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Chapter

Nanomaterials of Carbon and Metal
Sulfides in Photocatalysis
Ana Cristina Estrada, Joana Lúcia Lopes and Tito Trindade

Abstract

Heterogeneous semiconductor photocatalysis has received much interest
because of its applications in important global energy and environmental challenges in
a cost-effective sustainable way. The photocatalytic efficiency of semiconductor
photocatalysts under solar irradiation has been pointed out by difficulties associated
with low visible-light absorption range, fast recombination of photogenerated
carriers, and low chemical stability in operational conditions. Graphitic materials
have attracted great interest due to properties, such as high surface area,
mechanical strength, and photochemical stability. Thus, their combination with
metal sulfides, has been explored as promising strategies to produce new
photocatalysts. These nanocomposites show great potential in photodegradation of
contaminants of emerging concern (CEC), which might be detected in water
sources, such as traces of Pharmaceutics and pesticides. Here, we briefly review
fundamental principles photocatalysis in general, with the focus on the use of
carbon-nanomaterials of distinct structural dimensionalities associated with nano-
crystalline metal sulfides, envisaging their application as heterogeneous
photocatalysts for water remediation. Key aspects concerning the photocatalyst prop-
erties, such as light absorption, charge separation and transfer, and stability, are also
approached. Graphene and graphene derivatives have demonstrated great potential
for increasing photogenerated charge-carrier separation and migration efficiency, as
well as in extending the light absorption range and adsorption capacity.

Keywords: metal sulfide, carbon nanomaterials, photocatalysis, water treatment

1. Introduction

Photocatalyst is a term that combines two words—photo, which is related to light,
and catalyst, which is a compound that does not change the thermodynamics of the
reaction but changes its kinetics, by establishing new reaction routes with lower
activation energy, without being consumed during the process. Hence, semiconduct-
ing photocatalysis involves chemical reactions that occur at the surfaces of certain
semiconductor compounds when irradiated with light of a selected wavelength range.
Typically, these reactions occur in a liquid medium using the photocatalyst in the solid
state, thus the chemical process is generally termed heterogeneous photocatalysis. In
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this work, the semiconductor photocatalyst is considered as part of a colloid or sus-
pension, though this has not been always the case. For instance, thin films have been
also applied namely for air purification. Examples of heterogeneous photocatalytic
processes using semiconductor particles include photooxidation reactions, which have
been exploited for the degradation of organic pollutants present in water [1–5]. Com-
pared to more conventional water treatment methods, such as those based on adsorp-
tion and flocculation, which might require a subsequent step for the chemical
degradation of the pollutant, in photocatalysis the pollutant is eliminated by aerobic
photooxidation. Ideally, this oxidative process should generate carbon dioxide and
water as the final products, that is, the complete mineralization of the organic pollut-
ant, though this has been rarely achieved. As such, different remediation technologies
can coexist in the same water treatment plant and, in several situations, their comple-
mentary role brings more efficient approaches. For example, adsorption and
photocatalytic technologies can be implemented in different stages in the same water
treatment plant. Even though, advanced oxidation processes based on the use of
efficient photocatalysts have been regarded as a way to minimize the impact of CEC in
water sources, which even in trace levels are harmful and for which conventional
water treatments are ineffective.

Two main optical processes have been proposed considering the role of the semi-
conductor during a photocatalytic reaction, as illustrated in Figure 1 for TiO2

photocatalysts. In direct photocatalysis, a photon with energy higher than the band
gap energy of the semiconductor (hν1) is absorbed and an electron (e�) is excited to
the conduction band (CB), leaving a hole (h+) in the valence band (VB). The band gap
energy of the semiconductor is defined as the difference between the CB (bottom
energy level) and the VB (top energy level). The photogenerated electron–hole pair
(e�/�h+) is responsible for reduction and oxidation reactions that take place at the
surface of the photocatalyst particle in contact with the aqueous medium. The electron
in the CB migrates to the surface of the semiconductor and participates in reduction
reactions, and the hole in the VB diffuses to the photocatalyst surface and is involved
in oxidation reactions. In addition, the dissolved O2 can accept photogenerated elec-
trons to yield superoxide radicals (O��

2 ) and photogenerated holes can oxidize H2O to
form strong oxidant hydroxyl radicals (HO•) (Eqs. (1) and (2)) [6, 7].

e�CB þ O2 ! O•�

2 (1)

hþVB þH2O ! HO•
þHþ (2)

Figure 1.
The schematic representation of the direct (hυ1) and indirect (hυ2) photochemical processes occurring in light-
irradiated TiO2 nanoparticles, commonly used as photocatalysts in the form of aqueous colloids. Adapted from [6].

