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CHAPTER 1 
 
1. The vectors ̂ ˆ ˆ+ +x y z  and ˆ ˆ ˆ− − +x y z  are in the directions of two body diagonals of a 

cube. If θ is the angle between them, their scalar product gives cos θ = –1/3, whence 
. 1cos 1/ 3 90 19 28' 109 28'−θ = = ° + ° = °

 
2. The plane (100) is normal to the x axis. It intercepts the a' axis at  and the c'  axis 
at ; therefore the indices referred to the primitive axes are (101). Similarly, the plane 
(001) will have indices (011) when referred to primitive axes. 

2a'
2c'

 
3. The central dot of the four is at distance 
 
 

cos60 a
ctn 60

cos30 3
a a

° = ° =°  

 

 
from each of the other three dots, as projected onto the basal plane. If 
the (unprojected) dots are at the center of spheres in contact, then 

 
2 2

2 a c
a ,

23

⎛ ⎞ ⎛ ⎞= + ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠  

 
or 
 

2 22 1 c 8
a c ; 1.633.

3 4 a 3
= =  
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CHAPTER 2 
 

1. The crystal plane with Miller indices hk  is a plane defined by the points a1/h, a2/k, and . (a) 

Two vectors that lie in the plane may be taken as a

3 /a

1/h – a2/k and 1 3/ h /−a a . But each of these vectors 

gives zero as its scalar product with 1 2h k 3= + +G a a a , so that G must be perpendicular to the plane 

. (b) If  is the unit normal to the plane, the interplanar spacing is hk n̂ 1ˆ /h⋅n a . But , 

whence . (c) For a simple cubic lattice 

ˆ / | |=n G G

1d(hk ) G / h| | 2 / | G|= ⋅ = πa G ˆ ˆ ˆ(2 / a)(h k )= π + +G x y z , 

whence 
 

2 2 2 2

2 2 2

1 G h k
.

d 4 a

+ += =π  

 

1 2 3

1 1
3a a 0

2 2
1 1

2. (a) Cell volume 3a a 0
2 2
0 0

⋅ × = −a a a

c

 

 

21
3 a c.

2
=  

  

2 3
1 2

1 2 3

2 3

ˆ ˆ

4 1 1
(b) 2 3a a 0

| | 2 23a c
0 0

2 1
ˆ ˆ( ), and similarly for , .

a 3

× π= π = −⋅ ×
π= +

x ˆ

c

y z

a a
b

a a a

x y b b

 

 
 

 

(c) Six vectors in the reciprocal lattice are shown as solid lines. The broken 
lines are the perpendicular bisectors at the midpoints. The inscribed hexagon 
forms the first Brillouin Zone. 
 
3. By definition of the primitive reciprocal lattice vectors 
 

3 32 3 3 1 1 2
1 2 33

1 2 3

3
C

(a a ) (a a ) (a a )
) (2 ) / | (a a a )|

| (a a a ) |

/ V .

BZV (2

(2 )

× ⋅ × × × = π ⋅ ×⋅ ×= π
= π

 

 
For the vector identity, see G. A. Korn and T. M. Korn, Mathematical handbook for scientists and 
engineers, McGraw-Hill, 1961, p. 147. 
 
4. (a) This follows by forming 
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2

2 1
2

2 1
2

1 exp[ iM(a k)] 1 exp[iM(a k)]
|F|

1 exp[ i(a k)] 1 exp[i(a k)]

sin M(a k)1 cos M(a k)
.

1 cos(a k) sin (a k)

− − ⋅ ∆ − ⋅ ∆= ⋅− − ⋅ ∆ − ⋅ ∆
⋅ ∆− ⋅ ∆= =− ⋅ ∆ ⋅ ∆

 

 

(b) The first zero in 
1

sin M
2

ε  occurs for ε = 2π/M. That this is the correct consideration follows from 

 

1zero,
as Mh is
an integer

1 1
sin M( h ) sin Mh  cos   M cos  Mh  sin   M .

2 2 ±
π + ε = π ε + π ε1

2
 

 

5.  j 1 j 2 j 32 i(x v +y v +z v )
1 2 3S (v v v ) f    e

j
− π= Σ

 

Referred to an fcc lattice, the basis of diamond is 
1 1 1

000; .
4 4 4

 Thus in the product 

 

1 2 3S(v v v ) S(fcc lattice)  S (basis)= × , 

 
we take the lattice structure factor from (48), and for the basis 
 

1 2 3
1

i (v v v ).
2S (basis) 1 e

− π + += +  

 
Now S(fcc) = 0 only if all indices are even or all indices are odd. If all indices are even the structure factor 
of the basis vanishes unless v1 + v2 + v3 = 4n, where n is an integer. For example, for the reflection (222) 
we have S(basis) = 1 + e–i3π = 0, and this reflection is forbidden. 
 

 

32 1
G 00

33
0 0

3 23 2 2
0 0 0

22 2
0

6. f 4 r ( a  Gr)  sin Gr exp ( 2r a ) dr

(4 G a ) dx x sin x exp ( 2x Ga )

(4 G a ) (4 Ga ) (1 r G a )

16 (4 G a ) .

∞ −= π π −
= −
= +

+

∫
∫

0

 

 
The integral is not difficult; it is given as Dwight 860.81. Observe that f = 1 for G = 0 and f ∝ 1/G4 for 

 0Ga 1.>>
 

7. (a) The basis has one atom A at the origin and one atom 
1

B at a.
2

 The single Laue equation 

 defines a set of parallel planes in Fourier space. Intersections with a sphere are 

a set of circles, so that the diffracted beams lie on a set of cones. (b) S(n) = f

2 (integer)⋅ ∆ π×a k =
A + fB e–iπn. For n odd, S = fA – 
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fB; for n even, S = fA + fB. (c) If fA = fB the atoms diffract identically, as if the primitive translation vector 

were 
1

a
2  

and the diffraction condition 
1

( ) 2 (integer).
2

⋅ ∆ = π ×a k  
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CHAPTER 3 
 

1. 
2 2 2 2E (h 2M) (2 ) (h 2M) ( L) ,  with 2L/ /= π λ = π λ .=  

 

2. bcc: 
12 6U(R) 2N [9.114( R ) 12.253( R) ].= ε σ − σ  At equilibrium  and 

 

6 6
0R 1.488= σ ,

0U(R ) 2N ( 2.816).= ε −
 

fcc: 
12 6U(R) 2N [12.132( R ) 14.454( R) ].= ε σ − σ  At equilibrium  and 

 Thus the cohesive energy ratio bcc/fcc = 0.956, so that the fcc structure is 

more stable than the bcc. 

6 6
0R 1.679= σ ,

0U(R ) 2N ( 4.305).= ε −
 

23 16 9

3. | U | 8.60 N

(8.60) (6.02 10 ) (50 10 ) 25.9 10 erg mol

2.59 kJ mol.

−
= ε
= × × = ×
=

 

 
This will be decreased significantly by quantum corrections, so that it is quite reasonable to find the same 
melting points for H2 and Ne. 
 
4. We have Na → Na+ + e – 5.14 eV; Na + e → Na– + 0.78 eV. The Madelung energy in the NaCl 
structure, with Na+ at the Na+ sites and Na– at the Cl– sites, is 
 

2 10 2
12

8

e (1.75) (4.80 10 )
11.0 10  erg,

R 3.66 10

− −
−

α ×= = ××  

 
or 6.89 eV. Here R is taken as the value for metallic Na. The total cohesive energy of a Na+ Na– pair in the 
hypothetical crystal is 2.52 eV referred to two separated Na atoms, or 1.26 eV per atom. This is larger than 
the observed cohesive energy 1.13 eV of the metal. We have neglected the repulsive energy of the Na+ Na– 
structure, and this must be significant in reducing the cohesion of the hypothetical crystal. 
 
5a. 
 

2

n

A q
U(R) N ; 2 log 2  Madelung const.

R R

⎛ ⎞α= − α = =⎜ ⎟⎝ ⎠  

 
In equilibrium 
 

2
n

02n 1 2
0 0

U nA q n
N 0 ; R

R R R+
⎛ ⎞∂ α= − + = =⎜ ⎟∂ α⎝ ⎠

A
,

q
 

 
and 
 

2

0

0

N q 1
U(R ) (1 ).

R n

α= − −  
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b.  ( ) ( )2
2

0 0 0 0 02

1 U
U(R -R ) U R R R .. . ,

2 R

∂δ = + δ +∂  

 

bearing in mind that in equilibrium R
0

( U R) 0.∂ ∂ =  

 
2 2

n 2 3 3 32
0 0 0

0

U n(n 1)A 2 q (n 1) q 2
N N

R R R R RR

2
+

⎛ ⎞ ⎛⎛ ⎞∂ + α + α= − = −⎜ ⎟ ⎜⎜ ⎟∂⎝ ⎠ ⎝ ⎠ ⎝
2

0

q ⎞α ⎟⎠  

 
For a unit length 2NR0 = 1, whence 
 

0

2 2 2 2
2

04 22 2
0 0R

0
R

U q U (n 1)q  log  2
(n 1) ; C R

R R2R R

⎛ ⎞∂ α ∂ −= − = =⎜ ⎟∂ ∂⎝ ⎠ . 

 
6. For KCl, λ = 0.34 × 10–8 ergs and ρ = 0.326 × 10–8Å. For the imagined modification of KCl with the 
ZnS structure, z = 4 and α = 1.638. Then from Eq. (23) with x ≡ R0/ρ we have 
 

2 x 3x e 8.53 10 .− −= ×  

 
By trial and error we find  or Rx 9.2, 0 = 3.00 Å. The actual KCl structure has R0 (exp) = 3.15 Å . For 

the imagined structure the cohesive energy is 
 

2

2
0 0

-αq p U
U= 1- , or =-0.489

R R q

⎛ ⎞⎜ ⎟⎝ ⎠  

 

in units with R0 in Å. For the actual KCl structure, using the data of Table 7, we calculate 
2

U
0.495,

q
= −  

units as above. This is about 0.1% lower than calculated for the cubic ZnS structure. It is noteworthy that 
the difference is so slight. 
 
7. The Madelung energy of Ba+ O– is –αe2/R0 per ion pair, or –14.61 × 10–12 erg = –9.12 eV, as compared 
with –4(9.12) = –36.48 eV for Ba++ O--. To form Ba+ and O– from Ba and O requires 5.19 – 1.5 = 3.7 eV; 
to form Ba++ and O-- requires 5.19 + 9.96 – 1.5 + 9.0 = 22.65 eV. Thus at the specified value of R0 the 
binding of Ba+ O– is 5.42 eV and the binding of Ba++ O-- is 13.83 eV; the latter is indeed the stable form. 
 
8. From (37) we have eXX = S11XX, because all other stress components are zero. By (51), 

11 11 12 11 123S 2 (C C ) 1 (C C ).= − + +  

 

Thus 
2 2

11 12 11 12 11 12Y (C C C 2C ) (C C );= + − +  

 
further, also from (37), eyy = S21Xx, 
 

whence yy 21 11 12 11 12xx
e e S S C (C C )σ = = = − + .  

 
9. For a longitudinal phonon with K || [111], u = v = w. 
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2 2
11 44 12 44

1 2
11 12 44

[C 2C 2(C C )]K 3,

or v K [(C 2C 4C 3 )]ρ
ω ρ = + + +

= ω = + +  

 
This dispersion relation follows from (57a). 
 
10. We take u = – w; v = 0. This displacement is ⊥ to the [111] direction. Shear waves are degenerate in 
this direction. Use (57a). 
  

11. Let 1
2xx yye e= − = e  in (43). Then  

 
2 21 1 1 1

2 4 4 411 12

21 1
2 2 11 12

U C ( e e ) C e

[ (C C )]e

= + −
= −

2

 

 

so that 
2 2

n 2 3 3 32
0 0 0

0

U n(n 1)A 2 q (n 1) q 2
N N

R R R R RR

2
+

⎛ ⎞ ⎛⎛ ⎞∂ + α + α= − = −⎜ ⎟ ⎜⎜ ⎟∂⎝ ⎠ ⎝ ⎠ ⎝
2

0

q ⎞α ⎟⎠  is the effective shear 

constant. 
 
