

Hariprasad Narayanan^{1,2} Harindranthan Nair² Balasubramanian Viswanathan¹

¹National Centre for Catalysis Research, Department of Chemistry, Indian Institute of Technology Madras, Chennai-600036, Tamil Nadu, India ²School of Environmental Studies, Cochin University of Science and Technology, Cochin-682022, Kerala, India

National Conference on Catalysis for Energy, Environment & Sustainability (CEES-2024), 18-20 September 2024

Synthesis of Melamine Cyanurate (CAM) Precursor

- Eutectic synthesis using melamine cyanurate precursor:
 - Preparation of a 1:1 mixture of melamine and cyanuric acid using Millipore water.
 - **②** Reflux and stirring of the mixture at 90 $^{\circ}$ C for 6 h.
 - Cooling of the mixture followed by filtration to obtain melamine cyanurate crystals.
 - Washing of the crystals with water and drying at 110°C in a vacuum furnace overnight under 10⁻⁵ torr pressure.
- **2** Recrystallization of melamine cyanurate from an ethanol solution:
 - ${\small 0}$ Weighing of 0.5 g of melamine cyanurate powder and transferring it to a beaker.
 - Addition of 50 mL of ethanol to the beaker and heating the solution on a hot plate until the melamine cyanurate dissolved.
 - Constant stirring of the solution as it cooled.
 - Filtration of the cooled solution through a piece of filter paper and transfer of the crystals to a Petri dish.
 - Complete drying of the crystals.
- 8 Resulting product:
 - Grounding of the crystals into a powder using a mortar and pestle.
 - Storage of the powder in a 25 mL amber bottle labeled as CAM.

Synthesis of CAM-gCN

- Recrystallization and sample preparation:
 - Collection of recrystallized precursors.
 - **②** Grinding of the precursors in a mortar.
 - Transfer of the ground precursors into an alumina boat with a lid using a spatula.
 - $\ensuremath{{0}}$ Placement of the alumina crucible in a SIGMA Laboratory tubular furnace under N_2 atmosphere
 - **9** Heating for 4 h with a ramping rate of $2 \degree C \min^{-1}$ and a terminal temperature of $450 \degree C$.
- Post-heating process and storage:
 - Transfer of the resulting fine yellow block of graphitic carbon nitride into a mortar.
 - Grinding of the block well using a pestle.
 - Transfer of the delicate yellow powder into a 25 mL storage amber glass vial with an airtight cap.
 - Labeling of the vial as CAM-gCN.

CO₂ Conversion 4/63

Synthesis of CAM-gCN-NiCl₂-KCl

- Experimental procedure for synthesis:
 - Grinding of 2 g of recrystallized melamine cyanurate $(C_6H_9N_9O_3)$ with 10 g of a nickel chloride and potassium chloride eutectic mixture (39.4:60.6 wt%) in a glove box under an inert atmosphere.
 - **2** Transfer of the resulting mixture into a Quarts boat with a lid.
 - Introduction of the reaction mixture into a tubular furnace under a nitrogen atmosphere.
 - Heating of the mixture at a ramping rate of 2°C min⁻¹ for 4 h until reaching a terminal temperature of 450°C.
 - Removal of the salt block from the reaction mixture through boiling distilled water washing and centrifugation at 10 000 rpm for 15 min.
 - **()** Drying of the obtained material in a vacuum oven at $110 \,^{\circ}\text{C}$ overnight under a pressure of 10^{-5} torr.
- Storage and labeling:
 - Transfer of the resulting powder into a 25 mL amber bottle.
 - **2** Labeling of the bottle as CAM-gCN-NiCl₂-KCl.

