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Chapter 1

Fundamentals of photoelectrochemical
water splitting

Jih-Hsing Chang, Mohanraj Kumar and Shan-Yi Shen

Due to the storage restrictions of fossil fuels and petroleum and excessive carbon
dioxide emissions after combustion, the search for alternatives to traditional fuels
has been studied for many years. In recent years, the use of hydrogen as a fuel has
received widespread attention. Photoelectrochemical (PEC) water splitting is a high-
potential technology and has become an important production method that can be
used to produce sustainable, renewable, low cost, and high-efficiency clean energy-
hydrogen fuel. However, PEC water splitting still faces limitations and challenges
such as limited solar energy absorption, rapid carrier recombination, and a lower
rate of charge separation. This chapter introduces the principle and process of PEC
water splitting and novel photoanode materials to overcome PEC application
challenges and problems, such as photocurrent generation and hydrogen evolution
efficiency. Simultaneously, we review the latest development of various technologies
and methods of PEC water splitting.

1.1 Introduction
The rapid growth of industrialization and urbanization not only requires more
energy supply but also generates more environmental pollution. Energy consump-
tion and environmental pollution are the main issues encountered by human beings.
In order to meet the demand for power generation, finding new energy and storage
methods is an important direction of current research, and the main goal is to
produce low-cost, clean, and abundant energy. In recent years, the impact of carbon
dioxide emissions on climate change has received more attention. Storage of
traditional chemical fuels is not easy, only unlimited renewable energy such as solar
energy converted into other forms of energy can be stored to meet the demand for
power supply. According to US reports, if the pollution trend continues, we will face
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global warming of 1.5°C from 2030 to 2052, which will have serious impacts on the
environment such as rising temperatures in the land and oceans, droughts, extreme
heatwaves, rainstorms, and ecosystems destroyed. In order to curb the impact of
global warming, it is necessary to reduce emissions by 2030 to about half what they
were in 2010, and achieve zero net emissions by 2050 in order to effectively achieve
the goal of reducing greenhouse gas emissions. Among these strategies, the energy
sector is the most important part, which can effectively improve the impact caused
by traditional fossil fuels. Therefore, when renewable energy can provide about
70%–85% of electricity, this goal can be effectively achieved.

Solar energy is an unlimited, clean and low-cost renewable energy source. It is
widely recognized due to its operation without noise, toxicity, and greenhouse gas
emissions [1–5]. The total amount of solar power irradiated in the Earth is
approximately 120 000 terawatt each year, and the energy consumption of tradi-
tional fuels can be replaced by solar energy that absorbs less than 1% of the annual
radiation. It has the characteristic of being inexhaustible. By 2040, solar energy and
wind energy will account for more than 2/3 of all renewable energy, and the power
generation will increase from 13% to 18% [6]. A clean energy technology will help us
efficiently and economically use solar energy to generate, convert and store
electricity. In order to effectively complete this process, an environmentally friendly
photoelectrochemical cell (PEC) should be created. It is composed of suitable and
stable semiconductor materials, and an appropriate PEC reaction occurs at the
interface between the semiconductor and the solution [7]. The PEC hydrolysis driven
by visible light produces oxygen and hydrogen fuels and converts them into
electricity, and this has become an important direction for the development of clean
energy. During the reaction process of the PEC cell, the oxygen evolution reaction
(OER) and the hydrogen evolution reaction (HER) can be obtained simultaneously,
as shown in figure 1.1. The O2 oxidation reaction (2H2O→ 4H++ O2 + 4e−) occurs
at the photoanode; the H2reduction reaction (2H++ 2e−→H2) occurs at the cathode.
More researches have been made on hydrogen to replace fossil fuel resources.
Hydrogen provides a way to store electrical energy, and the production and
consumption with zero carbon emissions, which can reduce carbon dioxide

Figure 1.1. Scheme of a basic photoelectrochemical cell.
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emissions to protect the environment. The production of hydrogen is highly efficient
and promising in the foreground among renewable resources [8–10]. The specific
energy of hydrogen (J kg−1or m2s−2) is three times that of gasoline, with water and
energy as the products after combustion, so it can be seen as a clean and sustainable
fuel [11].