12a. We rewrite the element aij = p – δ

ij(λ + p – q) as aij = p – λ′ δ
ij, where λ′ = λ + p – q, and δ

ij is the 
Kronecker delta function. With λ′ the matrix is in the “standard” form. The root λ′ = Rp gives λ = (R – 1)p 
+ q, and the R – 1 roots λ′ = 0 give λ = q – p. 
 
b. Set 
 

i[(K 3) (x y z) t]
0

i[. . . . .]
0

i[. . . . .]
0

u (r, t) u e ;

v(r, t) v e ;

w(r, t) w e ,

+ + −ω=
=
=

 

 
as the displacements for waves in the [111] direction. On substitution in (57) we obtain the desired 
equation. Then, by (a), one root is 
 

2 2
11 12 442p q K (C 2C 4C ) / 3,ω ρ = + = + +  

 
and the other two roots (shear waves) are 
 

2 2
11 12 44K (C C C ) / 3.ω ρ = − +  

 
13. Set u(r,t) = u0e

i(K·r – t) and similarly for v and w. Then (57a) becomes 
 

2 2 22
0 11 y 44 y z

12 44 x y 0 x z 0

u [C K C (K K )]u

(C C ) (K K v K K w )

ω ρ = + +
+ + +

0
 

 
and similarly for (57b), (57c). The elements of the determinantal equation are 
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2 2 2 2
11 11 x 44 y z

12 12 44 x y

13 12 44 x z

M C K C (K K )

M (C C )K K ;

M (C C )K K .

ω ρ;= + + −
= +
= +

 

 

and so on with appropriate permutations of the axes. The sum of the three roots of 
2ω ρ  is equal to the 

sum of the diagonal elements of the matrix, which is 
 
(C11 + 2C44)K

2, where 
 

2 2 22
x y z

2 2 2

1 2 3 11 44

K K K K , whence

v v v (C 2C ) ,ρ
= + +
+ + = +  

 
for the sum of the (velocities)2 of the 3 elastic modes in any direction of K. 
 
14. The criterion for stability of a cubic crystal is that all the principal minors of the quadratic form be 
positive. The matrix is: 
 

C11 C12 C12    
C12 C11 C12    
C12 C12 C11    

   C44   
    C44  
     C44

 
The principal minors are the minors along the diagonal. The first three minors from the bottom are C44, 
C44

2, C44
3; thus one criterion of stability is C44 > 0. The next minor is 

C11 C44 
3, or C11 > 0. Next: C44

3 (C11
2 – C12

2), whence |C12| < C11. Finally, (C11 + 2C12) (C11 – C12)
2 > 0, so 

that C11 + 2C12 > 0 for stability. 
  

3-4 



CHAPTER 4 
 

1a. The kinetic energy is the sum of the individual kinetic energies each of the form 
2

S

1
 Mu .

2
 The force 

between atoms s and s+1 is –C(us – us+1); the potential energy associated with the stretching of this bond is 

2
s 1

1
C(u u )

2 s+− , and we sum over all bonds to obtain the total potential energy. 

 

b. The time average of 
2 2 2

S

1 1
 Mu  is  M u .

2 4
ω  In the potential energy we have 

 

s 1u u cos[ t (s 1)Ka] u{cos( t sKa) cos Ka

 sin ( t sKa) sin Ka}.
+ = ω − + = ω − ⋅

+ ω − ⋅  

 

s s 1Then u u u {cos( t sKa) (1 cos Ka)

 sin ( t sKa) sin Ka}.
+− = ω − ⋅ −

− ω − ⋅  

 
We square and use the mean values over time: 
 

2 2 1
cos sin ; cos sin 0.

2
< > = < > = < > =  

 
Thus the square of u{} above is 
 

2 2 2 21
u [1 2cos Ka cos Ka sin Ka] u (1 cos  Ka).

2
− + + = −  

 

The potential energy per bond is 21
Cu (1 cos  Ka),

2
−  and by the dispersion relation ω2 = (2C/M) (1 – 

cos Ka) 2 21
this is equal to M u .

4
ω  Just as for a simple harmonic oscillator, the time average potential 

energy is equal to the time-average kinetic energy. 
 
2. We expand in a Taylor series 
 

2
2 2

2
s s

u 1 u
u(s p) u(s) pa p a ;

x 2 x

⎛ ⎞∂ ∂⎛ ⎞+ = + + +⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠  

 
On substitution in the equation of motion (16a) we have 
 

2 2
2 2

p2 2p 0

u u
M (  p a C )

t x>
∂ ∂= Σ∂ ∂ ,  

 
which is of the form of the continuum elastic wave equation with 
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2 1 2 2
pp 0

v M    p a C−
>= Σ .  

 
3. From Eq. (20) evaluated at K = π/a, the zone boundary, we have 
 

2
1

2
2

M u 2Cu ;

M v 2Cv .

−ω = −
−ω = −  

 
Thus the two lattices are decoupled from one another; each moves independently. At ω2 = 2C/M2 the 
motion is in the lattice described by the displacement v; at ω2 = 2C/M1 the u lattice moves. 
 

2 0

2

0

0 0

p 0

p 0

sin pk a2
4. A    (1 cos pKa)  ;

M pa

2A
    sin  pk a  sin  pKa

K M
1

 (cos (k K) pa cos  (k K) pa)
2

>

>

ω = Σ −
∂ω = Σ∂

− − +
 

 
When K = k0, 
 

2

0p 0

A
   (1 cos  2k pa)  ,

K M >
∂ω = Σ −∂  

 

which in general will diverge because 
p

1 .Σ → ∞  

 
5. By analogy with Eq. (18), 
 

2 2
s 1 s s 2 s 1 s

2 2
s 1 s s 2 s 1 s

2 iKa
1 2

2 iKa
1 2

Md u dt C (v u ) C (v u );

Md v dt C (u v ) C (u v ),   whence

Mu C (v u) C (ve u);

Mv C (u v) C (ue v)  ,  and

−
+

−

= − + −
= − + −

−ω = − + −
−ω = − + −

 

 
2 iK

1 2 1 2
iKa 2

1 2 1 2

(C C ) M (C C e )
0

(C C e ) (C C ) M

−+ − ω − + a =− + + − ω  

 
 

2
1 2

2
1 2

For Ka 0,  0 and 2(C C ) M.

For Ka ,  2C M  and 2C M.

= ω = +
= π ω =  

 
 
 
6. (a) The Coulomb force on an ion displaced a 

distance r from the center of a sphere of static or rigid conduction electron sea is – e2 n(r)/r2, where the 
number of electrons within a sphere of radius r is (3/4 πR3) (4πr3/3). Thus the force is –e2r/R2, and the 
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force constant is e2/R3. The oscillation frequency ωD is (force constant/mass)1/2, or (e2/MR3)1/2. (b) For 

sodium  and  thus 23M 4 10  g−× 8R 2 10  cm;−× 10 46 1 2
D (5 10 ) (3 10 )− −ω × ×  

 (c) The maximum phonon wavevector is of the order of 1013 13 10  s−× 8 cm–1. If we suppose that ω0 is 

associated with this maximum wavevector, the velocity defined by ω0/Kmax ≈ 3 × 105 cm s–1, generally a 
reasonable order of magnitude. 
 
7. The result (a) is the force of a dipole ep up on a dipole e0 u0 at a distance pa. Eq. (16a) 

becomes  2 P 2 3 3

p>0
(2 / M)[ (1 cos Ka) ( 1) (2e / p a )(1 cos pKa)] .ω = γ − + Σ − −

 
At the zone boundary ω2 = 0 if 
 

P P 3

p>0
1 ( 1) [1 ( 1) ]p−+ σ Σ − − − = 0 ,  

 

or if . The summation is 2(1 + 3p 3[1 ( 1) ]p 1−σ Σ − − = –3 + 5–3 + …) = 2.104 and this, by the properties of 

the zeta function, is also 7 ζ (3)/4. The sign of the square of the speed of sound in the limit Ka  is 

given by the sign of 

1<<
p 3 2

p>0
1 2 ( 1) p p ,−= σ Σ −  which is zero when 1 – 2–1 + 3–1 – 4–1 + … = 1/2σ. The series 

is just that for log 2, whence the root is σ = 1/(2 log 2) = 0.7213. 
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CHAPTER 5 
 

1. (a) The dispersion relation is m

1
| sin Ka|.

2
ω = ω  We solve this for K to obtain 

, whence  and, from (15), 1
mK (2/a)sin ( / )−= ω ω 2 2 1/ 2

mdK/d (2 / a)( )−ω = ω − ω D( )ω  

. This is singular at ω = ω2 2 1/ 2
m(2L/ a)( )−= π ω − ω m. (b) The volume of a sphere of radius K in 

Fourier space is , and the density of orbitals near ω3
04 K / 3 (4 / 3)[( ) / A]Ω = π = π ω − ω 3/2

1/ 2

0 is 

, provided ω < ω3 3 3/2
0D( )= (L/2 ) | d /d | (L/2 ) (2 / A )( )ω π Ω ω = π π ω − ω 0. It is apparent that 

D(ω) vanishes for ω above the minimum ω0. 
 

2. The potential energy associated with the dilation is 2 3
B

1 1
B( V/V) a k T

2 2
∆ ≈ . This is B

1
k T

2
 and not 

B

3
k T

2
, because the other degrees of freedom are to be associated with shear distortions of the lattice cell. 

Thus  and 2 47 24
rms( V) 1.5 10 ;( V) 4.7 10 cm ;− −< ∆ > = × ∆ = × 3

rms( V) / V 0.125∆ = . Now 

, whence . 3 a/a V/V∆ ≈ ∆ rms( a) / a 0.04∆ =
 

3. (a) , where from (20) for a Debye spectrum 2R (h/2 V) −/< > = ρ Σω 1 1−Σω  

, whence 
21 3

Dd D( ) 3V / 4 v−= ∫ ω ω ω = ω π 3 2 3v22
DR 3h /8/< > = ω π ρ . (b) In one dimension from 

(15) we have , whence D( ) L/ vω = π 1d D( ) −∫ ω ω ω  diverges at the lower limit. The mean square 

strain in one dimension is 
22 2

0

1
( R/ x) K u (h/2MNv) K

2
/< ∂ ∂ > = Σ = Σ  

 
2 2 3

D D(h/2MNv) (K / 2) h / 4MNv ./ /= = ω
 
4. (a) The motion is constrained to each layer and is therefore essentially two-dimensional. Consider one 
plane of area A. There is one allowed value of K per area (2π/L)2 in K space, or (L/2π)2 = A/4π2 allowed 
values of K per unit area of K space. The total number of modes with wavevector less than K is, with ω = 
vK, 
 

2 2 2N (A/4 ) ( K ) A / 4 v .= π π = ω π 2  

 
The density of modes of each polarization type is D(ω) = dN/dω = Aω/2πv2. The thermal average phonon 
energy for the two polarization types is, for each layer, 
 

D D

20 0

A
U 2 D( ) n( , ) d 2 d ,

2 v exp(h / ) 1

ω ω ω ω= ω ω τ ω ω = π ω τ −∫ ∫ ω

dω

 

 

where ωD is defined by . In the regime 
D

D
N D( )

ω= ω∫ Dω >> τ , we have 

 
3 2

2 2 x0

2A x
U dx.

2 v e 1

∞τ≅ π −∫  
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Thus the heat capacity . 2
BC k U/ T= ∂ ∂τ ∝

 
(b) If the layers are weakly bound together, the system behaves as a linear structure with each plane as a 
vibrating unit. By induction from the results for 2 and 3 dimensions, we expect C . But this only 

holds at extremely low temperatures such that 

T∝
D layervN / Lτ << ω ≈ , where Nlayer/L is the number of 

layers per unit length. 
 

5. (a) From the Planck distribution x x1 1 1
n (e 1) /(e 1) coth (x/2)

2 2 2
< > + = + − = , where 

. The partition function Bx h /k T/= ω x/2 sx x/2 x 1Z e e e /(1 e ) [2sinh (x/2)]− − − −= Σ = − = −  and the 

free energy is F = kBT log Z = kBT log[2 sinh(x/2)]. (b) With ω(∆) = ω(0) (1 – γ∆), the condition 

 becomes F/ 0∂ ∂∆ = B

1
B h coth (h /2k T)

2
/ /∆ = γΣ ω ω  on direct differentiation. The energy 

 is just the term to the right of the summation symbol, so that Bn h/< > ω U(T)∆ = γ . (c) By definition 

of γ, we have , or / Vδω ω = −γδ /V d log d log Vω = −δ . But , whence 

. 
Dθ ∝ ω

d log d log Vθ = −γ
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CHAPTER 6 
 

1. The energy eigenvalues are 
2

2
k

h
k .

