CHAPTER 13

New Materials for CO₂ Photoreduction

YONG ZHOU*^{a,b}, WENGUANG TU^{a,b}, AND ZHIGANG ZOU*^b

^aKey Laboratory of Modern Acoustics, MOE, Institute of Acoustics, School of Physics, Nanjing University, 22 Hankou Road, Nanjing, Jiangsu 210093, P. R. China; ^bNational Laboratory of Solid State Microstructures, School of Physics, Ecomaterials and Renewable Energy Research Center (ERERC), Jiangsu Key Laboratory for Nano Technology, Nanjing University, 22 Hankou Road, Nanjing, Jiangsu 210093, P. R. China *E-mail: zhouyong1999@nju.edu.cn, zgzou@nju.edu.cn

13.1 Introduction

It is well-established that superabundant CO_2 emission in the atmosphere is a main cause of the global warming. The atmospheric CO_2 concentration continues to rise from the ongoing burning of fossil fuels. The rapid consumption of fossil fuel and the increase of greenhouse gas emissions have brought an urgent demand for the development of renewable and clean energy sources. Several approaches have been pursued to tackle the challenges. The idea of mimicking the overall natural photosynthetic cycle of chemical conversion of CO_2 into useful fuels is gaining increasing attention.¹ The natural photosynthesis in green plants directly converts sunlight into chemical energy along with the formation of O_2 and carbohydrates from H_2O and CO_2 , which produces a readily usable carbon source and an aerobic atmosphere to achieve a nature carbon neutral cycle simultaneously.

RSC Energy and Environment Series No. 14

Photocatalysis: Fundamentals and Perspectives

Edited by Jenny Schneider, Detlef Bahnemann, Jinhua Ye, Gianluca Li Puma,

and Dionysios D. Dionysiou

[©] The Royal Society of Chemistry 2016

Published by the Royal Society of Chemistry, www.rsc.org

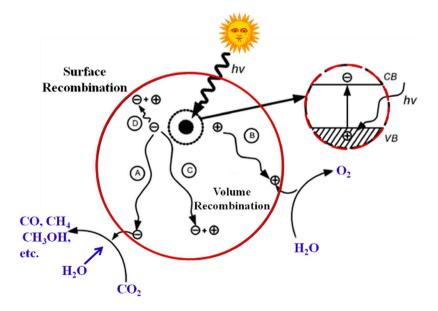
Solar to chemical energy conversion based on artificial photosynthesis is a silver bullet solution to impact the global energy balance and greenhouse gas emissions. Solar energy is a cost-free, abundant, and reliable power supply. Earth receives about 100000 TW of solar power at its surface, and enough energy every hour to supply humanity's energy needs for a year.² As one of the artificial photosynthesis technologies, photocatalytic reduction of CO_2 into hydrocarbon fuels using solar energy is one attractive approach for migrating CO₂ emission and generating useful fuels at the same time with the following advantages: (1) it could be carried out under relatively mild conditions - room temperature and pressure; (2) this process uses a mass of abandoned CO₂ as a feedstock for making fuels and chemicals driven by inexhaustible and clean solar energy; (3) the carbon neutral renewable energy and chemicals generated from CO₂ photoreduction can be stored and used when required, such as CH₄, CH₃OH, C₂H₆, and so on; (4) this technology can realize a global carbon neutral cycle via the reduction and/or fixation of CO₂ as carbon-neutral energy sources to support a high quality of life for eternity.

Semiconductor material, as an artificial leaf, plays an important role in the development of photocatalytic reduction of CO_2 into hydrocarbon fuels. In 1979, Inoue *et al.* initially proposed that semiconductor photocatalysts such as TiO₂, ZnO, CdS, and SiC suspended in CO_2 saturated water could photoreduce CO_2 to organic compounds such as CO, CH_4 , CH_3OH , HCOOH, or others.³ Since then, intense research has been performed on TiO₂ for CO_2 photoreduction owing to its low cost, effectiveness, nontoxicity, and chemical stability. The CO_2 photoreduction efficiency is primarily determined by the thermodynamic and kinetic balance of light-harvesting, charge carrier generation and separation, and catalytic reaction on the material surface.⁴ Since photocatalysis is a surface/interface-reaction process, the rapid development of nanotechnology leads to remarkable progresses in the field of CO_2 photoreduction including the development of semiconductor materials, the design of photocatalysts with different nano-architectures, and the experimental and theoretical research into the reaction mechanism.^{4,5}

Although earlier reviews generally introduce the concept of artificial photosynthesis,^{6–20} this chapter begins with a brief description of the basic principles of photocatalytic reduction of CO_2 and then aims to cover state-of-the-art research activities in designing new photocatalytic materials from the point of light harvesting, adsorption of reactants, charge separation and transport, and CO_2 activation.

13.2 Basic Principles of Photocatalytic Reduction of CO₂

In terms of chemistry, the ultimate goal of photocatalysis is to drive a redox reaction with the assistance of electron-hole pairs generated by light in the presence of semiconductors, during which the excited electrons and holes serve as strong reducing agent and oxidant, respectively, to convert solar energy into chemical energy.²¹ Carbon dioxide shows no light absorption in the ultraviolet (UV)-visible region (200–800 nm). Photocatalytic reduction of CO_2 with H_2O into hydrocarbon fuels such as CH_4 and CH_3OH is an uphill reaction with a highly positive change in Gibbs free energy:


$$CO_2 + 2H_2O \rightarrow CH_3OH + 3/2O_2 (\Delta G^0 = 702.07 \text{ kJ mol}^{-1})$$

and:

$$CO_2 + 2H_2O \rightarrow CH_4 + 2O_2 (\Delta G^0 = 818.17 \text{ kJ mol}^{-1})$$

Thus, input energy is demanded to overcome these reaction barriers with the assistance of photocatalysts. Figure 13.1 depicts the basic mechanism of the photocatalytic CO_2 reduction. Firstly, under light illumination, a flux of photons absorbed by the semiconductor excites electrons from the valence band (VB) to the conduction band (CB), leaving an equal numbers of holes in the VB; secondly, the excited electrons and holes separate from each other and migrate to the semiconductor surface; finally, the electrons reduce CO_2 into hydrocarbon fuels such as CO, CH_3OH , and CH_4 in the presence of H_2O , while the holes oxidize H_2O . The overall efficiency of photocatalytic reduction of CO_2 is determined by the balance of thermodynamics and kinetics of these processes.

To achieve overall CO_2 photoreduction, the energy requirements imply that the bottom of the CB must be located at a more negative potential than CO_2 reduction potentials, while the top of the VB must be positioned at a more positive potential than H₂O oxidation potential (eqn (13.1)). Eqn (13.2)–(13.6) list the CO₂ reduction potentials *versus* the NHE at pH 7 to afford COOOH,

Figure 13.1 Illustration of the processes involved in CO₂ photoreduction with H₂O on the semiconductor surface.

CO, HCHO, CH₃OH, and CH₄, respectively. Obviously, a series of different products (*e.g.*, CO, CH₃OH, HCHO, and CH₄) could be formed over various photocatalysts, which is decided by the number of electrons and protons (e^-/H^+) involved in chemical reactions. Two protons and two electrons are needed in HCOOH formation, while CH₄ formation occurs by reaction with eight electrons and eight protons. The selectivity of product formation is one of the significant problems in CO₂ photoreduction process, which may be influenced by reaction conditions and thermodynamic reduction potentials:

$$H_2O \rightarrow 1/2O_2 + 2H^+ + 2e^-$$
 ($E_{redox}^0 = 0.82 \text{ V} \nu s. \text{ SHE}$) (13.1)

$$CO_{2} + 2e^{-} + 2H^{+} \rightarrow HCOOH \qquad (E^{0}_{redox} = -0.61 \text{ V} \text{ vs. SHE}) \qquad (13.2)$$

$$CO_{2} + 2e^{-} + 2H^{+} \rightarrow CO + H_{2}O \qquad (E^{0}_{redox} = -0.53 \text{ V} \text{ vs. SHE}) \qquad (13.3)$$

$$CO_{2} + 4e^{-} + 4H^{+} \rightarrow HCHO + H_{2}O \qquad (E^{0}_{redox} = -0.48 \text{ V} \text{ vs. SHE}) \qquad (13.4)$$

$$CO_2 + 6e^- + 6H^+ \rightarrow CH_3OH + H_2O \quad (E^0_{redox} = -0.38 \text{ V} \nu s. \text{ SHE})$$
 (13.5)

$$CO_2 + 8e^- + 8H^+ \rightarrow CH_4 + H_2O$$
 ($E^0_{redox} = -0.24 \text{ V} \nu s. \text{ SHE}$) (13.6)

