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ABSTRACT: Zeolites, nanoporous aluminosilicates with well-
defined porous structures, are versatile materials with applications
in catalysis, gas separation, and ion exchange. Hydrothermal
synthesis is widely used for zeolite production, offering control
over composition, crystallinity, and pore size. However, the
intricate interplay of synthesis parameters necessitates a compre-
hensive understanding of synthesis−structure relationships to
optimize the synthesis process. Hitherto, public zeolite synthesis
databases only contain a subset of parameters and are small in
scale, comprising up to a few thousand synthesis routes. We
present ZeoSyn, a dataset of 23,961 zeolite hydrothermal synthesis
routes, encompassing 233 zeolite topologies and 921 organic
structure-directing agents (OSDAs). Each synthesis route com-
prises comprehensive synthesis parameters: 1) gel composition, 2) reaction conditions, 3) OSDAs, and 4) zeolite products. Using
ZeoSyn, we develop a machine learning classifier to predict the resultant zeolite given a synthesis route with >70% accuracy. We
employ SHapley Additive exPlanations (SHAP) to uncover key synthesis parameters for >200 zeolite frameworks. We introduce an
aggregation approach to extend SHAP to all building units. We demonstrate applications of this approach to phase-selective and
intergrowth synthesis. This comprehensive analysis illuminates the synthesis parameters pivotal in driving zeolite crystallization,
offering the potential to guide the synthesis of desired zeolites. The dataset is available at https://github.com/eltonpan/zeosyn_
dataset.

■ INTRODUCTION
Zeolites are nanoporous, crystalline aluminosilicate materials
with a wide range of industrial applications including catalysis,
separations, and ion exchange.1−3 In addition to composition,
the crystalline structure and corresponding porous network are
crucial in determining a zeolite’s suitability for a target
application.4,5 While thousands of potential zeolite structures
are thought to be thermodynamically accessible,6 only 264
have been synthesized7 highlighting a synthesis bottleneck to
zeolite discovery and deployment. Zeolite synthesis has
typically been based on trial-and-error methods guided by
accumulated domain knowledge.8 The synthesis of zeolites is
intricate, with numerous variables influencing the resultant
zeolite structure.9 These factors include framework heter-
oatoms, the presence of inorganic and organic cations,
structure-directing agents, mineralizing agents, and hydro-
thermal conditions.1,8−11

Many studies have examined parts of the zeolite synthesis
space including compositional gel ratios (Si/Al, Na+/Si,
OSDA/Si, H2O/Si, etc.),12−16 aging conditions,17−19 crystal-
lization conditions,20−22 and precursor selection23−25 for
specific OSDAs.5 However, knowledge of the holistic interplay

between these factors across the entire field is lacking. Data
science and machine learning have shown promise in
generalizing some synthesis−structure relationships26−29 but
have been limited to subsections of the zeolite design space
due to a lack of data, which implies that larger datasets may
generalize learning more broadly across the zeolite space.
Previous works have curated zeolite synthesis datasets.

Specifically, a dataset consisting of 1,200 unique synthetic
routes for Ge-containing zeolites has been reported by Jensen
et al.28 In the same vein, Yan et al. compiled a database of
1,600 synthetic records of open-framework aluminophosphate
(AlPO) syntheses.30 However, these datasets cover a subset of
frameworks, giving rise to the first issue of data scarcity. There
have been datasets that integrate synthesis information across
the field of zeolites. For instance, Schwalbe-Koda et al.
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leveraged atomistic simulations to calculate the binding
energies and OSDA features for more than 100,000 zeolite−
OSDA pairs.31 Moreover, Jensen et al. curated a dataset of
OSDAs used in >5,000 synthesis routes.32 However, these
datasets contain only a subset of key parameters (containing
only gel composition, OSDA, or reaction conditions, but not
all three), giving rise to the second issue of data sparsity.
Muraoka et al.29 curated a comprehensive dataset comprising
gel compositions and reaction conditions but without OSDAs,
a key component of zeolite synthesis. This dataset (Muraoka et
al.) contains 686 unique synthesis routes for 23 unique
frameworks, covering only 9% of synthesized frameworks. A
more complete dataset would address the scarcity and sparsity
issues limiting generalized data-driven learning opportunities.
Within the published literature, synthesis recipes of zeolites

are commonly reported in the experimental and supporting
information sections in the form of text and tables. Data-
mining using natural language processing (NLP) frameworks

have been developed to extract zeolite synthesis data.28,32−35

Given the need for a highly curated dataset involving multiple
synthesis parameters (ranging from gel composition and
reaction conditions to OSDAs), a hybrid approach involving
NLP coupled with manual checking ensures high data quality.
Thereafter, combining literature-extracted data from the entire
zeolite domain with machine learning (ML) modeling28,32,36

could expand on understanding of zeolite synthesis.
We present ZeoSyn, a comprehensive dataset of 23,961

zeolite synthesis routes for 233 unique zeolite frameworks
(covering >80% of synthesized frameworks to date) and 921
unique OSDAs. This dataset is an order of magnitude larger
than any previously published datasets on zeolite synthesis.
Each unique synthesis route in ZeoSyn is comprehensive,
consisting of gel composition, reaction conditions, inorganic
precursors, OSDAs, and the resulting zeolite structure
extracted from the scientific literature (Figure 1a). We examine
relationships between hydrothermal variables, OSDAs, and

Figure 1. The ZeoSyn dataset. (a) An example of a zeolite synthesis route (1 out of 23,961) in the dataset, consisting of the gel composition,
inorganic precursors, reaction conditions, organic structure-directing agent (OSDA), and the resultant zeolite framework. Paper metadata of the
scientific paper containing the synthesis route is also provided. (b) Frequency of elements present in the dataset. The values correspond to the
logarithm of synthetic routes with a specific element. (c) Total number of synthesis routes of small, medium, large, and extra-large pore zeolites
extracted from literature across time in the dataset. Distributions of key gel composition variables in the dataset, including ratio between (d)
heteroatoms, and (e) mineralizing agents, metal cations, and OSDA ratios (T = ∑i ni where ni is the amount of the ith heteroatom present in
synthesis).
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resulting zeolite structures by exploring ZeoSyn to highlight
trends within the zeolite synthesis space. We train a supervised
classification machine learning model on ZeoSyn to predict
zeolite framework products given a synthesis route. We employ
SHapley Additive exPlanations (SHAP) to reveal the most
important synthesis parameters driving the formation of over
200 zeolite frameworks and their constituent composite
building units (CBUs) and show potential applications in
phase-selective and intergrowth synthesis. Analysis at this scale
is a step toward an improved understanding of key synthesis
parameters driving zeolite crystallization, which could poten-
tially guide and accelerate the discovery of new zeolite
frameworks.

