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CHAPTER 1

1. The vectorx+y+2z and-X—y+2 are in the directions of two body diagonals of a
cube. If6 is the angle between them, their scalar product give® cos-1/3, whence
0=cos'1/3= 90+ 19 28 109 28

2. The plane (100) is normal to the x axis. It interceptsathexis at2a' and thec' axis
at 2c'; therefore the indices referred to the ptive axes are (101). Similarly, the plane
(001) will have indices (011) when referred to primitive axes.

3. The central dot of the four is at distance

v 22590 _, ctn 6o =2
c0os 30 J3
' from each of the other three dots, as projected onto the basal plane. If

the (unprojected) dots are at the center of spheres in contact, then
2 2
o = (ij +(—°}
v3) \2)”

2 le. _C\E: 1.633.
3 3

or
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CHAPTER 2

1. The crystal plane with Miller indiceBK? is a plane defined by the poirdagh, a,/k, and aslf. (a)
Two vectors that lie in the plane may be takeas#is—a/k and @, / h—a, /£ . But each of these vectors
gives zero as its scalar product with = ha1 + ka2 + {4, so thatG must be perpendicular to the plane
hk¢. (b) If A is the unit normal to the plane, the interplanar spacing-ig/h. But N=G/|G |,
whenced(hkl/) = G-a, /h{5 2 /| G](c) For a simple cubic lattic& = (2 /a)(k + Ky + (2),

whence

G® h+K+r?

& 4 a’
1 1
—J3a —a 0
ZI 2
2.(a) Cell volumeal-azxasz—%\fBa% a |0
0 0 c
:1\/§azc.
2
X vy z
a, xa, 4r | 1 1
b) b, = 2r = --J3a Za
(b) b, la,-a,xa,| +/3ac 2 2
0 0 c

2n i>A<+)7), and similarly forb, b, .

=€(\/§

(c) Six vectors in the reciprocal latti are shown as solid lines. The broken
lines are the perpendicular bisectors at the midpoints. The inscribed hexagon

forms the first Brillouin Zone.

3. By definition of the primitive reciprocal lattice vectors

s(@xa ) (axax ( a) 3
Vg, =(2 =(2n)°/ -a, X
(2ry L2 2L BB 2) (a0 )
:(ZTE)S/VC.

For the vector identity, see G. A. Korn and NI. Korn, Mathematical handbook for scientists and
engineers, McGraw-Hill, 1961, p. 147.

4. (a) This follows by forming
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IFf = 1-expEiM(a-AK)] 1- exp[iM(a A K)]
1-expFi(a-Ak)] 1- expli(@A k)]
_1-cosM(aA k) sin®1M(a-Ak)
~ 1-cos(@a k) sinPl(aAk)’

1
(b) The first zero insSIn E Me occurs fore = 2r/M. That this is the correct consideration follows from

sin M(nh+18)= sin t Mh cosE M+ cost Mh sin% M .
2 2 — 2

%/_/

zero, +1
as Mh is

an integer

2mi(X vy +YjV, +ZjV3 )

5.S (\V,Vv,)=f % e

Referred to an fcc lattice, the basis of diamon@@; . Thus in the product

Nip

1
4

N

S(v,v,V;)= S(fcc latticex S (basis)
we take the lattice structure factfrom (48), and for the basis

1
= n(Vq+Vo+Vg).

A —i
S (basisyF & e?
Now S(fcc) = 0 only if all indices are even or all iogs are odd. If all indices aegen the structure factor

of the basis vanishes unless#v, + v; = 4n, where n is an integer. Fexample, for the reflection (222)
we have S(basis) = 1 ¥ = 0, and this reflection is forbidden.

6. fy :.[:4nr2 (na, Gr)* sin Grexp{ 2rqa )dr
= (4/G3ao32|' dx x sin x exp{ 2x Ga )
=(4/G°a°)(4Ga ) (& F G &7

16/ (4+ Gg’ §.

The integral is not difficult; it is given as Dglit 860.81. Observe that f = 1 for G = 0 and 1/G' for
Ga, >> 1.

1
7. (@) The basis has one atohnat the origin and one aton3 atE a. The single Laue equation

a-Ak = 2nx (integer)defines a set of parallel planes in Feuspace. Intersections with a sphere are
a set of circles, so that the diffracteeams lie on a set of cones. (b) S(n) = fz €™. For n odd, S =\f—
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fg; for n even, S =f+ fz. (¢) If fo = fz the atoms diffract identically, alsthe primitive tianslation vector

were% a and the diffraction conditiorﬁ%a- Ak) =27 x (integer).
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CHAPTER 3

1. E=(%*/2M) (2n/A)* = (2/2M) (n/L)?, with A = 2L.

2. bee: U(R)=2Ng[9.114(6/R)"? —12.253(6/R)°]. At equilibrium R,’ =1.488G°, and
U(R,) = 2Ng(-2.816).

fee:  U(R)=2Ng[12.132(o/R)"? —14.454(c/R)°]. At equilibrium R,°=1.6796°, and
U(R,) =2Ne(—4.305). Thus the cohesive energy ratio bec/fec = 0.956, so that the fee structure is
more stable than the bcc.
3. |U|=8.60 Ne

=(8.60)(6.02 x 10™) (50 x 107"*) =25.9 x 10° erg/mol

=2.59 kJ/mol.

This will be decreased significantly by quantum corrections, so that it is quite reasonable to find the same
melting points for H, and Ne.

4. We have Na — Na' + e — 5.14 eV; Na + e — Na + 0.78 eV. The Madelung energy in the NaCl
structure, with Na" at the Na' sites and Na~ at the CI sites, is

ae’  (1.75) (4.80 x 107"")
R 3.66 x 107

=11.0 x107" erg,

or 6.89 eV. Here R is taken as the value for metallic Na. The total cohesive energy of a Na“ Na™ pair in the
hypothetical crystal is 2.52 eV referred to two separated Na atoms, or 1.26 eV per atom. This is larger than
the observed cohesive energy 1.13 eV of the metal. We have neglected the repulsive energy of the Na” Na~
structure, and this must be significant in reducing the cohesion of the hypothetical crystal.

Sa.

2
A _oq ; oo=2log 2= Madelung const.
R" R

UR) = N[

In equilibrium

2
GU_N[ nA L o9 jzo; R, = nA

R | R)TR, aq’’
and
Noq® ., 1
UR,)=- (1--).
R, n
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1 2
L0V R (RS) +....

b. UR,-R,3)=U(R,)+ T

bearing in mind that in equilibrium (OU/ OoR)g =0.
0

(GZU] _ N(n(n+1)A 3 2aq’ J _ N((n+1)ocq2 B 2aq° ]
6R2 RO R0n+2 R03 R03 R03

For a unit length 2NR,, = 1, whence

U  _ oq’ (n-1): C:R262U| _(n-1)q’ log 2
OR’ R 2Ro4 ’ " ¢R’ ‘RO Ro2

6. For KCI, . = 0.34 x 10® ergs and p = 0.326 x 10 *A. For the imagined modification of KCI with the
ZnS structure, z =4 and o = 1.638. Then from Eq. (23) with x = Ry/p we have

x’e ™ =8.53x 107"

By trial and error we find X = 9.2, or R, =3.00 A. The actual KCl structure has R, (exp) = 3.15 A . For
the imagined structure the cohesive energy is

2
U=ﬂ[ -ij, or 2 —.0.489
R, 0 q

o . . U
in units with Ry in A. For the actual KCI structure, using the data of Table 7, we calculate — =-0.495,
q

units as above. This is about 0.1% lower than calculated for the cubic ZnS structure. It is noteworthy that
the difference is so slight.
7. The Madelung energy of Ba" O™ is —ae’/R per ion pair, or —14.61 x 107 erg = -9.12 eV, as compared
with —4(9.12) = -36.48 eV for Ba™ O™. To form Ba" and O™ from Ba and O requires 5.19 — 1.5 = 3.7 eV;
to form Ba™ and O™ requires 5.19 + 9.96 — 1.5 + 9.0 = 22.65 e¢V. Thus at the specified value of R, the
binding of Ba" O™ is 5.42 eV and the binding of Ba™ O™ is 13.83 eV; the latter is indeed the stable form.
8. From (37) we have exx = S;;Xx, because all other stress components are zero. By (51),
38, =2/(C,; = Cp) +1/(C,; +Cyp).

— 2 2 / .
Thus Y = (C,;” +C,,C,, —2C,,)/(C,, +C)y);
further, also from (37), ey, = S5 X,

whence G:eW/exx =S,,/S,,==C,/(C,,+C,,).

9. For a longitudinal phonon with K || [111], u=v =w.
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(sz =[C,, +2C,, +2(C,, +C,,)] K2/3 )
orv=on/K=[(C, +2C,, +4C,, /3p)]"
This dispersion relation follows from (57a).

10. We take u = — w; v = 0. This displacement is L to the [111] direction. Shear waves are degenerate in
this direction. Use (57a).