For any given photocatalytic material it is necessary to evaluate the efficiency of CO_2 photoreduction. The efficiency of CO_2 photoreduction is usually measured directly from the rate of production evolution, which is indicated with a unit such as μ mol g⁻¹ h⁻¹ or ppm g⁻¹ h⁻¹. Since the photocatalytic activity of CO_2 photoreduction depends on the experimental conditions such as a light source and the type of a reaction system, the activities cannot be compared with each other if the reaction conditions are different.^{14,18} Moreover, it is not easy to compare the efficiency of different samples when two or more kinds of different products are obtained from CO_2 photoreduction. Therefore, it is fairer to measure the apparent quantum yield (AQY), as defined by eqn (13.7):

$$AQY(\%) = \frac{\sum_{i} n_{i} m_{i}}{\text{Number of incident photons}} \times 100$$
(13.7)

Here n_i and m_i signify the number of electrons for the generated production and the molecular number of generated production, respectively. For example, the generation of one CH₄ molecule will consume eight electrons, so n = 8. The solar energy conversion efficiency is usually used for evaluation of solar cells. Sometimes, the solar energy conversion efficiency (eqn (13.8)) is used for CO₂ photoreduction:

Solar energy conversion
$$(\eta)(\%) = \frac{\text{Out energy of production}}{\text{Energy of incident light}} \times 100$$
 (13.8)

Activated CO_2 is probably an important species in photoreduced CO_2 reactions. The activation of stable CO_2 initiates multistep reactions for CO_2 reduction, which likely involves one-electron transfer to CO_2 to generate CO_2 .⁻⁻ species, which is the electron attached state of CO_2 .^{10,22,23} However, the transfer of one electron to free CO_2 is unfavorable thermodynamically, because the high LUMO level of CO_2 leads to a very negative redox potential

for this process of $CO_2 + e^- \rightarrow CO_2^{--} (E^0_{redox} = -1.90 \text{ V}, \nu s. \text{ NHE})$, which has been proved by scanning tunneling microscopy (STM) experiments.^{24,25}

It has been revealed in experiment and theoretical research that the surface sites of semiconductors play an important role in CO₂ activation, especially Ti³⁺ sites on TiO₂ surfaces and oxygen vacancy defects.²⁶⁻³⁰ The interaction between CO₂ and surface sites of semiconductors lowers the barrier for one-electron transfer into absorbed CO₂. Oxygen vacancy defects on a TiO₂ surface are more effective for CO₂ activation than a stoichiometric TiO₂ surface.²⁶ The CO₂ molecules prefer to adsorb at oxygen vacancy defects. A missing oxygen atom of the CO₂ located at bridging oxygen vacancy defects. A missing oxygen atom would leave two extra electrons at the site of the vacancy, which reduce the adjacent two surface Ti⁴⁺ sites to Ti³⁺, creating surface electron centers for the formation of the negatively charged CO₂⁻⁻ species. The Ti³⁺ sites on TiO₂ surfaces are, owing to the much higher reactivity of the charge transfer excited states, proposed to interact with absorbed CO₂ to form CO₂⁻⁻ species.^{26,31}

Carbon dioxide photoreduction demands input energy to break a C=O bond and form a C-H bond, involving the participation of multiple electrons and a corresponding number of protons.¹⁷ Methane (CH₄) is one of most obtained products during the process of photocatalytic reduction of CO₂ in the presence of H₂O vapor. Two plausible pathways for CH₄ yield are suggested:

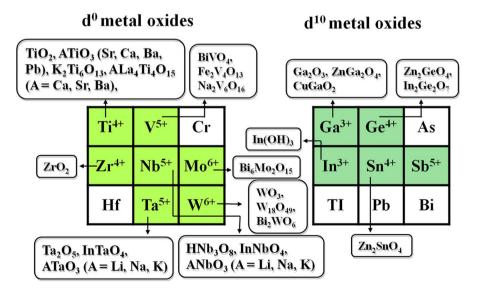
$$(1) \operatorname{CO}_2 \to \operatorname{CO} \to \operatorname{C}^{\bullet} \to \operatorname{CH}_2 \to \operatorname{CH}_4$$

and:

$$(2) \operatorname{CO}_2 \to \operatorname{HCOOH} \to \operatorname{HCHO} \to \operatorname{CH}_3\operatorname{OH} \to \operatorname{CH}_4$$

The second pathway was initially put forward by Inoue *et al.* in 1979;³ they thought that each step in the pathways needs two electrons to take part in the chemical reactions. However, understanding of processes of CO_2 photoreduction is still in its infancy due to complex multi-electron transfer processes.

13.3 Materials for CO₂ Photoreduction


It is known that the rapid development of nanotechnology offers significant impact on the progress of semiconductor photocatalysis including the development of semiconductor materials and the design and construction of photocatalysts with different nano-architectures. Until now, developed semiconductor materials for CO_2 photoreduction include, but are not limited to, metal oxides, metal sulfides, nitrides, and phosphides.

13.3.1 Metal Oxides with d⁰ and d¹⁰ Electronic Configurations

Most metal oxides are composed of metal cations with d⁰ (Ti⁴⁺, Zr⁴⁺, Nb⁵⁺, Ta⁵⁺, V⁵⁺, Mo⁶⁺, W⁺⁶) and d¹⁰ (In³⁺, Ga³⁺, Ge⁴⁺, Sn⁴⁺, Sb⁵⁺) configurations; the d⁰ transition metal ions have a vacant d orbital and d¹⁰ metal ions have a completely occupied d orbital. Figure 13.2 shows metal oxides consisting of d⁰ and d¹⁰ metal cations as photocatalysts for CO₂ photoreduction.

The metal oxides with octahedrally coordinated d⁰ electronic configuration include titanates [TiO₂,^{3,10,22,32-151} ATiO₃ (A = Sr, Ca, Ba, Pb),^{28,152-155} K₂Ti₆O₁₃,^{156,157} ALa₄Ti₄O₁₅ (A = Ca, Sr, Ba)¹⁵⁸], vanadates (BiVO₄,¹⁵⁹ Fe₂V₄O₁₃¹⁶⁰), ZrO₂,¹⁶¹⁻¹⁶⁴ niobates [HNb₃O₈,^{165,166} InNbO₄,¹⁶⁷ ANbO₃ (A = Li, Na, K)¹⁶⁸⁻¹⁷³], Bi₆Mo₂O₁₅,¹⁷⁴ tantalates [Ta₂O₅,^{175,176} InTaO₄,¹⁷⁷⁻¹⁸¹ ATaO₃ (A = Li, Na, K)¹⁸²], and tungstates (WO₃,^{183,184} W₁₈O₄₉,³⁰ Bi₂WO₆^{185,186}). The CB bottom of the d⁰ binary metal oxide photocatalysts (such as TiO₂, ZrO₂, Ta₂O₅, WO₃, and so on) is usually composed of d orbitals, while the VB top consists of O 2p orbitals. The potential of VB for binary metal oxides is normally located about 3 eV *vs*. NHE,¹⁸⁷ which allows photogenerated holes with strong oxidation ability for H₂O oxidation thermodynamically. For partial d⁰ ternary metal oxides, alkali (Li, Na, K, Rb, Cs), alkaline earth (Mg, Ca, Sr, Ba), and transition metal ions (Y, La, Gd) simply construct the crystal structure as A site cations in perovskite compounds, but do not directly contribute to the energy band structure of these compounds. For other partial d⁰ ternary metal oxides, orbitals of Pb 6s in Pb²⁺ and Bi 6s in Bi³⁺ can also contribute to the positioning of low energy d or s orbitals into VB.¹⁸⁷

Since 2001, Inoue's group have developed p-block metal oxides with d^{10} (In³⁺, Ga³⁺, Ge⁴⁺, Sn⁴⁺, Sb⁵⁺) electronic configuration to form a group of photocatalysts for water splitting. Compared to vacant d orbital in d⁰ metal ions, d¹⁰ metal ions have a completely occupied d orbital. Recently, d¹⁰ metal oxides have drawn considerable attention for CO₂ photoreduction (Figure 13.2), including In(OH)₃,¹⁸⁸ gallates (Ga₂O₃,^{189–191} ZnGa₂O₄,^{192,193} CuGaO₂,¹⁹⁴), stannates (Zn₂SnO₄,¹⁹⁵), and germinates (Zn₂GeO₄,^{196–199} In₂Ge₂O₇,²⁰⁰). In contrast to d orbitals in the CB of d⁰ metal oxides, the CB of d¹⁰ metal oxides consists of s and p hybrid orbitals of d¹⁰ metal ions, resulting in a large dispersion in k-space on the band.²⁰¹ The well dispersed bands result in high mobility of photogenerated electrons.

