

Role of H₂O in Catalytic Conversion of C₁ Molecules

Lei Jiang,[#] Kongzhai Li,^{*,#} William N. Porter, Hua Wang, Gengnan Li,^{*} and Jingguang G. Chen^{*}

Cite This: J. Am. Chem. Soc. 2024, 146, 2857–2875		Read Online		
ACCESS	III Metrics & More		E Article Recommendations	

ABSTRACT: Due to their role in controlling global climate change, the selective conversion of C_1 molecules such as CH_4 , CO, and CO_2 has attracted widespread attention. Typically, H_2O competes with the reactant molecules to adsorb on the active sites and therefore inhibits the reaction or causes catalyst deactivation. However, H_2O can also participate in the catalytic conversion of C_1 molecules as a reactant or a promoter. Herein, we provide a perspective on recent progress in the mechanistic studies of H_2O -mediated conversion of C_1 molecules. We aim to provide an in-depth and systematic understanding of H_2O as a promoter, a proton-transfer agent, an oxidant, a direct source of hydrogen or oxygen, and its influence on the catalytic activity, selectivity, and stability. We also summarize strategies for modifying catalysts or catalytic microenvironments by chemical or physical means to optimize the positive effects and minimize the negative effects of H_2O on the reactions of C_1 molecules. Finally, we discuss challenges and opportunities in catalyst design, characterization techniques, and theoretical modeling of the H_2O -mediated catalytic conversion of C_1 molecules.

1. INTRODUCTION

Water (H_2O) is intimately related to numerous chemical reactions. In living organisms, almost all chemical reactions take place in aqueous medium. H_2O plays the role of solvent, reactant, byproduct, catalyst, and proton transfer agent. For a long time, the understanding of H_2O has been mainly limited to its role as a reaction medium, while knowledge of other functions of H_2O in chemical reactions is insufficient.^{1,2} With the development of experimental detection techniques and advancements in computational chemistry, the structure and dynamics of H_2O molecules have been studied at the molecular level to investigate the multifaceted effects of water on chemical reactions.³⁻⁶

Apart from its well-known role as a solvent or an intentionally added component, the presence of H_2O is often unavoidable in other nonaqueous environments. For example, H₂O molecules may be present in reactants or products adsorbing on the surfaces of catalysts.^{7,8} Its presence is frequently identified as a destructive factor that shortens the lifetime of catalysts, reduces the production of desired compounds, reacts with intermediates and products to cause side reactions, and influences the performance of working catalysts.9-11 On the other hand, numerous cases have demonstrated that H₂O can play a role as a participant or promoter,¹²⁻¹⁷ supply or stabilize highly reactive species,¹⁸⁻²⁰ create a microscale solvation environment,²¹⁻²³ and enhance reaction rates and product selectivity in heterogeneous catalysis. These effects are especially important for gaseous phase reactions, including a variety of transformations to upgrade C1 molecules such as CH4, CO, and CO2 that can enable the production of value-added chemicals from inexpensive feedstocks.

The effects of H_2O in catalytic reactions have been highlighted in several recent Reviews and Perspective

articles.^{6,24} Resasco et al. provided a review on the H₂Omediated heterogeneously catalyzed reactions of primarily large hydrocarbons and biomass-derived molecules.²⁵ Ma and co-workers focused on catalytic reactions that occur in the aqueous phase, including alcohol or biomass-derived polyol reforming, CH_4 activation, and other C_1 reactions.²⁶ The present article is devoted to providing a perspective on H₂Omediated thermocatalytic conversion of gaseous C1 molecules including CO₂, CO, and CH₄. Specifically, in this Perspective, we briefly review the state and function of H₂O in catalytic reactions involving C1 molecules that occur mainly in the gaseous phase. We will then discuss the promoting effects of H₂O in these reactions and various methods to overcome the negative effects of H₂O. We will also discuss challenges and future opportunities in catalyst design, characterization techniques, and theoretical modeling of the H2O-mediated catalysis of C1 molecules.

2. H₂O AS A PROMOTOR OR COREACTANT IN CO REACTIONS

2.1. Water–Gas Shift Reaction. As one of the most important reactions to produce hydrogen in the energy and chemical industries, the water–gas shift (WGS) reaction (CO + $H_2O \rightarrow H_2 + CO_2$, $\Delta H^0 = -41$ kJ/mol) has been widely studied. In addition, the WGS reaction and its reverse reaction are directly or indirectly relevant to other catalytic systems relying on the coexistence of H_2O with CO, H_2 , or CO₂,

Received:November 28, 2023Revised:December 27, 2023Accepted:December 28, 2023Published:January 24, 2024

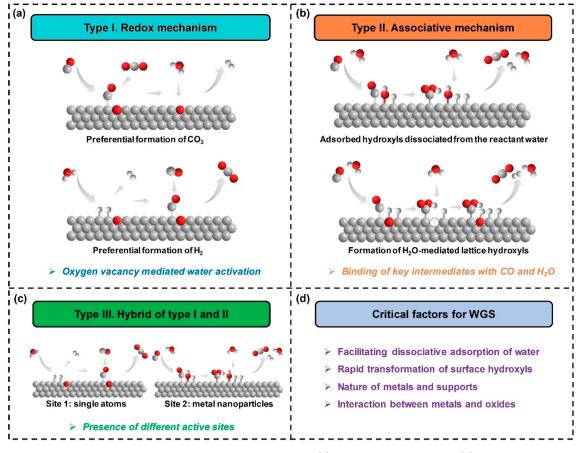


Figure 1. A summary of reaction mechanisms in the water-gas shift reaction. (a) Type I: redox mechanism. (b) Type II: associative mechanism. (c) Hybrid mechanism of types I and II. (d) Critical factors for the water-gas shift reaction.

including methanol synthesis, Fischer–Tropsch synthesis, methanol steam reforming, and coal gasification. Therefore, understanding the role of H_2O in the WGS reaction is also beneficial for clarifying the reaction mechanisms of the above-mentioned reactions.

Two types of reaction mechanisms are typically considered for the WGS reaction: the redox or regenerative mechanism and the associative mechanism (Figure 1).^{27,28} For the redox mechanism, it has been proposed that an adsorbed CO molecule reacts with an activated oxygen atom from the catalyst to produce CO_2 , generating an oxygen vacancy site. The reduced catalyst is then replenished by H₂O dissociation, leading to the formation of H₂. In the associative mechanism, adsorbed CO is consumed by reacting with OH from H₂O dissociation to generate carboxyl (COOH*) or formate (HCOO*) species as key intermediates. Though the precise mechanism is a matter of intense debate, both mechanisms involve a water dissociation step that is generally regarded as energetically important and, in some cases, as the ratedetermining step (RDS).^{27,29–31}

Regarding the redox mechanism (Figure 1a), one debate is focused on the reaction sequence of H_2O dissociation and CO conversion.³² The oxygen species responsible for the conversion of surface-adsorbed CO to CO_2 can be derived from the surface lattice oxygen of the catalysts, and the subsequent oxygen vacancies provide active sites for H_2O dissociation, resulting in the formation of CO_2 before H_2 .³³ In contrast, H_2O may first be activated on the catalyst surface to generate H_2 and reactive oxygen species, which then react with the adsorbed CO to form CO₂, resulting in the production of H₂ before CO₂.^{34,35} Moreover, for supported metal catalysts, interfacial bifunctional sites (M₁-O_v-M₂) have also been proposed, in which CO is adsorbed on the metal site and H₂O undergoes dissociation on the oxygen vacancies of the oxide support, followed by the subsequent reaction between adsorbed CO and the dissociated species at the metal-oxide interface.^{28,32,36,37}

It is reported that the dissociation of H₂O on a defective oxide surface is more thermodynamically preferred than on a well-defined oxide surface.^{27,31} The nature of oxide supports (e.g., $TiO_{xt} CeO_{xt} FeO_x$ and Al_2O_3), which strongly affect the presence of oxygen vacancies, plays an important role. A comparative study on Au/Al₂O₃ and Au/TiO₂ catalysts shows that H₂O bonds weakly at the Au-Al₂O₃ interface, while a much stronger binding for H_2O is observed on the Au/TiO₂ catalyst due to the presence of oxygen vacancies.³⁸ As a result, the reaction rate per total mole of Au for Au/TiO₂ is 20 times higher than that for Au/Al₂O₃. The reduced apparent activation energy of H₂O dissociation on Au/TiO₂ demonstrates that the oxide support is directly involved in the activation of H_2O .³⁸ In addition, an investigation on the Au@ TiO_{2-x}/ZnO catalyst with a TiO_{2-x} overlayer on the surface of Au nanoparticles using Quasi in situ X-ray photoelectron spectroscopy (XPS), in situ extended Xray absorption fine structure (EXAFS), and in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) confirms that both the electron-enriched $Au^{\delta-}$ species and oxygen vacancies directly participate in the dissociation of H₂O.³⁹ Similar

observations have also been reported on Ni/TiO $_{2-x\prime}$ Au/ $CeO_{2-x\prime}$ and Ir/FeO $_x$ catalysts. 31,35,36

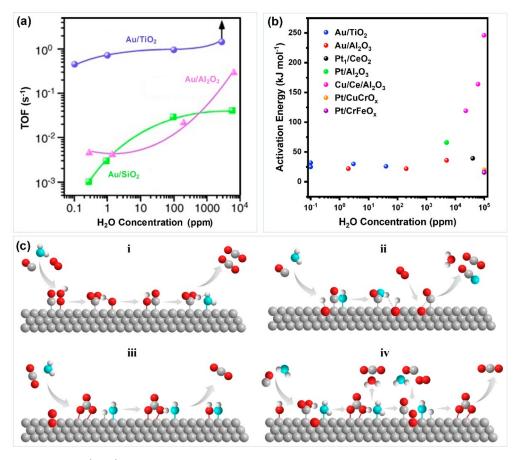
In the case of the associative mechanism (Figure 1b), the hydroxyl groups from the dissociation of H₂O play an important role.⁴⁰ The OH species originating from H₂O alter the adsorption or readsorption behavior of reactants or products, leading to significant differences in the WGS activity and selectivity. Results from theoretical calculations indicate that wetting of the catalyst is controlled by the presence of OH groups on the surface, acting as anchors for water adsorption.⁴¹ Moreover, favorable hydrogen bonding interactions stabilize the Zundel cations $(H_5O_2^+)$ adsorbed on metal clusters and weaken the O–H bonds of adsorbed H_2O_1 , thereby exhibiting a lower energy pathway for H_2O dissociation.³⁴ In addition to influencing the adsorption step, the OH species can also participate by reacting with CO to form carboxyl or formate intermediates. By comparing a density functional theory (DFT)-based microkinetic model with experimental reaction rates, Gokhale et al.³⁰ reported that the dissociative adsorption of H_2O is the RDS for the WGS reaction on the Cu(111) surface. Compared with formate, which tends to block active sites, carboxyl is a more reactive intermediate. It reacts with an adjacent OH group on the Cu(111) surface, forming CO_2 and H_2O (COOH* + OH* $\rightarrow CO_2$ * + H_2O *). Therefore, H_2O in the WGS reaction not only reacts with CO to form CO₂ and H₂ but also acts as a promoter to facilitate the reaction due to the formation of adsorbed OH* groups.³⁰ Likewise, by using in situ DRIFTS, Fu et al.³¹ reported that the bridging-OH groups formed on the surface oxygen vacancies of the CeO₂ support are the key reactive species for the WGS reaction on Au-CeO₂ catalysts. The abundant Au-CeO₂ interfacial sites effectively promote the reaction between adsorbed CO on Au and bridging-OH groups formed on CeO2. For larger Au nanoparticles supported on CeO2, the limited number of interfacial sites leads to insufficient CO adsorption and thus weaker reactivity with the bridging-OH groups.³¹ It is also proposed that there is a competitive adsorption of CO₂ and H₂O on the surface of the catalysts, and the accumulation of surface carbonates blocks the active sites.⁴² A facile reaction between the hydroxyl groups and the carbonate layer on the catalyst surface can prevent carbonate species from blocking the active sites.⁴²

Similarly, preadsorbed H₂O or cofed H₂O can readily form surface hydroxyls on carbide catalysts.^{40,43,44} For example, Ma and co-workers reported Au/ α -MoC catalysts for low-temperature WGS reaction, where the α -MoC support facilitates the epitaxial growth of Au layers with altered electronic structures, which facilitate bonding with CO.⁴⁴ At a temperature of 303 K, H₂O is activated on α -MoC, and CO adsorbed on adjacent Au sites readily reacts with surface hydroxyl groups formed by H₂O decomposition.⁴⁴ However, when the adsorbed hydroxyl species cannot be promptly converted, there is a problem of deep oxidation of α -MoC during long-term catalytic processes, leading to catalyst deactivation. By adding Pt clusters and Pt single atoms, the excess surface active oxygen species can be eliminated, enhancing the stability toward WGS.⁴³

It should be highlighted that the WGS reaction may occur simultaneously via both the redox mechanism and the associative mechanism, and the dominant pathway relies on the ability of the catalysts to facilitate H₂O dissociation (Figure 1c). Chen et al.⁴⁵ compare the activity of Pt/FeO_x catalysts with exclusively either Pt nanoparticles or single atoms for the WGS reaction and find that Pt nanoparticles accomplish the

WGS process through an associative mechanism, with CO strongly adsorbing on the Pt nanoparticle sites and reacting with the OH* species generated by activation of H_2O on the FeO_x sites to form the formate intermediate. In contrast, Pt single atoms promote the formation of oxygen vacancies on FeO_x that dissociate H_2O to H_2 and adsorbed O, which then combines with the weakly adsorbed CO on the Pt sites to produce CO₂.

In summary, regardless of the reaction pathways, fundamental factors controlling water dissociation and subsequent conversion are closely related to the geometric and electronic structures of the oxide supports and metal components in WGS catalysts.³⁷ Strong interactions between the metal species and the support may promote the formation of unique interfacial sites for optimizing the catalytic performance for the WGS reaction.^{36,39,46,47}


2.2. CO Oxidation. Due to the limited activities of the current WGS catalysts in commercial processes, approximately 0.5-1.0 vol % of unconverted CO remains in the H₂ stream, which can poison the catalysts in their subsequent utilization in hydrogen fuel cells or ammonia synthesis. Therefore, preferential oxidation of CO in the H₂-rich stream with the presence of H₂O plays an important role in the H₂ purification step for various applications.⁴⁸ Similar to the WGS reaction, the presence of H₂O in the feed gases modifies the catalytic activity for the CO oxidation reaction.¹²

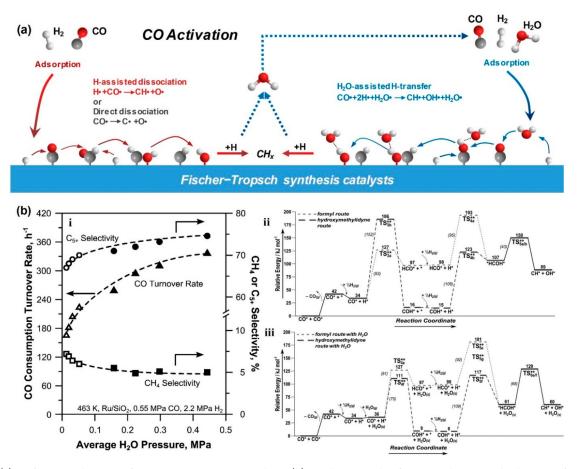
Using a commercial Au/Al₂O₃ catalyst as an example, Saavedra et al.⁴⁹ reported that the selectivity of CO oxidation in the presence of H₂ can be optimized by controlling the coverage of water on the catalyst surface. Generally, preferential CO oxidation (PROX) selectivity increases with the partial pressure of water since H₂O has a more significant effect on blocking the sites for hydrogen adsorption than those for CO adsorption. As a result, with increasing H₂O partial pressure, the H₂ oxidation is inhibited, and a higher selectivity of CO oxidation is observed when the catalyst surface is covered by one to two monolayers of water. However, a further increase in the water partial pressure typically leads to the deactivation of the catalyst.