11. Let €,, =—€,, = };€ in (43). Then

U:%Cn(%ez +%ez)_%clzez
=hlh (Cy, _Clz)]ez

2 DA 2aq? 1 2 20q°
so that ag =N n(n —I;HZ) — OL(% =N (n+ )30cq — O“i is the effective shear
OR R R, R, R, R,

constant.

12a. We rewrite the element a;; = p — Sij(K +p-qasa;=p—-A Sij, where A' = A +p —q, and Sij is the
Kronecker delta function. With A’ the matrix is in the “standard” form. The root A" = Rp gives A = (R — 1)p
+ g, and the R — 1 roots A" = 0 give A = q — p.

b. Set

u (r t) =Uu el[(K/\/g) (x+y+z)—-ot]
i 0

b

v(r,t)=v, e~ ;

as the displacements for waves in the [111] direction. On substitution in (57) we obtain the desired
equation. Then, by (a), one root is

o’p=2p+q=K*(C, +2C,, +4C,,)/3,
and the other two roots (shear waves) are

@’p=K*(C,,-C,+C,,)/3.

i(K_r—t)

13. Set u(r,t) = uge and similarly for v and w. Then (57a) becomes

(szuo = [Clle2 +Cy (Ky2 + Kzz )u,
+(C,+Cy) (KXKyVO +K K, w)

and similarly for (57b), (57¢). The elements of the determinantal equation are
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M, = Clle2 +Cy (Ky2 + Kzz) - wzp;
M, =(C,, + C44)KXKy;
M,; = (CIZ + C44)Ksz-

and so on with appropriate permutations of the axes. The sum of the three roots of w’ L is equal to the

sum of the diagonal elements of the matrix, which is

(Cy + 2C44)K2, where

K’ =K,”+K,”+K,’, whence

Vlz + sz + V32 =(C,, +2C,)/p,

for the sum of the (velocities)® of the 3 elastic modes in any direction of K.

14. The criterion for stability of a cubic crystal is that all the principal minors of the quadratic form be
positive. The matrix is:

Ch Cp Ci
Ci Ci Ciz
Ci Ci Cn
Cu
Cu
Cu

The principal minors are the minors along the diagonal. The first three minors from the bottom are Cyg,
Ca4?, C4s’; thus one criterion of stability is C44 > 0. The next minor is

C[] C44 3, or C][ > (). Next: C443 (C][2 — C]zz), whence |C12| < C[]. Fil’lally, (C]] + 2C12) (C]] — C12)2 > 0, SO
that Cy; + 2Cy, > 0 for stability.
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CHAPTER 4

1
la. The kinetic energy is the sum of thdividual kinetic energies each of the f0H2°n Musz. The force
between atoms s and s+1 is —Cfuk.,); the potential energy associated with the stretching of this bond is

1
EC(US - us+1)2 , and we sum over all bonds to obtain the total potential energy.

1 1
b. The time average 05— Mus2 IS 2 Mam?U? . In the potential energy we have

u,,=ucosfp t (s+ 1)Kaf u{cosf + sKa) cos Ka
+ sin (@ t— sKa) sin Ka}.

Then uy- y,,= u{cosp + sKa) (& cos Ka)
— sin (@ t- sKa) sin Ka}.

We square and use the mean values over time:
. 1 .

<CcoS > =< SI[‘F>:§ < cos sin = O.

Thus the square of u{} above is

%uz[l— 2cos Kar cos Ka sfin Ka]l u @ cos Ka).

1
The potential energy per bond 1'ésCu2 (1- cos Ka),and by the dispersion relatiasf = (2C/M) (1 —

. 1
cos Ka) this is equal tOZ Mb® @ Just as for a simple harmonic oscillator, the time average potential

energy is equal to the tevaverage kinetic energy.

2. We expand in a Taylor series

u(s+ p)= u(sy pé%] +% iﬂ{%} T

On substitution in the equation of motion (16a) we have

o%u , o 0%
(R Patloe

which is of the form of the continuum elastic wave equation with
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2 _na-1 2
vi=M p§0 p’a G.

3. From Eq. (20) evaluated at Kn#a, the zone boundary, we have

~®°’Mu =-2Cu ;
~0°My =-2Cv .

Thus the two lattices are decoupled from @mether; each moseindependently. At> = 2C/M, the
motion is in the lattice describéy the displacement v; af = 2C/M, the u lattice moves.

4. 0% —EA ) ka'”31(1— cos pKa) ;
M p>0 pa
o’  2A . .
=— X sin a sin pKa
KM po O Pk P

% (cos (k — K) pa- cos (k+ K) pa)

When K = k,

oo’ A

=— Y (1-cos 2k pa) ,
KM IO>0( K pa)

which in general will diverge becau§pe 1> .

5. By analogy with Eq. (18),

Md?u,/dt* = C (%~ W+ G (¢y— U );
Md?v_/dt? = C (.- v, )+ G (u,,— ¥ ), whence
~®’Mu =C, (v—u)+ C, (ve"® - u);
~0’Mv =C,(u-Vv)+C,(ué€“ - v) , and

(C,+C,)-Mo®> —(C,+C,e™®)
—(C,+C,&°) (G+ G ) M’

S o o
(22¢/m] "r\f (20C/)™  Forka= 0,0°= Oand 2(G C/) M.
1 . ForKa=m,0°= 2G/ M and 2¢J M.
{/ 2c/m’™ o end g

—

™ K
Q.

6. (a) The Coulomb force on an ion displaced a
distance r from the center of a sphere of static or rigid conduction electron seari§)4’e where the

number of electrons within a sphere of radius r is (@4) (4nr®3). Thus the force is 26R? and the
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force constant is?R%. The oscillation frequencyp is (force constant/mas€) or (€/MR%2 (b) For
sodum M=4x10%® g and R=2x10® cm; thus ©, =(5x10") (3x 10* }?

=3x10° s* (c) The maximum phonon wavevector is of the order 8fch®™. If we suppose thaty is

associated with this maximum wavevector, the velocity define@tmax~ 3 x 10° cm s?, generally a
reasonable order of magnitude.

7. The result (a) is the force of a dipolg & on a dipole ¢ u, at a distance pa. Eq. (16a)
becomesn” = (2/ M)[y(1- cos Ka}+ z ¢ 15 (2& /p &)@ cos pKa).
p>

At the zone boundary? = 0 if
l+o 20(—1)P[1— -)"p2=0,
p>
orif 6 X[1—(=1)°]p~® = 1. The summation is 2(1 +3+ 53+ ...) = 2.104 and this, by the properties of

the zeta function, is also & (3)/4. The sign of the square of the speed of sound in the laik< 1 is
given by the sign ol = 26 ZO(— 1Y p°  ,which is zero when 1 =2+ 31— 4 + .. = 1/Z. The series
p>

is just that for log 2, whence the rootis= 1/(2 log 2) = 0.7213.
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CHAPTER 5

-1
1. (a) The dispersion relation iswzwm|3|n§ Kal. We solve this for K to obtain

K =(2/a)sin* @ /o,, ), whence dK/dw= (2/a)(n)m2 —o?)Y? and, from (15), D(w)
= (2L/7ta)((;)m2 —w®) Y2, This is singular at = op. (b) The volume of a sphere of radius K in
Fourier space i€ = 4nK®/3= (4n /3)[(®, —®)/AJ**, and the density of orbitals neas is

D(w)= (L/2r)* |d/dbo £ (L § (2t / A? Yo, — 2, providedw < . It is apparent that
D(w) vanishes fot above the minimun,.

2. The potential energy assatgd with the dilation is% B(AV/IV)a®~ %kBT . This is% ks T and not
3

5 ks T, because the other degrees of freedom are tedoeiated with shear distmms of the lattice cell.

Thus < (AV)2>=1.5x107;(AV), = 4.7 10* ¢t ; and (AV),./V =0.125. Now

3Aalax A VIV, whence(Aa),,,, /a= 0.04

rms

3. (@ <R’>=(MW2pV)Zo', where from (20) for a Debye spectrumXe -
=|do D(@)o™ = 3VcoD2  47*V, whence< R® >= 3h(DD2 /8n° pv®. (b) In one dimension from

(15) we haveD() = L/nv, whence | do D(w) o™ diverges at the lower limit. The mean square

1

strain in one dimension is < (ORIOX)* >= EZKZUO2 = (h/2MNV)ZK
= (W2MNV) (K, /2) = hoy” 1 AMNV,
4. (a) The motion is constrained to each layer ariteisefore essentially two-gliensional. Consider one
plane of area A. There is one allowed value of K per arg)2in K space, or (L/2)* = A/4r? allowed
values of K per unit area of K space. The total nunabenodes with wavevector less than K is, withr
vK,

N = (A/4n®) (tK?) = Aw?/ 4nv°.

