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Machine learning integrated photocatalysis:
progress and challenges

Luyao Ge, Yuanzhen Ke and Xiaobo Li *

Discovering efficient photocatalysts has long been the goal of photocatalysis, which has traditionally

been driven by serendipitous or try-and-error strategies. Recent developments in photocatalysis

integrated with machine learning techniques promise to accelerate the discovery of photocatalysts, but

are also facing significant challenges. In this review, advances in machine learning integrated

photocatalysis are first presented from the perspective of three main photocatalytic processes: light

harvesting, charge generation and separation, and surface redox reactions. Next, progress in using

machine learning to understand complex photoactivity–structure relationships and identify the factors

governing activity follows. A future photocatalysis paradigm is then provided with the integration of arti-

ficial intelligence, robots and automation. Lastly, we discuss the current challenges in machine learning

integrated photocatalysis. This review aims to provide a systematic overview and guidelines to the broad

scientific community interested in photocatalysis and artificial intelligence for solar fuel synthesis.

1. Introduction

Nonrenewable energy resources, coal, oil and natural gas, are
becoming overexploited as society advances. The exhaustion of
nonrenewable energy resources is accompanied by the emission
of vast amounts of greenhouse and toxic gases, endangering
both the environment and human society. To address the energy
crisis and environmental issues, developing clean, renewable
energies has become a social priority. Solar energy is one of the
most abundant and renewable sources of energy.1 In 1972,
Honda and Fujishima discovered that water could split into H2

and O2 on the surface of TiO2 when exposed to ultraviolet light.2

This discovery opened the field of photocatalysis, a clean process
of converting solar energy into chemical energy in the presence
of semiconductor photocatalysts.3

Since the 1970s, photocatalysis reactions have been widely
developed, including water splitting,4–6 CO2 reduction,7–11 etc.
Nevertheless, the Solar-to-Chemical conversion efficiency is still less
than the required targets for practical application. For example,
only very few systems have exhibited Solar-to-Hydrogen (STH)
efficiencies exceeding 1%, and most reported systems have a
maximum STH of B0.1%.12 Photocatalysis is still in an early stage
of development in terms of efficiency and requires significant
advancements.

Designing and producing a photocatalytic system is a
significant challenge. It requires advanced knowledge and

synthetic methodologies, assembling photocatalytic units into
a device, accomplishing light-induced charge carrier genera-
tion/separation/migration, and chemical reaction of charge
carriers on the surface (i.e., water oxidation/reduction).13 His-
torically, the discovery of many significant breakthroughs in
the development of photocatalysts, such as TiO2, Ta3N5,
GaN:ZnO, Al:SrTiO3, carbon nitride, etc., was driven by seren-
dipitous or try-and-error methods,14–17 which are primarily
determined by probability: performing a large number of
experiments must increase the likelihood of an outcome.
However, an exhaustive search costs time and resources, so it
is impractical to synthesize and test every semiconductor
material.

Machine learning is a crucial area of artificial intelligence
that creates models and resolves challenging issues using a
data-driven methodology.18 Through the use of algorithms, the
models may ‘‘learn on their own,’’ identifying patterns in vast
volumes of data and applying those patterns to forecast future
samples. Also, it can manage large-scale data systems and
resolve multidimensional issues. Machine learning techniques
have already been successful in a number of scientific fields,
including functional materials,19–23 biology,24–26 catalysis,27–31

batteries32–34 and organic synthesis.35,36

Photocatalysis is by nature a multivariate problem, involving
a host of factors spanning multiple length scales, such as
bandgaps, thermodynamic driving forces, charge carrier mobi-
lity, reaction sites, surface areas and others. Thus, machine
learning techniques are acknowledged by the photocatalysis
community to supplement the research on this complex sys-
tem, with the main objective of generating predictive models
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and gaining physical insights: to allow for fast evaluation of
potential candidates or to understand the relationship between
structure and photoactivity.31,37

The advent of machine learning techniques offers the pro-
mise of accelerating the discovery of photocatalysts. By learning
a given amount of data sets and training them to create
machine learning models, machine learning is used to forecast
prospective photocatalysts. Moreover, machine learning can be
integrated with automation and robots to provide a future
research paradigm for photocatalysis research.38–42