2

Photocatalysts - New Perspectives



On the other hand, in indirect photocatalysis, also known as photosensitized
photocatalysis, the mechanism involves the photoexcitation (hν2) of a second species
(P) to an excited state from which an electron is injected into the CB of the semicon-
ductor. This process has been observed in the degradation of contaminant organic
dyes, which can also act as photosensitizers for cases in which the reduction potential
of the excited state is negative enough for electron injection into the CB of the
semiconductor [7]. In indirect photocatalysis, there is no generation of a VB hole and
the semiconductor functions as an electron relay, thereby preventing undesired back
reactions [7]. Nevertheless, this process is usually less efficient than direct
photocatalysis due to the lower efficiency of the electron injection. Both direct and
indirect photocatalysis convert the initially generated superoxide radicals into other
reactive oxygen species with high oxidative power (Eqs. (3)-(7)), for example, with
reduction potentials of 0.94 V (O•�

2 =H2O2), 1.29 V (H2O2=H2O) and 1.90 V
(HO•=HO�) [6, 8]. Although such radicals are nonselective, they are effective in
oxidizing organic contaminants, such as dye molecules [9–15], antibiotics [16–20], or
pesticides [21–25], as well as for other sanitation applications, such as the elimination
of pathogens [26–32].

O•�

2 þHþ
! HO•

2 (3)

HO•

2 þHO•

2 ! H2O2 þ O2 (4)

O•�

2 þHO•

2 ! O2 þHO�

2 (5)

HO�

2 þHþ
! H2O2 (6)

H2O2 þ O•�

2 ! HO•
þHO�

þ O2 (7)

In semiconductor photocatalysis, several fundamental aspects should be consid-
ered to develop the photocatalyst based on functional and operational criteria. Hence,
light absorption (absorption coefficient and wavelength range), photoinduced charge
separation, charge trapping, and charge transfer are among the key parameters for
designing efficient photocatalytic systems [33, 34]. For instance, photogenerated
electrons are unstable species in an excited state, which tend naturally to return to the
ground state either via adsorbed hydroxyl radicals or by recombination with
unreacted holes or structural traps on semiconductors [35–38]. Since these species are
determinants in the efficiency of a photocatalyst, several research groups have
explored strategies to increase the photoinduced charge separation to avoid charge
recombination and consequently increase the lifetime of photogenerated electron/hole
pairs. These strategies include (i) coupling of semiconductor photocatalysts with
metal nanoparticles [39–41]; (ii) sensitization of the photocatalyst surface through
physical or chemical adsorption of molecules that absorb visible light and are excited
either to the singlet or triplet excited state [42] and; (iii) coupling of at least two
semiconductor photocatalysts with different bandgap values [43, 44]. The presence of
charge trapping sites in a semiconductor photocatalyst allows also the extension of the
lifetime of the charge carriers from microseconds to milliseconds since in these sites
there is greater charge-carrier stability. Although such trap sites are mostly located at
the surface of a semiconductor photocatalyst, they may be present also on grain
boundaries or in the bulk lattice, or even present as electron scavengers, such as O2.
On the other hand, deeply stabilized trapped charges lose redox potential and increase
the potential barrier for charge transfer at the semiconductor or water interface [45].
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Thus, electron transfer reaction depends largely on structural parameters ascribed to
the semiconductor photocatalyst, such as crystal facet structure, lattice surface, size,
and morphology. Trapping mechanisms might be favorable if they allow photon
activity to generate charge carriers, and permit charge carriers to reach the electron
transfer regions. Otherwise, it could be disadvantageous for the overall photocatalytic
process.