In addition to the PROX for H₂ purification, the role of H₂O in low temperature CO oxidation for emissions control has been extensively studied.^{15,50,51} Depending on the catalyst used, H₂O can be either an inhibitor or a promoter. For noble metal catalysts, a trace amount of H₂O in the reactant feed stream is found to improve the CO oxidation activity by up to several orders of magnitude.^{51–53} Many mechanistic questions regarding the role of H₂O in the CO oxidation reaction have been raised in the past two decades, which include: (i) whether gaseous H₂O directly participates in the formation of CO₂; (ii) whether the reaction occurs through the Mars–van-Krevelen (MvK) or the Langmuir–Hinshelwood (LH) mechanism; and (iii) whether the reaction pathways involve intermediates such as carboxyl, carbonate, or bicarbonate.^{54–63}

For example, the catalytic activity of Au/TiO₂ under H₂O concentrations of 3–10 ppm has been observed to be about 10 times higher than under a dry condition (0.1 ppm). The reaction rate further increases with rising H₂O concentration, reaching a maximum at 200 ppm.⁵² On the other hand, the presence of excessive H₂O can cover the active center of the catalyst, leading to a decrease in catalytic efficiency.^{52,64} It has also been found that the influence of H₂O on the activity of Au catalysts strongly depends on the type of oxide (CeO₂, Fe₂O₃, TiO₂, Al₂O₃, SiO₂).^{49,53,59,65–69} As shown in Figure 2a,b, Al₂O₃

pubs.acs.org/JACS

Figure 2. (a) Turnover frequencies (TOF) per surface gold atom at 273 K for CO oxidation over Au/TiO_2 , Au/Al_2O_3 , and Au/SiO_2 as a function of H_2O concentration. Upright arrow indicates the saturation of the CO conversion. Reproduced with permission from ref 53. Copyright 2004 Wiley. (b) A comparison of activation energy of CO oxidation catalysts in the presence of H_2O . Data originated from refs 52, 53, 61, 64, 70, 71. (c) Proposed reaction mechanism of the CO oxidation in the presence of H_2O .


seems more sensitive to the concentration of H_2O than others, while the apparent activation energy of CO oxidation appears to have little correlation with H_2O concentration for noble metal catalysts supported on other oxides.^{52,53,61,64,70,71}

In general, it is accepted that the amount of H₂O adsorbed on the catalyst, rather than the H2O concentration in the reactant feed, affects the activity.⁵²⁻⁵⁴ Some H₂O-derived species on the catalyst surface are speculated to activate molecular oxygen and promote the dissociation of carbonate to avoid deactivation.^{20,72–74} In the absence of H_2O , CO oxidation requires three steps: CO + $O_2 \rightarrow cis$ -OCOO* \rightarrow *trans*-OCOO* \rightarrow CO₂ + O*. The adsorption of trace amounts of H₂O near the active sites can facilitate the activation of oxygen, which is considered to be one of the RDS in CO oxidation. Saavedra et al.^{18,68} have systematically investigated the mechanism of CO oxidation in the presence of H₂O over TiO₂ or Al₂O₃-supported Au catalysts using Infrared (IR) spectroscopy, kinetic experiments, and DFT calculations (Figure 2c-i). The weakly adsorbed H₂O on the catalyst surface increases the effective number of active centers without changing the intrinsic reactivity, and the coverage of H₂O largely determines the catalytic activity.⁶⁸ For H₂O-mediated O₂ activation, the barrier for O–O bond scission is reduced by 0.4 eV due to the formation of OOH* via proton transfer, which helps activate O_2 at low temperatures.⁶² The interaction of CO* with OOH* to generate COOH* is more favorable than the interaction between CO* and surface OH*.¹⁸

Therefore, weakly adsorbed H_2O is the key proton (H*) donor. In these studies, neither the H_2O nor the lattice oxygen of the oxide support is directly involved in CO_2 production at low temperatures on either reducible or inert oxides, and the rate enhancement mainly follows the H_2O -mediated LH reaction mechanism.

Carbonate accumulation on the catalyst surface can also lead to a decrease in CO oxidation performance due to the blockage of active sites by carbonate.⁵⁶ Further conversion of carbonate to bicarbonate can be promoted by proton transfer through an H-bonded H₂O network at the catalyst surface (Figure 2c-iii), which significantly reduces the activation barrier for CO₂ desorption from 1.5 to 0.6 eV.⁶² A mechanism involving the presence of carbonate/bicarbonate intermediates and surface hydroxyl groups that enhance the rate has been proposed (Figure 2c-iv).⁵⁶ Specifically, surface hydroxyl groups drive the formation of carboxyl groups from CO, which are oxidized to bicarbonate by surface lattice oxygen and then decomposed to CO₂ and H₂O by reacting with H atoms produced from H₂O dissociation.

On the other hand, H_2O has also been proposed to play a promotional role by directly participating in the CO oxidation at low temperature (77 K).^{57,58} The formation of hydroxyl groups through oxygen activation by H* produced from H_2O and its reaction with adsorbed CO to form CO_2 has been observed using an ultrahigh vacuum (UHV) scattering/analysis chamber and DFT calculations, which is similar to the results

Figure 3. (a) Different mechanisms of CO activation on FTS catalysts. (b) Mechanistic role of H_2O on the rate and selectivity of FTS on Ru catalysts: (i) CO consumption rate (Δ or \blacktriangle), CH₄ selectivity (\Box or \blacksquare), and C₅₊ selectivity (\bigcirc or \blacklozenge) as a function of H₂O partial pressure on 5 wt % Ru/SiO₂ with a feed gas of H₂/CO = 4.5. Open symbols: conversion changes; closed symbols: H₂O addition; reaction coordinate diagrams for (ii) H-assisted CO activation via the formyl and hydroxymethylidyne routes in absence of H₂O, (iii) H₂O-mediated formyl and hydroxymethylidyne routes in the presence of H₂O. Reproduced with permission from ref 89. Copyright 2013 Wiley.

using single-atom catalysts.⁷¹ Specifically, the hydroxyl groups from dissociated H_2O on the single atom Pt_1/CeO_2 catalyst react with adsorbed CO to form a highly reactive carboxyl intermediate, which is dehydrogenated with the assistance of hydroxyl groups to generate CO_2 and H_2O (Figure 2c-ii).⁶¹ Such a pathway is more facile than the direct reaction of CO with the lattice oxygen, resulting in higher activity for CO oxidation.⁶¹ On the other hand, Zhao et al. find that CeO_2 supported single Au atoms are more effective as an electron acceptor, offering a more efficient channel for the CO + OH reaction pathway in the presence of OH groups from water dissociation.⁷⁵

2.3. Fischer–Tropsch Synthesis. Fischer–Tropsch synthesis (FTS) is another important catalytic reaction in industry that converts syngas (a mixture of CO and H_2) to value-added chemicals (hydrocarbons, oxygenates, etc.). The FTS reaction can be catalyzed using Fe-, Co-, and Ru-based materials.^{76–78} H_2O is an inherent byproduct in FTS as one H_2O molecule is generated for each molecule of CO that is converted. H_2O produced or cofed with the syngas reactants has a significant effect (either positive or negative) on the reaction rate, hydrocarbon selectivity, FTS product distribution, and catalyst longevity due to its influence on the degree of syngas adsorption on the catalyst, chain initiation, chain growth, methanation, hydrogenation to paraffins, and dehydrogenation to olefins.⁷⁹

Early studies have reported that the influence of H₂O is positive on unsupported and SiO2-supported cobalt oxide catalysts, negative for Al₂O₃-supported catalysts, and slightly beneficial for TiO₂-supported catalysts.⁷⁹⁻⁸² These different H₂O effects are attributed to three aspects: oxidation of the Co catalyst, removal of transport restrictions via the formation of an H2O-rich intrapellet liquid, and kinetic effects. Several mechanistic explanations have been offered to explain the influence of H₂O in FTS. One hypothesis is that higher H₂O partial pressure suppresses hydrogenation reactions at the surface by occupying sites for H₂ dissociation.⁸³ For Co/SiO₂ catalysts, increased reaction rates are due to the influence of H_2O on the active species distribution on the Co surface,⁸⁰ and adsorbed H₂O accelerates the CO dissociation rate with subsequent formation of CH_x monomers.^{84,85} Coadsorbed H₂O presumably interacts with CO and lowers the energy barrier for CO activation. An increase in C5+ products is associated with an increased coverage of reactive monomer species due to an increased polymerization rate without a simultaneous effect on termination probability. Fischer et al.⁸⁶ have proposed the possibility of H₂O-induced changes on the active sites responsible for chain growth, or an inhibiting effect of H₂O on methanation sites. H₂O increases the amount of active surface carbon, which is present predominantly as a monomeric species. This increased surface concentration of monomeric carbon is caused by an acceleration of the CO

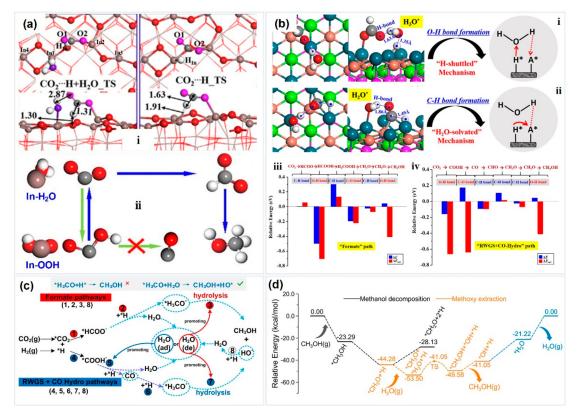
dissociation rate without a corresponding activity increase of the downstream hydrocarbon synthesis steps.^{83,87} Therefore, the proposed monomer dependencies in the FTS mechanism explain the lower methane selectivity and higher molecular weight products observed at increased H₂O concentrations.^{84,88}

H-assisted pathways in kinetically relevant CO dissociation steps have also been proposed on both Fe and Co catalysts.⁹⁰ In such pathways, chemisorbed H* and CO* react to produce CH_xO species, which dissociate to form OH*. This leads to the preferential rejection of the O atoms in CO to produce H_2O . These assisted pathways are the exclusive CO activation routes on Co catalysts and the predominant ones on Fe catalysts. They happen concurrently with unassisted CO dissociation on Fe-based catalysts, wherein rejected oxygen leaves are treated as CO_2 (Figure 3a).

Compared to Co-based catalysts, the effect of H₂O on the performance of Fe-based FTS catalysts is more complicated due to the simultaneous occurrence of the WGS reaction, which is less significant on Co-based catalysts.⁹¹ The WGS reaction consumes CO along with H₂O produced during the FTS reaction to generate CO₂ and additional H₂. Therefore, for Fe-based catalysts, the addition of H₂O to the syngas feed affects the partial pressure of CO and H₂ inside the reactor by increasing the WGS rate. Karn et al.⁹² reported that the presence of 10-30% H_2O in syngas with a 1:1 H_2/CO ratio does not significantly influence the CO conversion using a fixed bed reactor. In contrast, Satterfield et al.93 proposed that cofeeding H₂O accelerates the deactivation of Fe-based catalysts in slurry-phase FTS when the H_2/CO ratio is 0.96. However, in the case of a H_2/CO ratio of 0.52, the cofeeding of 20% H₂O exhibits no influence on the FTS reaction rate. These studies show that the different roles of H₂O can be attributed to the difference in reactor type, amount of H₂O, H_2/CO ratio, and catalysts used.⁹⁴

Similar to the case for the Co-based catalysts, a promotional role of water has been observed for FTS on Ru catalysts. Hibbitts et al.⁸⁹ have shown that with increasing H₂O pressure, the CO consumption rate and C5+ selectivity increase continuously, whereas the CH₄ selectivity decreases, as shown in Figure 3b-i. H_2O can significantly reduce the energy barrier of H-assisted C-O dissociation by facilitating Htransfer (Figure 3a, right). From DFT calculations, in the absence of H₂O, the kinetically relevant H-transfer step is the formation of the *HCOH* intermediate, which follows the formation of HCO* (formyl route). In this case, the barrier for HCO* formation is lower than that for *HCOH* formation (see Figure 3b-ii), resulting in a first-order H₂ dependence, which is in good agreement with experimental kinetic measurements. In contrast, in the presence of H_2O , the barrier for the H₂O-mediated path via the COH* (hydroxymethylidyne route) is lower than its counterpart in the formyl route (Figure 3b-iii). This reduced energy barrier accelerates the formation of activated C1 species on the surface and, consequently, the overall rate.

In addition to theoretical simulations, recent development of *in situ/operando* characterization techniques enables a fundamental understanding of the catalytic process under real working conditions at different scales. For example, using magnetic resonance imaging (MRI), Zheng et al.⁹⁵ reported the distribution of liquid products and water molecules during FTS on a Ru/TiO₂ catalyst in a pilot fixed-bed reactor. Spatially resolved maps show that the product distribution


becomes broad with a decreasing H₂/CO feed ratio. The observation of a higher concentration of heavier hydrocarbon chains within the catalyst pores than in the product wax confirms the effect of mass transfer on the overall catalytic process. Furthermore, operando two-dimensional MRI spectroscopy indicates that H₂O in the reactor accumulates on the surface of the pores of the catalyst, forming a water-rich local environment that influences the catalytic performance. Recently, Xu et al.⁹⁶ reported the enhanced selectivity toward liquid hydrocarbons in FTS on a bifunctional catalyst composed of a hydrophobic Fe-based catalyst and HZSM-5 zeolite. Molecular dynamic simulations coupled with experiments indicate different diffusion behaviors of H2O on the catalyst surfaces with different hydrophilicity/hydrophobicity. On the hydrophilic catalyst, H₂O can easily reach the iron species encapsulated by the hydrophilic SiO₂ shell, leading to the WGS reaction. In contrast, after hydrophobic functionalization, the hydrophobic SiO₂ shell slows this process and thus prevents the WGS reaction on the Fe surface. As a result, a lower CO₂ selectivity is obtained on the hydrophobically functionalized catalyst with enhanced stability. These results demonstrate that by tuning the surface hydrophilicity/ hydrophobicity different structures of H₂O molecules on the catalyst surface can be achieved to significantly influence the catalytic performance.

On the other hand, the metal-oxide particles can be modified by hydrophobic polymers such as polydimethylsiloxane (PDMS) and polytetrafluoroethylene (PTFE) to obtain hydrophobic materials.^{97,98} It has been observed that the catalytic activity of a CoMnC/PDVB catalyst in FTS depends on the manner of mixing of the CoMnC and PDVB components.⁹⁹ Compared with a granule mixture (40 to 60 mesh), a powder mixture of the CoMnC and PDVB shows the highest CO conversion of 63.5% and C_2-C_4 olefin selectivity of 71.4%. The physical mixture of PDVB with CoMnC can modulate the local environment of the catalyst to rapidly remove the H₂O produced in syngas conversion and shift the H₂O-adsorption equilibrium on the catalyst surface.¹⁰⁰ Besides introducing hydrophobic substances to change the microenvironment of the active sites on the catalysts, the construction of a hydrophobic shell or functionalization of the catalyst surface with hydrophobicity is also an effective way to suppress side reactions involving $H_2O_{10}^{10}$ For example, the presence of a hydrophobic SiO₂ surface layer in the core-shell FeMn@Si catalyst results in a decrease of the CO₂ selectivity from 45% on the traditional catalyst to about 13%, which is beneficial for the reduction of carbon emissions in FTS.

3. H₂O AS A BYPRODUCT OR PROMOTOR IN HYDROGENATION OF CO₂

 $\rm H_2O$ is a byproduct in both the direct hydrogenation of CO₂ to methanol (CO₂ + 3H₂ → CH₃OH + H₂O) and the main side reaction (reverse water–gas shift reaction: CO₂ + H₂ → CO + H₂O).^{101,102} In some cases, a small amount of H₂O may also be added to the feed gas as a promoter for methanol synthesis. Both positive and negative effects of H₂O, either as byproduct or additional feed, on methanol synthesis have been observed, which mainly depend on the nature of the catalysts and the partial pressure of H₂O. From the perspective of reaction mechanisms, some studies have shown that the H₂O byproduct might be involved in the reaction through H-transfer, or even participate as an H-source in methanol formation from CO₂ hydrogenation.^{7,21,22,103}

pubs.acs.org/JACS

Figure 4. (a) Effect of adding H_2O to the feed gas over In_2O_3/ZrO_2 catalysts for CO_2 hydrogenation to methanol: (i) transition state (TS) configurations for HCOO* formation on an oxygen-defective $In_2O_3(110)$ surface in the presence and absence of H_2O_3 (ii) schematic illustration of the formation of InOOH species due to H_2O addition correlating with H_2O -dependent enhancement of CH_3OH formation. Reproduced with permission from ref 110. Copyright 2020 Elsevier. (b) Transition state configurations of (i) HCOO* \rightarrow HCOOH* and (ii) $CO^* \rightarrow$ CHO* steps involved in CH_3OH formation with H_2O included, from which the two "H-transfer" mechanisms are shown for the O–H and C–H bond formation reactions on PdCu(111). Effect of H_2O on reaction energy between the elementary step in the (iii) "formate" and (iv) "RWGS+CO-Hydro" paths. ΔE represents the difference in reaction energy between the elementary step with H_2O and that without H_2O , and ΔE_{act} is defined in the same way but for the activation barrier. Reproduced with permission from ref 21. Copyright 2018 American Chemical Society. (c) Possible pathways of hydrogenation of CO_2 to methanol involving methoxy hydrolysis over Cu-ZnO-ZrO₂ catalysts. Reproduced with permission from ref 7. Copyright 2020 Elsevier. (d) DFT-calculated potential energy diagram for CH₃OH decomposition and methoxy extraction by H_2O on a Zr₃O₁₀/Cu(111) model surface. Reproduced with permission from ref 112. Copyright 2022 American Chemical Society.

