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Abstract

This chapter describes the potential of various shapes of gold nanomaterials such as
nanoparticles, nanorods, nanostars, nanocages, and nanoshells in cancer
nanotheranostics, i.e., both as diagnostic and therapeutic agent. This study includes
the synthesis of different gold nanomaterials using several methods like chemical-,
green-, and microbial-mediated synthesis. The ability of gold nanomaterials to absorb
light in the near-infrared region and transform it into heat and their unique optical prop-
erties make them a promising tool in photothermal cancer therapy. Herein, we present
the recent advances and the ability of gold nanomaterials to show its multiple roles in
the field of cancer biology.
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ISSN 2451-9634 All rights reserved.
http://dx.doi.org/10.1016/bs.abl.2017.01.003

161



1. INTRODUCTION TO DIFFERENT FORMS OF GOLD
NANOMATERIALS

Gold nanomaterials have gained huge interest in various biomedical

applications and considered to have a promising potential in the field of can-

cer biology. Based on the synthesis procedure and experimental conditions,

various shapes of gold nanomaterials including spherical gold nanoparticles,

nanorods, nanoshells, nanocages, nanostars, nanoboxes, nanocubes, nano-

crystals, and triangular bipyramids have been investigated [1–7]. In this

chapter about gold nanomaterials, first we are going to have a look on syn-

thesis of different shapes of gold nanomaterials and applications as diagnostic

and therapeutic agents in cancer.

1.1 Gold Nanoparticles
When compared to many other metallic nanoparticles, noble metals like

gold nanoparticles (AuNPs) have distinct electronic and optical properties.

When the AuNPs are excited by light at specific wavelengths, the incident

photons interact strongly with the conduction band of electrons and cause

them to oscillate with resonant frequency. This collective oscillation is

known as localized surface plasmon resonance (LSPR) which creates strong

and localized electromagnetic fields and allows sensitive detection of

changes in dielectric environment surrounding the nanoparticle surface.

This property makes them to be prominently utilized in imaging, drug deli-

very, cosmetics, and in cancer theranostic applications [8,9]. The AuNPs

display various colors based on their shape, size, and amount of aggregation

of particles [10]. The AuNPs are evolving as an innovative platform for

both, cancer targeted imaging and drug delivery usually represented as the-

ranostic application. When irradiated with near-infrared (NIR) light, they

induce hyperthermia (increased temperature to kill cancer cells) [11,12].

Furthermore, AuNPs could be successfully and selectively delivered to

malignant and benign tumors and could act as carriers for chemotherapeu-

tic drugs like curcumin, and paclitaxel in cancer treatment [13]. Apart

from therapeutic applications, AuNPs are employed as imaging agents

and biosensors due to their capability to emit photons upon irradiation.

The gold nanomaterials of different shapes are schematically represented

in Fig. 1.
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1.2 Gold Nanorods
When compared to spherical gold particles, the AuNRs have drawn world-

wide attention because of their inimitable shape-dependent optical proper-

ties. What makes the AuNRs as exclusive materials for biological imaging,

sensing, photo thermal therapy, and drug delivery is their ability to possess

different plasmon bands [14–17]. Even though, they have attracting features,
their usage is restricted because even a small change in the shape, size, and

surface nature will alter their properties which in turn affect their biological

applications. The major advantages of using AuNRs include their surface

plasmon resonance extinction in the NIR region which makes their use

appropriately in the medical field for photo thermal therapy, biological sens-

ing, and imaging.

1.3 Gold Nanocages
Next, we move on to a novel nanostructure called gold nanocages

(AuNCgs) which are usually characterized by the ultrathin porous walls

and hollow interiors. Usually they are prepared by keeping the silver

nanoparticles as templates which involves galvanic replacement reac-

tion [18–20]. The penetration depth of light can be maximized in soft tis-

sues, by limiting the light source to NIR region from 650 to 900 nm, where

the absorption by hemoglobin and water is negligible. To make AuNCgs

suitable for this application, the LSPR peaks can be concisely tuned

throughout the visible and NIR regions [21–24]. Prevalently, AuNCgs

Fig. 1 Schematic presentation of differently shaped gold nanoparticles: (A) nanosphere,
(B) nanorod, (C) nanocube, (D) nanoshell, and (E) nanostar.

163Recent Advances in Cancer Theranostics



are also functionalized with biological molecules to target cancer cells for

both photothermal therapy and diagnosis at an early stage [25,26].