The basics of photocatalysis have already been described in
great detail, and thus, they won’t be discussed here. This review
aims to present an overview of the machine learning integrated
research in photocatalysis (Fig. 1). Note that it does not cover the
work of applying machine learning in the photoelectrocatalysis
field43–47 and photocatalytic degradation.48–51 The advances are

first presented from a photocatalysis perspective, focusing on
three primary processes: light absorption, charge generation and
separation, and surface redox reaction. Then, progress in using
machine learning to understand the complex structure–photo-
activity relationship and gain insights into the governing factors
of activity follows. A future photocatalysis paradigm is then
provided with the integration of artificial intelligence, robots
and automation. Lastly, the challenges that machine learning
integrated photocatalysis face, such as data management
and descriptor engineering, are discussed. This review offers a
systematic overview and guidelines to the broad scientific com-
munity interested in photocatalysis and artificial intelligence for
solar fuel synthesis.

2. Machine learning integrated
photocatalysis
2.1 Light harvesting

The light harvesting of a photocatalyst determines the theore-
tical limit of its solar energy utilization efficiency.52 In the solar
spectrum, UV light accounts for 4% and visible light for 50%.
Therefore, it is essential to develop photocatalytic materials
that absorb visible light. In addition, the conduction band and
valence band positions determine the thermodynamic driving
force of carriers, respectively.

Bandgap values are mainly obtained from the UV-vis absorp-
tion spectrum. Recently a strategy has been developed to extract
bandgaps from material observation images without spectral
acquisition. Using a set of high throughput instruments, Stein
et al.53 constructed a sample space containing 178 994 distinct
materials. Variational autoencoders (VAE) were trained on this
large experimental dataset using convolutional and deep neural
networks, which allowed the prediction of the UV-Vis absorp-
tion spectra of the materials from the images (Fig. 2). A material
image autoencoder was then developed to enable bandgaps to
be extracted from predicted spectra instead of being calculated
by ab initio methods. Furthermore, the relationship between
material images and absorption spectra is used to create

Fig. 1 Schematic diagram of machine learning integrated photocatalysis.

Fig. 2 (a) Schematic visualization of the 3 types of learning models for optical properties of materials. (b) Reconstruction comparison from VAE and cVAE
of randomly selected images from the test set. There are 5 large columns of images separated by thick black lines, and within each of these the 4 columns
of data are the measured image, measured absorption spectrum, VAE reconstructed image, and cVAE-reconstructed image, respectively. Reprinted with
permission from ref. 53.
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predictive models for images of materials with specific light
absorption properties.

Double perovskite oxide A2BB0O6 has better stability than
ABO3-type oxide. Xinyang Wan et al.54 used a combination of
machine learning and first principles to facilitate rapid screening
of double perovskite oxide A2BB’O6 for overall photocatalytic water
splitting (Fig. 3). Around 2500 double perovskite oxides were
collected from multiple databases of perovskite materials, and
bandgaps were calculated with high throughput calculation. A
two-step modeling method, coupling with feature selection, was
employed to predict the bandgap. Nearly 8000 candidates with
proper bandgaps for water splitting are screened out from 56 894
A2BB0O6-type double perovskite oxides. Statistical analysis of the
results shows that double perovskite oxides containing d10 metal
ions at the B/B0position mostly met the bandgap requirements for
overall photocatalytic water splitting. The first-principles calcula-
tions further found that Sr2GaSbO6, Sr2InSbO6 and K2NbTaO6

have suitable edge positions for overall photocatalytic water
splitting.

TiO2 is a classical photocatalyst but can only absorb UV
light. Doping is widely applied to narrow the bandgaps of TiO2.
The lattice parameters and surface area are strongly correlated
with bandgap values, which are conventionally simulated and
studied through first-principal models, but these models require
significant computational resources. Yun Zhang et al.55 collected
experimental data of 60 doped-TiO2 photocatalysts from the
literature and developed a Gaussian process regression (GBR)
model to predict bandgaps of anatase TiO2. With the lattice
constant as the structural parameter and the surface area as the
morphological parameter, the GBR well reveals the relationship
between structural and morphological parameters and band-
gaps. It was further found that the model could be used for
bandgap prediction of undoped or doped-TiO2 synthesized by
different preparation processes.