■ RESULTS AND DISCUSSION
Extracted Dataset. The dataset presented in this work

contains comprehensive synthesis information on zeolites
including gel composition, reaction conditions (crystallization
time/temperature), precursors, and OSDAs as shown in Figure
1a. The dataset also includes the resulting zeolite structures
formed (or lack thereof, e.g., dense/amorphous phases) for
each synthesis route and, in some instances, zeolite properties
such as Si/Al ratio in the product, crystal size, percent
crystallinity, and BET surface area. The dataset consists of
23,961 synthesis routes from 3,096 journal articles spanning
the years 1966−2021. It contains data on 921 unique OSDA
molecules, 233 zeolite structures, and 1,022 unique materials.
The extracted gel compositions are a combination of 51
different gel components, including Si, Al, P, Na+, K+, OH−,
F−, Ge, Ti, B, Ga, V, OSDA, H2O, and additional solvents.
Each unique synthesis route also contains the Digital Object
Identifier (DOI) and the year of publication of the scientific
paper from which it was extracted.

Element Frequencies. The elemental frequencies in Figure
1b show the wide diversity of elements used in zeolite synthesis
space, ranging from alkali, alkaline-earth metals, and transition
metals to p-block elements. Elements with high frequencies
(shown in red) include Si, Al, P, Ge, and B, serving as
heteroatoms of the framework. Other common elements, such
as Group I metal ions Na+ and K+, act as inorganic structure-
directing agents, while OH− and F− act as mineralizing agents
to solubilize Al and Si sources. Group II metal ions, such as
Sr2+ and Ba2+, have been reported to accelerate the
crystallization of zeolite frameworks such as CHA37 and
LTL,38 respectively.
Some elements confer structural stability to the framework.

Ge confers framework flexibility and high tolerance in the
framework structure to acute T−O−T bond angles.39,40 Zn
also belongs to a group of flexible heteroatoms that can
facilitate the formation of 3-membered T atom rings in
frameworks.9,41 In addition to their structure-directing role in
the crystallization of some frameworks, other elements (such as
B) have been incorporated into the framework for subsequent
Al substitution.42−44 P is a fundamental heteroatom for the
synthesis of P-based zeotypes, such as aluminophosphates
(AlPOs), silicoaluminophosphates (SAPOs), and metalloalu-
minophosphates (MeAlPOs).45,46

Many transition elements have been incorporated into
zeolite frameworks to introduce new chemical functionalities
beyond Brønsted acid sites for novel catalytic applications. Ti,
Sn, and Zr serve as Lewis acid sites for selective oxidation
reactions.47−49 Fe and Cu serve as extra-framework catalytic
sites in zeolites for NOx reduction,

50,51 among other chemical

processes. Zeolites have served as supports for transition metal
catalysts, like Co and Ni, to obtain fuels from syngas52 and
CO2 methanation.53 Lanthanides, such as paramagnetic Gd,
have been incorporated in zeolites for biomedical applications
such as magnetic resonance imaging.54

Zeolite Frameworks. Zeolite frameworks can be divided
into different categories based on their maximum ring size.
ZeoSyn contains 5,250, 5,494, 5,769, and 716 synthesis routes
for small (≤8-membered rings), medium (≤10-membered
rings), large (≤12-membered rings), and extra-large pore
(>12-membered rings) zeolites, respectively. The most
common zeolite in the dataset is MFI, which is expected due
to the industrial relevance of several important materials with
that zeolite structure including ZSM-5, silicalite-1, and TS-
1.47,55 Other common frameworks include industrially
important and well-studied zeolites with multiple chemistry
types including CHA, *BEA, AFI, and FAU.56 Multiple
possible chemistries, coined “zeotypes”, give rise to frameworks
with different heteroatoms, including AlPOs, SAPOs, germa-
nosilicates, borosilicates, and other metal-containing structures
(Ti, Fe, Co, V, Zn, Sn, etc.), as shown in different colors in
Figure S1. Clearly, small and medium pore sizes are dominated
by aluminosilicates (blue). However, exceptions do exist. The
AEN, AEL, and AFO frameworks primarily exist as AlPOs
(green), while the ITH and STW frameworks are purely
siliceous (orange) or germanosilicates (red). For example, the
SAPO form of AEL has been successfully deployed for
applications in dewaxing and fuel upgrading,57,58 hence
potentially biasing the reported synthesis routes in the
literature toward AlPO chemistry. From the rightmost two
plots in Figure S1, one can clearly observe that large and extra-
large pore zeolites have a markedly higher frequency of being
synthesized as zeotypes other than aluminosilicates, such as
germanosilicates (BEC, IWR, IWW, UTL, IRR, *CTH), AlPO
(ATO, -CLO, IFO) and borosilicates (*-SVY, SFH). The
increased frequency of germanosilicates can be rationalized by
the important role of Ge in stabilizing large pores due to more
flexible Ge−O−Ge bonds.39,59

The dataset provides insight into the chronological
progression of zeolite research as it traces the total number
of reported synthesis routes over time. As shown in Figure 1c,
initially, research focused on small-pore frameworks (orange),
followed by medium- and large-pore frameworks (blue and
green). Extra-large-pore frameworks (purple), documented
much later in the 1990s, account for a considerably smaller
number of synthesis routes. Extra-large-pore frameworks have
lower thermodynamic stability compared to their small/
medium-pore counterparts, and they require careful design of
bulky OSDAs,60,61 resulting in complex and expensive organic
molecules, thus rendering their synthesis more challenging.
Another important feature of the dataset is the presence of

negative data. Many scientific fields often suffer from the
underreporting of negative or “failed” data, leading to the
literature being skewed toward positive results, which can bias
perceptions of chemistry and hinder scientific advancement.
The zeolite synthesis scientific literature reports negative
results, such as amorphous or dense crystalline phases,
alongside successful ones. As such, ZeoSyn includes synthesis
conditions resulting in a failed synthesis (dense and/or
amorphous phases as the final product), which constitutes
approximately 25% of the dataset.