2m

/ε =  The mean value over the volume of a sphere in k space is 

 
2 2 2 2

2
F F2

h k dk k 3 h 3
k .

2m k dk 5 2m 5

/ /⋅< ε > = = ⋅ = ε∫
∫  

 
The total energy of N electrons is 
 

0 F

3
U N

5
.= ⋅ ε  

 
2a. In general p = –∂U/∂V at constant entropy. At absolute zero all processes are at constant entropy (the 

Third Law), so that 0p dU dV= − ,  where 0 F

3
U N

5
= ε  

2 32 23 h 3 N
N

5 2m V

⎛ ⎞/ π= ⎜ ⎟⎝ ⎠ , whence 

0U2
p

3 V
= ⋅ .  (b) Bulk modulus 

2

0 0 0 0
2

U dU U U Udp 2 2 2 2 10
B V V

dV 3 V 3V dV 3 V 3 V 9 V
⎛ ⎞ ⎛ ⎞= − = − + = ⋅ + =⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

0 . 

 (c) For Li, 
  

22 3 120

11 3 11 2

U 3
(4.7 10 cm )(4.7 eV) (1.6 10 erg eV)

V 5

2.1 10  erg cm 2.1 10  dyne cm ,

− −

− −
= × ×
= × = ×

 

 
whence B = 2.3 × 1011 dyne cm–2. By experiment (Table 3.3), B = 1.2 × 1011 dyne cm–2. 
 

3. The number of electrons is, per unit volume, 
( )0

1
n d D( )

e 1

∞
ε−µ τ= ε ε ⋅ ,+∫  where D(ε) is the density 

of orbitals. In two dimensions 
 

2 0

2

m 1
n d

h e 1
m

( log (1  e )),
h

∞
(ε−µ) τ

−µ τ

= ε/π +
= µ + τ +/π

∫
 

 
where the definite integral is evaluated with the help of Dwight [569.1]. 
 

4a. In the sun there are 
33

57
24

2 10
10

1.7 10−
×
×  nucleons, and roughly an equal number of electrons. In a 

white dwarf star of volume 
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9 3 28 34
(2 10 ) 3 10 cm

π × ≈ ×3  

 

the electron concentration is 
57

28 3
28

10
3 10 cm .

3 10
−≈ ≈ ××  Thus 

2
2 3 27 20 7 4

F

h 1 1
(3 n) 10 10 10  ergs, or 3.10  eV.

2m 2 2
2 − −/ε = π ≈ ⋅ ≈ ≈   (b) The value of kF is not 

affected by relativity and is ≈ n1/3, where n is the electron concentration. Thus 3
F Fhck hc/ /ε √n. (c) A 

change of radius to 10 km = 106 cm makes the volume ≈ 4 × 1018 cm3 and the concentration ≈ 3 × 1038 cm –

3. Thus  (The energy is relativistic.) 27 10 13 4 8
F 10 (3.10 ) (10 ) 2.10  erg 10  eV.− −ε ≈ ≈ ≈

 
5. The number of moles per cm3 is 81 × 10–3/3 = 27 × 10–3, so that the concentration is 16 × 1021 atoms cm–

3. The mass of an atom of He3 is (3.017) (1.661) × 10–24 = 5.01 × 10–24 g. Thus 
54 23 21 2 3 16

F [(1.1 10 ) 10 ][(30)(16) 10 ] 7 10− −ε × × ≈ × −  erg, or TF ≈ 5K.  

 
6. Let E, v vary as e–iwt. Then 
 

eE m e E 1 i
v ,

i m 2
τ + ωτ= − = − ⋅− ω + (1 τ) 1+ (ωτ)  

 
and the electric current density is 
 

2ne 1 i
j n( e)v E.

m 2
τ + ωτ= − = ⋅1+ (ωτ)  

 
7. (a) From the drift velocity equation 
 

x x c y y yi v (e m)E v ; i v (e m)E v .ω = + ω ω = − ωc x  

 
We solve for vx, vy to find 
 

2
c x x c

2
c y y c

( )v i e m E e m E

( )v i e m E e m E

2

2
ω − ω = ω( ) + ω ( )
ω − ω = ω( ) + ω ( )

y

x

;

.
 

 
We neglect the terms in ωc

2. Because j = n(–e)v = σE, the components of σ come out directly. (b) From the 
electromagnetic wave equation 
 

2 2 2c E E t2 ,∇ = ε∂ ∂  

 
we have, for solutions of the form ei(kz – ωt), the determinantal equation 
 

2 2
xx xy

2 2
yx yy

c k
0.

c k

2 2
2 2

ε ω − ε ω =ε ω ε ω −  
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Here 
2

xx yy P xy yx c p1  and i .2ε = ε = − ω ω ε = −ε = ω ω ω2 3  The determinantal equation gives the 

dispersion relation. 
 
8. The energy of interaction with the ion is 
 
 

( )0r 2 2
00

e r 4 r dr 3e 2ρ π = −∫ r ,  

 
where the electron charge density is –e(3/4πr0

3). (b) The electron self-energy is 
 ( ) ( )0r2 3 2 1 2

00
dr 4 r 3 4 r r 3e 5r .−ρ π π =∫  

 

The average Fermi energy per electron is 3εF/5, from Problem 6.1; because 
3

0N V 3 4 r= π , the average 

is  ( )2 3 22
03 9 4 h 10mr/π . The sum of the Coulomb and kinetic contributions is 

 

2
s s

1.80 2.21
U

r r
= − +  

 
which is a minimum at 
 

s2 3
s s

1.80 4.42
, or r 4.42 1.80 2.45.

r r
= = =  

 
The binding energy at this value of rs is less than 1 Ry; therefore separated H atoms are more stable. 
 
9. From the magnetoconductivity matrix we have 
 

( )c
y yx x 0 x2

c

j E E
1

.
ω τ= σ = σ+ ω τ  

 

For ωcτ >> 1, we have ( )( )2
yx 0 c ne m mc eB neB cσ ≅ σ ω τ = τ τ = . 

 
10. For a monatomic metal sheet one atom in thickness, n ≈ 1/d3, so that 
 

2 2 2
sq F FR mv nd e mv d e≈ ≈ .  

 

If the electron wavelength is d, then Fmv d h/≈  by the de Broglie relation and  

 
2

sqR h e 137 c/≈ =  

 
in Gaussian units. Now 
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( ) ( )
( ) ( )

9 2
sq sqR ohms 10 c R gaussian

30 137 ohms

4.1k .

−=
≈
≈ Ω
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CHAPTER 7 
 
1a. The wavevector at the corner is longer than the wavevector at the midpoint of a side by the factor √2. 
As ε ∝ k2 for a free electron, the energy is higher by (√ 2)2 = 2. b. In three dimensions the energy at a 
corner is higher by (√ 3)2 than at the midpoint of a face. c. Unless the band gap at the midpoint of a face is 
larger than the kinetic energy difference between this point and a corner, the electrons will spill over into 
the second zone in preference to filling up the corner states in the first zone. Divalent elements under these 
conditions will be metals and not insulators. 
 

2. 2 2h k 2m,/ε =  where the free electron wavevector k may be written as the sum of a vector K in the 

reduced zone and of a reciprocal lattice vector G. We are interested in K along the [111] direction: from 

Chap. 2, K = (2 π / a) (1,1,1) u, with 
1

0 u ,
2

< <  will lie in the reduced zone. 

The G´s of the reciprocal lattice are given by ( ) ( ) ( )ˆ ˆG 2 a [ h k x h k y= π − + + + − +  ( ) ˆh k z− + + ],  where 

 are any integers. Thenh,k, ( )2h 2m/ε =
 ( ) ( ) ( ) ( )2 2 2

2 a [ u h k u h k u h k ].π + − + + + + − + − + + 2
We now 

have to consider all combinations of indices  for which the term in brackets is smaller than 

6[3(1/2)

h,k,
2] or 9/2. These indices are (000); ( ) ( ) ( )111 ; 100 , 010 , and ( )001 ; (100), (010), and 

(001); (111); ( ) ( )110 , 101 , and (011 ;)  (110), (101), and (011). 

 
3. (a) At k = 0 the determinantal equation is (P/Ka) sin Ka + cos Ka = 1. In the limit of small positive P this 
equation will have a solution only when Ka 1. Expand the sine and cosine to obtain in lowest order 

( )1
P Ka

2
2
. The energy is ε =  

2 2 2 2h K 2m h P ma ./ /  (b) At k = π/a the determinantal equation is (P/Ka) sin Ka + cos Ka = –1. In 

the same limit this equation has solutions Ka = π + δ, where 1δ . We expand to obtain 

( ) ( ) 21
P 1

2
⎛ ⎞π −δ + − + δ = −⎜ ⎟⎝ ⎠ 1,  which has the solution δ = 0 and δ = 2P/π. The energy gap is 

( ) ( ) ( ) ( )2 2 2 2
gE h 2ma 2 h 2ma 4P ./ /= πδ  

 
4. (a) There are two atoms in the basis, and we label them a and b. Then the crystal potential may be 

written as ( )1 2 1 1

1 1 1
U U U U r U x a, y a, z a

4 4 4
⎛ ⎞= + = + + + +⎜⎝ ⎠⎟  and the Fourier transform has 

components 
( )x y z

1
i G G G a

4
G 1G 2G 1GU U U U 1 e

+ +⎛ ⎞= + = +⎜ .⎝ ⎠ ˆG 2Ax,⎟  If =  then the exponential is 

1
i Aa i2e eπ= = −1, 0,and  so that this Fourier component vanishes. Note that the quantity in 

parentheses above is just the structure factor of the basis. (b) This follows directly from (44) with U set 
equal to zero. In a higher order approximation we would go back to Eq. (31) where any non-vanishing 

 enters. 

G 2AU = =

GU
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5. Let 

22

1

h 1
k K i ; G iG

2m 2
2H H±

⎡ ⎤/ ⎛ ⎞= + λ = ± −⎢ ⎥⎜ ⎟⎝ ⎠⎢ ⎥⎣ ⎦ .H   

 
The secular equation (46) is now 
 

1

1

U
0,

U −
λ − ε =λ − ε  

 

and for  we have, with GH <<
22h 1

G ,
2m 2

/ ⎛ ⎞σ = ε − ⎜ ⎟⎝ ⎠  

 
2 2

2
1

22
22

1

22
. 1

2
2

h h
iG iG U ;

2m 2m

h
G U ;

2m

h U
.. .

h2m
G

2m

2

H H

H

H

⎛ ⎞⎛ ⎞/ /σ + ⋅ σ − =⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
⎛ ⎞/σ − =⎜ ⎟⎝ ⎠

/ − σ= /

 

 
6. U(x,y) = – U[ei (2π/a) (x+y) + other sign combinations of ± x ± y]. The potential energy contains the four 
reciprocal lattice vectors (2 π/a) (±1; ±1). At the zone corner the wave function ei(π/a) (x+y) is mixed with e–i 

(π/a) (x+y). The central equations are 
 

( )
( )

C ; UC ; 0
a a a a

C ; UC ; 0
a a a a

π π π π⎡ ⎤ ⎡ ⎤λ − ε − − − =⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
π π π π⎡ ⎤ ⎡ ⎤λ − ε − − − =⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

;

,

 

 

where ( ) ( )222 h 2m a ./λ = π  The gap is 2U. 
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CHAPTER 8 
 

4
d 2

m* 1
1a. E 13.60 eV 6.3 10 eV

m
−= × × ×ε  

6
H

m
b. r a 6 10 c

m*
−= ×ε× × m  

c. Overlap will be significant at a concentration 
 

15 3
34

3

1
N 10 atoms c

r
−

π= ≈ m  

 

2a. From Eq. (53), , in an approximation not too good for the present example. d BE / 2k T1/ 2
0 dn (n N ) e−

 
3/ 2

13 3B
0 2

m*k T
n 2 4 10 cm

2 h
−⎛ ⎞≡ ≈ ×⎜ ⎟/π⎝ ⎠ ;  

 

1.45d

B

13 3

E
1.45 ; e 0.23 .

