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Preface

This set of lecture notes about nanoscience and nanotechnology was initially
written over the spring and summer of 2003. After my initial appointment
as an assistant professor in chemistry, I agreed to teach an introductory
class on nanoscience and nanotechnology for incoming graduate students at
the University of Notre Dame. However after accepting this task, it quickly
became apparent to me that there were few resources available for teach-
ing such a class, let alone any textbook. So while waiting for equipment
to arrive, I undertook it upon myself to compile a series of lecture notes
that would explain to the student some of the underlying concepts behind
“nano”. The motivation for this was to describe to the student the physics
behind each concept or assumption commonly encountered in the nano lit-
erature rather than just providing a qualitative overview of developements
in the field. I have also tried to illustrate and motivate these concepts with
instances in the current literature where such concepts are applied or have
been assumed. In this manner, the goal is to provide the student with a
foundation by which they can critically analyze, and possibly in the future,
contribute to the emerging nano field. It is also my hope that one day, these
lecture notes can be converted into an introductory text so that others may
benefit as well.

Masaru Kenneth Kuno
Notre Dame, IN
May 14, 2004
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Chapter 1

Introduction

Preliminaries

What is “nano”? Well, without providing a definite answer to this question,
nano is a popular (emerging) area of science and technology today. It has
attracted the attention of researchers from all walks of life, from physics to
chemistry to biology and engineering. Further impetus for this movement
comes from the temendous increase in public and private funding for nano
over the last ten years. A prime example of this is the new National Nan-
otechnology Initiative (NNI) created by former President Bill Clinton. The
NNI increases funding in national nanoscience and nanotechnology research
by hundreds of millions of dollars yearly. In addition, private sector con-
tributions have jumped dramatically as evidenced by the plethora of small
startup firms lining the tech corridors of the east and west.

Nano has even entered popular culture. It’s used as a buzzword in con-
temporary books, movies and television commercials. For example, in the
recent blockbuster, Spiderman, the Willem Dafoe character (the Green Gob-
lin) is a famous (and wildly wealthy) nanotechnologist whose papers the
Tobey McGuire character (Spiderman) has read and followed (see the scene
outside of Columbia university). Likewise, in the movie “Minority Report”
Tom Cruise’s character undergoes eye surgery to avoid biometric fingerprint-
ing. This scene involves a retinal eye transplant aided by so called “nano
reconstructors”. A scene in the DC metro shows him reading a newspaper
with the headline “nanotechnology breakthrough”. In television, a current
GE commercial for washers and dryers features the storyline of: geeky nan-
otechnologist bumps into a supermodel at the laundromat resulting in love
at first sight. We’re therefore, implicitly, told to believe that their mix of

1



2 CHAPTER 1. INTRODUCTION

brains and beauty embody GE’s new washer/dryer line. In books, the New
York Times bestseller “Prey” by Michael Crighton features nanotechnology
run amok with spawns of tiny nano bots escaping from the laboratory and
hunting down people for food. (Sounds like the “Andromeda Strain” except
recast with nano as opposed to an alien virus.).

The mantle of nano has also been adopted by various scientific visionar-
ies. Perhaps the most prominent is Eric Drexler who has founded an insti-
tute, called the Foresight Institute, devoted to exploring his ideas. Concepts
being discussed include developing tiny nano robots that will “live” inside us
and repair our blood vessels when damaged, preventing heart attacks. They
will also kill cancer, cure us when we are sick, mend bones when broken,
make us smarter and even give us immortality. These nano robots will also
serve as tiny factories, manufacturing anything and everything from food
to antibiotics to energy. In turn, nanotechnology will provide a solution to
all of mankind’s problems whether it be hunger in developing countries or
pollution in developed ones. Drexler therefore envisions a vast industrial
revolution of unprecendented size and scale. At the same time, concurrent
with his visions of a utopian future is a darker side, involving themes where
such nano robots escape from the laboratory and evolve into sentient beings
completely out of mankind’s control. Such beings could then sow the seeds
to mankind’s own destruction in the spirit of recent movies and books such
as The Terminator, The Matrix and Prey. Now, whether such predictions
and visions of the future will ever become reality remains to be seen. How-
ever, any such developments will ultimately rely on the scientific research of
today, which is, on a daily basis, laying down the foundation for tomorrow’s
nanoscience and nanotechnology.

In today’s scientific realm, the word nano describes physical lengthscales
that are on the order of a billionth of a meter long. Nanoscale materials
therefore lie in a physical size regime between bulk, macroscale, materi-
als (the realm of condensed matter physics) and molecular compounds (the
realm of traditional chemistry). This mesoscopic size regime has previously
been unexplored and beckons the researcher with images of a scientific wild
wild west with opportunites abound for those willing to pack their wagons
and head into the scientific and technological hinterland. In this respect,
nanoscale physics, chemistry, biology and engineering asks basic, yet unan-
swered, questions such as how the optical and electrical properties of a given
material evolve from those of individual atoms or molecules to those of the
parent bulk. Other questions that nanoscience asks include:

• How does one make a nanometer sized object?
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• How do you make many (identical) nanometer sized objects?

• How do the optical and electrical properties of this nanoscale object
change with size?

• How does its optical and electrical properties change with its “dimen-
sionality”?

• How do charges behave in nanoscale objects?

• How does charge transport occur in these materials?

• Do these nanoscale materials posess new and previously undiscovered
properties?

• Are they useful?

The transition to nanoscience begins at this last point when we ask how these
nanoscale materials might be exploited to improve our lives. Venture capital
firms and mainstream industry have therefore taken up this challenge with
many small startups trying to apply nanoscale materials in products rang-
ing from better sunscreen lotions to fluorescent labels for biological imaging
applications to next generation transistors that will one day store the entire
content of the Library of Congress on the head of a pin. More established
companies, such as GE, HP, Lucent and IBM, have also started their own
in house nano programs to revolutionalize consumer lighting, personal com-
puting, data storage and so forth. So whether it be for household lighting
or consumer electronics, a nano solution exists and there is very likely a
company or person pursuing this vision of a nano future.

So what is nano? This series of lecture notes tries to answer this ques-
tion by explaining the physical concepts behind why such small, nanoscale,
materials are so interesting and potentially useful.

Overview

The idea behind these lecture notes is as follows: First in Chapter 2, the
composition of solids is discussed to introduce common crystal structures
found in nanomaterials. Solids come in a number of forms, from amor-
phous (glass-like) to polycrystalline (multiple domains) to crystalline. Much
of nanoscience and nanotechnology focuses on nanometer sized crystalline
solids, hence the emphasis on crystal structure. In addition, the structure
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section also illustrates the increase in surface to volume ratio for nanoma-
terials over bulk. This is because in nanometer sized systems up to 50% of
the atoms lie at the surface of a nanostructure, in direct contrast to macro-
scopic solids where such numbers are typically much smaller. The surface is
therefore potentially important in dictating a material’s optical and electri-
cal properties when nanometer sized. Furthermore, the increase in surface
area is important to applications where the surface to volume ratio plays a
critical role such as in catalysis as well as in photovoltaics. Developments in
this area, using nanostructures, have led to increasingly efficient solar cells
such as the Gratzel cell. Finally, the concept of crystal structure and the
periodic potential due to the ordered arrangement of atoms is central to the
concept of electronic bands, which we will discuss later on.

Figure 1.1: Transmission electron micrograph of individual CdSe quantum
dots

Chapter 3 introducs the concept of length scales to put into perspective
the actual physical lengths relevant to nano. Although being nanometer
sized if often considered the essence of “nano”, the relevant physical length
scales are actually relative to the natural electron or hole length scales in the
parent bulk material. These natural length scales can either be referred to
by their deBroglie wavelength or by the exciton Bohr radius. Thus, while a
given nanometer sized object of one material may qualify for nano, a similar
sized object of another material may not.

Next the concept of quantum confinement is introduced in Chapter 4
through the simple quantum mechanical analogy of a particle in a 1 di-
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mensional, 2 dimensional and 3 dimensional box. Quantum confinement is
most commonly associated with nano in the sense that bulk materials gen-
erally exhibit continuous absorption and electronic spectra. However, upon
reaching a physical length scale equivalent to or less than either the exciton
Bohr radius or deBroglie wavelength both the optical and electronic spec-
tra become discrete and more atomic-like. In the extreme case of quantum
dots, confinement occurs along all three physical dimensions, x,y,and z such
that the optical and electrical spectra become truly atomic-like. This is one
reason why quantum dots or nanocrystals are often called artificial atoms.

Analogies comparing the particle in a one dimensional box to a quantum
well, the particle in a two dimensional box to a quantum wire and the particle
in a three dimensional box to a quantum dot provide only half the solution. If
one considers that in a quantum well only one dimension is confined and that
two others are “free”, there are electronic states associated with these extra
two degrees of freedom. Likewise in the case of a quantum wire, with two
degrees of confinement, there exists one degree of freedom. So solving the
particle in a two dimensional box problem models the electronic states along
the two confined directions but does not address states associated with this
remaining degree of freedom. To gain better insight into these additional
states we introduce the concept of density of states (DOS) in Chapters
5,6,and 7. The density of states argument is subsequently applied to both
the valence band and conduction band of a material. Putting together both
valence and conduction band density of states introduces the concept of the
joint density of states (JDOS) in Chapter 8 which, in turn, is related to the
absorption coefficient of a material.

After describing the absorption spectra of 3D (bulk), 2D (quantum well),
1D (quantum wire), and 0D (quantum dot) systems we turn to the concept
of photoluminescence. Generally speaking, in addition to absorbing light,
systems will also emit light of certain frequencies. To describe this process,
the Einstein A and B coefficients and their relationships are introduced and
derived in Chapter 9. Finally, the emission spectrum of a bulk 3D material
is calculated using the derived Einstein A and B coefficients. The concept
of quantum yields and lifetimes, which describe the efficiency and timescale
of the emission, completes this section.

Bands are introduced in Chapter 10. This topic is important because
metals, semiconductors, and semi-metals all have bands due to the periodic
potential experienced by the electron in a crystal. As mentioned earlier in
the section on structure, this periodic potential occurs due to the ordered
and repeating arrangement of atoms in a crystal. Furthermore, metals,
semiconductors, insulators, and semi-metals can all be distinguished through
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Figure 1.2: Photograph of the size dependent emission spectra of both HgS
(top) and CdSe (bottom) quantum dots. Small quantum dots absorb and
emit blue/green light, larger dots absorb and emit red light.



7

Figure 1.3: Cartoon of confinement along 1, 2 and 3 dimensions. Analogous
to a quantum well, quantum wire and quantum dot.

the occupation of these bands by electrons. Metals have “full” conduction
bands while semiconductors and insulators have “empty” conduction bands.
At the same time, in the case of semiconductors and insulators there is a
range of energies that cannot be populated by carriers separating the valence
band from the conduction band. This forbidden range of energies (a no
man’s land for electrons) is referred to as the band gap. The band gap is
extremely important for optoelectronic applications of semiconductors. For
example, the band gap will generally determine what colors of light a given
semiconductor material will absorb or emit and, in turn, will determine their
usefulness in applications such as solar energy conversion, photodetectors,
or lasing applications. An exploration of the band gap concept ultimately
touches on the effects quantum confinement has on the optical and electrical
properties of a material, which leads to the realization of a size dependent
band gap.

Introducing the concept of bands is also important for another reason
since researchers have envisioned that ordered arrays of quantum wells, or
wires, or dots, much like the arrangement of atoms in a crystal, can ulti-
mately lead to new “artificial” solids with artificial bands and corresponding
band gaps. These bands and associated gaps are formed from the delocal-
ization of carriers in this new periodic potential defined by the ordered ar-
rangement of quantum dots, quantum wires, or quantum wells. Talk about
designer materials. Imagine artificial elements or even artificial metals, semi-
metals, and semiconductors. No wonder visionaries such as Drexler envision
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Figure 1.4: Size dependent absorption and emission spectra of colloidal CdSe
quantum dots.
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so much potential in nano. In the case of quantum wells, stacks of closely
spaced wells have been grown leading to actual systems containing these
minibands. In the case of quantum dots and wires, minibands have not
been realized yet but this is not for lack of trying. The concept of creat-
ing artificial solids with tailor made bands from artificial atoms has been
tantalizing to many.

Figure 1.5: TEM micrograph of an array of colloidal CdSe quantum dots
ordered into an artificial crystal. Each dark spot is an individual quantum
dot. The white space in between dots is the organic ligands passivating the
surface of the particle.

Not only do semiconductors, metals, insulators, and semi-metals absorb
and emit light, but they also have electrical properties as well. These prop-
erties are greatly affected by quantum confinement and the discreteness of
states just as with the aforementioned optical properties. Transport prop-
erties of these systems take center stage in the realm of devices where one
desires to apply quantum dots, quantum wells, and quantum wires within
opto-electronic devices such as single electron transistors. To this end, we
introduce the concept of tunneling in Chapter 11 to motivate carrier trans-
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port in nanometer-sized materials. Tunneling is a quantum mechanical effect
where carriers can have non-zero probability of being located in energetically
fobidden regions of a system. This becomes important when one considers
that the discreteness of states in confined systems may mean that there are
substantial “barriers” for carrier transport along certain physical directions
of the material.

The WKB approximation is subsequently introduced in Chapter 12 to
provide an approximate solution to Schrodinger’s equation in situations
where the potential or potential barrier for the carrier varies slowly. In
this fashion, one can repeat the same tunneling calculations as in the previ-
ous section in a faster, more general, fashion. A common result for the form
of the tunneling probablity through an arbitrary barrier is derived. This
expression is commonly seen and assumed in much of the nano literature
especially in scanning tunneling microscopy, as well as in another emerging
field called molecular electronics.

After providing a gross overview of optical, electrical and transport prop-
erties of nanostructures, we turn to three topics that begin the transition
from nanoscience to nanotechnology. Chapter 13 describes current methods
for making nanoscale materials. Techniques such as molecular beam epi-
taxy (MBE), metal-organic chemical vapor deposition (MOCVD) and col-
loidal sysnthesis are described. A brief overview of each technique is given.
Special emphasis is placed on better understanding colloidal growth models
currently being used by chemists to make better, more uniform, quantum
dots and nanorods. To this end, the classical LaMer and Dinegar growth
model is derived and explained. Relations to the behavior of an ensemble
size distribution are then discussed completing the section.

Once created, tools are needed to study as well as manipulate nanoscale
objects. Chapter 14 describes some of the classical techniques used to char-
acterize nanostructures such as transmission electron microscopy (TEM),
secondary electron microscopy (SEM), atomic force microscopy (AFM) and
scanning tunneling microscopy (STM). Newer techniques now coming into
prominence are also discussed at the end of the section. In particular, the
concepts behind dip-pen nanolithography and microcontact printing are il-
lustrated.

Finally, Chapter 15 discusses applications of quantum dots, quantum
wires, and quantum wells using examples from the current literature. Special
emphasis is placed on the Coulomb blockade and Coulomb staircase problem,
which is the basis of potential single electron transistors to be used in next
generation electronics.



Chapter 2

Structure

Crystal structure of common materials

This section is not meant to be comprehensive. The interested reader may
consult a number of excellent introductory references such as Kittel’s in-
troduction to solid state physics. The goal, however, is to illustrate the
crystal structure of common materials often encountered in the nano liter-
ature. Solids generally appear in three forms, amorphous (no long range
order, glass-like), polycrystalline (multiple domains) or crystalline (a single
extended domain with long range order). Since nano typically concerns itself
with crystalline metal nanoparticles and semiconductor nanocrystals, wires,
and wells, having a basic picture of how the elements arrange themselves in
these nanocrystalline systems is important. In this respect, crystal struc-
ture comes into play in many aspects of research, from a material’s electronic
spectra to its density and even to its powder x-ray diffraction pattern.

Atoms in a crystal are generally pictured as being arranged on an imag-
inary lattice. Individual atoms (or groups of atoms) are hung off of the
lattice, much like Christmas ornaments. These individual (or groups of)
atoms are referred to as the “basis” of the lattice. The endless repetition of
basis atom(s) on a lattice makes up the crystal. In the simplest case, the
basis consists of only a single atom and each atom is located directly over
a lattice point. However, it is also very common to see a basis consisting
of multiple atoms, which is the case when one deals with binary or even
ternary semiconductors. Here the basis atoms do not necessarily sit at the
same position as a lattice point, potentially causing some confusion when
you first look at the crystal structures of these materials.

There are 14 three dimensional Bravais lattices shown in Figure 2.1.

11
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These are also referred to as conventional unit cells (i.e. used in everyday
life) as opposed to the primitive unit cell of which only the simple cubic (aka
“primitive”) lattice qualifies. That is, most of these unit cells are not the
simplest repeating units of an extended lattice; one can find even simpler
repeating units by looking harder. Rather, these conventional cells happen
to be easy to visualize and interpret and hence are the ones most commonly
used.

Figure 2.1: 14 3-dimensional Bravais lattices. From Ibach and Luth.

It is often useful to know the number of atoms in a unit cell. A general
counting scheme for the number of atoms per unit cell follows.

• atoms entirely inside the unit cell: worth 1

• corner atoms: worth 1
8
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• face atoms: worth 1
2

• edge atoms: worth 1
4

Figure 2.2 illustrates the positions of an atom in the corner, face, edge and
interior positions. The weighting scheme follows because each of these unit
cells is surrounded by other unit cells, hence all atoms with the exception of
interior ones are shared. The corner atoms are shared by 8 unit cells while
the face atoms are shared by 2 cells and finally the edge atoms by four. Any
atom in the interior of a unit cell is exclusive to that cell. This is illustrated
in Figure 2.3. By counting atoms in this fashion, one can determine the
number of atoms per unit cell.

Single element crystals

In the case of metals, the cubic lattices are important, with particular em-
phasis on the face centered cubic (FCC) and body centered cubic (BCC)
structures. Both FCC and BCC structures have a single atom basis; thus,
they strongly resemble the Bravais lattices or conventional unit cells seen in
the previous diagram. The number of atoms per unit cell in the FCC case
is 4 (8 corner atoms and 6 face atoms). Likewise, the number of atoms per
BCC unit cell, using the above counting scheme, is 2 (1 interior atom and
8 corner atoms). Note that an alternative name exists for the FCC unit
cell: cubic close packed (CCP), which should be remembered when reading
the literature. Both unit cells are shown in Figures 2.4 and 2.5. Typical
elements that crystallize in the FCC structure include: Cu, Ag, Au, Ni, Pd,
Pt, and Al. Typical elements that crystallize in the BCC structure include:
Fe, Cr, V, Nb, Ta, W and Mo. More complete tables can be found in Kittel.

Analogous to the FCC lattice is the hexagonal close packed (HCP) struc-
ture. A simple way to differentiate the two is the atomic packing order,
which follows ABCABC in the case of FCC and ABABA in the case of
HCP. The letters A, B, and C etc. . . represent different atom planes. The
HCP structure has a conventional unit cell but also a primitive unit cell
shown in Figure 2.6. It contains 2 atoms per unit cell (8 on the corners and
1 inside) as opposed to the conventional cell which has 12 per cell.

Another conventional unit cell that is often encountered is called the “di-
amond” structure. The diamond structure differs from its FCC and BCC
counterparts because it has a multi atom basis. Therefore, it does not im-
mediately resemble any of the 14 Bravais lattices. It is adopted by elements
that have a tendency to form strong covalent bonds, resulting in tetrahe-
dral bonding arrangements (Figure 2.7). The number of atoms per unit cell
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Figure 2.2: Number of atoms per unit cell. Counting scheme.
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Figure 2.3: Cartoon showing sharing of atoms by multiple unit cells.
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Figure 2.4: FCC unit cell

Figure 2.5: BCC unit cell
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Figure 2.6: Primitive hexagonal unit cell.

in this case is 8 (8 corner atoms, 4 interior atoms, 6 face atoms). Some
common elements that crystallize in the diamond structure include: C, Si,
Ge and Sn. As a side note, one way to visualize the diamond unit cell is
to picture two interpenetrating FCC lattices, offset from each other by a
(1
4 , 1

4 , 1
4) displacement.

Compound crystals

In the case of binary compounds, such as III-V and II-V semiconductors,
things get a little more complicated. One doesn’t have the benefit of con-
ventional unit cells that resemble any of the 14 standard Bravais lattices.
Instead these conventional unit cells often have names such as the “NaCl”
structure or the “ZnS” structure and so forth. This is because, unlike simple
FCC or BCC metals, we no longer have a single atom basis, but rather a
basis consisting of multiple atoms as well as a basis made up of different
elements.

Common crystal lattices for semiconductors include the “ZnS”, “NaCl”
and “CsCl” lattices. The ZnS, also called zinc blende (ZB) or sphalerite,
structure can be visualized as two interpenetrating FCC lattices offset by
(1
4 , 1

4 , 1
4) in Figure 2.8. It is identical to the diamond structure we saw in

the case of single element crystals. The only real difference is that now we
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Figure 2.7: Diamond structure unit cell

have two elements making up the atom basis of the unit cell. Using the
above counting scheme we find that there are 8 atoms per unit cell. This
is further subdivided into 4 atoms of element 1, and 4 atoms of element 2.
You will notice in the figure that the 4 atoms of one element are completely
inside the unit cell and that the atoms of the other element are arranged as
8 corner and 6 face atoms.

The NaCl structure can be visualized as 2 interpenetrating FCC lattices
offset by (1

2 , 0, 0) in Figure 2.9. It has 8 atoms per unit cell. This is broken
up into 4 atoms from element 1 and 4 atoms from element 2. One can see
in the figure that for element 1 there are 8 corner atoms and 6 face atoms.
For element 2 there are 12 edge atoms and 1 interior atom.

The CsCl structure is the compound material version of the single el-
ement BCC unit cell. It is shown in Figure 2.10 where one can see that
there are two elements present with one of them being the center atom. The
atoms from the other element take up corner positions in the unit cell. The
CsCl has two atoms per unit cell, 1 from each element.

The wurtzite crystal structure is the compound material version of the
single element HCP structure. It has a multi atom basis. The primitive unit
cell is shown in Figure 2.11 and contains 4 atoms per unit cell, 2 atoms from
element 1 and 2 atoms from element 2.



19

Figure 2.8: Zincblende or ZnS structure unit cell.

Figure 2.9: NaCl structure unit cell.
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Figure 2.10: CsCl structure unit cell.

Figure 2.11: Primitive wurtzite unit cell.
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Miller indices

Sometimes you will see the orientation of a crystal plane described by (001)
and so forth. These numbers are referred to as Miller indices. They are
generated using some simple rules described below.

• Take the desired plane and see where it intersects each x, y, z axis
in multiples of the lattice constant. For the case of cubic lattices the
lattice constant, a, is the same in all x, y, and z directions.

• Next take the reciprocal of each intersection point and reduce the three
values to their lowest integer values. (i.e. divide out any common
integer)

• Express the plane through these integers in parentheses as (abc)

• Should the plane not intersect an axis, say the z axis, just write a 0.
For example (ab0)

• If the intercept is in the negative side of an axis, say the y axis, just
put a bar over the number, for example (ab̄c).

Examples are illustrated in Figures 2.12 and 2.13.

Quick tables

Short tables of common metals and semiconductors are provided below with
their standard crystal structure.

Common Metals

Table 2.1: Common metals

I II III IV V VI
B C N
Al Si P S

Cu Zn Ga Ge As Se
Ag Cd In Sn Sb Te
Au Hg Tl Pb Bi Po

• Ag=FCC [cubic] (alternatively called cubic closest packed)

• Au=FCC [cubic] (alternatively called cubic closest packed)
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Figure 2.12: Examples of using Miller indices.
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Figure 2.13: More examples of using Miller indices.
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Common Semiconductors

Group IV

Table 2.2: Group IV semiconductors

I II III IV V VI
B C N
Al Si P S

Cu Zn Ga Ge As Se
Ag Cd In Sn Sb Te
Au Hg Tl Pb Bi Po

• Si=diamond structure

• Ge=diamond structure

III-V

Table 2.3: Group III-V semiconductors

I II III IV V VI
B C N
Al Si P S

Cu Zn Ga Ge As Se
Ag Cd In Sn Sb Te
Au Hg Tl Pb Bi Po

• GaN=ZB [cubic] (alternatively called ZnS structure)

• GaAs=ZB [cubic] (alternatively called ZnS structure)

• InP=ZB [cubic] (alternatively called ZnS structure)

• InAs=ZB [cubic] (alternatively called ZnS structure)

II-VI

• ZnS=ZB [cubic]

• ZnSe=ZB [cubic]
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Table 2.4: Group II-VI semiconductors

I II III IV V VI
B C N
Al Si P S

Cu Zn Ga Ge As Se
Ag Cd In Sn Sb Te
Au Hg Tl Pb Bi Po

• CdS=ZB [cubic]

• CdSe=wurtzite [hexagonal]

• CdTe=ZB [cubic]

IV-VI

Table 2.5: Group IV-VI semiconductors

I II III IV V VI
B C N
Al Si P S

Cu Zn Ga Ge As Se
Ag Cd In Sn Sb Te
Au Hg Tl Pb Bi Po

• PbS=NaCl structure

• PbSe=NaCl structure

• PbTe=NaCl structure

Exercises

1. The lattice constant of Si is 5.43 Å. Calculate the number of silicon
atoms in a cubic centimeter.

2. Calculate the number of Ga atoms per cubic centimeter in a GaAs
crystal. The lattice constant of GaAs is 5.65 Å. Do the same for As
atoms.
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3. Consider an actual silicon device on a wafer with physical dimensions
of 5 x 5 x 1 microns. Calculate the total number of atoms in the
device.

4. Consider a slightly larger GaAs laser on the same wafer. Its dimensions
are 100 x 100 x 20 microns. How many total atoms exist on this device.

5. Calculate the number of atoms in a 1.4 nm diameter Pt nanoparticle
using the total number of unit cells present. Consider a FCC unit cell
with a lattice constant of a = 0.391 nm.

6. Calculate the number of atoms in a 1.4 nm diameter Pt nanoparticle
using the bulk density of Pt. Consider ρ = 21.5g/cm3.

7. Estimate the number of surface atoms and percentage of surface atoms
in a 1.4 nm diameter Pt nanoparticle. One can calculate this through
a unit cell approach but use whatever approach you like.

8. Cobalt is usually found with a hexagonal crystal structure. It was
recently found to crystallize with a simple cubic structure, now called
ε-cobalt. The lattice constant of ε-cobalt is a = 6.097Å. The density
is ρ = 8.635g/cm3. The unit cell contains 20 atoms. Calculate the
number of atoms in a 2 nm diameter nanocrystal through a unit cell
argument.

9. Calculate the number of atoms in a 2 nm diamter ε-cobalt nanocrystal
through a density argument. Use ρ = 8.635g/cm3.

10. Calculate the number of surface atoms and percentage of surface atoms
in a 2 nm diameter ε-cobalt particle.

11. CdSe has a hexagonal unit cell. The lattice constants are a = 4.3Å
and c = 7Å. Calculate the total number of atoms in a CdSe quantum
dot for a: 1, 2, 3, 4, 5, 6 nm diameter particle. How many atoms of
each element are there?

12. For the same CdSe dots considered, calculate the fraction of surface
atoms in each case and plot this on a graph.

13. Draw the surface of a Ag crystal cut along the (111) and (100) plane.
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Chapter 3

Length scales

DeBroglie wavelength and exciton Bohr radius

Here we derive the relationship between the deBroglie wavelength and the
exciton Bohr radius. The reason we do this is that often in the literature
one sees a statement that a nanomaterial is in the “quantum confinement”
regime because its size is smaller than the corresponding deBroglie wave-
length of an electron or hole. At other times one sees the statement that
a nanomaterial is quantum confined because its size is smaller than the
corresponding exciton Bohr radius. We ask if these are the same statement.

In this section we show that the two are related and that, in fact, both
statements essentially say the same thing.