The density of modes of eaghlarization type is ) = dN/d» = Aw/2nv2. The thermal average phonon
energy for the two polarization types is, for each layer,

o, 0, Ao ho
U :ZIO D) nl@r) i do= 40 2nv> exp(fw £ )- 1dD

®
wherewp is defined byN = J.D ’ D(®) do. In the regimefio, >> T, we have

2AT° o X2
J

dx.
2nveh? Jo e -1

U=
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Thus the heat capacifg = k; 0U/ot oc T2,

(b) If the layers are weakly bound together, the sydiehaves as a linear struat with each plane as a
vibrating unit. By induction from the results for 2 and 3 dimensions, we exXpectT . But this only

holds at extremely low teperatures such that<< 7w, = thlaye,/ L, where Nye/L is the number of
layers per unit length.

5. (a) From the Planck distribution< n > +% = % (e€+1)/(é- 1)=—; coth (x/2) where

X =ho/k,T. The partition functionZ=€7?% €= € /(L & ¥ [2sinh(x/2)} and the
free energy is F =47 log Z = IgT log[2 sinh(x/2)]. (b) Withe(A) = o(0) (1 —yA), the condition
OFIOA =0 becomes BA =yX %Vl(o coth (lw /2 T) on direct differentiation. The energy

<n> ho is just the term to the right of the summation symbol, soBrat=yU (T). (c) By definition

of vy, we have dw/w=—y3V/V, or dlogo=-6dlogV. But Oocw,, whence
dlogb=—y dlog V.
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CHAPTER 6

hZ
1. The energy eigenvalues &g = 2—k2. The mean value over the volume of a sphere in k space is
m

oo W /iR 3 R0 3
2m /Kdk 5 2m° 5F

The total energy of N electrons is

3
UO = N'ESF.

2a. In general p =aJ/0V at constant entropy. At absolute zero all processes are at constant entropy (the

2 26?3
Third Law), so that p=—dU,/dV, where UO:gNsF =§N2h—[3nvl\l] , whence
m

p= gi (b) Bulk modulus
3 V'

B__ @:V(__2$+_2duo):_2&{_2)2&:&%_
dv 3V?2 3V dv 3V 3/ V 9V

(c) For Li,

UO

7z§(4.7x 1G° cm®)(4.7eV)(1.& 10° efg eV)
=2.1x 10" ergert= 2.& 10 dynech |,

whence B = 2.% 10" dyne cr®. By experiment (Table 3.3), B = 1210 dyne cn’.

3. The number of electrons is, per unit volunies .[:dg D(g)- where D§) is the density

e(g_u)/": + 1’
of orbitals. In two dimensions

LU 1

:%(u +1 log (1+ €Y)),

where the definite integral is evaluated with the help of Dwight [569.1].

2x10%

4a. In the sun there aW:1057 nucleons, and roughly an equal number of electrons. In a
X

white dwarf star of volume
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%(ZX 10 = 3x 16° cni

10”7 _
the electron concentration i ————= =~ 3x 10® cm? .Thus

3x 10

h? 1 1
er=—(Bn’n*~ =107 10°~= 10" ergs, o 3.F0 e\() The value of kis not
2m 2 2
affected by relativity and is n, where n is the electron concentration. Tlays= lick. = hé\n. (c) A

change of radius to 10 km =°%€m makes the volume4 x 10" cn? and the concentration3 x 10°® cm™
® Thuse, ~10°7(3.16° )(10° k 2.10" erg 10 eVThe energy is relativistic.)

5. The number of moles per &is 81x 10°%3 = 27x 10° so that the concentration is $6.0°* atoms cm
% The mass of an atom of Heis (3.017) (1.661)x 10%* = 501 x 10%* @g. Thus

e =[(1.1x 10°)/ 10 J[(30)(16)x 16" 3~ % 10" erg, or £~ 5K.
6. Let E, v vary as &' Then

eEm = eE k& @t
—io+(1/t)  m 1+(wr)’’

and the electric current density is

. net 1+ ot
j=n(-e)v=————
m 1+ (m1)

7. (a) From the drift velocity equation
iov, =(e/ME, +o.V, ; oV, = (¢ ME -,V .
We solve for y, v, to find
(0, — ")V, =io(e/m)E, + o (e M)E, ;

(0, — ")V, =io(e/m)E, + o (gM)E, .

We neglect the terms in. Because j = n(—e)v 6E, the components @f come out directly. (b) From the
electromagnetic wave equation

C’V’E=¢0’ E/0F,
we have, for solutions of the forff& ", the determinantal equation

2 21,2 2
Ex® —CK & 0

2 2 212 T
€ ® €,0 —C k
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Here g, =¢, =1- coF,z/(x)2 andsxy =—€, = h)ccopz/(o3 . The determinantal equation gives the

dispersion relation.
8. The energy of interaction with the ion is
fo 20 _ a2
efo (p/r)4nr?dr =-3e°/2r, ,
where the electron charge density is —e{8/%. (b) The electron self-energy is
p*[" dr(4nr’/3)( 4 r) =38/ 5 .

The average Fermi energy per electron:ig¢53 from Problem 6.1; becaudd/V =3/4TEI’3 , the average

is 3(9n/ 4)2/3 H/ 10my . The sum of the Coulomb and kinetic contributions is

y- 180, 221
I Iy
which is a minimum at
180_ 442 o\ — 447180 245.
rS rS

The binding energy at this value gig less than 1 Ry; therefore separated H atoms are more stable.

9. From the magnetoconductivity matrix we have

X "

j,=0,E,=————0,E
b o T (o)

For ot >> 1, we have,, = G,/0.T= (nezr/ m)( m¢ eB)= neB c
10. For a monatomic metal sheet one atom in thicknes4/aff, so that
Ry, ~ v, /nd’€ ~ nv d/e”.
If the electron wavelength is d, themVFd ~ h by the de Broglie relation and
R,~he&=137c

in Gaussian units. Now
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R, (ohmg=10° ¢ R,( gaussign
~(30)(137) ohms
~4.1kQ .
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CHAPTER 7

la. The wavevector at the corner is longer than the wavevector at the midpoint of a side by tWe.factor
As ¢ « k? for a free electron, the energy is higher By2® = 2. b. In three dimensions the energy at a
corner is higher by 3) than at the midpoint of a face. c. Usdethe band gap at the midpoint of a face is
larger than the kinetic energy difference between this point and a corner, the electrons will spill over into
the second zone in preference toriijiup the corner states in the firsine. Divalent elements under these
conditions will be metals and not insulators.

2. & =12 k2/2m, where the free electron wavevector k may be written as the sum of a vector K in the
reduced zone and of a reciprocal lattice vector G. We are interested in K along the [111] direction: from

1
Chap. 2, K = (2t / a) (1,1,1) u, withO< u< E, will lie in the reduced zone.

The G’'s of the reciprocal lattice are given by
G=(2n/a)[ h— k+ ) %+( h+ k=0) 'y (-h+k+0)2, where
h,k,¢ are any integers. Then= (V]z/Zm)

(2n/a)" [u+ h= k- £)*+(ut h k=0)"+( u- b ke ¢)° Jwe now
have to consider all combinations of indicBsk,/ for which the term in brackets is smaller than

6[3(1/2)] or 9/2. These indices are (000)111);(100 ( 010 ,and (001); (100), (010), and
(001); (111);(110),( 107 ,and(011); (110), (101), and (011).

3. (a) At k = 0 the determinantal equation is (P/Ka) sin Ka + cos Ka = 1. In the limit of small positive P this
equation will have a solution only when k& 1. Expand the sine and cosine to obtain in lowest order

P= %( Ka)2 . The energy is €=

h? K2/2m: h? F7/ m& .(b) At k =n/a the determinantal equation is (P/Ka) sin Ka + cos Ka = —1. In
the same limit this equation has solutions Kan=+ §, where 06 <1. We expand to obtain

(P/n)(—6)+(—l+%62j:—l, which has the solutiod = 0 andd = 2Pk. The energy gap is
E, =(h?/2m&)( &8)=(/F/ 2m&)( 4P .

4. (a) There are two atoms in the basis, and Wwel lthem a and b. Then the crystal potential may be
1 1 1
written as U=U,+U, = Ul([)+ Ul(x +Za, y+71 a, Z+Z % and the Fourier transform has

1
—a

(G +G,+G, A~
(eyed; J If G=2AX, then the exponential is

componentsUg =U + U, =U_ (1+ e
ilAa '1-[ . . . . .
e? =¢€"=-Land U,_,, =0, so that this Fourier componentnishes. Note that the quantity in

parentheses above is just the structure factor of the basis. (b) This follows directly from (44) with U set
equal to zero. In a higher order approximation we would go back to Eq. (31) where any non-vanishing

U(~3 enters.
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W l(1.)
5. Letk=K+iH; &, =— (—Gj +iGH -H? |.
=o2m|\ 2

The secular equation (46) is now

2 2
1
and for H << G we have, with 628—2—(—Gj ,

2m
M e Yo
2m 2h:n G2
6. U(x,y) = — U[¢®™® Y + other sign combinations of + x + y]. The potential energy contains the four

reciprocal lattice vectors (@a) (+1; +1). At the zone corner the wave functiéH**" is mixed with &
@) 6+ The central equations are

(x—s)c{—g : —EJ— ucFa; EJ: 0,

where )\, = 2( h2/2m)(7c/ 8)2 .The gap is 2U.
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CHAPTER 8

la. E=1360ex™ x1- 63 10 ev
m ¢
m 6
b. r:aerxF:EixlO cm

c. Overlap will be significant at a concentration

N = ~10"atoms cm™

4x 3
'l

2a. From Eq. (53)n = (nO Ny )1/2 g FalZkaT , in an approximation not too good for the present example.