2k T

n 0.46 10 electrons cm .

−

−×
 

14
H

1
b. R 1.3 10 CGS units

nec
−= − − ×  

3. The electron contribution to the transverse current is 
 

e
y e x

B
j (e) ne E E ;

c

µ⎛ ⎞µ +⎜ ⎟⎝ ⎠y  

 

for the holes n
y h x

B
j (h) ne E E .

c

−µ⎛ ⎞µ +⎜ ⎟⎝ ⎠y  

 
Here we have used 
 

e h
ce e ch h

B B
for electrons; for holes.

c c

µ µω τ = ω τ =  

 
The total transverse (y-direction) current is 
 

2 2
e h x e h y0 (ne pe )(B/c)E (ne pe )E , (*)= µ − µ + µ + µ  

 
and to the same order the total current in the x-direction is 
 

x h ej (pe ne )E .x= µ + µ  

 
Because (*) gives 
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2 2
h e

y x
h e

p n 1
E E B

p n c

µ − µ
,= ⋅µ + µ  

 
we have for the Hall constant 
 

2 2
y h e

H 2
x h

E p n1
R .

j B ec (p n )

µ − µ= = ⋅ µ + µe

t

z

y

c.

hc 1

 

 

4. The velocity components are . The equation of motion 

in k space is . Let B lie parallel to the k

x x t y y t z zv hk / m ; v hk / m ; v hk /m/ / /= = =
h dk/dt (e/c) v B/ = − × x axis; then 

. We differentiate 

with respect to time to obtain ; on substitution for dk

x y z z t y tdk / dt 0; dk / dt k ; eB/m c; dk / dt k ; eB/m c= = −ω ω ≡ = ω ω ≡
2 2

yd k / dt dk / dt= −ω z/dt we have 

, the equation of motion of a simple harmonic oscillator of natural frequency 2 2
y td k / dt k 0+ ω ω =

 
1/ 2 1/ 2

0 t t( ) eB/(m m )ω = ω ω =  

 

5. Define . In the strong field limit Q  the 

magnetoconductivity tensor (6.64) reduces to 
e e e h hQ eB / m c; Q eB / m≡ τ = τ >>

 
2 1 2 1

e e h h2 2
1 2 1 2e h

e e h h
e h

Q Q 0 Q Q 0
ne pe

Q Q 0 Q Q 0
m m

0 0 1 0 0 1

− − − −
− − − −

≈

⎛ ⎞ ⎛ ⎞−⎜ ⎟ ⎜ ⎟τ τσ + −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
.

e h

 

 

We can write nec Qe/B for  and pec Q2
ene / mτ h/B for . The strong field limit for σ2

hpe / mτ yx 

follows directly. The Hall field is obtained when we set 
 

y x
e h

ec n p
j 0 (n p)E E

H Q Q y .
⎡ ⎤⎛ ⎞= = − + +⎢ ⎥⎜ ⎟⎝ ⎠⎣ ⎦  

 
The current density in the x direction is 
 

x x
e h

ec n p
j E (n

B Q Q yp)E ;
⎡ ⎤⎛ ⎞= + − −⎢ ⎥⎜ ⎟⎝ ⎠⎣ ⎦  

 
using the Hall field for the standard geometry, we have 
 

2

x x
e h

e h

ec n p (n p)
j E

H Q Q n p
Q Q

⎡ ⎤⎛ ⎞ −= + +⎢ ⎥⎜ ⎟ ⎛ ⎞⎝ ⎠⎢ ⎥+⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
.  
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CHAPTER 9 
1. 
 

 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
2a. 

8 10.78 10 cm
a

−π− = ×

 

8 10.78 10 cm
a

−π− = ×

8 11.57 10 cm
a

−π− = ×
8 -0.78 10 cm

b

π = × 1
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b. 

( )
2
F

2

2 2
F

F

16 2

8 1
F

k
N 2

2 / k

n N/L k / 2

k 2 n

1
n 10 els/cm

8

k 0.89 10 cm−

π= × π
= =
= π
= ×
= ×

π
 

 
c. 

3a. In the hcp structure there is one atom whose z coordinate is 0 and one at 
1

c
2

. The structure factor of 

the basis for c

2
ˆG z

c

π=  is 

 

 

c

i
GS (basis) 1 e 1 1 0,− π= + = − =  

 

so that by the same argument as in Problem 9.4 the corresponding component  of the crystal potential 

is zero. 
cUG

 

b. But for  the structure factor is 
c2GU

 

c

i2
2GS (basis) 1 e 2.− π= + =  

 
c. The two valence electrons can just fill the first BZ. All we need is an adequate energy gap at the zone 
boundary and for simple hex. there is no reason against a gap. 
 
d. In hcp there will be no gap (at least in lowest order) on the top and bottom faces of the BZ, by the 
argument of part a. 
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4. 

27 8 1 10 1

10 8 1 3

10

dk e
5a. h v B;

dt c
hGc

T
evB

10 erg sec) (2 10 cm )(3 10 cm s )

(5 10 esu) (10 cm d ) (10 gauss)

1.2 10 sec.

− −
− −

−

/ = − ×
/=

× ×
×

×

−
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b. The electron moves in a direction normal to the Fermi surface -- more or less in a straight line if the 
Fermi surface is close to planar in the region of interest. The magnetic field puts a wiggle on the motion, 
but the field does not make the electron move in a helix, contrary to the behavior of a free electron. 
 
6a.  
 

 
Region I: 
 

2 2

02

2 2

h d
U

2m dx

h k
A cos kx ;

2m

ψ ψ
ψ

⎛ ⎞/− − = ε⎜ ⎟⎝ ⎠
/= ε = 0U (*)−

     
 
Region II:  
 

2 2

2

2 2
qx

h d

2m dx

h q
B e ;

2m

ψ ψ
ψ −

/− = ε
/= ε = −

    (* )  

 

Boundary condition 
1 d

dx

ψ
ψ  continuous. 

 
k tan (ka / 2) q ,=      (* * ) 

 
with k and q related to ε as above. 
 
b. The lazy way here is to show that the ε’s in the equations marked (*) above are equal when k and q are 
connected by (**), with ε = –0.45 as read off Fig. 20. This is indeed so. 
 

7a. 
1 2

( )
H hc

π∆ = /
e

S
, where S = πkF

2, with kF = 0.75 × 108 cm–1 from Table 6.1, for potassium. Thus 

 

8 1
2

F

1 2
( ) 0.55 10 G .
H 137 k e

− −∆ ×  
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b.  

F F
c F

3

2 6 2

v mc hk c
R v ; R

eB eB

0.5 10 cm

R 0.7 10 cm .

ω
−

−

/= = =
×

π ×
 

 

8. Write (17) as , where 0H H H= + 1 1 (h / m)k pH /= ⋅ . Then (18) is an eigenfunction of  with 

the eigenvalue . In this representation the diagonal matrix element of  is equal to 

 In a cubic crystal  will be even or odd with respect to the 

inversion operation , but  is an odd operator. It follows that the diagonal matrix element 

vanishes, and there is no first-order correction to the energy. The function  to first order in  is 

0H
2 2

n (0) h k / 2m/ε + 1H

0 0(h / m) dV u (r) k p U (r)./ ⋅∫ 0U (r)

r → − r p

kU (r) 1H
 

1
k 0

n j

j0 | | n0
U (r) U (r) ,

(0) (0)j

H< >′= + Σ ε − ε  

 
and the energy to second order is 
 

2

2 2
n n

n j

| n0 | k p | j0 |
(k) (0) (hk) / 2m (h / m) .

(0) (0)j

< ⋅ >′/ /ε = ε + + Σ ε − ε  

 

The effective mass ratio is the coefficient of , or 2 2h k / 2m/
 

2

*
n j

| n0 | p | j0 |m 2
1 .

m m (0) (0j )

< >′= + Σ ε − ε  

 
9a. 
  

n m

n m

n m

ik' r ik r1 *
kk'k k'

ik (r r )1

k

dV w*(r r ) w (r r )

N e e dV (r)

N e

ψ ψ⋅ − ⋅−

⋅ −−

− −
= Σ Σ
= Σ

∫
∫ (r)  

 
where the summation is zero unless n = m, when it is equal to N. 
 

b.  nik(x x )1 2
n 0

k
w(x x ) N U (x) e .−−− = Σ  The summation is 

 
equal to 
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n dpn

n n

N 2
i2 p(x x ) Nai2 p(x x ) Na

P
N 2

i (x x ) a i (x x ) a
n

n n

e e

e e sin [ x x
,

i2 x x Na (x x ) Na

π −π −
−

π − − π −

Σ
− π( −= =π( − ) π −

∫
a])  

 
whence 
 

1 2 n
n 0

n

sin [ x x a ]
w (x x ) N  u (x)

(x x ) a

π( − )− = π − . 

 
10a. jy = σ0 (Q

–1 Ex + sEy) = 0 in the Hall geometry, whence Ey = – Ex/sQ. 
 
b. We have jx = σ0 (Q

–2 Ex – Q–1 Ey), and with our result for Ey it follows that 
 

2 1 2
x 0j (Q s Q ) Eσ − − −= + x ,  

 

whence 2
x x 0

s
E j (Q )

s 1
ρ = = σ + . 
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CHAPTER 10 
 

1a. 
2

2 2

d B 1
B;

dx
= λ  this is the London equation. The proposed solution is seen directly to 

satisfy this and to satisfy the boundary conditions a

1
B

2
⎛ ⎞± δ =⎜ ⎟⎝ ⎠ B . (b) For δ < < λL, 

  
2

L

2

x 1 x
cosh 1

2

1
cosh 1

2 2 2

⎛ ⎞= + +⎜ ⎟λ λ⎝ ⎠
δ δ⎛ ⎞= + +⎜ ⎟λ λ⎝ ⎠

…

…

 

 
therefore ( ) ( ) ( )2 2 2

a aB x B B 1 8 4x .= − λ δ −  

 
2a. From (4),  From Problem 1b, S adF d at T 0.= − =M B
 

( ) ( )2 2
a2

1 1
M x B 4x ,

4 8
= − ⋅ ⋅ δ −π λ  

 
whence 
 

( ) ( ) ( ) 22 2
S a S a2

1
F x,B F 0 4x B .

64
− = δ −πλ  

 
b. The average involves 
 

( ) 3
1 2 32 2

20

1 4
4x dx 22 3 8 ,

1 1 3
2 2

δ δδ − ⋅δ − = = δ
δ δ

∫
 

 
whence 
 

2
2

a

1
F B ,  for .

96

δ⎛ ⎞∆ = δ << λ⎜ ⎟π λ⎝ ⎠  

 
c. Let us set 
 

2
2 2
af ac

1 1
B B

96 8

δ⎛ ⎞ =⎜ ⎟π λ π⎝ ⎠ ,  
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where Baf is the critical field for the film and Bac is the bulk critical field. Then 
 

af acB 12 B .
λ
δ= ⋅  

 

3a. (CGS) 0 2

4 j 1 E 4 c 1 E
curl H E A .

c c t c 4 c t

π ∂ π ∂⎛ ⎞= + = σ − +⎜ ⎟∂ πλ⎝ ⎠ ∂  

 

2
0 2

4 c 1
curlcurlH H curlE B .

c 4 c

π ∂⎛ ⎞= −∇ = σ − +⎜ ⎟πλ ∂⎝ ⎠
curl  E

t
 

 
Now in CGS in nonmagnetic material B and H are identical. We use this and we use the 
Maxwell equation 
 

1 B
curlE

c t

∂= − ∂  

 
to obtain 
 

2
2 0

2 2 2 2

41 1 B B
B B

c t c t

πσ∂ ∂∇ − − =λ ∂ ∂ 0. 

 
If  then ( )iB e t ,⋅ − ωk r∼
 

2
2 0

2 2 2

4 i1
k 0

c c

π σ ωω− − + + =λ .                Q.E.D. 

 

b. 
2 2

p 2 0
02 2 2 2 2

41 1
; also, 4 and .

c c c

ω πσ ωω= >> ω << πσ ω >>λ λ  

 
Thus the normal electrons play no role in the dispersion relation in the low frequency 
range. 
 