Textbook Bohr radius

Here is the textbook equation for the Bohr radius of an electron

a0 = 4πε0h̄2

mq2 (3.1)

where ε0 = 8.85×10−12 F/m (permittivity), h̄ = 1.054×10−34 J ·s (Planck’s
constant over 2π), me = 9.11 × 10−31 kg (mass of a free electron) and
q = 1.602 × 10−19 C (charge). If you plug all the numbers in and do the
math you come up with the result

a0 = 5.28× 10−11meters
= 0.528 Angstroms (3.2)

This is the standard Bohr radius one sees all the time.

29
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Derivation

Basically we need to balance the centrifugal (outward) force of a carrier with
the Coulomb attractive (inward) force.

mv2

r
=

q2

4πε0r2
(3.3)

Here we make use of the relation

2πr = nλ (3.4)

where n is an integer. The deBroglie relation comes in by relating the
wavelength λ = h

p where h is Planck’s constant and p is the momentum of
the particle (p = mv). Starting with the above equation we rearrange it to
get

λ =
2πr

n
=

h

p
=

h

mv

Solve for v to get

v =
nh

2πmr
=

nh̄

mr

Replace this into the main equation

n2h̄2

mr
=

q2

4πε0

Rearrange this to get

r =
4πε0n

2h̄2

mq2

If n = 1 (the lowest orbit) this gives us the Bohr radius

a0 =
4πε0h̄

2

mq2

which is the standard textbook equation we showed earlier.
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At this point we note that if the electron or carrier is not in vacuum the
equation should be modified to take into account the dielectric constant of
the medium. (Instead of ε replace it with εε0)

a0 =
4πε0εh̄

2

mq2
(3.5)

Furthermore, for the case of an exciton (electron hole pair) in a semicon-
ductor just replace the mass of the electron with the effective mass of the
exciton.

1
meff

= 1
me

+ 1
mh

(3.6)

where me and mh are the effective masses of electron and hole in the mate-
rial.

Note that equation 3.4 basically gives the relation between the deBroglie
wavelength and the exciton Bohr radius. So, in effect, our initial statements
about confinement dealing with either the exciton Bohr radius or deBroglie
wavelength are essentially one and the same. The deBroglie wavelength or
exciton Bohr radius are therefore natural lenght scales by which to compare
the physical size of a nanomaterial. In general objects with dimensions
smaller than these natural length scales will exhibit quantum confinement
effects. This will be discussed in more detail in subsequent chapters.

Examples

Here are some values for some common systems where I’ve taken values of
the dielectric constant, electron and hole effective masses from the litera-
ture. One can derive the exciton Bohr radius of these systems, using the
values below, in a straightforward fashion. This list is not meant to be com-
prehansive and the interested reader should consult the Landolt Bornstein
tables for more complete values.

• GaAs:
me = 0.067m0

mh = 0.45m0

ε = 12.4

• InAs:
me = 0.02m0
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mh = 0.4m0

ε = 14.5

• InP:
me = 0.07m0

mh = 0.4m0

ε = 14

• CdS:
me = 0.2m0

mh = 0.7m0

ε = 8.6

• CdSe:
me = 0.13m0

mh = 0.45m0

ε = 9.4

Worked example

Case: (GaAs)

1
meff

=
1

me
+

1
mh

=
1

0.067m0
+

1
0.45m0

leading to the effective mass

meff = 0.058m0

ab =
4πε0εh̄

2

0.058m0q2

=
4π(8.85× 10−12)(12.4)(1.054× 10−34)2

(0.058)(9.11× 10−31)(1.602× 10−19)2

= 11.3 nm
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Exciton Bohr radius for GaAs.

Case: (CdSe)

1
meff

=
1

me
+

1
mh

=
1

0.013m0
+

1
0.45m0

leading to the effective mass

meff = 0.1m0

ab =
4πε0εh̄

2

0.058m0q2

=
4π(8.85× 10−12)(9.4)(1.054× 10−34)2

(0.1)(9.11× 10−31)(1.602× 10−19)2

= 4.97 nm

Exciton Bohr radius for CdSe.

Exercises

1. What is the wavelength of a 1 eV photon?

2. What is the wavelength of a 2 eV photon?

3. What is the wavelength of a 3 eV photon?

4. What is your deBroglie wavelength (what’s your weight in kg?) when
moving at 10 m/s?

5. What is the deBroglie wavelength of a baseball (0.15 kg) moving at 50
m/s?

6. What is the deBroglie wavelength of C60 moving at 220 m/s? Read
the corresponding article if you are interested. Arndt et. al. Nature
401, 680 (1999).
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7. Calculate the exciton Bohr radius for the following semiconductors. If
needed use values for what is called the heavy hole. Consult a good
resource such as Landolt Bornstein.
II-VI compounds
CdS
CdSe
CdTe
III-V compounds
InP
InAs
IV-VI compounds
PbS
PbSe
PbTe

8. Explain what the size of the exciton Bohr radius means for achieving
quantum confinment. What systems are easiest for achieving confine-
ment.



Chapter 4

Confinement

Quantum wells, wires and dots are often described using the analogy to a
particle in a 1D box, a 2D box and a 3D box. This is because when the actual
physical length scale of the system is smaller than the exciton Bohr radius
or corresponding deBroglie wavelength (as we saw in the previous section),
either or both the electron and hole experience confinment. In turn, the
energies of the carrier along that dimension of the material are no longer
continuous as in the case where there is no confinement. The appearance of
discrete states is one of the fundamental signatures of nanomaterials. Since
solving the Schrodinger equation of a carrier to find its eigenvalues and
eigenfunctions involves using boundary conditions one can also immediately
predict that the actual shape of a quantum well, wire or dot will also play
a role in dictating the ordering and spacing of states. A nanowire will
have a similar but different progression of states than a quantum dot (or
nanocrystal). The same applies to quantum wells as well as more exotic
shapes of nanostructures.

In this chapter we solve the simple analytical problems of a particle in a
1 dimensional rectangual box, a cylindrical wire and a sphere (particle in a
spherical box) to illustrate the discreteness as well as progression of states
in wells, wires and dots.

1 Dimension of confinement

Particle in a 1D infinite box

The potential is

V (x) =




∞ if x <= 0
0 if 0 < x < a
∞ if x >= a

35
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Figure 4.1: Cartoon of a one dimensional infinite barrier potential

The boundary conditions are

Ψ(0) = 0
Ψ(a) = 0

The Shrodinger equation to solve is

− h̄2

2m
d2Ψ
dx2 + V Ψ = εΨ (4.1)

Rearrange to yield in the box region where V = 0

d2Ψ
dx2

+ k2Ψ = 0 (4.2)

where k =
√

2mε
h̄2 General solutions are of the form

Ψ = Aeikx + Be−ikx (4.3)

Apply the boundary conditions now to simplify

Ψ(0) = A + B → B = −A

Ψ(a) = Aeikx −Ae−ikx = 0
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This latter equation reduces to

2iA
eikx − e−ikx

2i
= 0

2iAsin(ka) = 0

For this to be true and non-trivial (A = 0), ka = nπ. This leads to
√

2mε

h̄2 a = nπ

The energy can be solved for, to give

ε = n2h2

8ma2 (4.4)

where n is an integer. Now by normalizing the wavefunction

Ψ∗Ψ = 1

one basically gets the equation

N2
∫ a

0
sin2(kx)dx = 1

The integral can be evaluated by recalling that sin2(kx) = 1
2(1− cos(2kx)).

This is readily integrated to give N =
√

2
a and the complete wavefunction

as

Ψ(x) =
√

2
asin(kx) (4.5)

Exercises

1. Estimate the first few energies (n = 1, 2, 3) for an electron in GaAs
quantum wells of width 10 nm and 4 nm. Assume the mass is 0.067m0.
Repeat the same calculation for a “heavy” hole (mhh = .5m0) and
“light” hole (mlh = 0.082m0). In all cases assume an infinite box
model.

2. Use Mathcad, Matlab, Mathematica or your favorite mathematical
modeling program and numerically determine the first 10 energies of
the particle in an infinite box (previous problem). Draw the corre-
sponding wavefunctions as well.
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3. Consider the following potential in Figure 4.2. Find the energy lev-
els and eigenfunctions. Assume knowledge of the harmonic oscillator
wavefunctions and energies. (look them up if you need to) This prob-
lem does not require any extensive work.

Figure 4.2: Half a harmonic oscillator

Particle in a 1D finite box

This problem is a little more complicated. From quantum mechnanics we
know that the solution in the box region where the potential is zero will
be wavelike. In the barrier region we also know that the solutions will be
exponentially decaying.

The potential is

V (x) =





V if x <= 0
0 if 0 < x < a
V if x >= a

The solutions are

Ψ1(x) = Aeβx + Be−βx

Ψ2(x) = Ceikx + De−ikx

Ψ3(x) = Feβx + Ge−βx



39

Figure 4.3: Cartoon of a one dimensional finite barrier potential

where β =
√

2m(V−ε)

h̄2 and k =
√

2mε
h̄2 . By finiteness of the wavefunction

B = 0. In addition F = 0. The wavefunction must not blow up in the
barrier region. Must be well behaved.

This leaves us with

Ψ1(x) = Aeβx (4.6)
Ψ2(x) = Ceikx + De−ikx (4.7)
Ψ3(x) = Ge−βx (4.8)

Apply the boundary conditions and matching conditions as follows

Ψ1(0) = Ψ2(0) → A = C + D

Ψ
′
1(0) = Ψ

′
2(0) → Aβ = ikC − ikD

Ψ2(a) = Ψ3(a) → Ceika + De−ika = Ge−βa

Ψ
′
2(a) = Ψ

′
3(a) → ikCeika − ikDe−ika = −βGe−βa

This leads to a system of four equations and four unknowns (A,C,D,G).
Arranged in matrix form it looks like




1 −1 −1 0
β −ik ik 0
0 eika e−ika −e−βa

0 ikeika −ike−ika βe−βa







A
C
D
G


 = 0
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Figure 4.4: Sketch showing the behavior of the wavefunctions in the finite
box model

Here either we get the trivial solution where A=C=D=G=0 or that the
determinant of the large matrix is zero.

∣∣∣∣∣∣∣∣

1 −1 −1 0
β −ik ik 0
0 eika e−ika −e−βa

0 ikeika −ike−ika βe−βa

∣∣∣∣∣∣∣∣
= 0 (4.9)

Simplify this determinant. This can be done a number of ways. One possible
path is shown.

−ik(row 3) + (row 4) → (row4)

The determinant becomes
∣∣∣∣∣∣∣∣

1 −1 −1 0
0 (β − ik) (β + ik) 0
0 eika e−ika −e−βa

0 0 −2ike−ika (β + ik)e−βa

∣∣∣∣∣∣∣∣
= 0

Followed by

− 1
β − ik

(row 2) → (row 2)

e−ika(row 3) → (row 3)
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yielding
∣∣∣∣∣∣∣∣∣

1 −1 −1 0
0 −1 − (β+ik)

(β−ik) 0

0 1 e−2ika −e−a(β+ik)

0 0 −2ike−ika (β + ik)e−βa

∣∣∣∣∣∣∣∣∣
= 0

Additional steps

(row 2) + (row 3) → (row 3)
−(row 2) → (row 2)

giving

∣∣∣∣∣∣∣∣∣∣

1 −1 −1 0
0 1 (β+ik)

(β−ik) 0

0 0 e−2ika − (β+ik)
(β−ik) −e−a(β+ik)

0 0 −2ike−ika (β + ik)e−βa

∣∣∣∣∣∣∣∣∣∣

= 0

Finding this determinant basically means finding the sub 2x2 determinant
∣∣∣∣∣
e−2ika − (β+ik)

(β−ik) −e−a(β+ik)

−2ike−ika (β + ik)e−βa

∣∣∣∣∣ = 0

This is the same as
(

e−2ika − (β + ik)
(β − ik)

)
(β + ik)e−βa − 2ike−ika−a(β+ik) = 0

(β + ik)e−2ika−βa − (β + ik)2

(β − ik)
e−βa − 2ike−2ika−βa = 0

Drop the e−βa term to give

(β + ik)e−2ika − (β + ik)2

(β − ik)
− 2ike−2ika = 0

(β + ik − 2ik)e−2ika =
(β + ik)2

(β − ik)

(β − ik)2e−2ika = (β + ik)2
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Multiply both sides by eika

(β − ik)2e−ika = (β + ik)2eika

(β + ik)2eika − (β − ik)2e−ika = 0

Continue simplifying

(β2 + 2iβk − k2)eika − (β2 − 2iβk − k2)e−ika = 0

(β2 − k2)(eika − e−ika) + 2iβk(eika + e−ika) = 0

2i(β2 − k2)sin(ka) + 4iβkcos(ka) = 0

(β2 − k2)sin(ka) + 2βkcos(ka) = 0

(β2 − k2)tank(ka) + 2βk = 0

Giving our final expression

tan(ka) = 2βk
(k2−β2)

(4.10)

where β =
√

2m(V−ε)

h̄2 and k =
√

2mε
h̄2 . If we replace this into the above

equation we get the equation

tan
(√

2mε
h̄2 a

)
= 2

√
ε(V−ε)

2ε−V (4.11)

Solve this numerically to get all allowed values of the energy (i.e. find the
roots).

Exercises

1. Consider the same GaAs quantum wells in the previous exercise (well
widths of 4 nm and 10 nm). Assume the effective mass of the electron
is 0.067mo. Also assume, now rather than an infinite box, we have a
finite box with a 0.3 eV barrier. Calculate the energy of electron states
trapped in the box. Increase the barrier to 1 eV. Calculate the energy
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of electron states trapped in the box (also known as bound states).
This can be done using your favorite mathematical modeling software
such as Mathcad, Matlab, Mathematica etc. . ..

2 Dimensions of confinement

Paticle in an infinite circular box

The Schrodinger equation here is

− h̄2

2m∇2Ψ + V Ψ = εΨ

The potential is

V (x) =
{

0 if r < a
∞ if r >= a

In the region where the potential is zero

− h̄2

2m
∇2Ψ = εΨ

where ∇2, the Laplacian in r, θ coordinates, is

∇2 =
1
r

∂

∂r

(
r

∂

∂r

)
+

1
r2

∂2

∂θ2
(4.12)

Insert this into the main equation to get

− h̄2

2m

(
1
r

∂

∂r

(
r
∂Ψ
∂r

)
+

1
r2

∂2Ψ
∂θ2

)
− εΨ = 0

1
r

∂

∂r

(
r
∂Ψ
∂r

)
+

1
r2

∂2Ψ
∂θ2

+
2mε

h̄2 Ψ = 0

1
r

∂

∂r

(
r
∂Ψ
∂r

)
+

1
r2

∂2Ψ
∂θ2

+ k2Ψ = 0

Multiply through by r2 to get

r
∂

∂r

(
r
∂Ψ
∂r

)
+ (kr)2Ψ +

∂2Ψ
∂θ2

= 0

Note that you have part of this expression depends only on r and the other
exclusively on θ. Assume a form of the wavefunction that is Ψ = x(r)y(θ).
As shorthand just denote Ψ by xy. Let’s evaluate the first two terms in the
main equation above.
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Figure 4.5: Mathcad sheet showing numerical solutions to the particle in a
finite box problem
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Figure 4.6: Cartoon of the infinite circular potential

• ∂Ψ
∂r = yx

′

•
(
r ∂Ψ

∂r

)
= yrx

′

• ∂
∂r

(
r ∂Ψ

∂r

)
= yrx

′′
+ yx

′

• r ∂
∂r

(
r ∂Ψ

∂r

)
= yr2x

′′
+ yrx

′

Replace the last item into the above main equation to get

yr2x
′′

+ yrx
′
+ (kr)2xy + xy

′′
= 0

Divide through by xy to get

r2x
′′

x
+

rx
′

x
+ (kr)2 +

y
′′

y
= 0 (4.13)

Solve for y first.

y
′′

y
= −

(
r2x

′′

x
+

rx
′

x
+ (kr)2

)
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let

m2 =

(
r2x

′′

x
+

rx
′

x
+ (kr)2

)

which you notice is independent of θ and so to y appears as a constant.
Replacing this into the above expression gives

y
′′

= −m2y (4.14)
or

y
′′

+ m2y = 0

leading to a general solution of the form

y(θ) = Aeimθ + Be−imθ (4.15)

Now given an explicit form for y(θ) (equation 14) replace this back into
equation 13. This is because ultimately what we want is x(r). Equation 13
becomes

r2x
′′

x
+

rx
′

x
+ (kr)2 −m2 = 0

x
′′

x
+

x
′

rx
+

(
k2 − m2

r2

)
= 0

leading to

x
′′

+ x
′

r + x
(
k2 − m2

r2

)
= 0 (4.16)

which is the normal Bessel equation. Alternatively, to make this look like
something you look up in a book, let z = kr. This results in

z2 d2x
dz2 + z dx

dz + x(z2 −m2) = 0 (4.17)

Solutions to this equation (for integer m) take the general form

x(r) = AJm(z) + BYm(z) (4.18)

which is a linear combination of Jm(z) called Bessel functions of the first
kind and Ym(z) called Bessel functions of the second kind. Note that Bessel
functions of the first kind are well behaved at the origin but Bessel functions
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of the second kind will diverge. Therefore, to obtain physically relevant
solutions drop the Bessel functions of the second kind and only consider
Jm(z).

x(r) = AJm(z) (4.19)

Finally, from our other boundary conditions, Jm(ka) = 0 Therefore ka = α

which is the root of the Bessel function. Since k =
√

2mε
h̄ and z = kr, the

eigenenergies that we desire are

ε = h̄2α2

2ma2 (4.20)

where a is the radius of the circle, m is the mass of the particle and α are
the roots (first, second, third etc...) of the Bessel function. (Please note
that the m in the denominator is the mass of the particle, not the order of
the Bessel function. Sorry for the notation glitch)

Exercises

1. Consider an InP nanowire of diameter 10, 15 and 20 nm (see the Lieber
paper below). Assume me = 0.078mo and mh = 0.4mo. Calculate the
energy of the first 3 optical transitions by adding these particle in a
circular box energies to the bulk room temperature band gap of InP.
Ignore the length of the wire for simplicity. What colors do you expect
these wires to emit, UV, visible, IR?

2. Consider a quantum corral as described below in the Eigler paper.
Assume the diameter of the corral is 71.3Å. Assume the effective
mass of the electron is me = 0.38mo. Calculate the first 3 electron
energy levels of this corral.

3. For the same quantum corral above, draw the first three wavefunctions
of the system. Use your favorite mathematical modeling program such
as Mathcad, Matlab, Mathematica etc. . ..

Relevant reading

• “Size dependent photoluminescence from single indium phosphide nanowires”
M. S. Gudiksen, J. Wang, C. M. Lieber J. Phys. Chem. B 106, 4036
(2002).

• “Confinement of electrons to quantum corrals on a metal surface” M.
F. Crommie, C. P. Lutz, D. M. Eigler Science, 262, 218 (1993).
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• “Quantum corrals” M. F. Crommie, C. P. Lutz, D. M. Eigler, E. J.
Heller Physica D, 83, 98 (1995).

3 Dimensions of confinement

Particle in an infinite spherical box

This is a more complicated problem. Two approaches to a solution are
illustrated with one leading to what are know as spherical Bessel function
and the other to a solution involving regular Bessel functions of half integer
order. The Schrodinger equation is

− h̄2

2m∇2Ψ + V Ψ = εΨ

The potential is

V (x) =
{

0 if r < a
∞ if r >= a

In the region inside the sphere where V = 0, this reduces to

− h̄2

2m
∇2Ψ = εΨ (4.21)

where

∇2 =
1
r2

∂

∂r

(
r2 ∂

∂r

)
+

1
r2sin(θ)

∂

∂θ

(
sin(θ)

∂

∂θ

)
+

1
r2 sin2(θ)

∂2

∂φ2
(4.22)

If replaced into the above equation, multiply by 2mr2 on both sides to
simplify giving

−h̄2r2∇2Ψ = 2mr2εΨ

Expanded out this looks like

−h̄2r2

(
1
r2

∂

∂r

(
r2 ∂Ψ

∂r

)
+

1
r2sin(θ)

∂

∂θ

(
sin(θ)

∂Ψ
∂θ

)
+

1
r2 sin2(θ)

∂2Ψ
∂φ2

)

= 2mr2εΨ

−h̄2

(
∂

∂r

(
r2 ∂Ψ

∂r

)
+

1
sin(θ)

∂

∂θ

(
sin(θ)

∂Ψ
∂θ

)
+

1
sin2(θ)

∂2Ψ
∂φ2

)

= 2mr2εΨ
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Figure 4.7: Cartoon of the infinite spherical potential
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Rearrange to give

− h̄2 ∂

∂r

(
r2 ∂Ψ

∂r

)
− 2mr2εΨ

− h̄2

(
1

sin(θ)
∂

∂θ

(
sin(θ)

∂

∂θ

)
− 1

sin2(θ)
∂2

∂φ2

)
Ψ = 0

where recall that the third term looks familiar. Basically

L̂2 = −h̄2

(
1

sin(θ)
∂

∂θ

(
sin(θ)

∂

∂θ

)
− 1

sin2(θ)
∂2

∂φ2

)
(4.23)

Our main equation then becomes

−h̄2 ∂

∂r

(
r2 ∂Ψ

∂r

)
− 2mr2εΨ + L̂2Ψ = 0

Furthermore, recall that L̂2Ψ = h̄2l(l + 1) leading to

−h̄2 ∂

∂r

(
r2 ∂Ψ

∂r

)
− 2mr2εΨ + h̄2l(l + 1)Ψ = 0

Simplify this

−h̄2 ∂

∂r

(
r2 ∂Ψ

∂r

)
−Ψ

(
2mr2ε− h̄2l(l + 1)

)
= 0

∂

∂r

(
r2 ∂Ψ

∂r

)
+ Ψ

(
2mε

h̄2 r2 − l(l + 1)
)

= 0

Let k2 = 2mε
h̄2 giving

∂

∂r

(
r2 ∂Ψ

∂r

)
+ Ψ

(
k2r2 − l(l + 1)

)
= 0 (4.24)

At this point there are two ways to proceed from this equation. The first
will lead to solutions involving so called “spherical” Bessel functions. The
other will lead to solutions involving regular or normal Bessel functions of
half integer order. Spherical and half integer order, normal, Bessel functions
are proportional to each other so ultimately the solutions are the same.
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Solution with spherical Bessel functions

Let Ψ = x(r)y(θ, φ) The we can evaluate the following items using x and y
as shorthand for x(r) and y(θ, φ)

• ∂Ψ
∂r = yx

′

• r2 ∂Ψ
∂r = yr2x

′

• ∂
∂r

(
r2 ∂Ψ

∂r

)
= y(r2x

′′
+ 2rx

′
)

Replace the last item into equation 23 giving

y(r2x
′′

+ 2rx
′
) + xy(k2r2 − l(l + 1)) = 0

Divide out y and continue simplifying.

r2x
′′

+ 2rx
′
+ x(k2r2 − l(l + 1)) = 0

Let z = kr (therefore dr = dz
k and dr2 = dz2

k2 . these will be useful in a
moment) and replace into the above expression

r2x
′′

+ 2rx
′
+ x(z2 − l(l + 1)) = 0

r2 d2x

dr2
+ 2r

dx

dr
+ x(z2 − l(l + 1)) = 0

k2r2 d2x

dz2
+ 2rk

dx

dz
+ x(z2 − l(l + 1)) = 0

or

z2 d2x
dz2 + 2z dx

dz + x(z2 − l(l + 1)) = 0 (4.25)

This is the general spherical Bessel equation whose solutions take the form:

x(r) = Ajl(z) + Byl(z) (4.26)

where jl(z) are spherical Bessel functions of the first kind and yl(z) are
spherical Bessel functions of the second kind (also known as spherical Neu-
mann functions written as nl(z)). Note that jl(z) is finite and well behaved
at the origin while yl(z) diverges. So to get a physical solution, one must
drop the spherical Bessel functions of the second kind leaving

x(r) = Ajl(z) (4.27)
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The equation and its solutions can be looked up in a text like “Handbook of
Mathematical Functions” Abramowitz and Stegun, pg 437. Note that these
spherical Bessel functions are denoted by little jn(z) as opposed to big Jn(z)
which are normal Bessel functions (same with spherical Bessel functions of
the second kind). Furthermore, spherical bessel functions are related to half
integer Bessel functions, a subclass of normal Bessel functions as shown at
the end of this chapter. Examples of the spherical Bessel function solutions
are

• j0(z) = sin(z)
z

• j1(z) = sin(z)
z2 − cos(z)

z

• j2(z) = 3 sin(z)
z3 − 3 cos(z)

z2 − sin(z)
z

and so forth.

Solution with half integer (normal) Bessel functions

Alternatively assume that the wavefunction has the form ψ = x(r)
r y(θ, φ) =

R(r)y(θ, φ) Replace this in equation 24 and start simplifying.

∂

∂r

(
r2 ∂Ψ

∂r

)
+ Ψ(k2r2 − l(l + 1)) = 0

We need the following bits of information

• ∂Ψ
∂r = yx

(
− 1

r2

)
+ y

r x
′

• r2 ∂Ψ
∂r = −xy + ryx

′

• ∂
∂r

(
r2 ∂Ψ

∂r

)
= −x

′
y + x

′′
ry + x

′
y = x

′′
ry

Replace the last item into our main equation

x
′′
ry +

xy

r
(k2r2 − l(l + 1)) = 0

Get rid of y

rx
′′

+
x

r
(k2r2 − l(l + 1)) = 0

x
′′

+ x

(
k2 − l(l + 1)

r2

)
= 0
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Now let z = kr and x =
√

zφ(z)
(
dr = dz

k

)
giving

d2x

dr2
+ x

(
k2 − l(l + 1)

r2

)
= 0

k2 d2x

dz2
+
√

zφ

(
k2 − k2l(l + 1)

z2

)
= 0

Use the following bits of information

• dx
dz =

√
zφ

′
+ φ1

2z−
1
2

• d2x
dz2 =

√
zφ

′′
+ φ

′ 1
2z−

1
2 + 1

2

(
φ

(
−1

2

)
z−

3
2 + z−

1
2 φ

′)

• d2x
dz2 =

√
zφ

′′
+ φ

′
z−

1
2 − 1

4φz−
3
2

especially the last term to get

k2
(√

zφ
′′

+ φ
′
z−

1
2 − φ

4
z−

3
2

)
+
√

zφ

(
k2 − k2l(l + 1)

z2

)
= 0

Drop k2 and continue simplifying

√
zφ

′′
+ φ

′
z−

1
2 − φ

4
z−

3
2 +

√
zφ

(
1− l(l + 1)

z2

)
= 0

zφ
′′

+ φ
′ − φ

4z
+ zφ

(
1− l(l + 1)

z2

)
= 0

z2φ
′′

+ zφ
′ − φ

4
+ z2φ

(
1− l(l + 1)

z2

)
= 0

z2φ
′′

+ zφ
′
+ φ

(
−1

4
+ z2 − l(l + 1)

)
= 0

z2φ
′′

+ zφ
′
+ φ

(
z2 −

(
1
4

+ l(l + 1)
))

= 0

Note that the term in the inner parenthesis is equal to
(
l + 1

2

)2
This sim-

plifies the full expression to

z2φ
′′

+ zφ
′
+ φ

(
z2 −

(
l +

1
2

)2
)

= 0

Let n =
(
l + 1

2

)

z2φ
′′

+ zφ
′
+ φ(z2 − n2) = 0 (4.28)
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This is the normal Bessel function equation. In this case where we have half-
integer orders n then general solutions for φ are linear combinations of half
integer Bessel functions. Furthermore, since x(r) =

√
zφ(z) and R(r) = x(r)

r
the general radial solution, R(r), is

φ(z) = AJn(z) + BJn(z)

x(r) =
√

z
(
A
′
Jn(z) + B

′
Yn(z)

)

R(r) = 1√
z

(
A
′
Jn(z) + B

′
Yn(z)

)
(4.29)

or more explicitly

x(r) =
√

z
(
AJ(l+ 1

2)
(z) + BY(l+ 1

2)
(z)

)
(4.30)

We can look up the equation and its solution in a book like Abramowitz
and Stegun but since Yn diverges near the origin so it should be dropped
immediately. This leaves

R(r) = A
′

√
z
J(l+ 1

2)
(z) (4.31)

Summary

So in the end, regardless of how you came to the solution, to find the eigneval-
ues we need to find the roots, α, of either

jl(kr) = 0 spherical Bessel (4.32)

J(l+ 1
2)

(kr) = 0 half integer Bessel (4.33)

So on finding the root one also has α = kr and from this the desired value
of k. Note that for each value of l there are an infinite number of roots. The
eigenvalues are then

ε =
h̄2k2

2m
(4.34)

ε = h̄2α2

2mr2 (4.35)
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Finally, the relation between spherical Bessel functions and half integer
Bessel functions are:

jl(z) =
√

π

2z
J(l+ 1

2)
(z) (4.36)

yl = nl(z) =
√

π

2z
Y(l+ 1

2)
(z) (4.37)

So either approach to solving the problem is valid. Its your choice on what’s
most convenient.