Figure 13.2 Metal oxides with d^0 (yellow) and d^{10} (green) electronic configuration as recent photocatalysts for CO₂ photoreduction.

 Zn_2GeO_4 and $ZnGa_2O_4$ have been developed for CO_2 photoreduction in the last few years. The VB of Zn₂GeO₄ is formed by the hybridization of Zn 3d and O 2p orbitals. This p-d repulsion (e.g., O 2p-Zn 3d) shifts the VB maximum upwards without affecting the conduction band minimum. The CB bottom of Zn₂GeO₄ is composed of the Ge 4p orbital with a small contribution of Zn 4s4p orbitals. A willemite crystal structure of Zn2GeO4 consists of tetrahedral GeO_4 and ZnO_4 , where one tetrahedral GeO_4 and two kinds of tetrahedral ZnO_4 are combined with each other through the edge oxygen (Figure 13.3). Interestingly, the heavy distortion of GeO₄ tetrahedron generates a dipole moment of 1.6 D inside, and this local electric field is beneficial for electron-hole separation upon photoexcitation.²⁰² Thus, tetrahedral GeO₄ is a main unit of the photocatalytic active site, although the ZnO₄ unit influences the geometric and electronic structures of GeO_4 . For $ZnGa_2O_4$, the VB is primarily derived from Zn 3d and O 2p orbitals, whereas the CB is formed by hybridization of Ga 4s4p and Zn 4s4p orbitals (Figure 13.3). A cubic structure of $ZnGa_2O_4$ is composed of GaO_6 octahedra and ZnO_4 tetrahedra. The GaO_6 octahedral unit in $ZnGa_2O_4$ also exists as a major photocatalytic active site.²⁰³ Due to the large bandgap of Zn_2GeO_4 (4.5 eV) and $ZnGa_2O_4$ (4.4 eV), these metal oxides for CO₂ photoreduction only utilize UV light. Nitridation of Zn_2GeO_4 and $ZnGa_2O_4$ under NH₃ flow produces $(Zn_{1+r}Ge)(N_2O_r)$ and $(Ga_1 - _rZn_r)(N_1 - _rO_r)$ solid solutions, respectively. These solid solutions possess a suitably narrow bandgap of about 2.2-2.7 eV. The VB top of these solid solutions is made up of O 2p, N 2p, and Zn 3d orbitals. The p-d repulsion of N 2p and Zn 3d orbitals raises the VB top and therefore decreases the bandgap.

13.3.2 Metal Sulfides and Phosphides

Metal sulfides such as MnS, CdS, and ZnS have been applied for CO_2 photoreduction in various solvents.^{3,204-214} The CB of these binary metal sulfides is composed of d orbitals, while the VB is formed by S 3p orbitals. Since S 3p orbitals have atomic orbitals with a potential energy higher than that of O 2p orbitals, the VB of metal sulfides shifts upward compared to their oxide analogues. Thus, the CB of these binary metal sulfides has a more negative potential, which is more favorable for CO_2 photoreduction. The major

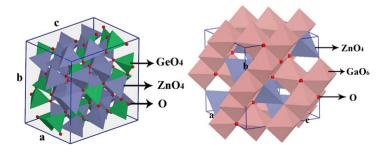


Figure 13.3 Schematic structural models of (left) Zn₂GeO₄ and (right) ZnGa₂O₄.

problem in CO₂ photoreduction process is that photocorrosion damages the stability of the photocatalysts under light illumination, owing to the oxidation of S²⁻ in lattices by photogenerated holes (XS + 2h⁺ \rightarrow X²⁺ + S). However, these metal sulfides can show efficient activity for CO₂ photoreduction, when hole scavengers exist such as S²⁻, SO₃²⁻. The Cu_xAg_yIn_zZn_kS solid solutions could undergo photocorrosion under visible light irradiation without the assistance of hole scavengers.²¹⁵ Partial metal sulfides (PbS, Bi₂S₃) with a narrow bandgap have been used as photosensitizers for CO₂ photoreduction. Cu₂ZnSnS₄ modified with a metal-complex electrocatalyst has served as photocathode for highly selective photoelectrochemical CO₂ reduction.²¹⁶

The p-type phosphides, especially $InP^{217-219}$ and p-GaP,²²⁰ are mainly used as photocathodes to achieve photoelectrochemical CO₂ reduction. GaP is a p-type semiconductor with a narrow band gap of 2.3 eV. One of the earliest works, reported by Halmann in 1978, achieved photoelectrochemical reduction of aqueous CO₂ by using p-type GaP cathode as a photocathode in liquid junction solar cells.²²¹ Recently, a p-GaP semiconductor was used as electrode in a photoelectrochemical cell to reduce CO₂ to methanol with near 100% faradic efficiency at underpotentials greater than 300 mV below the standard potential of -0.52 V vs. SCE in our system with a pH of 5.2.

13.3.3 Other Materials

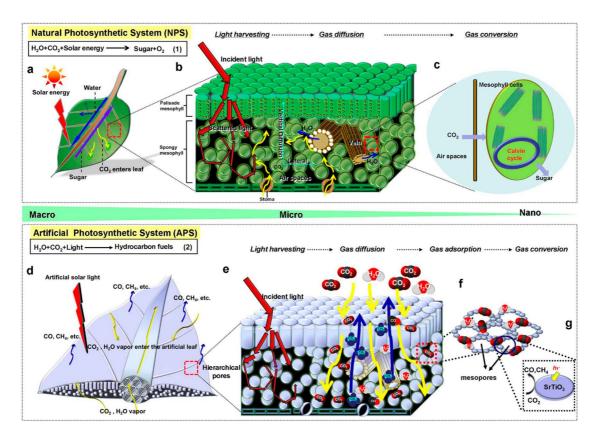
SiC has received attention for CO₂ photoreduction, because the CB potential of SiC is more negative than those of other photocatalysts (GaP, CdS, TiO₂, WO₃), resulting in the much stronger reductive power of photogenerated electrons in SiC.^{3,222,223} Recently, layered double hydroxides (LDHs) such as Zn–Al LDH,²²⁴ Mg–In LDH,²²⁵ and Zn–Cu–Ga LDH^{224,226} have been utilized for CO₂ photoreduction. The versatility of the LDH structure allows tuning of the compositions of metal cations, charge balancing anions, and hydroxyl layer, which can adjust the adsorptive power of CO₂, tolerance of water, and active sites. However, the poor chemical stability of LDH destroys the photocatalytic performance of CO₂ photoreduction. Polymeric graphite phase carbon nitride (g-C₃N₄), as a metal-free polymeric material, is considered to be a promising visible-light-driven photocatalyst for CO₂ photoreduction, because it possesses very high thermal and chemical stability.^{227,228} The surface-modified small carbon nanoparticles (average diameter ~9 nm) decorated with Au or Pt nanoparticles have showed photocatalytic activity for CO₂ photoreduction.²²⁹

13.4 Strategies for Designing Effective Photocatalytic Materials

Since the nature of surface/interface chemistry is one of the key issues for semiconductor photocatalysis, a series of characteristic properties of materials have a direct impact on the CO_2 conversion efficiency, including the surface area, pore structure, exposed crystal facets, surface defects, and so on.

Moreover, strategies such as cation or anion doping, solid solution formation, sensitization, and construction of heterojunction structures can tune the bandgap and band edge positions of photocatalysts. This section introduces research activities in designing new photocatalytic materials from the point of view of adsorption of reactants, light harvesting, charge separation and transport, and CO_2 activation.

13.4.1 Surface Sites for Reactant Adsorption and Chemical Reaction


The surface structure of a nanomaterial affects its physicochemical properties, such as the adsorption of reactant, susceptibility of photocatalyst toward photocorrosion, and surface energy. The surface area, pore structure, exposed crystal facets, and surface defects show significant impact on the activity of CO_2 photoreduction.

