FMQA,
figure 9(e)), which incorporates FM and QA. They designed metamaterial to achieve high radiative cooling
performance using the FMQA scheme where FM was used to build a QUBO, and QA (D-Wave quantum
annealer) was employed to solve the QUBO. They demonstrated a great performance of the proposed FMQA
method compared to other optimization methods (GP, random search, and exhaustive search). Moreover,
they could successfully design complex metamaterials with large design spaces (total possible configuration:
∼250) thanks to the advantages from QA, and the optimized metamaterial presented near-ideal emissivity in
the AW (figure 9(f)). Existing radiative cooling materials are generally reflective to reduce solar absorption
and transmission [148]. Although radiative coolers that are transparent in the solar spectrum have been
proposed, transmitted ultraviolet (UV) and near-infrared (NIR) lights can still significantly contribute to
optical heating, which adversely affects cooling performance [149, 150]. Kim et al [79] designed
planar-multilayered photonic structures for transparent radiative coolers that have selective transmissivity to
reduce solar heating by reflecting UV and NIR light while allowing visible light transmission. For
multilayered structures, there can be lots of possible configurations (424), which may be beyond the limits of
the computational capability. Hence, they used the FMQA to enable the optimization, and were able to
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Figure 9.ML design of radiative cooling materials and structures. (a) A ML workflow to design a high-performance radiative
cooler, developed in [146]. (b) Optical characteristics of the optimally designed radiative cooler using ML. The designed cooler
has high emissivity in the AW to have high cooling performance. Reprinted with permission from [146] © 2023 Optica Publishing
Group. (c) ML-assisted inverse design strategy for the design of transmissive colored radiative cooling films. (d) Optical
characteristics of the optimally designed film. This film has high transmissivity in the solar spectrum and high emissivity in the
AW, showing visible transparency with high cooling capability. Reproduced from [147]. CC BY 4.0. (e) A workflow of FMQA for
automated designs, suggested in [134]. (f) Emissive power of the designed metamaterial in the AW, enabling high cooling
performance. Reproduced from [134]. CC BY 4.0. (g) Computational time required for the optimization of a complex system
with exhaustive enumeration and FMQA method, studied in [79]. (h) Transmitted irradiance through the designed transparent
radiative cooler (TRC). This transparent radiative cooler has high transmissivity in the visible range while having low
transmissivity in the ultraviolet and near-infrared ranges, resulting in minimized optical heating from sunlight while keeping
visible transparency. Reprinted with permission from [79]. Copyright (2022) American Chemical Society.

successfully optimize a multi-layered structure within 58 h, which might take∼89 million years with an
exhaustive enumeration (figure 9(g)). The optimized structure showed the best-in-class performance
compared to other transparent radiative coolers or energy-saving glasses. Furthermore, they experimentally
demonstrated the unique optical characteristics (i.e. selective transmissivity in the visible regime, figure 9(h))
and cooling performance (temperature reduction of 6.1 ◦C and potential cooling energy saving of
86.3 MJ m−2 compared to normal glass window). This represents the first example of the practical
realization of quantum computing designed energy material.

3.2. Batteries
As new technologies, such as electric vehicles, portable electronics (smartphones), and renewable energies,
become an integral part of our daily lives, developing high-performance batteries is crucial for providing and
storing the energy for them [151]. However, it is also challenging to optimize batteries because of the large
design space that comes from many parameters such as material composition, mixing ratio, stoichiometry,
mechanical properties, shapes, and sizes. Hence, researchers have utilized ML techniques for the optimization
of batteries. Using solid electrolytes to suppress dendrite growth has emerged as a promising strategy for
next-generation batteries based on lithium metal anodes. Ahmad et al [152] employed data-driven ML
algorithms (graph convolutional NN, gradient boosting regressor, and kernel ridge regression) to predict the
mechanical properties of inorganic solid electrolytes (e.g. shear modulus, Poisson’s ratio, and molar volume
ratio of solid electrolytes), which are important to determine the stability of the interface by estimating

13

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


Prog. Energy 6 (2024) 042005 S Kim et al

Figure 10.ML design of battery materials. (a) An ML workflow to design high-performance batteries. (b) Architecture of the ML
to predict output voltage of metal-ion batteries, developed in [154]. (c) Accuracy of the developed ML model, enabling the
prediction of output voltage of batteries. Reprinted with permission from [154]. Copyright (2019) American Chemical Society.
(d) Battery life predictions using early-life data by utilizing ML models, developed in [156]. Reprinted from [156], Copyright
(2022), with permission from Elsevier.