Exercises

1. Calculate the eigenenergies of a free electron (mass mo) in a 5 nm
diameter sphere for l = 0, 1, 2, 3 using the lowest root of the Bessel
function.

2. Calculate the eigenenergies of a free electron (mass mo) in a 5 nm
diameter sphere for l = 0, 1, 2, 3 using the second lowest root of the
Bessel function.

3. Calculate the eigenenergies of a free electron (mass mo) in a 5 nm
diameter sphere for l = 0, 1, 2, 3 using the third lowest root of the
Bessel function.

4. Summarize all these energies in ascending order of energy in one table.

5. Use Mathcad, Matlab, Mathematica or your favorite mathematical
modeling program to draw the radial wavefunctions corresponding to
the lowest three energies in your table. Don’t forget to normalize the
wavefunction.

6. Calculate the first 7 energy levels of a free electron in a 5 nm length
three dimensional box. (All sides of the cube have length of 5 nm).
Compare these results to the particle in a sphere case.

7. Qualitatively compare the size dependence of the energies for a particle
in a 1D box (well), an infinite circular potential (wire) and a particle
in an infinite spherical box (dot). Basically ask yourself how all these
energies scale with r or a. Any similarities? Now take a look a Yu et.
al., Nature Materials 2, 517 - 520 (01 Aug 2003) Letters and comment
on it.
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8. Often enough there is a Coulomb attraction between the electron and
hole in a confined system. As a consequence the energies one cal-
culates via particle in a box type expression are often corrected for
this Coulomb attraction. Think back to the basic expression for the
Coulomb energy and qualitatively explain why this term is important
or not important. Hint: think of how these energies all scale with r or
a.



Chapter 5

Density of states

The idea here is that while the confinement of an axis gives rise to discrete
energies (as we saw in the previous section on confinement), in cases such
as the quantum well and quantum wire, there are additional states along
the unconfined axes (degrees of freedom). Here it is not practical to try
and calculate the energies of each state since they are actually continuous
bands or energies. As a consequence one way to get an idea of what the
energies look like is to perform the following density of states argument. So
when put together with the confined energies from the last section, these
density of states calculations provide a more thorough description of what
the electronic structure of 3D, 2D, 1D and 0D materials look like.

3 Dimensions (bulk)

Consider the volume in “k” space

Vk =
4
3
πk3

where for a particle in this sphere

kx =
2π

Lx

ky =
2π

Ly

kz =
2π

Lz

Note that the 2π arises from the constraints of a periodic boundary condition
as opposed to the more general nπ where n = 0, 1, 2, 3 . . .. The volume of a

57
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given mode is then kxkykz The number of modes (N) in the sphere are then

N =
Vk

kxkykz
=

4
3πk3

8π3
LxLyLz

Say the particle is an electron and we consider spin (up and down), then we
multiply N by 2.

N
′

= 2N = 2
4
3πk3

8π3
LxLyLz

=
k3

3π2
LxLyLz total number of states in sphere

Consider the density

ρ =
N
′

LxLyLz
=

k3

3π2
number of states/unit volume

Now consider the energy density defined as

ρ
′
=

dρ

dε
=

d
(

k3

3π2

)

dε
=

1
3π2

dk3

dε
(5.1)

where recall k =
√

2mε
h̄2 for a free electron or alternatively k3 =

(
2mε
h̄2

) 3
2 .

The expression becomes

ρ
′
=

1
3π2

(
2m

h̄2

) 3
2 dε

3
2

dε

ρ
′
=

1
3π2

(
2m

h̄2

) 3
2 3

2
ε

1
2

ρ
′
3D = 1

2π2

(
2m
h̄2

) 3
2 √ε (5.2)

This is the “density of states” in 3 dimensions. Note the square root depen-
dence on energy

Exercises

1. Calculate the 3D density of states for free electrons with energy 0.1
eV. Express your answer in terms of eV and cm3.

2. Assume the electron resides in a non-zero potential V . Express the 3D
density of states in this situation. Hint, just alter the expression for k
below equation 5.1.
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Figure 5.1: Density of states in a 3D material (bulk)

2 Dimensions (well)

Here we have 1 dimension that is quantized. Let’s assume its the z direction.
The total energy of this system is a sum of the energy along the quantized
direction + the energy along the other 2 “free” directions. It is expressed as

εtot =
h̄2k2

z

2m
+

h̄2k2

2m
= εn + εx,y (5.3)

where k2 = k2
x + k2

y and kz = nπ
Lz

Consider now an area in k space

Ak = πk2

where for the particle

kx =
2π

Lx

ky =
2π

Ly

The area of a given mode is then kxky with the total number of modes (N)
in the area being

N =
πk2

4π2
LxLy =

k2LxLy

4π
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Again if the particle is an electron and we consider spin, multiply by 2 to
get

N
′
= 2N =

k2LxLy

2π
total number of states in area

Consider now a density

ρ =
N
′

LxLy
=

k2

2π

where recall that k =
√

2mε
h̄2 . Replacing this above gives

ρ =
mε

h̄2π
number of states per unit area

Now consider the energy density

ρ
′
=

dρ

dε
=

m

h̄2π

This is the energy density of the subband for a given kz(or εn). For each suc-
cessive kz there will be an additional m

h̄2π
term and hence another subband.

Therefore the density of states is written

ρ
′
2D = m

h̄2π

∑
n Θ(ε− εn) (5.4)

where Θ is the Heavyside function.

Exercises

1. Calculate the 2D density of states for free electrons with energy 0.1
eV. Consider only the lowest subband. Express your answer in eV and
cm3 units.

1 Dimension (wire)

Consider now the situation where there are 2 dimensions confined and only
1 degree of freedom (say the x direction). The total energy of the system
can be written as

εtot =
h̄2k2

z

2m
+

h̄2k2
y

2m
+

h̄2k2

2m
= εn + εm + εx (5.5)
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Figure 5.2: Density of states in a 2D material (quantum well)

where k = kx = 2π
Lx

Furthermore along the confined directions, kz = nπ
Lz

,
ky = mπ

Ly
and m, n are integers. Consider a length 2k. The number of modes

along this length is

N =
2k

kx
=

2k(
2π
Lx

) =
kLx

π
number of state along the line

Now if we consider an electron again, ensure to take into account the spin
degeneracy

N
′
= 2N =

2kLx

π

Now a density is

ρ =
N
′

Lx
=

2k

π
=

2
π

√
2mε

h̄2 number of states per unit length

Consider the energy density

ρ
′

=
dρ

dε
=

2
π

√
2m

h̄2

d
√

ε

dε
=

2
π

√
2m

h̄2

1
2
ε−

1
2

=
1
π

√
2m

h̄2

1√
ε

(5.6)
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This is the energy density for a given n,m value or (εn, εm combination).
The complete expression taking into account all m,n combinations is

ρ
′
1D = 1

π

√
2m
h̄2

∑
n,m

1√
ε−εn,m

Θ(ε− εn,m) (5.7)

where again, Θ is the Heavyside function. Notice the inverse square root
dependence of the density of states with energy.

Figure 5.3: Density of states in a 1D material (quantum wire)

Exercises

1. Calculate the 1D density of states for free electrons with energy 0.1 eV
above εn,m. Consider only the lowest subband. Express your result in
units of eV and cm3.

0 Dimension (dot)

Here since all three dimensions are confined the density of states is basically
a series of delta functions. The total energy of the system is

εtot =
h̄2k2

x

2m
+

h̄2k2
y

2m
+

h̄2k2
z

2m
= εm + εn + εo (5.8)

where m,n, o are integers and kx = mπ
Lx

, ky = mπ
Ly

, kz = mπ
Lz

The density of
states is

ρ
′
0D = δ (ε− εm,n,o) (5.9)
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Figure 5.4: Density of states in a 0D material (quantum dot)

Exercises

1. Compare and contrast the density of states in the 0D case to the
previous 3D, 2D and 1D cases.
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Chapter 6

More density of states

Density of states in the conduction band

To do this calculation we need to know the probablility that an electron will
occupy a given state of energy ε. This probability, Pe(ε), is refered to as the
Fermi Dirac distribution. In addition, we need to know the density of states
(ρ
′
) which we calculated in the last section. Recall that this density of states

has units of number per unit volume per unit energy. Therefore ρ
′
dε is the

number of states per unit volume. The number of occupied states at a given
energy per unit volume (or alternatively the concentration of electrons at a
given energy) is therefore

ne(ε) = Pe(ε)ρ
′
(ε)dε

where the Fermi Dirac distribution is

Pe(ε) =
1

1 + e
ε−εF

kT

(6.1)

Here εF is the Fermi energy.
The total concentration of electrons in the conduction band is therefore

the integral over all available energies

ntot =
∫ ∞

εC

Pe(ε)ρ
′
(ε)dε (6.2)

where εC is the energy where the conduction band starts. Consider the
density of states we just derived for a 3D (bulk) material in the previous
section, ρ

′
3D.

ρ
′
3D =

1
2π2

(
2me

h̄2

) 3
2 √

ε

65
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Now rather than have the origin of the energy start at 0, start it where the
conduction band begins (εC). This expression can then be recast as

ρ
′
3D =

1
2π2

(
2me

h̄2

) 3
2 √

ε− εC (6.3)

Replace this and the Fermi Dirac distribution into the above expression for
the total concentration of electrons in the conduction band to get

ntot =
∫ ∞

εC

1

1 + e
ε−εF

kT

1
2π2

(
2me

h̄2

) 3
2 √

ε− εCdε

=
1

2π2

(
2me

h̄2

) 3
2

∫ ∞

εC

1

1 + e
ε−εF

kT

√
ε− εCdε

= A

∫ ∞

εC

1

1 + e
ε−εF

kT

√
ε− εCdε

where A = 1
2π2

(
2me

h̄2

) 3
2 . Note at this point that someone has already solved

this integral and one can just look it up. The integral is called the Fermi
integral or Fermi Dirac integral. It is defined as follows and its solutions
labeled F 1

2
(η) can be looked up.

F 1
2
(η) =

∫∞
0

√
η

1+eη−µ dη

However, to stay instructive let’s just consider the case where ε − εF >>
kT . In this case the exponential in the denominator of the Fermi Dirac
distribution will dominate and the expression basically becomes

1

1 + e
ε−εF

kT

' 1

e
ε−εF

kT

= e−
ε−εF

kT

which has the Boltzman distribution form. Our expression for ntot becomes

ntot = A

∫ ∞

εC

e−
ε−εC

kT
√

ε− εC dε (6.4)

Now change variables and let x = ε−εC
kT such that ε = εC + xkT and dε =

kTdx. Note also that the limits of integration will change accordingly. This
leads to

ntot = A

∫ ∞

0
e−

1
kT

[(ε−εC)+(εC−εF )](xkT )
1
2 kTdx

= A(kT )
3
2 e−

εC−εF
kT

∫ ∞

0
e−xx

1
2 dx
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The last integral is a common function called the Gamma function. It is
defined as follows

Γ(n) =
∫ ∞

0
e−xxn−1dx

and its values can be looked up in most reference books. In our case we
have Γ

(
3
2

)
. Therefore ntot can be expressed as

nC ≡ ntot = A(kT )
3
2 e−

εC−εF
kT Γ

(
3
2

)

To be consistent with other texts, we use nC in lieu of ntot at this point
and also define NC = A(kT )

3
2 Γ

(
3
2

)
. This leads to the common textbook

expression

nC = NCe−
εC−εF

kT (6.5)

This is the expression for the effective density of states of the conduction
band.

Density of states in the valence band

The way this is calculated mirrors the approach for the conduction band
with a few minor changes. Again, we need the probability of finding a hole
at a given energy Ph(ε). Likewise we need the density of states calculated
in the previous section. We will calculate the number of holes at a given
energy per unit volume (or concentration of holes at a given energy)

nh(ε) = Ph(ε)ρ
′
(ε)dε

where we use the relationship

Pe(ε) + Ph(ε) = 1
or

Ph(ε) = 1− Pe(ε)

This lead to

Ph(ε) = 1− 1

1 + e
ε−εF

kT

(6.6)
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The density of states is

ρ
′
3D =

1
2π2

(
2mh

h̄2

) 3
2 √

εV − ε (6.7)

where εV is the energy where the valence band starts. Consequently the total
concentration of holes in the valence band is the integral over all energies.

ptot =
∫ εV

−∞
Ph(ε)ρ

′
(ε)dε

=
∫ εV

−∞

(
1− 1

1 + e
ε−εF

kT

) (
1

2π2

) (
2mh

h̄2

) 3
2 √

εV − ε dε

For notational convenience let B = 1
2π2

(
2mh

h̄2

) 3
2 . This leads to

ptot = B

∫ εV

−∞

(
1− 1

1 + e
ε−εF

kT

)√
εV − ε dε

Since, generally speaking ε < εF

ptot = B

∫ εV

−∞

(
1− 1

1 + e−
εF−ε

kT

)√
εV − ε dε

Approximate the stuff in parenthesis through the binomial expansion keep-
ing only the first 2 terms.

1
1 + x

' 1− x + x2 − x3 + x4 + . . .

1

1 + e−
εF−ε

kT

' 1− e−
εF−ε

kT + . . .

Therefore
(

1− 1

1 + e−
εF−ε

kT

)
' 1−

(
1− e−

εF−ε

kT

)
= e−

εF−ε

kT

Replacing this in the ptot expression gives

ptot = B

∫ εV

−∞
e−

εF−ε

kT
√

εV − ε dε
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As with the conduction band case earlier, make a change of variables by
letting x = εV −ε

kT as well as ε = εV − kTx and dε = −kTdx. Note that the
limits of integration change accordingly resulting in

ptot = B

∫ 0

∞
e−

1
kT

[(εF−εV )+(εV −ε)]
√

kTx(−kT )dx

= B

∫ ∞

0
e−

εF−εV
kT e−

εV −ε

kT (kT )
3
2 x

1
2 dx

= B(kT )
3
2 e−

εF−ε

kT

∫ ∞

0
e−xx

1
2 dx

Recall that the last integral above is the Gamma function. We get the
following expression upon recognizing this

ptot = B(kT )
3
2 e−

εF−ε

kT Γ
(

3
2

)

To be consistent with common notation and other texts ptot can be expressed
as

pV ≡ ptot = Nve
− εF−εV

kT (6.8)

where Nv = B(kT )
3
2 Γ

(
3
2

)
. The last expression gives the effective density of

states for the valence band.

Summary

Fermi level of an intrinsic semiconductor

If the bulk semiconductor is intrinsic, there has been no doping of the ma-
terial and hence no extra electrons or holes anwywhere. In this situation

nC = pV

where previously we found that

nC = NCe−
εC−εF

kT and NC = A(kT )
3
2 Γ

(
3
2

)

pV = NV e−
εF−εV

kT and NV = B(kT )
3
2 Γ

(
3
2

)

This leads to

NCe−
εC−εF

kT = NV e
−εF−εV

kT

or

Ae−
εC−εF

kT = Be−
εF−εV

kT
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Figure 6.1: Sketch of the electron and hole distribution functions, their
density of states and their population at the conduction and valence band
edges.
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where A = 1
2π2

(
2me

h̄2

) 3
2 and B = 1

2π2

(
2mh

h̄2

) 3
2 and ultimately reduces to

m
3
2
e e−

εC−εF
kT = m

3
2
h e−

εF−εV
kT

e−
εC−εF

kT e
εF−εV

kT m
3
2
e = m

3
2
h

e
1

kT
(−εC+εF +εF−εV ) =

(
mh

me

) 3
2

e
2εF
kT e−

εC+εV
kT =

(
mh

me

) 3
2

e
2εF
kT =

(
mh

me

) 3
2

e
εC+εV

kT

ln
(

e
2εF
kT

)
= ln

(
mh

me

) 3
2

+ ln
(

e
εC+εV

kT

)

2εF

kT
= ln

(
mh

me

) 3
2

+
εC + εV

kT

2εF = kT ln
(

mh

me

) 3
2

+ εC + εV

εF =
kT

2
ln

(
mh

me

) 3
2

+
εC + εC

2
This yields the final expression

εF = εC+εC
2 + 3

4kT ln
(

mh
me

) 3
2 (6.9)

One can therefore see that at T = 0 the Fermi energy of an intrinsic semi-
conductor is at the halfway point between the top of the valence band and
the bottom of the conduction band. Note also that since generally speaking
mh > me the temperature dependent term is positive and slowly increases
the Fermi level position with increasing temperature. To a good approxima-
tion however, the Fermi level is at the midway point between valence and
conduction bands.

Exercises

• Calculate the intrinsic Fermi level of silicon at 0K, 10K, 77K, 300K
and 600K. Note that Eg = Ec + Ev and assume me = 1.08mo and
mh = 0.55mo. Leave the answer in terms of Eg of if you desire look
up the actual value of Eg and express the final answers in units of eV.
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Figure 6.2: Sketch showing the Fermi level position at 0 degrees halfway
between the conduction band and valence band positions.



Chapter 7

Even more density of states

In the previous section we ran through the calculation for the conduction
and valence band density of states for a 3D (bulk) material. In this section
we repeat the same calculations for materials with lower dimensions. In
particular we do this for 2D and 1D materials that are representative of
quantum wells and quantum wires respectively.

Density of states in the conduction band: 2D

We start with the Fermi Dirac distribution for electrons and also the density
of states (ρ

′
2D) that we derived in an earlier section. Recall that

ρ
′
2D =

me

h̄2π

∑
n

Θ(ε− εn)

Consider only one of the subbands. For example, we could choose the first
band.

In this case the density of states simplifies to

ρ
′
2D =

me

h̄2π

Now recall from the previous section that the number of states at a given
energy per unit volume (or the concentration of electrons at a given energy)
is

ne(ε) = Pe(ε)ρ
′
(ε)dε

The total concentration of electrons in this first subband is the integral over
all available energies. Rather than use ntot as before let’s just stick to nc

73
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Figure 7.1: Conduction band density of states for a 2D material. The nth
band is shaded to distinguish it from the other subbands.

from the start

nc =
∫ ∞

εC

Pe(ε)ρ
′
(ε)dε (7.1)

where Pe(ε) = 1

1+e
ε−εF

kT

is the Fermi Dirac distribution. Putting everything

together we get

nC =
∫ ∞

εC

(
1

1 + e
ε−εF

kT

)
me

h̄2π
dε

=
me

h̄2π

∫ ∞

εC

1

1 + e
ε−εF

kT

dε

Since the band really begins at εn as opposed to εC like in the bulk the
integral changes from

∫ ∞

εC

→
∫ ∞

εn

leading to

nC =
me

h̄2π

∫ ∞

εn

dε

1 + e
ε−εF

kT

if now ε− εF >> kT

nC =
me

h̄2π

∫ ∞

εn

e−
ε−εF

kT dε = − mekT

h̄2π
e−

ε−εF
kT

∣∣∣∣
∞

εn
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This leads to the final expression for the carrier density of the nth subband,
which in our example we assumed was the lowest one. Hence this is the
carrier density at the conduction band edge of a 2D material.

nC = mekT
h̄2π

e−
εn−εF

kT (7.2)

Density of states in the valence band:2D

As with the conduction band case we need the probability of occupying a
given state in the valence band. This is denoted Ph(ε) and is evaluated from

Pe(ε) + Ph(ε) = 1
Ph(ε) = 1− Pe(ε)

where Pe(ε) is the Fermi Dirac distribution leading to

Ph(ε) = 1− 1

1 + e
ε−εF

kT

The number of states at a given energy per unit volume (concentration at a
given energy) is

nh(ε) = Ph(ε)ρ
′
(ε)dε

If, as in the conduction band case, we consider only the nth subband ρ
′
= mh

h̄2π
and for simplicity the first.

The total concentration of holes in this first subband is the integral over
all energies. We get

pV =
∫ εV

−∞
Ph(ε)ρ

′
(ε)dε (7.3)

=
∫ εV

−∞

(
1− 1

1 + e
ε−εF

kT

) (
mh

h̄2π

)
dε

=
mh

h̄2π

∫ εV

−∞

(
1− 1

1 + e
ε−εF

kT

)
dε

Since the nth (in our case the first) subband begins at εn rather than εV as
in the bulk, the limits of the integral change

∫ εV

−∞
→

∫ εn

−∞
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Figure 7.2: Valence band density of states for a 2D material. The nth band
is shaded to distinguish it from the other subbands.

The expression becomes

pV =
mh

h̄2π

∫ εn

−∞

(
1− 1

1 + e
ε−εF

kT

)
dε

Since for the valence band ε < εF

pV =
mh

h̄2π

∫ εn

−∞

(
1− 1

1 + e−
εF−ε

kT

)
dε

Apply the binomial expansion of the term in parenthesis to simplify, keeping
only the first two terms. Recall that

1
1 + x

= 1− x + x2 − x3 + . . .

1

1 + e−
εF−ε

kT

= 1− e−
εF−ε

kT + . . .

such that

pV =
mh

h̄2π

∫ εn

−∞
e−

εF−ε

kT dε =
mhkT

h̄2π
e−

εF−ε

kT

∣∣∣∣
εn

−∞

This reduces to our desired final expression

pV = mhkT
h̄2π

e−
εF−εn

kT (7.4)
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Fermi level position:2D

The procedure for finding the Fermi level position is the same as in the 3D
case. If we assume an intrinsic semiconductor with no doping such that
there are no additional electrons or holes present

nC = pV

then

mekT

h̄2π
e−

εn1−εF
kT =

mhkT

h̄2π
e−

εF−εn2
kT

Note that n1 and n2 have been used to distinguish the start of the conduc-
tion band subband and the valence band subband respectively. The above
expression reduces

e
1

kT
(−εn1+εF +εF−εn2) =

(
mh

me

)

e−
1

kT
(εn1+εn2)+

2εF
kT =

(
mh

me

)

e−
εn1+εn2

kT e
2εF
kT =

(
mh

me

)

e
2εF
kT =

(
mh

me

)
e

εn1+εn2
kT

ln
(

e
2εF
kT

)
= ln

(
mh

me

)
+ ln

(
e

εn1+εn2
kT

)

2εF

kT
= ln

(
mh

me

)
+

εn1 + εn2

kT

2εF = kT ln
(

mh

me

)
+ εn1 + εn2

resulting in the final expression

εF = εn1+εn2
2 + kT

2 ln
(

mh
me

)
(7.5)

As before, since mh > me the second term is positive and grows slowly
with increasing temperature. To a first approximation however the Fermi
level is midway between the valence band beginning and conduction band
beginning.
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Density of states in the conduction band:1D

We start with the Fermi Dirac distribution for electrons and the density of
states (ρ

′
1D) that we derived earlier. Recall that

ρ
′
1D =

1
π

√
2me

h̄2

∑
m,n

1√
ε− εm,n

Θ(ε− εm,n)

where Θ is the Heavyside function.
We consider only the (m,n)th subbband beginning at energy εm,n. For

convenience we could say this is the first subband.

Figure 7.3: Conduction band density of states for a 1D material. The
(m,n)th band is shaded to distinguish it from the other subbands.

The number of states at a given energy per unit volume (or the concen-
tration at a given energy) is

ne(ε) = Pe(ε)ρ
′
(ε)dε

The total concentration in the first subband is the integral over all possible
energies

nc =
∫ ∞

εC

Pe(ε)ρ
′
(ε)dε

where as before the Fermi Dirac distribution is

Pe(ε) =
1

1 + e
ε−εF

kT



79

On introducing this, the total expression becomes

nC =
∫ ∞

εC

1

1 + e
ε−εF

kT

1
π

√
2me

h̄2

1√
ε− εm,n

dε

=
1
π

√
2me

h̄2

∫ ∞

εC

1

1 + e
ε−εF

kT

1√
ε− εm,n

dε

Since the band actually begins at εm,n the limits of integration become
∫ ∞

εC

→
∫ ∞

εm,n

Therefore

nC =
1
π

√
2me

h̄2

∫ ∞

εm,n

(
1

1 + e
ε−εF

kT

)
1√

ε− εm,n
dε

If ε− εF >> kT

1

1 + e
ε−εF

kT

→ e−
ε−εF

kT

leading to

nC =
1
π

√
2me

h̄2

∫ ∞

εm,n

e−
ε−εF

kT
1√

ε− εm,n
dε

=
1
π

√
2me

h̄2

∫ ∞

εm,n

e−
ε−εm,n+εm,n−εF

kT
1√

ε− εm,n
dε

=
1
π

√
2me

h̄2

∫ ∞

εm,n

e−
ε−εm,n

kT e−
εm,n−εF

kT
1√

ε− εm,n
dε

=
1
π

√
2me

h̄2 e−
εm,n−εF

kT

∫ ∞

εm,n

e−
ε−εm,n

kT
1√

ε− εm,n
dε

Make a change of variables and let x = ε−εm,n

kT such that ε = εm,n +kTx and
dε = kTdx. Also make corresponding changes to the limits of integration
resulting in

nC =

√
kT

π

√
2me

h̄2 e−
εm,n−εF

kT

∫ ∞

0
e−xx−

1
2 dx
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Recall that the last integral is the Gamma function

nC =

√
kT

π

√
2me

h̄2 e−
εm,n−εF

kT Γ
(

1
2

)

The final expression for the carrier concentration of a 1D material at the
conduction band edge is

nC = 1
π

√
2mekT

h̄2 e−
εm,n−εF

kT Γ
(

1
2

)
(7.6)

Density of states in the valence band:1D

The way this is calculated is very similar to that for the conduction band.
However, a few of the terms change slightly in appearance. As before we
need the probability of occupying a given state in the valence band. We also
need the density of states calculated in the previous section. The occupation
probability is calculated from

Pe(ε) + Ph(ε) = 1
Ph(ε) = 1− Pe(ε)

Here Pe(ε) is the Fermi Dirac distribution leading to

Ph(ε) = 1− 1

1 + e
ε−εF

kT

The density of states is

ρ
′
1D =

1
π

√
2mh

h̄2

∑
m,n

1√
εm,n − ε

Θ(εm,n − ε)

where Θ is the Heavyside function and the band explicitly starts at εm,n

causing its presence in the square root denominator. Now if we consider
only the (m,n)th band, (and for convenience that could be the first one)
the expression simplifies to

ρ
′
1D =

1
π

√
2mh

h̄2

1√
εm,n − ε

The number of states at a given energy per unit volume (or concentration
at a given energy) is

nh(ε) = Ph(ε)ρ
′
(ε)dε
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Figure 7.4: Valence band density of states for a 1D material. The (m,n)th
band is shaded to distinguish it from the other subbands.

The total concentration in the subband is the integral over all energies

pV =
∫ εV

−∞
Ph(ε)ρ

′
(ε)dε (7.7)

=
∫ εV

−∞

(
1− 1

1 + e
ε−εF

kT

)
1
π

√
2mh

h̄2

1√
εm,n − ε

dε

=
1
π

√
2mh

h̄2

∫ εV

−∞

(
1− 1

1 + e
ε−εF

kT

)
1√

εm,n − ε
dε

Since the band begins at εm,n rather than at εV as in the bulk, the limits of
integration change

∫ εV

−∞
→

∫ εm,n

−∞
(7.8)

The expression becomes

pV =
1
π

√
2mh

h̄2

∫ εm,n

−∞

(
1− 1

1 + e
ε−εF

kT

)
1√

εm,n − ε
dε

Furthermore, since ε < εF

pV =
1
π

√
2mh

h̄2

∫ εm,n

−∞

(
1− 1

1 + e−
εF−ε

kT

)
1√

εm,n − ε
dε
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Using the binomial expansion and keeping only the first two terms

1
1 + x

= 1− x + x2 − x3 + . . .