Gel Composition. Figure 1d shows the distribution and
range of several important gel compositional ratios, including
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molar ratios between heteroatoms (Si/Al, Si/Ge, Si/B, Si/Ti,
and Al/P). Common Si/Al values typically range from about 5
to 40, although a significant number of synthesis routes take
place above or below this range. While conventional zeolite
synthesis typically occurs with Si/Al > 1, values below 1 exist in
the dataset due to the presence of AlPO- and SAPO-type
synthesis.62 Among the zeotypes, germanosilicates have the
smallest range, with Si/Ge ranging from 2 to 15.63 In contrast,
titanosilicates have the largest range, with Si/Ti generally going

above 25, and occasionally above 100, when syntheses are
carried out in fluoride media.47 Figure 1e represents the
mineralizing agents (OH−/T, F−/T), metal cations (Na+/T,
K+/T), and OSDA (OSDA/T). Noticeably, the ratios of these
synthesis factors to T (where T = ∑i ni where ni is the amount
of the ith heteroatom in tetrahedral sites present in synthesis)
are typically below 1, but outliers do exist, representing the
utilization of an abundance of that element. As expected,
mineralizing agents take on ratios <1, with F−/T having a more

Figure 2. OSDAs in ZeoSyn dataset. (a) Hierarchical clustering of the top 50 most frequent OSDAs in the dataset, labeled with the main classes of
molecular structures. Splits are obtained through agglomerative hierarchical clustering of OSDA Morgan fingerprints.68 Each OSDA is colored by
its molecular volume (orange), and the median largest included sphere of zeolites formed by the OSDA (purple). The concomitant intensities of
the colors show a positive correlation between the two properties. (b) Positive correlation between zeolite largest included sphere vs OSDA
volume. Red points refer to high asphericity, which accounts for outliers. (c) Positive correlation between zeolite ring size vs OSDA volume.
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restricted range compared to OH−/T. Across the alkaline
metals (M+ = Li+, Na+, K+), the range of M+/T increases from
Li+ < Na+ < K+. This could be tentatively explained by the
different solubility of the metal silicates formed in the synthesis
media.64 OSDA/T typically ranges from 0 to 1 even though
the OSDA/T ratios for carefully designed OSDAs are typically
close to 0.05. The large range of OSDA/T could be
rationalized by the fact that OSDAs are generally introduced
in their hydroxide form in excess to regulate the pH of the
synthesis gel. Moreover, the use of OSDA in excess also helps
to overcome the issue of undesired Hoffman degradation of
ammonium-based OSDAs. However, the minimal usage of
OSDA (substoichiometric levels) could be crucial when
expensive/complex molecules are used.65

Reaction Conditions. Figure S3a/b shows the distributions
of crystallization temperatures and times of different zeotypes
and different pore sizes. For aluminosilicates (blue in Figure
S3a), crystallization temperatures of aluminosilicates are broad
and bimodal in nature, indicating that some aluminosilicates
can be synthesized at lower temperatures, as observed by the
secondary peak at 100 °C. In contrast, AlPOs (red in Figure
S3a) tend to be synthesized at much higher temperatures
compared to aluminosilicates, with some even exceeding 200
°C. The reason for that is unclear, but it could be because of
the different synthesis media required for AlPO-type materials
(acidic media) compared to classical aluminosilicates (basic
media). Thus, the different nucleation−crystallization mecha-
nisms would require different crystallization temperatures to
facilitate the mobility of heteroatoms. Moreover, high
temperatures under alkaline conditions would result in
Hoffman degradation of OSDAs, thus limiting the use of
high temperatures in the synthesis of aluminosilicates. In
addition, the opposite trend applies for crystallization time,
where the AlPO syntheses typically take a much shorter
amount of time compared to aluminosilicates (red vs blue in
Figure S3c). Other zeotypes such as germanosilicates (orange)
and borosilicates (green) have moderate crystallization
temperatures but with a much smaller range of values from
150 to 180 °C. In addition, the crystallization temperature is
also correlated with pore size. Figure S3b shows that the
median (white dot) temperature increases with pore size from
small < medium < large < extra-large pore zeolites. Higher
reaction temperatures may be required to synthetically access
higher energy states corresponding to larger-pore zeolites (less
stable compared to smaller-pore zeolites).
In Figure S4, we examine the relationship between

crystallization temperature and framework density for different
zeotypes across different pore sizes. We observe a positive
relationship between the two variables for the small (orange)
and large (green) pore frameworks across different zeotypes.
Higher crystallization temperatures allow the synthesis to
overcome the energy barrier associated with the formation of
these more thermodynamically stable structures with higher
framework density.66 This phenomenon aligns with Ostwald’s
rule of stages, where the systems often pass through metastable
states before settling into their most stable form. Con-
sequently, as metastable structures gradually evolve, they
transition to more thermodynamically favorable frameworks.67

However, this positive correlation should be regarded more as
a rule-of-thumb, offering experimentalists a starting point for
selecting higher temperatures when seeking to crystallize
materials with a higher framework density. The positive
correlation between crystallization temperature and framework

density is not always observed, especially when there is no clear
trend in medium (blue) and extra-large (purple) pore zeolites,
as zeolite crystallization is governed by the complex interplay
between reaction temperature and other factors, such as gel
composition and OSDA.