dendrite initiation. They trained their ML algorithms with data in the Material Project database
(figure 10(a)) [153], and they were able to find some electrolytes expected to suppress dendrite initiation and
growth (e.g. Li2WS4, LiAuI4, Ba38Na58Li26N). Joshi et al [154] developed a ML-based algorithm (DNN,
SVM, and kernel ridge regression) to predict electrode voltages for metal-ion batteries (figure 10(b)). They
also used the Material Project database [153] to train their ML algorithms. Their data-driven ML approach
enabled them to overcome computational difficulties to explore large design spaces and provided a fast
estimation of the voltages as an alternative to DFT calculations. Their ML models showed high accuracy
(figure 10(c)) in predicting voltages of electrode materials (e.g. Li-, Na-, K-, Mg-, Ca-, Zn-, Al-, and Y-ion
batteries), thus it could guide the exploration of many different combinations of electrode materials.

Improvements in battery performance include costly and time-consuming work due to the difficulty in
accurately formulating the relationships between inputs and outputs of the optimization problem. Dave et al
[155] used BO to autonomously discover novel battery materials (aqueous electrolytes). They demonstrated
that the optimized electrolytes increased stability at a low leakage current (24 mV higher in the blend) and
suppressed current density (∼58% at 2 V, compared to NaClO4 feeder solution). Accurate prediction of
battery life is challenging since it requires a comprehensive understanding of battery systems and involves
high costs for testing. Kim et al [156] used ML methods (deep learning with simulation and predictive curve
fitting) for early battery life prediction. ML algorithms were well trained with 2–3 weeks of data for the life
prediction, and predictions were accurate with errors below 10%, enabling the reduction of costs associated
with the prediction of battery performance (figure 10(d)). Although voltage profile images contain lots of
information to determine battery performance, capturing subtle changes in images by human eyes is
difficult. He et al used a ML algorithm (CNN) pre-trained on ImageNet [157] to predict battery performance
by using voltage profile images [158]. They further trained the algorithm on experimental data collected at
different experimental conditions, and the resulting ML model showed high accuracy. Battery performance is
dependent on historical information, and their ML model trained on historical data could be used to predict
future performance such as remaining useful lifetime and general stability.

3.3. Photovoltaics
Perovskite materials are promising candidates that can be used in photovoltaics [159–162], which have
attracted extremely extensive interest in the scientific community in recent years. However, improving the
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Figure 11.ML for perovskite photovoltaic materials. (a) A workflow of ML-assisted exploration to study the compatibility of
organic-inorganic hybrid perovskite film with amines, developed in [165]. Reprinted with permission from [165]. Copyright
(2019) American Chemical Society. (b) Comparison between actual and predicted value of the ML model, showing high accuracy.
(c) ML model can be used to predict characteristics of perovskites. Reproduced from [167]. CC BY 4.0. (d) Comparison between
the predicted values from the ML-assisted model and DFT-calculated energy values, studied in [169]. (e) Comparison of time for
calculations using the developed model and ab initio molecular dynamics, demonstrating the efficiency of the developed
ML-assisted model. [169] John Wiley & Sons. (© 2022 Wiley-VCH GmbH).