1

1 + e−
εF−ε

kT

= 1− e−
εF−ε

kT

the term in parenthesis becomes
(

1− 1

1 + e−
εF−ε

kT

)
= e−

εF−ε

kT

yielding

pV =
1
π

√
2mh

h̄2

∫ εm,n

−∞
e−

εF−ε

kT
1√

εm,n − ε
dε

=
1
π

√
2mh

h̄2

∫ εm,n

−∞
e−

εF−εm,n+εm,n−ε

kT
1√

εm,n − ε
dε

=
1
π

√
2mh

h̄2

∫ εm,n

−∞
e−

εF−εm,n
kT e−

εm,n−ε

kT
1√

εm,n − ε
dε

=
1
π

√
2mh

h̄2 e−
εF−εm,n

kT

∫ εm,n

−∞
e−

εm,n−ε

kT
1√

εm,n − ε
dε

(7.9)

To simplify, make a change of variables. Let x = εm,n−ε
kT or ε = εm,n − kTx

and dε = −kTdx. Note also the corresponding changes in the limits of
integration.

pV =
1
π

√
2mh

h̄2 e−
εF−εm,n

kT

∫ 0

∞
e−x 1√

kT
√

x
(−kT )dx

=

√
kT

π

√
2mh

h̄2 e−
εF−εm,n

kT

∫ ∞

0
e−xx−

1
2 dx

The resulting integral is the now familiar Gamma function. This lead to our
final expression for the total concentration of holes in the valence band

pV = 1
π

√
2mhkT

h̄2 e−
εF−εm,n

kT Γ
(

1
2

)
(7.10)



83

Fermi level position:1D

This evaluation goes the same was as for the 2D or 3D material. If we are
dealing with intrinsic semiconductors with no additional doping

nC = pV

From what we have just evaluated

1
π

√
2mekT

h̄2 Γ
(

1
2

)
e−

εm1,n1−εF
kT =

1
π

√
2mhkT

h̄2 Γ
(

1
2

)
e−

εF−εm2,n2
kT

Here note that εm1,n1 and εm2,n2 are used to refer to the energies where the
conduction and valence bands begin repsectively. This expression reduces
as follows

√
mee

− εm1,n1−εF
kT =

√
mhe−

εF−εm2,n2
kT

e−
(−εm1,n1+εF +εF−εm2,n2)

kT =
√

mh

me

e−
εm1,n1+εm2,n2

kT e
2εF
kT =

√
mh

me

e
2εF
kT =

√
mh

me
e

εm1,n1+εm2,n2
kT

ln
(

e
2εF
kT

)
= ln

(
mh

me

) 1
2

+ ln
(

e
εm1,n1+εm2,n2

kT

)

2εF

kT
= ln

(
mh

me

) 1
2

+
εm1,n1 + εm2,n2

kT

2εF =
kT

2
ln

(
mh

me

)
+ εm1,n1 + εm2,n2

This leads to our final expression

εF = εm1,n1+εm2,n2

2 + kT
4 ln

(
mh
me

)
(7.11)

Since mh > me the second term is positive and as a consequence the Fermi
energy has a slight temperature dependence. However, as before, to a first
approximation, it can be taken as the midpoint between the conduction
band and valence band energies (the zero temperature limit).
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Chapter 8

Joint density of states

In the previous sections we have calculated the “density of states” in both the
conduction band and valence band separately. Interband transitions occur
between both bands giving rise to optical transitions of the semiconductor.
As a consequence it is instructive to calculate the “joint” density of states
which is proportional to the absorption coefficient of the material.

3D bulk

We derive the density of states again as done previously. Consider a spherical
volume of

Vk =
4
3
πk3

The volume of a given mode was, recall kxkykz where

kx =
2π

Lx

ky =
2π

Ly

kz =
2π

Lz

The number of modes or states in the given sphere is then

N =
Vk

kxkykz
=

4
3πk3

8π3
LxLyLz
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For an electron, multiply this by 2 to account for spin

N
′

= 2N = 2
4
3πk3

8π3
LxLyLz

=
k3

3π2
LxLyLz total number of states in sphere

Consider as before, the density

ρ =
N
′

LxLyLz
=

k3

3π2
number of states/unit volume

Now consider the energy density

ρ
′
=

dρ

dε
alternatively

dρ

dk

Note that previously we solved for dρ
dε . This time however, let’s solve for dρ

dk .

dρ

dε
=

1
2π2

(
2m

h̄2

) 3
2 √

ε (previously)

dρ

dk
=

k2

π2
(this time)

Starting with the energy density

ρ
′
2 =

dρ

dk
=

k2

π2
(8.1)

divide by 2 to go back to only 1 spin orientation since in an optical transition
spin flips are generally forbidden.

ρ
′
1 =

ρ
′
2

2
=

k2

2π2
(8.2)

This expression applies to either conduction band or valence band. Applying
the following equivalence

ρj(ε)dε = ρ
′
1(k)dk (8.3)

we obtain

ρj(ε) = ρ
′
2(k)

dk

dε

=
k2

2π2

dk

dε
(8.4)
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where ρj is the desired joint density of states. Now from the conservation of
momentum, transitions in k are vertical such that the intitial k value in the
valence band is the same k value as in the conduction band (ka = kb = k,
where ka is the k value in the valence band and kb is the value in the
conduction band).

Figure 8.1: Cartoon showing momentum conserving vertical transition be-
tween the valence band and conduction band in k space

The energy of the initial state in the valence band is

εa = εv − h̄2ka

2mh

Likewise the energy of the final state in the conduction band is

εb = εc +
h̄2k2

b

2me
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The energy of the transition is

ε = εb − εa

=

(
εc +

h̄2k2

2me

)
−

(
εv − h̄2k2

2mh

)

= (εc − εv) +
h̄2k2

2me
+

h̄2k2

2mh

= εg +
h̄2k2

2

(
1

me
+

1
mh

)
(8.5)

where εg = εc − εv. Now from above

dε

dk
= h̄2k

me + me

memh

leading to the desired expression

dk

dε
=

1
h̄2k

(
memh

me + mh

)
(8.6)

Since ρj(ε) = k2

2π2

(
dk
dε

)

ρj(ε) =
k2

2π2

(
1

h̄2k

) (
memh

me + mh

)
=

k

2π2h̄2

(
memh

me + mh

)

=
kµ

2π2h̄2 (8.7)

where for notational simplicity we have used the reduced mass µ = memh
me+mh

Now to continue towards our final expression, explicitly describe what k is

ε = εg +
h̄2k2

2µ

↓
k2 =

2µ(ε− εg)
h̄2

or

k =

√
2µ(ε− εg)

h̄
(8.8)

Replacing this into our main expression for ρj gives

ρj(ε) =
µ

2π2h̄2 k

=
(

µ

2π2h̄2

) √
2µ(ε− εg)

h̄2
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which after some simplification gives

ρj(ε) = 1
4π2

(
2µ
h̄2

) 3
2 √ε− εg (8.9)

Figure 8.2: Joint density of states for a 3D material (bulk)

2D well

As we did before, consider an area in k-space of

Ak = 4πk2

where the area occupied by a given mode or state is kykz (we implicitly
assume that kx represents the confined direction)

ky =
2π

Ly

kz =
2π

Lz

Together, the number of modes in the area is

N =
Ak

kykz
=

4πk2

4π2
LyLz =

k2

π
LyLz
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Multiply by 2 to account for spin

N
′
= 2N =

2k2

π
LyLz

Now consider the density

ρ =
N
′

LyLz
=

2k2

π
(8.10)

with the energy density given by

ρ
′
=

dρ

dε
or alternatively

dρ

dk

Note that previously we solved for dρ
dε . This time, however, let’s consider dρ

dk .

dρ

dε
=

m

πh̄2 (previously)

dρ

dk
=

4k

π
(this time)

Starting with the energy density

ρ
′
2 =

dρ

dk
=

4k

π

divide by 2 to get rid of the spin since formally speaking, spin flip optical
transitions are forbidden.

ρ
′
1 =

ρ
′
2

2
=

2k

π
(8.11)

Now applying the following equivalence

ρj(ε)dε = ρ
′
2(k)dk (8.12)

one obtains

ρj(ε) = ρ
′
1(k)

dk

dε

=
2k

π

dk

dε
(8.13)

where ρj is the desired joint density of states. As before in the 3D case, the
conservation of momentum means that transitions in k-space are “vertical”.
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That is, the initial k value in the valence band is the same as the final k
value in the conduction band (ka = kb = k) where ka(kb) is the valence
(conduction) band k values.

The energy of the initial state in the valence band is

εa = εn2 − h̄2k2

2mh

Likewise the energy of the final state in the conduction band is

εb = εn1 +
h̄2k2

2me

The transition energy is

ε = εb − εa

= εn1 − εn2 +
h̄2k2

2

(
1

me
+

1
mh

)

= εg +
h̄2k2

2µ
(8.14)

where εg (band gap) = εn1−εn2 and µ is the reduced mass µ = memh
me+mh

This
leads to

dε

dk
=

h̄2k

µ

or

dk

dε
=

µ

h̄2k
(8.15)

such that when replaced into our main expression the desired expression for
the joint density of states is

ρj(ε) = 2k
π

(
µ

h̄2π

)
= 2µ

h̄2π
(8.16)

1D wire

Consider the length in k-space

Lk = 2k
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Figure 8.3: Joint density of states for a 2D material (quantum well)

The length occupied by a given mode or state is kx where

kx =
2π

Lx

The number of states in the given length is

N =
Lk

kx
=

2k

2π
Lx =

kLx

π

Multiply this by 2 to account for spin

N
′
= 2

kLx

π
total number of states

Consider the density

ρ =
N
′

Lx
=

2k

π
number of states per unit length

Then the energy density is

ρ
′
=

dρ

dε
or alternatively

dρ

dk

Previously we solved for dρ
dε

dρ

dε
=

1
π

√
2m

h̄2

1√
ε

(previously)

dρ

dk
=

2
π

(this time)
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Starting with the energy density

ρ
′
2 =

dρ

dk
=

2
π

(8.17)

divide by 2 to consider only one spin orientation since spin flip transitions
are generally forbidden.

ρ
′
1 =

ρ
′
2

2
=

1
π

Now apply the following equivalence

ρj(ε)dε = ρ
′
1(k)dk

leading to

ρj(ε) = ρ
′
1(k)

dk

dε

=
1
π

dk

dε
(8.18)

where ρj(ε) is the desired joint density of states. As in the other two cases,
3D and 2D, the conservation of momentum means that transitions in k-space
are vertical so that ka = kb = k. Here ka is the k value in the valence band
and kb is the k value in the conduction band.

The energy of the initial state in the valence band is

εa = εm2,n2 − h̄2k2

2mh

Likewise the energy of the final state in the conduction band is

εa = εm1,n1 +
h̄2k2

2me

The transition energy is

ε = εb − εa

= εm1,n1 − εm2,n2 +
h̄2k2

2

(
1

me
+

1
mh

)

= εg +
h̄2k2

2µ
(8.19)
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where εg = εm1,n1− εm2,n2 and the reduced mass µ = memh
me+mh

. This leads to

dε

dk
=

h̄2k

µ

or

dk

dε
=

µ

h̄2k
(8.20)

Since ρj(ε) = 1
π

dk
dε the joint density becomes

ρj(ε) =
µ

πh̄2

1
k

Now to continue towards our final expression we express k fully. Since
ε = εg + h̄2k2

2µ we get

k2 =
2µ(ε− εg)

h̄2

↓

k =

√
2µ

h̄2 (ε− εg)

↓
1
k

=
h̄√

2µ
√

ε− εg

This leads to the final expression for the joint density of states

ρj(ε) = 1
π

√
µ

2h̄2
1√

ε−εg
(8.21)

Summary

Now that we have the explicit joint density of states for 3D, 2D and 1D
materials we can summarize their implications for the absorption spectra of
these materials. It can be shown that the absorption coefficient and joint
density of states are proportional to each other. The calculation to achieve
this involves Fermi’s golden rule and will not be discussed at this point. To
summarize

• 3D: ρj ∝ √
ε− εg
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Figure 8.4: Joint density of states for a 1D material (quantum wire)

• 2D: ρj ∝ constant depending on the reduced mass

• 1D: ρj ∝ 1√
ε−εg

• 0D: ρj ∝ δ(ε− εn)
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Figure 8.5: Summary of the joint density of states for 3D, 2D, 1D, and 0D
materials



Chapter 9

Emission

In the last section, the absorption coefficient of materials with different di-
mensionality were shown to be proportional to the calculated joint density
of states. In turn, one could predict that the absorption spectrum of these
materials would look like. Here we work out the background behind spon-
taneous emission, a complementary process to absorption.

Preliminaries: Einstein A and B coefficients

Picture a two level system like that shown in the figure.
Here

• N1 =population in the ground state or alternatively probability of
being in the ground state

• N2 =population in the excited state, alternatively probability of being
in the excited state

• g1 =degeneracy of ground state

• g2 =degeneracy of excited state

• ρ =the energy density containing thermal and/or external contribu-
tions

Three processes were considered

1. absorption with total rate: B12ρN1

2. stimulated emission with total rate: B21ρN2

97
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Figure 9.1: Two level system showing various transitions considered for
Einstein A and B coefficients
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3. spontaneous emission with total rate: AN2

Putting everything together one obtains the following rate equations for
populating either the ground or excited states

dN1

dt
= −B12ρN1 + B21ρN2 + AN2

dN2

dt
= B12ρN1 −B21ρN2 −AN2

In equilibrium, the upward and downward rates are equivalent (dN1
dt = dN2

dt =
0). So using either of the above expressions

B12ρN1 −B21ρN2 −AN2 = 0

or

B12ρN1 (upward) = B21ρN2 + AN2 (downward)

Solving for ρ gives

ρ =
AN2

B12N1 −B21N2

=
A

B12
N1
N2
−B21

where N1 and N2 are Boltzman distributed

N1 =
1
N

g1∑

i=1

e−
ε1−εF

kT =
g1

N
e−

ε1−εF
kT

N2 =
1
N

g2∑

i=1

e−
ε2−εF

kT =
g2

N
e−

ε2−εF
kT

and N is a normalization constant. This leads to

N1

N2
=

g1

g2
e−

ε1−ε2
kT =

g1

g2
e

hν
kT

where hν = ε2 − ε1 is the energy of the photon or transition. Replace this
into the above expression for ρ giving

ρ(ν) =
A

B12
g1

g2
e

hν
kT −B21

(9.1)



100 CHAPTER 9. EMISSION

This is the expression for the energy density derived by Einstein. Next he
realized that this expression had to be equivalent to the Planck distribu-
tion for blackbody radiation. Expressed in terms of wavelength, the Planck
distribution is (standard textbook expression)

ρp(λ) = 8πhc
λ5

(
1

e
hc

λkT −1

)
(9.2)

This expression is interesting from a historical point of view because when
the derivative of this expression is set to zero one obtains the Wein displace-
ment law for blackbody radiation. Likewise the integral of this expression
gives what’s called the Stefan Boltzman law for blackbody radiation. In a
sense, knowing or unknowingly, Planck basically explained everything in one
shot. Apparently he nearly suffered a nervous breakdown doing it.

Now back to the main discussion. Expressed in terms of ν rather than
λ, the Planck energy density is (derived in the next section)

ρp(ν) = 8πhν3

c3

(
1

e
hν
kT −1

)
(9.3)

Note that in general, in the absence of vacuum, the index of refraction must
be taken into account when considering the speed of light.

Interlude: Derivation of Planck energy density

Just like in the density of states section, imagine a sphere of radius k with
volume

Vk =
4
3
πk3

where the volume of a given mode is kxkykz and

kx =
2π

Lx

ky =
2π

Ly

kz =
2π

Lz

The number of modes in the given sphere is then (look familiar?)

N =
Vk

kxkykz
=

4
3πk3

8π3
LxLyLz
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For a photon now, multiply this by 2 to account for two possible polarizations

N
′

= 2N = 2
4
3πk3

8π3
LxLyLz

=
k3

3π2
LxLyLz total number of modes

Consider the density

ρ =
N
′

LxLyLz
=

k3

3π2
=

k3

3π2
number of modes/unit volume (9.4)

Here is where we diverge a little from the past. To get the frequency density,
first let k = 2π

λ where λ = c
ν . Therefore

k =
2πν

c

alternatively 2πν n
c if the index of refraction is different from 1. Then ρ

becomes

ρ =
k3

3π2
=

8π

3
ν3

c3

Now like before, to get the frequency density (alternatively called the mode
density)

ρ
′
=

dρ

dν
=

8πν2

c3
number per unit volume per unit frequency (9.5)

Planck next showed that the average energy per mode is

< ε >=
hν

e
hν
kT − 1

leading to the Planck distribution

ρp(ν) = ρ
′
< ε >

=
8πν2

c3

(
hν

e
hν
kT − 1

)

=
8πhν3

c3

(
1

e
hν
kT − 1

)
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Now back to where we left off. Equate the Einstein and Planck relations

A

B12
g1

g2
e

hν
kT −B21

=
8πhν3

c3

(
1

e
hν
kT − 1

)

where note again that if the index is not 1 then replace c with c
n . Upon

examination of the above equation, to achieve equivalence

B12
g1

g2
= B21 (9.6)

More usually you will see g1 = g2 such that the expression reduces to B12 =
B21. Furthermore

A

B21
=

8πhν3

c3

yielding the standard textbook expression

A =
8πhν3

c3
B21

=
8πhν3

c3

g1

g2
B12 (9.7)

Again, note that if g1 = g2 you will commonly see written

A = 8πhν3

c3
B12 (9.8)

Also if the index is not 1 (not vacuum) then replace c with c
n in the above

expressions. The above final expression are what are referred to as the
relationship between Einstein A and B coefficients.

Word of caution

The Planck distribution is often written a number of ways. Different texts
will have what on the surface appear to be completely different expressions.
These difference actually arises because of differing definitions for the “den-
sity” being used by the various authors. Previously we saw two expression
for the Planck distribution. The first, in terms of wavelength, has units
of: number per unit volume per unit wavelength. The second, in terms of
frequency, has units of: number per unit volume per unit frequency. Alter-
natively sometimes what people mean is the same expression but in units
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of: number per unit volume per unit energy. This is potentially very con-
fusing. One should look very carefully at what is meant by “density”. Here
we derive this third form of the Planck distribution with units: number per
unit volume per unit energy.

Starting with

ρ =
8πν3

3

(
n

c

)3

(9.9)

where this expression comes from the previous section where we derived
the Planck distribution and where also the index of the medium has been
explicitly considered (recall, replace c with c

n). Rearrange the expression to

ρ =
8πn3ν3

3c3

(
h3

h3

)
=

8πn3(hν)3

3c3h3
=

8πn3ε3

3c3h3

Now as before take the derivative with respect to energy to get the energy
density

ρ
′
=

dρ

dε
=

8πn3(3ε2)
3c3h3

=
8πn3ε2

c3h3

=
8πn3(hν)2

c3h3

=
8πn3ν2

c3h

Some authors will leave it at the second step which is just ρ
′
= 8πn3ε2

c3h3 . We
will go with

ρ
′
=

8πn3ν2

c3h
(9.10)

Now earlier we had the Planck derived average energy to be

< ε >=
hν

e
hν
kT − 1

This leads to an expression for the average number of photons which is

< p >=
< ε >

hν
=

1

e
hν
kT − 1

(9.11)
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The resulting Planck photon density is

ρp =
8πn3ν2

c3h

(
1

e
hv
kT − 1

)
number per unit volume per unit energy (9.12)

This then leads to another set of relationships between Einstein A and B
coefficients

B12 = B21 (9.13)

A = 8πn3ν2

c3h
B12 or = 8πn3ε2

c3h3 B12 (9.14)

The only difference between these relations and the previous ones was how
the Planck distribution was defined. Number per unit volume per unit
energy (as done here) or number per unit volume per unit frequency (as
done previously).

Einstein A and B coefficients revisited

In the last section we derived the relationships between the Einstein coef-
ficients for absorption, stimulated emission and spontaneous emission. In
this section, let’s rederive the expression is a slightly different manner, but
in a way that will be useful a little later on.

Let R12 be the unit transition rate from the ground state to the excited
state (basically the rate constant)

R12 = Pabsρdε

≡ B12ρ

where

• ρ is the number of photons per unit volume per unit energy (note the
units!)

• ρdε is the number of photons per unit volume

• Pabs is the probability for absorption per unit time

• R12 is the absorptions per unit volume per unit time

and where B12 = Pabsdε
As before set up the rate equations except now consider explicitly the

probability of occupied and unoccupied states in the valence and conduction
bands. Let
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• f1 =probability of occupied valence band state

• f2 =probability of occupied conduction band state

• 1− f1 =probability of unoccupied valence band state

• 1− f2 =probability of unoccupied conduction band state

1 → 2 transition (absorption) requires

• valence band state occupied (f1)

• conduction band state empty (1− f2)

resulting in the joint probability being f1(1− f2) such that

R12,abs = B12ρf1(1− f2)

2 → 1 transition (stimulated emission) requires

• valence band state empty (1− f1)

• conduction band state occupied (f2)

resulting in the joint probability being f2(1− f1) such that

R21,stim = B21ρf2(1− f1)

2 → 1 transition (spontaneous emission) requires

• valence band state empty (1− f1)

• conduction band state occupied (f2)

resulting in the joint probability being f2(1− f1) such that

R21,spont = Af2(1− f1)

In all three cases f1 and f2 are Fermi Dirac distributions

f1 =
1

e
ε1−εF

kT + 1

f2 =
1

e
ε2−εF

kT + 1
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At this point, for simplicity, assume that g1 = g2. At equilibrium the upward
and downward rates equal resulting in

R12,abs = R21,stim + R21,spont

B12ρf1(1− f2) = B21ρf2(1− f1) + Af2(1− f1)

Rearrange this to solve for ρ

ρ[B12f1(1− f2)−B21f2(1− f1)] = Af2(1− f1)

which gives

ρ =
Af2(1− f1)

B12f1(1− f2)−B21f2(1− f1)

=
A

B12
f1(1−f2)
f2(1−f1) −B21

Now introduce the explicit expression for f1 and f2. To simplify

f1(1− f2)
f2(1− f1)

=

(
1

e
ε1−εF

kT +1

) (
1− 1

e
ε2−εF

kT +1

)

(
1

e
ε2−εF

kT +1

) (
1− 1

e
ε1−εF

kT +1

)

= e
ε2−ε1

kT

= e
hν
kT

Replace this into the main expression for ρ to get

ρ =
A

B12
f1(1−f2)
f2(1−f1) −B21

=
A

B12e
hν
kT −B21

But ρ equals the Planck distribution

ρ =
A

B12e
hν
kT −B21

=
8πn3ν2

c3h

(
1

e
hν
kT − 1

)

meaning that for this to be true

B12 = B21

and

A =
8πn3ν2

c3h
B12

which are exactly the same Einstein A and B relations we found before.
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Emission spectrum

Here we will calculate the emission spectrum of a 3D material using the
Einstein A and B coefficients. Define the (net) unit transition rate from the
ground state to the excited state.

Rnet = Pabsρdε (9.15)

where as before

• ρ is the number of photons per unit volume per unit energy

• ρdε is the number of photons per unit volume

• Pabs is the probability for absorption per unit volume

• Rnet is the absorptions per unit volume per unit time

Now consider the net rate upwards from 1 to 2 including stimulated emission

R12,abs = B12ρf1(1− f2) (transition rate per unit volume)

R21,stim = B21ρf2(1− f1) (transition rate per unit volume)

such that the net upwards rate is

Rnet = R12,abs −R21,stim (transition rate per unit volume)

= B12ρf1(1− f2)−B21ρf2(1− f1)

Since we have already shown that B12 = B21

Rnet = B12ρ[f1(1− f2)− f2(1− f1)] (9.16)

Equating the two expressions for ρ gives

Pabsρdε = B12ρ[f1(1− f2)− f2(1− f1)]
Pabsdε = B12[f1(1− f2)− f2(1− f1)]

Here we relate Pabs to the absorption coefficient as follows

Pabs =
c

n
α

How? If P is the absolute probability for an absorption event and dP
dt ≡ Pabs

dP

dt
=

dP

dz

(
dz

dt

)

Pabs = α

(
c

n

)



108 CHAPTER 9. EMISSION

Insert this Pabs expression into the above equivalence to get

α

(
d

n

)
dε = B12[f1(1− f2)− f2(1− f1)]

Rearrange this to solve for B12

B12 = α

(
c

n

)
dε

[f1(1− f2)− f2(1− f1)]

Relate B12 to A using our derived Einstein A and B coefficients.

A =
8πn3ν2

c3h
B12 =

8πν2

h

(
n

c

)3

α

(
c

n

)
dε

[f1(1− f2)− f2(1− f1)]

=
8πν2

h

(
n

c

)2

α
dε

[f1(1− f2)− f2(1− f1)]

Now recall that

R21,spont = Af2(1− f1)

such that

R21,spont = α
8πν2

h

(
n

c

)2 f2(1− f1)dε

[f1(1− f2)− f2(1− f1)]

= α
8πν2

h

(
n

c

)2 dε
f1(1−f2)
f2(1−f1) − 1

Now for convenience define

rspont(ε)dε = R21

where rspont(ε) is the transition rate per unit volume per unit energy. By
inspection

rspont(ε) = α
8πν2

h

(
n

c

)2 1
f1(1−f2)
f2(1−f1) − 1

and

f1 =
1

e
ε1−εF

kT + 1

f2 =
1

e
ε2−εF

kT + 1
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We’ve solved the ratio in the denominator before giving

f1(1− f2)
f2(1− f1)

= e
hν
kT

Putting everything together

rspont(ε) = α

(
8πν2

h

) (
n

c

)2
(

1

e
hν
kT + 1

)

If hν > kT the term in parenthesis ∼ e−
hν
kT and the main expression becomes

rspont(ε) = α

(
8πν2

h

) (
n

c

)2

e−
hν
kT (9.17)

We can stop here or continue to express this as an intensity.

I3D(ε) = ε
rspont(ε)
αexc(ε)

where αexc(ε) is the absorption coefficient at the particular excitation posi-
tion. This value is a constant.

I3D(ε) = (hν)
α

(
8πν2

h

) (
n
c

)2
e−

hν
kT

αexc(ε)

=
α

αexc
(8πν3)

(
n

c

)2

e−
hν
kT (9.18)

Finally, for a 3D material the absorption coefficient is proportional to the
joint density of states

α ∝ A
√

ε− εg

where A is a constant. This leads to our final expression for the emission
spectrum

I3D =
A
√

ε− εg

αexc
(8πν3)

(
n

c

)2

e−
hν
kT (9.19)

I3D = A
′√

ε− εge
− hν

kT (9.20)
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Figure 9.2: Derived emission spectrum for a 3D material using Einstein A
and B coefficients

Figure 9.3: Two level system considered in pulsed experiment. Only the
(downward) radiative transition is considered.
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Quantum yields and lifetimes

Here we discuss some complementary aspects to the emission. Imagine popu-
lating the excited state of the system and immediately (i.e. instantaneously)
turning off the light. Basically this is a pulsed experiment.

The depopulation of the excited state occurs by spontaneous emission
since stimulated emission only occurs in the presence of the excitation. The
relevant rate equation is

dN2

dt
= −AN2

or if A = krad

dN2

dt
= kradN2

dN2

N2
= −kraddt

ln N2 = −kradt + (const)
N2 = Ce−kradt

At t = 0 C = N2(0) resulting in

N2(t) = N2(0)e−kradt (9.21)

The decay will be exponential and τ = 1
krad

is called the lifetime of the
excited state.