Several strategies have been proposed to adjust the physical and chemical
properties of semiconductor photocatalysts to improve light absorption and
charge transfer efficiency, reduce the recombination rate of photogenerated
charge carriers, and accelerate surface reactions [46]. Examples of such strategies
include metal-ion doping of the semiconductor [39–41], combination with
distinct semiconductors that result in heterostructures [43, 44], and surface
chemical functionalization using selected photosensitizers [42]. Noteworthy, the
combination of inorganic semiconductors with carbonaceous materials, such as
graphene and their structural derivatives, has also received great attention in the
design of a new class of nanocomposite photocatalysts [47, 48]. The use of carbon
nanostructures for supported semiconductor photocatalysts offers great advantages.
Hence, depending on the carbon material, high electrically conductive
nanostructures can act as scavengers of photogenerated electrons. Also, water-
compatible nanomaterials promote the aqueous dispersion of the photocatalyst, which
by achieving a high specific surface area enhances the adsorption capacity of the
system [48]. Furthermore, surface functionalization of the carbon lattice confers
functional chemical groups that might favor the subsequent attachment of semicon-
ductor nanophases. A paradigmatic example of this situation is the application of
graphene oxide as a nanoplatform for semiconductor photocatalysts, and notwith-
standing limitations that can also arise such as photoreduction of the carbon substrate
or the limited absorption by the photocatalyst [49–51].

2. Metal-sulfide photocatalysts

In general terms, a good photocatalyst should have the following characteristics:
effective charge-carrier separation, fast charge transfer, strong optical absorption,
photochemical stability, low-cost production, and nontoxicity [52]. Among the several
types of photocatalysts available, inorganic semiconductors have been intensely
investigated in water remediation processes because they might fulfill, at least in
selected cases, the above requirements. Inorganic materials considered as semicon-
ductors exhibit bandgap energies in the range of 0.3–3.8 eV. In particular, TiO2 and
TiO2-based heterogeneous photocatalysts have been the most explored semiconductor
materials for photocatalytic applications because of the high free energy of
photogenerated charge carriers, low-cost, and high chemical stability [53, 54].
However, both TiO2 polymorphs (anatase/rutile) show a wide bandgap (anatase
3.2 eV; rutile 3.0 eV), which limits photocatalytic applications of pure TiO2 to UV
irradiated systems. Other semiconductor photocatalysts exhibiting narrower
bandgaps have been investigated, which can replace TiO2 in certain conditions or that
might act as a complementary phase in extending light absorption to the visible
composite systems. Among these semiconductors, this chapter focus on the use of
binary metal-sulfide compounds, with emphasis on their nanocrystalline forms.
Table 1 shows examples of metal sulfides investigated as photocatalysts and selected
properties for the pure phases.
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A macrocrystalline metal sulfide (MS) semiconductor comprises a three-
dimensional network of ordered atoms (metal and S atoms) characterized by a band
gap energy at a certain temperature. As particle size decreases, and below a certain
threshold, the electronic band structure of the semiconductor changes with the wid-
ening of the bandgap energy [55, 56]. For semiconductor nanoclusters, that is
molecular-like nanocrystals depicted on the right in Figure 2, an analogous interpre-
tation applies, although the energy gap is usually understood as the energy separation
between the frontier molecular orbitals HOMO (highest occupied molecular orbital)
and LUMO (lowest unoccupied molecular orbital). Thus, as in the case of conven-
tional photosemiconductors, the incidence of a photon with energy greater than this
energetic separation originates in semiconductor nanocrystals (and nanoclusters) the
formation of an electron–hole pair, often called exciton, which in the macrocrystalline
material is dimensionally characterized by the Bohr exciton radius of that

Metal sulfide Bandgap energy (eV)* Structure

ZnS 3.6 Cubic, Hexagonal

CdS 2.4 Cubic; Hexagonal

CuS 2.4 Hexagonal

Ag2S 1.0 Monoclinic

Bi2S3 1.4 Orthorhombic

Table 1.
Characteristics of macrocrystalline metal sulfides as photocatalysts in an aqueous medium [44].

Figure 2.
The scheme illustrates the widening of the bandgap energy of a certain semiconductor material, as particle size
decreases from its macrocrystalline form (left) to the nanocluster regime (right). Quantum dots are nanocrystalline
semiconductors (middle) that show quantum-size effects, corresponding to the intermediate situation between
macrocrystalline materials and nanoclusters.
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semiconductor. The charge carriers in nanosized semiconductors migrate fast and
participate in several photoprocesses, which include trapping and recombination
[57, 58].