4. The magnetic influence of the core may be described by adding the two-dimensional 
delta function ( )0 ,Φ δ ρ  where φ0 is the flux quantum. If the magnetic field is parallel to 

the z axis and div B = 0, then 
 ( )2 2

0B B− λ ∇ = Φ δ ,ρ  

 
or 
 

10-2 



( )2
2

02

B 1 B
B .

⎛ ⎞∂ ∂λ + − = −Φ δ⎜ ⎟∂ρ ρ ∂ρ⎝ ⎠ ρ  

 
This equation has the solution ( ) ( ) ( )2

0 0B 2 K ,ρ = Φ πλ ρ λ  where K0 is a hyperbolic 

Bessel function* infinite at the origin and zero at infinity: 
 ( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( )
2

0

1 22
0

B 2 n ;

B 2 2 exp

ρ << λ ρ Φ πλ λ ρ
ρ >> λ ρ Φ πλ πλ ρ −ρ λ .

0.

 

 
The total flux is the flux quantum: 
 

( ) ( )0 0

0 0

2 d B dx x K x
∞ ∞π ρ ρ ρ = Φ = Φ∫ ∫  

 
5. It is a standard result of mechanics that 1grad c t.−= − ϕ − ∂ ∂E A  If grad ϕ = 0, when 

we differentiate the London equation we obtain ( )22
Lj t c 4 E.∂ ∂ = πλ  Now j = nqv and 

( )2j t nq v t nq m E.∂ ∂ = ∂ ∂ =  Compare the two equations for ∂j/∂t to find 
22 2

Lc 4 nq m.πλ =  
 
*Handbook of mathematical functions, U.S. National Bureau of Standards AMS 55, sec. 
9.6. 
 
6. Let x be the coordinate in the plane of the junction and normal to B, with 

w 2 x w 2.− ≤ ≤  The flux through a rectangle of width 2x and thickness T is 2xTB = 

φ (x). The current through two elements at x and –x, each of width dx is 
 ( ) ( ) ( ) ( )0 0dJ J w cos e x hc dx J w cos 2xTeB hc dx ,/ /= Φ =⎡ ⎤⎣ ⎦  

 
and the total current is 
 

( ) ( ) ( )( )
w 2

0 0

0

sin wTBe hc
J J w cos xTeB hc dx J .

wTBe hc

//= = /∫  

 
7a. For a sphere ( ) aH inside B 4 M 3;= − π  for the Meissner effect  

whence 

( )H inside 4 M,= − π
aB 8 M= − π 3.  

b. The external field due to the sphere is that of a dipole of moment µ = MV, when V is 
the volume. In the equatorial plane at the surface of the sphere the field of the sphere is 

3
aa 4 M 3 B−µ = − π = 2.  The total field in this position is 3Ba/2. 
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CHAPTER 11 
 
1. From Eq. (10), 
 

2
2

2

e
N r

6mc
.χ = − < >  

 

Here 
02r a 22 2

03
00

1
r 4 r dr e

a

∞ −< > = ⋅ π ⋅ =π ∫ 3a .  

 
The numerical result follows on using N = 6.02 × 1023 mol–1. 
 
2a. Eu++ has a half-filled f shell. Thus S = 7 × 1/2 = 7/2. The orbitals mL = 3, 2, 1, 0, –1, 
–2, –3 have one spin orientation filled, so that L = ΣmL = 0. Also J = L + S = 7/2. Hence 
the ground state is 8S7/2. 
 
b. Yb+++ has 13 electrons in the f shell, leaving one hole in the otherwise filled shell. 
Thus L = 3, S = 1/2, J = 7/2 -- we add S to L if the shell is more than half-filled. The 
ground state symbol is 2F7/2. 
 
c. Tb+++ has 8 f electrons, or one more than Eu++. Thus L = 3; S = 7/2 – 1/2 = 3; and J = 
6. The ground state is 7F6. 
 
3a. The relative occupancy probabilities are 
 ( ) ( )

( )

B kT
B

kT

B kT

s______ e Here stand for k

______ e

______ e

______ 1

− ∆+µ
−∆
− ∆−µ

∆ ∆

 

 
The average magnetic moment is 
 

( ) ( )B kT B kTe e

Z

− ∆−µ − ∆+µ−< µ > = µ  

 
where ( ) ( )B kT B kTkTZ 1 e e e− ∆−µ − ∆+µ−∆= + + + .  

 
b. At high temperatures kTe 1−∆ →  and 
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2 2

B B
1 1

kT kT
4

B N
; .

2kT 2kT

µ µ⎛ ⎞ ⎛+ + − − +⎜ ⎟ ⎜⎝ ⎠ ⎝< µ > → µ ⋅
µ µ= χ →

… …⎞⎟⎠
 

 
c. The energy levels as a function of field are: 
 

 

 

If the field is applied to take the system from a to b we 
increase the entropy of the spin system from ≈ 0 to ≈ 
N log 2. If the magnetization is carried out constant 
total entropy, it is necessary that the lattice entropy be 
reduced, which means the temperature . ↓
 

( )

T

T
B B

T T

T
2

B 2T

4a. Z 1 e ;

k e k
E

1 e e 1

eE TC k
T e 1

−∆
−∆

−∆ ∆

∆

∆∆

= +
∆ ∆= =+ +

∆∂⎛ ⎞= = ∆⎜ ⎟∂⎝ ⎠ + .

 

 

b. For TT 1, e∆∆ << →1 and B

1
C k

4 T
.

2∆⎛ ⎞→ ⎜ ⎟⎝ ⎠  

 
5a. If the concentration in the spin-up band is N+ = 1/2 N (1 + ζ), the kinetic energy of all 
the electrons in that band is 
 

( ) ( )2
2 3 5 32

0

3 h
N 3 N E 1

5 2m
+ +/ π = + ζ ,  

 
and the magnetic energy is –N+ µ B = – 1/2 N(1 + ζ) µ B. 
 

b. Now ( ) ( ){ }5 3 5 3

tot 0E E 1 1 N B= + ;ζ + − ζ − ζµ  
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( ) ( ){ }2 3 2 3tot
0

4

3

0 F

2

F

E 5
E 1 1 N B 0

3

9N B 3 B

20E 2

3N
M N B . Q.E.D.

2

ζ

∂ = + ζ − − ζ − µ∂ζ
µ µ∴ζ = = ε

µ= µζ = ε

=

 

6a. The number of pairs of electrons with parallel spin up is 
 ( ) ( )2 221 1

N N 1
2 8

+ = + ζ ,  

 
so that the exchange energy among the up spins is 
 

( )221
VN 1 ;

8
− + ζ  

 
and among the down spins the exchange energy is 
 

( )221
VN 1 .

8
− − ζ  

 

b. Using these results and those from Prob. 5 we have ( ) ( ){ }5 3 5 3

tot 0E E 1 1= + ζ + − ζ  

( )2 21
VN 1 2 N B.

8
− + ζ − ζµ  Thus (for ζ << 1) 

 

2tot
0

2
0

2F

E 20 1
E VN N B

9 2

N B
20 1

E VN
9 2

N B
2N 1

VN
3 2

∂
0 ;ζ − ζ − µ =∂ζ

µζ = −
µ= ε −

 

 
and 
 

2

F

3N
M N B

3
2 VN

2

µ= µζ =
ε −

 

 

11-3 



c. For B = 0 and ζ = 0. 
 

2
2tot 0

02 2

E E20 1 40 4 F
E VN 0 if V

9 2 9 N 3 N

ε∂ − < > =∂ζ  

 
7a. The Boltzmann factor gives directly, with τ = kBT 
 

( ) ( )2 2
B B B

e e
U tanh

e e

C k dU d k k T sech k T ,

∆ τ −∆ τ
∆ τ −∆ τ

−= −∆ = −∆ ∆ τ+
= τ = ∆ ∆ B

;
 

 
because d tanh x/dx = sech2x. 
 
b. The probability P(∆) d∆ that the upper energy level lies between ∆ and ∆ + d∆, 
referred to the midpoint as the zero of energy, is P(∆) d∆ = (d∆) / ∆0. Thus, from (a), 
 

( )
( ) ( )

( )

0

0

0

0
0

2 2 2
B 0

0

x
2 2

B 0

0

U d tanh

C k d sech

k dx x sech

∆

∆

< >= − ∆ ∆ ∆ ∆ τ

< > = ∆ ∆ ∆ τ ∆ τ

= τ ∆

∫
∫

∫

,

x ,

 

 
where x ≡ ∆/τ. The integrand is dominated by contributions from 0 < ∆ < τ, because sech 
x decreases exponentially for large values of x. Thus 
 

( ) 2 2
B 0

0

C k dx x sech x .
∞< > τ ∆ ∫  

 

8. 
B Be e 2sinh x

1 2 cosh x 1 2 cosh x

µ τ −µ τ< µ > −= =µ + +  
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CHAPTER 12 
 
1. We have  Thus ikS Se ⋅δρ+δ ρ= .

 ( )
( )

( )

x

yik

y
x y z

y

x
x y z

dS 2JS
6 e S

dt h

2JS
6 2 cos k a cos k a cos k a S ;

h

dS 2JS
6 2 cos k a cos k a cos k a S .

dt h

ρ ⋅δ ρδ

ρ

ρ
ρ

⎛ ⎞= − ∑⎜ ⎟/⎝ ⎠
⎛ ⎞ ⎡ ⎤= − + +⎜ ⎟ ⎣ ⎦/⎝ ⎠

⎛ ⎞ ⎡ ⎤= − − + +⎜ ⎟ ⎣ ⎦/⎝ ⎠

 

 
These equations have a solution with time-dependence ∼ exp(–iωt) if 
 ( ) ( )x y2JS h 6 2 cos k a 2 cos k a 2 cos k a/ω = − − − z . 

 
2. ( ) ( )k k

k
U n h h d n/ /= ∑ ω = ω ω ω < ω >∫ D .   If ω = Ak2, then  1 2d dk 2Ak 2 A ,ω = = ω  

and 
 

( ) 1 2

3 21 2

4 1 1 .
8 A 4 A2 A

π ω ωω = =π πωD
3/ 2

 

 
Then 
 

3 2
2 3 2 h

h 1
U d

4 A e 1/β ω
/= ω ω .π −∫  

 
At low temps, 
 

( ) ( )
3 2

5 2 5 2x gamma zeta0 function function

1 x 1 5 5
dx ;1

e 1 2 2h h

∞ ⎛ ⎞ ⎛ ⎞= Γ ς⎜ ⎟ ⎜ ⎟− ⎝ ⎠ ⎝ ⎠/ /β β∫ ∫  

 
[See Dwight 860.39] 
 ( )5 2 2 3 2 3 2

BU 0.45 k T / A h/π  

( )3 2

B BC dU dT 0.113 k k T hA ./=  
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3. ( ) (
( )A B A

B B A

M T C B M M B applied field

M T C B M M

= − µ − ε =
= − ε − µ

)
  

 
Non-trivial solution for B = 0 if 
 

( )C

T C C
0; T C

C T C

+ ε µ = = µ −µ + ε ε  

 
Now find ( )A B CM M B at T Tχ = + > :  

 

( ) ( )
( ) ( )C

2C
MT 2CH CM ;

T C

T .

= − ε + µ χ = + µ + ε
∴θ = µ + ε µ − ε

 

 
4. The terms in  which involve ee cU U U+ + K xx are 

 ( )2 2
11 xx 12 xx yy zz 1 1 xx

1
C e C e e e B e .

2
+ + + α  

 
Take ∂/∂exx: 
 ( ) 2

11 xx 12 yy zz 1 1C e C e e B 0, for minimum.+ + + α =  

 
Further: 
 

( )
2

11 yy 12 xx zz 1 2

2
11 zz 12 xx yy 1 3

C e C (e e ) B 0 .

C e C e e B 0 .

+ + + α =
+ + + α =  

 
Solve this set of equations for exx: 
 ( )( ) ( )

2
12 2 11 12

xx 1
11 12 11 12

C C 2C
e B

C C C 2C

− α += − + . 

 
Similarly for eyy, ezz, and by identical method for exy, etc. 
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5a. ( ) 2
a s

2 2
a s

U K sin B M cos

1
K B M , for

2

θ = θ − θ
ϕ − ϕ θ = π + ϕ  

 
and expanding about small ϕ . 
 