In general, however, since we dont live in a perfect world, there are
other de-excitation pathways. These include energy transfer or non-radiative
decay through defect states. So in general the total decay rate out of the
excited state is the sum of all rates

ktot = krad + k1 + k2 + k3 + . . .

giving

dN2

dt
= −(krad + k1 + k2 + k3 + . . .)N2

= −
(

krad +
n∑

i

ki

)
N2

= −ktotN2
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Figure 9.4: Linear and semilogarithmic plots of the excited state decay
profile.

Figure 9.5: Linear and semilogarithmic plots of the excited state decay in
the absence and presence of multiple decay pathways.
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Only the krad pathway gives you emission. Therefore, the efficiency of
emission is called the quantum yield (QY ) and is defined by

QY = krad
ktot

or
1

τrad
1

τtot

= τtot
τrad

(9.22)

For most applications, one desires a QY that is as close to unity as possible
(QY = 1). For example, such applications could involve lasers, light emitting
diodes, fluorescent tags and so forth.

Exercises

1. The first part of this chapter described three processes: (stimulated)
absorption, stimulated emission, and spontaneous emission. Rational-
ize why there isn’t a fourth process called spontaneous absorption.

2. Spontaneous emission competes with thermally stimulated emission
(Planck radiation is the source). Show that at 300 K, thermal stimu-
lation dominates for frequencies well below 5x1012 Hz whereas sponta-
neous emission dominates for frequencies well above 5x1012 Hz. Which
mechanism dominates for visible light.

3. Come up with an alternative means of measuring the quantum yield
of a system based on its fluorecence decay profile. See Figure 9.5.
Assume an exponential decay and consider its pure radiative decay
as well as its radiative decay in the presence of other non-radiative
recombination pathways.

4. Show mathematically how one extracts the average decay time of an
exponential process. Compare this to the 1/e lifetime.

5. Derive a relation between the half life (50% mark) and the lifetime of
the state.

6. Explain how one measures the quantum yield of something in real life.

7. Show how the Plank expression reduces to both the Wein displacement
law and the Stefan Boltzman law for blackbody radiation. What are
the Wein and Stefan Boltzman laws anyway?
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Chapter 10

Bands

Kronig Penney Approximation with Rectangular
Barriers

An approximation to a crystalline solid is a periodic potential consisting
of rectangular barriers. This is called the Kronig-Penny model and has
analytical solutions. Although this is a crude approximation to the true
potential experienced by the electron, the importance of the model lies in the
idea that the periodicity of the potential is the root cause for the emergence
of what are called band gaps. There are discontinuities in the energies
that an electron can have. This ultimately leads to the distinction between
metals, semiconductors and insulators.

Figure 10.1: Periodic potential of rectangular barriers

Region 1:

115
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− h̄2

2m

d2Ψ
x2

= εΨ (10.1)

d2Ψ
dx2

= −2mε

h̄2 Ψ

d2Ψ
dx2

+
2mε

h̄2 Ψ = 0

Therefore
d2Ψ
dx2

+ k2Ψ = 0 (10.2)

where

k2 =
2mε

h̄2

Region 2:

− h̄2

2m

d2Ψ
dx2

+ V Ψ = εΨ

− h̄2

2m

d2Ψ
dx2

= (ε− V )Ψ

d2Ψ
dx2

=
2m (V − ε)

h̄2 Ψ

d2Ψ
dx2

− 2m (V − ε)
h̄2 Ψ = 0

Therefore
d2Ψ
dx2

− φ2Ψ = 0 (10.3)

where

φ2 =
2m (V − ε)

h̄2

The wavefunctions in regions 1 and 2 are:

Ψ1 = Aeikx + Be−ikx
region 1 (10.4)

Ψ2 = Ceφx + De−φx
region 2 (10.5)
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Now apply Bloch’s theorem where

Ψ(x + a) = Ψ(x)eilx
for delta function potential with period a

or alternatively

Ψ(x + (a + b)) = Ψ(x)eil(a+b)
for periodic potential with period a+b

leading to

Region 3:

Ψ3 = Ψ2e
il(a+b) (10.6)

or
Ψ3 =

(
Ceφx + De−φx

)
eil(a+b) (10.7)

Now apply the matching conditions for wavefunctions

Ψ1(0) = Ψ2(0) → A + B = C + D

Ψ
′
1(0) = Ψ

′
2(0) → ik(A + B) = φ(C −D)

Ψ1(a) = Ψ3(a) → Aeika + Be−ika = (Ce−φb + Deφb)eil(a+b)

Ψ
′
1(a) = Ψ

′
3(a) → ikAeika − ikBe−ika = (φCe−φb −Dφeφb)eil(a+b)

where we used the fact that

Ψ3(a) = Ψ2(−b)eil(a+b)

Ψ
′
3(a) = Ψ

′
2(−b)eil(a+b)

This leads to a system of four equations with four unknowns (A, B, C, D).
The system can be recast into matrix form. However, to give a non-trivial
solution (A=B=C=D=0) one must have the determinant of prefactors equal
zero. This means solving the following equation.

∣∣∣∣∣∣∣∣

1 1 −1 −1
ik −ik −φ φ

eika e−ika −e−φb+il(a+b) −eφb+il(a+b)

ikeika −ike−ika −φe−φb+il(a+b) φeφb+il(a+b)

∣∣∣∣∣∣∣∣
= 0 (10.8)

Most texts will skip the tedious steps to the final expression. Here we
outline what needs to be done. The solution can be approached a number
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of ways. This is just one. Apply the following steps to generate successively
simpler determinants.

−ik(row1) + (row2) → (row2)
−ik(row2) + (row4) → (row4)

yeilding

∣∣∣∣∣∣∣∣

1 1 −1 −1
0 −2ik (ik − φ) (ik + φ)

eika e−ika −e−φb+il(a+b) −eφb+il(a+b)

0 −2ike−ika (ik − φ)e−φb+il(a+b) (ik + φ)eφb+il(a+b)

∣∣∣∣∣∣∣∣
= 0

−eika(row1) + (row3) → (row3)

yielding

∣∣∣∣∣∣∣∣

1 1 −1 −1
0 −2ik (ik − φ) (ik + φ)
0 e−ika − eika eika − e−φb+il(a+b) eika − eφb+il(a+b)

0 −2ike−ika (ik − φ)e−φb+il(a+b) (ik + φ)eφb+il(a+b)

∣∣∣∣∣∣∣∣
= 0

then

−e−ika(row2) + (row4) → (row4)

yielding

∣∣∣∣∣∣∣∣∣

1 1 −1 −1
0 −2ik (ik − φ) (ik + φ)
0 e−ika − eika eika − e−φb+il(a+b) eika − eφb+il(a+b)

0 0 (ik − φ)
[
−e−ika + e−φb+il(a+b)

]
(ik + φ)

[
−e−ika + eφb+il(a+b)

]

∣∣∣∣∣∣∣∣∣
= 0

At this point the finding the 4x4 determinant becomes the same as find-
ing the sub 3x3 determinant. To simplify our notation let

(1) = (ik − φ)
[
−e−ika + e−φb+il(a+b)

]

(2) = (ik + φ)
[
−e−ika + eφb+il(a+b)

]
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then the 3x3 becomes

∣∣∣∣∣∣

−2ik (ik − φ) (ik + φ)
e−ika − eika eika − e−φb+il(a+b) eika − eφb+il(a+b)

0 (ik − φ)(1) (ik + φ)(2)

∣∣∣∣∣∣
= 0

which is equivalent to

− 2ik

∣∣∣∣
eika − e−φb+il(a+b) eika − eφb+il(a+b)

(ik − φ)(1) (ik + φ)(2)

∣∣∣∣

+ 2i sin(ka)
∣∣∣∣

(ik − φ) (ik + φ)
(ik − φ)(1) (ik + φ)(2)

∣∣∣∣ = 0

− 2ik

∣∣∣∣
eika − e−φb+il(a+b) eika − eφb+il(a+b)

(ik − φ)(1) (ik + φ)(2)

∣∣∣∣

+ 2i sin(ka)
[
(−k2 − φ2)(2)− (−k2 − φ2)(1)

]
= 0

− 2ik

∣∣∣∣
eika − e−φb+il(a+b) eika − eφb+il(a+b)

(ik − φ)(1) (ik + φ)(2)

∣∣∣∣

+ 2i(−k2 − φ2) sin(ka) [(2)− (1)] = 0

− 2ik

∣∣∣∣
eika − e−φb+il(a+b) eika − eφb+il(a+b)

(ik − φ)(1) (ik + φ)(2)

∣∣∣∣

+ 4i(−k2 − φ2) sin(ka)sinh(φb)eil(a+b) = 0

The top determinant is a little tedious but can be evaluate to give

− 4ik
[
−φ− φe2il(a+b) + 2eil(a+b) (−k sinh(φb) sin(ka) + φ cosh(φb) cos(ka))

]

+ 4i(−k2 − φ2) sin(ka) sinh(φb)eil(a+b) = 0
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This expands to

4ikφ + 4ikφe2il(a+b) − 8ikeil(a+b) (−k sinh(φb) sin(ka) + φ cosh(φb) cos(ka))
+4i(−k2 − φ2)eil(a+b) sin(ka) sinh(φb) = 0

Multiply by e−il(a+b) to get

4ikφe−il(a+b) + 4ikφeil(a+b) − 8ik (−k sinh(φb) sin(ka) + φ cosh(φb) cos(ka))
+4i(−k2 − φ2) sinh(φb) sin(ka) = 0

Divide by 4i to get

2kφ cos(l(a + b)) + 2k2 sinh(φb) sin(ka)− 2kφ cosh(φb) cos(ka)
+(−k2 − φ2) sinh(φb) sin(ka) = 0

This leads to the following textbook expression after some simplification
(

φ2−k2

2kφ

)
sinh(φb) sin(ka) + cosh(φb) cos(ka) = cos(l(a + b) (10.9)

Kronig Penney V=0 Limit

Starting with our Kronig Penney expression derived above
(

φ2 − k2

2kφ

)
sinh(φb) sin(ka) + cosh(φb) cos(ka) = cos(l(a + b)

recall that

φ2 =
2m(V − ε)

h̄2 → φ =

√
2m(V − ε)

h̄2

k2 =
2mε

h̄2 → k =

√
2mε

h̄2

if V=0

φ2 = −2mε

h̄2 → φ = i

√
2mε

h̄2 = ik
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the Kronig Penney expression becomes
(
−k2 − k2

2ik2

)
sinh(ikb) sin(ka) + cosh(ikb) cos(ka) = cos(l(a + b))

where

sinh(iu) = i sin(u)
cosh(iu) = cos(u)

leading to

− sin(kb) sin(ka) + cos(kb) cos(ka) = cos(l(a + b))

For this to be true

l = k

or

l =

√
2mε

h̄2 (10.10)

This gives the energies of a free particle

ε = h̄2l2

2m

Kronig Penney V= ∞ Limit

Starting with our original Kronig Penney expression
(

φ2 − k2

2kφ

)
sinh(φb) sin(ka) + cosh(φb) cos(ka) = cos(l(a + b))

where

k2 =
2mε

h̄2

φ2 =
2m (V − ε)

h̄2

Let’s rearrange everything in terms of unitless variables if possible
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k2 =
2mε

h̄2

(
V

V

)
=

2mV

h̄2

(
ε

V

)
=

2mV

h̄2 δ

φ2 =
2m

h̄2

(
V − ε

V

V

)
=

2mV

h̄2 (1− δ)

where in both cases δ = ε/V . Therefore

(
φ2 − k2

2kφ

)
=

[
2mV
h̄2 (1− δ)

]
−

[
2mV
h̄2 δ

]

2
√

2mV
h̄2 δ

√
2mV
h̄2 (1− δ)

=
(1− 2δ)

2
√

δ(1− δ)

Consider also how φb and ka simplify.

φb =

√
2mV

h̄2 (1− δ)b =

√
2mV

h̄2 (1− δ)b
(

a

a

)

=




√
2mV

h̄2 a




(
b

a

)√
1− δ

= Ar
√

1− δ

where A =
√

2mV
h̄2 a and r = b/a are constants. Likewise

ka =

√
2mV δ

h̄2 a

= A
√

δ

Replace both into our previous equation to get

Case (δ < 1)

(1− 2δ)
2
√

δ(1− δ)
sinh(Ar

√
1− δ) sin(A

√
δ + cosh(Ar

√
1− δ) cos(A

√
δ)

= cos(la(1 + r))(10.11)

where δ < 1 implicitly.
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Case (δ > 1)

In this case
√

1− δ = i
√

δ − 1
sinh(iu) = i sin(u)
cosh(iu) = cos(u)

Replace into our previous equation to get

(1− 2δ)
2i

√
δ(δ − 1)

i sin(Ar
√

δ − 1) sin(A
√

δ) + cos(Ar
√

δ − 1) cos(A
√

δ)

= cos(la(1 + r))

which reduces to

(1− 2δ)
2
√

δ(δ − 1)
sin(Ar

√
δ − 1) sin(A

√
δ) + cos(Ar

√
δ − 1) cos(A

√
δ)

= cos(la(1 + r)) (10.12)

Case (δ = 1)

Here note that

sinh(0) = 0
cosh(0) = 1

and that

limt→0
sin(t)

t
= 1

Rearrange the original expression as follows

(1− 2δ)
2
√

δ

(
Ar

Ar

)
sin(Ar

√
δ − 1)√

δ − 1
sin(A

√
δ) + cos(Ar

√
δ − 1) cos(A

√
δ)

= cos(la(1 + r))

Let δ = 1 and recall the limit of sin(t)/t as t → 0.
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−1
2
Ar

sin(Ar)
Ar

sin(A) + cos(A) = cos(la(1 + r))

continue reducing the expression to get

−Ar

2
sin(A) + cos(A) = cos(la(1 + r)) (10.13)

All cases (δ < 1), (δ > 1) and (δ = 1)

In all three cases above the resulting relationship can be expressed crudely
as some function of δ equals the right hand side.

F (δ) = cos(la(1 + r)) (10.14)

This relation cannot exactly be solved analytically but is done numerically.
However one notes at this point that the right hand side of the expression
cos(la(1 + r)) will cycle periodically between +1 and -1.

Let V →∞
Continuing our simplification of the this expression, we let V → ∞. As a
consequence δ = ε

V → 0 and A →∞.

(1− 2δ)
2
√

δ(1− δ)
sinh(Ar

√
1− δ) sin(A

√
δ) + cosh(Ar

√
1− δ) cos(A

√
δ)

= cos(la(1 + r))

approximately becomes

1
2
√

δ
sinh(Ar) sin(A

√
δ) + cosh(Ar) = cos(la(1 + r))

Here in the approximation, the first term on the left hand side will dominate
the second (cosh(Ar)) because of the 1√

δ
term. We then get something like

1
2
√

δ

(
eAr − e−Ar

2

)
sin(A

√
δ) ≈ cos(la(1 + r))
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or

eAr

4
√

δ
sin(A

√
δ) ≈ cos(la(1 + r))

Since eAr

4
√

δ
diverges, sin(A

√
δ) must approach zero to make the left hand

side fall between +1 and -1 which are the limits of the right hand side
(cos(la(1 + r))).

In the limit that sin(A
√

δ) = 0,
A
√

δ = nπ

where recall that A =
√

2mV
h̄2 a and

√
δ =

√
ε
V This then leads to the

familiar expression for the energies of a particle in a box.

ε = n2h2

8ma2 (10.15)

Kronig Penney Approximation with Delta Function
Barriers

Sometimes the Kronig Penney relation is deived assuming a Delta function
potential rather than using rectangular barriers with finite width.

We run through this derivation for completeness. So starting with our
original Kronig Penney relation

φ2 − k2

2kφ
sinh(φb) sin(ka) + cosh(φb) cos(ka) = cos(l(a + b))

One generally makes the following substitution. Let

P =
φ2ab

2
(10.16)

where P is basically a dimensionless number. As a consequence b = 2P
φ2a

.
Replace into the original expression and make the following simplifications

φ2 − k2

2kφ
≈ φ2

2kφ
=

φ

2k
(10.17)
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Figure 10.2: Above: original periodic potential of rectangular barriers. Be-
low: approximation using a periodic array of delta functions.
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Recall that φ =
√

2m(V−ε)

h̄2 and k =
√

2me
h̄2 with φ → ∞ since V → ∞. as

well as

sinh(φb) = lim(
2P
φa

)
→0

sinh
(

2P

φa

)
=

2P

φa

cosh(φb) = lim(
2P
φa

)
→0

cosh
(

2P

φa

)
= 1

where we have made use of a Taylor series as follows.

cosh(x) =
ex + e−x

2
≈ (1 + x) + (1− x)

2
= 1

sinh(x) =
ex − e−x

2
≈ (1 + x)− (1− x)

2
= x

Then our main equation becomes

P
sin(ka)

ka
+ cos(ka) = cos(la) (10.18)

At this point we can take our limits of V = 0(P = 0) or V = ∞(P = ∞)
and see what happens.

Case (P = 0)

Here we get

cos(ka) = cos(la)

Therefore k = l or that l =
√

2mε
h̄2 leading to

ε = h̄2l2

2m (10.19)

which again is the energy of a free electron.
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Case (P = ∞)

Here to allow the left hand side of the expression to have finite values sin(ka)
ka

must be very small. In the limit that sin(ka)
ka = 0, ka = nπ This immediately

leads to

ε = n2h2

8ma2 (10.20)

which are the energies of a particle in a box.

Summary

One can therefore see that the Kronig Penney model lies in between the two
limiting cases for the behavior of an electron in a potential. At one end there
is the free electron limit and at the other is the particle in a box limit. In
between is the regime giving existence to the notion of bands separated by
energy gaps. So as usually mentioned in textbooks, at this point we point
out that metals are those materials that have their conduction band half
full, semiconductors are those materials where the valence band is full but
where the band gap is not humongous (let’s say < 4 eV) and insulators are
those materials where the valence band is full and where the band gap is
huge (say > 4 eV).

Exercises

1. Consider the rectangular barrier Kronig Penney model discussed early
on. Use Mathcad, Matlab, Mathematica or your favorite mathematical
modeling program to visualize the actual bands. Choose a potential
well width of your own choosing, a barrier width, again defined by you,
and a nominally high barrier height. Plot the free electron energies on
top of the bands you have drawn. Show the plot in both the periodic
zone scheme and the reduced zone scheme.

2. Consider the delta function modification of the Kronig Penney model.
Again use a mathematical modeling program to draw the bands in the
periodic and reduced zone schemes. Choose whatever barrier height,
well and barrier width you desire.
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Figure 10.3: Mathcad numerical solutions to the general Kronig Penney
model
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Figure 10.4: Mathcad numerical solutions to the general Kronig Penney
model continued
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Figure 10.5: Mathcad numerical solutions to approximations of the Kronig
Penney model
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Figure 10.6: Mathcad numerical solutions to the delta function Kronig Pen-
ney model
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Figure 10.7: Mathcad numerical solutions to the delta function Kronig Pen-
ney model continued



134 CHAPTER 10. BANDS

Figure 10.8: Cartoon of the differences between metals, semiconductors and
insulators.

Examples from the literature

Here are selected papers from the literature dealing with one area of nanoscience
or nanotechnology which is the creation of artifical solids with tailored prop-
erties. Crudely one version of this is to use quantum dots as artificial atoms.
When arranged in a periodic manner (basically a crystal) the overlap of the
electron wavefunctions will create user defined optical and electrical proper-
ties as well as the formation of artificial bands as we just described. These
go by the name minibands and have already been achieved in the case of
arrays of stacked quantum wells.

The papers below are listed in no particular order

1. “Architechtonic quantum dot solids”
G. Markovich, C. P. Collier, S. E. Henrichs, F. Remacle, R. D. Levine,
J. R. Heath
Accounts of Chemical Research, 32, 415 (1999).

2. “Nanocrystal superlattices”
C. P. Collier, T. Vossmeyer, J. R. Heath
Annual Review of Physical Chemistry, 49, 371 (1998).
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3. “Highly oriented molecular Ag nanocrystal arrays”
S. A. Harfenist, Z. L. Wang, M. M. Alvarez, I. Vezmar, R. L. Whetten
Journal of Physical Chemistry, 100, 13904 (1996).

4. “Synthesis of a quantum dot superlattice using molecularly linked
metal clusters
R. G. Osifchin, W. J. Mahoney, J. D. Bielefeld, R. P. Andres, J. I.
Henderson, C. P. Kubiak
Superlattices and Microstructures, 18, 283 (1995).

5. “Architecture with designer atoms: Simple theoretical consideration”
F. Remacle and R. D. Levine
Proceedings of the National Academy of Science, 97, 553 (2000).

6. “Preparation and characterisation of silver quantum dot superlattice
using self-assembled monolayers of pentanedithiol”
S. Pethkar, M. Aslam, I. S. Mulla, P. Ganeshan, K. Vijayamohanan
Journal of Materials Chemistry, 11, 1710 (2001).

7. “Miniband formation in a quantum dot crystal”
O. L. Lazarenkova and A. A. Balandin
Journal of Applied Physics, 89, 5509 (2001).

8. “Reversible tuning of silver quantum dot monolayers through the metal-
insulator transition”
C. P. Collier, R. J. Saykally, J. J. Shiang, S. E. Henrichs, J. R. Heath
Science, 277, 1978 (1997).

9. “Optical properties of thin films of Au@SiO2 Particles”
T. Ung, L. M. Liz-Marzan, P. Mulvaney
Journal of Physical Chemistry B, 105, 3441 (2001).
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Chapter 11

Tunneling

Potential step

This is the simplest example of tunneling. Picture the following potential
step.

Figure 11.1: Cartoon of the potential step

The Schrodinger equation is

− h̄2

2m

d2Ψ
dx2

+ V Ψ = εΨ

This can be rearranged as follows.
In region 1 where V = 0

− h̄2

2m

d2Ψ
dx2

= (ε− V )Ψ

137
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d2Ψ
dx2

= −2m

h̄2 εΨ

d2Ψ
dx2

+ k2Ψ = 0

where k2 = 2mε
h̄2 . Solutions to the wavefunction are

Ψ1 = Aeikx + Be−ikx (11.1)

In region 2 where V is finite, there are two cases.

• Case 1: ε > V

• Case 2: ε < V

Case 1: (ε > V )

Figure 11.2: Behavior of the wavefunction in the potential step case where
ε > V

− h̄2

2m

d2Ψ
dx2

+ V Ψ = εΨ

− h̄2

2m

d2Ψ
dx2

= (ε− V )Ψ

d2Ψ
dx2

= −2m

h̄2 (ε− V )Ψ

d2Ψ
dx2

+ φ2Ψ = 0
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where φ2 = 2m(ε−V )

h̄2 . Solutions to the wavefunction for this case, in this
region, are

Ψ2 = Ceiφx + De−iφx (11.2)

Case 2: (ε < V )

Figure 11.3: Behavior of the wavefunction in the potential step case where
ε < V

− h̄2

2m

d2Ψ
dx2

+ V Ψ = εΨ

− h̄2

2m

d2Ψ
dx2

= (ε− V )Ψ

d2Ψ
dx2

= −2m

h̄2 (ε− V )Ψ

d2Ψ
dx2

=
2m

h̄2 (V − ε)Ψ

d2Ψ
dx2

− β2Ψ = 0

where β2 = 2m(V−ε)

h̄2 . Solutions to the wavefunction for this case, in this
region, are

Ψ2 = Ceβx + De−βx (11.3)
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Now in order to proceed, we need to employ the matching conditions for
the wavefunctions. The matching conditions are:

1. Ψ1(0) = Ψ2(0)

2. Ψ
′
1(0) = Ψ

′
2(0)

Furthermore, the wavefunction must be finite valued. That is, the wave-
function can’t blow up or do strange things.

Transmission and reflection coefficients; ε > V

The wavefunctions in this case are

Ψ1 = Aeikx + Be−ikx

Ψ2 = Ceiφx + De−iφx

Since there are no sources of particles on the right to support a left going
wave, D = 0. The wavefunctions become

Ψ1 = Aeikx + Be−ikx

Ψ2 = Ceiφx

Apply the matching conditions. First one

Ψ1(0) = Ψ2(0)
A + B = C

Second matching condition

Ψ
′
1(0) = Ψ

′
2(0)

Aikeikx −Bike−ikx = Ciφeiφx

Aik −Bik = Ciφ

k(A−B) = φC

Now take the resulting equations and solve for A and B

A + B = C

A−B =
φ

k
C

↓
2A = C

(
1 +

φ

k

)

A =
C

2

(
1 +

φ

k

)
(11.4)
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Next B

A + B = C

−A + B = −φ

k
C

↓
2B = C

(
1− φ

k

)

B =
C

2

(
1− φ

k

)
(11.5)

Now the incident “flux” of particles from the left onto the potential step is

v1|A|2 (11.6)

where v1 is the velocity in region 1 and |A|2 is the relative probability of a
right going wave in region 1. Similarly

v1|B|2 (11.7)

is the reflected flux at the potential step where again v1 is the velocity in
region 1 and |B|2 is the relative probability of a left going wave. Finally

v2|C|2 (11.8)

is the transmitted flux where v2 is the velocity in region 2 and |C|2 is the
relative probability of a right going wave in region 2.

The fraction of particles reflected is therefore

R ≡ v1|B|2
v1|A|2 =

∣∣∣∣
B

A

∣∣∣∣
2

=
B∗B
A∗A

R =
C2

4

(
1− φ

k

)2

C2

4

(
1 + φ

k

)2

R = (k−φ2)2

(k+φ2)2
> 0 (11.9)

So oddly enough, this is non-classical. Some reflection occurs even though
ε > V .
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Next, the fraction of particles transmitted is

T ≡ v2|C|2
v1|A|2 =

φ|C|2
k|A|2 =

φC2

kC2

4

(
1 + φ

k

)2

=
4φ

k
(
1 + φ

k

)2 =
4k2φ

k(k + φ)2

resulting in

T = 4kφ
(k+φ)2

6= 0 (11.10)

Transmission and reflection coefficients; ε < V

Recall that the wavefunctions in this case are

Ψ1 = Aeikx + Be−ikx

Ψ2 = Ceβx + De−βx

where k =
√

2mε
h̄ and β =

√
2m(V−ε)

h̄ . Now recall that the wavefunction in
region 1 and 2 must be finite valued. This means that C = 0. Can’t have
something blow up here. Therefore

Ψ1 = Aeikx + Be−ikx

Ψ2 = De−βx

Apply the matching conditions now. First one

Ψ1(0) = Ψ2(0)
A + B = D

Second one

Ψ
′
1(0) = Ψ

′
2(0)

ikA− ikB = −βD

ik(A−B) = −βD

Now take the resulting equations and solve for A and B. First let’s solve
for the A coefficient.

A + B = D
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A−B = − β

ik
D

↓
2A = D

(
1− β

ik

)

A =
D

2

(
1− β

ik

)
(11.11)

Now let’s solve for B

A + B = D

−A + B =
β

ik
D

2B = D

(
1 +

β

ik

)

B =
D

2

(
1 +

β

ik

)
(11.12)

From before, the relevant fluxes are

v1|A|2 (leftgoing)

v1|B|2 (rightgoing)

v2|C|2 (transmitted)

The fraction of particles reflected is

R =
v1|B|2
v1|A|2 =

∣∣∣∣
B

A

∣∣∣∣
2

=
B∗B
A∗A

=
D2

4

(
1 + β

ik

) (
1− β

ik

)

D2

4

(
1− β

ik

) (
1 + β

ik

)

=
D2

4

(
1 + β2

k2

)

D2

4

(
1 + β2

k2

)

= 1

However the fraction transmitted is

T =
v2|D|2
v1|A|2 =

β|D|2
k|A|2

=
βD2

kD2

4

(
1 + β2

k2

)
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=
4β

k
(
1 + β2

k2

)

giving

T = 4βk
(k2+β2)

6= 0 (11.13)

This gives a non-classical result. There is some probability of finding soeme-
thing in region 2.

Potential barrier

From the last section we know that the wavefunctions have the following
form.