performance of photovoltaics, such as energy conversion efficiency, durability, and lifespans, poses challenges
due to the complexity of optimizations [163, 164]. To overcome those challenges, Yu et al [165] built ML
models to predict relations between chemical-physical properties of amines and their reactivities to
organic-inorganic hybrid perovskite (MAPbI3) film (figure 11(a)). They tested various ML algorithms such
as logistic regression, SVM, K-nearest neighbors and decision trees, and they achieved the highest score of
86% accuracy (accurate prediction/total prediction) on test data using the SVM with a radial basis function
kernel. With the trained ML model, they could predict reactivities of un-trained amines to the hybrid
perovskite. Moreover, they could learn chemical insights and knowledge by screening coefficients of the
model, guiding new experimental conditions. To enable the rapid discovery of functional materials for
ferroelectric photovoltaic perovskites, Lu et al [166] developed a multistep screening scheme by combining
DFT calculations and ML techniques. They successfully trained ML algorithms with collected data from
high-throughput first-principles calculations. The trained models could achieve high accuracy (ROC-AUC
of∼0.89 for the classification model and R2 score of∼0.921 for the gradient boosting regression model) and
showed accurate prediction for both perovskites and non-perovskites. Using the models, they found some
mixed halide perovskites (e.g. CsGeBr2I, RbGeBr2I, CsGeI2Br, RbSnCl2I, and RbSnI2Cl), which were close to
the optimal value of single-junction solar cells.
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Prediction of material properties is important to design perovskite materials. To predict key properties of
perovskite materials, Stanley et al [167] employed a ML approach (kernel ridge regression) for learning
complex relations between material compositions and corresponding properties from a limited number of
data. They calculated 344 mixed perovskites using DFT, and used them to train their ML algorithm, resulting
in a good model for the prediction (figure 11(b)). Thus, they could rapidly predict several important
properties of photovoltaics in the composition space, enabling the suggestion of the rational design of new
perovskites (figure 11(c)). She et al [168] utilized a two-step ML approach with classification and regression
models to find highly efficient perovskite solar cells by exploring a vast design space. They used experimental
data extracted from the published literature to train the ML algorithm. With the model showing high
accuracy, they could successfully extract general underlying knowledge of perovskite solar cells by analyzing
important features. In addition, they could discover high-performance perovskite solar cells with doped
electron transport layers (e.g. Cs-doped TiO2 electron transport layers, and S-doped SnO2 electron transport
layers) having high power conversion efficiency of up to 30.47%. Inherent ionic defects in perovskites can
lead to damage to their stability, impeding their practical applications, but high computational costs
associated with DFT calculations and inaccurate predictions pose challenges to improving the stability of
perovskite materials. Yang et al [169] developed an interatomic potential model by employing a ML
algorithm (deep learning) to analyze the ionic defect effects. The model performance was improved by
iteratively exploring design space similar to active learning, leading to an efficient model with high-level
accuracy close to classical MD calculations (figures 11(d) and (e)). With their model, they revealed the
factors affecting ionic defects.

3.4. Gas separationmaterials
The application of membrane technology, especially utilizing polymers for gas separation, has become
critical for processes like carbon dioxide capture, hydrogen separation, and natural gas sweetening [170, 171].
While polymeric membranes find widespread use, they encounter challenges such as permeability-selectivity
trade-offs, physical aging, and plasticization, limiting their broader utility. To overcome these multi-objective
design challenges, the integration of ML techniques has gained some momentum in expediting the screening
and design of high-performance polymeric gas separation materials. An early effort in this field traces back
to 1994 when Wessling et al [172] pioneered the use of a NN to model the CO2 permeability of polymers,
utilizing infrared spectra as input features. Despite a limited database size (only 33 polymers), relatively
accurate predictions highlighted the substantial potential of ML in quantitative structure-property
relationship analysis for polymeric membrane gas separation materials. Subsequent research endeavors have
expanded on this foundation, with the accumulation of gas separation data and the advancement in ML
algorithms. Zhu et al [173] utilized GP regression to predict permeability for various gases in a dataset of 315
polymers, employing a hierarchical fingerprinting method based on the chemical structure of the polymer
repeating unit. Barnett et al [174] followed a similar approach, utilizing GP regression and a topological,
path-based fingerprint for around 700 polymers, demonstrating the model’s ability to predict permeability
values for∼10 000 unlabeled polymers. In addition to using handcrafted fingerprints or descriptors to
represent polymer structural information, recent approaches involve representation learning from DNNs.
Wilson et al [175] treated polymer structures as graphs, developing a GNN named PolyID for efficient
identification of high-performance biobased polymers. PolyID facilitated the discovery of biobased
poly(ethylene terephthalate) analogs with enhanced thermal and gas separation performance.

3.5. Thermoelectric materials
Thermoelectric materials, which can convert thermal energy into electricity, can be a solution to global
energy challenges by converting waste heat into useful energy. Due to the large stoichiometry and processing
space, physics intuition-based optimization has been slow for thermoelectric materials design and process
optimization. To overcome these challenges, researchers have applied ML techniques for the efficient
development of thermoelectric materials and the prediction of their properties [176, 177]. Figure of merit
(zT) is an important indication for the performance of thermoelectric materials. Hence, researchers have
tried to efficiently predict zT and develop thermoelectric materials with high zT.Here, zT is related to a few
intercorrelated transport properties as the following equation [178]:

zT= S2ρ−1κ−1T (8)