. 3/2
nOEZ(n;kBTj z4><]0130m_3;

h?
E, =1.45: e** = 0.23.
2k, T
n=0.46x 16° electrons cm
b. R, :—iz—l.fﬂx 10" CGS units
nec

3. The electron contribution tbe transverse current is

jy(e):nme(% £+ E,j ;

for the holesj, (h) =new, [_M”B E + Eyj .
Cc

Here we have used

B B
0,7, === for electrons; O Th = EnZ for holes.
c

ce e C
The total transverse (y-direction) current is
2 2
0=(nq, — pe,” )(B/O)E+ (ne.+ pe, )E , *)
and to the same order the total current in the x-direction is

J = (peu, + nau )E

Because (*) gives
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2 2
E, = EXBM-E ,
th+nHe C

we have for the Hall constant

_ Ey _i' p“hz_n“ez
H ™~ -

JxB_eC (mh+me)2 .

4. The velocity components atg = hk, /m;; v, = hk /m ; v, = hk /m. The equation of motion
in k space is hdk/dt=—(e/c)wx B Let B lie parallel to the k axis; then
dk, /dt=0; dk, /dt=-0, k ;0, = eB/m c; dk /dt o, k o, = eB/m.c we differentiate

with respect to time to obtairdzky/dt"z:—(o[ dk, /dt; on substitution for dkdt we have

d2ky /At + w,m, k, = 0, the equation of motion of a simple harmonic oscillator of natural frequency
1/2 1/2
w, = (o,0,)" " =eB/(m,m,)""C.

5. Define Q,=eBt,/mgc Q,=eBt,/m,C. In the strong field limit Q>>1 the
magnetoconductivity tensor (6.64) reduces to

-2 _ —1 0 2 1 O
ne’t, Q: % pér, th ",
(3: m Qe Qe 0 + m — %h h
10 0 1 h 0 0 1

We can write nec gB for ne217e /nl, and pec @B for p621:h /mr The strong field limit foro
follows directly. The Hall field is obtained when we set

i, :Ozﬁ:[(n—p) E, +[3n+Q_pj Ey} .

e h

The current density in the x direction is

cec(n, P oo
‘X‘BKQJLQJEX " p)Ey}’

using the Hall field for the standard geometry, we have

,-X:e_C(_m_p}(rF_p? c
HIlQ. Q (ij
Q. Q
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CHAPTER 9
1.

X % =0.78x 16 cni

— T 15716 cmt
a

A
/

/ ).
o -
circle \

\
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k2
(2n/k)’
n=N/IL>=k2/2n

Ke =+/2mn
n= %xloleels/cm2

N =2x

k. =0.89 10 cm

1% band 22 band

1
3a. In the hcp structure there is one atom whose z coordinate is 0 and—zene Ahe structure factor of

2n .
the basis folG, = — Z is
C

S, (basisy + &= 12 2 0,

so that by the same argument as in Problem 9.4 the corresponding conlgésief the crystal potential
is zero.

b. But for U, the structure factor is

S, (basisy ¥ & = 2.

c. The two valence electrons can just fill the first BA.we need is an adequate energy gap at the zone
boundary and for simple hex. there is no reason against a gap.

d. In hcp there will be no gap (at least in loweslder) on the top and bottom faces of the BZ, by the
argument of part a.
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4 Hole suvSace
i
|

Electron
sur face

AN

5a. h%:——e W B:
dt c”
T _hec
evB

_10%"erg sec)(2 10 cm )@ 10 cm’s )
~ (5x10™ esu)(1® cmd )10 gauss)
=1.2x10" sec.
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b. The electron moves in a direction normal to themiresurface -- more or less in a straight line if the
Fermi surface is close to planar in the region tériest. The magnetic fielguts a wiggle on the motion,
but the field does not make the electron move in a helix, contrary to the behavior of a free electron.

6a.
——— ———————— G u
Region [:
piis I b1y .
h" d
+ = -~ €=~ -——-U =g
-2 0 4 % (Zmdxz OJ'” v
21,2
w=A cos kx ; a:h K -U,(»
2m
Region Il:
h*  d?
-— — W=t
om de © Y .
h2q2 ()
=B % ; e=-
v 2m
Boundary conditionl d—W continuous.
w dx
k tan (ka/2)= q, ¢*)

with k and q related to as above.

b. The lazy way here is to show that thein the equations marked (*) above are equal when k and g are
connected by (**), withe = —0.45 as read off Fig. 20. This is indeed so.

1 2ne
7a. A (ﬁ) = hes' where S =tke?, with ke = 0.75x 10 cnmi™ from Table 6.1, for potassium. Thus
C

aty=—2

=——=0.55x 10° G'.
H® 137k’ e
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oR=v.; R= VFr;C = —hkFBC
e e
=0.5x10° cm

nR%= 0.7x10° am?.

8. Write (17) asH =H,+H,, where H, = (h/m)k- p. Then (18) is an eigenfunction dfl, with
the eigenvaluee,, (0)+ h* k* / 2m. In this representation the diagonal matrix elementofis equal to

(h/m)j dV u, (Nk-pU, (r). In a cubic crystalU, (r) will be even or oddwith respect to the
inversion operationf - —r, but P is an odd operator. It follows that the diagonal matrix element

vanishes, and there is no first-order correction to the energy. The futdti¢n) to first order inH, is

, <JjO|H, | nO>
U (n)=Uy() +2 —"——F——,
<=5l T 050

and the energy to second order is

e.(k) = g, (0) + (hk? /2m+ (h/m}z’ [<nOlk pli0-1 .
i [ 5050

The effective mass ratio is the coefficientltt k® / 2m, or

< n0 jO>
m . 2,| |pl] 1_

2
m m j e, 0)—¢,(0)

9a.
[dv wHr—ryw(r-r,)
RN iK'r, KTy *
=NTrz e e [dly, ()

— N—l 3 eik-(rn—rm)
k

where the summation is zero unless n = m, when it is equal to N.

b. w(Xx—X,)= N_]/ZUO(X)%eik(X’X") . The summation is

equal to
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N/2
D eian(x—xn)/Na - j eiZKP(X*Xn)/Naﬂp
P

-N/2
) grlx—xn)/a _ grin(x—x,)/a _$n[n(x -X,)/a]
i2m(x—x,)/Na ™ (x=x,) Na

whence

sin [n(x-x,)/a]
n(x-x,)/a

w(x—x,)= N2 u,(x)

10a. j = oo (QrE + sE) = 0 in the Hall geometry, whencg £— E/sQ.

b. We have,j= 6, (Q° Ex— Q" E,), and with our result for Gt follows that

jx = GO((D_2 + s_lQ_z) Ex’

. S
whencep =E, /], =(Q%/o6) .
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CHAPTER 10
d’B

a.
dx?
satisfy this and to satisfy the boundary conditi@{st%&j =B,. (b) Ford < <A,

:izB; this is the London equation. The propdssolution is seen directly to
A

2
cosh% = ]:l-é[l] +

2\ &,
5 1( & Y
cosh—=4=—| — | +...
2\ 2\ 2\

thereforeB(x) = B, - B, (1/&.)(5% - 4x’).

2a. From (4)dF,=-M dB_ at T= 0.From Problem 1D,

1 1
M) == B (37247,
whence
1
Fs(x,B,)-F(0)= ™ (82— 4x) B .
b. The average involves
4 3
J, (82-ax)dx 38375 2
1 =T T3
) =8
2
whence
1 5’
<AF>=%B;(XJ , ford <<1.
C. Let us set

. (éj:igz
960'[ af }\‘ 87'[7 ac?
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where By is the critical field for the film and Bis the bulk critical field. Then

Baf = \/E g Bac'

3a. (CGS)curIH:ﬂJrlE:ﬁ(co - CZA]+_15_E_
cC cot ¢ 4, cot

curIcurIH:—VzH:ﬂ((SO curl E— C Bj lacurIE'
c

+
4 c ot

Now in CGS in nonmagnetic material B and H are identical. We use this and we use the
Maxwell equation

curIEz—E@

c ot

to obtain

1 _10°B 4nc, 0B
VB-5BS——-—3%—=0
A ¢ ot c® ot

If B~€(k-r-ot), then

1 o A4nic,o

2
-k k2+cz+ <

0. Q.E.D.

1 o w’ 1
b. = =—->— also,0’ << 4o and= >>
AT cC C A

4nc,

C2

Thus the normal electrons play no roletle dispersion relation in the low frequency
range.