For minimum near  we need 0ϕ = a s

1
K B M

2
> .  Thus at Ba = 2K/Ms the magnetization 

reverses direction (we assume the magnetization reverses uniformly!). 
 
b. If we neglect the magnetic energy of the bidomain particle, the energies of the single 
and bidomain particles will be roughly equal when 

 
2 23 2

s w c wM d d ; or d M .≈ σ ≈ σ s  

 
For Co the wall energy will be higher than for iron roughly in the ratio of the (anisotropy 
constant K1)

1/2, or 10. Thus 2
w 3 ergs cm .σ ≈  For Co, Ms = 1400 (at room 

temperature), so 2 36
sM 2 10 erg cm≈ × . We have 6 6dc 3 2 10 1.10 cm,−≈ × ≈  or   

as the critical size. The estimate is 

100A,
°

very rough (the wall thickness is dc; the mag. en. is 
handled crudely). 
 
6. Use the units of Eq. (9), and expand 
 

3

3

m m 1 m
tanh . [Dwight 657.3]

t t 3 t
= − +  

 

Then (9) becomes 
3

3

m m
m ;

t 3t
− +  

 ( ) ( )3 2 2 2 23 t t m ; m 3t 1 t ,− −  

 
but 1 – t is proportional to Tc – T, so that cm T T∞ −  for T just below Tc. 

 
7. The maximum demagnetization field in a Néel wall is –4 πMs, and the maximum self-

energy density is ( )s

1
4 M M

2
π s . In a wall of thickness Na, where a is the lattice constant, 

the demagnetization contribution to the surface energy is  The total 

wall energy, exchange + demag, is 

2
demag s2 M Na.σ ≈ π( ) ( )22 2 2

w JS Na 2 M Na ,σ ≈ π + π s  by use of (56). The 

minimum is at 
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22 2 2 2

w s

1 2
22 3

s

N 0 JS N a 2 M a , or

1
N JS M a ,

2

∂σ ∂ = = −π + π
⎛ ⎞= π⎜ ⎟⎝ ⎠

 

 
and is given by 
 ( ) ( ) ( ) ( )1 21 2 3 4 8

w sM S 2 J a 10 10 10 10 10 erg cm ,− −σ ≈ π π ≈ ≈ 2

)

)

 

 
which is larger than (59) for iron. (According to Table 8.1 of the book by R. M. White 
and T. H. Geballe, the Bloch wall thickness in Permalloy is 16 times that in iron; this 
large value of δ favors the changeover to Néel walls in thin films.) 
 
8. (a) Consider the resistance of the up and down spins separately.  
Magnetizations parallel: 
  )/(2)/()/()( 111 ALALALupR ppp

−−−
↑↑ =+= σσσ

  /(2)/()/()( 111 ALALALdownR aaa
−−−

↑↑ =+= σσσ
These resistances add in parallel: 
 /()/(2)]()(/[)()( paALupRdownRupRdownRR σσ +=+= ↑↑↑↑↑↑↑↑↑↑  

Magnetizations antiparallel: 
  )/()/()( 11 ALALupR ap

−−
↑↓ += σσ

  )()/()/()( 11 upRALALdownR pa ↑↓
−−

↑↓ =+= σσ
These (equal) resistances add in parallel : 
  2/))(/(2/)( 11 −−

↑↓↑↓ +== paALupRR σσ
 The GMRR is then: 

  
4/)2//(

14/))((1/ 11

−+=
−++=−= −−

↑↑↑↓
appa

papaRRGMRR

σσσσ
σσσσ

 
(b) For the ↑↓ magnetization configuration, an electron of a given spin direction must 
always go through a region where it is antiparallel to the magnetization. If σa → 0, then 
the conductance is blocked and the resistance is infinite.    ↑↓R
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CHAPTER 13 
 
1. Consider a coil which when empty has resistance R0 and inductance L0. The 
impedance is Z0 = R0 – iωL0. When the coil is filled with material of permeability 

 the impedance is  1 4µ = + πχ ( ) ( )0 0 0 0Z R i L 1 4 R i L 1 4 4 i′ ′′= − ω + πχ = − ω + πχ + π χ , or 

 ( )0 0 0

R L

Z R 4 L i L 1 4 .′′ ′= + πωχ − ω + πχ  

 

2a. x
x

ˆdF dF dx
x̂ F

dt dt dt
= + + . 

 

           x y z
R

ˆdyˆ ˆdF dx dz
F F F

dt dt dt dt

⎛ ⎞⎛ ⎞= + + +⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠ .  

 
Now 
 
 

( ) ( ) ( )
x

ˆdyˆ ˆdx dz
ˆ ˆx ; y ; z .

dt dt dt
ˆdx

F F .
dt

= Ω× = Ω× = Ω×
+ ⋅⋅⋅⋅ = Ω×

ˆ
 

 

b. ;

R

dM dM
M B M M B .

dt dt
⎛ ⎞= γ × + Ω× = γ ×⎜ ⎟⎝ ⎠  

 

                               
R

dM
M B

dt

⎛ ⎞Ω⎛ ⎞ = γ × +⎜ ⎟⎜ ⎟ γ⎝ ⎠ ⎝ ⎠ .  

 
c. With  we have 0ˆB zΩ = −γ
 

1
R

dM
ˆM B x ,

dt
⎛ ⎞ = γ ×⎜ ⎟⎝ ⎠  

 
so that  precesses about  with a frequency ω = γBM x̂ 1. The time t1/2 to give t1/2ω = π is 

t1/2 = π/γB1. 
 
d. The field   rotates in the xy plane with frequency 1B 0B .Ω = γ  
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3a. 
2

2 z
i j

j k

a
B I

N
⎛ ⎞< > = ∑ ∑ <⎜ ⎟⎝ ⎠

z
kI > , where for 

1
I

2
=  we have z z

j k jk

1
I I

4
< > = δ . Thus 

 
2 2

2
i j

jk

a 1 a
B .

N 4 4N
⎛ ⎞< > = ∑ δ =⎜ ⎟⎝ ⎠ k  

b.        
4

4 z z
i j k

jk m

a
B I I I

N
⎛ ⎞< > = ∑ < >⎜ ⎟⎝ ⎠

z z
mI .  

 
Now  
 

z z z z
j k m jk k m jk m

j km jm k

1
I I I I [

16
], and

< >= δ δ δ + δ
+δ δ + δ δ

δ
 

        
4 4 2

4 2
i

a 1 a 3N
B [N 3N ]

N 16 N 16
⎛ ⎞ ⎛ ⎞< > = + −⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ . 

 
 
4.  For small θ, we have . Now the magnetic energy density  2

KU K− θ MU BM cos= − θ −
21

BM BM
2

− + θ , so that with proper choice of the zero of energy the anisotropy energy is 

equivalent to a field 
 

AB 2K M=  
 
along the z axis. This is valid for 1θ << . For a sphere the demagnetizing field is parallel 
to M and exerts no torque on the spin system. Thus B0 + BA is the effective field. 
 
5. We may rewrite (48) with appropriate changes in M, and with Banisotropy = 0. Thus 
 ( )( )A A A B B A

B B B A A B

i M i M M M M ;

i M i M M M M .

+ + +

+ + +
− ω = − γ λ + λ
− ω = γ λ + λ  

 
 
The secular equation is 
 

A B A A

B B B A

M M
0 ,

M M

γ λ − ω γ λ =−γ λ γ λ − ω  

  
or 
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 ( )2
A B B AM Mω − ω γ λ − γ λ = 0 . 

 
One root is ω0 = 0; this is the uniform mode. The other root is 
 ( )0 A B B AM Mω = λ γ − γ = 0;  

 
this is the exchange mode. 
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CHAPTER 14 
 

1. kz
x0E kA sin k

x

∂ϕ= − =∂ x e , and at the boundary this is equal to Exi. The normal 

component of D at the boundary, but outside the medium, is ε(ω)kA cos kx, where for a 
plasma ε(ω) = 1 – ωp

2/ω2. The boundary condition is –kA cos kx = ε(ω)kA cos kx, or 
ε(ω) = –1, or ωp

2 = 2ω2. This frequency p 2ω = ω  is that of a surface plasmon. 

 
2. A solution below the interface is of the form , and above the 

interface , just as for Prob. (1). The condition that the normal 

component of D be continuous across the interface reduces to ε

kz( ) Acos kx eϕ − =
kz( ) Acos kx e−ϕ + =

1(ω) = –ε2(ω), or 
 

2 2
p1 p2 2 2 2

p1 p22 2

1
1 1 , so that (

2

ω ω− = − + ω = ω + ωω ω ) .

e .

h

e) h )

 

 
3. (a) The equation of motion of the electrons is 

 For the holes, 2 2
e e x e e e e y ex (e/m )E i y ; y (e/m )E i x−ω = − + ωω − ω = − − ωω

 
2 2

h h x h h h h y hx (e/m )E i y ; y (e/m )E i x .−ω = + ωω − ω = − ωω  

 
The result follows on forming ξe = xe + iye and ξh = xh + iyh. (b) Expand 

 and 11
e e( ) (1 /−−ω + ω ω − ω ω 1

h h( ) (1 /−ω − ω ω + ω ω . In this approximation 

. 1 1+ 2 2
h e h e h e( ) / E (c/B)( ) (c / eB ) (m m− −ξ − ξ ω + ω = + )

 
4. From the solution to Problem 3 we have + 2 +

h hP pe E / m= ω ω , where we have dropped 

a term in ω2 in comparison with ωhω. The dielectric constant 
, and the dispersion relation ε(ω)ω+ + 2

h h( ) 1 4 P / E 4 pe / mε ω = + π π ω ω 2 = c2k2 becomes 

4πpe2ω/(eB/c) = c2k2. Numerically, . 

It is true that ωτ will be <<1 for any reasonable relaxation time, but ω
3 10 22 10[(10 )(3 10 ) /(10)(3 10 )(5 10 )] 0.2 s− −ω ≈ × × × ≈ 1

r

c τ > 1 can be 
shown to be the applicable criterion for helicon resonance. 
 
5. . Thus 2 2 2 2md /dt m e 4 e /3 4 ne /3= − ω = − = π = − πr r E P 24 ne 3m.2οω = π  

 

6. 22 2 ˆmd dt m (e c)( B ) m ,2 ο= − ω = − × − ωr r v z r

.

 where ωo
2 = 4πne2/3m, from the 

solution to A. Thus, with ωc ≡ eB/mc, 
 

2
c o

2
c o

x i y x ;

y i x y

2
2

−ω = ωω − ω
−ω = − ωω − ω  
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Form ξ ≡ x + iy; then  a quadratic 

equation for ω. 

2 2
c cor 0,2 2ο ο−ω ξ − ωω ξ + ω ξ = 0, ω + ωω − ω =

 
7. Eq. (53) becomes  where P is the ionic contribution to the 
polarization. Then (55) becomes 

2 2c K E [ E 4 P],2= ω ε(∞) + π
 

2 2

2
T

c K 4
0,

Nq M

2 2
22

ω ε(∞) − πω =ω −ω  

 
or 
 

2 22 2 2 2 2
T( ) c K 4 Nq M c K 0.4 2 2 Τ⎡ ⎤ω ε ∞ − ω + ε(ω)ω + π + ω =⎣ ⎦  

 
One root at K = 0 is 2 2

T 4 Nq M.2ω = ω + π ε(∞)  For the root at low ω and K we neglect 

terms in ω4 and in ω2K2. Then  
 

2 22 2 2
T

22 2 2 2 2
T

c K [ 4 Nq M]

c K [ 4 Nq M ] c K ,

2 Τω = ω ε(∞)ω + π
= ε(∞) + π ω = ε(0)  

 
where ε (0) is given by (58) with ω = 0. 
 
8(a). 22 15 1

pne m ( 4 ) 0.73 10  s 800(  cm)1− −σ = = ω π = × = ΩT T  

 
(b) 2 22 2 27

p p4 ne m*; m* 4 ne 4.2 10 g; m* m 4.7.−ω = π = π ω = × =  

 
9. The kinetic energy of a Fermi gas of N electrons in volume V is 

2U N(3 5) (h 2m)(3 N V)2/= π 2 3. Then dU/dV = – (2/3)U/V and d2U/dV2 = (10/9)U/V2. 