It is generally accepted that CO₂ hydrogenation includes a pathway with a sequence of reactions involving adsorbed H, and direct hydrogenation with adsorbed H species alone is able to accomplish the production of methanol.^{102,104} However, Yang et al.¹⁰⁵ observe via hydrogen titration that the direct hydrogenation of formate species involving adsorbed H species alone fails to produce significant quantities of methanol over Cu-based catalysts. They further propose that coadsorbates related to surface oxygen or H2O-derived species may be critical to methanol production on Cu. In addition, a DFT investigation shows evidence for H₂O being involved in the CO₂ hydrogenation process via the H-transfer mechanism, where weakly bonded CO₂ is hydrogenated by one of the H atoms in H₂O, which facilitates the formation of the trans-COOH intermediate that is the RDS in the hydrocarboxyl mechanism.²² The presence of H₂O can kinetically enhance the formation of the COOH* intermediate while formate hydrogenation is negligible or suppressed.¹⁰⁶ Similarly, a theoretical study over the PdCu₃(111) surface shows that the coadsorption of H₂O not only enhances the adsorption of intermediates involved in the RDS but also lowers the activation barrier with the hydrogenation pathway following $\text{CO}_2^* \rightarrow trans\text{-}\text{COOH}^* \rightarrow t,t\text{-}\text{COHOH}^* \rightarrow t,c\text{-}\text{COHOH}^* \rightarrow t,c\text{-}\text{CO$ c_1c -COHOH* \rightarrow COH* \rightarrow HCOH* \rightarrow H₂COH* \rightarrow

 $\rm H_3COH^{*.107}$ In addition, the energy barrier of CO₂ hydrogenation to methanol can be reduced through the addition of a suitable amount of H₂O due to the enhanced conversion of the relatively stable intermediates of COOH^{*} and CH₂O^{*.108}

In the case of In-based catalysts, formate is considered to be a key intermediate in the hydrogenation of CO₂ to methanol, and the reaction mechanism can be understood as a hydrideproton transfer mechanism.^{109,110} In the initial step of HCOO* formation, one H₂O molecule is placed on the In₁ site coadsorbed with a hydrogen atom (Figure 4a-i).¹¹⁰ In the presence of H₂O, H* interacts with surface O to form OOH* due to spatial and electronic effects, which reacts with CO₂ to produce the C–H bond (Figure 4a-ii). While H₂O does not participate in the H-transfer process, the hydrogenation barrier is reduced by about 31% due to the presence of H₂O. Consequently, the presence of 0.1 mol % H₂O can reduce the activation barrier of the RDS (H₂COO* + H* \leftrightarrow H₂CO* + OH*) in the formate route, resulting in an increased CH₃OH yield of approximately 24%.

Nie et al.²¹ systematically investigate the effect of trace H_2O coadsorption on each of the major "formate" and "RWGS +CO-hydro" methanol synthesis pathways, and also explore the chemical processes involved in C–O or C–H bond breaking, O–H bond formation, and C–H bond formation

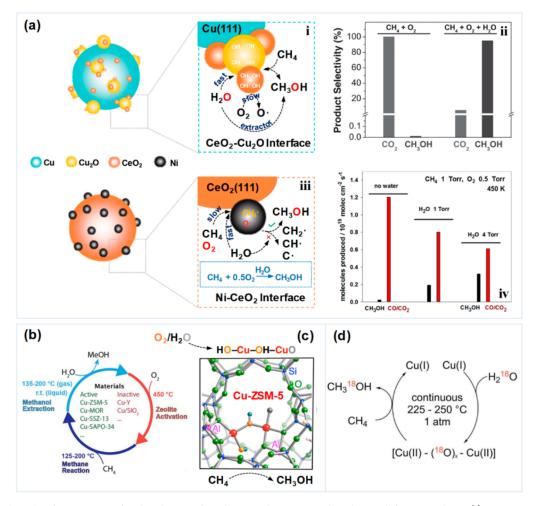
during methanol production (Figure 4b-i,ii). According to the different H-transfer and intermediate binding pathways, H₂O participation in the H-transfer mechanism is divided into a Hshuttle mechanism and an H-solvation mechanism. The former occurs through surface H* being transferred to the H2O molecule, which simultaneously transfers another H to the adsorbed reaction intermediates to complete the hydrogenation. H₂O molecules do not need to be adsorbed to the surface, but can be present in the gas phase to stabilize intermediates through hydrogen bonding, e.g., O-H formation and C-O(H) bond breaking, CO₂ \rightarrow COOH*, COOH* \rightarrow CO* + OH*. The latter mechanism occurs through the adsorption of H₂O molecules by solvation of the nearby adsorbate, and hydrogenation proceeds via the direct transfer of surface H* to the adsorbate. The "H2O-solvation" mechanism applies to all C-H bond formation reactions, such as $CO^* \rightarrow CHO^*$, where H₂O molecules are adsorbed onto the catalyst surface and undergo solvation by hydrogen bonding to the nearby adsorbate. The results of the effect of H_2O on the kinetic potential of the CO_2 hydrogenation show that in the formate pathway, the H₂O shuttle mechanism decreases the activation energy barriers for O-H bond formation (HCOO* \rightarrow HCOOH*, CH₃O* \rightarrow CH₃OH*) and C–O(H) bond breaking (H₂COOH* \rightarrow CH₂O*), while it has little effect on the C-H bond formation step (Figure 4biii,iv). H₂O exhibits a similar phenomenon for several basic steps of the "RWGS+CO-hydro" pathway. It should be emphasized that the selectivity obtained is based on DFT calculations, where the calculated energy potential is typically subject to an error of 0.2 eV. Therefore, it may be more appropriate to state that the two main routes are equally important for the hydrogenation of CO₂ to methanol.

On Cu-based catalysts, the direct hydrogenation of CH₃O* exhibits a relatively high barrier, while H₂O as the hydrogen source can reduce the hydrogenation barrier to almost zero.¹¹¹ The presence of H₂O results in a reduction of the kinetic barriers of the elementary reactions. Further, our previous results over Cu-ZnO-ZrO₂ catalysts indicate that H₂O produced during CO₂ hydrogenation is a key active species, which tends to hydrolyze methoxy to methanol (Figure 4c). An interconnected 3D ordered macroporous (3DOM) structure can effectively promote the desorption and diffusion of H₂O among catalyst particles, resulting in high methanol selectivity. Recent theoretical research supports the above findings and highlights that H₂O plays two important roles in the evolution of methoxy during CO_2 hydrogenation over the $ZrO_2/Cu(111)$ surface: (i) preventing decomposition of methoxy and formation of methane by reducing the energy barrier of methoxy hydrogenation to methanol and (ii) extracting the adsorbed methoxy to form gaseous methanol (Figure 4d).¹¹²

An autocatalytic behavior of H_2O dissociation leading to the formation of its derivatives has also been reported.¹¹³ Under near ambient conditions, H_2O-OH is the final state, wherein strong hydrogen bonding reduces the energy barrier of H_2O dissociation. Xu et al.¹¹⁴ observe that the value of TOF_{CH_3OH} in the presence of surface O* or OH* is at least 1 order of magnitude higher than the value on a clean surface. On the Cu(211) surface, unlike Cu(111),²² the free energy barrier for CO₂ activation via the HCOO* or COOH* pathway by molecular H_2O near the surface is higher than the direct hydrogenation of H atoms on clean and OH- or O-

preadsorbed surfaces. In this case, H₂O-derived species, i.e., O^{*} and OH^{*}, are responsible for the enhanced catalytic activity due to their coadsorption, which can attenuate poisoning by HCOO^{*} and reduce the energy barriers. The adsorbed O^{*} on the surface of catalysts can combine with H₂O to form two hydroxyl groups with a low barrier of 0.09 eV.¹¹⁵ Then, the formation of the Zn···OH/Cu active phase can significantly improve the rate of methanol synthesis by facilitating two key steps, namely, HCOO^{*} and CH₃O^{*} hydrogenation. The H atom on the hydroxyl group can directly participate in the reaction as a hydrogen source that reacts with CO₂ to form an HCOO^{*} intermediate.¹¹⁶

Based on the above understanding, researchers have synthesized a series of catalysts with hydroxyl-rich surfaces that are an order of magnitude more active for CO_2 hydrogenation than their corresponding hydroxyl-free structures.^{117–119} However, it is important to note that the higher the coverage of surface hydroxyl groups, the more favorable the RWGS reaction, which may lead to methane production.¹²⁰ The hydroxyl groups on the oxide supports can significantly weaken the metal–support interaction and destabilize the catalyst.¹²⁰ Therefore, the coverage of surface hydroxyl groups needs to be controlled in order to balance the distribution of the desired products and the stability of the catalysts.


Similar phenomena have also been observed for the hydrogenation of CO₂ to higher alcohols (C₂₊OH), such as ethanol synthesis (2CO₂ + 6H₂ \rightarrow C₂H₅OH + 3H₂O). The promotion of C₂₊OH synthesis from CO₂ hydrogenation by small amounts of H₂O (<1%) has been observed, and D₂O labeling experiments have shown that water is involved in alcohol formation as a hydrogen source.¹²¹ It has been proposed that H₂O can protonate methanol, which readily dissociates into a CH_x* species that reacts with CO to form CH₃CO*, leading to ethanol formation.^{121,122}

It should be highlighted that negative effects are also observed when excess H₂O is present during CO₂ hydrogenation, although there is no precise threshold for the concentration of H₂O to cause these effects. It has been observed that methanol formation is significantly suppressed by the presence of H_2O in the feed as the fraction of H_2O increases from 10% to 30%, which is presumably due to the competitive adsorption on the active sites.^{123,124} It is also found that the byproduct H₂O during methanol synthesis accelerates the crystallization of Cu and ZnO in the catalysts, leading to catalyst deactivation.¹²⁵ For In-based catalysts, an excessive amount of byproduct H₂O can annihilate the oxygen vacancies and sinter In₂O₃.^{126,127} In addition, in terms of the influence of product concentration on the reaction rate, methanol has a weaker inhibition effect than water. 103 For CO_2 hydrogenation to higher alcohols, further increasing the H₂O fraction from 1% to 10% leads to a decrease in both CO_2 conversion and C_{2+} selectivity.¹²¹ Under this circumstance, hydrophilic and hydrophobic modification of the CO₂ hydrogenation catalyst may suppress the poisoning effect of H₂O on active sites during product formation.^{128,1}

4. H₂O AS A PROMOTOR OR COREACTANT IN CH₄ ACTIVATION

4.1. Selective Oxidation of CH₄ **to Methanol.** The selective oxidation of CH₄ to methanol has attracted extensive interest from researchers, as the reaction is thermodynamically favorable and can be achieved under mild conditions (CH₄ + $0.5O_2 \rightarrow CH_3OH$). The reaction mechanism has been

2864

Figure 5. (a) The role of H_2O in interfacial pathways of methane oxidation to methanol over different catalysts: (i) H_2O -promoted interfacial pathways on a CeO_2-Cu_2O catalyst; (ii) selectivity of CH_4 oxidation at 450 K over $CeO_2/Cu_2O/Cu(111)$ on exposure to CH_4 and O_2 with a pressure ratio of 2:1 or CH_4 , O_2 , and H_2O , with a pressure ratio of 2:1:8; (iii) H_2O -promoted interfacial pathways on a Ni/CeO₂(111) catalyst; (iv) production of methanol on a Ni/CeO₂(111) catalyst as a function of H_2O pressure. The Ni coverage on CeO₂ was ~0.15 ML. The sample was exposed to 1 Torr of CH_4 , 0.5 Torr of O_2 , and 0, 1, or 4 Torr of H_2O at 450 K. Panel (a)-ii is adapted with permission from ref 140. Copyright 2020 AAAS. Panel (a)-iv is adapted with permission from ref 133. Copyright 2018 American Chemical Society. (b) The discontinuous catalytic conversion of methane to methanol using copper-based molecular sieves. Effect of H_2O on the selective oxidation of methane to methanol (c) over O_2 -bound Cu-ZSM-5, (d) in a flow reactor over Cu-SSZ-13. Panel (c) is adapted with permission from ref 136. Copyright 2016 American Chemical Society. Panel (d) is adapted with permission from ref 139. Copyright 2020 American Chemical Society.

extensively studied, with a focus on the active site, the nature of reaction intermediates, the reaction pathway, and the role of O_2 in the conversion of CH_4 to CH_3OH .^{130–133} In general, the presence of H_2O in this reaction can suppress the deep oxidation of methane to CO_2 , improve methane activation, and enhance the desorption of methanol.^{133–141}

For example, Rodriguez and co-workers¹³⁷ report that methane can be activated at room temperature over a CeO₂/ Cu₂O/Cu(111) catalyst, forming C, CH_x, and CO_x species on the oxide surface, and the OH groups from H₂O dissociation can saturate the catalyst surface, removing sites that could decompose CH_x fragments and generating centers on which methane can directly interact to produce methanol. Further studies¹⁴⁰ reveal key steps for the promotion of this reaction by H₂O on CeO₂/Cu₂O/Cu(111), finding that H₂O can preferentially dissociate at interfacial Ce sites to form OH, as well as inhibit dissociation of O₂. The active OH* species can generate CH₃OH and H* by reaction with CH₄*. In addition, the adsorption of H₂O is stronger than CH₃OH, which promotes the desorption of CH₃OH and increases selectivity to ~95% (Figure 5a-ii). Briefly, on CeO₂/Cu₂O/Cu (111), H₂O is a key component in the highly selective oxidation of methane to methanol by playing three fundamental roles in interfacial pathways: (i) blocking the possible conversion of methane and methanol to CO or CO₂ at active sites; (ii) providing an oxygen source to participate in the direct conversion of CH₄ \rightarrow CH₃OH; and (iii) facilitating the desorption of methanol from the catalyst surface (Figure 5a-i). On ZnO/Cu₂O/Cu(111),¹⁴¹ the addition of H₂O leads to the defective sites on the oxygen-rich ZnO overlay being stably occupied by OH*, thus hindering the direct oxidation of CH₄ to CO₂ and promoting the extraction of CH₃O* as CH₃OH. Compared to anhydrous conditions, the presence of H₂O leads to higher methane conversion and enhances the overall methanol selectivity.

Similar to the Cu-based catalysts, on Ni/CeO₂ in the absence of H₂O, the products are mainly CO/CO₂ and H₂, while only small amounts of methanol are detected.¹³³ Methanol selectivity is significantly increased upon addition of H₂O. In the presence of H₂O, Ni/CeO₂(111) exhibits a

different mechanism of direct conversion of methane to methanol than CeO₂/Cu₂O/Cu (111) (Figure 5a-iii). The chemisorbed OH and H species from the dissociation of H₂O preferentially occupy the Ni active sites. Thus, CH₃* prefers to react with existing O* species to form CH₃O*, which is unlikely to decompose on the Ni sites. The optimal coverage of 15% Ni exhibits only about 35% methanol selectivity, which does not change significantly with an increase in H₂O (Figure 5a-iv). Therefore, the role of H₂O on CeO₂/Cu₂O/Cu (111) as the main oxygen source that also inhibits the adsorption and dissociation of O₂ is more significant than its role on Ni/ CeO₂(111), which involves hindering the dehydrogenation of CH₄ derivatives (CH₃* or CH₃O*).

Inspired by natural methane monooxygenases, molecular sieves loaded with first-row transition metals such as Fe and Cu are considered to be some of the best catalyst candidates for this reaction.^{142,143} H₂O also plays an important role in the formation of methanol from methane over Fe- and Cu-exchanged zeolites. Cu-based molecular sieves prepared using ion-exchange methods are the most promising catalysts.^{138,144} The concept for the conversion of methane to methanol using such catalysts is shown in Figure 5b. By using active oxygen in zeolites as the oxidant, the oxidation can take place even at room temperature, with few byproducts formed. However, the methanol production rate is influenced by the time required for methanol desorption from H₂O, with a full catalytic cycle typically taking more than 10 h.