Khmaissia et al.56 constructed a dataset containing atomic
and crystallographic data for ternary chalcopyrite semiconductors,
which are compounds that crystallize in the tetragonal form (ABC2

formula). Two extra descriptors, bond dissociation energy and
bond length, were added to the previously-developed machine

learning model for the predictions of chalcopyrite bandgaps.57,58

The original subset of 15 features was reduced to 7 features
using the sequential forward feature selection technique, and
the prediction accuracy was improved by approximately 40%.
Furthermore, the results show that the features associated with
the last two elements of chalcopyrite are more relevant to bandgap
prediction.

2.2 Photogenerated charge separation and migration

The photogenerated charges must separate and migrate to the
surface before they recombine. Thus, charge separation and
migration are critical for photocatalytic systems.

Reducing the migration distance of carriers to the surface
active site can significantly reduce the chances of charge
recombination. Thus, two-dimensional materials are potential
candidates as photocatalysts. Kumar et al.59 created a database
of 3099 two-dimensional octahedral materials (2DO) with phy-
sical properties calculated from first principles. The machine
learning model was constructed by considering compositional
and chemical hardness features. The SHapley Additive ExPla-
nations (SHAP) value analysis shows that the predicted highly
stable 2DO materials follow the Hard–Soft–Acid–Base (HSAB)
principle. A high throughput screening of the database, under
criteria such as stability, bandgap and standard redox poten-
tials, yielded 21 potential 2DO materials for overall photocata-
lytic water splitting (Fig. 4).

Hao Jin et al.60 developed an efficient method for predicting
2D multicomponent photocatalysts using machine learning
techniques. Two machine learning models were developed to
predict bandgap and band edge positions of 2D photocatalysts,
respectively. From more than 4000 2D materials, 75 multi-
component photocatalytic candidates that meet the conditions
for photocatalytic water splitting were selected (Fig. 5). It was
found that the multinary compounds A2P2X6 and ABP2X6 with A =
Cu/Zn/Ge/Ag/Cd, B = Ga/In/Bi and X = S/Xe have proper bandgap
and band edge positions, making them promising photocatalyst
candidates.

Doping is another effective strategy for tuning charge separation
efficiency in metal oxide-based semiconductors. Despite decades of

Fig. 3 Multistep machine learning-based screening framework for double perovskite oxides. There are four steps including data collection, feature
selection, machine learning process and DFT verification. Reprinted with permission from ref. 54.
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extensive research, the dopant selection largely depends on a trial-
and-error approach. Zhiliang Wang et al.61 used machine learning
techniques to guide the doping of metal oxides in solar-driven
photoelectrochemical water splitting (Fig. 6). Using Fe2O3 photo-
anodes as an example, the photochemical properties of Fe2O3 with
different doping concentrations of 17 doping elements were experi-
mentally determined, and a database containing more than 700
data points was composed. The photocurrent density measured in
H2O2/NaOH solution was predicted for the charge separation and

transfer (CST) of the semiconductor. In terms of jH2O2
, the CST of

Zr- and Pt-doped Fe2O3 is significantly improved compared to pure
Fe2O3. Furthermore, the results show that the high dopant con-
centrations hinder the CST process. The chemical state, ionic
radius, and metal–oxygen bond formation enthalpy were found
to have the most significant influence on the CST performance by
SHAP analysis. Therefore, the dopant selection with high M–O
bond formation enthalpy and large ionic radius difference is
favorable to promote charge separation. In addition, the dopant

Fig. 4 (a) Schematic of the workflow for machine learning applied in the study. (b) The high-throughput scheme utilized in the current study for
screening stable 2DO photocatalysts. Reprinted with permission from ref. 59.

Fig. 5 Schematic diagram to illustrate the search procedure for 2D photocatalytic materials. Reprinted with permission from ref. 60.
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selection criteria derived from machine learning can be extended to
CuO-based photoelectrodes, showing the generality of the model.