The bulk modulus 2 22 2
F FB Vd U dV (10 9) U V (10 9) (3 5)n (mv 2) nmv 3.= = = =  

The velocity of sound 1 2v (B ) ,= ρ  where the density n (m M) nM,ρ = +  whence 
1 2

Fv (m 3M)  v .  
 
10. The response is given, with ρ = 1/τ, by 
 ( ) ( )22 2

pm d x dt dx dt x F t .+ ρ + ω =  

 
The conductivity σ does not enter this equation directly, although it may be written as σ 
= ωp

2τ/4π. For order of magnitude, 
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( ) ( )( ) ( )
( ) ( )

6 11 18 1

8 6 14
F

1 2 1 22 23 20 2
p

16 1

1 10 9 10 10 s ;

1 v 1.6 10 4 10 0.4 10 s ;

4 ne m 10 10 23 10 10

1.5 10 s .

− −

− −

− −

−

σ = ×
ρ = τ = × × ×
ω = π × × ×

×

1

7
 

 
The homogeneous equation has a solution of the form ( ) (tx t 0 Ae sin t ,−λ> = ω + φ)  

where ( ) 1 222
p 2⎡ω = ω + ρ⎣ ⎤⎦  and λ = ρ/2. To this we add the particular solution x = 

–e/mω and find A and φ to satisfy the initial conditions x(0) = 0 and  ( )x 0 0.=
 
11. The Laplacian  whence 2 0,∇ ϕ =
 

2
2

2

d f
K f 0 .

dz
− =  

 
This has solutions 
 

( )
( )

Kz

K z d

f Ae for z 0

f Ae for z d

f B cosh K z d 2 for 0 z d

− −
= <

= >
= − < .<

 

 
This solution assures that ϕ will be continuous across the boundaries if B = 
A/cosh(Kd/2). To arrange that the normal component of D is continuous, we need ε(ω) ∂ϕ/∂z continuous, or ε(ω) = – tanh(Kd/2). 
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CHAPTER 15 
 
1a. The displacement under this force is 
 

( ) ( ) i t1
x t d .

2
e

∞ − ω
−∞= α ω ωπ ∫  

 
With ω = ωR + iωI, the integral is ( ) R Ii t te e d− ω ω .α ω ω∫  This integral is zero for t < 0 

because we may then complete a contour with a semicircle in the upper half-plane, over 
which semicircle the integral vanishes. The integral over the entire contour is zero 
because α(ω) is analytic in the upper half-plane. Therefore x(t) = 0 for t < 0. 
 
1b. We want 
 

( ) i t

2 2
0

1 e d
x t ,

2 i

∞ − ω

−∞
ω= π ω − ω − ωρ∫                                         (A) 

 
which is called the retarded Green’s function of the problem. We can complete a contour 
integral by adding to x(t) the integral around an infinite semicircle in the upper half-
plane. The complete contour integral vanishes because the integrand is analytic 
everywhere within the contour. But the integral over the infinite semicircle vanishes at t 
< 0, for then 
 ( ) ( ) ( ) ( )R I I Rexp i i t exp t  exp i t ,⎡ ⎤− ω + ω − = −ω ω⎣ ⎦  

 
which → 0 as |ω| → ∞. Thus the integral in (A) must also vanish. For t > 0 we can 
evaluate x(t) by carrying out a Cauchy integral in the lower half-plane. The residues at 
the poles are 
 ( ) ( ) ( )1 1

2 22 22 21 1 1 1
0 02 4 2 4exp t exp i t ,⎡ ⎤± ω − ρ − ρ ω − ρ⎢ ⎥⎣ ⎦∓  

 
so that 
 

( ) ( ) ( ) ( )1 1
2 22 22 21 1 1

0 04 2 4x t exp t sin t .= ω − ρ − ρ ω − ρ  

 
2. In the limit ω → ∞ we have 
 ( ) 2

jf′α ω → − ω∑  

 
from (9), while from (11a) 
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( ) ( )2
0

2
s s ds

∞′ ′α ω → − απω ∫ .′  

 
3. The reflected wave in vacuum may be written as 
 ( ) ( ) ( )i kx + t

y zE refl B refl A  e ,− ω′− = =  

 
where the sign of Ey has been reversed relative to Bz in order that the direction of energy 
flux (Poynting vector) be reversed in the reflected wave from that in the incident wave. 
For the transmitted wave in the dielectric medium we find 
 ( ) ( )

( ) ( )
y z

i kx t1 2
z

E trans ck B trans

B trans A"e ,−ω−
= εω

= ε =  

 
by use of the Maxwell equation c curl H = ε∂E/∂t and the dispersion relation εω2 = c2k2 
for electromagnetic waves. 
 
The boundary conditions at the interface at x = 0 are that Ey should be continuous: Ey 
(inc) + Ey (refl) = Ey (trans), or A – A' = A''. Also Bz should be continuous, so that A + A' 
= ε1/2 A''. We solve for the ratio A'/A to obtain ε1/2 (A – A') = A + A', whence 
  

1 2

1 2

A' 1
,

A 1

− ε= ε +  

 
and 
 ( )( )

1 2

1 2

E refl A' 1 n ik 1
r .

E inc A 1 n ik 1

ε − + −≡ = − = =ε + + +  

 
The power reflectance is 
 

( ) ( )
( )

2 2

2 2

n 1 Kn ik 1 n ik 1
R r r

n ik 1 n ik 1 n 1 K

− +− − + −⎛ ⎞⎛ ⎞ω = ∗ = =⎜ ⎟⎜ ⎟− + + +⎝ ⎠⎝ ⎠ + + . 

 
4. (a) From (11) we have 
 

( ) ( )
2 2

0

' s2
" P

s

∞ σωσ ω = − π − ω∫ ds. 

 
In the limit ω → ∞ the denominator comes out of the integrand and we have 
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( ) ( )
0

lim 2
" '

∞σ ω = σω → ∞ πω ∫ s  ds.  

 
(b) A superconductor has infinite conductivity at zero frequency and zero conductivity at 
frequencies up to ωg at the energy gap. We can replace the lost portion of the integral 
(approximately σ'nωg) by a delta function σ'nωg δ(ω) in σ's(ω) at the origin. Then the KK 
relation above gives 
 

( )s n

2
'' ' .gσ ω = σ ωπω  

 
(c) At very high frequencies the drift velocity of the conduction electrons satisfies the 
free electron equation of motion 
 

mdv dt eE; i mv eE,= − − ω = −  
 
so that the current density is 
  ( ) 2j n e v ine E m= − = − ω  

 
and ωσ'' (ω) = ne2/m in this limit. Then use (a) to obtain the desired result. 
 
5. From (11a) we have 
 

( ) ( ) 22
g p

22 2 2
0 g

s4 ne
' 1 P  ds

m s

∞ δ − ω ωπε ω − = =− ω .ω − ω∫  

 
6. n2 – K2 + 2inK = 1 + 4πiσ0/ω. For normal metals at room temperature σ0 ∼ 1017 – 1018 
sec–1, so that in the infrared 0.ω σ  Thus  so that 2n K2, R 1 2 n−  and 

( )0n 2πσ ω ,  whence ( )0R 1 2− ω πσ .

N

 (The units of σ0 are sec–1 in CGS.) 

 
7. The ground state of the line may be written g 1 1 2 2 NA B A B A B .ψ = …  Let the asterisk 

denote excited state; then if specific single atoms are excited the states are 
 The hamiltonian acts 

thusly: 
j 1 1 2 2 j j N N j 1 1 2 2 j j NA B A B A B A B ; A B A B A B A B .∗ ∗ϕ = θ =… … … … N

1.

 

j A j 1 j 2 j 1

j B j 1 j 2 j

T T ;

T T

H

H

−ϕ = ε ϕ + θ + θ
θ = ε θ + ϕ + ϕ +  
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An eigenstate for a single excitation will be of the form ( )ijka
k j

j

e .jψ = αϕ + βθ∑  We 

form 
 

( )
( )

ijka
k A j 1 j

j

B 1 j 2 j

ijka ika
A 1 2

j

ika
1 B 2 j

e [ T T

j T T 1]

e [ T e T

T e T

H −
θ

−

ψ = αε ϕ + α θ + α θ2 j 1

j

.

]

+βε + β ϕ + β ϕ +
= αε + β + β ϕ

+ α + βε + α θ

∑
∑  

 
    ijka

k jE e [ E E= ψ = α ϕ + β θ j ].∑  

 
This is satisfied if 
 ( ) ( )( ) ( )

ika
A 1 2

ika
1 2 B

T e T 0

T e T E 0.

−ε − Ε α + + β =
+ α + ε − β =

;
 

 
The eigenvalues are the roots of 
 

ika
A 1 2

ika
1 2 B

E  T e T
0.

T e T E

−ε − + =+ ε −  
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CHAPTER 16 
 

1. 
2

33 3
H

e x
eE; ex r E p; p E r a

r r
⋅ = = = α = = = . 

 

2. i 0

4
E E P

3

π= − = 0 inside a conducting sphere. Thus 3 3
0

4
p a P a

3

π= = E , and  

3
0p E aα = = . 

 
 
3. Because the normal component of D is continuous across a boundary, Eair = εEdiel, 
where Eair = 4πQ/A, with Q the charge on the boundary. The potential drop between the 

two plates is  air diel air

1
E qd E d E d q

⎛+ = +⎜ ⎞⎟ε⎝ ⎠ . For a plate of area A, the capacitance is 

 
A

C .
1

4 d q
= ⎛ ⎞π +⎜ ⎟ε⎝ ⎠

 

 
It is useful to define an effective dielectric constant by 
 

eff

1 1
q .= +ε ε  

 
If ε = ∞, then εeff = 1/q. We cannot have a higher effective dielectric constant than 1/q. 
For q = 10–3, εeff = 103. 
 
4. The potential drop between the plates is E1 d + E2 qd. The charge density 

 

1 1
2

Q D E i
E ,

A 4 4

ε σ= = =π π ω      (CGS) 

by comparison of the way σ and ε enter the Maxwell equation for curl H. Thus 
 

1 2 2

4 i 4 i
E E ; V E d

π σ π σ⎛ ⎞+ = ⎜ ⎟εω εω⎝ ⎠q ;+  

 

2

Ai
Q

σ= ω E  ; and thus 
Q A

C
1 i qV

4 d
4

≡ = ω⎛ ⎞π −⎜ ⎟ε πσ⎝ ⎠
  ,  

  

and ( ) ( )eff 1 q
1 i q 4

εε = + − ωε πσ  . 
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5a. E
intint 0 0

4 4
E E P E

3 3

π π= − = − χ   . 

      0
int

E
E

4
1

3

= π+ χ   . 

 

b. int 0P E E
4

1
3

χ= χ = π+ χ   . 

 

6. E = 2P1/a
3. P2 = αE = 2αP1/a

3. This has solution p1 = p2 �  0 if 3 31
2 a ; a

2
α = α = . 

 
7 (a). One condition is, from (43), 
 ( ) 2 4

C 0 4 s 6 sT T g P g P 0γ − − + = .  

 
The other condition is 
 

( ) 2 4 6
c 0 s 4 s 6 s

1 1 1
T T P g P g P 0 . 

2 4 6
γ − − + =

 
Thus 
 

2 4 2
4 s 6 s 4 s 6 s

1 1
g P g P g P g P ;

2 3
− + = − + 4  

2 2 4
6 s 4 s

6

g2 1 3
g P g ; P .

3 2 4 g
= =  

 
(b) From the first line of part (a), 
 

( ) 2 2 2
4 4 4

c 0
6 6

g g g3 9 3
T T

4 g 16 g 16 g
γ − = − =

6

.  