13.4.1.1 Porous Structure with Large Surface Area

A large surface area can increase the adsorption of reactants (*e.g.*, CO_2 , H_2O) and also supply abundant surface active sites for chemical reaction. According to an IUPAC definition, porous materials are classified into three major categories depending on their pore sizes: microporous materials with pore sizes below 2 nm, mesoporous materials with pore sizes between 2 and 50 nm, and macroporous materials have attracted considerable attention in the field of CO_2 photoreduction, due to the specific surface area, ordered pore structure, and readily accessed channels.

To date, a limited number of routes including evaporation-induced self-assembly and nonaqueous solvent methods have been developed to synthesize mesoporous metal oxides. In these routes, surfactant molecules or a template is generally introduced to construct mesoporous structures. Maintaining mesoporous structures during removal of the templates is a key process for obtaining the expected structures. Ordered mesoporous CeO_2 -TiO₂ composites with 2D hexagonal structure and hierarchical porosity for CO_2 photoreduction were synthesized through evaporation-induced self-assembly using ordered mesoporous SBA-15 as template.¹¹⁰

Natural leaves have demonstrated the perfect assembly of hierarchical levels of porosity into 3D elaborated architectures with high porosity, high connectivity, and high surface area. Ye *et al.* utilized the 3D hierarchical architecture of a leaf as an ideal parent template to fabricate perovskite titanates (ATiO₃, A = Sr, Ca, and Pb) with hierarchical anatomy from macro- to nanoscales for CO₂ photoreduction (Figure 13.4).¹⁵⁴ This method converts the morphological elements of the natural photosynthetic system into artificial photosynthetic system, including: (1) unique 3D architecture for enhanced light harvesting; (2) efficient mass flow network with 3D multiple-scaled

Figure 13.4 Schematic illustration and comparison of the key processes in a natural photosynthetic system (NPS) and an artificial photosynthetic system (APS). (a) Basic process of photosynthesis in NPS at the macroscale. (b) Light harvesting and gas diffusion processes in NPS at the microscale. (c) Gas conversion process in mesophyll cells at the nanoscale. (d) Basic process of artificial photosynthesis in APS at the macroscale. (e) Light harvesting and gas diffusion processes in APS at the microscale. (f) Gas adsorption process in APS at the nanoscale. (g) Gas conversion process in APS at the nanoscale.¹⁵⁴

nloaded from http://books.rsc.org/books/edited-volume/chapter-pdf/1516853/bk9781782620419-00318.pdf by Indian Institute of Technology Madras user on 07 June 2

327

hierarchical porosity to suffer minimum gas diffusion; and (3) high surface areas for improved overall reaction performances. This general method for the construction of 3D architectures of perovskite titanates (ATiO₃, A = Sr, Ca, and Pb) can be extended to other multi-metallic oxides. A series of alkaline tantalates (MTaO₃, M = Li, Na, K) with hierarchical porous anatomy for CO₂ photoreduction were fabricated using activated carbonized tree trunks as templates.²³⁰ Mesoporous β -Ga₂O₃ with an average pore size of 3.8 nm realized enhanced activity for CO₂ photoreduction into CO and CH₄ compared with that of commercial β -Ga₂O₃, due to higher surface area and mesoporous channels for efficient CO₂ adsorption.¹⁹⁰

Metal–organic frameworks (MOFs) are a class of crystalline micro/mesoporous hybrid materials with an extended 3D network, which is constructed by metal ions or small discrete clusters through the linkage of multidentate organic molecules.¹⁷¹ Zeolitic imidazolate frameworks (ZIFs), as a type of MOF, have excellent chemical and thermal stability, and structural stability in water. $Zn_2GeO_4/ZIF-8$ hybrid nanorods containing 25 wt% ZIF-8 exhibited 3.8-times higher dissolved CO_2 adsorption capacity than bare Zn_2GeO_4 nanorods, resulting in a 62% enhancement in CO_2 photoreduction into liquid CH_3OH fuel.

In recent years, a simplified soft-chemistry route based on a reactive template has been developed to allow the synthesis of pure mesoporous semiconductors to proceed at room temperature without requiring the introduction or removal of a template. Mesoporous $ZnGa_2O_4$ with a wormhole framework was prepared by an ion-exchange reaction at room temperature involving a mesoporous $NaGaO_2$ colloid precursor, which does not require the introduction of morphology controlling agents.¹⁹² Significantly, this method can be extended to prepare $ZnGa_2O_4$ nanocubes¹⁹³ and other porous materials, such as $CoGa_2O_4$,¹⁹² $NiGa_2O_4$,¹⁹² Zn_2GeO_4 ,^{198,231} zinc gallogermanate solid solution,²³² and Bi_2WO_6 .¹⁸⁶ Mesoporous $ZnGa_2O_4$ with 1 wt% RuO₂ co-catalyst showed higher activity for CO_2 photoreduction into CH₄ than that obtained by solid-state reaction (ss-ZnGa₂O₄), owing to strong gas adsorption by the mesostructure and more reaction sites arising from a high specific surface area.¹⁹²

13.4.1.2 Optimized Surface Reactivity via Facet Engineering

The photocatalytic activity and selectivity of semiconductors are inherently determined by the surface atomic structure tuned *via* crystal facet engineering, because the surface atomic arrangement and coordination affect physicochemical properties of semiconductors such as surface energy, surface active site, and electronic band structure.²³³ Due to the minimization of surface energy during crystal growth, anatase TiO₂ under equilibrium conditions is dominated by the thermodynamically stable {101} facets (up to 94%) and few {001} facets, no {100} facet will appear, owing to the Wulff construction and theoretically calculated surface energy ({101} (0.44 J m⁻²) < {100} (0.53 J m⁻²) < {001} (0.90 J m⁻²)).^{234,235} Anatase TiO₂ crystals with ~47% exposed {001} facets were fabricated using hydrofluoric acid (HF) as morphology controlling

agent.²³⁶ It revealed that the formation of high F-Ti bonding energy significantly lowers the energy of the (001) surfaces, making them more stable than (101) surfaces in the reaction media. The yield of CH₃OH formation was much higher on TiO₂ (100) than on TiO₂ (110), while the formation of CH_4 was only observed on $TiO_2(100)$ and not on $TiO_2(110)$, revealing that the exposed crystal facets play important role in photocatalytic reactivity and selectivity.^{237,238} Hollow anatase TiO_2 single crystals with dominant {101} facets featuring the use of F/PO_4^{3-} as morphology controlling agent showed improved activity for photoreduction of CO₂ into CH₄ compared with solid anatase TiO₂ single crystals, due to shortened diffusion length of carriers and increased surface area.⁹⁸ The $\{100\}$ facets have 100% five-coordinated Ti (Ti_{5c}) atoms in contrast to {101} facets with only 50% Ti_{5c} atoms, because Ti_{5c} atoms can act as active sites in the photocatalytic reaction.²³³ TiO₂ ultrathin nanosheets with 95% of exposed {100} facet exhibited significantly higher photocatalytic activity for reduction of CO₂ into CH₄ compared with TiO₂ cuboids with 53% of exposed {100} facet, because the higher percentage of exposed {100} facets and larger surface area offer more active sites (Ti_{5c} atoms) in the photocatalytic reaction.¹¹¹ A {010} with a surface energy of 0.53 J m⁻² has the same 100% Ti_{5c} atoms as $\{100\}$ ⁸⁹ Theoretically, H₂O molecules at low coverage can be dissociatively adsorbed on the (010) surface with 100% Ti_{5c} atoms, while the H₂O molecules can only be molecularly adsorbed on (101).²³⁹ Furthermore, the interaction of CO_2 on the (010) is predicted to be stronger than that on both (101) and (001).²⁴⁰ Therefore, acquiring a high percentage of {010} facets is of great significance in optimizing the photocatalytic activity of anatase TiO_2 . Single crystalline anatase TiO_2 rods with dominant reactive {010} facets showed a superior photocatalytic conversion of CO₂ into CH₄ compared to benchmark P25 TiO₂ nanocrystals.⁸⁹