4. The magnetic influence of the core may be described by adding the two-dimensional
delta function(DOS(p), wheredo is the flux quantum. If the magnetic field is parallel to

the z axis and diB8 = 0, then
B-A*V’B=dy3(p),

or
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This equation has the solutidB(p) =(®,/2mA*)K,(p/%), where K is a hyperbolic
Bessel functioninfinite at the origin and zero at infinity:

(p<<1)B(p)=(®o/2m1%)¢n(1/p);
(p>>1)B(p)=(®,/2m12)(n2/20)" exp(~p/2).

0

The total flux is the flux quantum:
2nIdp p B(p)= (I)OI dx x Ky(X) =D,
0 0

5. It is a standard result of mechanics that —gradp— ¢'0A/ot. If grad ¢ = 0, when
we differentiate the London equation we obtajpct :(c2/4nkL2) E. Now j = ngv and
/et :nqav/at:(nqz/ m) E. Compare the two equations fopj/ét to find
c?/4mn,” = nit/ m.

"Handbook of mathematical functignd.S. National Bureau of Standards AMS 55, sec.
9.6.

6. Let x be the coordinate in the péarof the junction and normal to B, with
-w/2< x<w/2. The flux through a rectangle of width 2x and thickness T is 2xTB =

¢ (X). The current through two elements at x and —x, each of width dx is

dJ=(3/w cop @( ¥/ht dx( o) W cps 2xTEB)hc dx,

and the total current is

w/2 .
J=(3/ W)_[ cog xTep/hp dx OJSI(nv(v‘lvi/;;zgq

0

7a. For a spheréi(inside) = B, — 4t M/ 3; for the Meissner effecH (inside) =— 4t M,
whenceB, =-8tM/3.

b. The external field due to the sphes that of a dipole of momept= MV, when V is
the volume. In the equatorial plane at the atefof the sphere the field of the sphere is

—u/a® =—4nM/3= B, /2. The total field in this position is 3.
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CHAPTER 11

1. From Eq. (10),

2

e
6mMmc

<r’>,

x=-N

Here<r?> =

< -2r/
3-4nJ' 2dre =3
T, 0

The numerical result follows on using N = 6:020% mol™.

2a. EU" has a half-filled f shell. Thus S =x71/2 = 7/2. The orbitals in= 3, 2, 1, 0, -1,
—2, —3 have one spin orientation filled, so that Emy = 0. AlsoJ =L + S = 7/2. Hence
the ground state fS;,.

b. Yb'™ has 13 electrons in the f shell, leayione hole in the otherwise filled shell.
Thus L =3,S=1/2,J =7/2we add S to L if the shell is more than half-filled. The
ground state symbol f&..

c. Tb™" has 8 f electrons, @ne more than EQ. ThusL=3:S=7/2-1/2=3;and J =
6. The ground state {&.

3a. The relative occupancy probabilities are

e* K (Heren starsd for,k)
KT

é(A—uB)/kT

1

The average magnetic moment is

e—(A—pB)/kT _ e—(A+pB)/kT

Z

<u>=p

whereZ = 1+ e "7 4 @kt gltBIkT

AJKT

b. At high temperatures " — 1 and

11-1



<u>— .
u u 2
2 2
:“B; x—>N“.
2kT 2kT

c. The energy levels as a function of field are:

If the field is applied to take the system from a to b we
et increase the entropy of the spin system from to ~

- N log 2. If the magnetization is carried out constant
total entropy, it is necessary that the lattice entropy be

]\ reduced, which means the temperatbre

4a. Z= I+ "
- keAE™T KA

S 1+eT @4
A

C:{ﬁ_E] :kBATZ—Z.
T ), (eA/T+1)

2
b. ForA/T<<1 &'" -1 and(:—>%kB (%j :

5a. If the concentration in the spin-up band IssNL/2 N (1 +), the kinetic energy of all
the electrons in that band is

3 . K \23 5/3
EN %(3TCZN ) :E0(1+C_,) y

and the magnetic energy is =B = — 1/2 N(1 ) pu B.

b. Now E,, = B {(1+)"+(1-0)*} - NouB
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8Et0t_§ 23 _1_~\?3l _ =
-E?_gaﬂhg) (1-¢)"*}- NuB= 0
Y
- ONuB_ 3B
720E, 2,
MszstMfB. Q.E.D.
€

6a. The number of pairs of electrons with parallel spin up is

1 +2_3.2 2
E(N) =gN* (1 g)

so that the exchange energy among the up spins is
“Lunzaee)?
8
and among the down spins the exchange energy is
—%VNZG—Qf.

b. Using these results antose from Prob. 5 we havg,, = EO{(1+Q)5/3+(1—§)53}

tot
—éVN2(1+g2)2— NCuB. Thus (forg << 1)

oE, 20 1.,

— 2 =—El-—=VNC-NuB=0;

ac 9 oS > C—Np

3 NuB

C_20 1
TE,-=
9 2
3 NuB
C2Ng. 1

3 2

VN?

VN?

and

3Np?

26, — SN
2

M =Np = B
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c. ForB=0and = 0.

2 €
TEu_ 0 Lyt gty A0 _4F
oC 9 2 9N° 3N
7a. The Boltzmann factor gives directly, with kgT
eA/‘r _ alr
U :—AW:—A tanh A/T,

C=kg dU/d=k; (A/ kg T)" sech (A/ k T,
because d tanh x/dx = ségh

b. The probability P{) dA that the upper energy level lies betweerand A + dA,
referred to the midpoint as the zero of energy, 49 BA = (dA) / Ao. Thus, from (a),

<U>= —Af dA (A/A,) tanh A/,

0
Ay
<C>= kBI dA (AZ/AO rz) wch? (A/7)
0
:(kBr/AO)J dx x* sech®x,
0

where x= A/z. The integrand is dominated by contributions from® <1, because sech
x decreases exponentially for large values of x. Thus

<C> = (kBr/Ao)j dx x? sech®x .

0

<p> % —e*®"  2sinhx
u 1+ 2 cosh x % 2 cosh x

8.
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CHAPTER 12

1. We haves, ; = §€“°. Thus

(2 (eze)y

(217\:8][6 2( cos k ar cosk a COSZK)%

d y
> (Z;SJ[G 2(cosk a cosk a coszk} 'S

dt
These equations have a solution with time-dependees@(—wt) if

©=(2J9MH( 6- 2coska 2cogka 2coska

2.U=Yn, ho, = hfdoD(w)o<n(w)>. If o = Ak, then do/dk= 2Ak= 2/ Aw*?,

and
()= It ® 1 1 o¥?
87 A 2JA0'?  4n AY?
Then
h 3/2 1
U=gar[d0 0" gu

At low temps,

1 ¢, x¥? 1 5 5
= d = I |—= —;1
I (hgf/zf Xex—l (hg)ffzguanman( zjzeé (2)

function

[See Dwight 860.39]

U=0.45 k1) in? A2 h?2
C=dU/dT=0.113 k( k T/hA** .
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3.
M,T =C(B-pM; —¢M, ) (B =applied field)

M.T =C(B—3MB —MMA)
Non-trivial solution for B = 0 if

T+eC  uC
=0;T.=C(n-
uC T+8C‘ c=Cln-¢)

Now find 3 =(M, +M;)/Bat T>T.:

2C

MT =2CH-CM =
(e41)5 T+C(n+¢)

- 0/T, :(u+8)/(u—8) :

4. The terms inJ,, + U _+ U, which involve g are

%Cuexﬁ C.e.( g+ &)+ Biy g .
Takeoloe:
Cu€y+ Gyl §,+ &)+ By = 0, for minimum.
Further:

Clleyy+QZ(Q<x+ gz)i_ 3122: 0
Cue,+ Clz( €t %y)"’ ale?: 0.

Solve this set of equations foie

Cp,— 0Lzz ( C,+2C 12)

eXX = Bl *
(Cll - C12)( C11+ X 12)

Similarly for gy, &, and by identical method fogeetc.
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S5a.
U(6)=K sin?6—B,M_cos

=Ko’ -B,M S%(pz, for0=n+o
and expanding about smail.

For minimum nearp =0 we needK >%BaM « Thus at B = 2K/Ms the magnetization

reverses direction (we assume the magnetization reverses uniformly!).

b. If we neglect the magnetic energy of thdomain particle, the energies of the single
and bidomain particles will be roughly equal when

M d*~c,d?; or d ~ GW/ M.
For Co the wall energy will be higher tham foon roughly in the ratio of the (anisotropy
constant K)2 or +10. Thus o, ~3ergy cmi . For Co, M = 1400 (at room

temperature), st ? ~2x10° erg/cm®. We havedc~ 3 2< 16~ 1.1 cmor =100A,

as the critical size. The estimateviesry rough(the wall thickness iscfdthe mag. en. is
handled crudely).

6. Use the units of Eg. (9), and expand

tanh? _ Tm‘glt_nj+ . [Dwight 657.3]

3

Then (9) becomem:?—%Jr .

but 1 —tis proportional tocF T, so thatmoo,/T.— T for T just below T.