Metal sulfides can be explored in the macrocrystalline form as photocatalysts, for
example, in aqueous suspensions, membranes, and thin films [59–61]. However, in
the past decades, there has been intense research on their use as nanocrystalline
materials, namely due to the possibility to explore quantum-size effects, as mentioned
above. MS semiconductor nanocrystals (quantum dots) are small crystalline particles
that exhibit quantum size-dependent optical and electronic properties [62, 63]. With
typical dimensions in the range of 1–100 nm, these nanocrystals bridge the gap
between those of molecules and micrometric crystals, displaying distinct optical
behavior in relation to their bulk counterparts [64]. If the size of nanocrystals is
smaller than the bulk exciton Bohr radius, the charge carriers become spatially con-
fined, showing size-dependent absorption and fluorescence spectra with discrete
electronic transitions at room temperature (Figure 2).

For instance, the optical spectra of colloids of nanocrystalline semiconductors
show blue shifts in their absorption edges (or excitonic peaks) with decreasing particle
diameters. Metal-sulfide nanocrystals that exhibit quantum size effects, that is, quan-
tum dots, can be used as size-tuned light-absorption photosensitizers, namely in
visible photocatalytic applications [44, 65–67]. Quantum size effects occurring in MS
nanocrystals dispersed in aqueous suspensions, also affect the CB and VB redox levels,
thus influencing redox reactions that involve the migration of photogenerated charge
carriers to the particles’ surfaces. Nanosized semiconductors have dimensions consid-
erably superior to conventional molecular photosensitizers, which in comparison to
the latter, present a broader absorption wavelength range, large density of states, and
high optical extinction coefficients [62], hence favoring photon harvesting in
photocatalytic applications.

Colloidal synthesis offers a wide range of chemical methods to obtain MS
nanocrystals with controlled particle size distributions and particle shapes, thus with
tailored bandgaps for diverse semiconductors and their solid solutions [68–71]. Fur-
thermore, such colloids can be selected as nanodispersed systems showing strong
visible-light absorption and size-tuned bandgap. However, these systems also show
limitations, which deserve further research aiming their application as more efficient
photocatalysts. Although certain MS is used as visible-light photocatalysts, the
photogenerated electron–hole pairs are also susceptible to recombination. The occur-
rence of charge-carrier recombination limits their mobility from the bulk lattice to the
particles’ surface, thus decreasing the efficiency of the photocatalyst. Moreover,
surface-sulfide anions (S2�) in aqueous MS colloids are prone to oxidation, a process
that gains more relevance due to the oxidative role of photogenerated holes at the
surface [72, 73]. In fact, under light irradiation, sulfide anions can oxidize forming
sulfate (SO4

2�) or elemental sulfur (S0), causing the deactivation of the photocatalyst.
The inhibition of metal-sulfide photocorrosion is an important requirement for

photocatalytic reactions, namely because the long lifetime of photogenerated elec-
tron–hole pairs and the chemical stability are essential for producing efficient
photocatalysts. Several strategies have been reported that tackle this problem, such as
modifying the crystal structure, size, and morphology of semiconductors [74, 75],
combining with transition metal ions or cocatalysts [76, 77], producing
heterojunctions, [78–80] and by adjusting the reaction parameters [81–83]. For
instance, Bo et al. have reported that the interfacial interaction between both semi-
conductors in the MoS2/CdS heterostructures restrains the photocorrosion of MoS2.
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The authors have shown that electrons photogenerated on the CB of CdS are trans-
ferred to the CB of MoS2 to participate in the H2 evolution reaction, while the holes on
the VB of MoS2 migrate to the VB of CdS [79]. Huang et al. have shown that the
growth of a larger bandgap semiconductor, such as ZnO, on a core with a smaller band
gap as CdS improves the stability of the hybrid nanostructure and inhibits the
photocorrosion of CdS particles [84]. In turn, Yi and Wang have found that the
photocorrosion of CdS is significantly inhibited when cobalt ions or molybdate are
injected into the CdS-lactic acid system. The photogenerated holes in the CdS are
fastly captured by the transition metal ions, reducing the oxidation of S2� on the CdS
surface [85, 86]. The coupling of metal-sulfide semiconductor photocatalysts with
inorganic substrates might bring other advantages and several approaches have been
reported [87, 88]. In this context, carbon nanomaterials have also been investigated as
functional platforms that bring new potential to the application of these materials,
including photocorrosion inhibition of the supported metal sulfides.