Semiconductor materials can naturally absorb the solar spectral region for a
water splitting reaction, but the oxygen evolution reaction is kinetic and thermody-
namically challenging, and the photoanode material will be destroyed by an
oxidation reaction [16]. Meanwhile, the semiconductor materials are selective in
absorbing light, which limits the use of the solar spectrum. Therefore, it is an
important key to select suitable semiconductor materials to absorb solar energy and
transfer it into some useful energy sources. The electron energy gap of the
semiconductor material is consistent with the redox potential of water, which is a
crucial key to water splitting. Figure 1.2 shows the comparison of the band gap in
different semiconductors and the redox potential in the water. The positions of the
band gap, conduction band (CB), and valence band (VB) of most semiconductors
are not suitable for water splitting [12–14]. Among many semiconductors, TiO2has
characteristics of low cost, non-toxicity, self-cleaning, ease of operation, strong
photocatalytic activity, and anti-light corrosion stability, and it has become the main
material for PEC water splitting [15–17]. Moreover, the positions of the CB and the
VB of TiO2are consistent with redox potential of water, making TiO2a
suitable material for water splitting. However, the wide energy gap (3.0–3.2 eV)
of TiO2 only absorbs ultraviolet light and the high recombination rate of electron/
hole pairs reduces the degrade efficiency of TiO2 in water splitting. Therefore, a low

Figure 1.2. The energy gap of different semiconductor materials.
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energy gap material and changing the position of the TiO2 CB or VB will be
necessary to effectively improve the photocatalytic efficiency. Further, to improve
the migration of photo-generated charge carriers, various surface modification
techniques can be used to improve the performance of water splitting under visible
light irradiation [18, 19].

This chapter provides an important overview of PEC water splitting, including
the basic principles and applications of PEC hydrogen production. First, we
introduce the mechanism and process of PEC water splitting, and then discuss
semiconductor materials suitable for hotoelectrochemical reactions and compare
their performance. Finally, the possible influencing factors for PEC water splitting
are proposed and its future applicability is evaluated.

1.2 Basis of PEC water splitting
In recent years, Osterloh proposed a classification dependent on reaction
thermodynamics, and the thermodynamically advantageous system is considered
to be photocatalysis (PC). In this system, photons can increase the reaction rate of
favorable reactions. In contrast to PC, the disadvantageous system in which the
free energy generated by thermodynamics is higher than the reactant is called
photosynthesis (PS) [20]. For the photosynthetic system, the reverse reaction is
thermodynamically advantageous, hence one must prevent the reverse reaction
from occurring during the separation of the reaction products. The products of
the water splitting (WS) process are hydrogen and oxygen. Figure 1.3 shows three
main processes: (1) The excitation of electrons in the photocatalyst valence band
generates charge carriers (electron–hole pairs) through photon absorption, lead-
ing to charge carriers entering the conduction band. The distance between the

Figure 1.3. Overview of the WS process.
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valence band and conduction band is called the band gap, i.e., Eg, which
represents the minimum energy required for photon-induced electron excitation.
(2) Unless there is a driving force like an electric field or e−and h+scavenger that
hinders natural decay, the separation of charge carriers will recombine. Make the
charge carriers migrate to space areas where an electrochemical reaction will
occur. (3) The water is oxidized (OER) by holes on the catalyst surface, while
electrons drive the reduction of water (HER) [11].