Figure 11.4: Cartoon of the potential barrier

Ψ1 = Aeikx + Be−ikx

Ψ2 = Ceiφx + De−iφx
(ε > V )

Ψ2 = Ceβx + De−βx
(ε < V )

Ψ3 = Feikx + Ge−ikx

where k2 = 2mε
h̄2 , φ2 = 2m(ε−V )

h̄2 , and β2 = 2m(V−ε)

h̄2 . Now as before we apply
the matching conditions to the wavefunctions to solve for the coefficients
and in turn for the transmission (T) and reflection (R) coefficients.
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Case 1: (ε > V )

Figure 11.5: Behavior of the wavefunction in the potential barrier case where
ε > V

Assuming that there is no source of particles on the right then G = 0.
The wavefunctions in the three regions become

Ψ1 = Aeikx + Be−ikx

Ψ2 = Ceiφx + De−iφx

Ψ3 = Feikx

Apply the matching conditions at x = 0. First one

Ψ1(0) = Ψ2(0)
A + B = C + D (11.14)

Second one

Ψ
′
1(0) = Ψ

′
2(0)

Aik −Bik = Ciφ−Diφ

A−B =
φ

k
(C −D) (11.15)

Apply the matching conditions at x = a. First one

Ψ2(a) = Ψ3(a)
Ceiφa + De−iφa = Feika (11.16)
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Second one

Ψ
′
2(a) = Ψ

′
3(a)

Ciφeiφa −Diφe−iφa = Fikeika

Cφeiφa −Dφe−iφa = Fkeika (11.17)

Solve for A.

A + B = C + D

A−B =
φ

k
C − φ

k
D

↓
2A = C

(
1 +

φ

k

)
+ D

(
1− φ

k

)

A =
C

2

(
1 +

φ

k

)
+

D

2

(
1− φ

k

)
(11.18)

Solve for B.

A + B = C + D

−A + B = −φ

k
C +

φ

k
D

↓
2B = C

(
1− φ

k

)
+ D

(
1 +

φ

k

)

B =
C

2

(
1− φ

k

)
+

D

2

(
1 +

φ

k

)
(11.19)

Solve for C.

Ceiφa + De−iφa = Feika

Cφeiφa −Dφe−iφa = Fkeika

↓
Cφeiφa + Dφe−iφa = Fφeika

Cφeiφa −Dφe−iφa = Fkeika

↓
2Cφeiφa = F (k + φ)eika

C = F
k + φ

2φ
eia(k−φ) (11.20)
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Solve for D.

Ceiφa + De−iφa = Feika

−Cφeiφa + Dφe−iφa = −Fkeika

↓
Cφeiφa + Dφe−iφa = Fφeika

−Cφeiφa + Dφe−iφa = −Fkeika

↓
2Dφe−iφa = F (φ− k)eika

D = F
φ− k

2φ
eia(k+φ) (11.21)

Now that we have expressions for A,B,C,D all in terms of F, let’s re-express
everything in terms of F. From before

A =
1
2
C

(
1 +

φ

k

)
+

1
2
D

(
1− φ

k

)

=
1
2
F

k + φ

2φ
eia(k−φ)

(
1 +

φ

k

)
+

1
2
F

φ− k

2φ
eia(k+φ)

(
1− φ

k

)

=
F

4φ

(
(k + φ)

(
1 +

φ

k

)
eia(k−φ) + (φ− k)

(
1− φ

k

)
eia(k+φ)

)

=
F

4φ

(
(k + φ)(k + φ)

k
eia(k−φ) − (k − φ)(k − φ)

k
eia(k+φ)

)

=
Feika

4kφ

(
(k + φ)2e−iaφ − (k − φ)2eiaφ

)

=
Feika

4kφ

(
k2e−iaφ + 2kφe−iaφ + φ2e−iaφ − k2eiaφ + 2kφeiaφ − φ2eiaφ

)

=
Feika

4kφ

(
−k2

(
eiaφ − e−iaφ

)
− φ2

(
eiaφ − e−iaφ

)
+ 2kφ

(
eiaφ + e−iaφ

))

=
Feika

4kφ

(
4kφ

eiaφ + e−iaφ

2
− 2i(k2 + φ2)

eiaφ − e−iaφ

2i

)

This gives our desired expression for A

A =
Feika

4kφ

(
4kφcos(φa)− 2i(k2 + φ2)sin(φa)

)
(11.22)

Next we do B

B =
1
2
C

(
1− φ

k

)
+

1
2
D

(
1 +

φ

k

)
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=
1
2
F

k + φ

2φ
eia(k−φ)

(
1− φ

k

)
+

1
2
F

φ− k

2φ
eia(k+φ)

(
1 +

φ

k

)

=
F

4φ

(
(k + φ)

(
1− φ

k

)
eia(k−φ) + (φ− k)

(
1 +

φ

k

)
eia(k+φ)

)

=
F

4φ

(
(k + φ)(k − φ)

k
eia(k−φ) − (k − φ)(k + φ)

k
eia(k+φ)

)

=
F

4kφ

(
(k2 − φ2)eia(k−φ) − (k2 − φ2)eia(k+φ)

)

=
2iF (k2 − φ2)

4kφ
eika

(
e−iaφ − eiaφ

2i

)

=
2iF (−k2 + φ2)

4kφ
eika

(
−e−iaφ + eiaφ

2i

)

giving us our desired expression for B

B =
iF (φ2 − k2)

2kφ
eikasin(φa) (11.23)

Now (finally!) we can evaluate what the reflection and transmission coeffi-
cients are. From before the relevant fluxes are

v1|A|2 (leftgoing)

v1|B|2 (rightgoing)

v3|F |2 (transmitted)

The fraction of particles reflected is

R =
v1|B|2
v1|A|2 =

∣∣∣∣
B

A

∣∣∣∣
2

=
B∗B
A∗A

=
F 2(φ2−k2)2

4(kφ)2
sin2(φa)

F 2

16(kφ)2
(16(kφ)2cos2(φa) + 4(k2 + φ2)sin2(φa))

R = (φ2−k2)2sin2(φa)
4(kφ)2cos2(φa)+(k2+φ2)sin2(φa)

(11.24)

The fraction transmitted is

T =
v3|F |2
v1|A|2
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where note that v3 = v1. Therefore

T =
|F |2
|A|2 =

F ∗F
A∗A

=
16(kφ)2

16(kφ)2cos2(φa) + 4(k2 + φ2)2sin2(φa)

=
1

cos2(φa) + (k2+φ2)2

4(kφ)2
sin2(φa)

(11.25)

Now we could stop here, but usually in many textbooks they expand this
out a little further. Recall that

k2 =
2mε

h̄2

φ2 =
2m(ε− V )

h̄2

(kφ)2 =
4m2

h̄4 ε(ε− V )

This leads to

T =
1

cos2(φa) + (2mε+2m(ε−V ))2

16m2ε(ε−V )
sin2(φa)

=
1

cos2(φa) + 4m2(2ε−V )2

16m2ε(ε−V )
sin2(φa)

=
1

cos2(φa) + (2ε−V )2

4ε(ε−V )sin
2(φa)

=
4ε(ε− V )

4ε(ε− V )cos2(φa) + (4ε2 − 4εV + V 2)sin2(φa)

=
4ε(ε− V )

4ε2cos2(φa)− 4εV cos2(φa) + 4ε2sin2(φa)− 4εV sin2(φa) + V 2sin2(φa)

=
4ε(ε− V )

(4ε2 − 4εV ) + V 2sin2(φa)

=
4ε(ε− V )

4ε(ε− V ) + V 2sin2(φa)

This leads to the standard textbook expression

T = 1

1+ V 2

4ε(ε−V )
sin2(φa)

(11.26)
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Case 2: (ε < V )

Figure 11.6: Behavior of the wavefunction in the potential barrier case where
ε < V

Now rather than doing all this math again, one can be smart about this.
Just note that β = iφ. So take our previous results from case 1 and just
replace φ with iφ. (We just analyze the transmission coefficient since this is
what we really care about). Another tortuous math workout. Starting with
the assumption of no sources on the right (G = 0), the wavefunctions are

Ψ1 = Aeikx + Be−ikx

Ψ2 = Ceβx + De−βx

Ψ3 = Feikx

Apply the matching conditions at x = a. First one

Ψ1(0) = Ψ2(0)
A + B = C + D (11.27)

Second one

Ψ
′
1(0) = Ψ

′
2(0)

A−B =
β

ik
(C −D) (11.28)
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Apply the matching conditions at x = a. First one

Ψ2(a) = Ψ3(a)
Ceβa + De−βa = Feika (11.29)

Second one

Ψ
′
2(a) = Ψ

′
3(a)

Ceβa −De−βa =
ik

β
Feika (11.30)

Solve for A

A + B = C + D

A−B =
β

ik
(C −D)

↓
2A = C

(
1 +

β

ik

)
+ D

(
1− β

ik

)

A =
C

2

(
1 +

β

ik

)
+

D

2

(
1− β

ik

)
(11.31)

Solve for B

A + B = C + D

−A + B =
β

ik
(−C + D)

↓
2B = C

(
1− β

ik

)
+ D

(
1 +

β

ik

)

B =
C

2

(
1− β

ik

)
+

D

2

(
1 +

β

ik

)
(11.32)

Solve for C

Ceβa + De−βa = Feika

Ceβa −De−βa =
ik

β
Feika

↓
2Ceβa = F

(
1 +

ik

β

)
eika

C =
F

2

(
1 +

ik

β

)
eika−βa (11.33)
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Solve for D

Ceβa + De−βa = Feika

−Ceβa + De−βa = − ik

β
Feika

↓
2De−βa = F

(
1− ik

β

)
eika

D =
F

2

(
1− ik

β

)
eika+βa (11.34)

Now we have a relation for A in terms of C and D. Replace the above
C and D expressions into A to obtain A as a function of F (we did B just
for the sake of completeness).

A =
F

4

(
1 +

ik

β

) (
1 +

β

ik

)
eika−βa +

F

4

(
1− ik

β

) (
1− β

ik

)
eika+βa

=
F

4

(
2 +

β

ik
+

ik

β

)
eika−βa +

F

4

(
2− β

ik
− ik

β

)
eika+βa

=
F

4
eika

((
2 +

β

ik
+

ik

β

)
e−βa +

(
2− β

ik
− ik

β

)
eβa

)
(11.35)

Now from before we know that the transmission coefficient is

T = |F
A
|2 =

F ∗F
A∗A

=
16(

2 + β
ik + ik

β

)2
+

(
2− β

ik − ik
β

)2
+ 2

(
2 + β

ik + ik
β

) (
2− β

ik − ik
β

)
cosh(2βa)

=
16(

2 + β2−k2

βik

)2
+

(
2− β2−k2

βik

)2
+ 2

(
2 + β

ik + ik
β

) (
2− β

ik − ik
β

)
cosh(2βa)

=
16

8− 2 (β2−k2)2

(βk)2
+ 2

(
4 + β2−k2

(βk)2

)
cosh(2βa)

=
16(

8− 2(β2−k2)2

(βk)2

)
+

(
8 + 2(β2−k2)2

(βk)2

)
cosh(2βa)

it gets ugly here but can be simplified to give

=
16(βk)2

8(βk)2(1 + cosh(2βa))− 2(β2 − k2)2(1− cosh(2βa))

Now use the relation cosh(2x) = 1 + 2sinh2(x) to get
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=
1

1 + (β2+k2)2

4(βk)2
sinh2(βa)

where β2 = 2m(V−ε)

h̄2 , k2 = 2mε
h̄2 , and (βk)2 = 4m2ε(V−ε)

h̄4 . This leads us to
our final textbook expression

T = 1

1+ V 2

4ε(V−ε)
sinh2(βa)

(11.36)

Again T 6= 0 and we obtain a non-classical result.

Exercises

1. A conduction electron in a semiconductor can be described as a free
particle in a constant potential with an effective mass me. Both
the constant potential and the effective mass are material dependent.
Consider the following idealized one dimensional system where semi-
infinite slabs of semiconductors A and B are joined together. (See Fig-
ure 11.7) Assume that one of the matching conditions is 1

mA
ΨA(0) =

1
mB

ΨB(0). Also assume Vo > 0. (A) Find the transmission coefficient
T for E > Vo for a right going wave. (B) Now assume that mB < mA.
Show that an appropriate choice of incoming energy E yields complete
transmission (T = 1). Is there such an energy if mB > mA. (C) Show
that for Vo = 0 and mA 6= mB, T is always less than unity.

Figure 11.7: Semiconductor junction
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Chapter 12

The WKB approximation

Preliminaries

Here we derive the WKB form of the wavefunction. Starting with the
Schrodinger equation in the regime where ε > V

− h̄2

2m

d2Ψ
dx2

+ V Ψ = εΨ

− h̄2

2m

d2Ψ
dx2

= (ε− V )Ψ

d2Ψ
dx2

= −2m

h̄2 (ε− V )Ψ

d2Ψ
dx2

+
2m

h̄2 (ε− V )Ψ = 0 (12.1)

Let k2 = 2m
h̄2 (ε− V ) so that we get

d2Ψ
dx2

+ k2Ψ = 0

Now in general, if the potential is slowly varying, then both the amplitude
and the phase of the wavefunction will change. The general form of the
wavefunction is

Ψ(x) = A(x)eiφ(x) = Aeiφ
(shorthand) (12.2)

So we insert this form of the wavefunction into Schrodinger’s equation above.
To begin we evaluate some derivatives that we will need. First derivative

dΨ
dx

= Aieiφφ
′
+ eiφA

′

= (A
′
+ iAφ

′
)eiφ (12.3)
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Next we do the second derivative

d2Ψ
dx2

= i(A
′
+ iAφ

′
)eiφφ

′
+ eiφ(A

′′
+ iAφ

′′
+ iφ

′
A
′
)

= (iA
′
φ
′ −Aφ

′2)eiφ + (A
′′

+ iAφ
′′

+ iφ
′
A
′
)eiφ

= (2iA
′
φ
′ −Aφ

′2 + A
′′

+ iAφ
′′
)eiφ

= (A
′′

+ 2iA
′
φ
′
+ iAφ

′′ −Aφ
′2)eiφ (12.4)

Replace this into the above Schrodinger equation; d2Ψ
dx2 + k2Ψ = 0

(A
′′

+ 2iA
′
φ
′
+ iAφ

′′ −Aφ
′2)eiφ + k2Aeiφ = 0

A
′′

+ 2iA
′
φ
′
+ iAφ

′′ −Aφ
′2 + k2A = 0 (12.5)

Group the real and imaginary terms. First the real terms

A
′′ −Aφ

′2 + k2A = 0
A
′′ −Aφ

′2 = −k2A (12.6)

Next the imaginary terms

2iA
′
φ
′
+ iAφ

′′
= 0

2A
′
φ
′
+ Aφ

′′
= 0

(A2φ
′
)
′

= 0 (12.7)

Now we want to solve for A,φ so we can have an explicit wavefunction. Solve
the imaginary equation first

(A2φ
′
)
′

= 0
A2φ

′
= C2

(a constant)

A2 =
C2

φ′

A =
C√
φ′

(12.8)

The real part cannot be solve exactly. However, if A varies very slowly then
A
′′

is very small and can be ignored.

A
′′ −Aφ

′2 = −k2A

−Aφ
′2 = −k2A

−φ
′2 = −k2

φ
′

= ±k

φ = ±
∫

kdx (12.9)



157

Put these two expressions for A and φ back into our wavefunction

Ψ = Aeiφ

=
C±√

k
e±i

∫
kdx (12.10)

This is the desired form of the WKB wavefunction in the case where ε > V .
In the case where ε < V the WKB form of the wavefunction is

Ψ =
C±√

β
e±

∫
βdx (12.11)

which is basicall the same as the first case but where we just replace k with
iβ.

Arbitrary potential step

Using our just derived WKB wavefunctions we evaluate the following arbi-
trary potential step.

Figure 12.1: Cartoon of the arbitrary potential step

The wavefunctions in region 1 and region 2 are, in general

Ψ1 =
A√
k
ei

∫ 0

x
kdx +

B√
k
e−i

∫ 0

x
kdx

where (x < 0)

Ψ2 =
C√
β

e
∫ x

0
βdx +

D√
β

e−
∫ x

0
βdx

where (x > 0)
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Because we can’t have the wavefunction blow up in region 2 (C = 0). The
wavefunctions are therefore

Ψ1 =
A√
k
ei

∫ 0

x
kdx +

B√
k
e−i

∫ 0

x
kdx

where (x < 0) (12.12)

Ψ2 =
D√
β

e−
∫ x

0
βdx

where (x > 0) (12.13)

Now consider a linear approximation to the potential between region 1 and
region 2

V = ε + V
′
x (12.14)

First we determine the patching wavefunction in the boundary, no man’s
land, between region 1 and region 2. Starting with the Schrodinger equation

−h̄2

2m

d2Ψp

dx2
+ V Ψp = εΨp

where V = ε + V
′
x. This reduces as follows

− h̄2

2m

d2Ψp

dx2
+ (ε + V

′
x)Ψp = εΨp

− h̄2

2m

d2Ψp

dx2
+ V

′
xΨp = 0

d2Ψp

dx2
− 2mV

′

h̄2 xΨp = 0

d2Ψp

dx2
=

2mV
′

h̄2 xΨp

Let α3 = 2mV
′

h̄2 leading to

d2Ψp

dx2
= α3xΨp

Now let z = αx leading to

d2Ψp

dz2
= zΨp (12.15)

This is Airy’s equation whose solutions are called Airy functions. General
solution is a linear combination of Airy functions, Ai(z) and Bi(z). The
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asymptotic forms of Airy functions are for (z < 0)

Ai(z) =
1

√
π(−z)

1
4

sin(
2
3
(−z)

3
2 +

π

4
)

Bi(z) =
1

√
π(−z)

1
4

cos(
2
3
(−z)

3
2 +

π

4
)

and for (z > 0)

Ai(z) =
1

2
√

πz
1
4

e−
2
3
z

3
2

Bi(z) =
1

√
πz

1
4

e
2
3
z

3
2

Now

Ψp = aAi(z) + bBi(z) (12.16)

where a and b are constants. Now in region 1

k =

√
2m(ε− V )

h̄2

where V = (ε + V
′
x)

k =

√
2mV ′

h̄2

√−x

= α
3
2
√−x (12.17)

where recall that α =
(

2mV
′

h̄2

) 1
3

.

In region 2

β =

√
2m(V − ε)

h̄2

=

√
2mV ′

h̄2

√
x

= α
3
2
√

x (12.18)

Now go back to the wavefunctions in region 1 and region 2 and make
them more explicit.
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Region 1

Ψ1 =
A√
k
ei

∫ 0

x
kdx +

B√
k
e−i

∫ 0

x
kdx

and k = α
3
2
√−x

Ψ1 =
A

α
3
4 (−x)

1
4

ei
∫ 0

x
α

3
2
√−xdx +

B

α
3
4 (−x)

1
4

e−i
∫ 0

x
α

3
2
√−xdx

evaluate integral by letting y=-x, doing the integral and then renaming y as x

=
A

α
3
4 (−x)

1
4

e
2i
3

(−αx)
3
2 +

B

α
3
4 (−x)

1
4

e−
2i
3

(−αx)
3
2

=
A

√
α(−αx)

1
4

e
2i
3

(−αx)
3
2 +

B
√

α(−αx)
1
4

e−
2i
3

(−αx)
3
2 (12.19)

Region 2

Ψ2 =
D√
β

e−
∫ x

0
βdx

where β = α
3
2
√

x

Ψ2 =
D

α
3
4 x

1
4

e−
∫ x

0

√
xdx

=
D

√
x(αx)

1
4

e−
2
3
(αx)

3
2 (12.20)

Now at this point, compare these explicit wavefunctions to the patching
wavefunctions in regions 1 and 2.

Region 2 (x > 0)(z > 0)

Ψp = aAi(z) + bBi(z)

=
a

2
√

πz
1
4

e−
2
3
z

3
2 +

b
√

πz
1
4

e
2
3
z

3
2

compared to

Ψ2 =
D

√
α(αx)

1
4

e−
2
3
(αx)

3
2

By inspection, one can tell immediately that

b = 0 (12.21)

a = 2D

√
π

α
(12.22)
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Now go back and do the same comparison in region 1
Region 1 (x < 0)(z < 0)

Ψp = aAi(z)

Ψp = 2D

√
π

a
Ai(z)

where

Ai(z) =
1

√
π(−z)

1
4

sin(
2
3
(−z)

3
2 +

π

4
)

=
1

√
π(−z)

1
4


ei( 2

3
(−z)

3
2 +π

4
) − e−i( 2

3
(−z)

3
2 +π

4
)

2i




=
1

(−z)
1
4

(
ei π

4

2i
√

π
ei 2

3
(−z)

3
2 − e−i π

4

2i
√

π
e−i 2

3
(−z)

3
2

)

yielding

Ψp =
1

(−z)
1
4

(
Dei π

4

i
√

α
e

2i
3

(−z)
3
2 − De−i π

4

i
√

α
e−

2i
3

(−z)
3
2

)

versus

Ψ1 =
1

(−αx)
1
4

(
A√
α

e
2i
3

(−αx)
3
2 +

B√
α

e−
2i
3

(−αx)
3
2

)

Now by inspection

A = −iDei π
4 (12.23)

B = iDe−i π
4 (12.24)

Now put everything together for the WKB wavefunctions we showed at the
beginning of the section

Ψ1 =
A√
k
ei

∫ 0

x
kdx +

B√
k
e−i

∫ 0

x
kdx

where (x < 0)

Ψ2 =
D√
β

e−
∫ x

0
βdx

where (x > 0)

where now A = −iDei π
4 and B = iDe−i π

4 to get

Ψ1 =
2D√

k
sin(

π

4
+

∫ 0

x
kdx) (12.25)

Ψ2 =
D√
β

e−
∫ x

0
βdx (12.26)
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Arbitrary potential drop

Figure 12.2: Cartoon of the arbitrary potential drop

Using our derived WKB wavefunctions we have the general form in re-
gions 2 and 3

Ψ2 =
C√
β

e
∫ 0

x
βdx +

D√
β

e−
∫ 0

x
βdx

where (x < 0)

Ψ3 =
F√
k
ei

∫ x

0
kdx +

G√
k
e−i

∫ x

0
kdx

where (x > 0)

Since we can’t have the wavefunctions behave badly, C = 0 to prevent it
from blowing up in region 2. This leaves us with t wavfunction forms

Ψ2 =
D√
β

e−
∫ 0

x
βdx (12.27)

Ψ3 =
F√
k
ei

∫ x

0
kdx +

G√
k
e−i

∫ x

0
kdx

Now consider an approximation to the potential in the region between 2 and
3 of the linear form

V = (ε− V
′
x) (12.28)

First we determine the patching wavefunctions in the region between 2 and 3.
Starting with Schrodinger’s equation (if you went thorough the last section
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all of what follows will be familiar)

− h̄2

2m

d2Ψp

dx2
+ V Ψp = εΨp

− h̄2

2m

d2Ψp

dx2
+ (ε− V

′
x)Ψp = εΨp

− h̄2

2m

d2Ψp

dx2
− V

′
xΨp = 0

d2Ψp

dx2
+

2mV
′
x

h̄2 Ψp = 0

Let α3 = 2mV
′

h̄2 leading to

d2Ψp

dx2
+ α3xΨp = 0

Now let z = −αx

d2Ψp

dz2
= zΨp (12.29)

Again, this is the Airy equation with accompanying Airy functions. The
general solution is a linear combination of the form

Ψp = aAi(z) + bBi(z) (12.30)

where a and b are constants.
In region 2

β =

√
2m(V − ε)

h̄2

where V = ε− V
′
x

=

√
2mV ′

h̄2

√−x

= α
3
2
√−x (12.31)

In region 3

k =

√
2m(ε− V )

h̄2

=

√
2mV ′

h̄2

√
x

= α
3
2
√

x (12.32)
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Now with β and k go back and make more explicit our wavefunctions in
regions 2 and 3.

Region 2

Ψ2 =
D√
β

e−
∫ 0

x
βdx

=
D

α
3
4 (−x)

1
4

e−α
3
2

∫ 0

x
(−x)

1
2 dx

solve the integral by letting y=-x, integrating and then renaming y=x

=
D

√
α(−αx)

1
4

e−
2
3
(−αx)

3
2 (12.33)

Region 3

Ψ3 =
F√
k
ei

∫ x

0
kdx +

G√
k
e−i

∫ x

0
kdx

=
F

√
α(αx)

1
4

e
∫ x

0
α

3
2 x

1
2 dx +

G
√

α(αx)
1
4

e−
∫ x

0
α

3
2 x

1
2 dx

=
F

√
α(αx)

1
4

e
2i
3

(αx)
3
2 +

G
√

α(αx)
1
4

e−
2i
3

(αx)
3
2 (12.34)

Now compare these explicit wavefunctions to the patching wavefunctions in
regions 2 and 3

Region 2 (x < 0) (z > 0) since (z = −αx)

Ψp = aAi(z) + bBi(z)

=
a

2
√

πz
1
4

e−
2
3
z

3
2 +

b
√

πz
1
4

e
2
3
z

3
2

versus

Ψ2 =
D

√
α(−αx)

1
4

e−
2
3
(−αx)

3
2

By insepction

b = 0 (12.35)

a = 2D

√
π

α
(12.36)
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Region 1 (x > 0) (z < 0) since (z = −αx)

Ψp = aAi(z)

= 2D

√
π

α
Ai(z)

=
a

√
π(−z)

1
4

sin(
2
3
(−z)

3
2 +

π

4
)

=
a

√
π(−z)

1
4


ei π

4 e
2i
3

(−z)
3
2 − e−i π

4 e−
2i
3

(−z)
3
2

2i




=
1

(−z)
1
4

(
aei π

4√
π2i

e
2i
3

(−z)
3
2 − ae−i π

4√
π2i

e−
2i
3

(−z)
3
2

)

versus

Ψ3 =
1

(αx)
1
4

(
F√
α

e
2i
3

(αx)
3
2 +

G√
α

e−
2i
3

(αx)
3
2

)

By inspection

F = −iDei π
4 (12.37)

G = iDe−i π
4 (12.38)

Now put everything together for the WKB wavefunctions we saw at the
beginning of the section

Ψ2 =
D√
β

e−
∫ 0

x
βdx

Ψ3 =
F√
k
ei

∫ x

0
kdx +

G√
k
e−i

∫ x

0
kdx

where now F = −iDei π
4 and G = iDe−i π

4 leading to

Ψ2 =
D√
β

e−
∫ 0

x
βdx (12.39)

Ψ3 =
2D√

k
sin(

π

4
+

∫ x

0
kdx) (12.40)

Arbitrary potential barrier

This next section basically puts together all the work we did in the previ-
ous two sections for the arbitrary potential step and potential drop. The
combination of both is the potential barrier.
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Figure 12.3: Cartoon of the arbitrary potential barrier

The solution for the transmission coefficient will lead to the general form
of the tunneling probability that is ubiquitous in textbooks, in the literature
and in experiments like scanning tunneling microscopy. The derivation in-
volves a lot of tortuous math but follows the same train of thought as used
in the earlier two sections.

Picture an arbitrary barrier of the form shown below. Now the general
form of the WKB wavefunctions as derived earlier is

Ψ1 =
A√
k
ei

∫ x1
x

kdx +
B√
k
e−i

∫ x1
x

kdx
where (x < x1) (12.41)

Ψ2 =
C√
β

e

∫ x

x1
βdx

+
D√
β

e
−

∫ x

x1
βdx

where (x1 < x < x2) (12.42)

Ψ3 =
F√
k
e
i
∫ x

x2
kdx

where (x > x2) (12.43)

Since there are no sources of particles on the right everything moves in a
left to right direction and hence Ψ3 has only one component above.