Organic Structure-Directing Agents (OSDAs). OSDAs play
an indispensable role in zeolite synthesis, as they act as
templates, guiding the arrangement of building blocks to form
a porous zeolite framework. Shape, size, flexibility, hydro-
philicity, and charge distribution of the OSDA, among other
factors, strongly influence zeolite crystallization kinetics and
hence phase specificity.10,11,69 Figure 2a shows the most
frequent OSDAs present in the dataset, organized in a
dendrogram obtained from hierarchical clustering of OSDA
Morgan fingerprints.68 The clustering analysis reveals that the
predominant classes of OSDAs are ammonium cations,
characterized by linear-chain and cyclic groups. Imidazole
derivatives and spiro-type ammonium are frequently used in
zeolite synthesis due to their rigid structure, ease of synthesis,
and cheap precursors.
With both OSDA and zeolite products present in the

synthesis route, the ZeoSyn dataset allows for insights into the
zeolite−OSDA relationships. One key example is visualized in
Figure 2a, where the orange ring shows the OSDA molecular
volume (in 3D) and the purple ring shows the zeolite largest
included sphere in frameworks formed by using the OSDA,
which is an approximation of the zeolite pore size (some pores
are not spherical). The concomitant intensities of both
properties show that OSDA volumes (dark orange) are
positively correlated with the pore volume of zeolite product
(dark purple). At face value, this can be rationalized by bulkier
OSDAs being used to template frameworks with larger pore
sizes.10,11,70 For example, the spiro amines (top right) have
high molecular volumes due to the spiro scaffold, which, in
turn, tends to give zeolite frameworks with large pores or
cavities.
In Figure 2b, we observe that the Spearman rank coefficient,

which measures the statistical dependence between the
rankings of two variables,71 is positive at 0.53, thereby
confirming a positive correlation between OSDA molecular
volume and zeolite pore volume. This trend is particularly
evident for OSDAs with low to medium asphericity (gray/blue
points). However, there are exceptions to this trend. Outliers
can be explained by recognizing that the volume of OSDA
alone does not fully account for its templating effect. Other
factors like shape, flexibility, and charge are also crucial in
determining the OSDA’s ability to template specific zeolite
frameworks. For instance, outliers of the positive trend can be
explained by their high asphericity (i.e., red points in Figure
2b), meaning that they are highly nonspherical and asymmetric
in shape. For these OSDAs, the assumption of the largest
sphere breaks down, resulting in a deviation from the positive
trend. This highlights the potential pitfall of designing OSDAs
based only on the largest included sphere of a zeolite pore and
hence underpins the importance of considering the pore shape.
In the same vein, we visualize the relationship between

zeolite ring size vs OSDA volume in Figure 2c, which also
reveals a positive correlation (Spearman coefficient of 0.64).
Again, this aligns well with domain knowledge, where larger
ring sizes tend to require larger OSDAs. Outliers may be
rationalized by the fact that smaller OSDAs such as
tetramethylammonium may play a space-filling role instead
of acting as a true template. Regardless, despite the complexity
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of zeolite−OSDA relationships, the ZeoSyn dataset allows for
such visualizations that could inform the design of OSDAs with
optimal molecular volumes for synthesizing hypothetical
zeolites with specific cavity/ring sizes.

Competing Phases and Intergrowths. Since some zeolites
are metastable with respect to each other, a single synthesis
may result in two or more crystalline phases being formed,
possibly through different simultaneous kinetic processes.72

Fortunately, the zeolite literature often reports secondary
phases formed. As such, the ZeoSyn dataset also captures
competing zeolite phases, where it reports the presence of
reaction side products or zeolite intergrowths. For example,
frequently observed pairs of competing phases are TON &
MFI, FAU & GIS, and AFI & SOD, as shown in Figure S5.
This creates an opportunity to model competing phases for
zeolites. Zeolite intergrowths consist of two phases interacting
through stacking faults in one or more directions, resulting in
an alternation between the frameworks. This is a result of both
phases having matching lattices, which allows for nucleation of
both phases in the absence of grain boundaries.73 In the
ZeoSyn dataset, common intergrowths include ISV/BEC,
ERI/OFF, and MFI/MEL, as shown in Table S2. We will
discuss how machine-learning rationalization of ZeoSyn can
help achieve phase-selective synthesis between competing

phases and inform the synthesis of intergrowths through a
zeolite framework prediction model.
Zeolite Framework Prediction Model. Zeolite synthesis

is a high-dimensional space (gel composition, organic
templates, and reaction conditions) with complex structure−
synthesis relationships. For instance, the large number of
degrees of freedom of a flexible OSDA makes it difficult to
selectively template a specific zeolite framework,10,11 under-
scoring the need for a comprehensive evaluation of zeolite
synthesis. There is potential for ML models to learn from these
high-dimensional data to capture quantitatively synthesis
trends beyond what is currently understood by domain experts.
We develop a ML classification model fθ to predict the

zeolite product (e.g., LTA) given synthesis parameters (gel
composition, reaction conditions, and OSDA) as shown in
Figure 3a. We also leverage negative data by including failed
synthesis (dense/amorphous phases) in the training data for
the model to learn regions in synthesis space where a specific
zeolite framework has a higher probability to crystallize.

Model Implementation. We select the random forest
architecture as it is computationally efficient and offers strong
performance on tabular datasets compared to deep learning
architectures.74 We train a random forest model on the ZeoSyn
dataset with the inputs shown in Figure 3a. The gel

Figure 3. Interpretable ML framework for synthesis−structure relationships. (a) Schematic of zeolite phase predictor model. Given the synthesis
parameters, the model fθ predicts the resultant framework (e.g., KFI). Additionally, if a dense or amorphous phase is expected, the model predicts a
“Failed” class. The predicted framework probabilities are used to calculate framework-level SHAP values. In addition, CBU-level SHAP values of
composite building units (CBUs) are obtained by aggregating framework-level SHAP values, allowing for CBU-level analysis of synthesis
parameters. (b) Normalized confusion matrix of the phase predictor model. Here, we have selected one representative small (CHA), medium
(MFI), large (*BEA), and extra-large pore (UTL) framework. “Others” refers to all other frameworks, while “Failed” refers to amorphous/dense
phases. (c) An example of a framework-level SHAP analysis quantifying the positive/negative impact of synthesis parameters on the probability of
LTA framework formation.
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composition is represented by the relative molar fractions of
elements (e.g., Si) present in the gel. For reaction conditions,
only the crystallization time and temperature are used. For
OSDA, although some syntheses employ two or more OSDAs,
we consider only OSDA with the largest molecular volume. We
featurize the OSDAs using their physicochemical descriptors
(e.g., molecular volume and 2D shape descriptors).31 The full
list of OSDA features and their descriptions can be found in
Table S1.