3. Carbon-based nanostructures

The development of heterogeneous photocatalysts by combining metal sulfides
and different carbon nanomaterials has been explored as an effective strategy to
obtain high-performance photocatalysts. Owing to delocalized electrons from the
conjugative π-system, graphitic carbon nanostructures are good at accepting and
shuttling the photogenerated electrons from semiconductor photocatalysts; hence,
effectively separating the electron–hole pairs [89–93]. For instance, Wan et al. have
shown that the synergistic influence of charge-carrier migration, advanced excited
states, and suitable Fermi levels between CdS phases and graphene leads to enhanced
photoactivity and stability [94]. Also, Lv et al. have shown that graphene attached to
semiconductors can efficiently accommodate and transport electrons from the excited
semiconductor, which not only hindered charge recombination but also improved
charge transfer, giving rise to high photocatalytic efficiency [89]. These works con-
firmed the relevant role of graphene, among the carbon-based nanomaterials, in
aqueous colloidal chemistry processes, such as heterogeneous photocatalysis. Thus, in
this chapter, graphene and its derived nanostructures are used as illustrative examples
in the fabrication of carbon-supported metal-sulfides photocatalysts.

Graphene is a 2D material formed by a one-atom-thick planar layer of sp2-hybrid-
ized carbon atoms that resemble a chicken-wire-shaped lattice, presenting outstand-
ing electronic, thermal, and mechanical properties [95]. Graphene is the basic
structural material of graphite, which result from the overstacking of graphene
monolayers via van der Waals forces, resulting in interspaced neighboring layers that
are 0.34 nm far apart [96, 97]. The carbon atoms in each graphene sheet establish
covalent bonds due to the overlapping of trigonal planar sp2 hybrid orbitals. The
overlapping of the perpendicular unhybridized pz orbitals accounts for the
formation of the VB and the CB, respectively composed of filled π orbitals and empty
π* orbitals [98].

The mechanical exfoliation of graphite creates free-standing graphene sheets, as
shown by Novoselov and Geim, who used sequential micromechanical cleavage of
graphite using the “scotch-tape method.” The authors were honored with the Nobel
Prize in Physics in 2004, 6 years later to such an important finding [98, 99]. The direct
exfoliation of bulk graphite produces layers of graphene with good quality and crys-
tallinity, low defect densities, and high conductivity, but frequently, at a low yield
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[100]. As such, graphene layers can be obtained by the chemical exfoliation of a low-
cost raw material bulk graphite, which applied together with selected chemicals pro-
duce graphene and graphene derivatives, such as GO and reduced graphene oxide
(rGO) [100–102]. Although water is a first-choice medium for the production of
graphene-based materials, the hydrophobic nature of pristine graphene sheets tends
to promote their restacking, which makes exfoliation challenging. The use of surfac-
tants during the exfoliation processes has been considered to overcome this limitation
because they allow exfoliated layers to remain suspended and avoid overstacking
[101, 103]. The success of the exfoliation processes is overcoming the van der Walls
forces by increasing the distance between the layers via chemical intercalation. Ide-
ally, to obtain good dispersion of graphene layers, the solvents should have surface
tensions of 40 mJ/m2 [97, 101, 104]. Therefore, graphene can be exfoliated by the
sonication of graphite in dimethylformamide (DMF), N-methyl-2-pyrrolidone
(NMP), pyridine, and perfluorinated compounds [98, 101, 104, 105]. For instance,
Hernandez et al. have used sonication-based exfoliation of graphite in NMP to obtain a
final material containing graphene monolayers (28%) and nanosheets less than six
atomic layers thick, almost in quantitative yield [106]. Commonly used sonication
exfoliation processes involve shear forces and cavitation mechanisms, which involve
the growth and collapse of micrometer-sized bubbles, acting on the bulk material
precursor and causing their exfoliation [97].

GO is composed of sp2 graphene layers with a high content of oxygen-containing
functional groups, such as hydroxyl, epoxy, carboxylic, and carbonyl groups [107].
The UV–visible absorption spectra of GO suspensions show an absorption peak
ascribed to π-π* electronic transitions of aromatic C-C bonds and n-π* transitions of
the oxygen-containing groups, at around 230 nm and 315 nm, respectively [108]. The
aqueous suspensions of GO are normally stable due to the hydrophilic character of
oxygen-containing groups present in the sheets’ surfaces, namely at the edges. Colloi-
dal stability is favored by the electrostatic repulsion that arises due to anionic groups
that form due to extensive proton dissociation in such functional groups, over a
certain pH range. On the other hand, the presence of out-of-planar C-O covalent
bonds increases the interlayer distance from 0.34 to 0.65 nm, therefore decreasing the
energy needed to separate the graphene layers [96, 98, 107]. The hydrophilic nature of
oxidized graphite facilitates water to be adsorbed into its lamellar structure, showing a
further increase in the interlayer distance to 1.15 nm [109]. For instance, the use of
polar solvents (e.g., ethanol, acetonitrile, and dimethyl sulfoxide) allows the prepara-
tion of stable colloids but either flocculation or aggregation occur when nonpolar
organic solvents are used as the dispersing medium [107].