Remember in what follows that ultimately what we want to solve for is

T =
v3|F |2
v1|A|2 =

k|F |2
k|A|2 =

|F |2
|A|2

You will find that our strategy is to express A in terms of F .
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First we determine the patching wavefunction in the boundary region
between 1 and 2. Starting with the Schrodinger equation

− h̄2

2m

d2Ψp

dx2
+ V Ψp = εΨp

− h̄2

2m

d2Ψp

dx2
+ (ε + V

′
x)Ψp = εΨp

− h̄2

2m

d2Ψp

dx2
+ V

′
xΨp = 0

d2Ψp

dx2
− 2mV

′
x

h̄2 Ψp = 0

Let α3 = 2mV
′

h̄2 resulting in

d2Ψp

dx2
= α3xΨp

Now let z = αx

d2Ψp

dz2
= zΨp

As before, this is the Airy equation whose general solution is a linear com-
bination of Airy functions

Ψp = aAi(z) + bBi(z)

Now in the left part of region 2 (bordering region 1)

β =

√
2m(V − ε)

h̄2

=

√
2mV ′

h̄2

√
x

= α
3
2
√

x (12.44)

In the right part of region 1 (bordering region 2)

k =

√
2m(ε− V )

h̄2

=

√
2mV ′

h̄2

√−x

= α
3
2
√−x (12.45)
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Now go back to the wavefunctions in regions 1 and 2 and make them
more explicit using the above. Starting with

Ψ1 =
A√
k
ei

∫ x1
x

kdx +
B√
k
e−i

∫ x1
x

kdx

Ψ2 =
C√
β

e

∫ x

x1
βdx

+
D√
β

e
−

∫ x

x1
βdx

temporarily shift the origin to x1 (i.e. x1 = 0). Then this basically becomes
the same problem that we solved earlier. After we are done we can shift
back the origin to where it used to be. First wavefunction

Ψ1 =
A

α
3
4 (−x)

1
4

ei
∫ 0

x
α

3
2
√−xdx +

B

α
3
4 (−x)

1
4

e−i
∫ 0

x
α

3
2
√−xdx

solve integral by letting y=-x, integrate then rename y=x

=
A

√
α(−αx)

1
4

e
2i
3

(−αx)
3
2 +

B
√

α(−αx)
1
4

e−
2i
3

(−αx)
3
2 (12.46)

Second wavefunction

Ψ2 =
C

√
α(αx)

1
4

e
∫ x

0
α

3
2
√

xdx +
D

√
α(αx)

1
4

e−
∫ x

0
α

3
2
√

xdx

=
C

√
α(αx)

1
4

e
2
3
(αx)

3
2 +

D
√

α(αx)
1
4

e−
2
3
(αx)

3
2 (12.47)

Now compare these explicit wavefunctions with the patching wavefunction.
Left part of region 2 (bordering region 1) (x > 0) (z > 0)

Ψp = aAi(z) + bBi(z)

=
a

2
√

πz
1
4

e−
2
3
z

3
2 +

b
√

πz
1
4

e
2
3
z

3
2

versus

Ψ2 =
C

√
α(αx)

1
4

e
2
3
(αx)

3
2 +

D
√

α(αx)
1
4

e−
2
3
(αx)

3
2

By inspection

b = C

√
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(12.48)

a = 2D

√
π

α
(12.49)
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Right part of region 1 (bordering region 2) (x < 0) (z < 0)

Ψp = aAi(z) + bBi(z)
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√
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By inspection
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B =
e−i π

4

2

(
−2D

i
+ C

)
(12.51)

Now consider the interface between regions 2 and 3. The potential here
can be modeled in a linear fashion

V = (ε− V
′
x) (12.52)

First determine the patching wavefucntion in the boundary region. Start
with Schrodinger’s equation again

− h̄2

2m

d2Ψp

dx2
+ V Ψp = εΨp
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− h̄2

2m

d2Ψp

dx2
+ (ε− V

′
xΨp) = εΨp

− h̄2

2m

d2Ψp

dx2
− V

′
xΨp = 0

d2Ψp

dx2
+

2mV
′
x

h̄2 xΨp = 0

Let α3 = 2mV
′

h̄2 giving

d2Ψp

dx2
+ α3xΨp = 0

Now let z = −αx resulting in

d2Ψp

dz2
= zΨp

This is the Airy equation again with the general solution being a combination
of Airy functions.

Ψp = aAi(z) + bBi(z)

Now in the right part of region 2 (bordering region 3)

β =

√
2m(V − ε)

h̄2

=

√
2mV ′

h̄2

√−x

= α
3
2
√−x (12.53)

were recall V = ε− V
′
x

Now in the left part of region 3 (bordering region 2)

k =

√
2m(ε− V )

h̄2

=

√
2mV ′

h̄2

√
x

= α
3
2
√

x (12.54)
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Now go back to the wavefunctions in regions 2 and 3 and make them
explicit.

Ψ2 =
C√
β

e

∫ x

x1
βdx

+
D√
β

e
−

∫ x

x1
βdx

Ψ3 =
F√
k
e
i
∫ x

x2
kdx

rearrange wavefunctions to get

Ψ2 =
C√
β

e

∫ x2
x1

βdx+
∫ x

x2
βdx

+
D√
β

e
−

∫ x2
x1

βdx−
∫ x

x2
βdx

Ψ3 =
F√
k
e
i
∫ x

x2
kdx

now let γ =
∫ x2

x1
βdx

Ψ2 =
C√
β

eγe

∫ x

x2
βdx

+
D√
β

e−γe

∫ x

x2
βdx

(12.55)

Ψ3 =
F√
k
e
i
∫ x

x2
kdx

(12.56)

Now temporarily translate the origin to x2 (i.e. x2 = 0). This leads to

Ψ2 =
C√
β

eγe
∫ x

0
βdx +

D√
β

e−γe
∫ x

0
βdx

Ψ3 =
F√
k
ei

∫ x

0
kdx

Now we use the derived explicit forms for β and k to get explicit forms for
the wavefunctions. First wavefunction
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√
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1
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3
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solve the integral by letting y=-x, integrating, then rename y=x
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2 (12.57)

Second wavefunction

Ψ3 =
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√
α(αx)

1
4

ei
∫ x

0
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3
2
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xdx

=
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√
α(αx)

1
4

e
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(αx)
3
2 (12.58)
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Now compare these explicit wavefunctions to the patching wavefunction
Right side of region 2 (bordering region 3) (x < 0) (z > 0)
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=
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√
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By inspection

a = 2C

√
π

α
eγ (12.59)

b = D

√
π

α
e−γ (12.60)

Left side of region 3 (bordering region 2) (x > 0) (z < 0)
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compare this to



173

Ψ3 =
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By inspection
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(12.61)

or more importantly

1
2

(−2Ceγ

i
+ De−γ

)
e−i π

4 = 0

yielding

C =
iF

2
e−i π

4 e−γ (12.62)

D = Fe−i π
4 eγ (12.63)

Finally these expression can be inserted into our expression for A derived
earlier.

A =
ei π

4

2

(
2D

i
+ C

)

= iF (
e−γ

4
− eγ) (12.64)

Now the transmission coefficient is

T =
v3|F |2
v1|A|2 =

k|F |2
k|A|2 =

|F |2
|A|2 =

F ∗F
A∗A

=
F 2

F 2
(
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4 − eγ
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(
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4 − 1
)2 =

e−2γ

(
e−2γ

4 − 1
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=
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(
1− e−2γ

4

)2

So after all this effort, the transmission coefficient has the form

T =
e−2γ

(
1− e−2γ

4

)2 (12.65)
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which in the case of large γ reduces to the ubiquitous textbook and literature
expression

T ≈ e−2γ (12.66)

where γ =
∫ x2
x1

βdx and β =
√

2m(V−ε)

h̄2 . No mas!

Example: Field emission

Also known as Fowler Nordheim tunneling. Assume a triangular form of the
barrier where

(V − ε) = φ

(
1− x

a

)
(12.67)

Figure 12.4: Sketch of the triangular barrier considered in field emission or
Fowler Nordheim tunneling.

From the WKB approximation derived above

T ∼ e−2γ

where γ =
∫ a
0

√
2m(V−ε)

h̄ dx. This leads to

T = e−
2
h̄

√
2m

∫ a

0

√
V−ε dx
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2
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√
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∫ a

0
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a
dx



175

Integrate the exponent to get
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√
φ− φx

a
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√
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3
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=
4
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1
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φ
3
2

where ~E = φ
a is the electric field. This leads to our final expression

T = e
− 4

3

√
2m
h̄

φ
3
2
~E (12.68)

You can see that the tunneling probability depends to the 3/2 power of the
barrier height. This is the underlying relation behind the Fowler Nordheim
tunneling model.

Example: Schottky barrier

This problem arises when one has a metal-semiconductor junction. Here

(V − ε) ≈ φ

(
1−

(
x

a

)2
)

(12.69)

From the WKB approximation

T = e−2γ

where γ =
∫ a
0

√
2m(V−ε)

h̄ dx. This leads to

T = e
− 2

h̄
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√
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dx

= e−
2
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√
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0

√
1−(x

a
)2dx

Let y = x
a where also dx = ady. Don’t forget the limits of integration change

as well.
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Figure 12.5: Sketch of the Shottky barrier

To integrate, make another change of variables. Let y = sin(θ); dy =
cos(θ)dθ

T = e−
2
h̄

a
√

2mφ
∫ π

2
0 cos2(θ)dθ

where cos2(θ) = 1
2(1 + cos(2θ))

T = e−
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a
√

2mφ 1
2

∫ π
2

0
(1+cos(2θ))dθ

giving our final expression

T = e
−a π

2

√
2mφ

h̄2 (12.70)

Here one notices that the tunneling probability varies as the square root of
the barrier height, φ

1
2 .

Example: Symmetric parabolic barrier

Here

(V − ε) = C

(
a2

4
− x2

)
(12.71)
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Figure 12.6: Sketch of an arbitrary symmetric parabolic barrier

where C is a constant with appropriate units.
From the WKB approximation, the tunneling probability through this

barrier is

T = e−2γ

where γ =
∫ a
0

√
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h̄ dx. This leads to
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Evaluate the exponent
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2sinθ, dx = a

2cosθdθ. Also change the limits. The expoenent
becomes
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where φ the barrier height is φ = C
(

a2

4

)
. This leads to our final expression

T = e−
√

2m
C

π
h̄

φ (12.72)

where the tunneling probability depends upon φ alone rather than to some
power of it.

Exercises

1. Derive the transmission probability of a particle through a rectangular
barrier of height Vo and width l.

2. Assume a rectangular barrier of height 4 eV and width 2 nm. For
a free electron what is the tunneling probability through this barrier
using a WKB formalism.

3. For the same 4 eV barrier and electron mass, what is the tunneling
probability when the barrier width is increased by 50%. What is the
probablity when the barrier width is decreased by 50%.

4. For the same 2 nm wide barrier and electron mass, what is the tun-
neling probability when the barrier height is increased by 50%. What
is the probability when the barrier height is decreased by 50%.
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5. Use the WKB approximation to find the transimssion coefficient for
the potential V (x) = 0 if x < 0 and V (x) = Vo−kx when x > 0. Here
Vo and k are constants. Refer to figure 12.7. Hint: Find the turning
points of the system where V (x) = ε to find the limits of integration.

6. Calculate the transmission coefficient of the following potential barrier
using the WKB approximation. The potential is: V (x) = Vo

(
1− x2

a2

)

when −a <= x <= a. Also V (x) = 0 elsewhere. See figure 12.8. Use
the same hint about the turning points and the integration limits as
described in the previous problem.

7. Consider the classic alpha decay problem using the just derived WKB
approximation. The potential is V (r) = 2Ze2

4πεor for r > r1 where r1 is the
radius of the nuclei. Carry the WKB integral (Equation 12.66) from
r1 to r2 where r2 = 2Ze2

4πεoE and determine the tunneling probability.
Make suitable approximations to simplify things as much as possible.

Figure 12.7: Sketch of a linearly decaying barrier

Relevant literature

These references are listed in no particular order
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Figure 12.8: Sketch of a symmetric parabolic barrier
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Chapter 13

Synthesis

Molecular Beam Epitaxy (MBE)

The basic idea behind this technique is fairly simple. In practice, however,
its realization is more involved (and more expensive). MBE essentially con-
sists of an ultrahigh vacuum chamber into which a substrate is loaded onto
a heated sample holder. Precursors of desired elements (Ga, As, Al, P, In
etc...) are then loaded into heated crucibles or furnaces (called Knudsen
cells) outfitted with computer controlled shutters on their exits. The pre-
cursors are then heated such that when the shutters are opened one obtains
a beam of atoms directed towards the substrate. Under such low pressures,
the atomic species have very long mean free paths allowing them to reach
the substrate without collisions with other gas phase species in the chamber.
By controlling the temperature as well as the sequence/timing of opening
and closing the shutters one can deposit very uniform films of semiconduc-
tor materials. In this fashion one can obtain precise nanometer lengthscale
quantum well structures.

Under certain conditions where one deposits distinct semiconductor lay-
ers with different lattice constants, its also possible to grow islands of a
semiconductor on top of another effectively allowing the synthesis of semi-
conductor quantum dots. The basic idea is that after a few layers of the
new lattice mismatched semiconductor has been deposited, the strain at the
interface changes the mode of growth from within the plane to out of the
plane. Small islands are therefore formed which are the desired quantum
dots. This technique is refered to as Stranski Krastanow growth.

A crude sketch of a MBE apparatus is shown below.

183
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Figure 13.1: Cartoon of a MBE apparatus

Metal Organic Chemical Vapor Deposition (MOCVD)

MOCVD operates on a similar principle to MBE. However the apparatus
differs greatly. MOCVD is generally conducted using a quartz tube furnace
with a heated substrate. Clearly this is a much less expensive setup. One
doesn’t need turbo pumps, vacuum chambers, load locks, EELS guns and
other MBE accoutrements. Organometallic or metal-organic compounds
such as trimethylaluminum, trimethygallium, trimethylindium as well as
gases such as phosphine or arsine can be introduced into the heated reactor
and allowed to decompose giving the desired elemental species. In the case
of liquid organometallic precursors such as trimethylaluminum (above), the
compound is brought into the gas phase by bubbling a carrier gas such as
helium through the compound and allowing the gas to carry small amounts
of the precursor into the reaction chamber. Like MBE, MOCVD can be
used to grow thin films of materials. This technique has also been used,
more recently, in the synthesis of semiconductor nanowires in the presence
of gold nanoparticle catalysts. One potential disadvantage of the technique
is the uniformity of the resulting films or deposition of materials. This
is because the flow of gasses above the substrate may not be completely
uniform. As a consequence one should consider ways to better control the
flow and subsequent distribution of precursors over the substrate.

A sketch of the apparatus is shown below.
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Figure 13.2: Cartoon of a MOCVD apparatus

Colloidal growth

Description

Colloidal growth is a chemist’s approach to making nanostructures. There
are different variations of this approach so no general description can fit all
techniques. However a few are highlighted here. Some of the original quan-
tum dots were created in supersaturated solutions within a glass matrix.
Basically, molten silicate glasses were doped to the point of supersatura-
tion with metal salts of the desired semiconducting material. The melt is
then rapidly quenched, resulting in a precipitation of the desired semicon-
ducting material into tiny seed nuclei (or alternatively the rapid quench
can be thought of as a discrete temporal nucleation of seed particles). The
glass solution then undergoes a secondary heat treatment with temperatures
ranging from 400 to 1000 degrees Celcius. By varying the temperature and
duration of the secondary heat treatment one can vary the average size of
the nanocrystals.

Alternatively, others have employed inverse micelles as a means of quan-
tum dot or even nanowire synthesis. In this preparation, surfactants such
as bis(2-ethylhexyl)phosphate (also called AOT) are used to create small in-
verse micelles consisting of a hydrophilic interior and a hydrophobic exterior.
Aqueous solutions of metal salts are then introduced into these compart-
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mentalized water pools. Subsequent reactions are conducted in the aqueous
phase (whether it be reduction of the metal precursor using sodium borohy-
dride or reaction with a second chalcogen source such as S, Se or Te) to create
metal or semiconductor nanoparticles. After the reaction, the nanocrystal-
lites are sometimes extracted by adding a surface passivating agent which
drops them out of solution. The recovered powder is then redissolved in a
suitable solvent. To a first approximation, the average size of the nanocrys-
tallies is determined by the initial ratio of water to surfactant, often called
the “W” or “Ω” value.

One of the most successful approaches to the colloidal synthesis of nanocrys-
tal and nanorods involves using coordinating as well as non coordinating
solvents. In this approach organometallic precursors such as dimethylcad-
mium and trioctylphosphine selenide are injected into hot (temperatures on
the order of 300 degrees Celcius) trioctylphosphine oxide. Upon injection,
the precursors decompose to give desired elements of the final semiconduc-
tor. The rapid injection is analogous to the rapid quench in glasses and
results in a discrete temporal nucleation of seed particles. The temperature
of the solution is then slowly raised to allow the controlled growth of particles
in the coordinating (or non-coordinating) solvent. This, again, is analogous
to the secondary heat treatment with glasses with the main difference being
lower overall temperatures (300 degrees versus 400 to 1000 degrees C). The
average size of the nanomaterial is determined by the temperature and the
duration of the heating and can be monitored spectroscopically.

A figure of such an apparatus is shown below.

LaMer and Dinegar growth model

Start with Fick’s first law.

Q(t) = −4πr2D dc
dr (13.1)

where Q(t) is the “flux” of stuff going to make the particle, D is the diffusion
coefficent and r is a radial length from the center of the growing particle.
We should point out that this “flux” has units of stuff/time as opposed to
the more usual definition of flux. Now with this let’s manipulate the first
expression a little bit to get.

Q(t)
−4πr2D

=
dc

dr
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Figure 13.3: Cartoon of an apparatus commonly used for colloidal synthesis
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Q(t)dr

−4πr2D
= dc

Integrate the last expression

Q(t)
−4πD

∫
dr

r2
=

∫
dc

to get

Q(t)
4πDr

+ Const = C(r, t)

This constant is a constant with respect to r. However it could, in general,
depend on time. So more generally we get

Q(t)
4πDr

+ f(t) = C(r, t) (13.2)

Apply boundary conditions now to make more explicit the expression. There
are four to consider.

• When r = a, where a is the radius of the growing particle, C(a, t) = Cs.
Cs is the saturation concentration of the stuff being deposited, called
“monomer”.

• C(r, t = 0) = Css. Here Css is the supersaturation concentration of
the solution at t = 0.

• ∂C
∂t |r=h = Q(t)

4
3
πh3

• Q(0) = 0 Flux is zero at zero time as expected.

Apply boundary condition 2

C(r, t = 0) = Css

C(r, 0) =
Q(0)
4πDr

+ f(0)

Since Q(0) = 0 (boundary condition 4)

C(r, 0) = f(0) = Css (13.3)
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Apply boundary condition 3

Start with the original expression

C(r, t) =
Q(t)
4πrD

+ f(t)

take its time derivative

∂C(r, t)
∂t

∣∣∣∣
r=h

=
1

4πrD

dQ(t)
dt

∣∣∣∣
r=h

+
df(t)
dt

=
Q(t)
4
3πh3

or on rearranging

df(t)
dt

=
Q(t)
4
3πh3

− 1
4πhD

dQ(t)
dt

Now integrate this to get

f(t)|t0 =
1

4
3πh3

∫ t

0
Q(t)dt− 1

4πhD
Q(t)

∣∣∣∣
t

0

This becomes

f(t)− f(0) =
1

4
3πh3

∫ t

0
Q(t)dt− 1

4πhD
(Q(t)−Q(0))

where f(0) = Css and Q(0) = 0. The reduces to

f(t) = Css +
1

4
3πh3

∫ t

0
Q(t)dt− Q(t)

4πhD

Since C(r, t) = Q(t)
4πrD + f(t) we can use the above expression for f(t) to get

C(r, t) =
Q(t)
4πrD

+ Css +
1

4
3πh3

∫ t

0
Q(t)dt− Q(t)

4πhD

=
Q(t)
4πD

(
1
r
− 1

h

)
+ Css +

1
4
3πh3

∫ t

0
Q(t)dt

Since in general h >> r we get

C(r, t) ≈ Q(t)
4πD

(
1
r

)
+ Css +

1
4
3πh3

∫ t

0
Q(t)dt
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Now if

−Q(t) = 4πρa2 da

dt
(13.4)

(a reasonable thought given that the flux in the opposite direction is reflected
by the growth of the particle) one gets after replacing this in the previous
expression, where ρ is the density of the material being deposited

C(r = a, t) ≈ −4πρa2 da
dt

4πDa
+ Css − 4πρ

4
3πh3

∫ t

0
a2 da

dt
dt

or

C(r = a, t) ≈ −ρada
dt

D
+ Css − 3ρ

h3

∫ t

0
a2 da

dt
dt

Integrate the last integral by parts. Let u = a2, du = 2ada, dv = da
dt and

v = a. We get

C(r = a, t) ≈ −ρada
dt

D
+ Css − 3ρ

h3

(
a3

∣∣∣
t

0
−

∫ t

0
2a2da

)

≈ −ρa

D

(
da

dt

)
+ Css − 3ρ

h3

(
a3(t)− a3(0)− 2

3
a3

∣∣∣∣
t

0

)

Recall that at t = 0, a(0) = 0 Particle has not grown yet. This allows us to
simplify the above expression to

≈ −ρa

D

(
da

dt

)
+ Css − 3ρ

h3

(
a3(t)− 2

3

(
a3(t)− a3(0)

))

≈ −ρa

D

(
da

dt

)
+ Css − 3ρ

h3

(
a3(t)

3

)

≈ −ρa

D

(
da

dt

)
+ Css − ρa3

h3

Leading to our final expression

C(r = a, t) ≈ Css − ρa

D

(
da

dt

)
− ρa3

h3
(13.5)
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Apply boundary condition 1

Here apply it to the final expression we just derived above.

C(r = a, t) ≈ Css − ρa

D

(
da

dt

)
− ρa3

h3
= Cs

Rearrange to give

ρa

D

(
da

dt

)
= (Css − Cs)− ρa3

h3

or

a
da

dt
=

D

ρ
(Css − Cs)− Da3

h3

At this point note that d(a2)
dt = 2ada

dt so that ada
dt = 1

2
d(a2)

dt . Insert this into
the above expression to get

d(a2)
dt

=
2D

ρ
(Css − Cs)− 2Da3

h3
(13.6)

This last last expression gives you the behavior for the size of the particle as
a function of time, which is what we were ultimately after. We can proceed
to solve this equation by either looking this up in a table of integrals, which
is what LaMer and Dinegar ultimately did, or we could solve it numerically.
Another option is to note that in general a

h << 1 so basically the last term
in the expression drops out. We get the approximation

d(a2)
dt

≈ 2D

ρ
(Css − Cs) (13.7)

You will notice that the radius of the particle with essentially grow as the
square root of time (a ∝ √

t). Now following Sugimoto we invoke the Gibbs
Thomson equation as follows

Css = C∞e
2σVm
r∗RT

Cs = C∞e
2σVm
aRT
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Here a is the radius of the particle at a given time. r∗ is the radius of the
particle that would make its ensemble concentration equivalent to the initial
“monomer” concentration (think about this point, its will be important in
a bit). To simplify the notation, let ro = 2σVm

RT

Css = C∞e
ro
r∗ (13.8)

Cs = C∞e
ro
a (13.9)

If the exponent is small (and it doesn’t have to be) then we can do a Taylor
series expansion of the above to get (keeping only 1st 2 terms)

Css ≈ C∞(1 +
r0

r
+ . . .)

CS ≈ C∞(1 +
r0

a
+ . . .)

Replace into our main equation to get

d(a2)
dt

≈ 2D

ρ

(
C∞r0

(
1
r∗
− 1

a

))
(13.10)

or alternatively

2a
da

dt
=

2D

ρ
C∞r0

(
1
r∗
− 1

a

)

da

dt
=

D

ρ
C∞

(
r0

a

) (
1
r∗
− 1

a

)

Let

K =
DC∞r0

ρ

leading to

da
dt = K

a

(
1
r∗ − 1

a

)
(13.11)

Now qualitatively speaking, just look at the sign of the right hand side,
basically determined but the stuff in the parenthesis. You see if a = r∗ no
growth occurs (da

dt = 0). If a < r∗ then da
dt is negative and basically your
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particles dissolve (negative growth). Now if a > r∗ then da
dt is positive and

your particles grow.

A graph of this equation is shown below. You will see that small particles
have a steeper slope or faster rate of growth. Larger particles have a flatter
slope so they grow slower.

Figure 13.4: Sketch of the LaMer growth rate as a function of the critical
radius r∗

Now one underlying point of this whole picture is that C∞ is constant
(i.e. r∗ is constant). In reality though, since this is a closed system, the
monomer concentration decreases as it gets consumed. So r∗ is actually
changing in time. If we think in dynamic terms as t →∞, r∗ →∞ and one
actually falls at different places on the above curve as a function of time.
Basically your particle size will correspond to a steadily decreasing factor of
r∗ and you move to the left on the curve. If you have a situation where da

dt
becomes negative then your particles will start to dissolve. The worst case is
that you have sizes that straddle r∗ at any given time so that some particles
grow, others dissolve and you end up with a very poor size distribution of
your sample.
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Size distribution

This section follows the work of Sugimoto who argued that the size distri-
bution of the ensemble is proportional to

size dist ∝
d

(
da
dt

)

da
(13.12)

Using the relation derived earlier

d
(

da
dt

)

da
= K

(
− 1

r∗a2
+

2
a3

) (
da

da

)

=
K

a2

(
2
a
− 1

r∗

) (
da

da

)

where
(

da

da

)
=

(
da

dt

) (
dt

da

)

Divide both sides by dt
da to get

(
da

dt

) d
(

da
dt

)

da
=

K

a2

(
2
a
− 1

r∗

) (
da

dt

)

d
(

da
dt

)

dt
=

K

a2

(
2
a
− 1

r∗

) (
da

dt

)

Let σ = da
dt giving

dσ

dt
=

K

a2

(
2
a
− 1

r∗

)
σ (13.13)

Alternatively

dσ
dt = K

a2

(
2r∗−a

r∗a

)
σ (13.14)

Now its clear to see that if a > 2r∗,
(

dσ
dt

)
is negative valued. The size

distribution of the sample will narrow. This is called the “focusing” regime.
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Figure 13.5: Sketch of both the LaMer growth rate and size distribution as
a function of the critical radius r∗

However, if a < 2r∗
(

dσ
dt

)
is positive valued and the size distribution will

increase. This is called the “defocusing” regime.
Recall our discussion earlier about the dynamic nature of r∗. It goes

without saying that in a closed system as time increases r∗ will also in-
crease. The actual size of the particle will in absolute terms become a
smaller fraction of r∗ causing you to progressively move left on our diagram.
As you move left the distribution will broaden. To keep the size distribution
or even narrow it you need to fight the depletion or monomers causing r∗

to increase. This means as the reaction progresses you add more precursor
to the reaction. The extra addition can be accomplished a number of ways.
Peng for example just adds subsequent injection of precursors into the reac-
tion mixture. Sugimoto and others however build in a resevoir of precursors
that slowly get released to the reaction as time increases.

Reaction controlled growth

The previous discussion has assumed diffusion limited growth. However it’s
possible to have the reaction controlled situation. LaMer, Sugimoto and
others have shown that in this case the relevant growth equation can be
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expressed as

da

dt
= Kr

(
1
r∗
− 1

a

)
(13.15)

where Kr is a constant. To see how the size distribution behaves in this
situation repeat the analysis done earlier for the diffusion controlled growth
case.

size dist ∝
d

(
da
dt

)

da

When explicitly evaluated this leads to

d
(

da
dt

)

da
=

Kr

a2

(
da

da

)

where recall that

(
da

da

)
=

(
da

dt

) (
dt

da

)

Replace into our expression and divide by
(

dt
da

)
on both sides. This gives

da

dt

d
(

da
dt

)

da
=

Kr

a2

(
da

dt

)

d
(

da
dt

)

dt
=

Kr

a2

(
da

dt

)

Let σ = da
dt giving

dσ

dt
=

Kr

a2
σ (13.16)

You will notice here that this expression is always positive. In effect it tells
us that there will always be some broadening of the size distribution during
the particle growth.
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Exercises

1. Read any of the papers listed below or select a paper from the current
literature and discuss it.

Relevant reading

1. “Theory, production and mechanism of formation of monodispersed
hydrosols” V. K. LaMer, R. H. Dinegar J. Am. Chem. Soc. 72, 4847
(1950).