Oral Presentation 32

Synthesis of CAM-gCN-NiCl₂-CsCl

- Experimental procedure for synthesis:
 - Grinding of 2 g of melamine cyanurate $(C_6H_9N_9O_3)$, recrystallized from methanol, along with 10 g of a nickel chloride and caesium chloride eutectic mixture (50:50 wt
 - Transfer of the resulting mixture into a Quarts boat with a lid.
 - Introduction of the reaction mixture into a tubular furnace under a nitrogen atmosphere.
 - Heating of the mixture at a ramping rate of 2°C min⁻¹ for 4 h until reaching a terminal temperature of 450°C.
 - Removal of the salt block from the reaction mixture through washing with boiling distilled water and centrifugation at 10 000 rpm for 15 min.
 - Drying of the obtained material in a vacuum oven at 110 $^\circ C$ overnight under a pressure of 10^{-5} torr.
- Storage and labeling:
 - ${\small 0}$ Transfer of the resulting powder into a 25 mL amber bottle.
 - **2** Labeling of the bottle as CAM-gCN-NiCl₂-CsCl.

CO₂ Conversion 6/63

Oral Presentation 32

X-ray Diffraction Analysis

CO₂ Conversion 7 /63

Oral Presentation 32

Experimental

Conditions: 0.1g/L (Catalyst Loading) in 0.2N NaOH ; 300W Xe Lamp: AM 1.5 Filter

CO₂ Conversion 8/63

Oral Presentation 32

Surface Areas versus CH₄ Yield

CO₂ Conversion 9/63

Oral Presentation 32

Surface Areas versus CH₃OH Yield

CO₂ Conversion 10 /63

Oral Presentation 32

Surface Areas versus O₂ Yield

Hariprasad (National Centre for Catalysis Research)

CO₂ Conversion 11/63

Oral Presentation 32

The B.E.T Surface Area

	B.E.T S.A	С
CAM-gCN	42.35	-623.69
CAM-gCN- <i>NiCl</i> ₂ -CsCl	2.17	-10.10
CAM-gCN- <i>NiCl</i> 2-KCI	12.83	-26.44

CO₂ Conversion 12/63

Oral Presentation 32

Surface Area Analysis: BETSI vs. SESAMI Method

	Sur	face Area,					
	B.E.T	BETSI	SESAMI	C, SESAMI	qm, mol/kg	Pore Size, nm	t-plot M.A
CAM-gCN	42.35	44	43.5	377.8	0.45	21.59	9.56
CAM-gCN-NiCl ₂ -CsCl	2.17	10	10.1	1002	0.10	104.76	18.85
CAM-gCN-NiCl ₂ -KCl	12.83	20	19.8	777.8	0.20	43.91	17.71

CO₂ Conversion 13/63

Oral Presentation 32

Derivative Isotherm Summation

CO₂ Conversion 14/63

Oral Presentation 32

Energy-Dispersive X-ray Analysis (EDAX)

	Element	Weight %	MDL	Atomic %	Net Int.	Error %
gCN-NiK	СK	31.6	1.73	43.0	55.9	13.9
	NK	27.9	1.81	32.6	40.2	14.5
	0 K	15.9	0.72	16.3	55.0	13.6
	CI K	7.1	0.12	3.3	374.8	4.0
	ΚK	0.1	0.14	0.0	2.7	62.6
	Ni K	17.5	0.39	4.9	250.3	3.6
gCN-NiCs	СK	25.9	2.05	37.9	40.5	14.7
	ΝK	24.9	1.66	31.3	40.8	14.5
	0 K	17.6	0.65	19.4	71.7	13.2
	CI K	10.0	0.12	4.9	565.8	3.8
	Ni K	21.4	0.39	6.4	333.7	3.3
	Cs L	0.3	0.48	0.0	3.8	56.9

CO₂ Conversion 15 /63

Oral Presentation 32

UV-Visible Diffuse Spectroscopy Analysis

Sampla	Band Gap, eV						U.E	R.I
Sample	Tauc Plot			K-M Plot			meV	
	L.R	F.D	S.D	L.R	F.D	S.D	L.R	
CAM-gCN	2.96	3.14	3.03	3.06	3.19	3.08	229	2.3555
CAM-gCN-NiCl ₂ -KCl	2.82	3.42	3.19	3.43	3.12	3.4	1001	2.2564
CAM-gCN-NiCl ₂ -CsCl	2.66	3.42	3.2	2.98	3.43	3.2	1166	2.3163