2.3 Surface redox reaction

The redox reaction on the photocatalyst surface is the final step
in the photocatalytic process. However, the surface reaction
(i.e., water oxidation) is associated with multiple electron
transfers, suffering high overpotential and sluggish kinetics.62

Hao Yuan63 et al. used machine learning algorithms to
discover new descriptors for predicting the activity of the
double-doped system CsPbBr3–CsPbCl3 heterostructures for
photocatalytic water splitting. The binding energy between
the doped atom and the vacancy was calculated to assess the
stability of the doping. Seven metal ions (Ti, V, Cr, Mn, Fe, Co
and Ni) were used as dopant metal ions. A total of 49 systems
were combined to study the results, showing that some calcium
ion systems were unstable and had positive binding energies.
Calculations of the HER and OER catalytic process were carried
out for the remaining 36 systems, and the best candidate was
selected as the CsPbBr3:Ni–CsPbCl3:Co system with a bandgap
value of 2.26 eV and a high light absorption coefficient. Using

the LASSO method, a descriptor x ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XA

XB
þ XA

S

r

VA

XA
þ XA

S

consisting of

Fig. 6 The schematic illustration of the machine learning guided dopant
selection towards an efficient PEC process. Reprinted with permission
from ref. 61.

Fig. 7 (a) Schematic of the workflow for machine learning applied in the study. (b) Properties used to train the gradient-boosting model, where
ionization potential (IP), electron affinity (EA), and optical gap are calculated, and transmittance is measured experimentally. (c) Experimentally observed
HER vs HER predicted using a gradient-boosted trees machine-learning model. The model is evaluated by leave-one-out cross validation, meaning the
data shown are for copolymers not considered during training. Reprinted with permission from ref. 64.
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electronegativity (X), valence electron number (V) and surface
indicator (S) was discovered. The results show that the descrip-
tor has a linear relationship with the overpotential of the OER,
which provides a guide for designing photocatalysts.

2.4 Structure–activity relationship

Developing structure–property relationships for photocatalysts
can predict performance or provide insights into photocatalyst
design. However, photocatalyst structure–property relationships
are multivariate and complex, making extracting patterns and
building prediction models challenging. The Cooper group at The
University of Liverpool pioneered machine learning to learn the
complex structure–property relationships in photocatalysis.64,65

Conjugated polymers are an emerging class of hydrogen
producing photocatalysts. Yang Bai et al.64 developed a sub-
library of over 170 copolymers selected from 6354 copolymers

using a combination of high throughput experiments and
theoretical calculation. By comparing the experimental and
predicted hydrogen evolution rates, the activity of the copolymers
was found to be related to the calculated electronic properties (the
electron affinity, the ionization potential, and the optical gap) of
the polymer and the dispersion of the polymer in the reaction
mixture. This relationship was coded into the machine learning
model, which was found to explain up to 68% of the variation in
the HER between polymers (Fig. 7).

Xiaobo Li et al.65 collected a library of 572 aromatic organic
molecules with diverse compositions and structures, obtaining
a comparable dataset consisting of 572 photocatalytic hydrogen
evolution data points (Fig. 8). Unsupervised learning and
supervised classification reveal the structural features and
optoelectronic properties that positively impact the activity of
these molecular photocatalysts for hydrogen production, which

Fig. 8 Schematic of the workflow in the study. Virtual experiments and blind tests. (a) and (b) Virtual experiments comparing an adaptive machine
learning approach with random sampling: the 572 molecules were encoded by the molecular descriptors and trained with machine learning P models (a)
or encoded by the SOAP descriptors and trained with KNN models (b). (c)–(f) Blind tests of the machine learning models trained on the 572 molecules
(referred to as the 572-molecule library) for 96 unseen molecules (referred to as the blind-test set). (c) 2D UMAP embedding of the chemical space
(encoded by SOAP) of the 572-molecule library (in blue) and the blind-test set (in red); the symbol size is scaled by the experimentally measure HER.
(d) Percentages (in red) of the active samples (HERs 4 1.07 mmol h�1) in the 572-molecule library and the blind-test set. (e) and (f) Confusion matrices for
the predictions of the blind-test set by models based on the MD + machine learning P protocol (e) or the SOAP + KNN protocol (f), both trained on the
572-molecule library. Reprinted with permission from ref. 65.