1.4 Gold Nanoshells
Gold nanoshells (AuNShs) are composed of a silica core coated by a thin gold

metallic shell. One of the interesting properties about the AuNShs is their

unique surface plasmon resonance property which can be finely tuned rang-

ing from visible to NIR region. Multiple templates are employed for the

formation of hollow AuNShs which includes silica particles [27], metal par-

ticles [28–31], etc. The AuNShs have demonstrated their potential in a vari-

ety of biomedical applications ranging from substrates for whole-blood

immunoassays to photothermal cancer therapy [32–34]. By using magnetic

resonance thermal guidance, in vitro cancer cells were successfully ablated

using AuNShs. Similar use of AuNShs for photothermal ablation of tumors

in mice showed complete regression of tumors with the mice remaining

healthy compared with the controls [35–38].

1.5 Gold Nanostars
The gold nanostars (AuNSts) have multiple sharp branch structure which

sharply increases the electromagnetic field. The AuNSts also have unique

plasmon bands which are tunable from visible to NIR region. The fabrica-

tion of AuNSts has been driven by the interest on the LSPR response to the

environment, especially on sharp tips and edges, where light can be highly

concentrated [39–43]. Because of their exclusive property, they serve as

effective tools in the field of nanomedicine. Furthermore, AuNSts also dis-

play stronger surface-enhanced resonance spectrum activity than gold

spheres or even rods.

2. SYNTHESIS OF DIFFERENT FORMS OF GOLD
NANOMATERIALS

2.1 Chemical-Mediated Synthesis of Gold Nanomaterials
2.1.1 Synthesis of Gold Nanoparticles
The simplest protocol commonly used for the groundwork of AuNPs is the

facile reduction of gold salt in aqueous medium using sodium citrate [44,45],

in which Au3+ ions are reduced to neutral gold atoms which slowly precip-

itates to form nanometer-sized gold particles. The widely used reducing

agents for the synthesis of AuNPs include aminoboranes, borohydrides,

hydrazine, hydroxylamine, formaldehyde, polyols, sugars, saturated and
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unsaturated alcohols, hydrogen peroxide, citric and oxalic acids, carbon

monoxide, sulfites, acetylene, and hydrogen [46–48]. A variety of stabilizers

such as phosphorus ligands, trisodium citrate dihydrate, nitrogen-based

ligands, sulfur ligands, dendrimers, oxygen-based ligands, polymers, and sur-

factants are used to impart the colloidal stability to AuNPs [49,50]. Synthesis

of AuNPs by citrate-stabilized method, introduced by Turkevich, is the

most popular method in which trisodium citrate dihydrate is added to the

boiling chloroauric acid under vigorous stirring, leading to the formation

of wine-red colloidal suspension after a few minutes [51,52]. To improve

this method, Frens altered the ratio of gold and trisodium citrate, resulting

in the synthesis of AuNPs of wide size range (from 15 to 150 nm) [46]. The

size of the AuNPs obtained using Brust–Schiffrin method ranges from 2 to

5 nm, which is much smaller in size than particles synthesized by Turkevich

method. Another popular technique for synthesis of AuNPs is seed growth

method where one can easily control the size and shape of the particle. Usu-

ally, it involves two steps, preparation of small sized AuNPs followed by

addition of seeds to the growth solution.

2.1.2 Synthesis of Gold Nanorods
In general, AuNRs are produced using cetyltrimethyl ammonium bromide

(CTAB)which acts as both reducing and stabilizing agent to produce homo-

geneous AuNRs with high yield [53–56,4,57–61]. The LSPR resonances of

AuNRs are generally observed both in the visible and NIR region [62–70].
Since CTAB is cytotoxic, various biocompatible agents like proteins and

lipids are being used to provide stability, reduce cytotoxicity, and to retain

its properties. A number of studies have focused on surface modification of

AuNRs to address the above mentioned issues. An intrinsic problem in the

synthesis of AuNRs using conventional method is its meager efficiency to

convert chloroauric acid into nanorods. Reports have shown that only

15% of gold seeds are usually converted into the rods. The AuNRs yield

could be increased by preparing the AuNRs in consecutive supernatant

solutions. There is an urgent need for novel synthetic protocols in order

to make the synthesis process more scalable and efficient as AuNRs progress

greatly toward commercial applications.

2.1.3 Synthesis of Gold Nanocages
Recently, AuNCgs with hollow interiors, porous walls, and tunable LSPR

in the NIR region have become a new promising platform for therapeutic

applications. The unique structures of AuNCgs make them well suited for
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drug encapsulation and photothermal controlled drug release with high spa-

tial and temporal resolution. The AuNCgs are generally synthesized through

a simple galvanic replacement reaction between solutions containing salts of

metal precursors and Ag nanostructures prepared through polyol reduction.