Model Performance. The model is evaluated on held-out,
unseen test syntheses (from random split) on the framework
prediction task with a model accuracy of 0.73. We note that
previous work to predict the zeolite framework given synthesis
parameters as reported by Muraoka et al., albeit on a much
smaller scale,29 reported an overall accuracy of 0.82. Our
reported accuracy of 0.73 is lower, which can be rationalized by
the significant difference in the number of zeolites between
ZeoSyn and the dataset used by Muraoka et al. Specifically, in
Muraoka et al., the number of zeolite classes to predict is only
23. In contrast, we predict 1 out of 220 possible classes (an
order of magnitude larger). In addition, the work by Muraoka
et al. focused on OSDA-free synthesis versus the work
presented here, which includes OSDA-mediated synthesis
routes.
The confusion matrix shown in Figure 3b highlights

classification performance on one representative small
(CHA), medium (MFI), large (*BEA), and extra-large
(UTL) pore framework, with “Others” referring to all other
frameworks aggregated together (for ease of visualization) and
“Failed” referring to dense/amorphous phases. Most pre-
dictions fall on the diagonal of the confusion matrix, indicating
a high prediction accuracy of 0.68−0.88 for these classes.
Notably, the model does the best on the MFI framework,
possibly due to its relatively high number of synthesis routes as
previously shown in Figure S1. Even for the less common,
extra-large-pore UTL framework, the classification accuracy is
still high, at 0.88, showing that the model can generalize to
frameworks of different pore sizes. As shown by the high-
intensity off-diagonal elements being on the right-hand side of
the matrix, the majority of the errors made by the model are
misclassifications as another framework (“Others”) or dense/
amorphous dense (“Failed”). This is expected as the number of
data points in “Others” is large due to the aforementioned
aggregation (consisting of 215 frameworks). The same is true
for the “Failed” class, where there are over 4000 data points.
Moreover, the model also shows strong performance in
discriminating different pore sizes as shown in Figure S6
with high accuracies of 0.78−0.86. This shows that the model
can accurately predict the resultant framework product, given a
set of synthesis parameters.
Machine-Learning Rationalization of Zeolite Syn-

thesis Parameters. Beyond providing accurate predictions
of the reaction product, we analyze the synthesis knowledge
learned by the classification model to rationalize the impact of
synthesis parameters on the formation of a specific zeolite
framework. As such we implement SHapley Additive
exPlanations (SHAP), a game-theoretic approach to explain
the output of ML models through optimal credit allocation
with local explanations,75 on the classification model. For each
prediction, we calculate SHAP values to determine the impact
of each synthesis parameter on the probability of forming a
specific zeolite framework. A synthesis parameter with positive
SHAP values increases the probability of the formation of a

zeolite framework. For instance, the first row of Figure 3c
uncovers a physically grounded trend that low crystallization
temperatures (blue points) have positive SHAP values
(increases probability of LTA formation). Conversely, high
temperatures (orange points) have negative SHAP values
(decreases the probability of LTA formation). This would
agree with the fact that LTA is a small-pore zeolite with a
relatively low framework density hence requiring low
crystallization temperatures (at least for OSDA-free synthesis
of low-silica LTA) as previously discussed in Figure S4.
Importantly, these SHAP values allow researchers to peek into
the high-dimensional synthesis knowledge learned by the
model, which can provide valuable insights into the zeolite
crystallization process by providing SHAP values associated
with any synthesis parameter in a low dimension that are readily
interpretable by a human expert. In this section, we quantify
the impact of synthesis parameters at two different levels of
zeolite structure:

1. Framework-level SHAP shows the positive/negative
impact of a synthesis parameter on the probability of
crystallizing a specific zeolite framework (e.g., KFI in
Figure 3a)

2. CBU-level SHAP shows the positive/negative impact of
a synthesis parameter on the probability of forming a
structure that contains a specific composite building unit
(CBU) (e.g., pau cage in Figure 3a)

Framework-Level SHAP. Framework-level SHAP identifies
the most important synthesis parameters driving the formation
of a specific zeolite framework. Larger positive/negative SHAP
values correspond to larger positive/negative changes in the
probability of obtaining a specific framework given the
synthesis parameter. Here, we consider all 43 inputs of the
model fθ and show only the top 10 most important synthesis
parameters (in descending order) for specific frameworks as
shown in Figure 4a. This ordering of synthesis parameters is
determined by the mean absolute value of the SHAP values
corresponding to the parameter.
We note the two different types of synthesis parameters: 1)

inorganic, which relate to composition of the inorganic
components of the synthesis gel (e.g., Si, Al, OH−, F−, etc.),
and 2) OSDA, which relate to the organic template (e.g.,
OSDA volume, OSDA rotatable bonds, etc.), as shown in
Table S1. Consequently, this allows us to categorize the
formation of a specific zeolite framework as 1 out of 3 main
types of synthesis based on its top synthesis parameters as
shown in Figure 4a: 1) gel-dominated synthesis where most
top parameters relate to inorganic components, 2) OSDA-
dominated synthesis where most parameters relate to the
OSDA, and 3) “balanced” synthesis where even attribution is
given to both inorganic and OSDA parameters. An exhaustive
list of framework-level SHAP for all known frameworks has
been included in Figure S12−S18.