L.R = Linear Regression; F.D = First Derivative; S.D = Second Derivative; U.E = Urbach Energy; R.I = Refractive Index

CO₂ Conversion 16 /63

Oral Presentation 32

Derivative Kubelka-Monk Plots

CO₂ Conversion 17/63

Oral Presentation 32

Derivative Diffuse Reflectance Spectroscopic Analysis

	Min	Intensity	Max	Intensity	D Parameter	S.A	Slope	D.P /S.A	
CAM-gCN	376	-0.05251	401	0.04348	0.09599	43.5	377.8	0.0022	
CAM-gCN-NiCl ₂ -KCl	338	-0.06827	365	0.03192	0.12139	19.8	777.8	0.0061	
CAM-gCN-NiCl ₂ -CsCl	347	-0.11024	388	0.05312	0.14529	10.1	1002	0.0143	
Note: $D.P = D$ parame	eter, di	fference be	tween	the maxima	a and minima,	S.A = s	surface a	area, slope=	
B.E.T Slope from SESAMI Analysis									

Surface Functional Groups in Ni-based Carbon Nitrides

	(C)-N-H _x	N-(C)=N	C=(N)-C	N-(NH)-C	$C-(N)-H_x$	ОН
gCN	1.38	35.34	35.36	7.65	6.26	0.24
gCN-NiCs gCN-NiK	3.32 3.68	19.78 20.61	6.26 15.26	6.9 8.27	7.56 5.23	7.23

Atomic Percentage (%)

Normalized Surface Concentration, NSC% =
$$\left(\frac{\text{XPS At\%}}{\text{SESAMI Surface Area}}\right)$$

	(C)-N-H _x	N-(C)=N	C=(N)-C	N-(NH)-C	$C-(N)-H_x$	ОН
gCN gCN-NiCs	0.0317 0.3287	0.8124 1.9584	0.8129 0.6198	0.1759 0.6832	0.1439 0.7485	0.0055 1.1158
gCN-NiK	0.1859	1.0409	0.7707	0.4177	0.2641	0.3652

Normalized Surface Concentration (NSC%)

Bold values indicate highest in each column

Comparison of Ni 2p and Cl 2p in Ni-based Carbon Nitrides

	Ni 2p _{3/2}	Ni 2p _{3/2}	Ni $2p_{1/2}$	Ni $2p_{1/2}$	Cl 2p	Cl 2p	Cl 2p
gCN-NiCs	1.72	0.91	0.53	0.42	7.70	4.22	-
gCN-NiK	1.37	0.96	0.43	0.44	4.95	3.86	1.44

Atomic Percentage (%) of Ni 2p and Cl 2p

	Ni 2p _{3/2}	Ni 2p _{3/2}	Ni $2p_{1/2}$	Ni $2p_{1/2}$	CI 2p	Cl 2p	Cl 2p
gCN-NiCs	0.1703	0.0901	0.0525	0.0416	0.7624	0.4178	-
gCN-NiK	0.0692	0.0485	0.0217	0.0222	0.2500	0.1949	0.9846

Normalized Surface Concentration (NSC%) of Ni 2p and Cl 2p

Bold values indicate higher concentration between the two samples

CO₂ Conversion 20 /63

Oral Presentation 32

Possible Structure

Potential coordination environment of a nickel cation with melam as bidentate ligand. Nickel is sharing two chloride ligands, thus formally exhibiting the oxidation state +1.

Oral Presentation 32

Possible Structures

Hypothetical structures of Ni-CNx, assuming a molecular (a-b) and an oligomeric (c) arrangement of subunits. The melam units in (a) feature a coordinative and ionic bond towards nickel with oxidation states of +1 and +2, respectively. In (b) the melam is negatively charged featuring only ionic bonds and ox. state +2. (c) In the oligomeric form only ionic bonds persist; with nickel in ox. state +2.