The reduced metal deposits on the surface of the AuNCgs, adopting their

underlying cubic form. Concurrent with this deposition, the interior Ag

is oxidized and removed, together with alloying and dealloying, AuNCgs

are produced. [71].

2.1.4 Synthesis of Gold Nanoshells
The commonly used method for the synthesis of gold nanoshells (AuNShs)

involves the reduction of chloroauric acid with ascorbic acid at ambient

temperature on presynthesized gold nanoseeds and in the presence of surfac-

tants (in most cases CTAB). A general one-pot synthetic strategy for the syn-

thesis of hollow AuNShs includes the reduction of chloroauric acid in

3-aminopropyltriethoxysilane in water suspension [72]. The AuNShs show

a high photothermal conversion efficiency (up to 45%) and excellent stabil-

ity under laser irradiation.

2.1.5 Synthesis of Gold Nanostars
The AuNSts are synthesized by anisotropic growth process, by altering the

growth rates along the specific crystallographic directions [73]. The shape of

AuNSts could be controlled by varying the concentration of silver nitrate.

The stirring speed, pH, and the ratios of ascorbic acid, silver nitrate, and

chloroauric acid determine the size and shape of the AuNSts. Murphy

and coworkers have studied the influence of reducing agent by replacing

bromide ions of CTAB with its chloride equivalent to achieve a better con-

trol over size [74]. Few groups have used hydroxylamine sulfate in the prep-

aration of polycrystalline-branched AuNSts in a stepwise growth approach

with sizes ranging from 48 up to 186 nm [75]. It is also reported that addition

of polyvinyl pyrrolidone with 15 nm chloroauric acid solution leads to the

formation of highly branched AuNSts [76]. Recently, a simple one-step syn-

thesis of AuNSts using hydroxylamine as a reducing agent was reported [77].

The controlled synthesis of high-yield AuNSts ranging from 45 to 116 nm

was reported by Khoury and Vo-Dinh [78]. The AuNSts were synthesized

by extending the protocol reported by Liz-Marzan et al. [79], in order to

enable size control of the stars from approximately 45 to 116 nm in size. This

size range translates to tuning capabilities of the longitudinal plasmon peak in

the NIR region from around 725 to 850 nm. They have used 20 nm
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polyvinylpyrrolidone-coated gold seeds in ethanol and investigated the

growth of AuNSts as a function of time during the synthesis by monitoring

the spectrum of the AuNSts suspension and by imaging morphological

changes of stars from time to time via transmission electron microscopy.

2.2 Green Synthesis of Gold Nanomaterials
Even though there are several methods like thermal decomposition,

sonochemical, microwave irradiation, chemical reduction, electrochemical

ablation for the synthesis of gold nanomaterials, many of these routine

methods use hazardous chemicals. Hence, synthesis of nanoparticles in an

ecofriendly way is essential. The green synthesis method is more advanta-

geous when compared to other conventional methods which requires

extended and high cost for downstream processing. The main components

in plants responsible for the reduction of gold ions are usually phenols, pro-

teins, and flavonoids which also acts as a stabilizing agent by capping the

nanoparticles. Researchers have explored industrially and botanically

important plants for the synthesis of nanoparticles. The active ingredients

present in the plant extracts will provide special surface characteristics to

the nanoparticles. Citrus maxima fruit extracts are widely used for the inex-

pensive synthesis of AuNPs [80]. Ghodake et al. [81] demonstrated casein

hydrolytic peptides (CHPs)-mediated synthesis of crystalline AuNPs. The

mechanism behind the nanoparticle formation is attributed to the catalytic

properties of hydroxyl groups present in the CHPs. The CHPs are capable

of forming a monolayer on the surface of AuNPs via electrostatic inter-

actions, thus playing an important role in long-term stability. Yana

et al. [82] reported a facile, one-pot green synthesis of biomaterial-supported

AuNPs using cellulose with superior catalytic activity. In general, cellulose-

mediated AuNPs with a size range of 5–10 nm are prepared by heating the

aqueous mixture of chloroauric acid, with cellulose and poly ethylene gly-

col. Nazirova et al. [83] reported water-soluble luminescent AuNPs with

average size 2.3 nm synthesized from N-(4-imidazolyl) methylchitosan.