Frameworks with Gel-Dominated Synthesis. These frame-
works have syntheses where inorganic components play a more
crucial role, with few (≤3 out of the top 10) OSDA-related
parameters. Figure 4a shows two such frameworks (CAN,
KFI). In terms of the gel composition, CAN and KFI share the
common trend that both are favored by high levels of the
mineralizing agent OH−. However, beyond that, many gel
components have vastly different impacts on these two
frameworks. For instance, such analysis reveals CAN formation
seems to be favored by high Na+ and low K+.76 Conversely,
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KFI formation follows the opposite trend, where it appears to
be favored by low Na+ and high K+.77 In terms of reaction
conditions, high and low crystallization temperatures favor
CAN (due to high framework density) and KFI, respectively.78

Frameworks with OSDA-Dominated Synthesis. These
frameworks have syntheses where OSDA features are more
important. As shown in Figure 4a, both ISV and ITE have all

of their top synthesis parameters related to the OSDA. One
notable exception is the high amount of F− driving ISV
formation due to the presence of the d4r CBU in the
framework.79 We observe that OSDAs favoring these two
frameworks have low asphericity (indicating the need for a
spherical OSDA), high volume, and a small number of
rotatable bonds (indicating rigidity). However, differences do

Figure 4. Revealing key synthesis−structure relationships. (a) Framework-level SHAP analysis revealing the top 10 (out of 43) most important
synthesis parameters favoring the formation of specific frameworks. Each framework belongs to 1 out of 3 types of synthesis based on its top
synthesis parameters: 1) gel-dominated synthesis (CAN, KFI) where most top parameters are inorganic-related, 2) OSDA-dominated synthesis
(ISV, ITE) where most top parameters are OSDA-related, and 3) balanced synthesis (IWW, RUT) where even attribution is given to inorganic and
OSDA parameters. Every point is an individual synthesis colored by the value of the synthesis parameter (orange and blue colors indicate high and
low values, respectively). (b) CBU-level SHAP analysis of large CBUs showed OSDA parameters favoring their formation.
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exist: ITE formation is associated with high values of OSDA
NPR 1 (first normalized principal moment of inertia ratio)
with the orange points clearly on the right-hand side, while this
effect is not present in ISV formation where orange and blue
points overlap one another. Moreover, unlike ITE, ISV
requires higher amounts of OSDA. We hypothesize that such
insights into the influence of OSDA on the synthesis outcome
could be used to guide the design of optimal OSDAs that
target a specific framework.

Frameworks with Balanced Synthesis. These frameworks
have been synthesized by a balance of inorganic and OSDA
components. It is evident from the gel composition parameters
(Figure 4a) that high Ge promotes IWW formation, which can
be rationalized by Ge’s role in stabilizing the d4r cage.80 In
contrast, RUT requires a high Si content, which could be
expected considering its dense structure. In addition, high Na+
disfavors both frameworks, albeit the impact of the Na
parameter is ranked much lower. Inspection of the OSDA
sphericity in both frameworks reveals an opposing trend: IWW
and RUT are favored by low and high OSDA sphericity,
respectively. This could be explained by the large spherical
cavity present in RUT (see Figure S7a), while IWW mainly
consists of long channels (see Figure S7b) that require longer,
less spherical OSDAs.

CBU-Level SHAP. We also consider the synthesis parameters
that contribute to the formation of the specific building units
that make up the frameworks. Zeolites adopt a hierarchical
structure, where CBUs combine to form the zeolite frame-
works themselves. SHAP analysis using a CBU-centric
treatment may enable the analysis to extrapolate to hypo-
thetical (beyond the scope of this work) frameworks. To
obtain CBU-level SHAP values of a specific CBU, we employ
an aggregation approach of summing the SHAP matrices of all
known zeolite frameworks that contain that CBU as described
in the Methods section. This amplifies SHAP values of
important factors contributing to common building units while
suppressing those that are less important, giving rise to a CBU-
centric view of the synthesis parameters. An exhaustive list of
CBU-level SHAP for all CBUs reported on IZA has been
included in Figure S10 (small CBUs) and Figure S11 (large
CBUs).

Small CBUs. We uncover the most important inorganic
parameters driving the formation of a selection of 4 small
CBUs in Figure S8. As shown, the synthesis of small CBUs is
all inorganic/gel-dominated instead of OSDA-dominated with
the top 5 parameters relating to the inorganic components. We
observe the well-established fact that high Ge and F− are
ranked as the top parameters contributing to d4r formation.
Furthermore, this analysis reveals a less obvious relationship
where a low crystallization temperature also positively
influences d4r formation. Similarly, d8r is favored by low
crystallization temperatures, but is mainly promoted by high
K+ and Cs+ cations.81 can is driven by high K+ and requires
large amounts of OH− as a mineralizing agent. Lastly, high Na+
and low crystallization temperatures favor gme formation.82

Large CBUs. In contrast to small CBUs, the formation of
large CBUs is influenced by OSDA parameters due to the need
for a structure-directing effect by OSDAs. Figure 4b shows a
series of large CBUs (≥30 T sites) with an increasing aspect
ratio (pau < los < ave < af t). Interestingly, in the first row,
CBU-level SHAP discovers a clear relationship between the
aspect ratio of the CBU and OSDA asphericity (a measure of
the deviation from sphere). For pau, low OSDA asphericity

(dark blue on positive side) gives rise to positive SHAP values,
indicating the need for a spherical OSDA. Indeed, this is due to
the symmetrical shape of the pau cage. Consequently, when
one considers cages with medium-level aspect ratios (los, ave),
one can observe neither very high (orange) nor very low levels
(blue) of OSDA asphericity promote their formation. Instead,
it is medium levels (light blue on the positive side) of OSDA
asphericity that drive their formation. As we transition to a
CBU with an even higher aspect ratio (af t), now only high
levels of OSDA asphericity (orange) are needed to drive its
formation, indicating the increasing need for longer, more
asymmetric molecules to template CBUs with an increasing
aspect ratio. Similarly, the same trend also applies for OSDA
volume (second row) as the aspect ratio of the CBU increases,
suggesting that larger/bulkier OSDAs would facilitate the
formation of cavities with larger aspect ratios. Lastly, in the last
row, SHAP reveals a rather surprising trend: The first three
CBUs (lta, los, ave) are favored by a very low number of OSDA
rotatable bonds, which suggests the need for rigid molecules.
Surprisingly, the opposite trend exists for af t, where there is a
need for a more flexible OSDA with high aspect ratio (e.g.,
hexamethonium).83

Applications of SHAP Analysis. We suggest the utility of the
aforementioned SHAP analysis on two important applications
in zeolite synthesis: 1) competing phases, where the goal
would be to obtain a single, pure framework, and 2)
intergrowths, where the goal would be to obtain a product
with 2 zeolite phases intergrown into each other. Here, we
apply framework-level SHAP to inform on rational design for
the above 2 goals.