1.2.1 Principle of PEC water splitting

Among the current renewable energy sources, hydrogen produced through WS is
very important. Figure 1.4 is a schematic diagram of the basic principle of
photoexcited electron–hole pairs. When the semiconductor absorbs energy more
than the band gap, electrons in VB are excited and leave holes. However, the photo-
generated e−and h+have not effectively separated, which leads to their recombina-
tion immediately and the release of photons or heat energy. Therefore, charge
separation is a key factor in any photocatalytic activity. If the charges are
successfully separated, they will migrate to the semiconductor surface and partic-
ipate in oxidation and reduction. Under standard conditions, the free energy change
of a molecule of H2O into H2 and 1/2 O2 is ΔG = 237.2 kJ mol−1. According to the
Nernst equation, each electron transmitted is ΔE = 1.23 V. The relationship between
eV energy and λ (wavelength) nm can be expressed by energy (eV) = 1240 λ−1(nm).
Therefore, the semiconductor must receive the energy of more than 1.23 eV (light
wavelength at 1008 nm), and convert that energy into H2 and O2, as shown in
figure 1.5.

To complete WS without providing additional energy, the bottom of the CB
should be located at a position that is more negative than the reduction potential of
H+ to H2 (relative to the normal hydrogen electrode (NHE) at 0 V when the pH is 0).
The top of the VB should be at a more positive position than the oxidation potential
of H2O to O2 (1.23 V versus NHE). NHE is a redox electrode dependent on a redox
half-cell 2H+(aq)+ 2e−→ H2(g), that is, the potential of a platinum electrode under
1 N acid solution. Therefore, the difference between the two reduction potentials is
that the minimum photon energy required for driving the thermodynamics reaction
is 1.23 eV, which belongs to the visible light spectral range in the near-infrared
region. Since there is an activation barrier between photocatalyst and water

Figure 1.4. Principle of overall WS on photocatalyst of heterogeneous semiconductor.
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molecule during the charge transfer process, the photon energy is required to be
larger than the band gap of the photocatalyst for driving the entire WS reaction. In
addition, the thickness of the photocatalyst is also key. When the diffusion length of
charge carriers is less than the thickness of the photocatalyst, the recombination
reaction of charge carriers may occur before they reach the semiconductor surface

The PEC process uses a photocatalyst to catalyze the WS reaction to separate
water into O2 and H2. The water splitting reaction requires photon energy
to overcome the positive change of Gibbs free energy produced by PEC WS
(equation 1.1) [21]. Take the n-type TiO2 photocatalyst as an example, when the
energy of absorbed photons (hv) is larger than their own band gap, it will promote
the light-driven WS process. This light absorbed generates the electron in the CB
and the hole in the VB (equation 1.2). These holes on the TiO2 electrolyte interface
oxidizing water molecules resulting in generation of O2 and H+ ions (equation 1.3).
The electrons will pass through the external circuit to reach the counter electrode
and H+ ions are reduced because of the electric field or external bias, thereby
forming H2 molecules (equation 1.4).

→ +2H O (l) O (g) 2H (g) (1.1)2 2 2

+ → + +− +TiO 2 hv TiO 2e 2h (1.2)2 2

+ → ++ +2H O 4h O 4H (1.3)2 2

+ →+ −2H 2e H (1.4)2

1.2.2 Process of PEC water splitting

Generally, PEC is divided into four steps to complete the PEC WS reaction, as
shown in figure 1.6: (1) the photocatalyst absorbs photon energy greater than the
band gap of the semiconductor material; (2) light-excited electron–hole pairs are
generated; (3) light-excited electrons and holes are separated and migrate to the
smallest recombination surface. In the last two processes, the induced e−/h+ pairs
can be combined or effectively separated in the materials; (4) The chemical reaction
of surface. The adsorbed substances are reduced and oxidized by photogenerated