CO₂ Conversion 22/63

Oral Presentation 32

Valence Band XPS Analysis

	Highest Occupied Molecular Orbital (HOMO), eV								
Sample	SD	Curve Fitting							
		Position	Original Value	FWHM	STD				
CAM-gCN	2.18	2.28	2.2832	1.53	1.368				
CAM-gCN-NiCl ₂ -CsCl	1.78	1.74	1.7359	1.74	1.35				
CAM-gCN-NiCl ₂ -KCl	1.58	1.57	1.5701	1.67	1.818				

CO₂ Conversion 23 /63

Oral Presentation 32

Energy Band Diagram Elucidation

CO₂ Conversion 24 /63

Oral Presentation 32

Energy Band Diagram Elucidation: pH Correction

Methane Formation Mechanism on gCN-NiCl₂

Direct CO₂ Reduction

Light absorption:

```
\mathrm{gCN-NiCl}_2^{} + \mathrm{h}\nu \rightarrow \mathrm{gCN-NiCl}_2^{*} + \mathrm{e}^- + \mathrm{h}^+
```

 \bigcirc CO₂ activation:

```
CO_2 + gCN-NiCl_2^* \rightarrow CO_2^* + gCN-NiCl_2
```

```
OPCET steps:
```

```
\begin{array}{l} \mathsf{CO}_2^* + \mathsf{e}^- + \mathsf{H}^+ \to \mathsf{CO}^* + \mathsf{HCOOH}^* \\ \\ \mathsf{CO}^* + \mathsf{H}^+ + \mathsf{e}^- \to \mathsf{HCHO}^* \\ \\ \mathsf{HCHO}^* + \mathsf{H}^+ + \mathsf{e}^- \to \mathsf{CH}_3\mathsf{OH}^* \\ \\ \mathsf{CH}_3\mathsf{OH}^* + \mathsf{H}^+ + \mathsf{e}^- \to \mathsf{CH}_4^* \end{array}
```

Indirect Pathway via CO

- Light absorption
- $\textcircled{O} CO_2 \text{ activation and CO formation:}$

 $\begin{array}{c} \mathrm{CO}_2 + \mathbf{g}\mathrm{CN}\text{-}\mathrm{Ni}\mathrm{Cl}_2^* \rightarrow \mathrm{CO}_2^* + \mathbf{g}\mathrm{CN}\text{-}\mathrm{Ni}\mathrm{Cl}_2\\ \mathrm{CO}_2^* + \mathbf{e}^- \rightarrow \mathrm{CO}^* + \mathrm{O}^- \end{array}$

O hydrogenation:

```
\begin{array}{c} \mathsf{CO}^* + \mathsf{H}^+ + \mathsf{e}^- \to \mathsf{CH}_2^* + \mathsf{OH}^- \\ \mathsf{CH}_2^* + \mathsf{H}^+ + \mathsf{e}^- \to \mathsf{CH}_3^* + \mathsf{H}_2\mathsf{O} \\ \mathsf{CH}_3^* + \mathsf{H}^+ + \mathsf{e}^- \to \mathsf{CH}_4^* \end{array}
```

Water oxidation:

$$\mathsf{h}^+ + \mathsf{H}_2\mathsf{O} \rightarrow \frac{1}{2}\mathsf{O}_2 + \mathsf{H}^+ + \mathsf{e}^-$$

Methanol Formation Mechanism on gCN-NiCl₂

Pathways to Methanol

• Formate Pathway:

CO₂ Radical Anion Reactions

Dimerization:

 $\begin{aligned} & 2\text{CO}_2^\bullet \rightarrow \text{C}_2\text{O}_4^{2-} \\ & \text{C}_2\text{O}_4^{2-} + 2\text{H}^+ + 2\text{e}^- \rightarrow \text{HCOOH} + \text{H}_2\text{O} \end{aligned}$

Protonation:

 $\begin{array}{c} \mathsf{CO}_2^\bullet + \mathsf{H}^+ \to \mathsf{HCOO}^\bullet \\ \mathsf{HCOO}^\bullet + 2\mathsf{H}^+ + 2\mathsf{e}^- \to \mathsf{HCHO} + \mathsf{H}_2\mathsf{O} \end{array}$