Competing Phases. We consider the most common pair of
competing phases in the ZeoSyn dataset, TON & MFI (Figure
S5), where these 2 frameworks are frequently formed in the
same synthesis. MFI is a framework that often appears as a
competing phase due to its ease of synthesis and wide synthesis
window. Here, we consider achieving the phase-selective
synthesis of TON in the absence of MFI. Figure 5a shows the
framework-level SHAP for the TON and MFI frameworks. To
achieve a phase-selective synthesis of TON, we inspect the
impact of OSDA sphericity (first row) on the two frameworks,
which reveals opposing effects on the frameworks: clearly, an
OSDA with low sphericity promotes TON formation while
suppressing MFI as indicated by the rightmost column. In the
same vein, the other factors relating to OSDA, such as axis 1,
axis 2, solvent-accessible surface area (SASA), principal
moment of inertia (PMI 1), and first normalized principal
moment of inertia ratio (NPR 1) all show opposing effects for
the 2 frameworks. Beyond OSDA-related parameters, this
analysis can also be extended to identify important inorganic
parameters for another common pair of competing phases
(*BEA and BEC). Figure S9 shows that Si/Ge, crystallization
temperature, and time are the key parameters to achieve phase-
selective synthesis. As such, this showcases framework-level
SHAP as a powerful tool for identifying promising synthesis
“knobs” and recommends the appropriate direction to tune
these “knobs” for phase-selective synthesis.

Intergrowths. It is highly desirable to synthesize inter-
growths, as they combine the advantages associated with two
different frameworks. Here, the goal is to promote the
crystallization of 2 frameworks within the same crystal. As
such, we can flip the switch and identify “knobs” that have
aligned (instead of opposing in the case of competing phases)
effects on the formation of the 2 constituent frameworks. For
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example, in Figure 5b we consider a known zeolite intergrowth
FAU/EMT, which shows the common parameters such as high
OH−, high Na+, low crystallization temperature, low number of
OSDA rotatable bonds (rigid OSDA) and low OSDA NPR 2
as potential synthesis parameters to tune to favor the formation
of a FAU/EMT intergrowth. Indeed, such analysis is
corroborated by the following 3 aspects of a reported synthesis
of a FAU/EMT intergrowth.84 First, 18-crown-6 is used as the
OSDA, which has no rotatable bonds due to its cyclic
structure. Second, the synthesis employed relatively high levels
of Na+ (Na+/T = 0.31−0.46). Third, a relatively low
crystallization temperature of 100 °C was used. These 3
observations in the reported synthesis are well aligned with
recommendations suggested by framework-level SHAP in
Figure 5b. As such, this is a testament to the usefulness of
such analysis as a tool for not only understanding key
parameters impacting the crystallization of intergrowths but
also a step toward the rational design of their synthesis.

We are cognizant that SHAP quantifies only the impact of
synthesis parameters on a local level. At times, strong
correlations in the dataset may lead to erroneous conclusions
in the SHAP analysis. For instance, if two CBUs frequently co-
occur in multiple frameworks, it may be challenging for the
CBU-level SHAP to accurately assign the impact of synthesis
parameters toward one of them. Moreover, this approach only
hints at which synthesis parameter(s) and the direction one
may modify it to achieve a certain target in zeolite synthesis.
Since SHAP gives local explanations that relate to one
synthesis parameter at a time, it does not suggest the exact
values for multiple synthesis parameters jointly given a desired
zeolite. Given the scope of this work is confined largely to the
rationalization of synthesis parameters using the ZeoSyn
dataset, future work will focus on the design of synthesis
routes, where one could formulate this as a synthesis route
prediction task. This approach could be particularly valuable
for zeolites with narrow synthetic intervals.

Figure 5. Application of interpretable ML framework on (a) competing phases (TON and MFI). The left- and right-most columns describe the
optimal value of the OSDA parameter for maximizing the formation probability of TON and MFI, respectively. For example, the first row shows
opposing effects of the OSDA sphericity: low OSDA sphericity promotes TON formation while suppressing MFI (and vice versa). (b) Intergrowth
(FAU/EMT), where the task may be to maximize the formation of both frameworks. For example, the first row shows aligne effects of OH−: high
OH− promotes both FAU and EMT, which may lead to FAU/EMT intergrowth. This shows framework-level SHAP could be a powerful way to
inform domain experts on the rational design of synthesis parameters to control phase selectivity.
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■ CONCLUSION
In this work, we extract over 50 years of published zeolite
synthesis data, including gel composition, reaction conditions,
precursors, OSDAs, and zeolite structure, from the zeolite
literature, giving rise to ZeoSyn: the largest comprehensive
zeolite synthesis dataset reported in the literature to date.
Visualizations of synthesis parameters explain the physical
trends in zeolite synthesis while uncovering notable exceptions.
We also showcase the utility of the ZeoSyn dataset by training
a framework classification model that has shown strong
performance in predictive accuracy. The main utility of the
model lies in the subsequent SHAP analysis, which has been
shown to be a powerful approach to uncovering the impact of
the most important synthesis parameters for a specific
framework or composite building unit. Importantly, it is
worth noting such insights are enabled by the unprecedented
scale of the dataset. Furthermore, this approach has been
shown to be useful for informing the design of synthesis
parameters for phase-selective and intergrowth synthesis. It is
hoped that the scale and coverage of ZeoSyn dataset will
enable future efforts in ML modeling of zeolite synthesis and
pave the way for data-driven discovery of zeolitic materials.