At low temperatures (483-498 K), the direct and continuous catalytic oxidation of methane to methanol can be reached using oxygen and H₂O as oxidants on a Cuexchanged molecular sieve, and H₂O is crucial for methanol formation.¹⁴⁵ Over the O₂-bound Cu-ZSM-5 catalyst,¹³⁶ H atoms are transferred from the attached H₂O to the bound oxygen molecule to form hydrogen peroxide bridged by a double copper site (Figure 5c). The O-O bond of the peroxyhydrogen species is then cleaved to form oxygencontaining radical intermediates such as HO-Cu-O-Cu-OH and HO-Cu-OH-CuO, which both exhibit more efficient methane activation relative to that of Cu-O-Cu under anhydrous conditions. This mechanism suggests that the coordination effect of H₂O produces active hydroxyl groups that can selectively oxidize methane directly to methanol, but the source of oxygen in methanol is considered to be dioxygen. Similarly, the results of theoretical studies of the selective oxidation of methane to methanol catalyzed by H₂O on Fe/ ZSM-5 have shown that H₂O leads to increased activity on the double-coupled $[Fe(\mu-O)(\mu-OH)Fe]^+$ and $[HOFe(\mu-O)-$ FeOH]²⁺ sites compared to the anhydrous sites.¹³⁵ Overall, the role of H₂O in the selective oxidation of methane to methanol over Cu- and Fe-based molecular sieve catalysts is mainly to promote the activation of methane and its further selective oxidation to methanol. On the other hand, the oxygen source for methane oxidation to methanol is also proposed to be mainly H₂O rather than O₂. Isotope-labeled infrared spectroscopy experiments provide evidence that the oxygen in produced methanol is mainly from the H₂O, as shown in Figure 5d.¹³⁹ Likewise, Sun et al.¹³⁴ also observed that the presence of H₂O not only induces the reaction but also is the main source of oxygen in the produced methanol, proving that H₂O plays an important role by forming active species for methane activation or participating in the selective oxidation of methane.

4.2. Steam Reforming of CH₄. Methane is also an important feedstock to produce H₂. Currently, over 95% of H₂ production is accomplished through methane reforming. The steam reforming of methane (SRM, CH₄+H₂O \rightarrow 3H₂+CO) is a predominant industrial process for the production of H₂ and CO, which has been gaining interest.¹⁴⁶ Though this technology was proposed almost 100 years ago, research and industrial efforts to improve catalyst and process design have continued to optimize the reaction system.¹⁴⁷

The reaction between H₂O and CH₄ occurs in a hightemperature environment (typically 973-1173 K) and is typically catalyzed by metal-based catalysts.¹⁴⁸ The main pathway of SRM involves the adsorption and dissociation of CH₄ and H₂O molecules on active metal sites or supports, as well as the subsequent oxidation of carbon-containing intermediates.^{149,150} It is generally accepted that the RDS in SRM is the dissociative adsorption of CH₄, i.e., cleavage of the C-H bond of CH₄ that usually occurs on a metal site, $^{150-152}$ while H₂O seems play a supporting role. $^{153-157}$ For instance, adsorbed OH from H_2O dissociation may assist in the breaking of the first C–H bond in CH₄,^{158,157} and the reactive hydroxyl groups are responsible for the further oxidation of carboncontaining intermediates.¹⁵⁹ However, Vogt et al.¹⁶⁰ find that the activation of CH4 may not be the only RDS based on isotopically labeled experiments showing the formation of CH₃D upon pulsing D₂O. Their investigation further indicates that, for Ni/SiO₂ catalysts with relatively large Ni nanoparticles (>4.5 nm), the activation of the H_2O becomes kinetically limiting for SRM.^{153,161}

Coking and sintering are two major issues leading to catalyst deactivation in SRM,¹⁴⁷ which are both related to the presence of H_2O . It is generally accepted that H_2O is directly involved in reducing carbon deposition during the SRM reaction.^{162,163} In this case, the adsorption of H₂O and oxidation of carbon species by H₂O-derived species play a vital role in carbon suppression.^{163,164} A DFT study shows that a MnO-Co catalyst with a strong adsorption capability for H₂O is crucial for inhibiting carbon deposition.¹⁶³ In another example, adding CeO₂ into Rh/Al₂O₃ accelerates the reaction between H₂O and carbon species, leading to an enhancement in the overall SRM reaction rates.¹⁶⁴ In addition, the stable conversion rate and product selectivity also depend on the feed ratio of $H_2O/$ CH₄.^{165,166} For a low-temperature SRM on a Ni/TiO₂ catalyst, s relatively high steam feed $(H_2O:CH_4 = 3)$ can effectively drive carbon gasification and stabilize the SRM performance.¹⁶⁵ It should be highlighted that although higher steam feed can effectively reduce the extent of carbon deposition, this strategy may also deactivate catalysts by destroying the internal structure of the support material or leading to the agglomeration of metallic catalyst particles.^{165,167} It has been observed that the presence of a hydroxylated Ni surface due to the reaction between H₂O and Ni leads to severe sintering of Ni via Ostwald ripening.¹⁶⁷

Overall, there should be a balance between the activation of CH_4 and H_2O . The imbalanced dissociation of CH_4 and H_2O can induce carbon deposition and metal sintering, and thus lead to the deactivation of Ni catalysts.^{168–171} To improve the performance of Ni-based catalysts, many efforts have been made, including the modification of electronic properties of Ni by doping another metal to form a bimetallic structure and the stabilization of Ni nanoparticles by introducing reducible oxide supports,^{168,170,172–175} which not only provide active sites for the dissociative adsorption of H_2O but also gasify carbon

the active phase.

deposits. Similar strategies have also been applied to other

5. OUTLOOK AND PERSPECTIVES

catalysts to improve their performance for SRM. For example, by performing in situ X-ray absorption spectroscopy measurement, Duarte et al.¹⁷³ reported that the oxidation state of cerium is partially reduced (Ce4+ to Ce3+), and Rh is completely reduced for the Rh/CeO2-Al2O3 catalyst under SRM conditions. The reduced Ce^{3+} reacts with $\mathrm{H_2O}$ and reoxidizes to Ce4+, which can readily react with CH4 to form Ce^{3+} . In this way, H₂O works cooperatively with CeO_2 in the Rh/CeO₂-Al₂O₃ catalyst to promote the reaction by altering the oxidation state of CeO_2 , which helps stabilize the Al_2O_3 structure by forming CeAlO₃ and maintaining the dispersion of

It should be highlighted that almost all the above-mentioned mechanisms for SRM are proposed on the basis of experiments performed at relatively low temperatures (≤ 873 K), which are much lower than the industrial operating temperatures (>1073 K). Since the activations of both H₂O and CH₄ strongly depend on the reaction temperature, the understanding of reaction mechanisms of SRM under realistic conditions, especially regarding the role of H₂O, requires further studies. However, experimental investigation of reaction mechanisms at temperatures of >1073 K is extremely challenging.

4.3. Oxidative Coupling of CH4. In the oxidative coupling of methane (OCM) reaction, methane can be coupled to produce C_2 hydrocarbons (C_2H_6 and C_2H_4) using O_2 as the oxidant.¹⁷⁶ In contrast to nonoxidative coupling of methane (NOCM), OCM is free from thermodynamic constraints.¹⁷⁷ However, a high operating temperature is still required to activate CH₄ and obtain appreciable C2 hydrocarbon productivity, which inevitably leads to the further oxidation of the desired products to CO2.

The addition of H₂O is found to result in higher reaction rates and C_2H_6/C_2H_4 yields over the extensively studied MnO_x -Na₂WO₄/SiO₂ catalysts.¹⁷⁸⁻¹⁸⁰ It is proposed that the C-H bond activation can be mediated by either surface atomic oxygen species or surface OH* radicals originating from H₂O, which yield CH3* radicals, followed by recombination of the latter to C_2H_6 . The higher reactivity is suggested to be related to the presence of the more reactive surface OH* radicals. In addition to accelerating methane conversion, H₂O can also play a positive role in suppressing the formation of certain surface oxygen species that react with CH3* radicals to produce O_{x}^{181} . The presence of H₂O promotes the dissociation of O2 on the surface of the catalyst, which suppresses the direct methane oxidation to CO_2 (Figure 6).182,183

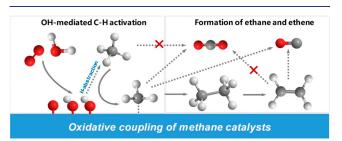


Figure 6. H₂O-mediated pathways for the OCM reaction. Reproduced with permission from ref 182. Copyright 2020 American Chemical Society.

In nonaqueous reactions, the presence of H₂O is often unavoidable, as is the case when H₂O molecules are present in the reactants (either as an impurity or a coreactant), adsorbed on the surface of catalysts, or formed as a reaction byproduct, etc. As summarized in this Perspective (Figure 7), H_2O can play important chemical and catalytic roles in the catalytic conversion of C_1 molecules (CO, CO₂ and CH₄). Some of the positive effects of H₂O include the following: (i) adsorbing onto the catalyst surface and interacting with reactants to alter the pathway and increase the reaction rate; (ii) decomposing into H*, OH*, and O* species to serve as key intermediates in the conversion process; (iii) forming hydrogen bonds or other noncovalent interactions with reactants to enhance the reactivity and selectivity; (iv) acting as a hydrogen or oxygen source to participate in the reaction.

For catalytic reactions involving CO, H₂O can be both a reactant and a promoter for H₂ production in the WGS reaction by forming the COOH intermediate, which lowers the reaction energy of the rate-determining step. Similarly, a promotional role of H₂O has also been proposed for CO oxidation over reducible oxide supported catalysts by facilitating the activation of O2 and the formation of COOH*. H₂O can also participate in the reaction and influence the reaction kinetics in FTS by acting as a proton transfer agent. Over the past few decades, advances in developing in situ/operando characterization and computational simulations have improved the molecular-level understanding of the structure and dynamics of H₂O on solid surfaces. Despite these significant efforts, it remains challenging to experimentally determine the configuration of H₂O on the catalyst surface under the reaction conditions. Recently, Yuan et al.¹⁸⁴ have reported the structural reconstruction of the anatase TiO₂ surface in the presence of H₂O and CO using in situ environmental TEM. The high spatial and temporal resolution of TEM enables monitoring of the adsorption and dissociation of H₂O on the TiO₂ surface, which leads to the formation of twinned protrusions that react with CO to form H₂ and CO₂ (WGS). Likewise, ultrafast infrared spectroscopy¹⁸⁵ that probes the stretching mode of the OH group provides opportunities to study the hydrogen bonding dynamics of H₂O during catalytic reactions.

For the hydrogenation of CO₂, H₂O plays a crucial role in methanol synthesis as an important byproduct. H₂O can play the following three promoting roles in CO₂ hydrogenation reactions: enhancing the formation and further conversion of intermediates via H-transfer, modifying the catalyst surface to form an OH-containing active phase, and promoting the conversion of CH₃O* via the hydrolysis reaction. All three roles are related to the presence of H₂O-derived species (O*, OH*, and OOH*), though details on the reaction pathway are still unclear. Precise identification of the H2O-mediated microenvironment on catalysts is still a major challenge in both theoretical and experimental studies. It should be highlighted that the enhancing effects of H₂O on methanol formation are observed only for systems with trace amounts of H_2O . Therefore, regulating the conversion of surface intermediates mediated by H₂O while keeping the active sites and structure of the catalyst unchanged is a major challenge for CO₂ hydrogenation. It is worth emphasizing that H₂O produced via hydrogenation on the catalyst surface shows a stronger inhibition effect than produced methanol. In this

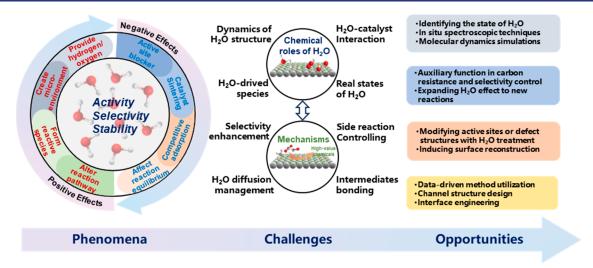


Figure 7. Challenges and opportunities of understanding H_2O in catalytic conversion of C_1 molecules.

case, both the microscopic point of view to regulate the microenvironment on the surface of the catalyst and the macroscopic point of view to control the chemical equilibrium via enhancing water diffusion are important for designing a high-performance catalyst.

For the catalytic conversion of CH₄ to syngas, methanol, or other hydrocarbons, H₂O as either a coreactant or a promoter can effectively regulate the selective conversion of CH₄. H₂O can promote these reactions from several aspects: creating a weak oxidant atmosphere to avoid the deep oxidation of methane, dissociating at the active sites to form a hydroxyl-rich surface for selective conversion of CH₄, attenuating the ability of the active site to fully dissociate all of the C-H bonds in CH₄ to avoid carbon deposition on the catalysts, and promoting the desorption of products. Specifically, H₂O as a weak oxidant can neutralize the strong oxidation effect of oxygen and inhibits the oxidation of methane to CO₂ by producing H₂O-derived surface reactive oxygen species. For SRM, the presence of H_2O increases the reaction rate by facilitating the dissociation of CH₄ and promoting surface reactions. It also helps maintain catalyst stability by reducing the formation of carbon deposition on the catalyst surface, while the H_2O/CH_4 feed ratio is also critical for stabilizing catalytic conversion and product selectivity. Because H2O typically adsorbs more strongly than methanol, H₂O also facilitates the desorption of methanol from the catalyst surface in CH₄ oxidation to methanol. However, a further understanding of the role of H2O-derived species in reactions involving the selective conversion of CH₄ is needed to regulate product selectivity during CH₄ conversion by using H₂O as either a promoter or a reactant.

Although a H_2O -mediated microenvironment often leads to positive effects in catalytic reactions, direct experimental evidence and detailed explanations of these effects still require further research efforts. In some reactions, H_2O may also slow the rate, depending on the form and concentration of H_2O , competitive adsorption mechanisms, and other induced species. In addition to activity and selectivity, the stability of catalysts in the presence of H_2O , a key parameter of catalytic performance, has not been systematically studied. To better understand and fully exploit the positive effects of H_2O in gasphase reactions, more studies should be performed in the following areas:

- (1) Understanding reaction pathways for H_2O -mediated conversion of C_1 molecules under realistic conditions. The combined utilization of in situ/operando experimental techniques and theoretical simulations will be critical in understanding the reaction mechanisms and the key steps controlling activity and selectivity. Molecular/ atomic-level understanding based on active sites and surface species detected under reaction conditions is essential to design a state-of-art catalyst. At present, the proposed pathways for the involvement of H₂O in the conversion of C_1 molecules mainly depend on DFT calculations.^{6,21,89,186} Most of the H₂O structures have been observed on clean and well-defined single crystal surfaces under UHV conditions.^{187,188} Systematic studies of the structure of H₂O under ambient/realistic conditions face many difficulties due to the dynamic nature of the interfaces, but represent the next frontier for fundamental research.¹⁸⁹ Future experimental measurements should focus on the identification of active reaction intermediates by in situ spectroscopic techniques.^{7,116} Meanwhile, more realistic models based on experimental reaction conditions should also be applied to theoretical simulations, for which the combination of kinetic Monte Carlo or molecular dynamics simulations with DFT calculations is necessary.¹⁴⁰ It is noteworthy that the theoretical modeling of H₂O molecules participating in heterogeneous catalytic reactions in different states should minimize the gap between theory and experiments. Although H₂O molecules are relatively simple, the presence of molecular forces between them makes it challenging to model them correctly. Therefore, sorting out the various forms of H₂O (H₂O molecules, H₂O clusters, OH/OH, H/H, etc.) and their influence on the energetics of elementary reaction steps is crucial for understanding the reaction mechanisms.
- (2) Developing characterization techniques to study catalyst surface- H_2O molecule-intermediate species. The lack of suitable characterization techniques to identify the structure of solid- H_2O interfaces, especially in situ methods with high spatial and temporal resolution, limits the understanding of catalytic systems in the presence of H_2O . Traditional surface-sensitive probes,

such as soft X-rays and low-energy electrons, are not capable of penetrating the aqueous layers due to their small mean free path. Therefore, developing experimental methods to identify the interfacial behaviors and elucidate the dynamic processes of H_2O or H_2O derivatives near the solid surface are necessary to enhance understanding. Methods to perform experiments using scanning probe microscope and surface science studies on well-defined model surfaces are of great significance.