 $\begin{array}{l} \mathsf{HCOO}^- + \mathsf{H}^+ + \mathsf{e}^- \to \mathsf{HCHO} + \mathsf{H}_2\mathsf{O} \\ \\ \mathsf{HCHO} + \mathsf{H}^+ + \mathsf{e}^- \to \mathsf{CH}_2\mathsf{OH} \end{array}$

Ø Methoxy Pathway:

 $CO_{2}^{\bullet} + 2H^{+} + 2e^{-} \rightarrow CHO^{\bullet}$ $CHO^{\bullet} + H^{+} + e^{-} \rightarrow CH_{2}O^{\bullet}$ $CH_{2}O^{\bullet} + H^{+} + e^{-} \rightarrow CH_{3}O^{\bullet}$ $CH_{3}O^{\bullet} + H^{+} + e^{-} \rightarrow CH_{3}OH$

Water Oxidation

$$2H_2O(l)\rightarrow O_2(g)+4H^++4e^-$$

Conclusion

Advantages

- Promising for solar fuel applications
- In-situ synthesis of metal-incorporated structures
 - Frameworks and hybrids (e.g., gCN-Ni)
 - Many structures remain unknown
- Precursor engineering via supramolecular chemistry
- Incorporation of functionalities at precursor stage

Challenges and Future Directions

- Complexity in catalyst design
 - Numerous interconnected factors
 - Design changes based on reaction requirements
- Future research:
 - Explore unknown structures
 - Optimize precursor engineering
 - Develop predictive models
- Key goal: Balance complexity and functionality

Key Takeaway: A key strength of this research lies in its multifaceted analytical approach. By employing a wide array of advanced characterization techniques and introducing novel parameters such as normalized surface concentration (NSC%) and light absorption efficiency per unit surface area (DP/SA), this work provides unprecedented insights into the structure-property-performance relationships of $g-C_3N_4$ materials.

Appreciation

Thank you for your attention! Any questions?

The presentation, as well as the dataset, will be available on the Catalysis Database at http://catalysis.eprints.iitm.ac.in/.

CO₂ Conversion 29 /63

Oral Presentation 32

Additional Slides

X-ray Diffraction Analysis

Physical Adsorption Characterization

BET Surface Identification (BETSI) Analysis of CAM-gCN

BET Surface Identification (BETSI) Analysis of CAM-gCN-NiCl₂-KCI

CO₂ Conversion 34 /63

Oral Presentation 32

BET Surface Identification (BETSI) Analysis of CAM-gCN-NiCl₂-CsCl

CO₂ Conversion 35 /63

Oral Presentation 32

SESAMI Analysis of CAM-gCN

CO₂ Conversion 36 /63

Oral Presentation 32

SESAMI Analysis of CAM-gCN-NiCl₂-KCl

CO₂ Conversion 37 /63

Oral Presentation 32

SESAMI Analysis of CAM-gCN-NiCl₂-CsCl

CO₂ Conversion 38 /63

Oral Presentation 32

Derivative Isotherm Summation

CO₂ Conversion 39 /63

Oral Presentation 32

Field Emission Scanning Electron Microscopy (FESEM)

CO₂ Conversion 40 /63

Oral Presentation 32

Field Emission Scanning Electron Microscopy (FESEM)

CO₂ Conversion 41/63

Oral Presentation 32

Derivative Isotherm Summation

CO₂ Conversion 42/63

Oral Presentation 32

Field Emission Scanning Electron Microscopy (FESEM)

CO₂ Conversion 43/63

Oral Presentation 32

Field Emission Scanning Electron Microscopy (FESEM)