Recently, $ZnGa_2O_4$ nanocubes with {100} facets were prepared *via* an ion-exchange process using the GaOOH single crystal nanoplate as a precursor without requiring the introduction of morphology controlling agents.¹⁹³ $ZnGa_2O_4$ nanocubes with exposed {100} facets exhibited improved performance in the photocatalytic reduction of CO_2 into CH_4 under UV-vis light irradiation, compared with mesoporous $ZnGa_2O_4$ that has a larger specific surface area than that of $ZnGa_2O_4$ nanocubes. Theoretical calculations indicates that the light-hole effective mass on the {100} facets of $ZnGa_2O_4$ corresponds to the high hole mobility, which contributes to efficient H_2O oxidation to offer the protons for promoting CO_2 reduction into CH_4 . Single crystal Zn_2GeO_4 nanorods with dominant (110) crystal face were also prepared by an ion-exchange process of mixing Na_2GeO_3 and $Zn(CH_3COO)_2$ solutions, which exhibited improved photocatalytic activity for CO_2 reduction, owing to the high specific surface area and dominant (110) crystal facet.¹⁹⁷

Exposed facet engineering can adjust the electronic band structures of semiconductors.¹⁸³⁻¹⁸⁵ A single-crystal WO₃ ultrathin nanosheet ~4–5 nm thick, corresponding to six repeating unit cells of monoclinic WO₃ along the *c*-axis, was synthesized with laterally oriented attachment of tiny WO₃ nanocrystals formed using a solid–liquid phase arc discharge route in an aqueous

solution.¹⁸³ In accordance with the reported dimensions, no quantum confinement is expected in the lateral direction, whereas the structures should be strongly confined vertically due to their extremely small thickness. This WO₃ ultrathin nanosheets with dominantly exposed {001} facets exhibited enhanced performance for photocatalytic reduction of CO₂ into CH₄ under visible light irradiation, because size-quantization effects in this ultrathin nanostructure alter the WO₃ band gap. Moreover, theoretical calculations indicate that exposure of the {001} crystalline facet of the well-defined Bi₂WO₆ nanoplate gives a particularly reactive surface energetically favoring the reduction of CO₂.¹⁸⁵

13.4.1.3 Surface Modification

Because photocatalytic redox reactions take place on the surface, modification of the semiconductor surface can affect the physicochemical properties for the CO₂ photoreduction. The surface chemistry of CO₂ demonstrated that adsorption of CO₂ molecules on the semiconductor surface is usually accompanied with activation processes. Compared with the normal molecule, CO₂ in a chemisorbed state (mainly carbonate and/or CO²⁻ anion) has a lower LUMO level with a bent O-C-O bond angle, which favors charge transfer from photo-excited semiconductors to the adsorbed CO₂ molecules.¹⁰ The nonlinear CO₂ molecules generated on the surface of solid bases are more destabilized than the linear CO₂ molecules, showing high reactivity for CO₂ photoreduction. Amine groups on the semiconductor surfaces can promote CO₂ capture, because the chemical interactions between amine groups and CO_2 result in formation of carbamate (or bicarbamate) that can transform into carbonate upon hydrolysis. Amine-functionalized TiO₂ nanoparticles were prepared by a simple solvothermal process with monoethanolamine and TiCl₄ as starting materials; these nanoparticles show substantially increased affinity for CO₂ on TiO₂ surfaces for more effective CO₂ activation.²⁴¹ The amine groups enable C-N bonding with CO₂ to form activated CO₂ molecules and efficient charge transfer between CO₂ molecules and TiO₂, significantly enhancing the photocatalytic rate of CO₂ reduction into CO and CH₄. Similarly, surface modification of TiO₂ with NaOH was found to be an effective way for CO₂ adsorption, activation, and high efficiency for CO₂ photoreduction into CH₄.¹⁴⁹ Optimized loading of NaOH kept a good balance between CO₂ chemisorption quantity and BET surface area of TiO₂.

A thin Nafion overlayer on Pd–TiO₂ significantly increased photocatalytic activity for CO₂ reduction into CH₄ and C₂H₆ under UV and solar light.⁹⁹ The Nafion layer enhances the local proton activity within the layer to facilitate multi-electron transfer reactions, during which the production of C₂H₆ requires even more protons and electrons than that of CH₄. Moreover, various intermediates involved in the formation of C₂H₆ can be stabilized in the Nafion layer and the re-oxidation of CO₂ reduction products could be inhibited.

13.4.1.4 Surface Oxygen Vacancy

Oxygen vacancy defects play an important role in the adsorption and activation of CO₂ (as discussed in Section 13.2). Recently, ultrathin $W_{18}O_{49}$ nanowires (0.9 nm in diameter) with a large number of oxygen vacancies were prepared by a very simple one-pot solution-phase method, which showed strong light absorption from the visible to the near-infrared region.³⁰ Oxygen vacancy-rich ultrathin $W_{18}O_{49}$ nanowires showed an excellent capability of selective reduction of CO₂ into CH₄ under visible light irradiation ($\lambda > 420$ nm) because oxygen vacancies provide reductive sites for CO₂ adsorption and reduction. Oxygen vacancies were fully consumed after irradiation for 90 h, but could be easily recovered by utilizing the strong reducing power of NaBH₄. Self-doped SrTiO₃₋₆ upon treatment in Ar at temperatures from 1200 to 1400 °C showed increasing photocatalytic activity for CO₂ reduction under visible light irradiation ($\lambda > 420$ nm), due to the increasing concentration of surface oxide vacancies with increasing heating treatment.²⁸ The oxygen vacancies and Ti³⁺ together induce an in-gap band to enhance visible light absorption. The sample at 1300 °C realized the highest photocatalytic activity for CO₂ reduction with a quantum efficiency of 0.21% at 600 nm. Higher temperature treatment, at 1400 °C, damaged the photocatalytic activity, owing to the disorder of atom arrangement and the loss of crystallinity at the relatively high temperature. Similar phenomenon for CO₂ reduction was observed over monoclinic phase Bi₆Mo₂O₁₅ microwires (20-60 µm long, 200-400 nm in diameter) with post-heating treatment at different temperatures.¹⁷⁴ The surface oxide vacancies can greatly prolong the lifetime of photoexcited carriers for efficient electron-hole separation.

13.4.2 Light Harvesting for Effectively Utilizing Solar Energy

The energy band configuration of semiconductors plays a significant role in the absorption of light. Bandgap engineering is an effective approach to adjust band position and bandgap for effectively utilizing solar energy, including cation or anion doping, solid solution formation, and sensitization.

13.4.2.1 Ion Doping

As the VB potential of developed metal oxide photocatalysts is normally located about 3 eV vs. NHE, these metal oxide photocatalysts only utilize UV light.¹⁸⁷ Doping with anions such as N and C is an effective strategy to raise the VB maxima and narrow the bandgap of metal oxides so as to extend the absorbed light range. TiO₂ is one of most effective semiconductors for CO₂ photoreduction, due to its nontoxicity, low cost, and chemical stability. However, a large bandgap (3.2 eV) of anatase TiO₂ utilizes only about 3–5% of solar spectrum. N-doped TiO₂ showed high activity for CO₂ photoreduction under visible light irradiation ($\lambda > 420$ nm).¹³⁵ The mixing of N 2p orbitals with O 2p orbitals results in up-shift of VB, leading to bandgap narrowing and visible absorption. N-doped InTaO₄ with Ni@NiO core–shell nanostructure as co-catalyst was prepared for photocatalytic reduction of CO₂ with H₂O into CH₃OH under light irradiation (λ ranges from 390 to 770 nm).¹⁸¹ Orthorhombic Ta₂O₅, an n-type semiconductor, has a wide band gap of 4.0 eV. Interestingly, nitrogen doping in Ta₂O₅ not only caused a redshift of 200 nm at the absorption edge of Ta₂O₅ but it also provides p-type conductivity in N-doped Ta₂O₅.^{175,176} N-doped Ta₂O₅ linked with Ru complex electrocatalysts showed selective conversion of CO₂ into HCOOH under visible light irradiation (410 < λ < 750 nm).