The biological activity of imidazolyl-containing polymers and their capabil-

ity to bind proteins and drugs have huge applications in the field of bio-

imaging, biomolecules detection, catalysis, and drug delivery. Suarasana

et al. [84] reported the one-pot, green synthesis of AuNPs using gelatin bio-

polymer having unique reducing, stabilizing, and eminent growth control-

ling ability. Sadeghi et al. [85] reported that the plant Stevia rebaudiana have

higher amount of polyphenols and flavonoids which makes them more
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specific to act as reducing agent in the synthesis of AuNPs. Yuan et al. [86]

reported a facile and rapid a single-pot synthesis process for AuNPs using

capsicum. The synthesis of AuNps of various shapes from different plant

sources is shown in Table 1.

2.3 Microbial Synthesis of Gold Nanomaterials
Synthesis of nanomaterials using microorganisms is an emerging field of

industrial microbiology. Biological approaches using either unicellular or

multicellular organisms for the synthesis of gold nanomaterials are simple,

viable, and ecofriendly alternate to chemical methods. Different biological

entities like bacteria, fungi, algae, yeast, and plants are drastically studied for

their ability to synthesize metal nanoparticles for various pharmacological

applications (Table 2) [109].

There are two ways by which AuNPs can be synthesized by microbes,

either extracellularly or intracellularly. The most popular method is extra-

cellular synthesis, as it eliminates numerous downstream processing steps

Table 1 Green Synthesis of Gold Nanoparticles Using Different Plant Sources

Plants
Size of the
Particle (nm) Shapes References

Acanthella elongata 15 Spherical [87]

Sugar beet pulp 20 Triangular [88]

Cinnamomun zyelanicum 20 Spherical [89]

Zingiber officinale 5–15 Spherical [90]

Olive leaf extract 50–100 Spherical, triangular [91]

Coriander leaf extract 6–58 Spherical, triangular [92]

Cassia auriculata 38 Spherical, triangular [93]

Hibiscus rosasinensis 15–25 Spherical, triangular,
hexagonal

[94]

Terminalia chebula 50–100 Spherical [95]

Rosa hybrida 35 Spherical [96]

Morinda citrifolia 10–40 Triangular [97]

Tamarind leaf extract 20 Spherical [98]

Palm oil mill effluent 50 Spherical [99]
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during the synthesis. The usual procedure followed is to centrifuge the sec-

ond day well-grown culture to discard the biomass and add the supernatant

to chloroauric acid. The enzymes like NADH dehydrogenase, NADPH-

dependent sulfite reductase in the microbes act as reducing agents [110].

After bioreduction, the AuNPs can be collected by similar methodologies

as in plant extract-mediated synthesis. Cell-free viable approach for synthesis

of AuNPs using Escherichia coli has also been reported [111]. Despite the sta-

bility, biological nanoparticles are usually not monodisperse, and the rate of

synthesis is slow. To overcome these problems, several factors such as micro-

bial cultivation methods and the extraction techniques have to be optimized,

and the combinatorial approach such as photobiological methods may be

used. In the case of intracellular-mediated synthesis process, the particles

are released to the external environment either by ultrasound treatment

or by adding apt detergents. Geobacter ferrireducens, a Fe (III) reducing bacte-

rium, reduces and precipitates the gold in periplasmic space intracellularly.

Similarly, in the presence hydrogen gas microbes like Shewanella algae, mes-

ophilic bacteria reduce Au+3 ions in anaerobic conditions. Plectonema

boryanum, a filamentous cyanobacterium, precipitates AuNPs in abiotic

and cyanobacterial systems. Escherichia coli DH5α-mediated bioreduction

of chloroauric acid to Au0 nanoparticles has been reported recently [112].

The accumulated particles on the cell surface were mostly spherical. These

cell-bound nanoparticles have been reported for promising applications in

realizing the direct electrochemistry of hemoglobin and other proteins

[113]. Similarly, the bioreduction of trivalent aurum was also reported in

Table 2 Microbial Synthesis of Gold Nanoparticles of Different Sizes
Microorganism Size of the Particle (nm) References

Bacillus subtilis 5–25 [100]

Sulfate-reducing bacteria 15–200 [101]

Shewanella algae 10 [102]

Escherichia coli DH5α 10–20 [103]

Pseudomonas stutzeri 200 [104]

Corynebacterium 10 [105]

Rhodobacter 10–20 [106]

Bacillus sp. 10 [107]

Pseudomonas aeruginosa 17.2 [108]

169Recent Advances in Cancer Theranostics



photosynthetic bacterium, Rhodobacter capsulatus which showed biosorption

capacity of 92.43 mg chloroauric acid/g dry weight in the logarithmic phase

of its growth. The carotenoids andNADPH-dependent enzymes embedded

in plasma membrane and/or secreted extracellularly were found to be

involved in the biosorption and bioreduction of Au+3 to Au0 on the plasma

membrane and also extracellularly [100]. Owing to the rich biodiversity of

microbes, their potential as biological materials for nanoparticle synthesis is

yet to be fully explored.