- (3) Investigating stability and selectivity of catalysts under reaction conditions. Catalyst stability in the presence of H₂O is one of the critical metrics of catalytic performance in addition to activity and selectivity. For example, experimental and computational studies regarding carbon removal by H₂O have been performed for decades in the field of methane reforming.^{190,191} In addition to inhibiting coking, the presence of H₂O can also increase the available protons to promote the production of CO and H₂. Polycyclic aromatics have been shown to be the precursors for coke formation, which causes the deactivation of most zeolite catalysts in C1 molecule conversion. In the highly selective conversion of CO₂ to aromatics over tandem catalysts, the presence of H₂O significantly alleviates deactivation of the catalyst by suppressing the formation of these polycyclic aromatics.¹⁹² Moreover, methane dehydroaromatization (MDA) catalysis has potential to replace existing processes due to the increasing global production of natural gas (and biogas). However, the major obstacle for this process is the rapid deactivation of catalysts due to high coke selectivity. The addition of H₂O has been considered to inhibit coking and improve the lifetime of MDA catalysis in several studies. ^{193,194} H₂O plays a vital role in maintaining the activity of heterogeneous catalysts by oxidizing carbon to gas-phase CO or CO₂. However, as H₂O concentration increases, the total selectivity of valuable hydrocarbons (aliphatics and aromatics) decreases significantly and CO becomes the dominant product. Therefore, it is important to understand the effect of H₂O concentration on controlling the catalytic selectivity in these H2Omediated reactions.
- (4) Enhancing catalytic activity with H_2O -mediated surface reconstruction of catalysts. The cocatalysis effect of H2O on the catalyst surface is related not only to the reaction system but also to the properties of the catalyst. In some cases, the activity of supported metal nanoparticles depends on their surface structure and exposed sites, and can be promoted by modifying specific types of sites or defect structures.^{3,11} For example, steam treatment leading to the formation of twin crystals in Pd-based catalysts for methane catalytic oxidation can increase the grain boundary density and catalytic activity.¹⁹⁵ Such grain boundaries have very high stability, and the reaction rate at the grain boundary sites is 2 orders of magnitude higher than that at the intrinsic catalytic sites on Pd/Al₂O₃. Theoretical calculations reveal that the stress formed by the twin crystal defects is the primary factor in the enhanced catalytic activation of the C-H bond. Indeed, double boundaries and grain boundaries are some of the most stable defects on metal surfaces and can act as active sites for some reactions.^{195,19}

Although grain boundaries have been studied as potential defects with catalytic activity, little is known about how they can be generated via interaction with H_2O . On the other hand, as a byproduct in CO_x hydrogenation, H₂O has a strong oxidative and destructive effect on the active phase (Fe^0/FeC_x) in Fe-based catalysts, and can also induce oxidation and sintering of the metallic Co phase in FTS.^{9,197} The presence of excess H₂O is detrimental to the stability of carbide catalysts, while moderate amounts can instead enhance their formation and stability.¹⁹⁸ Therefore, it is important to elucidate the positive or negative effects of H₂O-induced structural changes on catalytic stability and performance in order to rationally modify the synthesis route and reaction atmosphere to optimize the effect of H₂O.

- (5) Expanding H_2O -mediated C_1 conversion to other gaseous phase reactions. The effect of H_2O on heterogeneous catalytic systems should be further expanded beyond the conversion of C_1 molecules. It is necessary to develop a systematic understanding of which reactions undergo strong or weak promoter effects due to H_2O mediation, and to develop a universal basic theory that can be applied to other heterogeneous catalytic reactions. The correlation between H_2O addition and catalytic activity should be investigated by combining experiments and theory focused on structure–activity relationships.
- (6) Applying data-driven methods to understand complex roles of H_2O . The dynamic nature of H_2O may also result in its multiple roles in one catalytic system. Quantification of each contribution can be challenging, requiring a combination of experimental kinetic assessments and computational studies. In recent years, the advancement of big data and machine learning (ML) has led to their applications in heterogeneous catalysis.¹⁹⁹ Using theoretical simulations and experimental observations to grow the database and provide guidance for ML training, data-driven ML methods offer additional tools to predict and explain the complex nature and roles of H_2O derived species in the catalytic conversion of C_1 molecules.
- (7) Learning from electrocatalytic studies to further understand the role of H_2O . Although the current Perspective focuses on the effects of H₂O in thermocatalytic reactions, it is important to point out that H₂O also plays significant roles in electrocatalytic conversion of C1 molecules, including CO_2 , CO, and methanol. H_2O is probably the most ubiquitous molecule in electrochemical systems because almost all electrocatalytic reactions occur in aqueous environments, and H2O and its dissociated products (OH⁻ and H⁺) participate either directly or indirectly in electrochemical reactions involving C₁ molecules. The presence of the water layer at or near the electrocatalysts also modifies the local electrochemical potential that in turn regulates the electrochemical activity and selectivity. Information gained from electrochemical studies should help further elucidate the roles of H₂O in thermocatalysis.

AUTHOR INFORMATION

Corresponding Authors

Jingguang G. Chen – Department of Chemical Engineering, Columbia University, New York, New York 10027, United States; orcid.org/0000-0002-9592-2635; Email: jgchen@columbia.edu

Kongzhai Li – State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization Engineering, Kunming University of Science and Technology, Kunming 650093 Yunnan, China; Southwest United Graduate School, Kunming 650000 Yunnan, China; Email: kongzhai.li@ foxmail.com

Gengnan Li – Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States; Email: lig@anl.gov

Authors

Lei Jiang – State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization Engineering, Kunming University of Science and Technology, Kunming 650093 Yunnan, China; Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093 Yunnan, China; orcid.org/0000-0002-5143-9262

William N. Porter – Department of Chemical Engineering, Columbia University, New York, New York 10027, United States; o orcid.org/0000-0002-0908-5317

Hua Wang – State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization Engineering, Kunming University of Science and Technology, Kunming 650093 Yunnan, China

Complete contact information is available at: https://pubs.acs.org/10.1021/jacs.3c13374

Author Contributions

[#]L.J. and K.L. contributed equally to this work. **Notes**

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

Authors from Kunming University of Science and Technology acknowledge support from the National Natural Science Foundation of China (Nos. U2202251, 52174279), the Outstanding Youth Project of Yunnan Basic Research Program (No. 202201AV070004), and the Major R&D Special Project of Yunnan Province (No. 202302AG050005). Authors from Columbia University acknowledge support from the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-SC0012704. The author from the Argonne National Laboratory acknowledges support from the U.S. Department of Energy, Office of Basic Engery Science, under Contract No. DE-AC02-06CH11357. We thank Dr. Danyang Li of Kunming University of Science and Technology for making contributions to this Perspective.

REFERENCES

(1) Ludwig, T.; Gauthier, J. A.; Brown, K. S.; Ringe, S.; Nørskov, J. K.; Chan, K. Solvent-adsorbate interactions and adsorbate-specific solvent structure in carbon dioxide reduction on a stepped Cu surface. *J. Phys. Chem. C* **2019**, *123* (10), 5999–6009.

(2) Levin, E.; Ivry, E.; Diesendruck, C. E.; Lemcoff, N. G. Water in N-heterocyclic carbene-assisted catalysis. *Chem. Rev.* 2015, 115 (11), 4607–92.

(3) Yuan, W.; Zhu, B.; Li, X.-Y.; Hansen, T. W.; Ou, Y.; Fang, K.; Yang, H.; Zhang, Z.; Wagner, J. B.; Gao, Y.; Wang, Y. Visualizing H_2O molecules reacting at TiO₂ active sites with transmission electron microscopy. *Science* **2020**, *367* (6476), 428–430.

(4) Merte, L. R.; Peng, G. W.; Bechstein, R.; Rieboldt, F.; Farberow, C. A.; Grabow, L. C.; Kudernatsch, W.; Wendt, S.; Laegsgaard, E.; Mavrikakis, M.; Besenbacher, F. Water-mediated proton hopping on an iron oxide surface. *Science* **2012**, *336* (6083), 889–893.

(5) Mou, T.; Pillai, H. S.; Wang, S.; Wan, M.; Han, X.; Schweitzer, N. M.; Che, F.; Xin, H. Bridging the complexity gap in computational heterogeneous catalysis with machine learning. *Nat. Catal.* **2023**, *6* (2), 122–136.

(6) Chang, C. R.; Huang, Z. Q.; Li, J. The promotional role of water in heterogeneous catalysis: mechanism insights from computational modeling. *Wires Comput. Mol. Sci.* **2016**, *6* (6), 679–693.

(7) Wang, Y.; Gao, W.; Li, K.; Zheng, Y.; Xie, Z.; Na, W.; Chen, J. G.; Wang, H. Strong evidence of the role of H_2O in affecting methanol selectivity from CO_2 Hydrogenation over Cu-ZnO-ZrO₂. *Chem.* **2020**, 6 (2), 419–430.

(8) Wischert, R.; Laurent, P.; Coperet, C.; Delbecq, F.; Sautet, P. γ -Alumina: the essential and unexpected role of water for the structure, stability, and reactivity of "defect" sites. *J. Am. Chem. Soc.* **2012**, *134* (35), 14430–49.

(9) Wolf, M.; Fischer, N.; Claeys, M. Water-induced deactivation of cobalt-based Fischer–Tropsch catalysts. *Nat. Catal.* **2020**, 3 (12), 962–965.

(10) Xu, Y.; Li, X.; Gao, J.; Wang, J.; Ma, G.; Wen, X.; Yang, Y.; Li, Y.; Ding, M. A hydrophobic FeMn@Si catalyst increases olefins from syngas by suppressing C1 by-products. *Science* **2021**, *371* (6529), 610–613.

(11) Li, X.; Wang, X.; Roy, K.; van Bokhoven, J. A.; Artiglia, L. Role of water on the structure of palladium for complete oxidation of methane. *ACS Catal.* **2020**, *10* (10), 5783–5792.

(12) Wang, Y.; Ma, J.; Wang, X.; Zhang, Z.; Zhao, J.; Yan, J.; Du, Y.; Zhang, H.; Ma, D. Complete CO oxidation by O_2 and H_2O over Pt-Ce $O_{2-\delta}$ /MgO following Langmuir-Hinshelwood and Mars-van Krevelen Mechanisms, Respectively. *ACS Catal.* **2021**, *11* (19), 11820–11830.

(13) Paulus, U. A.; Wang, Y.; Kim, S. H.; Geng, P.; Wintterlin, J.; Jacobi, K.; Ertl, G. Inhibition of CO oxidation on RuO2(110) by adsorbed H2O molecules. *J. Chem. Phys.* **2004**, *121* (22), 11301–11308.

(14) Su, H.-Y.; Yang, M.-M.; Bao, X.-H.; Li, W.-X. The effect of water on the CO oxidation on Ag(111) and Au(111) surfaces: A first-principle study. *J. Phys. Chem. C* **2008**, *112* (44), 17303–17310.

(15) Xu, X. L.; Li, J. Q. DFT studies on H_2O adsorption and its effect on CO oxidation over spinel Co_3O_4 (110) surface. *Surf. Sci.* **2011**, 605 (23–24), 1962–1967.

(16) Hansen, H. A.; Wolverton, C. Kinetics and thermodynamics of H_2O dissociation on reduced $CeO_2(111)$. J. Phys. Chem. C 2014, 118 (47), 27402–27414.

(17) Liang, Y.; Chen, L.; Ma, C. a. Kinetics and thermodynamics of H_2O dissociation and CO oxidation on the Pt/WC (0001) surface: A density functional theory study. *Surf. Sci.* **2017**, *656*, 7–16.

(18) Saavedra, J.; Doan, H. A.; Pursell, C. J.; Grabow, L. C.; Chandler, B. D. The critical role of water at the gold-titania interface in catalytic CO oxidation. *Science* **2014**, *345* (6204), 1599–1602.

(19) van Spronsen, M. A.; Weststrate, K.J.; Juurlink, L. B. F. A comparison of CO oxidation by hydroxyl and atomic oxygen from water on low-coordinated Au atoms. *ACS Catal.* **2016**, *6* (10), 7051–7058.

(20) Mullen, G. M.; Mullins, C. B. Water's place in Au catalysis. *Science* **2014**, 345 (6204), 1564–1565.

(21) Nie, X.; Jiang, X.; Wang, H.; Luo, W.; Janik, M. J.; Chen, Y.; Guo, X.; Song, C. Mechanistic understanding of alloy effect and water promotion for Pd-Cu bimetallic catalysts in CO_2 hydrogenation to methanol. *ACS Catal.* **2018**, 8 (6), 4873–4892.

(22) Zhao, Y.-F.; Yang, Y.; Mims, C.; Peden, C. H. F.; Li, J.; Mei, D. Insight into methanol synthesis from CO₂ hydrogenation on

Cu(111): Complex reaction network and the effects of H_2O . J. Catal. 2011, 281 (2), 199–211.

(23) Zhao, Y.-F.; Rousseau, R.; Li, J.; Mei, D. Theoretical study of syngas hydrogenation to methanol on the polar zn-terminated ZnO(0001) surface. J. Phys. Chem. C 2012, 116 (30), 15952–15961.

(24) Jiang, X.; Nie, X.; Guo, X.; Song, C.; Chen, J. G. Recent advances in carbon dioxide hydrogenation to methanol via heterogeneous catalysis. *Chem. Rev.* **2020**, *120* (15), 7984–8034.

(25) Li, G.; Wang, B.; Resasco, D. E. Water-mediated heterogeneously catalyzed reactions. ACS Catal. 2020, 10 (2), 1294–1309.

(26) Lin, L.; Ge, Y.; Zhang, H.; Wang, M.; Xiao, D.; Ma, D. Heterogeneous Catalysis in Water. *JACS Au* **2021**, *1* (11), 1834–1848.

(27) Vecchietti, J.; Bonivardi, A.; Xu, W.; Stacchiola, D.; Delgado, J. J.; Calatayud, M.; Collins, S. E. Understanding the role of oxygen vacancies in the water gas shift reaction on ceria-supported platinum catalysts. *ACS Catal.* **2014**, *4* (6), 2088–2096.

(28) Sun, K.; Kohyama, M.; Tanaka, S.; Takeda, S. Reaction mechanism of the low-temperature water-gas shift reaction on Au/ TiO_2 catalysts. *J. Phys. Chem. C* **2017**, *121* (22), 12178–12187.

(29) Rodriguez, J. A.; Liu, P.; Hrbek, J.; Evans, J.; Perez, M. Water gas shift reaction on Cu and Au nanoparticles supported on $CeO_2(111)$ and ZnO(0001): intrinsic activity and importance of support interactions. *Angew. Chem., Int. Ed.* **2007**, *46* (8), 1329–1332.

(30) Gokhale, A. A.; Dumesic, J. A.; Mavrikakis, M. On the mechanism of low-temperature water gas shift reaction on copper. J. Am. Chem. Soc. 2008, 130 (4), 1402–1414.

(31) Fu, X.-P.; Guo, L.-W.; Wang, W.-W.; Ma, C.; Jia, C.-J.; Wu, K.; Si, R.; Sun, L.-D.; Yan, C.-H. Direct identification of active surface species for the water-gas shift reaction on a gold-ceria catalyst. *J. Am. Chem. Soc.* **2019**, *141* (11), 4613–4623.

(32) Liang, J. X.; Lin, J.; Liu, J.; Wang, X.; Zhang, T.; Li, J. Dual metal active sites in an Ir_1/FeO_x single-atom catalyst: A redox mechanism for the water-gas shift reaction. *Angew. Chem., Int. Ed.* **2020**, 59 (31), 12868–12875.

(33) Schilling, C.; Hess, C. Elucidating the role of support oxygen in the water-gas shift reaction over ceria-supported gold catalysts using operando spectroscopy. *ACS Catal.* **2019**, *9* (2), 1159–1171.

(34) Zeinalipour-Yazdi, C. D.; Efstathiou, A. M. Preadsorbed waterpromoted mechanism of the water-gas shift reaction. *J. Phys. Chem. C* **2008**, *112* (48), 19030–19039.

(35) Lin, J.; Wang, A.; Qiao, B.; Liu, X.; Yang, X.; Wang, X.; Liang, J.; Li, J.; Liu, J.; Zhang, T. Remarkable performance of Ir_1/FeO_x single-atom catalyst in water gas shift reaction. *J. Am. Chem. Soc.* **2013**, 135 (41), 15314–15317.

(36) Xu, M.; Yao, S.; Rao, D.; Niu, Y.; Liu, N.; Peng, M.; Zhai, P.; Man, Y.; Zheng, L.; Wang, B.; Zhang, B.; Ma, D.; Wei, M. Insights into interfacial synergistic catalysis over Ni@TiO_{2-x} catalyst toward water-gas shift reaction. *J. Am. Chem. Soc.* **2018**, *140* (36), 11241– 11251.