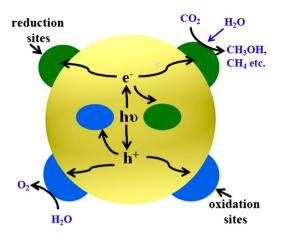
Doping cations into the lattices of TiO_2 can create impurity energy levels within the band gap. The behavior of charge carriers such as interfacial electron transfer rate and the recombination rate is significantly influenced by doping cations.²⁴² Cerium-doped TiO₂ showed a redshift in the range 400–500 nm, which contributes to enhanced activity for CO₂ photoreduction.¹⁴⁴ However, higher Ce concentration destroyed activity for CO₂ photoreductor, owing to the formation of recombination centers by excess Ce. The yield of CH₄ and CH₃OH over Ag-doped TiO₂ (1–7 wt% Ag) was caused by two mechanisms: Ag doping in TiO₂ (up to 5 wt%) resulted in the shift of absorption edge towards visible light and increased generation of a Schottky barrier at the metal–semiconductor interface around Ag metallic clusters enhanced electron–hole separation.¹²²

13.4.2.2 Solid Solutions

In 2006, $(Ga_{1-r}Zn_r)(N_{1-r}O_r)$ solid solution modified with nanoparticles of a mixed oxide of rhodium and chromium was developed for overall splitting of water under visible light with a quantum efficiency of 2.5% at 420–440 nm.²⁴³ Yellow Zn_{1.7}GeN_{1.8}O solid solution (2.6 eV) was obtained through nitriding Zn_2GeO_4 crystals with sheaf-like hyperbranched nano-architectures, which showed a substantially smaller bandgap than that of the Zn₂GeO₄ precursor (4.5 eV).²⁴⁴ The visible-light response of Zn_{1.7}GeN_{1.8}O originates from p-d repulsion of N 2p and Zn 3d orbitals, which lifts the VB top and thus narrows the bandgap. Zn_{1.7}GeN_{1.8}O with 1 wt% Pt and 1 wt% RuO₂ co-catalysts exhibited the highest activity for CO₂ photoreduction with an apparent quantum yield of 0.024% at a wavelength of 420 ± 15 nm. Zinc gallogermanate solid solution (denoted as 4.5(ZnGa₂O₄):(Zn₂GeO₄)) was successfully synthesized through a hydrothermal ion exchange reaction.²³² Introduction of Zn₂GeO₄ into ZnGa₂O₄ can effectively narrow the bandgap by an upshift of VB edge from the enhanced p-d (O 2p-Zn 3d) repulsion effect via incorporation of s and p orbitals of Ge, and the downshift of CB edge through introducing the low-energy s orbital of Ge. The zinc gallogermanate solid solution also possesses a light-hole effective mass with high mobility and thus enhances the ability of the photocatalyst in water oxidation to provide protons for CO₂ photoreduction.

13.4.2.3 Sensitization

Sensitizing wide-bandgap semiconductors with dye molecules or narrow-bandgap semiconductors is an effective approach to realize visible CO₂ photoreduction. Both CdS- and Bi₂S₃-sensitized TiO₂ nanotubes showed high activity for CO₂ photoreduction into CH₃OH using Na₂SO₃ as a hole scavenger under visible light irradiation.¹³⁴ Photogenerated holes react with adsorbed H₂O molecules on a AgBr/TiO₂ catalyst surface to form 'OH radicals and H⁺, which will benefit the generation of CH₄ and CH₃OH under visible light irradiation ($\lambda > 420$ nm).¹²⁵ The yields of CO, CH₄, and C₂H₆ were detected over PbS QDs sensitized TiO₂ with Cu co-catalyst.¹²⁹ However, the photocatalysts became inactive after 8 h of continuous visible light irradiation due to the photo-oxidation of PbS QDs.


Dye molecules have also been coupled with TiO₂ for CO₂ photoreduction under visible light irradiation.^{116-121,124,130,141,142,146} $[Ru(Bpv)_2]^{2+}$ dve sensitized TiO₂ films showed efficient activity for CO₂ photoreduction into CH₄ under visible light irradiation, owing to the generation of catalytically active electrons from organic dye to TiO₂.^{117,118} The hybrid system consisting of a ruthenium bipyridyl sensitizer (RuP) and TiO₂ functionalized with the enzyme CODH was developed for CO₂ photoreduction into CO under visible light irradiation.^{124,130} RuP dyes transfer electrons into the CB of TiO₂, and these electrons are injected into CODH and the active sites where CO₂ is reduced to CO. The dye could be regenerated by a sacrificial electron donor of 2-(N-morpholino)ethanesulfonic acid. An air-stable copper(I) dve sensitized TiO₂ exhibited efficient light harvesting and high efficiency for CO_2 photoreduction into CH_4 under visible light irradiation ($\lambda > 420$ nm).¹⁴² Cobalt-phthalocyanine (CoPc) dye^{116,120,121} or zinc-phthalocyanine (ZnPc) dye¹⁴¹ has been linked with TiO_2 for CO_2 photoreduction in NaOH solution containing Na₂SO₃ as a hole scavenger.

13.4.3 Charge Separation for Effectively Utilizing Solar Energy

During photocatalytic process, electron-hole pairs separate effectively from each other and arrive at the semiconductor surface, minimizing the recombination of electron-hole pairs and thus resulting in efficient performance of CO_2 photoreduction.

13.4.3.1 Loading Co-Catalysts

Loading appropriate co-catalysts such as metals (Pt, Rh, Pd, Cu, Ag, and Au) and metal oxides (NiO and RuO₂) on semiconductor surfaces can enhance the efficiency of CO₂ photoreduction. As shown in Figure 13.5, metals (Pt, Rh, Pd, Cu, Ag, and Au) and NiO could act as reduction sites whereas metal oxides (RuO₂, IrO₂, and CoO_x) are oxidation sites.^{245,246} Co-catalysts could promote the separation and migration of photogenerated charge

Figure 13.5 Illustration of semiconductor with co-catalysts (Pt, Rh, Pd, Cu, Ag, Au, and NiO) as reduction sites or co-catalysts (RuO_2 , IrO_2 , and CoO_x) as oxidation sites for CO_2 photoreduction with H_2O .

carriers to inhibit the electron-hole recombination, due to the form of an internal electric field between semiconductors and co-catalysts.

Electron transfer from semiconductors to metals is feasible thermodynamically, because the Fermi level of the metals normally lies below the CB edge of semiconductors. Deposition of a series of 2 wt% metals (Pt, Rh, Pd, Cu, Ru, and Au) on TiO₂ considerably accelerated CO₂ photoreduction into CH₄ and/or acetic acid.³⁴ TiO₂ with Pt or Pd mainly produced CH₄, but a considerable amount of acetic acid was produced using other metal loaded TiO_2 . A TiO₂ 1D film with ultrafine Pt nanoparticles (1.04 ± 0.08 nm) exhibited the highest performance for CO₂ photoreduction into CH₄.¹⁰⁴ It is proposed that the smaller Pt nanoparticles possess a higher Fermi level due to quantum confinement, preventing electron transfer from CB of TiO₂ to Pt, and the properties of bigger Pt nanoparticles may approach that of bulk Pt, capturing both photoelectrons and holes and acting as recombination centers. Co-loading RuO₂ and Pd on TiO₂ apparently enhanced activity for CO₂ photoreduction, because photogenerated electrons transfer from TiO₂ to Pd sites to promote the reduction of CO₂ to HCOO⁻ and photogenerated holes inject into the RuO_2 site to accelerate the oxidation of SO_3^{2-} to $SO_4^{2-.57}$ The perovskite BaLa4Ti4O15 with Ag co-catalyst on the edge exhibited high activity for CO₂ photoreduction into CO.¹⁵⁸ The basal plane of BaLa₄Ti₄O₁₅ is the oxidation site for water splitting, while the edge is the reduction site. The separation of reaction sites could suppress back reactions such as oxidation of formed CO.

InTaO₄ with NiO co-catalyst exhibited a steady rate of CH₃OH production of 11.1 μ mol g⁻¹ h⁻¹, because the formation of a Schottky barrier at the surfaces traps electrons and suppress the electron-hole recombination. To effectively extract photogenerated electrons to surfaces, a core-shell structure of metallic Ni core and NiO shell (denoted as Ni@NiO) was formed on the surface of $InTaO_4$ through reduction–oxidation pretreatment.¹⁷⁷ The Ni core benefits the transport of photogenerated electrons to NiO shell surfaces while the NiO shell offers active sites to react with absorbed CO₂. A similar core–shell-structured Pt@Cu₂O co-catalyst on TiO₂ was also designed to promote photoreduction of CO₂ with H₂O into CH₄ and CO.¹¹² Moreover, the deposition of a Cu₂O shell on Pt markedly suppresses the reduction of H₂O to H₂, a competitive reaction with the reduction of CO₂.