CO₂ Conversion 44 /63

Oral Presentation 32

Solid UV-Visible Spectroscopy

CO₂ Conversion 45 /63

Oral Presentation 32

Tauc Plot Validation

CO₂ Conversion 46 /63

Oral Presentation 32

Tauc Plot Validation

Oral Presentation 32

Derivative Tauc Plot

CO₂ Conversion 48 /63

Oral Presentation 32

Derivative Tauc Plot Analysis

	Min	Intensity	Max	Intensity	D Parameter	S.A	Slope	D.P / S.A
CAM-gCN	379	-0.02948	409	0.02775	0.05723	43.5	377.8	0.001315632
CAM-gCN-NiCl ₂ -KCl	347	-0.02373	389	0.01358	0.03731	19.8	777.8	0.001884343
CAM-gCN-NiCl ₂ -CsCl	338	-1.33E-02	388	0.00978	0.02312	10.1	1002	0.002289109
Note: $D.P = D$ param	eter,	difference be	etween	the maxin	na and minima	, S.A=	= surfac	e area, slope $=$
B.E.T Slope from SESA	MI A	nalysis						

Urbach Plot

CO₂ Conversion 50 /63

Oral Presentation 32

Diffuse Reflectance Spectroscopy

CO₂ Conversion 51/63

Oral Presentation 32

Diffuse Reflectance Spectroscopy

CO₂ Conversion 52/63

Oral Presentation 32

Kubelka-Monk Plots

CO₂ Conversion 53/63

Oral Presentation 32

Derivative Kubelka-Monk Plots

				Oral Presentation 32				
Peak Assignment	Pos.	FWHM	L.Sh	Area	At%	Total%	STD	
sp ³	284.88	1.45	LA(1.3, 243)	8946.39	2.26			
C in C-N-Hx	287.05	1.78	LA(1.3, 243)	5446.39	1.38			
C in $N-C=N$	288.19	1.28	LA(1.03, 1.24, 243)	139748.92	35.34	35.34	1.183	
C1s Satelite 1	293.64	3.33	LA(1.3, 243)	17036.86	4.31			
N in $C=N-C$	398.67	1.36	LA(1.03, 1.24, 243)	251677.86	35.36	49.27	1.096	
N in N–(C ₃)	399.92	1.63	LA(1.3, 243)	54474.7	7.65			
N in $C-N-Hx$	401.13	1.61	LA(1.3, 243)	44595.35	6.26			
N1s Satelite 1	404.26	2.73	LA(1.3, 243)	35832.03	5.03			
N1s Satelite 2	406.84	2.31	LA(1.3, 243)	11858.5	1.67			
ОН	531.46	1.69	LA(1.3, 243)	2802.28	0.24	0.24	0.8794	
O1s	532.7	2	LA(1.3, 243)	5802.05	0.5			

Table 1: Spectral Features of CAM-gCN

Conversion 57 /63	Oral Presentation 32						
Peak Assignment	Pos.	FWHM	L.Sh	Area	At%	Total%	STD
sp ³	284.87	1.77	LA(1.3, 243)	26175.63	13.05		
C in $C-N-Hx$	286.35	1.35	LA(1.3, 243)	6665.81	3.32		
C in $N-C=N$	288.15	1.91	LA(1.03, 1.24, 243)	39659.82	19.78	19.78	0.9326
C1s Satelite 1	292.07		LA(1.3, 243)	9559.53	4.77		
N in C=N-C	398.48	1.45	LA(1.03, 1.24, 243)	22605.93	6.26	20.72	0.918
N in C-NH-C	399.16	1.34	LA(1.3, 243)	24898.56	6.9		
N1s in C-N-Hx	400.08	1.93	LA(1.3, 243)	27305.05	7.56		
N1s Satelite	404.33	4.28	LA(1.3, 243)	3729.92	1.03		
Ni 2p 3/2	855.78	1.88	LA(1.03, 1.24, 243)	76375.89	1.72	3.58	0.9357
Ni 2p 3/2	857.21	2.3	LA(1.3, 243)	40287.69	0.91		
Ni 2p 3/2 Satelite	861.62	4.66	LA(1.3, 243)	100169.43	2.25		
Ni 2p 3/2 Satelite	865.79	2.2	LA(1.3, 243)	9442.57	0.21		
Ni 2p 1/2	873.3	1.66	LA(1.03, 1.24, 243)	23676.55	0.53		
Ni 2p 1/2	874.73	2.29	LA(1.3, 243)	18521.18	0.42		
Ni 2p 1/2 Satelite	880.03	6.68	LA(1.3, 243)	80807.16	1.82		
OH	531.43	1.7	LA(1.3, 243)	66218.8	11.27	11.27	1.152
O1s	532.77	2.19	LA(1.3, 243)	36937.88	6.29		
CI 2p	198.37	1.69	LA(1.3, 243)	35288.42	7.7	11.92	1.023
Cl 2p	199.97	1.73	LA(1.3, 243)	19333.42	4.22		