Figure 1.5. Photocatalytic WS via semiconductor photocatalyst.
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electrons and holes, in which the H2 and O2 are generated at different surface
reaction sites, respectively [22]. From these reaction steps, it is known that the
structure, electronic and morphological properties of the photocatalyst are the main
factors affecting the performance of the first and second steps. Meanwhile, the
reverse reaction of H2 and O2 recombination to produce water must be suppressed,
and the photocatalyst must be stable during the reaction. Some information can be
obtained from these reaction processes. First, a semiconductor with an energy gap
greater than 1.23 eV can generate electron–hole pairs by absorbing light, so that the
WS reaction can occur on the surface of the semiconductor. Second, the amount of
water molecules adsorbed on the photocatalyst increases as the surface area of the
photocatalyst increases; therefore, increasing the surface area will enhance the
reaction of light-excited electron holes on the substrate. On the other hand,
the increase in surface area will generate defect centers in the photocatalyst. Since
the surface of the catalyst is considered to be the defect site, that is as the electron–
hole recombination centers. With a larger surface area, the faster the reaction, while
the smaller the surface area, the less electron–hole recombination. Therefore, the
appropriate performance of the photocatalyst requires a suitable surface area and
crystallinity. Third, the solid cocatalyst can promote this step. Usually, the
cocatalysts are noble metals (such as Pt) or metal oxides (such as RuO2) as a
dispersion of nanoparticles supported on the surface of the photocatalyst to generate
active sites and to reduce the activation energy of gas release.

Nano-sized catalysts can enhance effective charge transport and contacting
surface area during catalysis. In order to further increase the production of H2,
the cocatalyst is loaded on the semiconductor, which can provide active sites and
reduce the activation energy of WS. Noble metals like platinum and ruthenium have
been considered as typical promoters for promoting hydrogen production.
Hydrogen can be used as fuel, so it is very important to increase the yield of
hydrogen. The commonly used organic holes scavenger is ethylene diamine tetra-
acetic acid (EDTA), due to it being easily oxidized by holes so that the electrons on
the conduction band generate hydrogen. The ability order of some hole scavengers
to generate hydrogen is the following: EDTA > methanol > ethanol > lactic acid.
The decomposition of the reagent increases the production of hydrogen [23].

Figure 1.6. WS cell of the photoelectrochemical under n-type semiconductor TiO2 photoanode.
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1.3 Materials for PEC
The most important factor that determines the spectral range of light absorbed by a
semiconductor is the band gap energy (Eg). Since only 1.23 V is required for water
splitting, the minimum band gap is 1.23 eV. According to the standard AM 1.5 G
solar spectrum (approximately 100 mW cm−2), assuming that there is no loss, the
maximum overall conversion efficiency of solar energy to hydrogen (STH) for such a
band gap semiconductor is 47.4% [24]. However, the semiconductor photocatalyst
will inevitably have energy loss in the solar energy conversion process. When
sunlight radiates on the photocatalyst, the absorption energy of the photon is larger
than the photocatalyst’s band gap, which will excite electrons from the VB into the
CB. For this case, the recombination of e−/h+pairs will occur quickly, and energy is
released by heat or photons form. Additional possible energy losses include electron
transport of sample during the separation of charge carriers, electron transport of
working anode to the counter electrode, and Joule heat generated by the electron
flow from the external circuit process. In the actual PEC WS system, the energy loss
will be greater than 0.8 eV [25]. Therefore, the photocatalyst used in the PEC WS
cell is at least about 2.0 eV of the band gap [26], which corresponds to the absorption
range of about 650 nm [27]. In addition, to achieve the US Department of Energy’s
(DOE) solar-to-hydrogen (STH) target efficiency of 10%, the minimum photo-
current density must reach 8 mA cm−2, indicated that the maximum band gap must
be approximately 2.3–2.4 eV. Therefore, the band gap of optimal should be between
2.0 and 2.4 eV. Semiconductors are in direct contact with electrolytes in darkness
and light, they must have high chemical stability. Generally, the stability of
corrosion resistance increases as the semiconductor band gap increases, but a larger
band gap limits the absorption of visible light.

The important component of the PEC system is the semiconductor photoanode.
In order to meet the effective splitting of water, some basic requirements must be met
[27–30]:

1. Strong (visible) light absorption;
2. The long-term stability of the material in an aqueous solution and anti-

photocorrosion during photoelectrolysis;
3. The band gap of the semiconductor material should be > 1.7 eV, to

overpotential loss and the energy required during the WS process;
4. Suitable band edge position to catalyze the reduction and oxidation of water.