In addition to appropriate metals and metal oxides, carbon materials such as carbon nanotubes (CNTs) and graphene can also act as electron transporter and acceptor to efficiently reduce electron-hole recombination, playing the role of co-catalyst for CO₂ photoreduction. CNT@Ni-doped TiO₂ displayed higher activity for CO₂ photoreduction into CH₄ than that of Ni-doped TiO₂ under visible light irradiation, mainly owing to the electron transfer from TiO₂ to CNTs through $d-\pi$ conjugation between TiO₂ and CNT.¹⁴⁵ Graphene is a zero bandgap semiconductor, possessing unique electrical properties such as massless fermions, ballistic electronic transport, and ultrahigh electron mobility.²⁴⁷ Robust hollow spheres consisting of Ti_{0.91}O₂ nanosheets and graphene nanosheets showed higher enhancement for CO₂ photoreduction into dominant CO and minor CH_4 than that of commercial P25, due to (1) the ultrathin nature of $Ti_{0.91}O_2$ nanosheets, which allows charge carriers to transfer rapidly onto the surface for redox reaction; (2) the compact contact of Ti_{0.91}O₂ nanosheets with graphene nanosheets, which allows photogenerated electrons to move rapidly from $Ti_{0,01}O_2$ nanosheets to graphene to the prolong lifetime of the charge carriers; (3) the hollow structure, which potentially enhances light absorption via the multi-scattering of incidence light.¹⁰² Graphene–TiO₂ hybrid nanosheets exhibited high and selective activity for CO₂ photoreduction into CH₄ and C₂H₆, owing to the electron transfer from TiO₂ to grapheme via Ti-O-C.¹⁰⁹ The synergistic effect of graphene and the surface- Ti^{3+} sites benefits the generation of C_2H_6 , and the yield of C_2H_6 increased with the content of incorporated graphene. The influence of defect densities of graphene on CO₂ photoreduction was investigated by preparing graphene-P25 nanocomposite thin films through two major solution-based pathways, oxidation reduction and solvent exfoliation.⁸⁸ The improved electrical mobility of the less defective graphene allows photoexcited electrons to more effectively diffuse to reactive sites, facilitating photoreduction reactions.

13.4.3.2 One-Dimensional Nanostructures

One-dimensional nanostructures provide a direct pathway for electron transport, which should be beneficial for electron–hole separation. Nitrogen-doped TiO₂ nanotube arrays up to 130 μ m in length with Cu and Pt nanoparticles as co-catalysts showed an enhanced activity for CO₂ photore-duction.⁸¹ It was revealed that the hole and electron diffusion lengths in TiO₂ nanotube arrays are about 10 nm and 10 μ m, respectively, while half nanotube wall thickness is approximately 10 nm. Single-crystalline Zn₂GeO₄ nanobelts that were hundreds of micrometers long, 20–50 nm wide, and as

thin as ~7 nm (corresponding to five repeating cell units) exhibited efficient activity for CO₂ photoreduction.¹⁹⁶ The ultralong longitudinal dimension provides a sufficiently spacious transport channel for charge separation and transportation. One-dimensional Fe₂V₄O₁₃ nanoribbons 300–400 nm wide, 20–30 nm thick, and 10–20 µm long were directly grown on a stainless-steel mesh (SSM) by a simple and facile hydrothermal approach without surfactants or templates.¹⁶⁰ Fe₂V₄O₁₃ nanoribbons with a bandgap of 1.83 eV also served as a new candidate for CO₂ photoreduction into CH₄ under visible light irradiation. Growing a 1D nanostructure directly on substrates avoids the complex recycling process of powders from solution when CO₂ photoreduction is carried in aqueous systems.

13.4.3.3 Heterojunction Construction

The type II semiconductor heterostructure is one of the most typical heterostructures that promotes spatial electron–hole separation *via* transferring photoexcited electrons in the higher CB to the lower CB and holes in the lower VB to the higher VB. Well-defined homogeneously hybrid TiO₂ mesoporous "French fries" (TiO₂/ZnO, TiO₂/Fe₂O₃, TiO₂/CuO, TiO₂/NiO, TiO₂/Cr₂O₃, and TiO₂/CeO₂) with high specific surface area, large pore volume, and pore walls were prepared by a furfural alcohol-derived polymerization–oxidation route.⁹⁴ TiO₂/ZnO exhibited higher enhancement for CO₂ photoreduction into CH₄, mainly because electrons in the CB of ZnO (-0.31 V) transfer to the CB of TiO₂ (-0.29 V) and holes in the VB of TiO₂ transfer to the VB of ZnO.

 TiO_2 exhibits three crystalline polymorphs in nature: anatase, rutile, and brookite. Rutile TiO_2 nanoparticle modified anatase TiO_2 nanorods with exposed {010} facets showed higher activity for CO_2 photoreduction into CH_4 than that of pure anatase TiO_2 nanorods, due to the transfer of electrons from anatase TiO_2 to rutile TiO_2 .¹⁰³ TiO_2 consisting of anatase and brookite exhibited remarkable performance for CO_2 photoreduction into CH_3OH , which was assigned to the transfer of electrons from brookite TiO_2 to anatase TiO_2 .¹³⁹

13.4.3.4 Z-Scheme CO₂ Reduction

The artificial Z-scheme system inspired by natural photosynthesis in green plants has been employed for CO_2 photoreduction.^{218,219,248} The artificial Z-scheme photocatalytic system uses two different semiconductor photocatalysts with reversible redox mediators driven by a two-step photoexcitation, keeping holes/electrons with stronger oxidation/reduction abilities on different active sites (Figure 13.6). Ishitani *et al.* synthesized a visible-light-driven Z-scheme consisting of a Ru(II) dinuclear complex (RuBLRu') for CO_2 reduction and Ag-loaded TaON for methanol oxidation under visible light irradiation ($\lambda > 400$ nm).²⁴⁸ Isotope experiments clearly showed that this hybrid photocatalyst mainly produced HCOOH from CO_2 and HCHO from methanol, converting solar energy into chemical energy with a positive change in Gibbs energy of 83.0 kJ mol⁻¹.

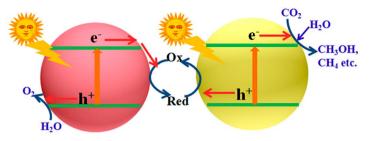


Figure 13.6 Illustration of a Z-scheme system (two-step photoexcitation system) for CO_2 photoreduction with H_2O .

13.5 Conclusions and Perspectives

In this chapter, we demonstrates a clear phenomenon, namely, that the development of materials offers increasing opportunities in the field of CO_2 photoreduction into hydrocarbon fuels using abundant solar energy in terms of (1) a large surface area for molecular adsorption and chemical reaction, (2) adjusting of band position and bandgap for effective utilization of solar energy, and (3) effective charge separation and transfer for a chemical reaction. The development of nanotechnology allows us to design and fabricate new photocatalytic materials to match the breakthrough in photocatalytic efficiency, such as d¹⁰ metal oxides or oxynitrides (ZnGa₂O₄, Zn_2SnO_4 , Zn_2GeO_4 , $(Zn_{1.44}Ge)(N_{2.08}O_{0.38})$, ZnGaNO). It is of great importance to explore possible cost-effective approaches for constructing nanomaterials for the photocatalytic reduction of CO₂. The present goal is to synthesize photoactive materials able to chemically couple these light driven redox reactions together and achieve conversion efficiency and selectivity that exceeds nature's photosynthesis. It is also needs to be founded on photoactive materials made of earth abundant, non-toxic, light-stable, scalable and low-cost materials.

The quantum yield of CO_2 photoreduction is still lower than that of natural photosynthesis. Strategies used to improve the efficiency include the exploration of novel photocatalytic materials, tracing the photocatalytic process through *in situ* observations, and an understanding of the mechanism *via* experimental analysis and theoretical calculations. It is sincerely hoped that the multiple collaborations for this rapidly evolving field can provide the breakthrough in overall efficiency leading to commercialization and industrialization in a way that is cost-competitive with fossil fuels.

References

- 1. A. Listorti, J. Durrant and J. Barber, Nat. Mater., 2009, 8, 929.
- 2. Q. Schiermeier, J. Tollefson, T. Scully, A. Witze and O. Morton, *Nature*, 2008, **454**, 816.
- 3. T. Inoue, A. Fujishima, S. Konishi and K. Honda, Nature, 1979, 277, 637.