■ METHODS
Data Extraction and Validation. Data extraction

techniques used in this paper were built upon previously
published work.28,32,33,35,85 Briefly, the Elsevier Scopus plat-
form is used to find zeolite articles containing the search terms
“zeolite”, “OSDA”, “aluminophosphate”, and “molecular sieve”,
resulting in a dataset of approximately 130,000 papers. From
this corpus, gel composition, reaction conditions, precursors,
OSDA names, reaction products, and reaction product
properties are extracted from a paper’s tables and synthesis
sections using a combination of table parsing, named entity
recognition modeling, regular expressions, and domain-specific
keyword matching. Each extracted synthesis route is manually
checked to ensure accuracy and to remove false positives.
OSDAs and zeolite structures are featurized in the same
fashion as our previous work,32 where OSDA names are
standardized to a canonical SMILES string and featurized with
RDKit86 and zeolite structures are featurized with structural
parameters obtained from the International Zeolite Association
(IZA) database.7 Manual verification is performed on the
dataset as follows: every DOI is reviewed to confirm accurate
extraction, and we check the ZeoSyn dataset against the values
reported in the “materials”, “experimental”, “synthesis con-
ditions”, and “supporting information” sections. This process is
conducted three times to ensure the precision and accuracy of
the extracted information.
Hierarchical Clustering of OSDAs. Hierarchical cluster-

ing is an algorithm that clusters data points by merging/
splitting them successively, resulting in a dendrogram/tree
representing the hierarchy of clusters. The root of the tree is
the cluster that gathers all of the samples, while the leaves are
the clusters with only a single sample. In the context of
agglomerative hierarchical clustering, each data point starts as
its own individual cluster. The algorithm begins with a forest of
clusters that have not been used in the hierarchy being formed.
At each iteration, the two closest clusters (according to a
distance metric) are combined to form a larger cluster.
A distance matrix d is maintained at each iteration. The di,j

entry refers to the distance between cluster i and j in the initial

forest. There are |u| and |v| observations in clusters u and v,
respectively. Here, we calculate the Euclidean distance between
clusters u and v using the averaging method:87
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When two clusters s and t are combined into a common cluster
u, they are removed from this forest, and the new cluster u is
added to this forest. This process repeats until all data points
form a single common cluster. Since the goal is to cluster
OSDAs according to their molecular structure, each OSDA is
featurized by its Morgan fingerprint68 using the rdkit.Ch-
em package. Subsequently, hierarchical clustering of OSDAs is
implemented using the cluster.linkage function from
scipy package88 to construct the dendrogram.
Zeolite and OSDA Featurization. The zeolite structural

properties (e.g., ring sizes, largest included sphere) are
obtained from the IZA database.7 Zeolite frameworks and
CBUs are visualized using the 3dt and ToposPro software,
with some CBUs graphics obtained from the IZA database.7

We featurize the OSDA using its physicochemical descriptors
(e.g., molecular volume and 2D shape descriptors) of the
organic molecule.31,32 The full list of OSDA features and their
descriptions can be found in Table S1. Periodic table in Figure
1c is generated using code from Huo et al.89

Zeolite Framework Prediction Model. We train a
supervised classification model using random forest to predict
a zeolite framework product given a synthesis recipe. This
choice of modeling is motivated accordingly: 1) tree-boosting
models offer competitive performance on tabular datasets like
ZeoSyn; 2) the scale and coverage of the ZeoSyn dataset (not
the model architecture) enables good classification perform-
ance; and 3) using a tree-based model allows fast computation
of SHAP values (by reducing the complexity of exact Shapley
value computation from exponential to polynomial time90).
The model takes in a 43-dimensional vector as input where
each element corresponds to either gel composition (e.g., Si,
Al, P, etc.), reaction condition (e.g., crystallization time), or an
OSDA descriptor (e.g., molecular volume). The model
predicts (1 out of 220 classes) a zeolite framework. An 80/
20 random train/test split is employed. Since the focus is on
the subsequent SHAP analysis, we trained the model with
default parameters. It is worth noting that the total number of
classes (220 frameworks) is fewer than the number of
synthesized frameworks (264) as some frameworks may be
reported in patents (outside the scope of this work) but not in
the scientific literature.
SHAP Analysis of Zeolite Formation. To analyze the

outcomes of the classification model (depicted in Figure 3a),
we employ SHAP,75 which is a generalized measure for the
impact of features. This approach uses Shapley values from
game theory to compute the contribution made by each feature
to the model prediction. Features are likened to participants in
a “game” representing the prediction task, and the SHAP
values measure how much prediction is attributed to these
features. These values signify the relative importance of a
specific feature and its impact on classification. For example, as
shown in Figure 3c, SHAP values reveal how altering the value
of a feature, either increasing or decreasing, affects the model
output. This strategy facilitates both localized understanding of
individual model explanations and a comprehensive inter-
pretation of the model behavior. In this work, we calculate
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SHAP values at two levels: 1) Framework-level SHAP
quantifies the impact of synthesis parameters on the formation
of a zeolite framework. They are calculated based on the
predicted probabilities using TreeExplainer function
from the shap package.90 2) CBU-level SHAP quantifies
the impact of synthesis parameters on the formation of a
composite building unit (CBU). We employ an aggregation
approach to obtain CBU-level SHAP values as follows:

Aggregated SHAP. Let Sf
n m× be the framework-level

SHAP matrix of framework f with n observations and m
features. The CBU-level SHAP matrix SCBU is given by
aggregating framework-level SHAP matrices:

S S
f F

fCBU

CBU

=
(2)

where FCBU is the set of synthesized frameworks containing a
specific CBU according to the IZA database.7 For example, to
obtain CBU-level SHAP matrix Ssod corresponding to the sod
CBU, we determine the set of frameworks containing sod, Fsod
= {FAU, SOD, LTA} (note: for the sake of brevity, only 3 sod-
containing frameworks are listed as more exist). Subsequently,
the CBU-level SHAP is given by Ssod = SFAU + SSOD + SLTA.
Intuitively, by summing up Sf corresponding to frameworks
containing the CBU, this aggregation approach amplifies
SHAP values corresponding to common features that highly
impact (positively or negatively) CBU formation while
suppressing SHAP values corresponding to the features that
do not have much impact. As such, this effectively shifts the
SHAP analysis from a framework-centric to a CBU-centric
view, allowing for an understanding of factors driving the
building units that make up zeolites.
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