where S, ρ, κ, and T respectively represent the Seebeck coefficient, electrical resistivity, thermal conductivity,
and absolute temperature. As can be seen from the zT expression, thermoelectric materials usually benefit
from low thermal conductivity which can in turn improve their efficiency. However, prediction of the
thermal conductivity of inorganic materials is challenging since only a few portions (5% among 105
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Figure 12.ML for thermoelectric materials. (a) The schematic of the ML models (crystal graph convolutional network (CGCNN)
and RF), developed in [179]. (b) Accuracy of the models. kc and k’c respectively represent the calculated and predicted thermal
conductivity. Reproduced from [179] with permission from the Royal Society of Chemistry. (c) Accuracy of the trained ML
model used, used in [180]. (d) Extracted feature importance from the ML model. Reprinted with permission from [180].
Copyright (2022) American Chemical Society.

synthesized inorganic materials) have a low thermal conductivity that is effective for thermoelectric
materials. To tackle this challenge, Zhu et al [179] employed ML techniques (crystal graph convolutional
network and RF) for the prediction of the thermal conductivity of all known inorganic materials for
thermoelectric applications (figures 12(a) and (b)). The trained models after including the transfer learning
exhibited good accuracy, allowing for accurate predictions of thermal conductivity. Furthermore, they could
identify a promising material system for thermoelectrics.

Li et al [180] used a data-driven light gradient boosting (LGB) model to directly predict the performance
(zT) of thermoelectric materials. They trained the model with selected data from the database by the
University of California Santa Barbara [181]. The trained model showed a high accuracy (high R2 value of
∼0.96 and low RMSE of∼0.09), resulting in accurate zT value predictions (figure 12(c)). As a result, they
could discover some potential materials that have high zT among a large candidate pool (1 million).
Furthermore, they could extract feature importance by analyzing the frequency of a feature used as a node
(figure 12(d)). Zhan et al [182] leveraged an ML method to predict thermal boundary resistance, which is
one of the keys for the thermal conductivity of thermoelectric materials. They collected data from the
literature, and trained their ML models (generalized linear regression, least-absolute shrinkage and selection
operator regularization, GP regression, and support vector regression), resulting in some reliable models.
They successfully predicted thermal boundary resistance with a model, and they could find the important
descriptor (film thickness) to predict the thermal property. Jia et al [68] used an unsupervised learning
method to discover promising materials for thermoelectrics. They trained several unsupervised algorithms
(e.g. K-means clustering, Gaussian Mixture, Mean Shift) with data in the MP database [183] for clustering
promising materials. They successfully discovered some materials with high performance using their trained
ML model.

3.6. Supercapacitors
Designing high-performance supercapacitors, which are energy storage devices, has drawn great attention
over the past few decades due to their potential high power density, high specific capacity, and rapid
charging/discharging rate [184, 185]. Predicting specific capacity and cyclic stability is important for
evaluating the performance of supercapacitors, but it is challenging with first-principles strategies. To
address this issue, Ghosh et al [186] utilized RF and MLP models for the prediction of the capacitance and
cyclic stability of supercapacitors. Their ML models successfully predicted these important properties for
supercapacitors composed of cerium oxynitride, a promising electrode material. Aqueous supercapacitors
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Figure 13.ML for supercapacitors and polymers. (a) Accuracy of the ANN model for predicting capacitance, used in [189]. (b)
Comparison of capacitances between previously reported values and those identified in this work, demonstrating potential in
discovering high-performance supercapacitors). Reproduced from [189]. CC BY 4.0. (c) Accuracy of the ML model, used in
[193]. (d) Predicted thermal conductivity as a function of SA score that indicates synthesizability, demonstrating the capability to
the identification of synthesizable polymers with high thermal conductivity. Reproduced from [193]. CC BY 4.0.

have emerged as promising energy storage devices since they exhibit excellent power density and long
lifetime cycles. Here, porous carbon materials, which possess large surface area and rich porous structures,
can enhance the overall performance of supercapacitors [187]. However, designing these porous structures is
difficult and time-intensive [188]. Wang et al [189] employed an ANN model to identify the critical features
of carbon materials by predicting the specific capacitance of hyperporous carbons. They revealed that the
ANN model achieved high accuracy when employing Bayesian regularization (figure 13(a)), which led to the
successful prediction of the capacitance and cyclic stability. This enabled the discovery of high-performance
carbon materials for supercapacitors (figure 13(b)).