7. The maximum demagnetization field in a Néel wall istM4, and the maximum self-

energy density is;—(4nMS)MS. In a wall of thickness Na, wheesds the lattice constant,

the demagnetization contribution to the surface energy,is,,~ 2tM ’Na. The total
wall energy, exchange + demaggas ~ (n2J§/ Na?)+( & M Na) ,by use of (56). The
minimum is at
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dc,/ON=0=-n?JS/ Nd&+ 2z M a, or
12
N = [%nJSZ/MSZa3) ,
and is given by
o, ~tMS(2rn J a)]/2 ~( 1()( 1@)( 10/ 119)]/2 ~ 10efg ém ,

which is larger than (59) for iron. (According to Table 8.1 of the book by R. M. White
and T. H. Geballe, the Bloch wall thicknessHarmalloy is 16 times that in iron; this
large value ob favors the changeover to Néel walls in thin films.)

8. (a) Consider the resistance of the up and down spins separately.
Magnetizations parallel:

R (Up) = a;l(L/ A) + a;l(L/ A) = 20;1(L/ A)

R (down) = o, (L/ A) + o, (LI A) = 20 (LI A)
These resistances add in parallel:

Rt = Ry (down) R, (up) /[Ry4 (down) + Ry, (up)] = 2(L/ A) (o, + 7))
Magnetizations antiparallel:

R, (up) =o' (L/ A)+o, (LI A)

R, (down) = o (L/ A) + a;l(L/ A) =R, (up)
These (equal) resistances add in parallel :

R, =R, (up)/2= (L/A)(a;1+a;1)/2
The GMRR is then:

GMRR=R, /R, 1= (o + 0'51)(0a +o,)/4-1

=(o,lo,+0,l0,-2)/4

(b) For the™ magnetization configuration, an elext of a given spin direction must
always go through a region where it idiparallel to the magnetization. ¢, — 0, then
the conductance is blocked and the resistdce is infinite.
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CHAPTER 13

1. Consider a coil which when empty has resistangea® inductance - The
impedance is £= Ry — ioLo. When the coil is filled with material of permeability
n=1+4my the impedance isZ = R, —ioL,(1+4ny) = Ry— ioL o(1+ 4ny+ 4riy"), or

Z=R,+4noy"L,—ioL,(1+4my’) .
R

L

Now

dX o dy o\ dZ .
af_(gxl),—I_(QXY),zﬁ_(QXZ)
FX%JF =QxF

dt

— | +QxM = B.

) fee)

Y
c. With Q =—yB,z we have

(d—M] =yMxBX,
dt ), "7 7

so thatM precesses about with a frequency» = yB;. The time {;; to give 0 = r is
ty2 = nlyBs.

d. The field B, rotates in the xy plane with frequen€y=yB,,.
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2
3a.<B" > :[—j Zj)%<ljzlkz>,where forl :% we hav&ljzlkz>:%8jk.Thus
2
a) 1 &
<B’>=|=| X8, =—.
! (NJ 4% 4N

4
b. <Bi4>=(%j > <A S

jkfm
Now

z z 1
<l 11,9, >:T6[ 8 0y,0m + 0,0,

+8,,8ym +8mSy ], and

4 4 2
<B'>= a —1[N+3N2]: 2y N
N/ 16 N/ 16

4. For smalb, we haveU, =K. Now the magnetic energy densitl, = -BM cos0 =
-BM +%BM 0%, so that with proper choice of tkero of energy the anisotropy energy is

equivalent to a field
B, = 2K/M

along the z axis. This is valid fér<<1. For a sphere the demagnetizing field is parallel
to M and exerts no torque on the spin system. ThusB, is the effective field.

5. We may rewrite (48) with appropriate changes in M, and witkoRpy= 0. Thus

oM " =y, (MM g [+M gAML |

—ioM B+ :IYB(M B+7\.’VI A|+M A+7\’IM B|)‘

The secular equation is

’YA;\‘|MB|_0) YA7‘|MA| _
_'YB7\‘|MB| YB7‘|MA|_C‘)

or
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©” — (Y41 Mg|-7sA[M,[)=0.
One root isng = 0; this is the uniform mode. The other root is
@ :}\’(YA|MB|_YB|MA|):O;

this is the exchange mode.
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CHAPTER 14

1. Exoz—g—q’: KA sin kx €“, and at the boundary this is equal tg. Hhe normal
X

component oD at the boundary, but outside the mediunz(is)kA cos kx, where for a
plasmag(w) = 1 —copzlcoz. The boundary condition is —kA cos kxefw)kA cos kx, or

&(o) = —1, orwy’ = 20°. This frequencyn = o, /+/2 is that of a surface plasmon.

2. A solution below the interface is of the forp-) = Acos kx €, and above the
interfacep(+) = Acos kx €**, just as for Prob. (1). The condition that the normal
component oD be continuous across the interface reducegd) = —e(®), or

2 2

0] () 1
pL _ p2 2= 2 :
S L R ot o = (o ).

3. (a) The equation of motion of the electrons is
—0’X, =—(&m)E, +inwy,; —o’y,=-(e/m)E, —inwX,. For the holes,

—0°X, = (e/m,)E, + b, Y, ; —o’Yy, = (e/m, )E - do, X .

The result follows on forminge = X + iye andén = X, + iyn. (b) Expand
(o, + o)™ :coe’l(l— o/m,) and (o, —o) =o, (1+o/e,). In this approximation
(€, —E)/E =(@B)(0, +o.") = (c*/eB)(m+m).

4. From the solution to Problem 3 we ha®e= pe’E" / mw,®, where we have dropped
a term inw? in comparison withopw. The dielectric constant
g(w)=1+4nP /E = 4 pé /nw,», and the dispersion relatiafm)m?® = ¢k* becomes

4npefwl(eB/c) = ék% Numerically,» ~[(10°)(3x 10° ) /10)(X 1& )& 1¢° ¥ 0.2

It is true thatot will be <<1 for any reasonable relaxation time, byt > 1 can be
shown to be the applicable criterion for helicon resonance.

5. mdr/df =—mpT =- €= 4 @ /3~ 4 ne /3Thusw’ = 4rn€/ 3m.

6. md’r/df =—mw’r =— (¢ c)¢ x B )} m r wherew,? = 4tne?/3m, from the
solution to A. Thus, witlw. = eB/mc,

. 2
~0’X = i0oYy —m, X ;

. 2
~—0'Y =—00oX -0, .
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Formé = x + iy; then—o’t — oo &+ 0,6 =0, or o’ + oo, —o,” = 0, a quadratic
equation forw.

7. Eq. (53) become&’K’E = ’[¢(0)E + 4nP], where P is the ionic contribution to the
polarization. Then (55) becomes

0’g(0)—Cc’°K? 4nw’
2 2 2| =0,

Ng?/M ® —Or
or

o'e’ (0) -’ [CZK2 +e(0)0, +4n qu/M}+ c’K %, = 0.

OnerootatK =0 s’ = c0T2 +4Tth2/8(oo) M. For the root at loww and K we neglect
terms inw* and inw’K?. Then

o’ =c?K? o, [[e(0) o, +4nNg?/M]
= ¢?K?/[e(w0) +4nNg?/ Mw,’] =c K /& (0) ,

wheree (0) is given by (58) wittw = 0.
8(a).c=nér/m= @, /4 y= 0.7k 18 $= 800( cm)
(b) o, =4nné/ m*; m*=dnné/o’= 4.2 107 g; M 4.7.

9. The kinetic energy of a Fermi gas of N electrons in volume V is
U=N(3/5)(KF/2m) (3> N V§°. Then du/dV = — (2/3)U/V and®d/dV? = (10/9)U/N.
The bulk modulusB = Vd?U/dV2 = (10/9) U/ V= (10 9) ( 5)n(my’/ 2% nmy/ 3.
The velocity of sounds = (B/p)*?, where the densitp = n (m+ M)= nM, whence
v=(m/3M)"* v,.

10. The response is given, wjitr 1k, by
m(d ¥/ df +pdx dtre,” = K § .

The conductivitys does not enter this equation directly, although it may be written as
= wp’t/4n. For order of magnitude,
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c=(Y10°)(9x 16')= 18 § ;
p=Yr=v./l=(16<10)/( & 1CF)= 04 16 & ;
o, =(4nné/m’* = (10 16 x 23 16/ 18)"
=1.5x10° s* .

The homogeneous equation has a solution of the fdim>- 0) = Ae™ sin(o t+ ¢) ,

12
where o = [wpz - (p/Z)Z} andx = p/2. To this we add the particular solution x =

—e/mw and find A andp to satisfy the initial conditions x(0) = 0 and0) = 0.

11. The Laplaciarv?e = 0, whence

2
9T k¥ -0,
dz

This has solutions

f=Ae" forz< 0
f =Ae™ = for z> d
f=BcoshK(z-¢ 2 forO< = d

This solution assures thatwill be continuous across the boundaries if B =
A/cosh(Kd/2). To arrange that the normal component of D is continuous, we(aged

opl/oz continuous, o&(w) = — tanh(Kd/2).
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CHAPTER 15
la. The displacement under this force is

x(t)= 2_];1 :oc((o) e do.