Carbon nanotubes (CNT) are 1D materials formed by graphene sheets rolled
around a common axis, with diameters reaching between 0.5 and 100 nm, and lengths
extending several micrometers or even millimeters [110]. CNT can be single-
(SWCNT) or multi-walled (MWCNT) according to the number of graphene sheets
rolled-up, that is, a single sheet or more than one, respectively. SWCNTs have
diameters in the range of 1–2 nm and MWCNT show typical diameters in the range of
10–100 nm range [111]. Pristine CNT has hydrophobic nature, and their high aspect
ratio favors interparticle van de Waals forces mediated by the outer walls, which
results in a tendency for CNT aggregation [112]. Thus, non-functionalized CNT
dispersed in a liquid medium exists as large bundles, which limit handling and,
consequently, their use in many applications. Usually, mechanical disentanglement of
CNT bundles is achieved by ultrasonication of the respective dispersions in which
shear forces promote the separation of CNT but can also cut such nanostructures.
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Nevertheless, the debundling process depends on the modification of the CNT surface
by using chemical agents that enhance the compatibility of the CNT with the dispers-
ing medium. Hence, surface modifiers, such as surfactants, homopolymers, and block
copolymers, have been used to promote the dispersion of CNT in aqueous environ-
ments. In addition, surface oxidation treatments that result in the presence of carbox-
ylic, hydroxyl, and carbonyl functional groups at the end of the tubes and on their
sidewalls, also allow better dispersions of CNT in water [113].

Powder X-ray diffraction (XRD) has been used to check the crystalline structure of
graphitic materials. Bulk graphite shows a strong Bragg diffraction peak at 26.6°
corresponding to the reflection of (002) planes and associated with an interlayer
distance of 0.34 nm. The oxidation and exfoliation of graphite increase the interlayer
distance changing the peak position of the basal (002) reflection from 26.6 to 11.2°,
which corresponds to an interplanar distance of 0.79 nm, as observed for GO
materials [98].

Raman spectroscopy has been a key instrumental technique to study graphene
materials, such as the surface chemistry of GO and the existence of structural defects.
The Raman spectra of graphitic materials are typically characterized by three distinct
vibrational bands: the G-, D-, and 2D-bands. The G-band is observed around
1580 cm�1 and is ascribed to the in-plane bending mode of the sp2 hybridized carbon
atoms in graphene. In high-quality graphene, this band is very sharp, suggesting its
high crystallinity and non-defect structure. The D-band at around 1350 cm�1 has been
associated with the amount and type of defects in the carbon lattice, for example, the
existence of sp3 hybridization or due to vacancies [114]. The extension of such defects
in the carbon sheet, either at the edges or topological defects, have been monitored by
Raman measurements using such diagnosis band, namely by computing the intensity
ratio between the G- and D-bands [98, 104, 114]. In the Raman spectrum of high-
quality pristine graphene, the D-band is not observed or is very weak, but it is
observed in GO samples due to the presence of different oxygen functional groups in
the carbon sheets. Hence, the D-to-G Raman band intensity ratio provides useful
information on the nature and extension of structural defects that characterize the GO
samples [94]. The 2D band is an overtone of the D-band, resulting from a two-photon
lattice vibrational process. For true single-layer graphene, such a band occurs as a
symmetric feature below 2700 cm�1 [104, 114]. Overstacking of successive layers
results in structures of less symmetry with a Raman shift to higher wavenumbers [98].
For example, in graphite and graphite oxide materials, it is observed a broad band at
about 2800 cm�1. The features of the G and 2D bands are particularly useful in
exfoliation and surface modification laboratorial tasks because are the first indication
for distinguishing between monolayer (or few-layer) graphene and graphite-based
materials. Furthermore, it has been shown that Raman methods applied to GO modi-
fied with metal sulfides are an alternative strategy to probe the surface of
nanocomposite photocatalysts [115].