Highlight ChemComm

Pu
bl

is
he

d 
on

 1
7 

A
pr

il 
20

23
. D

ow
nl

oa
de

d 
by

 I
nd

ia
n 

In
st

itu
te

 o
f 

T
ec

hn
ol

og
y 

C
he

nn
ai

 o
n 

2/
1/

20
24

 3
:1

6:
46

 A
M

. 
View Article Online

https://doi.org/10.1039/d3cc00989k


This journal is © The Royal Society of Chemistry 2023 Chem. Commun., 2023, 59, 5795–5806 |  5801

also allowed some physical interpretations: for example, the
formation of triplet excitons seems to have a beneficial effect.
Virtual experiments show that an adaptive machine learning-
assisted selection approach outperforms random sampling,
significantly reducing the experimental cost of identifying the
active photocatalysts in the library. A further evaluation of
the trained machine learning advisor on a blind test set of
96 molecules confirmed its potential in assisting the discovery
of new molecular photocatalysts.

Yuzhi Xu et al.66 used machine learning techniques to achieve
hydrogen evolution prediction of alternating conjugated copoly-
mers. 157 organic conjugated polymers with existing HER data
were collected from the literature, and their electronic property
composition descriptors were calculated by DFT and used to train
the model (Fig. 9). Two types of multidimension fragmentation
descriptors were developed, of which the structure-based multi-
dimension fragmentation descriptor helped to achieve high accu-
racy in electronic property prediction. In addition, a machine
learning model trained on an electronic property-based multi-
dimension fragmentation descriptor was developed to predict the
HER with a measured accuracy = 0.91. Lastly, the machine
learning technique was combined with high-throughput comput-
ing to discover a new copolymer material with high photocatalytic
properties using a virtual generator.

Conjugated polyelectrolytes (CPEs) are versatile organic
materials with diverse applications. Yangyang Wan et al.67

constructed a first-principles database of CPEs by combining
machine learning with high-throughput first-principles calcu-
lations to establish structure–property relationships for CPE

materials. It is shown that the HOMO/LUMO front orbitals and
bandgap of CPE materials are related to the electrostatic
interactions between the ionic group and the counter ion on
the CPE backbone. Machine learning reveals that bandgap depends
primarily on the backbone, especially in relation to HOMOD and
LUMOA.

Elemental doping of graphite-phase carbon nitride can
significantly increase its photocatalytic activity. A machine
learning model was developed by Liqing Yan et al.68 for explor-
ing the effect of elemental doping on the rate of photocatalytic
hydrogen production. The database was built from published
research papers on photocatalytic H2 generation using D-g-
C3N4 as a photocatalyst. H2 evolution rate was selected as the
output, while experimental conditions were used as inputs for
machine learning model training. The synthesis parameters of
the material, the properties of the material and the conditions
of H2 production were used as features to fit the rate of H2

production. Using the SHAP technique, it was found that the
synthesis conditions of the material (type of dopant, type of
precursor, method of synthesis) were the main factors affecting
the rate of hydrogen production. The data were grouped
according to the type of non-metal doped elements and it was
found that the machine learning predictions matched the
experimental results, except for the O elements. Among them,
P element doping resulted in the highest average hydrogen
production rate and the largest SHAP value for D-g-C3N4,
making it the best candidate for D-g-C3N4 doping (Fig. 10).

Copper-based semiconductors, i.e., Cu2O, have excellent cat-
alytic performance in photocatalytic CO2 reduction reactions,

Fig. 9 Schematic of the workflow in the study. (a) Diagram representing the photocatalytic HER (S response to the sacrificial reagent). (b) Schematic of
the energy level of the fragmentations in A–B alternating copolymers and selected energy level difference. (c) Sum of top 10 important descriptors in
EPMDFD selected by three DT-based classifier models. Reprinted with permission from ref. 66.
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but our understanding of the intrinsic link between structure
and properties is unclear. A data-driven approach to predicting
the rate of photocatalytic reduction of CO2 to methanol conver-
sion on Cu2O was modelled by Voleti et al.69 to gain insight into
the structure–operation–property relationship. 505 data points
were extracted from 68 papers by data mining to develop
machine learning models. Five machine learning models were
tested for statistical performance, and GBRT (tree-based models)
was found to be the best model for predicting the rate of
methanol production from CO2 conversion. Furthermore, it was

found that the active metal component and the light source were
the experimental conditions that contributed most to the pre-
dicted rate model.