(37) Li, Y.; Kottwitz, M.; Vincent, J. L.; Enright, M. J.; Liu, Z.; Zhang, L.; Huang, J.; Senanayake, S. D.; Yang, W.-C. D.; Crozier, P. A.; Nuzzo, R. G.; Frenkel, A. I. Dynamic structure of active sites in ceria-supported Pt catalysts for the water gas shift reaction. *Nat. Commun.* **2021**, *12* (1), 914.

(38) Shekhar, M.; Wang, J.; Lee, W. S.; Williams, W. D.; Kim, S. M.; Stach, E. A.; Miller, J. T.; Delgass, W. N.; Ribeiro, F. H. Size and support effects for the water-gas shift catalysis over gold nanoparticles supported on model Al_2O_3 and TiO_2 . J. Am. Chem. Soc. **2012**, 134 (10), 4700–8.

(39) Liu, N.; Xu, M.; Yang, Y.; Zhang, S.; Zhang, J.; Wang, W.; Zheng, L.; Hong, S.; Wei, M. Au^{δ -O_v-Ti³⁺ interfacial site: catalytic active center toward low-temperature water gas shift reaction. *ACS Catal.* **2019**, 9 (4), 2707–2717.}

(40) Sun, L.; Xu, J.; Liu, X.; Qiao, B.; Li, L.; Ren, Y.; Wan, Q.; Lin, J.; Lin, S.; Wang, X.; Guo, H.; Zhang, T. High-efficiency water gas shift reaction catalysis on α -MoC promoted by single-atom Ir species. *ACS Catal.* **2021**, *11* (10), 5942–5950.

(41) Yamamoto, S.; Andersson, K.; Bluhm, H.; Ketteler, G.; Starr, D. E.; Schiros, T.; Ogasawara, H.; Pettersson, L. G. M.; Salmeron, M.; Nilsson, A. Hydroxyl-induced wetting of metals by water at near-ambient conditions. *J. Phys. Chem. C* **2007**, *111* (22), 7848–7850.

(42) Zhou, L.-L.; Li, S.-Q.; Ma, C.; Fu, X.-P.; Xu, Y.-S.; Wang, W.-W.; Dong, H.; Jia, C.-J.; Wang, F. R.; Yan, C.-H. Promoting molecular exchange on rare-earth oxycarbonate surfaces to catalyze the water-gas shift reaction. *J. Am. Chem. Soc.* **2023**, *145* (4), 2252–2263.

(43) Zhang, X.; Zhang, M.; Deng, Y.; Xu, M.; Artiglia, L.; Wen, W.; Gao, R.; Chen, B.; Yao, S.; Zhang, X.; Peng, M.; Yan, J.; Li, A.; Jiang, Z.; Gao, X.; Cao, S.; Yang, C.; Kropf, A. J.; Shi, J.; Xie, J.; Bi, M.; van Bokhoven, J. A.; Li, Y.-W.; Wen, X.; Flytzani-Stephanopoulos, M.; Shi, C.; Zhou, W.; Ma, D. A stable low-temperature H₂-production catalyst by crowding Pt on α -MoC. *Nature* **2021**, *589* (7842), 396– 401.

(44) Yao, S.; Zhang, X.; Zhou, W.; Gao, R.; Xu, W.; Ye, Y.; Lin, L.; Wen, X.; Liu, P.; Chen, B.; Crumlin, E.; Guo, J.; Zuo, Z.; Li, W.; Xie, J.; Lu, L.; Kiely, C. J.; Gu, L.; Shi, C.; Rodriguez, J. A.; Ma, D. Atomiclayered Au clusters on α -MoC as catalysts for the low-temperature water-gas shift reaction. *Science* **2017**, *357* (6349), 389–393.

(45) Chen, Y.; Lin, J.; Li, L.; Qiao, B.; Liu, J.; Su, Y.; Wang, X. Identifying size effects of pt as single atoms and nanoparticles supported on FeO_x for the water-gas shift reaction. ACS Catal. 2018, 8 (2), 859–868.

(46) Xu, M.; He, S.; Chen, H.; Cui, G.; Zheng, L.; Wang, B.; Wei, M. TiO_{2-x} -modified Ni nanocatalyst with tunable metal-support interaction for water-gas shift reaction. ACS Catal. **2017**, 7 (11), 7600–7609.

(47) Liu, N.; Chen, B.; Liu, K.; Qin, R.; Wang, J.; Zhang, Y.; Zhang, Q.; Gu, L.; Liu, P.; Cao, K.; Yan, P.; Fu, G.; Zheng, N. Ensemble effect of the nickel-silica interface promotes the water-gas shift reaction. *ACS Catal.* **2023**, *13* (11), 7347–7357.

(48) Freund, H. J.; Meijer, G.; Scheffler, M.; Schlögl, R.; Wolf, M. CO oxidation as a prototypical reaction for heterogeneous processes. *Angew. Chem., Int. Ed.* **2011**, *50* (43), 10064–10094.

(49) Saavedra, J.; Whittaker, T.; Chen, Z.; Pursell, C. J.; Rioux, R. M.; Chandler, B. D. Controlling activity and selectivity using water in the Au-catalysed preferential oxidation of CO in H_2 . *Nat. Chem.* **2016**, 8 (6), 584–589.

(50) Bae, J.; Shin, D.; Jeong, H.; Kim, B.-S.; Han, J. W.; Lee, H. Highly water-resistant La-doped Co_3O_4 catalyst for CO oxidation. ACS Catal. **2019**, 9 (11), 10093–10100.

(51) Wang, H. F.; Kavanagh, R.; Guo, Y. L.; Guo, Y.; Lu, G. Z.; Hu, P. Structural origin: water deactivates metal oxides to CO oxidation and promotes low-temperature CO oxidation with metals. *Angew. Chem., Int. Ed.* **2012**, *51* (27), 6657–61.

(52) Daté, M.; Haruta, M. Moisture effect on CO oxidation over Au/TiO₂ catalyst. *J. Catal.* **2001**, 201 (2), 221–224.

(53) Daté, M.; Okumura, M.; Tsubota, S.; Haruta, M. Vital Role of Moisture in the Catalytic Activity of Supported Gold Nanoparticles. *Angew. Chem., Int. Ed.* **2004**, *116* (16), 2181–2184.

(54) Boccuzzi, F.; Chiorino, A.; Manzoli, M.; Lu, P.; Akita, T.; Ichikawa, S.; Haruta, M. Au/TiO₂ Nanosized Samples: A catalytic, TEM, and FTIR study of the effect of calcination temperature on the CO oxidation. J. Catal. **2001**, 202 (2), 256–267.

(55) Kung, H. H.; Kung, M. C.; Costello, C. K. Supported Au catalysts for low temperature CO oxidation. J. Catal. 2003, 216 (1-2), 425–432.

(56) Daniells, S. T.; Overweg, A. R.; Makkee, M.; Moulijn, J. A. The mechanism of low-temperature CO oxidation with Au/Fe_2O_3 catalysts: a combined Mossbauer, FT-IR, and TAP reactor study. *J. Catal.* **2005**, 230 (1), 52–65.

(57) Kim, T. S.; Gong, J.; Ojifinni, R. A.; White, J. M.; Mullins, C. B. Water activated by atomic oxygen on Au(111) to oxidize CO at low temperatures. *J. Am. Chem. Soc.* **2006**, *128* (19), 6282–6283.

(58) Ojifinni, R. A.; Froemming, N. S.; Gong, J.; Pan, M.; Kim, T. S.; White, J. M.; Henkelman, G.; Mullins, C. B. Water-enhanced lowtemperature CO oxidation and isotope effects on atomic oxygencovered Au(111). *J. Am. Chem. Soc.* **2008**, *130* (21), 6801–6812. (59) Fujitani, T.; Nakamura, I. Mechanism and active sites of the oxidation of CO over Au/TiO₂. *Angew. Chem., Int. Ed.* **2011**, 50 (43), 10144–10147.

(60) Li, G.; Li, L.; Yuan, Y.; Shi, J.; Yuan, Y.; Li, Y.; Zhao, W.; Shi, J. Highly efficient mesoporous Pd/CeO_2 catalyst for low temperature CO oxidation especially under moisture condition. *Appl. Catal. B: Environ.* **2014**, 158–159, 341–347.

(61) Wang, C.; Gu, X.-K.; Yan, H.; Lin, Y.; Li, J.; Liu, D.; Li, W.-X.; Lu, J. Water-mediated Mars-Van Krevelen mechanism for CO oxidation on ceria-supported single-atom Pt_1 catalyst. *ACS Catal.* **2017**, 7 (1), 887–891.

(62) Duan, Z.; Henkelman, G. Calculations of CO oxidation over a Au/TiO₂ catalyst: A study of active sites, catalyst deactivation, and moisture effects. *ACS Catal.* **2018**, *8* (2), 1376–1383.

(63) Schlexer, P.; Widmann, D.; Behm, R. J.; Pacchioni, G. CO oxidation on a Au/TiO_2 nanoparticle catalyst via the Au-assisted Mars-van Krevelen mechanism. *ACS Catal.* **2018**, *8* (7), 6513–6525.

(64) Zhang, J.; Liu, Y.; Yao, X.; Shao, Q.; Xu, B.; Long, C. Enhanced moisture resistance of Cu/Ce catalysts for CO oxidation via Plasma-Catalyst interactions. *Chemosphere* **2020**, *261*, 127739.

(65) Dobrosz-Gómez, I.; Kocemba, I.; Rynkowski, J. M. Carbon monoxide oxidation over $Au/Ce_{1-x}Zr_xO_2$ catalysts: effects of moisture content in the reactant gas and catalyst pretreatment. *Catal. Lett.* **2009**, *128* (3–4), 297–306.

(66) Ojeda, M.; Zhan, B.-Z.; Iglesia, E. Mechanistic interpretation of CO oxidation turnover rates on supported Au clusters. *J. Catal.* **2012**, 285 (1), 92–102.

(67) Tran-Thuy, T.-M.; Chen, C.-C.; Lin, S. D. Spectroscopic studies of how moisture enhances CO oxidation over Au/BN at ambient temperature. ACS Catal. 2017, 7 (7), 4304–4312.

(68) Saavedra, J.; Pursell, C. J.; Chandler, B. D. CO oxidation kinetics over Au/TiO₂ and Au/Al₂O₃ catalysts: evidence for a common water-assisted mechanism. *J. Am. Chem. Soc.* **2018**, *140* (10), 3712–3723.

(69) Jin, C.; Zhou, Y.; Han, S.; Shen, W. Water-assisted low-temperature oxidation of CO at the Au-Fe₂O₃ interface. *J. Phys. Chem.* C **2021**, *125* (47), 26031–26038.

(70) Deng, Y.; Wang, T.; Zhu, L.; Jia, A.-P.; Lu, J.-Q.; Luo, M.-F. Enhanced performance of CO oxidation over $Pt/CuCrO_x$ catalyst in the presence of CO₂ and H₂O. *Appl. Surf. Sci.* **2018**, 442, 613–621.

(71) Wang, T.; Xing, J.-Y.; Jia, A.-P.; Tang, C.; Wang, Y.-J.; Luo, M.-F.; Lu, J.-Q. CO oxidation over $Pt/Cr_{1.3}Fe_{0.7}O_3$ catalysts: Enhanced activity on single Pt atom by H₂O promotion. *J. Catal.* **2020**, *382*, 192–203.

(72) Fujitani, T.; Nakamura, I.; Haruta, M. Role of water in Co oxidation on gold catalysts. *Catal. Lett.* **2014**, *144* (9), 1475–1486.

(73) Ide, M. S.; Davis, R. J. The important role of hydroxyl on oxidation catalysis by gold nanoparticles. *Acc. Chem. Res.* **2014**, 47 (3), 825–833.

(74) Jin, Y.; Sun, G.; Xiong, F.; Wang, Z.; Huang, W. Protontransfer-connected elementary surface reaction network for lowtemperature CO oxidation catalyzed by metal-oxide nanocatalysts. *J. Phys. Chem.* C **2016**, *120* (47), 26968–26973.

(75) Zhao, S.; Chen, F.; Duan, S.; Shao, B.; Li, T.; Tang, H.; Lin, Q.; Zhang, J.; Li, L.; Huang, J.; Bion, N.; Liu, W.; Sun, H.; Wang, A. Q.; Haruta, M.; Qiao, B.; Li, J.; Liu, J.; Zhang, T. Remarkable active-site dependent H_2O promoting effect in CO oxidation. *Nat. Commun.* **2019**, *10* (1), 3824.

(76) Iglesia, E. Design, synthesis, and use of cobalt-based Fischer-Tropsch synthesis catalysts. *Appl. Catal. A: Gen.* **1997**, *161* (1), 59– 78.

(77) Rytter, E.; Holmen, A. Perspectives on the effect of water in cobalt Fischer–Tropsch synthesis. *ACS Catal.* **2017**, 7 (8), 5321–5328.

(78) Yu, X.; Zhang, J.; Wang, X.; Ma, Q.; Gao, X.; Xia, H.; Lai, X.; Fan, S.; Zhao, T.-S. Fischer–Tropsch synthesis over methyl modified Fe_2O_3 @SiO₂ catalysts with low CO₂ selectivity. *Appl. Catal. B: Environ.* **2018**, 232, 420–428.

(79) Dalai, A. K.; Davis, B. H. Fischer–Tropsch synthesis: A review of water effects on the performances of unsupported and supported Co catalysts. *Appl. Catal. A: Gen.* **2008**, *348* (1), 1–15.

(80) Krishnamoorthy, S.; Tu, M.; Ojeda, M. P.; Pinna, D.; Iglesia, E. An investigation of the effects of water on rate and selectivity for the Fischer–Tropsch synthesis on cobalt-based catalysts. *J. Catal.* **2002**, *211* (2), 422–433.

(81) Li, J.; Jacobs, G.; Das, T.; Davis, B. H. Fischer–Tropsch synthesis: Effect of water on the catalytic properties of a ruthenium promoted Co/TiO₂ catalyst. *Appl. Catal. A: Gen.* **2002**, 233 (1), 255–262.

(82) Li, J.; Jacobs, G.; Das, T.; Zhang, Y.; Davis, B. Fischer–Tropsch synthesis: effect of water on the catalytic properties of a Co/SiO₂ catalyst. *Appl. Catal. A: Gen.* **2002**, 236 (1), 67–76.

(83) Rytter, E.; Tsakoumis, N. E.; Holmen, A. On the selectivity to higher hydrocarbons in Co-based Fischer–Tropsch synthesis. *Catal. Today* **2016**, *261*, 3–16.

(84) Bertole, C. J.; Mims, C. A.; Kiss, G. The effect of water on the cobalt-catalyzed Fischer–Tropsch synthesis. *J. Catal.* **2002**, *210* (1), 84–96.

(85) Bertole, C. J.; Mims, C. A.; Kiss, G. Support and rhenium effects on the intrinsic site activity and methane selectivity of cobalt Fischer–Tropsch catalysts. *J. Catal.* **2004**, *221* (1), 191–203.

(86) Fischer, N.; Clapham, B.; Feltes, T.; Claeys, M. Cobalt-based fischer-tropsch activity and selectivity as a function of crystallite size and water partial pressure. *ACS Catal.* **2015**, *5* (1), 113–121.

(87) Lögdberg, S.; Lualdi, M.; Järås, S.; Walmsley, J. C.; Blekkan, E. A.; Rytter, E.; Holmen, A. On the selectivity of cobalt-based Fischer– Tropsch catalysts: Evidence for a common precursor for methane and long-chain hydrocarbons. *J. Catal.* **2010**, *274* (1), 84–98.

(88) Okoye-Chine, C. G.; Moyo, M.; Liu, X.; Hildebrandt, D. A critical review of the impact of water on cobalt-based catalysts in Fischer–Tropsch synthesis. *Fuel Process. Technol.* **2019**, *192*, 105–129.

(89) Hibbitts, D. D.; Loveless, B. T.; Neurock, M.; Iglesia, E. Mechanistic role of water on the rate and selectivity of Fischer-Tropsch synthesis on ruthenium catalysts. *Angew. Chem., Int. Ed.* **2013**, 52 (47), 12273-8.

(90) Ojeda, M.; Nabar, R.; Nilekar, A. U.; Ishikawa, A.; Mavrikakis, M.; Iglesia, E. CO activation pathways and the mechanism of Fischer–Tropsch synthesis. *J. Catal.* **2010**, *272* (2), 287–297.

(91) Pendyala, V. R. R.; Jacobs, G.; Mohandas, J. C.; Luo, M.; Hamdeh, H. H.; Ji, Y.; Ribeiro, M. C.; Davis, B. H. Fischer–Tropsch synthesis: effect of water over iron-based catalysts. *Catal. Lett.* **2010**, *140* (3–4), 98–105.