3.7. Polymers
Polymers are widely used in energy materials, such as energy storage devices, batteries, and solar cells,
making the optimal design of polymers important [190–192]. However, the limited data on polymeric
properties and their structural complexity hinder the identification of high-performance polymers. To tackle
these challenges, Wu et al [193] used ML models that combine the Bayesian molecular design framework and
transfer learning to predict polymeric properties. They trained the ML model using the database from
PoLyInfo, and the trained model achieved high accuracy, as can be seen in figure 13(c). As a result, they could
discover promising polymers yielding high thermal conductivities (figure 13(d)). The dielectric constant of
polymers is a key parameter for determining the performance of energy materials, but predicting this
property using conventional methods, such as density functional perturbation theory or MD simulations,
involves time-intensive work with low reliability. To address this challenge, Chen et al [194] developed an
ML-based model that includes a polymer fingerprinting scheme and GP regression algorithm. They trained
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their model with data collected from the literature, achieving acceptable prediction accuracy. This led to the
successful prediction of the dielectric constant of synthesizable candidate polymers.

4. Summary and perspectives

4.1. Summary
In summary, by reviewing the literature, we have shown that ML approaches have been widely used for the
design of energy materials for a wide variety of applications to overcome limitations caused by experimental
or computational costs to obtain material properties. Recent progress in computational power and ML
algorithms enables users to utilize ML more efficiently in energy material fields to predict material
properties, search vast design spaces, and discover optimal design parameters. We have concisely reviewed
the basics of ML techniques and surveyed some ML-aided optimization schemes for energy materials. We
have shown that the trained ML models can be applied in various research fields for property predictions or
inverse design, which have been demonstrated with the examples. Overall, it has been demonstrated that ML
techniques can play important roles in guiding the efficient design of high-performing energy materials,
although challenges still exist.

4.2. Challenges and perspectives
A number of major challenges are still present in using ML for energy materials design and optimization.
These are discussed in this section.

4.2.1. Low quality and low volume of data for ML
ML training with small, imbalanced or low-quality data can make the models biased and cannot properly
cover entire feature spaces, hindering learning complex relationships across the whole design spaces. Hence,
the model can be under- or over-fitted, which leads to inaccurate predictions [195]. To mitigate these issues,
data augment techniques, such as rotating [93], node feature masking [196], edge dropping [197], and
subgraph replacement [198], can be applied. In addition, active learning strategies can allow the model to
collect meaningful data, enhancing the model’s performance iteratively even starting with a limited amount
of data [127, 132].

4.2.2. ML algorithms working with limited and imbalanced data
Large materials databases based on high-accuracy simulations and experiments are the foundation for the
applications of advanced ML algorithms, especially deep learning algorithms for material design, and
catalyzed the development of materials informatics. However, for many of the properties that are not easy to
measure or compute, the lack and imbalance of data remain huge obstacles for researchers to train accurate
ML models. Recently, some techniques such as threshold-moving [199], transfer learning (leverages models
trained on large datasets to build models on small datasets of different properties) [200–202], multi-fidelity
modeling [203], and active learning [129] have been proposed to face the challenges of small and imbalanced
data. These techniques allowed for material designs with limited and imbalanced data [204, 205].

4.2.3. Design of synthesizable materials using ML
The synthesizability of materials designed using ML remains one of the greatest challenges for the further
development of ML for energy materials and materials in general. Bridging the gap between algorithmically
proposed materials and successful laboratory synthesis involves addressing critical factors like possible and
optimal experimental conditions. To augment the synthesizability of generated materials, integrating
ML-driven retrosynthesis planning with generative algorithms emerges as a promising solution.
Retrosynthesis planning falls into template-based and template-free categories [206, 207]. Template-based
approaches rely on summarized reaction rules while template-free methods, often utilizing deep learning,
predict reactants directly. An example of template-based retrosynthesis planning is presented by Chen et al
[208], who developed a data-assisted tool. However, it has limitations, including neglecting important design
factors such as experimental conditions and potential ineffectiveness with new materials. Template-free
methods, although potentially more versatile, may require substantial training data. Exploring the potential
of large language models for polymer structure generation and optimization, considering retrosynthesis
planning, represents an exciting avenue for future research [77, 209, 210].