Mageed70 compared a variety of machine learning models
for photocatalytic hydrogen production from ethanol over
copper oxide nanoparticles. Among them, LMNN (Levenberg–
Marquardt neural networks) had the highest R value of 0.998.
The importance of the input parameters was analyzed using the
Garson algorithm, with irradiation time and CuO content
having the most significant effect on hydrogen production.

Fig. 10 Experimental H2 production rate (a) and SHAP value (b) grouped by doping element. Reprinted with permission from ref. 68.

Fig. 11 Laboratory space used for the autonomous experiments. (a) Plot showing hydrogen evolution achieved per experiment in an autonomous
search that extended over 8 days. (b) Radar plot showing the evolution of the average sampling of the search space in milliliters; the scale denotes the
fraction of maximum solution volume dispensed. Reprinted with permission from ref. 38.
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3. Autonomous discovery in
photocatalysis

Chemistry experiments are tedious, involving repetitive solid
measuring, liquid dispersing etc. Embracing automation in
the chemistry lab can significantly reduce the repetitive work.
Apart from saving time, reliability, productivity and safety in
the chemistry lab could also be potentially improved. The
combination of automation with AI presents new opportunities
in chemical research. In photocatalysis, Cooper et al.38 exemplify
this with the autonomous discovery of improved photocatalysts
for hydrogen generation (Fig. 11). The robotic chemist is able to
transport the vials between different functional stations to
complete tasks, including solid and liquid component disper-
sion, capping under certain atmospheres, photolysis and gas
chromatography measurement. With built-in Bayesian optimiza-
tion into a mobile robotic workflow, the robotic chemist can
autonomously navigate the ten-dimensional space, finding the
optimized reaction conditions for hydrogen evolution. The robot
operates them in essentially the same way that a human
researcher would. And more modules could be added depending
on the research tasks.

Later, groups in USTC built an all-round AI-Chemist that
included a machine reading module to capture existing chemical
knowledge by automatically reading massive chemical literature,
a mobile robot module to produce experimental data by execut-
ing various chemical experiments, and a computational brain
module to generate physics/theory-based predictive models by
carrying out theoretical calculations (Fig. 12).39 The competence
of the AI-Chemist has been scrutinized by three different
chemical tasks, including photocatalytic degradation of rhoda-
mine B (RhB). The equipped computational brain could bias
searches towards components that are more likely to yield the

desired property. This will be important for search spaces with
even larger numbers of components where purely combinatorial
approaches may become inefficient.

4. Challenges and outlook

Machine learning has emerged to make it more efficient to discover
high-performance photocatalysts and to understand the complex
structure–activity relationship. It allows the researcher to consider a
much broader chemical space than we have contemplated so far
and points out important parameters to consider while designing
photocatalytic systems. However, several questions remain to be
addressed. How big of a dataset is required for machine learning to
recognize the structure–property pattern? This is somehow up to
the size and diversity of the chemical space defined. For chemical
space with constraints on structure and functions, as exemplified
in the polymer photocatalysts case,64 the size of the dataset may not
need to be substantial to achieve a moderate performance of
machine learning, but the generality of the model to other kinds
of photocatalyst would be limited. In the case of molecular
photocatalysts,65 apart from aromaticity and availability, no other
prior knowledge about the desirable properties of the candidate
photocatalysts was applied in the library selection, thus minimizing
prior chemical knowledge from skewing the structure–activity
correlation. The generality of the generated model performance is
expected to be better. However, as a result of this broad selection
approach, the model performance is deemed to be modest due to
the limited size and unbalanced data structure (low activity data
dominates) in the dataset. Apparently, it needs more extensive and
larger standardized datasets to have a chance of learning the
underlying structure–property rules. For photocatalytic overall
water splitting systems, the developed photocatalysts are limited

Fig. 12 The workflow of the AI-Chemist and the functions of each module. Reprinted with permission from ref. 39.
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and sparse in many different types of materials, so collecting
extensive and qualified data would be a big challenge. To compli-
cate things further, small changes in experimental parameters such
as temperature, pressure and light duration or wavelength can
cause large fluctuations in catalytic performance: as such, notwith-
standing the surge of interest and publications in this area, the lack
of experimental standardisation between laboratories makes it
challenging to implement data-mining approaches across a large
number of different studies. We can envisage that this may only be
realized with a collective effort from the whole community. Some-
how, sharing the samples and data in the community is necessary.