(92) Karn, F.; Shultz, J.; Anderson, R. Kinetics of the fischer-tropsch synthesis on iron catalysts. III. Influence of water vapour. *Actes Congr. Int. Catal.* **1960**, *2*, 2439.

(93) Satterfield, C. N.; Hanlon, R. T.; Tung, S. E.; Zou, Z. M.; Papaefthymiou, G. C. Effect of water on the iron-catalyzed Fischer– Tropsch synthesis. *Ind. Eng. Chem. Prod. Res. Dev.* **1986**, 25 (3), 407– 414.

(94) Lin, T.; An, Y.; Yu, F.; Gong, K.; Yu, H.; Wang, C.; Sun, Y.; Zhong, L. Advances in selectivity control for fischer-tropsch synthesis to fuels and chemicals with high carbon efficiency. *ACS Catal.* **2022**, *12* (19), 12092–12112.

(95) Zheng, Q.; Williams, J.; van Thiel, L. R.; Elgersma, S. V.; Mantle, M. D.; Sederman, A. J.; Baart, T. A.; Bezemer, G. L.; Guédon, C. M.; Gladden, L. F. Operando magnetic resonance imaging of product distributions within the pores of catalyst pellets during Fischer–Tropsch synthesis. *Nat. Catal.* **2023**, *6* (2), 185–195.

(96) Xu, Y.; Liang, H.; Li, R.; Zhang, Z.; Qin, C.; Xu, D.; Fan, H.; Hou, B.; Wang, J.; Gu, X. K.; Ding, M. Insights into the diffusion behaviors of water over hydrophilic/hydrophobic catalysts during the conversion of syngas to high-quality gasoline. *Angew. Chem., Int. Ed.* **2023**, 62 (37), No. e202306786.

(97) Kamegawa, T.; Shimizu, Y.; Yamashita, H. Superhydrophobic surfaces with photocatalytic self-cleaning properties by nanocomposite coating of TiO_2 and polytetrafluoroethylene. *Adv. Mater.* **2012**, *24* (27), 3697–700.

(98) Deng, Z.-Y.; Wang, W.; Mao, L.-H.; Wang, C.-F.; Chen, S. Versatile superhydrophobic and photocatalytic films generated from TiO_2 -SiO₂@PDMS and their applications on fabrics. *J. Mater. Chem.* A **2014**, 2 (12), 4178–4184.

(99) Fang, W.; Wang, C.; Liu, Z.; Wang, L.; Liu, L.; Li, H.; Xu, S.; Zheng, A.; Qin, X.; Liu, L.; Xiao, F.-S. Physical mixing of a catalyst and a hydrophobic polymer promotes CO hydrogenation through dehydration. *Science* **2022**, *377* (6604), 406–410.

(100) Ding, M.; Xu, Y. Improving catalysis by moving water. *Science* **2022**, 377 (6604), 369–370.

(101) Porosoff, M. D.; Yan, B.; Chen, J. G. Catalytic reduction of CO_2 by H_2 for synthesis of CO, methanol and hydrocarbons: challenges and opportunities. *Energy Environ. Sci.* **2016**, *9* (1), 62–73.

(102) Ye, J.; Liu, C.-j.; Mei, D.; Ge, Q. Methanol synthesis from CO_2 hydrogenation over a Pd_4/In_2O_3 model catalyst: A combined DFT and kinetic study. *J. Catal.* **2014**, *317*, 44–53.

(103) Frei, M. S.; Capdevila-Cortada, M.; García-Muelas, R.; Mondelli, C.; López, N.; Stewart, J. A.; Curulla Ferré, D.; Pérez-Ramírez, J. Mechanism and microkinetics of methanol synthesis via CO₂ hydrogenation on indium oxide. *J. Catal.* 2018, 361, 313–321.
(104) Jung, K.-D.; Bell, A. T. Role of hydrogen spillover in methanol synthesis over Cu/ZrO₂. *J. Catal.* 2000, 193 (2), 207–223.

(105) Yang, Y.; Mims, C. A.; Disselkamp, R. S.; Kwak, J. H.; Peden, C. H. F.; Campbell, C. T. (Non)formation of methanol by direct hydrogenation of formate on copper catalysts. *J. Phys. Chem. C* 2010, *114* (40), 17205–17211.

(106) Yang, Y.; Mims, C. A.; Mei, D. H.; Peden, C. H. F.; Campbell, C. T. Mechanistic studies of methanol synthesis over Cu from CO/ $CO_2/H_2/H_2O$ mixtures: The source of C in methanol and the role of water. *J. Catal.* **2013**, 298, 10–17.

(107) Liu, L.; Yao, H.; Jiang, Z.; Fang, T. Theoretical study of methanol synthesis from CO_2 hydrogenation on $PdCu_3(111)$ surface. *Appl. Surf. Sci.* **2018**, 451, 333–345.

(108) Wu, W.; Wang, Y.; Luo, L.; Wang, M.; Li, Z.; Chen, Y.; Wang, Z.; Chai, J.; Cen, Z.; Shi, Y.; Zhao, J.; Zeng, J.; Li, H. CO_2 hydrogenation over copper/ZnO single-atom catalysts: waterpromoted transient synthesis of methanol. *Angew. Chem., Int. Ed.* **2022**, *61* (48), No. e202213024.

(109) Wang, J.; Zhang, G.; Zhu, J.; Zhang, X.; Ding, F.; Zhang, A.; Guo, X.; Song, C. CO_2 hydrogenation to methanol over In_2O_3 -based catalysts: from mechanism to catalyst development. *ACS Catal.* **2021**, *11* (3), 1406–1423.

(110) Jiang, X.; Nie, X.; Gong, Y.; Moran, C. M.; Wang, J.; Zhu, J.; Chang, H.; Guo, X.; Walton, K. S.; Song, C. A combined experimental and DFT study of H_2O effect on In_2O_3/ZrO_2 catalyst for CO_2 hydrogenation to methanol. *J. Catal.* **2020**, 383, 283–296.

(111) Tang, Q.-L.; Hong, Q.-J.; Liu, Z.-P. CO_2 fixation into methanol at Cu/ZrO_2 interface from first principles kinetic Monte Carlo. *J. Catal.* **2009**, 263 (1), 114–122.

(112) Rui, N.; Huang, E.; Kim, J.; Mehar, V.; Shi, R.; Rosales, R.; Tian, Y.; Hunt, A.; Waluyo, I.; Senanayake, S. D.; Liu, P.; Rodriguez, J. A. CO_2 hydrogenation to methanol over inverse $ZrO_2/Cu(111)$ catalysts: The fate of methoxy under dry and wet conditions. *J. Phys. Chem. C* **2022**, *126* (34), 14479–14486.

(113) Andersson, K.; Ketteler, G.; Bluhm, H.; Yamamoto, S.; Ogasawara, H.; Pettersson, L. G. M.; Salmeron, M.; Nilsson, A. Autocatalytic water dissociation on Cu(110) at near ambient conditions. J. Am. Chem. Soc. **2008**, 130 (9), 2793–2797.

(114) Xu, D.; Wu, P.; Yang, B. Essential role of water in the autocatalysis behavior of methanol synthesis from CO_2 hydrogenation on Cu: A combined DFT and microkinetic modeling study. *J. Phys. Chem.* C **2019**, *123* (14), 8959–8966.

(115) Wu, X.-K.; Xia, G.-J.; Huang, Z.; Rai, D. K.; Zhao, H.; Zhang, J.; Yun, J.; Wang, Y.-G. Mechanistic insight into the catalytically active phase of CO_2 hydrogenation on Cu/ZnO catalyst. *Appl. Surf. Sci.* **2020**, 525, 146481–146489.

(116) Peng, Y.; Wang, L.; Luo, Q.; Cao, Y.; Dai, Y.; Li, Z.; Li, H.; Zheng, X.; Yan, W.; Yang, J.; Zeng, J. Molecular-Level Insight into How Hydroxyl Groups Boost Catalytic Activity in CO_2 Hydrogenation into Methanol. *Chem.* **2018**, *4* (3), 613–625.

(117) Song, X.; Yang, C.; Li, X.; Wang, Z.; Pei, C.; Zhao, Z.-J.; Gong, J. On the role of hydroxyl groups on Cu/Al_2O_3 in CO_2 hydrogenation. ACS Catal. **2022**, 12 (22), 14162–14172.

(118) Sha, F.; Tang, S.; Tang, C.; Feng, Z.; Wang, J.; Li, C. The role of surface hydroxyls on ZnZrO solid solution catalyst in CO_2 hydrogenation to methanol. *Chin. J. Catal.* **2023**, 45, 162–173.

(119) Ye, R.-P.; Ding, J.; Gong, W.; Argyle, M. D.; Zhong, Q.; Wang, Y.; Russell, C. K.; Xu, Z.; Russell, A. G.; Li, Q.; Fan, M.; Yao, Y.-G. CO₂ hydrogenation to high-value products via heterogeneous catalysis. *Nat. Commun.* **2019**, *10* (1), 5698.

(120) Pan, Y.-x.; Liu, C.-j.; Ge, Q. Effect of surface hydroxyls on selective CO₂ hydrogenation over Ni_4/γ -Al₂O₃: A density functional theory study. *J. Catal.* **2010**, 272 (2), 227–234.

(121) He, Z.; Qian, Q.; Ma, J.; Meng, Q.; Zhou, H.; Song, J.; Liu, Z.; Han, B. Water-enhanced synthesis of higher alcohols from CO_2 hydrogenation over a Pt/ Co_3O_4 catalyst under milder conditions. *Angew. Chem., Int. Ed.* **2016**, *55* (2), 737–41.

(122) Yang, C.; Mu, R.; Wang, G.; Song, J.; Tian, H.; Zhao, Z. J.; Gong, J. Hydroxyl-mediated ethanol selectivity of CO2 hydrogenation. *Chem. Sci.* **2019**, *10* (11), 3161–3167.

(123) Kung, H. H. Deactivation of methanol synthesis catalysts-a review. *Catal. Today* **1992**, *11* (4), 443–453.

(124) Saito, M.; Fujitani, T.; Takeuchi, M.; Watanabe, T. Development of copper/zinc oxide-based multicomponent catalysts for methanol synthesis from carbon dioxide and hydrogen. *Appl. Catal. A: Gen.* **1996**, *138* (2), 311–318.

(125) Wu, J.; Saito, M.; Takeuchi, M.; Watanabe, T. The stability of Cu/ZnO-based catalysts in methanol synthesis from a CO₂-rich feed and from a CO-rich feed. *Appl. Catal. A: Gen.* **2001**, *218* (1–2), 235–240.

(126) Dang, S.; Qin, B.; Yang, Y.; Wang, H.; Cai, J.; Han, Y.; Li, S.; Gao, P.; Sun, Y. Rationally designed indium oxide catalysts for CO_2 hydrogenation to methanol with high activity and selectivity. *Sci. Adv.* **2020**, 6 (25), No. eaaz2060.

(127) De, S.; Dokania, A.; Ramirez, A.; Gascon, J. Advances in the design of heterogeneous catalysts and thermocatalytic processes for CO₂ utilization. *ACS Catal.* **2020**, *10* (23), 14147–14185.

(128) Li, K.; Chen, J. G. CO_2 Hydrogenation to Methanol over ZrO_2 -Containing Catalysts: Insights into ZrO_2 Induced Synergy. ACS *Catal.* **2019**, *9* (9), 7840–7861.

(129) Xu, D.; Wang, Y.; Ding, M.; Hong, X.; Liu, G.; Tsang, S. C. E. Advances in higher alcohol synthesis from CO2 hydrogenation. *Chem.* **2021**, 7 (4), 849–881.

(130) Groothaert, M. H.; Smeets, P. J.; Sels, B. F.; Jacobs, P. A.; Schoonheydt, R. A. selective oxidation of methane by the Bis(μ -oxo)dicopper core stabilized on ZSM-5 and mordenite zeolites. *J. Am. Chem. Soc.* **2005**, *127* (5), 1394–1395.

(131) Smeets, P. J.; Hadt, R. G.; Woertink, J. S.; Vanelderen, P.; Schoonheydt, R. A.; Sels, B. F.; Solomon, E. I. Oxygen precursor to the reactive intermediate in methanol synthesis by Cu-ZSM-5. *J. Am. Chem. Soc.* **2010**, *132* (42), 14736–14738.

(132) Li, G.; Vassilev, P.; Sanchez-Sanchez, M.; Lercher, J. A.; Hensen, E. J. M.; Pidko, E. A. Stability and reactivity of copper oxoclusters in ZSM-5 zeolite for selective methane oxidation to methanol. *J. Catal.* **2016**, 338, 305–312.

(133) Lustemberg, P. G.; Palomino, R. M.; Gutierrez, R. A.; Grinter, D. C.; Vorokhta, M.; Liu, Z.; Ramirez, P. J.; Matolin, V.; Ganduglia-Pirovano, M. V.; Senanayake, S. D.; Rodriguez, J. A. Direct conversion of methane to methanol on Ni-ceria surfaces: Metal-support interactions and water-enabled catalytic conversion by site blocking. *J. Am. Chem. Soc.* **2018**, *140* (24), 7681–7687.

(134) Sun, L.; Wang, Y.; Wang, C.; Xie, Z.; Guan, N.; Li, L. Waterinvolved methane-selective catalytic oxidation by dioxygen over copper zeolites. *Chem.* **2021**, 7 (6), 1557–1568. (135) He, M.; Zhang, J.; Sun, X.-L.; Chen, B.-H.; Wang, Y.-G. Theoretical study on methane oxidation catalyzed by Fe/ZSM-5: The significant role of water on binuclear iron active sites. *J. Phys. Chem. C* **2016**, *120* (48), 27422–27429.

(136) Yumura, T.; Hirose, Y.; Wakasugi, T.; Kuroda, Y.; Kobayashi, H. Roles of Water Molecules in Modulating the Reactivity of Dioxygen-Bound Cu-ZSM-5 toward Methane: A Theoretical Prediction. *ACS Catal.* **2016**, *6* (4), 2487–2495.

(137) Zuo, Z.; Ramirez, P. J.; Senanayake, S. D.; Liu, P.; Rodriguez, J. A. Low-temperature conversion of methane to methanol on $\text{CeO}_{x/}$ Cu₂O catalysts: water controlled activation of the C-H bond. *J. Am. Chem. Soc.* **2016**, 138 (42), 13810–13813.

(138) Sushkevich, V. L.; Palagin, D.; Ranocchiari, M.; van Bokhoven, J. A. Selective anaerobic oxidation of methane enables direct synthesis of methanol. *Science* **2017**, *356* (6337), 523–527.

(139) Koishybay, A.; Shantz, D. F. Water is the oxygen source for methanol produced in partial oxidation of methane in a flow reactor over Cu-SSZ-13. *J. Am. Chem. Soc.* **2020**, *142* (28), 11962–11966.

(140) Liu, Z. Y.; Huang, E. W.; Orozco, I.; Liao, W. J.; Palomino, R. M.; Rui, N.; Duchon, T.; Nemsak, S.; Grinter, D. C.; Mahapatra, M.; Liu, P.; Rodriguez, J. A.; Senanayake, S. D. Water-promoted interfacial pathways in methane oxidation to methanol on a CeO₂-Cu₂O catalyst. *Science* **2020**, *368* (6490), 513–517.

(141) Huang, E.; Orozco, I.; Ramirez, P. J.; Liu, Z.; Zhang, F.; Mahapatra, M.; Nemsak, S.; Senanayake, S. D.; Rodriguez, J. A.; Liu, P. Selective methane oxidation to methanol on ZnO/Cu₂O/Cu(111) catalysts: Multiple site-dependent Behaviors. *J. Am. Chem. Soc.* **2021**, *143* (45), 19018–19032.

(142) Ross, M. O.; MacMillan, F.; Wang, J.; Nisthal, A.; Lawton, T. J.; Olafson, B. D.; Mayo, S. L.; Rosenzweig, A. C.; Hoffman, B. M. Particulate methane monooxygenase contains only mononuclear copper centers. *Science* **2019**, *364* (6440), *566–570*.

(143) Snyder, B. E. R.; Vanelderen, P.; Bols, M. L.; Hallaert, S. D.; Böttger, L. H.; Ungur, L.; Pierloot, K.; Schoonheydt, R. A.; Sels, B. F.; Solomon, E. I. The active site of low-temperature methane hydroxylation in iron-containing zeolites. *Nature* **2016**, *536* (7616), 317–321.