 
8. In an electric field the equilibrium condition becomes ( ) 3

c 4E T T P g P 0− + γ − + = , 

where the term in g6 is neglected for a second-order transition. Now let . If 

we retain only linear terms in , then  

sP P P= + ∆
P∆ ( ) 2

c 4 sE T T P g 3P P 0− + γ − ∆ + ∆ = , with use of 

(40). Further, we can eliminate  because 2
sP ( ) ( )2

s 4 cP g T T= γ − . Thus 

( )cP E 1 2 T T∆ = γ − . 
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9 a. ( )a cos na
a→ ← → ← → ←
π← →

i i i i i i
 

 
b. 2a← →

i i i i i i
  

 
Deforms to new stable structure of dimers, with lattice constant 2 × (former constant). 
 
c.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 

10. The induced dipole moment on the atom at the origin is p = αE, where the electric 

field is that of all other dipoles: ( ) ( )( )33 3
nnE 2 a p 4p a −= ∑ = ∑ ; the sum is over 

positive integers. We assume all dipole moments equal to p. The self-consistency 
condition is that p = α(4p/a3) (Σn–3), which has the solution p = 0 unless α ≥ (a3/4) 
 (1/Σn–3). The value of the summation is 1.202; it is the zeta function ζ(3). 
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CHAPTER 17 
 
1. (a) The interference condition for a linear lattice is a cos θ = nλ. The values of θ that 
satisfy this condition each define a cone with axis parallel to the fiber axis and to the axis 
of the cylindrical film. Each cone intersects the film in a circle. When the film is flattened 
out, parallel lines result. (b) The intersection of a cone and a plane defines a conic 
section, here a hyperbola. (c) Let a, b be the primitive axes of a square lattice. The Laue 
equations (2.25) give a •  ∆k = 2 πq; b •  ∆k = 2 πr, where q, r are integers. Each equation 
defines a set of planes. The intersections of these planes gives a set of parallel lines, 
which play in diffraction from a two-dimensional structure the role played by reciprocal 
lattice points in diffraction from a three-dimensional structure. In the Ewald construction 
these lines intersect a sphere of radius k = 2 π/λ in a set of points. In two dimensions any 
wavelength (below some maximum) will give points; in three dimensions only special 
values of λ give points of intersection because one more Laue equation must be satisfied. 
The points correspond to the directions k' of the diffraction maxima. If the photographic 
plate is flat the diffraction pattern (2 dim.) will appear distorted. 
 

 
Points near the direction of the incident 
beam are shown. 
 
(d) The lattice of surface atoms in the 

(110) surface of an fcc crystal is simple rectangular. The long side of the rectangle in 
crystal (real) space is a short side in the reciprocal lattice. This explains the 90° rotation 
between (21a) and (21b). 
 
2. With the trial function x exp (–ax), the normalization integral is 

( )2

0
dx x exp 2ax 1 4a .

∞ − =∫ 3  The kinetic energy operator applied to the trial function 

gives 
 ( ) ( ) ( ) ( )2 2 2 2 2h 2m d u dx h 2m a x 2a exp ax/ /− = − − −  

 
while Vu = eEx2 exp (–ax). The definite integrals that are needed have the form 

n

0
dx x  exp( ax) = n! a .

∞ −∫ n+1  The expectation value of the energy is ( )2 2h 2m a/< ε > =  

(3eE 2a ,+ )  which has an extremum with respect to the range parameter a when ( )2 2d da h 2m 2a 3eE 2a/< ε > = − = 0,  or 3a 3eEm 2h/= 2 .  The value of  is a 

minimum at this value of a, so that 

< ε >
 ( ) ( ) ( ) ( )

( ) ( ) ( )
2 3 1 32 2 2

min

1 3 2 32 2 3 1 3

h 2m 3eEm h 3eE 2 2h 3eEm

h 2m 3eE 2 2 2 ,−
/ / /< ε > = +
/= +  
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where the last factor has the value 1.89 …. The Airy function is treated in Sec. 10.4 of 
the NBS Handbook of mathematical functions. 
 

3. (a) A
m

k

m

dk

kd

Ld

dk

dk

dN
D 22

2

2

)(
)/2(

2
)( π

π
πεε ===  

 
where A = L2.  
 
Note: There are two flaws in the answer quoted in the text. First, the area A is 
missing, meaning the quoted answer is a density per unit area. This should not be a major 
issue. Second, the h should be replaced by .  

2/ hm π

 

(b) 2
2)/2(

2
Fk

L
N ππ ⋅=    =>   π2// 2

Fs kANn ==
 

(c) τ2en

m

W

L
R

s
s =  where ns is the 2D sheet density. For a square sample, W=L, so: 

τ
π

22

2
ek

m
R

F
s =    and using  : FF vmk =/

  τ
π

2

2
evk

R
FF

s =   =  
Fke

h 1
2  
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CHAPTER 18 
 
 
1.  Carbon nanotube band structure. 
 
(a) ),(),,(2

3
22

23
22

1 aaaaijji
πππππδ =−==>=⋅ bbab . 

 
(b) The angle between K and b1is 30o ; A right triangle is formed in the first BZ with two 
sides of length K and b1/2.  Now b1 = 

a3
4π , so: 

K = (b1/2)/cos(30o)=     4π/3a . 
 
(c) Quantization of k along x:  kx(na)=2πj=  kx =2π j/na.   
 
Assume n = 3i, where i is an integer.  Then:  kx = K(j/2i). For j = 2i, kx=K.   Then 

  and there is a massless subband.   jk y
ˆ=∆K

 
(d) For n = 10, kx =2π j/10a =K(3j/20).  The closest k comes to K is for j = 7, where  ∆kx = K/20. Then:  
 

10/)3/4(211 avF πε = = 1.8 eV. 
 
The next closest is for j = 6, where ∆kx = K/10, twice the previous one.  Therefore: ε22 = 2ε11 .

  

(e) For the lowest subband:  222
)20/( ykK +=∆k , so: 

 
2222 )(])20/[( FyFF vkvvK +=ε  

 
This is of the desired form, with FvKm 20/* = . 

12.020//* == FmvKmm . 
 
2.  Filling subbands 
 

)(
2

),( 22
2

22

yxyx nn
mW

nn += πε     => States are filled up to )8(
2

)2,2(
2

22

mW

πε =  

 

(1,1) subband:  )28(
22 2

222
1,1

2 −=
mWm

k π
   =>    

W
k

π6
1,1 =   =>   

W
kn

622
1,11,1 == π  

  

(2,1) subband:  )58(
22 2

222
1,2

2 −=
mWm

k π
   =>    

W
k

π3
1,2 =   =>  

W
kn

322
1,21,2 == π  
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(2,1) subband:  same. 
 

WW
n

3462 +=    =    5.9 x 108 /m. 

   
3.  Breit-Wigner form of a transmission resonance 
 
(a)         ; 2/1)cos( 2δϕδϕ −≅ 4

8
12

2
12 ||||1||1|| iiii tttr −−≅−=  

The denominator of (29) is then: 
)1)(||||1)(||||1(2)||1)(||1(1 2

2
14

28
12

22
14

18
12

12
12

2
2

1 δϕ−−−−−−−−+ tttttt  

= 222
2

2
14

122
2

2
12

14
2

4
14

1 )|||(|||||)|||(| δϕδϕ ++=+++ tttttt  

222
2

2
1

2
2

2
1

4)|||(|

||||4

δϕ++=ℑ
tt

tt
. 

 
(b)  kLδδϕ 2=  and επεδεδ ∆=∆∆= /)/(// Lkk .  Combining: 
 εδεπδϕ ∆= /)/)(2( LL      =>      εδεπδϕ ∆= /2/  
 
(c)   Combining: 
 

222
2

2
1

2

22
2

2
1

4)|||(|)2/(
)2/(||||4

δεπε
πε

++∆
∆=ℑ

tt

tt
   which is (33). 

 
4.  Barriers in series and Ohm’s law 
(a) 

2
2

2
1

2
2

2
1

2
2

2
1

2
2

2
1

2
2

2
1

2
2

2
1

2
2

2
1

2
2

2
1

||||
||)||1(||)||1(1

1
||||

||||||||1
1

||||
||||11

tt

trrt

tt

ttrr

tt

rr −−−−+=−−+=−=ℑ  

2
1

2
1

2
2

2
2

2
2

2
1

2
2

2
1

2
2

2
1

2
2

2
2

||
||

||
||

1
||||

||||||||)|||(|1
1

t

r

t

r

tt

trrttr ++=+++−+= which gives (36). 

 

(b) 
m

ek

m

en FD
D π

ττσ 22
1

1

2== ,      and   F
F v

m

k =    =>       
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5.  Energies of a spherical quantum dot 
 
(a)      =>         Integrating from inner to outer shell: oenclA

Qd εε/=⋅∫ aE 24/ rqE oπεε=
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6.  Thermal properties in 1D 
 

 (a)   
v
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vL

K
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Obtaining value from table of integrals: 

 
hv
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v

TLk
U BB

tot 36

222222 ππ
π ==  
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TLk
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VtotV 3
2

/
22π==∂∂=  

(b)  The heat flow to the right out of reservoir 1 is given by: 
 

ℑ=⎟⎠
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 and similarly for JL. The difference is: 
 

  ( )2
2

2
1

22

6
TT

h

k
JJ B

LR −ℑ=− π  

Let =>  TTTTT =∆+= 21 , ( ) TTTT ∆≈− 22
2

2
1     for small ∆T. 

    => T
h

k
JJ B

LR ∆ℑ=−
3

22π  which gives (78). 
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CHAPTER 20 
 
1. U = nEI. 
The number of ways to pick n from N is N! / (N− n) !n!. The number of ways to put n 
into N' = n'! / (N'  n) !n!. −
 

Entropy ( ) ( )B

N! N !
S k log log .

N n !n! N n !n!

⎛ ⎞′= +⎜ ⎟⎜ ⎟′− −⎝ ⎠  

( ) ( ) ( )
( ) ( ) ( )

( )( )
( ) I B

T

I B

B 2

E 2k T2
I B

N!
log N log N N n log N n n log n

N n !n!

N !
log N log N N n log N n n log n

N n !n!

F U S
T 0 in equilibrium; thus

n n n

N n N n
E k T log log

n n

N n N n
k T log . For n N, N ,

n

E k T log NN n ; n NN e .−

− − − −−
′ ′ ′ ′ ′− − − −′ −

∂ ∂ ∂⎛ ⎞ = − =⎜ ⎟∂ ∂ ∂⎝ ⎠
′− −⎛ ⎞= +⎜ ⎟⎝ ⎠

′− − ′= <
′ ′= =

<

.

 

 
2. From (2), n = Ne–E

v
/k

B
T. For sodium, N = 2.5 × 1022 atoms/cm3. Thus 

 ( ) ( )22 18 5 3n 2.5 10 4 10 10 per cm−× × ≈      

 

3a. 
2

13.6 3
h

4
/ω = ⋅ε eV.

.

 From Table 10.3 we have ε (∞) = 2.25 for NaCl, whence 

 The observed value quoted in Table 18.2 is 2.7 eV. h 2.0 eV/ω =
 
b. From Vol. I of Atomic energy levels, Circular 467 of the Nat. Bur. of Standards, 3p-3s 
= 16960 cm–1 = 2.1 eV. 
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CHAPTER 21 
 
1. In fcc the nearest neighbors to a given atom lie in [110] and equivalent directions -- 
thus these directions are lines of closest packing. In bcc the nearest neighbors lie in [111] 
and equivalent directions. There is a lively interest in the channeling of fast ions along 
open channel directions in crystals. 
 
2a.  
 

 
 
 
  

b. 
 
 
 
 
 

3. When a dislocation moves a distance L through the crystal, the crystal advances by a 
distance b. The work σL2b may be expressed as 
 
 

 
Thus F = σb is the force/unit length on 
the dislocation. 
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CHAPTER 22 
 
1. Disordered state: S given by Eq. (2.48) with <f> as averaged over 3 Cu and 1 Au atom. 
Ordered state: ( ) ( ) ( ) ( )i k i h i h k

Au CuS hk f f (e e e )− π + − + − π += + + + Consider the following reflections: (x ≡ 

refl. present) 
 

Indices Disordered Ordered
100 no  x 
110 no  x 
111 x  x 
200 x  x 
210 no  x 
211 no  x 
220 x  x 
221 no  x 
222 x  x 

 
2. C = ∂E/∂T; now use E from Eq. (5): E = E0 + 2NUP2. Thus Cconfig = 4NUP(T) ∂P/∂T, 
and we recall that U is negative, as otherwise an ordered state does not occur. 
 From Fig. 7b,  
 

in this region a treatment based on P alone gives 
Cconfig = 0. We should look at the short range order! 
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