Another question is, ‘‘what kind of knowledge patterns can
be gained from machine learning?’’. It is well recognized that
the nature of catalysis is complex, as many of the catalytic
processes involve multiple steps and dynamic active sites;
many experimental researchers in the field of photocatalysis
(or heterogeneous catalysis) are skeptical about whether
current machine learning techniques can extract knowledge
patterns while the mechanism of the (photo)catalysis is not
yet clear. Note that in homogeneous-based catalysis with
defined active sites, machine learning is more adopted with
success.71–77 In the photovoltaic area, where more standardiza-
tion of the test system is adopted, machine learning has also
shown potential.78–81 Therefore, to extract meaningful knowl-
edge patterns from photocatalysis with machine learning,
besides the data requirements stated above, looking for
descriptors describing the primary steps of photocatalysis is
essential too. For example, photo-induced charge transfer from
a photocatalyst to catalytic surface sites is key in ensuring
photocatalytic efficiency. However, descriptors describing the
charge-transfer, surface redox reaction on cocatalysts, etc., are
associated with solid states or defects, which are challenging
to measure experimentally or computationally. Recently, Can
Li et al. demonstrated that quasi-ballistic inter-facet electron
transfer and spatially selective trapping are the dominant processes
that facilitate efficient charge separation in photocatalysis.82 To
improve the performance of machine learning, descriptors related
to anisotropic facets and defect structures could be considered.

As machine learning techniques continue to advance,
models developed are increasingly difficult to interpret and
are often used as black box models. How to interpret the
models is still a tough issue. Understanding the logic behind
prediction and suggestion made by the model can provide
insights for the design of next-generation photocatalysts. The
more interpretable the models are, the easier for the research
community to adopt the approach and trust the model. Also, it
is worth noting that overfitting is a common problem in
machine learning: the model performs well on training data
but can’t generalize with unseen data. Techniques, such as
train/test split, feature selection, and cross-validation, are
recommended to prevent overfitting.

The exploration of photocatalysts is to search for photo-
catalysts with desirable properties. Analogous to the natural
photosynthesis system, the long search for photocatalysts will
most likely be a complex system containing components
whereby each contributes to the required functions such as

light absorption, charge transfer and surface redox reactions.
The complex and multivariate relationship between photocata-
lysts and performance points to the fact that the desirable
properties must be discrete and intersect with each other.
As such, there is great value in considering machine learning
to deconvolute the multidimensional dataset to accelerate the
search of the photocatalyst.83 The examples picked up in this
review demonstrate that the exploration of photocatalysts led
by machine learning is a promising new approach to accelerate
the discovery of photocatalysts.

Perhaps the most significant barrier to adopting this strat-
egy in solar fuel synthesis is the collection of big standardized
data. This challenge pushes researchers in photocatalysis to
rethink the value of data generated in the laboratory and the
use of data. For example, the ‘‘negative’’ data, deliberately
skewed from publication and buried in the paper notebook,
are valuable for machine learning,84 and the essential nature of
reporting standardized data.85 Another barrier is engineering
descriptors describing the primary process of photocatalysis.

In conclusion, this does not mean the expert knowledge of
chemists has been less critical in developing photocatalysts.
It needs chemists to define the chemical space and rules of
exploration by choosing search algorithms and approaches.
The use of machine learning is to allow the chemist to go
beyond their bias and allow them to consider a much bigger
chemical space, go into the unknown for the exploration of
photocatalysts, and have a systematical view into the complex
structure–activity relationship. By integrating machine learning
with automation and robots, autonomous discovery of photo-
catalysts in the future could be envisioned. Indeed, we can hope
that, along with machine learning, it will catalyze several future
photocatalyst discoveries.
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