The conduction band level of the material should be more negative than the
H2 generation energy level (EH2 = H2O), and the valence band level to
generate effective H2, should be more positive than the water oxidation level
(EO2 = H2O);

5. Effectively separate/transport charge carriers in semiconductor materials to
keep the WS reaction faster;

6. A lower charge transfer resistance is shown between the liquid and semi-
conductor interface;

7. The yield is abundant and cost-effective.
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In the past few decades, different metal oxides (such as TiO2, ZnO, WO3, BiVO4,
Cu2O, α-Fe2O3, etc.) and non-oxide (such as silicon, GaAs, CdS, GaP, Ta3N5, etc.)
semiconductors have been applied extensively [31–33]. Metal oxides are generally
considered suitable for a PEC to oxidize water and to generate molecular oxygen
[34–39], mainly due to their general stability in aqueous solutions and relatively low
cost. Figure 1.2 shows the band edges positions of different semiconductors in the
normal hydrogen electrode serve as the standard for zero potential in the water
oxidation/reduction process. Seeing the band position, semiconductors of TiO2,
CdSe, CdS, ZnO, and SiC meet the thermodynamic requirements for overall WS.
Among those semiconductors, CdSe and CdS have lower band gap and
suitable band edge positions. However, CdSe and CdS are inappropriate due to
their instability in the water oxidation reaction and the anions of these materials are
more easily oxidized than water, leading to CdS and CdSe being oxidatively
degraded [40, 41]. ZnO meets the thermodynamic requirements for the WS reaction.
However, it is difficult to get a well-organized nanostructure for ZnO, which makes
the application of PECWS limited. Among available semiconductor photocatalysts,
TiO2 has potential in PECWS and is very suitable to serve as the photoelectrode for
the PEC system [42–44].

1.3.1 TiO2 photoanode

TiO2 is an n-type semiconductor photocatalyst, mainly derived from the rutile titania
photoanode made by Honda and Fujishima in 1972 [45]. TiO2 is considered to be the
most suitable in the application of water splitting with visible light and has a
suitable energy band level, non-toxicity, and light stability. Currently, there are
many studies to prepare synthetic nano-sized titanium dioxide. However, the TiO2

larger band gap (anatase: 3.2 eV; rutile phase: 3.1 eV) limits its light absorption to the
UV range only absorbing 5% of the solar spectrum, which reduces widespread use and
leads to low efficiency of theoretical STH. Recently, many research works have taken
the approach to combine TiO2 with different cations or anions to extend the useful
range to the visible light region to improve the overall absorption efficiency and
maintain its good light stability and low cost [46]. So far, these methods such as
doping [47–49], heat treatment [50], and chemical modification [51, 52] have been
widely used for improving the PEC performance in TiO2 materials.

In addition, surface plasmon resonance (SPR) has also been used in the photon-
current efficiency (PCE) water electrolysis process, which extends the light absorption
in the entire visible range of the solar spectrum [53, 54]. For example, the Au-doped
TiO2 nanowire electrode produced excellent photocurrent and improved
photoactivity, which is attributed to the SPR excitation of Au [55]. Moreover, there
have been important studies on Ag doping on TiO2 electrodes. Ag nanoparticles act as
electron absorbers in the effect of Ag SPR on photo-induced electron–hole pairs,
thereby improving PEC performance [56, 57]. The use of other lower band gap
semiconductor-loaded TiO2 photoanode materials to produce heterojunctions is
another way to trend visible light. The heterojunction material has an internal
potential bias, which effectively promotes the separation and transport of excited
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holes and electrons, resulting in reduced charge carrier recombination. Recently, a
heterojunction CdTe/TiO2 photoelectrode has been developed, and the improvement
of PEC efficiency is attributed to the optimization in Fermi level, band position, and
conductivity of CdTe layer [58]. Moreover, TiO2 nanotube arrays can be modified
with Cu2O semiconductors [59, 60].