2. “Preparation of monodispersed colloidal particles” T. Sugimoto Ad-
vances in colloid and interface science, 28, 65 (1987).

3. “The kinetics of precipitation from supersaturated solid solutions” I.
M. Lifshitz, V. V. Slyozov J. Phys. Chem. Solids, 19, 35 (1961).

References directly related to LaMer and Sugimoto models

These are some papers from the literature that deal with the LaMer/Dinegar
and Sugimoto models discussed above. The papers are in no particular order.

1. “Formation of high quality CdS and other II-IV semiconductor nanocrys-
tals in noncoordinating solvents:Tunable reactivity of monomers”
W. W. Yu and X. Peng
Angew. Chem. Int. Ed. 41, 2368 (2002).

2. “Kinetics of II-VI and III-V colloidal semiconductor nanocrystal growth:
Focusing of size distributions”
X. Peng, J. Wickham and A. P. Alivisatos
J. Am. Chem. Soc. 120, 5343 (1998).

3. “Nearly monodisperse and shap-controlled CdSe nanocrystals via al-
ternative routes: Nucleation and growth”
Z. A. Peng and X. Peng
J. Am. Chem. Soc. 124, 3343 (2002).

4. “Formation of high quality CdTe, CdSe, and CdS nanocrystals using
CdO as precursor”
Z. A. Peng and X. Peng



198 CHAPTER 13. SYNTHESIS

J. Am. Chem. Soc. 123, 183 (2001).

5. “Formation of high quality InP and InAs nanocrystals in a noncoor-
dinating solvent”
D. Battaglia and X. Peng
Nano Letters, 2, 1027 (2002).

6. “The kinetics of growth of semiconductor nanocrystals in a hot am-
phiphile matrix”
C. D. Dushkin, S. Saita, Y. Yoshie, Y. Yamaguchi
Advances in Colloid and Interface Science, 88, 37 (2000).

7. “Evolution of an ensemble of nanoparticles in a colloidal solution: The-
oretical study” D. V. Talapin, A. L. Rogach, M. Haase, H. Weller J.
Phys. Chem. B 105, 12278 (2001).

Relevant literature

The following papers describe some of the syntheses for nanoscale materials.
They are listed in no particular order.

• “Large-scale production of single-walled carbon nanotubes by the electric-
arc technique”
C. Journet et al.
Nature 388, 756 (1997).

• “Large scale CVD synthesis of single-walled carbon nanotubes”
A. M. Cassell, J. A. Raymakers, J. Kong, H. Dai
J. Phys. Chem. B 103, 6484 (1999).

• “Chemical vapor deposition of methane for single-walled carbon nan-
otubes”
J. Kong, A. M. Cassell, H. Dai
Chem. Phys. Lett. 292, 567 (1998).

• “General synthesis of compound semiconductor nanowires”
X. Duan, C. M. Lieber
Advanced Materials, 12, 298 (2000).
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• “A laser ablation metode for the synthesis of crystalline semiconductor
nanowires”
A. M. Morales, C. M. Lieber
Science, 279, 208 (1998).

• “Epitaxial core-shell and core-multishell nanowire heterostructures”
L. J. Lauhon, M. S. Gudiksen, D. Wang, C. M. Lieber
Nature, 420, 57 (2002).

• “Inorganic semiconductor nanowires”
Y. Wu, H. Yan, M. Huang, B. Messer, J. H. Song, P. Yang
Chem. Eur. J. 8, 1261 (2002).

• “Direct observation of vapor-liquid-solid nanowire growth”
Y. Wu, P. Yang
J. Am. Chem. Soc. 123, 3165 (2001).

• “High quality gaN nanowires synthesized using a CVD approach”
J. C. Wang, S. Q. Feng, D. P. Yu
Appl. Phys. A 75, 691 (2002).

• “Antimony nanowire arrays fabricated by pulsed electrodeposition in
anodic alumina membranes”
Y. Zhang, G. Li, Y. Wu, B. Zhang, W. Song. L. Zhang
Adv. Mater. 14, 1227 (2002).

• ”Silicon nanotubes”
J. Sha, J. Niu, X. Ma, J. Xu, X. Zhang, Q. Yang, D. Yang
Adv. Mater. 14, 1219 (2002).

• “Silicon nanowires: preparation, device fabrication, and transport
properties”
J-Y Yu, S-W Chung, J. R. Heath
J. Phys. Chem. B 104, 11864 (2000).

• “Diameter-controlled synthesis of carbon nanotubes”
C. L. Cheung, A. Kurtz, H. Park, C. M. Lieber
J. Phys. Chem. B 106, 2429 (2002).

• “Superlattices of platinum and palladium nanoparticles”
J. E. Martin, J. P. Wilcoxon, J. Odinek, P. Provencio
J. Phys. Chem. B 106, 971 (2002).
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• “Some recent advances in nanostructure preparation from gold and
silver particles: a short topical review”
M. Brust, C. J. Kiely
Colloids and Surfaces A: Physicochemical and Engineering Aspects,
202, 175 (2002).

• “X-ray photoelectron spectroscopy of CdSe nanocrystals with applica-
tions to studies of the nanocrystal surface”
J. E. Bowen Katari, V. L. Colvin, A. P. Alivisatos
J. Phys. Chem. B 98, 4109 (1994).

• “Colloidal nanocrystal shape and size control: the case of cobalt”
V. F. Puentes, K. M. Krishnan, A. P. Alivisatos
Science, 291, 2115 (2001).

• “Synthesis, self-assembly and magneticbehavior of a two dimensional
superlattice of single-crystal ε-Co nanoparticles”
V. F. Puentes, K. M. Krishnan, A. P. Alivisatos
Appl. Phys. Lett. 78, 2187 (2001).

• “Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrys-
tal superlattices”
S. Sun, C. B. Murray, D. Weller, L. Folks, A. Moser
Science, 287, 1989 (2000).

• “Water-in-oil microemulsion synthesis of platinum-ruthenium nanopar-
ticles, their characterization and electrocatalytic properties”
X. Zhang, K-Y Chan
Chem. Mater. 15, 451 (2003).

• “Synthesis and characterization of monodisperse nanocrystals and close-
packed nanocrystal assemblies”
C. B. Murray, C. R. Kagan, M. G. Bawendi
Annu. Rev. Mater. Sci. 30, 545 (2000).
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Tools

Electron microscopies

Transmission electron microscopy

In the TEM experiment, a thin or diluted sample is bombarded under high
vacuum with a focused beam of electrons. Electrons that are transmitted
through the material form contrast patterns that reproduce the image of
the sample. This pattern arises from the scattering of electrons off of atoms
coposing the sample. In addition, diffracted electrons give information about
the lattice structure of the material. In the case of nanocrystallites, analysis
of TEM images is partially responsible for the sizing curves of colloidal
quantum dots. The shape of the sample can also be determined from the
image.

Secondary electron microscopy

In the SEM experiment, an electron beam is focused and raster scanned over
the sample. When the incident electrons interact with the sample a number
of effects take place, such as the emission of secondary electrons. These
effects are highly localized to the region directly under the electron beam
and can be used to create an image of the sample. In addition, elemental
analysis through energy dispersive or wavelength dispersive techniques can
be done using other detectors.

201
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Figure 14.1: Cartoon showing the TEM technique
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Figure 14.2: Cartoon showing the SEM technique

Probe microscopies

Atomic force microscopy

The atomic force experiment works by using a sharp silicon or silicon ni-
tride cantilever. This tip is brought close to the surface of the sample in
question, close enought that atomic forces occur between tip and sample.
These forces can be either repulsive or attractive. In the repulsive mode
or contact/intermittent contact (tapping mode) mode of operation, the tip
position over the surface of the sample is kept constant through a feed-
back mechanism. In the attractive regime or non contact mode, attractive
forces bend the tip bringing it closer to the sample which in turn is de-
tected through a number of means. In any of the modes, the attractive or
repulsive forces plus response of the system to counteract them are used as
a means of generating a topographic image of the sample. The AFM has
been used to move individual nanostructures. It has also been used as a tool
to “scratch” surfaces and make nanoscale patterns. There are other varia-
tions of this probe technique such as magnetic force microscopy (MFM) and
electrostatic force microscopy (EFM).
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Figure 14.3: Cartoon showing the AFM technique. (A) General concept
behind the technique. (B) Force distance curve. Parts of the curve below
zero are in the attractive realm. Parts of the curve above zero are in the
repulsive regime. (C) Contact mode AFM operating with tip very close to
the sample, repulsive regime. (D) Tapping mode AFM. Tip is oscillated with
large peak to peak amplitude resulting in brief forrays into the repulsive
regime. Hence the name intermittent contact mode. Tapping mode is a
Digital Instruments trademarked name. (E) Non-contact mode AFM. The
tip is oscillated with small peak to peak amplitude. Operated exclusively in
the attractive part of the potential.
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Scanning tunneling microscopy

Scanning tunneling microscopy was the original probe microscopy. It was
developed by Gerd Binnig and Heinrich Rohrer at IBM Zurich, ultimately
leading to the Nobel Prize. The principle of operation is the tunneling of
electron from a conductive tip to a conductive substrate or sample through a
barrier. The tunneling current is found to be exponentially dependent upon
the tip to sample separation allowing for very high sensitivity of sample
height. STM has been used to investigate a number of nano related effects
such as the discrete atomic like states of colloidal quantum dots and other
systems. It has also been used to investigate the coulomb blockade and
coulomb staircase phenomena. The STM has also been used to manipulate
individual atoms ad described in recent work on quantum corrals. One
disadvantage of the STM is that it requires conductive samples or relatively
conductive samples on a conductive substrate. To circumvent this limitation,
the AFM was subsequently developed.

Figure 14.4: Cartoon showing the STM technique

Dip pen nanolithography

Dip-pen nanolithography is a recent atomic force microscopy based tech-
nique developed by Chad Mirkin at Northwestern university. The essential
idea of the technique is to use the AFM tip as a quill pen. Dip or coat it
with a molecular substance. Upon close approach to a substrate the molec-
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ular “ink” rolls off the tip and comes into contact with the substrate. By
scanning the tip one can pattern the substrate with a layer of molecules. Ad-
vantages of dip-pen over other patterning techniques is that it potentially
has a very high resolution limited only by the AFM tip radius of curvature.
The main disadvantage of the process is that it is serial in nature and hence
patterning large areas may prove time consuming. A cartoon describing the
technique is shown below.

Figure 14.5: Cartoon showing the dip pen technique

Microcontact printing

Microcontact printing is a stamping technique developed by George White-
sides at Harvard University. The basis of the technique is to use a precur-
sor of a polymer called polydimethylsiloxane (PDMS) which can be poured
over a master pattern. This master pattern is created through standard
photolithography and basically consists of raised features or islands in the
desired pattern. The precursor can then be converted to PDMS and hard-
ened to make a negative image of the original master. Then the PDMS
“stamp” can be inked with molecular compounds and applied to a surface
such as a thin film of gold. The molecular ink, thiols for example, are left
behind on the substrate and reproduce the original master. The idea is
much the same as with dip pen nanolithography, however, the microcon-
tact printing is a serial process whereas dip-pen is a serial technique and is
much slower. One of the disadvantages of microcontact printing, however,
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is that it lacks the resolution of dip-pen which is ultimately limited only
by the tip radius of curvature 1-10 nm. However, recent reports show that
microcontact printing can be pushed to a resolution around 50 nm.

Figure 14.6: Cartoon showing the microcontact printing technique and gen-
eral sequence of steps.

Exercises

1. Read any of the papers listed below or select a paper from the current
literature and discuss it.
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Relevant literature

The following papers are in no particular order

• “Directed assembly of one-dimensional nanostructures into functional
networks”
Y. Huang, X. Duan, Q. Wei, C. M. Lieber
Science, 291, 630 (2001).

• “Submicrometer patterning of charge in thin-film electrets”
H. O. Jacobs, G. M. Whitesides
Science, 291, 1763 (2001).

• “Patterning self assembled monolayers: applications in materials sci-
ence”
A. Kumar, H. A. Biebuyck, G. M. Whitesides
Langmuir, 10, 1498 (1994).

• “Generation of 30-50 nm structures using easily fabricated, composite
PDMS masks”
T. W. Odom, V. R. Thalladi, J. C. Love, G. M. Whitesides
J. Am. Chem. Soc. 124, 12112 (2002).

• “Moving beyond moleucles: patterning solid-state features via dip-pen
nanolithography with sol-based inks”
M. Su, X. Liu, S-Y Li, V. P. Dravid, C. A. Mirkin
J. Am. Chem. Soc. 124, 1560 (2002).

• “Direct patterning of modified oligonucleotides on metals and insula-
tors by dip-pen nanolithography”
L. M. Demers, D. S. Ginger, S-J. Park, Z. Li, S-W. Chung, C. A.
Mirkin
Science, 296, 1836 (2002).

• “The art of building small”
G. M. Whitesides, C. J. Love
Scientific American 285, 38 (2001).
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Applications

As described in the introduction, nanostructures, whether it be quantum
dots, wires or wells, have interesting size dependent optical and electrical
properties. The study of these intrinsic properties is the realm of nanoscience.
However, at the end of the day, we expect that some of this acquired knowl-
edge (funded largely through our tax dollars) will be put to good use for
developing next generation consumer products. So how exactly are today’s
nanotechnologists trying to harness the potential of nano?

Since there are almost too many applications of nano to catalog here,
this section is not meant to be comprehensive. However, we briefly touch
upon some applications of quantum wells, quantum wires and quantum dots
that are seen in the current literature.

Nanowires

We begin with a short discussion about applications of nanowires. Devices
using these low dimensional materials have not been made to any great ex-
tent. This is because the historical development of nanostructures seems
to have skipped nanowires, moving from wells to dots first. More recently,
though, researchers have learned how to make asymetric nanowires using
a number of approaches including vapor-liquid-solid (VLS) and solution-
liquid-solid (SLS) growth. The move to applications has occured quickly
with the key selling point being that, in addition to exhibiting quantum
confinement effects, nanowires are at the same time (as their name implies)
wires. This means that making electrical connections to the outside world
and assembling actual devices may be a lot easier than with other nanos-
tructures such as quantum dots.
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Crossed nanowire junctions have been made, using p-type and n-type
wires. These junctions, in turn, serve as diodes in one case, memory ele-
ments in another and even electroluminescent devices. A schematic of such
a nanowire device is provided below. Ultimately, though, the trick is to
learn how to assemble such nanowires into useful structures in a convenient
and reproducible fashion.

Figure 15.1: Cartoon of a crossed nanowire junction that has been used for
proof of principle applications such as memory storage and electrolumines-
cence.

Nanowires have also been used as sensors by monitoring changes in the
conductance experienced when different compounds or gases are adsorbed
to the wire’s surface. In this respect, nanowires may one day be packaged as
efficient sensors for minute amounts of toxic gases, chemical weapons, and
explosives.

Quantum dots

In the realm of colloidal quantum dots the following applications have been
proposed:

• Quantum dots for biological labeling
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Figure 15.2: Cartoon of nanowire sensor based on changes in conductance.
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• Quantum dots as lasing elements

• Quantum dots as sensitizers in photovoltaic applications

• Quantum dots for active layers in light emitting diodes

• Quantum dots as memory elements; single electron transistors

Brief descriptions of each application and reasons why quantum dots have
distinct advantages over conventional solutions are presented below.

Medicine; Biological labeling

Conventional biological labeling is currently carried out using organic fluo-
rescent molecules or in some cases radioactive sources. In the case of organic
fluorophores such as tetramethylrhodamine (TMR), these molecules are co-
valently attached to a biological specimen of interest through specific linking
chemistry. Organic fluorophores exhibit several disadvantages. Namely, or-
ganic dyes suffer from an effect called photobleaching where after exposure
to incident light for a modest amount of time, they undergo some sort of
photochemistry which ultimately renders them non-fluorescent. Basically
the dyes “fade”. This makes labeling and tracking experiments difficult be-
cause of the finite observation window one has before the fluorescent signal
dissapears. As a general rule of thumb, organic dyes will absorb and/or
emit approximately 106 photons before photobleaching. In addition, or-
ganic dyes typically have fairly discrete absorption spectra. So from dye to
dye their absorption wavelength or energy will change dramatically. This
makes multicolor experiments difficult because exciting each dye requires
a different excitation color. Proper filtering of the desired emission signal
becomes increasingly difficult in this evironment of multiple excitation fre-
quencies. Finally, achieving different colors for these multicolor experiments
may mean synthesizing different compounds, which, in itself, can be fairly
involved.

Quantum dots, especially CdSe have narrow emission spectra (∼ 30 nm
FWHM). Furthermore, because of quantum confinement effects, different
sized dots emit different colors (one material, many discrete colors). This
eliminates the need for synthesizing many different organic fluorphores. As
one progresses to higher energies in the dot absorption spectra, there are
increasingly larger numbers of excited states present. This is analogous
to solutions of the particle in a 3D box with progressively larger quantum
numbers, n. So all dots whether they be “small” or “large” will absorb
excitation wavelengths in the “blue”. This makes multicolor experiments
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Figure 15.3: Comparison of a quantum dot to organic dye photobleaching
rate.

easier since it eliminates the need for multiple excitation wavelengths. One
laser, say the 488 nm line from an argon ion, can be used to excite all dots,
giving emission anywhere in the visible. Filtering the 488 nm line is also
much simpler than trying to simultaneously filter the 473 nm, 488 nm, 514
nm, 532 nm, and 543 nm lines of several lasers (argon ion lines plus YAG
doubled line plus green HeNe line). Finally, semiconductor quantum dots are
inorganic compounds. As such they are somewhat more robust that organic
dyes when it comes to photobleaching. Dots have been seen to absorb and
emit over 108 photons before experiencing irreversible photobleaching (two
orders of magnitude more photons). Therefore, dots are much more resistant
to fading. The accompanying figure is a depiction of this.

Ok, so what’s the catch? Well, the surface chemistry of quantum dots is
still in its infancy. There is still much that needs to be understood before we
can begin to do specific chemistry, attaching dots to specific sites on proteins
or cells or other biological specimens. This is an area where organic dyes still
prevail. Furthermore, semiconductor quantum dots, although nanometer
sized, may also be a little too big for some labeling experiments. There
might be certain membranes or cellular regions that a dot cannot penetrate
because of natural size restrictions (another area where organic dyes are
better). Finally, labeling proteins or other specimens with relatively large
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Figure 15.4: Comparison of quantum dot absorption/emission spectra to
organic dye absorption emission spectra in light of multicolor labeling ex-
periments.
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quantum dots may also perturb the system in unintended ways. So for
example if one is trying to watch protein folding in real time one needs
to ask whether the dots attached to the protein are actually affecting the
folding and unfolding pathways. Consider the size of a typical protein and
the size of a typical quantum dot.

Lasing

Lasers are important devices used in everything from tomorrow’s national
missile defense system (Reagan Star Wars Version 2.0), the data reading
element in your DVD or CD player, the red bar code scanner at the su-
permarket to an excitation source in the laboratory. Conventional lasing
sources are based on gases, semiconductors and even organic dyes. With
the general movement towards solid state lasers, semiconductors have re-
ceived a lot of interest for diode laser applications. Further interest was
generated with the realization of semiconductor nanostructures (also called
low dimensional materials) since it was realized that these systems could po-
tentially make even more efficient lasers than their bulk counterparts. This
has to do with the density of states argument that we discussed in previous
chapters. The density of states argument won’t be repeated here but rather
is briefly summarized in the accompanying figure. In this area, quantum
well lasers have led the technology, producing some of the most efficient and
tunable lasing systems to date. Nanowires have recently been made to lase
but the technology in its infancy as with lasing in quantum dots. However,
one can envision that the size dependent emission spectra of quantum dots,
wires or wells make them attractive lasing elements. In the specific case of
colloidal quantum dots, the emission from CdSe is shown to span the entire
visible part of the spectrum. So, in principle, a single device could carry a
CdSe blue laser, a CdSe green laser and a CdSe red laser. One potential
drawback with this system though is a phenomenon called Auger ionization,
which might ultimately limit the applicability of this material. However, we
leave it to the reader to do some outside reading if they are interested in
this subject.

Energy; Photovoltaics

Renewable energy has been an area of great interest since the 1973 OPEC oil
embargo, in retaliation for our support of Israel in the 1973 Yom Kippur War
The idea for alternative sources of energy is to eventually move away from
coal or petroleum based sources of energy. Motivating this are economic,
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Figure 15.5: Comparison of the density of states for bulk versus a well versus
a wire versus a dot.
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political and environmental reasons. Solar energy is one facet of renewable
energy with wind, methanol, and hydrogen being others. The idea here is
to take advantage of the sun’s abundant energy and convert it to usable
energy much like how Nature has come up with photosynthesis in plants.
What’s needed, however, is an active material like chlorophyl that can absorb
solar radiation and provide efficient charge separation to prevent radiative
or nonradiative recombination in the material.

Commercial solar cells are currently made of silicon. Unfortunately, the
efficiencies of these devices is typically on the order of 15%. So most of
the solar energy collected by these devices is wasted. To make up for all
of these losses, large tracts of land must be used for vast sprawling fields
of solar cells (solar farms). Improved devices made of single crystal silicon
have been shown to achieve conversion efficiencies of 30% but at the cost of
being very expensive and impractical for commercial use. As a consequence
solar energy has not broken through into mainstream use.

Quantum dots come into play for several reasons. They have tunable,
size dependent, absorption and emission spectra. Different quantum dots
can be made to absorb anywhere from the UV into the infrared. This
tremendous dynamic range cannot be matched by organic dyes. Further-
more, there are few organic dyes that are efficient in the infrared. As a
side note, one can imagine a quantum dot based solar cell that operates
under cloudy conditions and rainy days where the overcast sky will block
much of the visible yet still transmits most (if not all) of the infrared. In
addition, the absorption cross section or exctinction coefficient of quantum
dots is generally an order of magnitude greater than conventional organic
dyes. This means it take fewer dots to absorb the same amount of light.
Dots are also more photostable, meaning that they are more likely to reach
the 10,000 hour threshold needed for practical commercial devices. Further-
more, nanoparticles when used as substrates or electrodes in dye based solar
cells have much larger surface areas than conventional bulk substrates. As a
consequence, one can adsorb a greater number of dye molecule per unit area
in these hybrid devices than in conventional cells. The efficiencies of these
hybrid devices is consequently higher, reaching that of conventional silicon
cells. One of the first of such devices is referred to as the Gratzel cell after
its inventor.

Lighting; Light emitting diodes

Lighting hasn’t changed all that much since the light bulb was invented by
Edison and others close to a hundred years ago. More efficient fluorescent
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Figure 15.6: Comparison of the solar spectrum and representative quantum
dot absorption spectra as well as achievable wavelength ranges.
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lighting has since been developed but suffers from flicker and color purity
issues. Recently solid state light emitting diodes (LED) have come on the
market and are poised to revolutionalize the lighting industry. LED devices
that exhibit tremendous brightness (look at some of the new red and green
traffic lights), consume little power, come in different colors, and emit little
or no heat (museum quality lighting for paintings) are now commercially
available. In this regard, a major goal of the LED industry is to eventually
achieve affordable white light by mixing red, green and blue LEDs. The idea
is to one day replace all incandescent and fluorescent light bulbs in homes
and offices. Furthermore, along these lines, brighter, more efficient, flat
panel displays using this technology, rather than inefficient backlit liquid
crystal displays, may come out of these developments. Along the same
lines, cheaper high definition digital televisions may also emerge from this
technology.

A current problem with LEDs, however, is that different active semicon-
ductor elements must be manufactured via potentially expensive processes
such as MOCVD to achieve multiple colors. For example, GaN is used for
blue light, indium doped GaN can be used to get green and so forth. One way
to circumvent this problem is to take advantage of quantum confinement as
in the case of quantum dots. Different sized quantum dots will emit different
colors so, in principle, one material can cover the entire visible spectrum.
They can also be manufactured using the same process potentially lowering
overall manufacturing costs. One disadvantage with current colloidal quan-
tum dots is that the heterojunction between the dot and the outside world
is imperfect. There are organic ligands present as well as many quantum dot
surface defects that open up undesired states and recombination pathways
in addition to creating large resistances to carrier transport.

Memory; the Coulomb staircase

What would a chapter on devices and applications be if we didn’t touch on
computers. Back in 1965, Gordon Moore, one of the founders of Intel made
an empirical observation that has since become known as “Moore’s law” (or
sometimes referred to as Moore’s first law). The number of transistors per
unit area on an integrated circuit doubles each year. Since then, Moore’s law
has generally held with some minor modifications. It now doubles every 18
months. However, as you might suspect, this wild growth cannot continue
forever and it was realized that with current photolithographic techniques
that we would be in trouble by 2010. To consistently get more transistors
per unit area means that their size decreases yearly. Currently the features
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Figure 15.7: (A) Cartoon of a generic quantum dot light emitting diode.
HTL (hole transport layer); ETL (electron transport layer); OTL (optically
transparent electrode) (B) Ideal energy level diagram for injection of elec-
trons and holes into a quantum dot device.
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on a Pentium IV chip have spacings on the order of 0.11 microns (110 nm).
Next generation chips will have features spaced by 0.09 microns (90 nm).
How much lower can we go? Well, because of the diffaction limit we cannot
continue to use existing techniques but are forced to invest in deep UV
photolithography or x-ray lithography or even e-beam lithography if we are
to get smaller transistors and stay on track with Moore’s law. Such new
technologies are very expensive and potentially too costly to scale up to the
fab level (Moore’s second law of costs). Because of this, researchers have
looked to nano for a solution. Among the ideas people have come up with
are what are refered to as single electron transistors.

Early on, researchers realized that if one has a very small metal nanopar-
ticle, its capacitance might be large enough to store discrete charges. Low-
ering the temperature also helps. Both work because either raising the
capacitance or lowering the temperature decreases the value of the thermal
energy relative to the Coulomb energy between discrete charges. In turn,
this allows one to store charges on the metal nanoparticle without having
it thermally expelled. Alternatively, with semiconductor quantum dots, the
discrete particle in a box-like energy levels with spacings large compared to
kT also means discrete steps in the conductance of electrons through the
dot and the additional possibility of storing charges just as with the metal
nanoparticles. These effects could then form the basis of single electron elec-
tronics of which the single electron transistor is a member. We review the
principles of what is knows as the Coulomb blockade and Coulomb staircase
model below because of its potential importance.

In the orthodox model for single electron tunneling, a simple circuit
model is considered as shown in the accompanying figure. Basically the
circuit consists of a perfect voltage source and two capacitors that may or
may not have equivalent capacitances. In the orthodox model, one of the
two capacitors is generally considered to have a much higher capacitance
than the other. The region in between the capacitors is the “island” where
electrons can be stored. This region represents a quantum dot or metal
nanoparticle in real life.

The total electrostatic energy of the system is

Es = q2
1

2C1
+ q2

2
2C2

(15.1)

where C1 is the gate capacitance. At the same time the potential drops
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Figure 15.8: Orthodox model of single electron tunneling and Coulomb
blockade/Coulomb staircase

across junctions 1 and 2 are
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(

C2

C1 + C2

)
V +
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Therefore the total electrostatic energy of the system is
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The term in the last parenthesis can be expanded and reduced to give

Es =
1
2

(
1

C1 + C2

)2 (
C1C2V

2(C1 + C2) + (ne)2(C1 + C2)
)

=
1

2Ctot
(C1C2V

2 + (ne)2) (15.4)

where Ctot = C1 + C2.
Now the net energy of the system, (or free energy) is the difference in

energy between the total electrostatic energy stored and the work needed to
shove an electron onto the island.

Etot = Es −W (15.5)

where W = C1QV
Ctot

is the work done by the system to load the island. This
results in
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Notice the trick consisting of adding and subtracting the middle terms
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where C2 = Ctot − C1
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This gives the total free energy of the system
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2 (15.6)

Island occupation number

The average number of electrons on the island is given by
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where from before
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Furthermore, let x = ( Q̄
e ) to get our final expression for the average island

occupation
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A plot of this below, shows the characteristic Coulomb staircase behavior.
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Figure 15.9: Coulomb staircase: Mathcad numerical solutions
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