Table 2: Spectral Features of CAM-gCN-NiCl₂-CsCl

Conversion 59/63					Oral Presentation 32		
Peak Assignment	Pos.	FWHM	L.Sh	Area	At%	Total%	STD
sp ³	284.73	1.62	LA(1.3, 243)	22193.62	9.77		
C in C-N-Hx	286.19	1.56	LA(1.3, 243)	8360.15	3.68		
C in N-C=N	287.97	1.84	LA(1.03, 1.24, 243)	46787.5	20.61	20.61	0.9505
C1s Satelite 1	290.34	2.72	LA(1.3, 243)	6605.52	2.91		
N in C=N-C	398.67	1.63	LA(1.03, 1.24, 243)	62371.5	15.26	28.76	0.9694
N in C-NH-C	399.85	1.87	LA(1.3, 243)	33797.03	8.27		
N1s in C-N-Hx	401.52	2.8	LA(1.3, 243)	21389.26	5.23		
N1s Satelite 2	404.86	3.14	LA(1.3, 243)	4748.98	1.16		
Ni 2p 3/2	855.67	1.87	LA(1.03, 1.24, 243)	68766.7	1.37	3.2	0.9221
Ni 2p 3/2	857.25	2.69	LA(1.3, 243)	48578.09	0.96		
Ni 2p 3/2 Satelite	861.47	5.11	LA(1.3, 243)	116346.18	2.31		
Ni 2p 3/2 Satelite	865.84	3.5	LA(1.3, 243)	17305.37	0.34		
Ni 2p 1/2	873.23	1.74	LA(1.03, 1.24, 243)	21755.92	0.43		
Ni 2p 1/2	874.94	2.95	LA(1.3, 243)	21996.04	0.44		
Ni 2p 1/2 Satelite	880.29	7.29	LA(1.3, 243)	90494.99	1.8		
OH	531.32	1.76	LA(1.3, 243)	48099.66	7.23	7.23	0.9721
O1s	532.91	3.32	LA(1.3, 243)	53016.83	7.97		
Cl 2p	198.11	1.68	LA(1.3, 243)	25696.39	4.95	8.81	0.9985
Cl 2p	199.72	1.99	LA(1.3, 243)	20016.17	3.86		
Cl 2p	201.68	3	LA(1.3, 243)	7464.45	1.44		

Table 3: Spectral Features of CAM-gCN-NiCl₂-KCI

Comparison of Surface Functional Groups in Ni-based Carbon Nitrides

	(C)-N-H _x	N-(C)=N	C=(N)-C	N-(NH)-C	C-(N)-H _x	НО
gCN	1.38	35.34	35.36	7.65	6.26	0.24
gCN-NiCs	3.32	19.78	6.26	6.9	7.56	11.27
gCN-NiK	3.68	20.61	15.26	8.27	5.23	7.23

Atomic Percentage (%)

Bold values indicate highest in each column

	(C)-N-H _x	N-(C)=N	C=(N)-C	N-(NH)-C	C-(N)-H _x	НО
gCN	3.17	81.24	81.29	17.59	14.39	0.55
gCN-NiCs	32.87	195.84	61.98	68.32	74.85	111.58
gCN-NiK	18.59	104.09	77.07	41.77	26.41	36.52

Normalized Surface Concentration (NSC%)

CO₂ Conversion 61/63

Oral Presentation 32

Valence Band XPS Analysis

CO₂ Conversion 62/63

Oral Presentation 32

Valence Band XPS Analysis

CO₂ Conversion 63/63

Oral Presentation 32

Derivative Valence Band XPS Analysis