1.3.2 Fe2O3 photoanode

Another photocatalyst for PEC WS with visible light reactivity is hematite [61–63].
Especially, α-Fe2O3 has more advantages than others. α-Fe2O3 has attracted
attention due to the favorable position of the valence band. This material has
high chemical inertness, low toxicity, and high yield. In addition, its band gap is
about 1.9 to 2.3 eV, which allows visible light absorption and translates to the
maximum theoretical STH efficiency. α-Fe2O3 maintains more positive proton
reduction potential at the CB position, and has the ability to PEC oxidize water
under an external bias. However, α-Fe2O3 has some disadvantages, including:
(1) short carrier lifetime, resulting in a rapid combination of a large number of
carriers; (2) low charge carrier (hole) mobility; (3) low water oxidation power leads
to higher surface recombination rate. In order to solve these problems, atoms such
as Sn, Ti, Zr, Si, and Nb have been effectively doped into the α-Fe2O3 photoanode
[64–68], and α-Fe2O3 film doped with Si, in particular, can show excellent PEC
behavior. In addition, it has been found that the modification of the cocatalyst, such
as Co–Pi or FeOOH can accelerate the oxidation kinetics of water [69]. Finally,
adding a thin metal oxide bottom/upper layer on α-Fe2O3 can significantly improve
PEC performance. These layers will affect the passivation of the surface state and
lead to an increase in the concentration and mobility of charge carriers [70].

1.3.3 BiVO4 photoanode

BiVO4 is also a suitable photoanode material for PEC WS [71–74]. The direct band
gap of BiVO4 is 2.4–2.5 eV and it is an n-type semiconductor (with a photocurrent of
about 7.5 mA cm−2), covering the entire visible light range of the solar spectrum,
being alkaline with neutral friendly conditions, non-toxic and relatively cheap [75].
However, the slow electronic performance of BiVO4 leads to low solar energy
conversion efficiency, thereby limiting commercial use in PEC systems. Therefore, it
is extremely important to incorporate effective and stable catalysts into photoactive
semiconductor materials. There have been studies using ion doping [76–78], nano-
structures [79], passivation layer or electrocatalyst for surface modification [80, 81],
and synthesis [73] to solve the above problems. BiVO4 achieves the maximum
catalytic performance at a conversion efficiency of STH 8.1% through a double
junction GaAs/InGaAsP photovoltaic (PV) device [82]. The PEC performance of
BiVO4 is significantly improved when loaded on the nanostructured WO3 layer,
mainly due to the synergistic reaction between BiVO4 and WO3 [83–85]. Different
semiconductor combinations have been widely used, such as Si/TiO2/BiVO4, SnO2/
BiVO4 and Ag3PO4/BiVO4 [86–88], which have a significant improvement effect on
the WS reaction. There have been studies on the modification of BiVO4 with Fe2O3
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nanoparticles, in which Fe2O3 is used as an effective carrier catalyst to catalyze the
degradation of organic pollutants [89]. The functional of BiVO4 photoanode is
improved through the heterogeneity method with Fe2O3. Wang et al showed that
electrolysis performance of PEC water increased by about 20 times [90] after Co3O4

deposited on BiVO4.

1.3.4 Oxynitride photoanode

In recent years, various oxynitride photoanodes for PEC water oxidation have been
established, including LaTiO2N, SrNbO2N, ZnTaO2N, BaNbO2N [91–95]. Related
semiconductor photoanodes modified with perovskite-based oxynitrides and appro-
priate co-catalysts have shown to be a new method for increasing PEC WS reaction
[96, 97]. In recent years, low-cost nickel and cobalt-based oxide have been used in
different fields [98, 99]. Although it has the ability to absorb visible light and chemical
stability, the PEC activity of nitrogen oxides is affected by lower photon absorption,
the high recombination rate of light-excited charge carriers, and OER power. To solve
those limitations, an oxynitride photoanode can be combined with a co-catalyst
material to promote the absorption of visible light photons. Currently, oxynitride
materials like LaTiO2N/CoOx, BaTaO2N/BaZrO3,and BaNbO2N [100–103] have
been shown to absorb photons with the help of suitable sacrificial reagents. Especially,
efforts have been made to develop low band gap semiconductor photoanodes with
visible light active (<2 eV). Studies have shown that the photoanode band gap of
SrNbO2N is 1.8 eV. Compared with RHE, their incident photon-current efficiency
(IPCE) efficiency is 10% at 400 nm and 1.23 V [104]. Moreover, studies have also
shown that the preparation of LaTaO2N photocatalyst materials has improved PEC
performance in water oxidation reactions [105].