4.2.4. Multi-objective optimization
Multi-objective optimization in material design often faces conflicts in different properties to be
optimized—improvement in one can lead to degradation in others. In this scenario, decision-makers can
identify preferred solutions from the Pareto front, which represents optimal trade-offs between conflicting
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objectives. Approaches to solving these problems fall into two categories: a posteriori and a priori [211].
Posteriori methods aim to discover the entire Pareto front, allowing decision-makers to understand
achievable objective values and make decisions based on the trade-offs between each objective. Recently, a
noticeable number of works have been developed to reveal the Pareto optimal solutions [212, 213]. However,
identifying the preferred solution on the Pareto front can be resource-intensive, particularly with a posteriori
methods that require evaluating a large number of objective functions [214]. In a priori multi-objective
optimization methods, decision-makers define their preferences upfront, streamlining the process towards
specific goals and reducing the need for extensive objective evaluations. One common technique is the use of
Achievement Scalarizing Functions, typically formulated as weighted sums of objectives based on the
decision-maker’s preferences and knowledge. While easy to implement, finding the right weight vectors to
achieve Pareto optimal solutions remains a challenge. Another approach is optimizing a single objective
subject to constraints on others [215]. Lexicographic methods are also used [211], prioritizing objectives
according to an established hierarchy of importance. Each method offers distinct advantages and faces
unique challenges, influenced by the optimization problem’s complexity. For materials, additional challenges
lie in the fact that different properties have various levels of difficulties to acquire computationally or
experimentally. Therefore, removing the rate-limiting barrier for materials characterization is also key to
ML-assisted energy material design.

4.2.5. Material design with properties outside the range of training data
Designers frequently face situations where the collected data does not adequately represent the domain
trends, or in some cases, there is insufficient data to train an optimization model. This is usually known as
the out-of-distribution prediction/design problem. This may be partially addressed by leveraging a latent
space using encoder/decoder architectures. This strategy allows for the exploration of new material
compositions and properties by navigating a lower-dimensional latent space, which enhances computational
efficiency. Additionally, interpolation in the latent space may appear to be extrapolation when decoded into
the real space, which has a much higher dimension. The latent space has enabled the discovery of novel
materials exhibiting properties beyond those presented in the training data [216]. Also, the issue can be
addressed through active learning and the utilization of surrogate models. Initially, the surrogate model is
assumed to best represent the search space. New data points are actively acquired and integrated into the
dataset for subsequent optimization rounds, gradually expanding the property boundaries. However, this
approach, focusing only on the predictive mean of the surrogate model, may not effectively balance
exploration and exploitation. Advanced methods involve applying BO to probabilistic surrogate models (e.g.
GP), considering both uncertainty and predictive mean. This allows for tailored adjustments in the balance
between exploration and exploitation, based on prior beliefs. Such an ML manner to data acquisition can
help minimize the need for new data in reaching the design target [217, 218].

4.2.6. Other thoughts
Addressing these above challenges will enable ML techniques to be more effective and to yield reliable
outcomes in energy material design, allowing for applying them in various research and industrial fields.
However, many ML algorithms are black-box, meaning that it is hard to explain their mechanisms. Hence,
future development of ML algorithms should focus on building transparent and interpretable models, which
will be more broadly applicable for decision-making, predictions, and inverse designs. Opening up the box
will also shed light on the fundamental physics governing the material behavior, understanding which will
improve the knowledge base and is more generalizable than a dataset or a ML model.

Hyperparameters, which are not learned from data, are crucial components to determining the
performance of ML algorithms, but identifying optimal hyperparameters is challenging. Optimization spaces
of hyperparameters may be complex, and interactions between hyperparameters may add complexity to the
optimization process, making non-convexity of the objective function. This imposes an additional
optimization problem on the ML materials optimization task. To tackle these difficulties, many approaches
have been proposed to optimize hyperparameters using ML methods. With the optimal hyperparameters,
ML can present higher performance for prediction and design in the energy material field.

As can be seen in Kiati and Kim’s works [79, 134, 140], quantum computers exhibit notably enhanced
computational capabilities to explore optimization spaces. Hence, the integration of ML algorithms and
quantum computers will become important for the optimization of energy materials that have complex
structures and characteristics. There are still current limitations on quantum computing hardware, such as
the limited number of qubits, limited connections between the qubits, and the lack of capability to optimize
effectively continuous variables.

20



Prog. Energy 6 (2024) 042005 S Kim et al

Furthermore, in the future, it is expected that quantumML, leveraging principles from quantum
mechanics to address certain computational challenges much more efficiently, will enable us to build better
models and identify optimal solutions much faster than classical ML approaches. While these are still limited
by quantum computing hardware, these advancements, if realized, will open new avenues in energy material
fields for highly complex properties and significantly large optimization spaces, which are difficult for now.
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