4. Application of carbon-based semiconductor nanostructures in
photocatalysis

Metal sulfides, such as the binary compounds CdS, Ag2S, Bi2S3, and CuS, have been
referenced in photocatalysis literature as efficient photon harvesters of visible-light
radiation [116]. When supported on graphitic materials, these semiconductors
improve the conductivity for electron capture and transport [51, 117–123]. There are
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several methods of synthesis of metal sulfides coupled to rGO and GO substrates,
which comprise solid-state, sonochemical, microwave irradiation, solvothermal,
and hydrothermal methods [113, 120, 121, 124–138]. Our research group has
developed a single-source method to prepare GO-based composites having supported
metal sulfides. The type of metal sulfide generated in situ is determined by the metal
dialkyldithiocarbamate complex employed as a single-molecule precursor, thus GO-
based nanocomposites of Ag2S, CuS, Bi2S3, and ZnS, are examples of such materials
(Figure 3) [131]. In fact, this method is an extension of the sonochemical method first
developed by Estrada et al. for decorating MWCNT, GO, and graphite with CdS
obtained from the precursor cadmium(II) diethyldithiocarbamate [113].

Although CdS presents serious drawbacks for practical applications due to its well-
known toxicity, research on CdS-based nanomaterials provide helpful insights
concerning the visible-light response and underlying mechanisms in semiconductor
photocatalysis [139]. There are a number of studies reporting visible-light active
heterostructures of CdS/rGO and CdS/GO, which were investigated as photocatalysts
for the degradation of organic dyes [124, 126, 128]. These heterostructures showed
higher photocatalytic efficiency than bare CdS and could be used for up to four cycles,
without loss of activity. For instance, Zhang et al. developed visible-light irradiated
CdS/graphene nanophotocatalysts for the photooxidation of alcohols and reduction of
Cr(VI) ions in water [140]. Multicomponent photocatalysts of TiO2/CdS/rGO have
shown higher photocatalytic activity than TiO2/rGO, for the photodegradation of
RhB, MB, and p-chlorophenol, under visible-light irradiation [141, 142]. Wang et al.
showed that nanocomposites based on heterojunctions of CdS and TiO2 nanoparticles
were efficiently supported on rGO [141]. Such heterostructures prevented CdS
photocorrosion due to the synergy that results from supporting such coupled semi-
conductor nanostructures on rGO (Figure 4). Similarly, the coupling of semicon-
ducting phases, such as TiO2 and CdS or Ag2S, improves photon harvesting and charge
separation and prevents the oxidation of the metal sulfides [142, 143].

Figure 3.
TEM images of heterostructures of graphene oxide decorated with (A) Ag2S, (B) CuS, (C) Bi2S3, and (D) ZnS.
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The semiconductor Bi2S3 absorbs in the visible and NIR spectral range and does not
pose serious toxicity concerns associated with CdS. Wang and coworkers showed that
Bi2S3 immobilized on carbon dots have higher photocatalytic efficiency than their
individual components, by investigating the degradation of MB and tetracycline under
UV-, visible-, and NIR-light irradiation [144]. Khalid et al. synthesized nanorods of
Bi2S3, which showed 87% efficiency in the degradation of Congo red dye, under
UV-light irradiation over 90 minutes [145]. Chen et al. have reported improved
photodegradation of 2,4-dichlorophenol irradiated with visible light in the presence of
Bi2S3/rGO nanocomposites [137]. The authors also found that there is an optimal
loading of Bi2S3 phases on carbon substrates, concluding that for higher contents of
rGO less efficient photocatalytic systems are obtained. Similarly, for Ag2S/graphene, it
was found that the performance of the photocatalyst depended on the relative
amounts of semiconductor and graphene in the nanostructure. The authors have
investigated samples with distinct graphene content (wt%: 2, 4, and 6), showing that
in those conditions, the photodegradation of RhB, occurred most efficiently under
visible-light irradiation in the presence of the sample 4 wt% in graphene [146].