1.3.5 Noble metal and nanostuctrue photoanode

For the noble metal/TiO2 nanocomposites, noble metals can generate other charge
carriers for water oxidation. Studies have reported that under visible light irradi-
ation, the presence of gold nanoparticles in the TiO2 film enhances the water
splitting of PEC by 66 times [106], which is mainly due to the increased photon
absorption rate of TiO2. Gao has reported that gold nanopillars can improve the
photocatalytic activity on iron oxide [107]. Studies have shown that the implantation
of noble metals (such as AuNP or AgNP) can significantly enhance the photocurrent
density of TiO2 and ZnO photoanodes.

Nano-material photoanodes are attractive in thermal electrochemical WS because
they can change their bandwidth characteristics through structure and morphology.
Since the larger surface area ratio, nanomaterials help separate charges and limit the
recombination of electrons and holes. Crystalline nanomaterials exhibit better PEC
properties, including the generation of photocurrent, stability, and HER. As the
crystallinity of nanomaterials increases, the possibility of hole and electron recombi-
nation decreases, which will effectively increase the photocurrent. For nanostructures,
one-dimensional nanostructures including TiO2 nanotubes, nanowires of zinc oxide
and cadmium sulfide, and carbon nanotubes are high-efficiency photoelectrodes for
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PECWS; two-dimensional nanostructures have a larger surface area. Compared with
nanowires and nanorods, most of the visible light can be absorbed, thereby enhancing
the HER; three-dimensional nanomaterials can accelerate the release of hydrogen and
increase the photocurrent density.

Generally, bulk TiO2 has more charge recombination. In order to inhibit
recombination, TiO2 nanotubes with a smaller band gap have been made to increase
the activity of PEC. Nano-structured TiO2 improves the PEC performance due to
improved carrier transmission. α-Hematite has high stability in aqueous media and
is resistant to light corrosion. α-Fe2O3 nanorods can provide a large number of
electrons and help the carrier to transport between the electrode–electrolyte inter-
face, thus improving the performance of PEC. The loading of metallic platinum
nanoparticles can enhance the HER on the surface of a semiconductor photo-
catalyst. Therefore, the development of a nanoparticle cocatalyst is very important,
as it can improve the overall splitting efficiency of PEC water. For example, Pt and
Rh can be used as good cocatalysts for HER, while IrO2 can be used as an OER
cocatalyst.

1.4 Factors of PEC water splitting
1.4.1 Crystallinity and surface area

The rate of photocatalytic WS depends on the surface area and crystallinity of the
photocatalyst. Generally, for a photocatalyst with a large surface area, the photo-
catalytic activity is high. The water molecules on the surface are increased with the
specific surface area, in which a large amount of matrix surrounds and reacts with
photogenerated electron–hole pairs. In addition, a higher surface area may also
induce the generation of more electron–hole pairs. When the particle size is reduced,
the distance of the electrons and holes transfer to the reaction sites of the surface is
shortened, which leads to a decrease in their recombination rate, thereby increasing
the photocatalytic activity. When the recombination rate of electron/hole pair is
decreased and the number of water molecules surrounding them increases, the
reaction rate is effectively increased. However, the defects and grain boundaries
increase with reducing the particle size, which will increase the recombination rate of
the electron–hole pair and further reduce photoactivity. Since the catalyst surface is
considered to be a defect site of the crystal, charge carrier recombination may occur
there. Therefore, an increase in the electron–hole recombination rate, higher surface
area, or lower crystallinity of semiconductor photocatalyst will result in a lower rate
in photocatalytic activity. In other words, crystallinity and particle size are two
important factors that control the WS reaction of the PEC. When the surface
reaction rate of the photocatalyst is greater than the recombination rate, a photo-
catalyst with a larger surface area is better. In contrast, when the recombination rate
is dominant, a photocatalyst with a lower surface area and higher crystallinity is
advantageous. There have been some studies reporting the optimal crystallinity of
the photocatalyst to obtain the maximum hydrogen photocatalytic yield [106, 107].
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1.4.2 Photoanode material