With @ = wr + i, the integral isJ‘oc(co)e““’Rt &' do. This integral is zero for t < 0

because we may then complete a contour with a semicircle in the upper half-plane, over
which semicircle the integral vanishes.eTintegral over the entire contour is zero
becausew(w) is analytic in the upper half-plane. Therefore x(t) = 0 fort < 0.

1b. We want

X(t):iTﬂ (A)

212 @y — 0> —iop
which is called the retarded Green’s functadrthe problem. We can complete a contour
integral by adding to x(t) the integral aral an infinite semicircle in the upper half-
plane. The complete contour integral \&lid@s because the integrand is analytic

everywhere within the contour. But the integoakr the infinite semicircle vanishes at t
<0, for then

expl ~i(0n + i) (-t | = expl-o [{) exf o |1) .

which —» 0 as ¢| —» o. Thus the integral in (A) must also vanish. For t > 0 we can
evaluate x(t) by carrying out a Cauchy intdgn the lower half-plane. The residues at
the poles are

so that

from (9), while from (11a)
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3. The reflected wave in vacuum may be written as
_Ey ( reﬂ) = Bz ( reﬂ) A’ efi(kx+mt) ,

where the sign of [Fhas been reversed relative tpiB order that the direction of energy
flux (Poynting vector) be reversed in the eeted wave from that in the incident wave.
For the transmitted wave in the dielectric medium we find
E, (trang = ck B( trangew
=g V2B, (trang = A",

by use of the Maxwell equation ¢ curl HegE/ét and the dispersion relatiem?® = c?k?
for electromagnetic waves.

The boundary conditions at the interface at x = 0 are thah&uld be continuous:yE

(inc) + E (refl) = E (trans), or A — A’ = A". Also Bshould be continuous, so that A + A’
=2 A", We solve for the ratio A/A to obtairf? (A — A") = A + A, whence

A 1-¢"
A €241

and

E(refl) A" ¢?-1 n+ik-1
E(inc) A &”+1 n+ik+1

The power reflectance is

R((D)_r*r_(n—ik—lj(nﬂk—lj_(n—1)2+KZ
0 Un-ik+)Un+ik+1) (n 1)+ K2

4. (a) From (11) we have

" 20 ¢t o'(s
(¢} (O\)):—?PJ. 32 _(60)2 ds.
0

In the limito — oo the denominator comes out of the integrand and we have
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fim c"(0)= iTcs'(s) ds.

® —> © o

(b) A superconductor has infinite conductivityzero frequency and zero conductivity at
frequencies up tag at the energy gap. We can repléise lost portion of the integral
(approximatelys'nmg) by a delta functiors'wg 5(w) in c's(w) at the origin. Then the KK
relation above gives

c"(0)=—"0c" 0

o 9

(c) At very high frequencies the drift veltc of the conduction electrons satisfies the
free electron equation of motion

mdyv/dt=— eE;- b mv=— eE,
so that the current density is
j=n(-e)v=—iné€ § nw
andos” (®) = né/m in this limit. Then use (a) to obtain the desired resuilt.

5. From (11a) we have

g'(w)-1= 47:]162 P]z SS:%) b=

2 2 2"
Q)

6. — K? + 2inK = 1 + 4icy/®. For normal metals at room temperatage- 10" — 10°

sec’, so that in the infraredo <o, Thus n*=K? so that R=1-2/n and

n=/(2nc,/w), whenceR = 1-/( 20/nc,). (The units ok, are sec in CGS.)

7. The ground state of the line may be writign=ABA B,...A B Let the asterisk

denote excited state; then if specifgingle atoms are excited the states are
9,=ABAB,.AB,.AB,; 6=ABAB,.AB .A B, The hamiltonian acts
thusly:

H(pj =€, 0, +T19]- +T291_1;
Hej =sBej + 1,0, + T,0, +1.
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An eigenstate for a single excitation will be of the foqm:Ze”'"“(oupj +Bej). We
j
form

Hy, = Z & o, +0T0, +aT,0,,
j

+B839j +BT1(P1 +BT2(P]' +1].
=Y & [(ag, +BT,+e™B T )0,
i

+ (och +PBeg + e‘kaocTz)Gj]

=Ey, =Y &°[aEp, +BED].
This is satisfied if
(84 —E)a+(T,+€"T,)B=Q
(T, +€T,)a+(ss— E)p=0.
The eigenvalues are the roots of

N = T+e"T,
T,+€°T, ¢,—E
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CHAPTER 16

X
r

2
1.8 X _eE ex= FE= po=p E 1= g .
r
47 . . 4 5 3
2. Eion—? P=0 inside a conducting sphere. Thupz?aP:an, and
a=p/E=2.

3. Because the normal componentDbfis continuous across a boundary; E cEgie,
where Ei = 4tQ/A, with Q the charge on the boumgaThe potential drop between the

, 1 , .
two plates isg,;, qd+ E,, d= E,; c{ qu—j. For a plate of area A, the capacitance is
e

C = Ll .
4nd( g+ j
€
It is useful to define an effective dielectric constant by

1 1
—=-+q.
Eef €

If € = o0, thenegesr = 1/g. We cannot have a higheresffive dielectric constant than 1/qg.
For q = 10° geft = 10,

4. The potential drop between the plates;isl E E qd. The charge density

Q_D, ¢ _lop (CGS)
A 4n 4n o
by comparison of the way ande enter the Maxwell equation for curl H. Thus

£+ ihidle) E,; V= Ezd(4nlc+qj ;
€M €M

QzG—AIEZ;andthusCEg: A

® \ 4nd(1_'wﬂ

€

de =(1 :
AN Eer (+q)1—(i0)SGI/4TCG)
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5a.E,, EO——P Eo—ﬂxE.m.

6. E = 2R/a%. P, = oE = 20uPy/a’. This has solutionp=p, 0if 2a=2a°; :% a.
7 (a). One condition is, from (43),
Y(Tc _To)_|g4| Psz + g6P34 = 0

The other condition is

1
Zy(T -T,) |g4|P+6gGFf5 0.
Thus
Jor v R =3 ol B+l af
> 1 _3@
3QJGF’S—ZI 4|,Ff—496

(b) From the first line of part (a),

3|g4| 9M:_3942

T -T 9
V(Te=To) = 4g 16g 16g

8. In an electric field the equilibrium condition become&+y(T-T,) P+ gP’ =0,
where the term ingis neglected for a second-order transition. NowHetR + A P. If
we retain only linear terms iAP, then —E+y(T-T,)AP+ g,3P°AP= 0, with use of
(40). Further, we can eliminateR® because P’=(y/g,)(T,-T). Thus

AP/E=JZ(T-T).
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9a. [«a—)| cosE( na
AR i ) a
b. |« 2a—

Deforms to new stable structure of dimers, with lattice constar{t@mer constant).

C.

tnew BZ boundary (for dimer)

10. The induced dipole moment on the atom at the origin isxg,=where the electric
field is that of all other dipolesE=(2/&)% p =( 43/a3)(2n’3);the sum is over

positive integers. We assume all dipole moments equal to p. The self-consistency
condition is that p =w(4p/d&) (n™), which has the solution p = 0 unless> (a%4)
(1/2n7%). The value of the summation is 1.202; it is the zeta fun¢(®n
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CHAPTER 17

1. (a) The interference condition for a linear lattice is abcesW.. The values 06 that

satisfy this condition each define a cone with axis parallel to the fiber axis and to the axis
of the cylindrical film. Each cone intersects th in a circle. When the film is flattened

out, parallel lines result. (b) The interseatiof a cone and a plane defines a conic
section, here a hyperbola. (c) laeth be the primitive axes of a square lattice. The Laue
equations (2.25) giva* Ak = 2nq; b « Ak = 27r, where q, r are integers. Each equation
defines a set of planes. The intersectionsheke planes gives a set of parallel lines,
which play in diffraction from a two-dimermial structure the role played by reciprocal
lattice points in diffraction from a three-dimeémsal structure. In the Ewald construction
these lines intersect a sphere of radius k#\2n a set of points. In two dimensioasy
wavelength (below some maximum) will giyp®ints; in three dimensions only special
values ofA give points of intersection because one more Laue equation must be satisfied.
The points correspond to the directions ktted diffraction maxima. If the photographic
plate is flat the diffraction pattern (2 dim.) will appear distorted.

(T1)% ~cme-—-? (11)
1 {

_ A enter . Points near the direction of the incident
(To)e «7 ¢(10) (beam direction)

i beam are shown.

(d) The lattice of sdace atoms in the
(110) surface of an fcc crysta simple rectangular. The long side of the rectangle in
crystal (real) space is a short side in thepraaal lattice. This explains the 90° rotation
between (21a) and (21b).