3. DIAGNOSTIC AND IMAGING APPLICATIONS
OF GOLD NANOMATERIALS

As discussed earlier, gold nanomaterials have unique properties which

attract researchers to focus their studies in the field of tumor molecular imag-

ing and diagnostics. Herein, Zhou and Jia [114] reported a facile approach in

which polyethylenimine (PEI) modified with polyethylene glycol (PEG), a

cost effective template, is used for the synthesis of folic acid (FA)-targeted

multifunctional AuNPs. The PEI was consecutively modified with

FA-linked PEG, PEG monomethyl ether and with fluorescein isothiocya-

nate for the synthesis of AuNPs. The prepared AuNPs were noncytotoxic

and colloidally stable. They acted as novel nanoprobe for targeted CT imag-

ing of FAR-expressing cancer cells. Lozano et al. [115] demonstrated the

hybrid vesicular systems composed of liposomes and AuNRs aid in deep tis-

sue detection, therapy, and monitoring in living animals using multispectral

optoacoustic tomography [116].

Gallina et al. [117] reported that fluorescent, biocompatible, aptamer-

conjugated AuNRs act as perfect agents for diagnostics and therapeutics.

Bioconjugation of AuNRs with anticancer oligonucleotide AS1411 was

employed and the aptamer-conjugated AuNRs acted as ideal cancer-

selective multifunctional probes for imaging. Huang et al. [12] reported

the synthesis of multifunctional nanoprobes in which silica functionalized

gold was decorated with FA molecule which displayed strong computed

tomography imaging and X-ray attenuation. Vo-Dinh and coworkers

reported the synthesis of AuNSts for in vivo imaging with adjustable

geometry. They exhibited strong two-photon photoluminescence pro-

cess which is confirmed by the quadratic dependence of the luminescence

signal up to excitation power which may originate from electron–hole-
recombination. They also reported TPL imaging on BT549 cancer

cells by wheat germ agglutinin-functionalized AuNSts for imaging.
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The reconstituted images appeared white due to the emission of red, blue,

and green channels by AuNSts [118].

Tracking of AuNPs needs some fluorescent label but the imaging and

tracking of AuNSts are possible without the need of fluorophores due to

their unique strong two-photon action cross sections (TPACS) [119].

Due to the high TPACS of nanostars, tracking the motion of PEGylated

AuNSts in blood vessels is also possible. In medicine, novel techniques

with high specificity, such as positron emission tomography, require

probe labeling and offer low spatial resolution which can be obtained

by AuNSts. Photoacoustic microscopy is an emerging imaging modality

that combines both rich optical absorption and high ultrasonic resolu-

tion in a single-imaging modality [120], and it is based on the use of

highly absorbance nanoparticles. It also provides in vivo functional

imaging information at clinically relevant penetration depths. Recently,

AuNSts have been effectively used as enhancing agents in photoacoustic

imaging [121].

Nie and coworkers reported the three-dimensional image reconstruc-

tion using AuNSts [122]. The AuNSts conjugated with cyclic RGD

(Arg-Gly-Asp) peptides and anticancer drug doxorubicin (DOX)were stud-

ied in different tumor cell lines, and in vivo imaging was done using S180

tumor-bearing mouse model cells (MDA-MB-231) [123]. The fluorescence

images of Au-RGD-DOX after incubating withMDA-MB-231cells for 8 h

were collected in order to understand the intracellular kinetics of the

multifunctional nanoparticles. The obtained data clearly indicated that

Au-RGD-DOX or released DOX entered the nucleus with only a small

fraction remaining in the cytoplasm. The AuNSts with size less than

100 nm can accumulate selectively in tumors via the enhanced permeability

and retention effect which is due to the increased leakiness of blood vascu-

lature in tumors [124–126]. Combining this statement and their unique

properties, AuNSts are considered to be suitable platforms for multimodal

imaging for cancer diagnostics.