Materials can be divided into stable, abundant, and low-activity materials (called
earth-abundant materials) and unstable, rare, and highly active materials (called
high-efficiency materials). The earth-abundant materials are stable oxides such as
TiO2, Fe2O3, Cu2O, ZnO, and WO3. The high-efficiency materials belong to rare
materials with relatively high cost, such as GaAs and CdSe. However, instability
and corrosion mean that high-efficiency materials must have anti-corrosion protec-
tion. Recently, the use of atomic deposition of TiO2 has achieved certain results in
material protection materials, which can achieve effective corrosion protection with
minimal loss. In addition, the IPCE of earth-rich materials is relatively low. When
the system is operated with zero bias, it can be improved by doping. For example,
the STH of BiVO4 doped with Mo or W is higher than for the original [108–110] to
achieve a commercially feasible degree in the future.

1.4.3 Cell type and radiation time

Generally, we can consider the following conditions to obtain higher efficiency:
(1) the electrocatalyst is used for driving the reactions of HER and OER;
(2) photovoltaic bias (PV) is used with additional driving force; (3) two/three
junction is used to generate potential driving forces; (4) use of high-efficiency
materials instead of earth-abundant materials.

The IPCE of high-efficiency materials is higher than that of the Earth-abundant
materials, so one needs to consider the trade-off between cost and efficiency. In
addition, it is worth noting that the STH conversion rate of 20%–25% has not been
reached for PEC hydrogen generation. In order to break through this problem, the
combination of a double or triple system is required to take the efficiency to more
than 20%, and the efficiency of high-efficiency catalysts can reach 28.3%. For the
three-junction system, part of the disadvantage is that it takes six photons to produce
a hydrogen molecule, so the overall hydrogen production efficiency may be limited
to 25.4% [110]. The two-junction or three-junction system can actually achieve the
required STH efficiency. In addition, the H2 and O2 produced by PEC catalytic WS
increase with light irradiation time. In addition to measuring the reaction rate, the
photocatalytic activity at a fixed time can also be tested to obtain the stability of the
catalyst under the reaction conditions.

1.5 Conclusion
The PECWS technology has great potential to produce hydrogen. Hydrogen can be
used as an energy carrier and does not cause environmental pollution after
combustion. This chapter has reviewed the basic principles of PEC WS, discusses
various photoanode materials and possible challenges of WS. Depending on the
principle, for successful WS through a semiconductor photoanode, the band gap
position must be consistent with the oxidation and reduction potential of water, and
then the light-induced charge carriers are used for the HER and OER reactions,
respectively. The most appropriate photocatalyst for PEC is TiO2. It is inexpensive
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and chemically stable but has a band gap limitation in the visible light region which
is not suitable for visible light absorption. Other materials such as Fe2O3 and BiVO4

have relatively wide visible light absorption, but fast recombination of light-induced
charge carriers and the slow kinetics of water oxidation lead to failure to reach the
maximum photocurrent. Therefore, we mentioned surface modification or doping
through noble metal nanoparticles to improve it. This is the primary mission of
semiconductor photoanode breakthrough to achieve adequate light absorption and
charge separation. The development of the high active photoanode materials will be
necessary work in the future.
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