2. With the trial function x exp (-ax the normalization integral is
_[: dx x* exp(— 2a>) = /1. 43 The kinetic energy operator applied to the trial function
gives

—(h?/2m) o dX = —(H/ 2m( & x 2p efp Ax

while Vu = eEX exp (-ax). The definite integmlthat are needed have the form
_[: dx x" exp(- ax) = nl & The expectation value of the energyis >= (h2/2m) &
+(3eE/ 26) , which has an extremum with resp to the range parameter a when
d<g>/da=(t/2m)2a-3eE/2a’ =0, or a’=FEm/2M’. The value of<e> is a
minimum at this value of a, so that

<& = (12/2m)( 3eEni/R)" +( 3eE A 3eEm
(hZ/Zm)m(?,eE 32/3( 2+ 7)),
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where the last factor has the value 1.89 ..e Airy function is treated in Sec. 10.4 of
the NBSHandbook of mathematical functians

dNdk =~ 2 d(#&*) m _m

dk de  (27/L)> dk n*k h?

3. (a) D(¢) =

whereA = L2

Note: There are two flaws in the answer zh”quoted in the text. First, the ardais
missing, meaning the quoted answer is a depgtyunit area. This should not be a major
issue. Second, threshould be replaced by.

2 2

(b) N'= @71 L)? R

=> n,=N/A=k2/2z

(c) R :% mz whereng is the 2D sheet density. For a square sami#id,, so:
ner

S

_ 2zrm
kZe’r

R,

and using#k. /m=v; :
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CHAPTER 18

1. Carbon nanotube band structure.

@b,-a, =2, = b=(-%%), b,=(%)

(b) The angle betwedf andbsis 30 ; A right triangle is formed in the first BZ with two
sides of lengthK andb:/2. Nowb; = % S0:

K = (bi/2)/cos(30)= 4r/3a.
(c) Quantization ok alongx: ky(na)=2rj= kg =2xj/na.

Assumen = 3, wherei is an integer. Thenky = K(j/2i). Forj = 2i, k=K. Then
AK = kyf and there is a massless subband.

(d) Forn = 10,kx =2r j/10a =K(3j/20). The closedt comes tK is forj = 7, where
Ak = K/20. Then:

&, =2hv (47 /3a)/10= 1.8 eV.

The next closest is fgr= 6, wheredk, = K/10, twice the previous one. Therefore:
&2 =281

(e) For the lowest subban(liAk|2 =(K/20* +k?, so:
&2 =[(K 1 20v W21 + (K V, )

This is of the desired form, witm* = 7K /20v. .
m*/m=#K /20mv. = 012.

2. Filling subbands

hzﬂ'z 2 2 . hZﬂ_Z
n,n)=—-—(n;+n => States are filled up t©(22) = 8
én.n)=- y) p@22)=- 76
nky  nr? Jér 2, 26
(1,1) subband: Zr#:Zsz 8-2 = ky=-= = My=—ky =0
hzkz h27z'2 \/§7Z' 2 2\/§
(2,1) subband: Znil:zmwz B-5 = ky =" = Ny =—ky=T0F

18-1



(2,1) subband: same.

= 59x18/m.

2J6 43
W W

3. Breit-Wigner form of a transmission resonance

(@) cosPp)=1-5p° 12 ;|n 1|t P=l-4|t P -4t |*

The denominator of (29) is then:

1+ (1_ |t1 |2)(1_ |t2 |2) - 2(1_%“1 |2 _% |t1 |4)(1_%|t2 |2 _% |t2 |4)(1—%5€02)
= (6 1+ 1)+ 31t Pl P +8p” = 4(1L P+t 17)* + 59

41t Flt, [

J= .
(It P +1t, [%)* + 459

(b) 6p=2Lck andok/oe = Akl Ae =(x/L)/ Ae. Combining:
op=2L)(x/L)oelAe => Opl2r=0oelAe

(c) Combining:

4|t FIt, [ (Ae12r)?

3= which is (33).
(Ag/27r)2(|tl § +]t, )% + 45¢” (33)
4. Barriers in series and Ohm'’s law
(@)
l — r |I'1 |2|r2 |2 = 1+ 1_ |r1 |2|I'2 |2 — |t1 |2|t2 |2 — 1+1_ (1_ |t1 |2)|r2 |2 — (1_ |I'1 |2)|t2 |2
I I FL P It, FIt, P It, FIt, P
_ 2 2 2 2 2
_ g el D AR P fILl 16l 6P e dives (36
It, FIt, | 1%
2 2 2 2
(b) oy = nper _ 2k.e'r ’ q ke _ v. = o - 2veT 267 (2v,7)
m am m hr h
_ B 2€°(,
But: (g =V.ry =2Vv,T => op= et

5. Energies of a spherical quantum dot

€)) J.AE da=Q,,/ee, => E=qldnee,r? Integrating from inner to outer shell:

V:R*d gdr _ q (i_ 1 j_ q d
> Amest? Anee,\R R+d) 4nee, R(R+d)
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2 2
C :ﬂ=4m£goM and therefore U=S =% d .
\Y, C 4rese, R(R+d)
2
(b) Ford<< R, C;47z550%=&90§.
2 2_2 2 * 2
(c) Ford>> R, U=—>o AIso;;OO:h—,k”2 => u__e¢ 2”;3
Aree, 2mR &y Amee,R h'rm
U € 2mR*_ & 2mR_2R

- Ti2 2 "2 2
&g Admes,R h'rx Arse, h°m® 7n° gy

6. Thermal properties in 1D

2K 1 L
(@) D(w)= ETRVERPY
U :T dwD(w)ho ;@T odw _ ﬂ[kBszT xdx

ol expliwlksT) -1 vy expliol/ K T) -1 w7 ) gexpi) -1
Obtaining value from table of integrals:
KT 27 gPLKET?
T a6 3
2 2

C, =0U, /oT|, == 2”3%
(b) The heat flow to the right out of reservoir 1 is given by:
JR:TDR(Q)‘V' dohw S _h37 adw _ @(kBlezﬂ'_Z:ﬂzkéles

o L explio/kT) -1 2r  expliol kgT)) —1 27\ h 6 6h

and similarly forJ,. The difference is:

k23
‘JR_‘]L ZG—I,?(le_TZZ)
Let T,=T+AT , T,=T => (Tf—Tj)zZTAT for small AT.

— ki3 : .
=>  J;-J. = 3 AT which gives (78).
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CHAPTER 20

1.U=nk
The number of ways to pick n from N is N! / {¥) Inl. The number of ways to put n
into N'=n"1/(N'— n) Inl.

N! N'l
Entropy S= kB(bg—(N—n)!n!Jr lOgi(N’—n)!n!j .

log I:NIogN—(N— n) log( N- n)— nlogn

(N—n)!n!

N'! , / /
|Ogm: N'log N'—(N'—n) log{ N- n— nlogn

(ﬁj :@_Ta—szo in equilibrium; thus
on);

on on

E,:kBT(Iog N-n N—nj

+ log
n

(N=n)(N'-n)

n2

E, =k, T log (NN/r?) ; n=+/ NN e=/2T,

=kgT log . Forn<< N,N ,
2. From (2), n = N&/s". For sodium, N = 2.5 10°* atoms/cm. Thus
n=(25x10")(4x 10 **) ~ 10° per cm°.

3a. ho= 13.

N
()}
-h|w

eV. From Table 10.3 we have (©) = 2.25 for NaCl, whence
€
ho = 2.0 eV. The observed value quoted in Table 18.2 is 2.7 eV.

b. From Vol. | ofAtomic energy levelsCircular 467 of the Nat. Bur. of Standards, 3p-3s
= 16960 cri = 2.1 eV.
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CHAPTER 21

1. In fcc the nearest neighbors to a given alienin [110] and equivalent directions --
thus these directions are lines of closestiqng. In bcce the neareseighbors lie in [111]
and equivalent directions. There is a livelyemrest in the channeling of fast ions along
open channel directions in crystals.

2a.

0O 000000 O0O0oO0
remove — -—6—6—6—6—6- 0 0 O O
these 0O 0 0 0 0 o666 ¢—remove these atoms
atoms O 0O OO0 O0OO0OO0OO0OOo

00 O0OO0O0O0OOO OO
disl. — -e—-e—e—o 0-0—o—6 <e—disl.
0O 0000 O0O0O0O0

3. When a dislocation moves a distance L through the crystal, the crystal advances by a
distance b. The workL?b may be expressed as

fb' FL,. - L

H -
force ldistance Thus F =cb is the force/unit length on
on moved . .
\  disloc. the dislocation.
L
l~L —I
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CHAPTER 22

1. Disordered state: S given by Eq. (2.48) with as averaged over 3 Cu and 1 Au atom.
Ordered state:

S(hkt) = f, + e, (€™ + & "4 ™) Yonsider the following reflections: (%
refl. present)

Indices Disordered Ordered
100 no X
110 no X
111 X X
200 X X
210 no X
211 no X
220 X X
221 no X
222 X X

2. C =0E/0T; now use E from Eq. (5): E =B 2NUF. Thus Coniig = 4NUP(T)0P/OT,
and we recall that U is negative, as otherwise an ordered state does not occur.
From Fig. 7b,

in this region a treatment based on P alone gives
Cconfig = 0. We should look at the short range order!
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