(144) Sushkevich, V. L.; Palagin, D.; van Bokhoven, J. A. The effect of the active-site structure on the activity of copper mordenite in the aerobic and anaerobic conversion of methane into methanol. *Angew. Chem., Int. Ed.* **2018**, *57* (29), 8906–8910.

(145) Narsimhan, K.; Iyoki, K.; Dinh, K.; Roman-Leshkov, Y. Catalytic oxidation of methane into methanol over copper-exchanged zeolites with oxygen at low temperature. *ACS Cent. Sci.* **2016**, *2* (6), 424–429.

(146) Wismann, S. T.; Engbæk, J. S.; Vendelbo, S. B.; Bendixen, F. B.; Eriksen, W. L.; Aasberg-Petersen, K.; Frandsen, C.; Chorkendorff, I.; Mortensen, P. M. Electrified methane reforming: A compact approach to greener industrial hydrogen production. *Science* **2019**, 364 (6442), 756–759.

(147) Zhang, H.; Sun, Z.; Hu, Y. H. Steam reforming of methane: Current states of catalyst design and process upgrading. *Renew. Sust. Energy Rev.* **2021**, *149*, 111330.

(148) Wang, Y.; Xiao, L.; Qi, Y.; Yang, J.; Zhu, Y.-A.; Chen, D. Insight into Size- and Metal-Dependent Activity and the Mechanism for Steam Methane Re-forming in Nanocatalysis. *J. Phys. Chem. C* **2020**, *124* (4), 2501–2512.

(149) Berman, A.; Karn, R. K.; Epstein, M. Kinetics of steam reforming of methane on Ru/Al_2O_3 catalyst promoted with Mn oxides. *Appl. Catal. A: Gen.* **2005**, 282 (1–2), 73–83.

(150) Kechagiopoulos, P. N.; Angeli, S. D.; Lemonidou, A. A. Low temperature steam reforming of methane: A combined isotopic and microkinetic study. *Appl. Catal. B: Environ.* **2017**, *205*, 238–253.

(151) Roy, S.; Hariharan, S.; Tiwari, A. K. Pt-Ni subsurface alloy catalysts: An improved performance toward CH_4 dissociation. *J. Phys. Chem. C* **2018**, *122* (20), 10857–10870.

(152) Wei, J. M.; Iglesia, E. Structural and mechanistic requirements for methane activation and chemical conversion on supported iridium clusters. *Angew. Chem., Int. Ed.* **2004**, 43 (28), 3685–3688.

(153) Wei, J. M.; Iglesia, E. Reaction pathways and site requirements for the activation and chemical conversion of methane on Ru-based catalysts. *J. Phys. Chem. B* **2004**, *108* (22), 7253–7262.

(154) Wei, J. M.; Iglesia, E. Mechanism and site requirements for activation and chemical conversion of methane on supported Pt clusters and turnover rate comparisons among noble metals. *J. Phys. Chem. B* **2004**, *108* (13), 4094–4103.

(155) Niu, J. T.; Wang, Y. L.; Qi, Y. Y.; Dam, A. H.; Wang, H. M.; Zhu, Y. A.; Holmen, A.; Ran, J. Y.; Chen, D. New mechanism insights into methane steam reforming on Pt/Ni from DFT and experimental kinetic study. *Fuel* **2020**, *266*, 117143.

(156) Ke, C.; Lin, Z. Elementary reaction pathway study and a deduced macrokinetic model for the unified understanding of Nicatalyzed steam methane reforming. *React. Chem. Eng.* **2020**, *5* (5), 873–885.

(157) Wang, F. F.; Li, Y. J.; Wang, Y. Z.; Zhang, C. X.; Chu, L. Z.; Yang, L. G.; Fan, X. X. Mechanism insights into sorption enhanced methane steam reforming using Ni-doped CaO for H production by DFT study. *Fuel* **2022**, *319*, 123849.

(158) Wang, H.; Diao, Y.; Gao, Z.; Smith, K. J.; Guo, X.; Ma, D.; Shi, C. H₂ Production from Methane Reforming over Molybdenum Carbide Catalysts: From Surface Properties and Reaction Mechanism to Catalyst Development. *ACS Catal.* **2022**, *12* (24), 15501–15528.

(159) Matsumura, Y.; Nakamori, T. Steam reforming of methane over nickel catalysts at low reaction temperature. *Appl. Catal. A: Gen.* **2004**, 258 (1), 107–114.

(160) Vogt, C.; Kranenborg, J.; Monai, M.; Weckhuysen, B. M. Structure sensitivity in steam and dry methane reforming over nickel: Activity and carbon formation. *ACS Catal.* **2020**, *10* (2), 1428–1438.

(161) Wei, J. M.; Iglesia, E. Structural requirements and reaction pathways in methane activation and chemical conversion catalyzed by rhodium. *J. Catal.* **2004**, 225 (1), 116–127.

(162) Acha, E.; Requies, J.; Barrio, V. L.; Cambra, J. F.; Güemez, M. B.; Arias, P. L. Water effect in hydrogen production from methane. *Int. J. Hydrog. Energy* **2010**, 35 (20), 11525–11532.

(163) Fu, Z.; Liu, M.; Sun, Q.; Ma, D.; Yang, Z. Cooperative activation effect on H_2O adsorption in MnO-Co catalyzed steam methane reforming. *Phys. Lett. A* **2019**, 383 (12), 1357–1361.

(164) Duarte, R. B.; Olea, M.; Iro, E.; Sasaki, T.; Itako, K.; van Bokhoven, J. A. Transient Mechanistic Studies of Methane Steam Reforming over Ceria-Promoted Rh/Al₂O₃ Catalysts. *ChemCatChem.* **2014**, 6 (10), 2898–2903.

(165) Kho, E. T.; Scott, J.; Amal, R. Ni/TiO₂ for low temperature steam reforming of methane. *Chem. Eng. Sci.* **2016**, 140, 161–170.

(166) Peng, X.; Jin, Q. Molecular simulation of methane steam reforming reaction for hydrogen production. *Int. J. Hydrog. Energy* **2022**, 47 (12), 7569–7585.

(167) Zhang, X.; Yim, K.; Kim, J.; Wu, D.; Ha, S. Elucidating the promoting role of Mo_2C in methane activation using Ni-xMo2C/FAU to catalyze methane steam reforming. *Appl. Catal. B: Environ.* **2022**, 310, 121250–121260.

(168) Carrasco, J.; López-Durán, D.; Liu, Z.; Duchoň, T.; Evans, J.; Senanayake, S. D.; Crumlin, E. J.; Matolín, V.; Rodríguez, J. A.; Ganduglia-Pirovano, M. V. In situ and theoretical studies for the dissociation of water on an active Ni/CeO₂ catalyst: importance of strong metal-support interactions for the cleavage of O-H bonds. *Angew. Chem., Int. Ed.* **2015**, *54* (13), 3917–3921.

(169) Salcedo, A.; Lustemberg, P. G.; Rui, N.; Palomino, R. M.; Liu, Z.; Nemsak, S.; Senanayake, S. D.; Rodriguez, J. A.; Ganduglia-Pirovano, M. V.; Irigoyen, B. Reaction pathway for coke-free methane steam reforming on a Ni/CeO2 catalyst: active sites and the role of metal-support interactions. *ACS Catal.* **2021**, *11* (13), 8327–8337.

(170) Nikolla, E.; Holewinski, A.; Schwank, J.; Linic, S. Controlling carbon surface chemistry by alloying: carbon tolerant reforming catalyst. *J. Am. Chem. Soc.* **2006**, *128* (35), 11354–11355.

(171) Chen, L.; Qi, Z.; Peng, X.; Chen, J.-L.; Pao, C.-W.; Zhang, X.; Dun, C.; Young, M.; Prendergast, D.; Urban, J. J. Insights into the mechanism of methanol steam reforming tandem reaction over CeO₂ supported single-site catalysts. J. Am. Chem. Soc. 2021, 143 (31), 12074–12081.

(172) Mortola, V.; Damyanova, S.; Zanchet, D.; Bueno, J. Surface and structural features of Pt/CeO₂-La₂O₃-Al₂O₃ catalysts for partial oxidation and steam reforming of methane. *Appl. Catal. B: Environ.* **2011**, *107* (3–4), 221–236.

(173) Duarte, R.; Safonova, O.; Krumeich, F.; Makosch, M.; van Bokhoven, J. A. Oxidation state of Ce in CeO₂-promoted Rh/Al₂O₃ catalysts during methane steam reforming: H_2O activation and alumina stabilization. ACS Catal. **2013**, 3 (9), 1956–1964.

(174) Halabi, M.; De Croon, M.; Van Der Schaaf, J.; Cobden, P.; Schouten, J. Intrinsic kinetics of low temperature catalytic methanesteam reforming and water-gas shift over Rh/Ce_aZr_{1-a}O₂ catalyst. *Appl. Catal. A: Gen.* **2010**, 389 (1–2), 80–91.

(175) Halabi, M.; De Croon, M.; Van der Schaaf, J.; Cobden, P.; Schouten, J. Low temperature catalytic methane steam reforming over ceria-zirconia supported rhodium. *Appl. Catal. A: Gen.* **2010**, 389 (1– 2), 68–79.

(176) Farrell, B. L.; Igenegbai, V. O.; Linic, S. A Viewpoint on Direct Methane Conversion to Ethane and Ethylene Using Oxidative Coupling on Solid Catalysts. *ACS Catal.* **2016**, *6* (7), 4340–4346.

(177) Mesters, C. A Selection of Recent Advances in C1 Chemistry. *Annu. Rev. Chem. Biomol. Eng.* **2016**, *7*, 223–38.

(178) Takanabe, K.; Iglesia, E. Rate and selectivity enhancements mediated by OH radicals in the oxidative coupling of methane catalyzed by $Mn/Na_2WO_4/SiO_2$. Angew. Chem., Int. Ed. 2008, 47 (40), 7689–7693.

(179) Takanabe, K.; Iglesia, E. Mechanistic Aspects and reaction pathways for oxidative coupling of methane on $Mn/Na_2WO_4/SiO_2$ catalysts. J. Phys. Chem. C 2009, 113 (23), 10131–10145.

(180) Kiani, D.; Sourav, S.; Baltrusaitis, J.; Wachs, I. E. Oxidative Coupling of Methane (OCM) by SiO_2 -Supported Tungsten Oxide Catalysts Promoted with Mn and Na. ACS Catal. **2019**, 9 (7), 5912–5928.

(181) Lomonosov, V.; Gordienko, Y.; Sinev, M. Effect of water on methane and ethane oxidation in the conditions of oxidative coupling of methane over model Catalysts. *Top. Catal.* **2013**, *56* (18–20), 1858–1866.

(182) Aydin, Z.; Kondratenko, V. A.; Lund, H.; Bartling, S.; Kreyenschulte, C. R.; Linke, D.; Kondratenko, E. V. Revisiting activity- and selectivity-enhancing effects of water in the oxidative coupling of methane over MnO_x - Na_2WO_4/SiO_2 and proving for other materials. ACS Catal. **2020**, 10 (15), 8751–8764.

(183) Aydin, Z.; Zanina, A.; Kondratenko, V. A.; Rabeah, J.; Li, J.; Chen, J.; Li, Y.; Jiang, G.; Lund, H.; Bartling, S.; Linke, D.; Kondratenko, E. V. Effects of N₂O and Water on Activity and Selectivity in the Oxidative Coupling of Methane over Mn-Na₂WO₄/ SiO₂: Role of Oxygen Species. ACS Catal. **2022**, *12* (2), 1298–1309.

(184) Yuan, W.; Zhu, B.; Li, X.-Y.; Hansen, T. W.; Ou, Y.; Fang, K.; Yang, H.; Zhang, Z.; Wagner, J. B.; Gao, Y.; Wang, Y. Visualizing H_2O molecules reacting at TiO₂ active sites with transmission electron microscopy. *Science* **2020**, *367* (6476), 428–430.

(185) Fayer, M. D. Dynamics of water interacting with interfaces, molecules, and ions. *Acc. Chem. Res.* **2012**, *45* (1), 3–14.

(186) Graciani, J.; Grinter, D. C.; Ramírez, P. J.; Palomino, R. M.; Xu, F.; Waluyo, I.; Stacchiola, D.; Fdez Sanz, J.; Senanayake, S. D.; Rodriguez, J. A. Conversion of CO_2 to methanol and ethanol on Pt/ $CeO_x/TiO_2(110)$: enabling role of water in C-C bond formation. *ACS Catal.* **2022**, *12* (24), 15097–15109.

(187) Mu, R.; Zhao, Z.-j.; Dohnálek, Z.; Gong, J. Structural motifs of water on metal oxide surfaces. *Chem. Soc. Rev.* **2017**, *46* (7), 1785–1806.

(188) Shiotari, A.; Sugimoto, Y. Ultrahigh-resolution imaging of water networks by atomic force microscopy. *Nat. Commun.* **2017**, *8* (1), 14313.

(189) Qu, J.; Sui, M.; Li, R. Recent advances in in-situ transmission electron microscopy techniques for heterogeneous catalysis. *iScience* **2023**, *26* (7), 107072.

(190) Pakhare, D.; Spivey, J. A review of dry (CO_2) reforming of methane over noble metal catalysts. *Chem. Soc. Rev.* **2014**, 43 (22), 7813–7837.

(191) Salcedo, A.; Lustemberg, P. G.; Rui, N.; Palomino, R. M.; Liu, Z.; Nemsak, S.; Senanayake, S. D.; Rodriguez, J. A.; Ganduglia-Pirovano, M. V.; Irigoyen, B. Reaction pathway for coke-free methane steam reforming on a Ni/CeO₂ catalyst: Active Sites and the role of metal-support interactions. *ACS Catal.* **2021**, *11* (13), 8327–8337.

(192) Li, Z.; Qu, Y.; Wang, J.; Liu, H.; Li, M.; Miao, S.; Li, C. Highly selective conversion of carbon dioxide to aromatics over tandem catalysts. *Joule* **2019**, *3* (2), 570–583.

(193) Liu, S. L.; Ohnishi, R.; Ichikawa, M. Promotional role of water added to methane feed on catalytic performance in the methane dehydroaromatization reaction on Mo/HZSM-5 catalyst. *J. Catal.* **2003**, 220 (1), 57–65.

(194) Çağlayan, M.; Paioni, A. L.; Dereli, B.; Shterk, G.; Hita, I.; Abou-Hamad, E.; Pustovarenko, A.; Emwas, A.-H.; Dikhtiarenko, A.; Castaño, P.; Cavallo, L.; Baldus, M.; Chowdhury, A. D.; Gascon, J. Illuminating the Intrinsic effect of water co-feeding on methane dehydroaromatization: A comprehensive study. *ACS Catal.* **2021**, *11* (18), 11671–11684.

(195) Huang, W.; Johnston-Peck Aaron, C.; Wolter, T.; Yang Wei-Chang, D.; Xu, L.; Oh, J.; Reeves Benjamin, A.; Zhou, C.; Holtz Megan, E.; Herzing Andrew, A.; Lindenberg Aaron, M.; Mavrikakis, M.; Cargnello, M. Steam-created grain boundaries for methane C-H activation in palladium catalysts. *Science* **2021**, 373 (6562), 1518–1523.

(196) Polo-Garzon, F.; Bao, Z.; Zhang, X.; Huang, W.; Wu, Z. Surface Reconstructions of Metal Oxides and the Consequences on Catalytic Chemistry. *ACS Catal.* **2019**, *9* (6), 5692–5707.

(197) Zhu, J.; Wang, P.; Zhang, X. B.; Zhang, G. H.; Li, R. T.; Li, W. H.; Senftle, T. P.; Liu, W.; Wang, J. Y.; Wang, Y. L.; Zhang, A. F.; Fu, Q.; Song, C. S.; Guo, X. W. Dynamic structural evolution of iron catalysts involving competitive oxidation and carburization during CO_2 hydrogenation. *Sci. Adv.* **2022**, *8* (5), No. eabm3629.

(198) Wang, M.; Wang, P.; Zhang, G.; Cheng, Z.; Zhang, M.; Liu, Y.; Li, R.; Zhu, J.; Wang, J.; Bian, K.; Liu, Y.; Ding, F.; Senftle, T. P.; Nie, X.; Fu, Q.; Song, C.; Guo, X. Stabilizing Co₂C with H₂O and K promoter for CO₂ hydrogenation to C₂₊ hydrocarbons. *Sci. Adv.* **2023**, 9 (24), No. eadg0167.

(199) Li, H.; Jiao, Y.; Davey, K.; Qiao, S. Z. Data-driven machine learning for understanding surface structures of heterogeneous catalysts. *Angew. Chem.Int. Ed.* **2023**, *62* (9), No. e202216383.