4. THERAPEUTIC AND DRUG DELIVERY
APPLICATIONS OF GOLD NANOMATERIALS

From spheres to rods, different geometrical configurations of gold

nanomaterials have been used as drug delivery agents. The tumor targeting

ligands associated with AuNPs have shown improved tumor targeting and

enhanced cellular uptake efficiency. In addition to delivering
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chemotherapeutic agents successfully to the tumor site, PEGylated AuNPs

with human transferrin exert photothermal therapy upon irradiation.

Taghdisi et al. [124] reported a modified polyvalent aptamers–Daunorubi-

cin-AuNPs complex which exhibited efficient drug loading, tumor

targeting, and controllable delivery of anticancer drug to tumor cells. Mar-

ques et al. [127] reported the polymeric AuNPs as a potential carrier system

for drug delivery. Surface modification of AuNPs by polymers plays a sig-

nificant role in conjugating the therapeutic entities for drug delivery via

ionic, covalent bonding, or by physical adsorption. The anticancer drugs

can be loaded in AuNPs by adopting various methods. For instance, the drug

can be either attached to the capping agent or loaded inside the AuNPs. The

AuNCgs and AuNShs have higher drug loading efficiency due to the pres-

ence of hollow spaces. By utilizing these strategies, various therapeutic drugs

have been successfully delivered using AuNCus and gold AuNShs. Many

drugs including doxorubicin, paclitaxel, docetaxel, tamoxifen, oxaliplatin,

and 3-mercaptopropionic acid have been successfully loaded in gold

nanomaterials and used for anticancer therapy. Zhang et al. [128] reported

the polymer encapsulated, doxorubicin-loaded AuNRs coupled the

photothermal properties of AuNRs and the thermo and pH responsive prop-

erties of polymers. This nanocomposite provides an ideally versatile platform

to simultaneously deliver heat and anticancer drugs in a laser-activation

mechanism with facile control of the area, time, and dosage.

Iodice et al. [129] reported that poly (lactic acid-co-glycolic acid)

(PLGA)-coated AuNPs exhibited direct cytotoxic effect on breast cancer

cells (SUM-159) and in glioblastoma multiform cells (U87-MG). Betzer

et al. [130] proposed a theranostic approach for the detection and therapy

of head and neck cancer. Huang et al. [12] reported that plasmonic

photothermal therapy acts as a promising cancer treatment and causes cell

death, mainly via apoptosis and necrosis. The AuNRs displayed significant

reduction in viability of breast, oral, and liver cancer cell lines. Yang et al.

[131] reported that the chitosan-coated AuNRs tagged with siRNA (small

interfering RNA) inhibited the oncogene expression in MDA-MB-231

triple-negative breast cancer cells, and moreover their anticancer efficacy

was enhanced through NIR-mediated photothermal ablation. Zhong

[132] reported FA-conjugated AuNRs were effectively used in photo-

acoustic therapy for selectively killing cancer cells within few seconds.

Vo-Dinh et al. [78] reported photothermal ablation in SKBR3 cells by

AuNSts. Zou et al. [75] synthesized dual-aptamer-modified AuNSts for

photothermal therapy in prostate cancers. These studies have confirmed that
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different types of gold nanomaterials act as promising materials for

photothermal cancer application.

5. CONCLUSION AND PERSPECTIVES

On the whole, different types of gold nanomaterials including

nanoparticles, nanorods, nanocages, nanostars, and nanoshells have shown

multifunctional potential in tumor imaging, tumor targeting, and drug

delivery and therapy. The synthesis of gold nanomaterials with tunable sizes

and surface properties aims to reduce their toxicity, decrease their non-

specific cellular uptake, and to increase their targeting efficiency. They

are also used to improve the contrast in MRI and to enhance their load

to target tumor cells in drug delivery. Their unique optical properties and

their multifunctional potential to simultaneously diagnose and treat tumors

enhance their reliability and versatility in the field of theranostics. The iden-

tification and synthesis of biocompatible cross-linking polymers will increase

the stability and scope of gold nanomaterials in cancer treatment. The use of

NIR rays and gold nanomaterials will be beneficial to target tumors that are

located deep inside the body. To increase their half-life, stealth nanoparticles

with improved characteristics have to be designed which will have pro-

longed circulation rates to facilitate the uptake of gold nanomaterials into

cancer cells. The direction of future research regarding gold nanomaterials

should focus on the need to overcome these hurdles and to develop novel

therapies to provide solutions for the current problems. Promising clinical

trials have given considerable hope that gold nanomaterials with improved

characters help to develop safe and efficient tumor treatment/eradication

methods in the near future.
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