Copper sulfide is a p-type semiconductor with phase-dependent properties; thus,
the band gap energy range between 1.2 and 2.2 eV, depending on the crystalline form
present [147–151]. This is an interesting aspect for photocatalytic applications because
several crystalline phases have been reported for copper sulfide, showing the metal in
distinct oxidation states, such as in chalcocite (Cu2S) and covellite (CuS). Additionaly,
several nonstoichiometric phases (Cu2-xS) have been reported showing compositions
that can be easily varied depending on the experimental conditions [152]. Hybrid
nanostructures composed of copper sulfide and graphene (or graphene derivatives)
show high potential in photocatalysis. For instance, it has been reported that hybrid
nanostructures of CuS/rGO show superior photocatalytic activity as compared to the
single-phase system composed of CuS nanoparticles, for the photodegradation of
organic dyes under visible-light irradiation [121, 153–155] and UV-light irradiation
[156]. El-Hout et al. have reported that CuS/rGO photocatalysts lead to the complete
mineralization of malachite green after 90 minutes, under sunlight irradiation [157].
As previously mentioned, Shi et al. also stated that there is an optimal loading of CuS
on rGO, showing that samples with 20% of rGO have better photocatalytic activity
than samples containing 30% of rGO [120]. This has been explained by the effect on
the stacking of graphene sheets and metal-sulfide particle aggregation, which results
from the presence of a high amount of carbon nanomaterials (rGO or graphene)
employed in the composite structure [155, 158]. Wang et al. have found that the

Figure 4.
The scheme illustrates visible-light photogeneration of oxygen radicals in a hybrid heterostructure composed of CdS
(red)/TiO2(gray) supported on rGO sheets dispersed in an aqueous medium.
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synergistic interaction occurring between graphene and metal-sulfide phases in
CuS/graphene, with an impact on the electronic conductivity of graphene and
CuS/graphene morphology, accounts for the observed stability and photoactivity of
such heterostructures [159]. Matos et al. have synthesized hybrid composites
comprising S-doped graphene decorated with CuS and Fe3O4 semiconductor phases,
which showed higher photocatalytic ability than their individual components in the
photodegradation of 4-nitrophenol, in addition, these photocatalysts could be recov-
ered and reused in subsequent cycles [158].

Although ZnS is a non-absorbing material in the visible range due to its wide band
gap energy (3.66 eV for blende structure and 3.77 eV for wurtzite structure), it has been
found that ZnS coupled to carbon nanomaterials result in hybrid heterostructures with
photocatalytic activity under visible-light irradiation [127, 133, 135]. Hence, Ming et al.
have reported the degradation of ciprofloxacin, MB, and RhB under visible-light irradi-
ation in the presence of ZnS/carbon nanostructures [160]. Also, Chen and Chakraborty
have shown that under UV-light irradiation, the photodegradation of RhB and MO
occurs more efficiently in the presence of the ZnS/graphene and ZnS/rGO
photocatalysts, respectively [136, 161].

5. Conclusions

This chapter provided a concise overview on the use of graphene and
graphene derivatives coupled to nanocrystalline semiconductors of metal sulfides in
heterogeneous photocatalysis. For these applications, pure metal-sulfide nanoparticles
show some limitations, which depending on the semiconductor include limited
harvesting of photons in the visible region, low photocatalytic quantum yield, fast
recombination of photogenerated charge carriers, and photocorrosion. Hence, several
chemical strategies have been reported to improve photoefficiency and performance
of these nanoparticles as photocatalysts. Metal-sulfide phases coupled with graphitic
materials have been employed to prevent the photocorrosion of the chalcogenide
semiconductor and to increase the photocatalytic efficiency of the resultant hybrid
nanostructures. Particularly, graphene (and its derivatives) have shown great merits
in improving the photogenerated charge-carriers separation and migration, also
extending the light absorption range and the adsorption capacity of the
photocatalysts. Furthermore, their use as supporting substrates in aqueous
suspensions also inhibits the agglomeration of the particles, thus keeping exposed a
high surface area to the photoactive semiconductors. The design of graphene-based
materials decorated with metal sulfides as photocatalysts requires the assessment of
the several parameters that might contribute to their performance in specific contexts.
Hence, it has been reported that these hybrid nanostructures show optimal composi-
tional features on the carbon nanomaterial and semiconductor, depending on the
target pollutant and operational conditions. Furthermore, the surface functiona-
lization of graphene materials also plays an important role in the development of
such photocatalysts, namely the content load in the metal sulfide and their defect
structure. Finally, the cost-effective production of graphene-based semiconductor
nanocomposites at a large scale, envisaging their application as photostable and
efficient heterogeneous photocatalysts, is still a great challenge. In the chemical
design of such photocatalysts, eco-friendly up-scale strategies should be also
addressed by researchers, to guarantee its future commercialization for environmental
applications.
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