337

- 4. W. G. Tu, Y. Zhou and Z. G. Zou, Adv. Mater., 2014, 26, 4607.
- 5. H. Tong, S. X. Ouyang, Y. P. Bi, N. Umezawa, M. Oshikiri and J. H. Ye, *Adv. Mater.*, 2012, **24**, 229.
- 6. H. Yoneyama, Catal. Today, 1997, 39, 169.
- 7. P. Usubharatana, D. McMartin, A. Veawab and P. Tontiwachwuthikul, *Ind. Eng. Chem. Res.*, 2006, **45**, 2558.
- 8. G. R. Dey, J. Nat. Gas Chem., 2007, 16, 217.
- 9. K. Koci, L. Obalova and Z. Lacny, Chem. Pap., 2008, 62, 1.
- 10. V. P. Indrakanti, J. D. Kubicki and H. H. Schobert, *Energy Environ. Sci.*, 2009, **2**, 745.
- 11. S. C. Roy, O. K. Varghese, M. Paulose and C. A. Grimes, *ACS Nano*, 2010, 4, 1259.
- 12. M. R. Hoffmann, J. A. Moss and M. M. Baum, Dalton Trans., 2011, 40, 5151.
- 13. A. Dhakshinamoorthy, S. Navalon, A. Corma and H. Garcia, *Energy Environ. Sci.*, 2012, 5, 9217.
- 14. G. H. Liu, N. Hoivik, K. Y. Wang and H. Jakobsen, *Sol. Energy Mater. Sol. Cells*, 2012, **105**, 53.
- 15. K. Mori, H. Yamashita and M. Anpo, RSC Adv., 2012, 2, 3165.
- 16. W. Q. Fan, Q. H. Zhang and Y. Wang, *Phys. Chem. Chem. Phys.*, 2013, **15**, 2632.
- 17. S. N. Habisreutinger, L. Schmidt-Mende and J. K. Stolarczyk, Angew. Chem., Int. Ed., 2013, 52, 7372.
- 18. Y. Izumi, Coord. Chem. Rev., 2013, 257, 171.
- 19. V. Jeyalakshmi, K. Rajalakshmi, R. Mahalakshmy, K. R. Krishnamurthy and B. Viswanathan, *Res. Chem. Intermed.*, 2013, **39**, 2565.
- 20. S. Navalon, A. Dhakshinamoorthy, M. Alvaro and H. Garcia, *ChemSus-Chem*, 2013, **6**, 562.
- 21. A. L. Linsebigler, G. Q. Lu and J. T. Yates, Chem. Rev., 1995, 95, 735.
- 22. J. Rasko and F. Solymosi, J. Phys. Chem., 1994, 98, 7147.
- 23. N. M. Dimitrijevic, B. K. Vijayan, O. G. Poluektov, T. Rajh, K. A. Gray, H. Y. He and P. Zapol, *J. Am. Chem. Soc.*, 2011, **133**, 3964.
- 24. J. Lee, D. C. Sorescu and X. Y. Deng, J. Am. Chem. Soc., 2011, 133, 10066.
- S. J. Tan, Y. Zhao, J. Zhao, Z. Wang, C. X. Ma, A. D. Zhao, B. Wang, Y. Luo, J. L. Yang and J. G. Hou, *Phys. Rev. B*, 2011, 84, 155418.
- 26. V. P. Indrakanti, H. H. Schobert and J. D. Kubicki, *Energy Fuels*, 2009, **23**, 5247.
- 27. D. C. Sorescu, W. A. Al-Saidi and K. D. Jordan, *J. Chem. Phys.*, 2011, **135**, 124701.
- 28. K. Xie, N. Umezawa, N. Zhang, P. Reunchan, Y. Zhang and J. Ye, *Energy Environ. Sci.*, 2011, 4, 4211.
- 29. D. C. Sorescu, J. Lee, W. A. Al-Saidi and K. D. Jordan, *J. Chem. Phys.*, 2012, 137, 074704.
- 30. G. C. Xi, S. X. Ouyang, P. Li, J. H. Ye, Q. Ma, N. Su, H. Bai and C. Wang, *Angew. Chem., Int. Ed.*, 2012, **51**, 2395.
- L. G. Wang, S. J. Pennycook and S. T. Pantelides, *Phys. Rev. Lett.*, 2002, 89, 075506.

- 32. Z. Goren, I. Willner, A. J. Nelson and A. J. Frank, *J. Phys. Chem.*, 1990, **94**, 3784.
- 33. M. Anpo and K. Chiba, J. Mol. Catal., 1992, 74, 207.
- 34. O. Ishitani, C. Inoue, Y. Suzuki and T. Ibusuki, *J. Photochem. Photobiol. A*, 1993, **72**, 269.
- 35. H. Inoue, T. Matsuyama, B. J. Liu, T. Sakata, H. Mori and H. Yoneyama, *Chem. Lett.*, 1994, 653.
- 36. F. Solymosi and I. Tombacz, Catal. Lett., 1994, 27, 61.
- H. Yamashita, H. Nishiguchi, N. Kamada, M. Anpo, Y. Teraoka, H. Hatano, S. Ehara, K. Kikui, L. Palmisano, A. Sclafani, M. Schiavello and M. A. Fox, *Res. Chem. Intermed.*, 1994, 20, 815.
- 38. M. Anpo, H. Yamashita, Y. Ichihashi and S. Ehara, *J. Electroanal. Chem.*, 1995, **396**, 21.
- 39. F. Saladin, L. Forss and I. Kamber, J. Chem. Soc., Chem. Commun., 1995, 533.
- 40. S. Yamagata, M. Nishijo, N. Murao, S. Ohta and I. Mizoguchi, *Zeolites*, 1995, **15**, 490.
- 41. T. Mizuno, K. Adachi, K. Ohta and A. Saji, *J. Photochem. Photobiol. A*, 1996, **98**, 87.
- 42. M. Anpo, H. Yamashita, Y. Ichihashi, Y. Fujii and M. Honda, *J. Phys. Chem. B*, 1997, **101**, 2632.
- 43. S. Kaneco, H. Kurimoto, K. Ohta, T. Mizuno and A. Saji, *J. Photochem. Photobiol. A*, 1997, **109**, 59.
- 44. B. J. Liu, T. Torimoto, H. Matsumoto and H. Yoneyama, J. Photochem. Photobiol. A, 1997, 108, 187.
- 45. F. Saladin and I. Alxneit, J. Chem. Soc., Faraday Trans., 1997, 93, 4159.
- M. Anpo, H. Yamashita, K. Ikeue, Y. Fujii, S. G. Zhang, Y. Ichihashi, D. R. Park, Y. Suzuki, K. Koyano and T. Tatsumi, *Catal. Today*, 1998, 44, 327.
- 47. S. Kaneco, Y. Shimizu, K. Ohta and T. Mizuno, *J. Photochem. Photobiol. A*, 1998, **115**, 223.
- 48. B. J. Liu, T. Torimoto and H. Yoneyama, *J. Photochem. Photobiol. A*, 1998, 115, 227.
- 49. H. Yamashita, Y. Fujii, Y. Ichihashi, S. G. Zhang, K. Ikeue, D. R. Park, K. Koyano, T. Tatsumi and M. Anpo, *Catal. Today*, 1998, **45**, 221.
- 50. K. Ikeue, H. Yamashita and M. Anpo, Chem. Lett., 1999, 1135.
- 51. S. Kaneco, H. Kurimoto, Y. Shimizu, K. Ohta and T. Mizuno, *Energy*, 1999, 24, 21.
- 52. Y. Kohno, H. Hayashi, S. Takenaka, T. Tanaka, T. Funabiki and S. Yoshida, *J. Photochem. Photobiol.*, *A*, 1999, **126**, 117.
- 53. M. Subrahmanyam, S. Kaneco and N. Alonso-Vante, *Appl. Catal., B*, 1999, **23**, 169.
- 54. K. Ikeue, H. Yamashita, M. Anpo and T. Takewaki, *J. Phys. Chem. B*, 2001, **105**, 8350.
- 55. K. Ikeue, H. Yamashita, T. Takewaki, M. E. Davis and M. Anpo, *J. Synchrotron Radiat.*, 2001, **8**, 602.

- 56. Y. Kohno, T. Yamamoto, T. Tanaka and T. Funabiki, *J. Mol. Catal. A: Chem.*, 2001, **175**, 173.
- 57. T. F. Xie, D. J. Wang, L. J. Zhu, T. J. Li and Y. J. Xu, *Mater. Chem. Phys.*, 2001, **70**, 103.
- 58. K. Ikeue, S. Nozaki, M. Ogawa and M. Anpo, Catal. Lett., 2002, 80, 111.
- 59. I. Keita, S. Nozaki, M. Ogawa and M. Anpo, Catal. Today, 2002, 74, 241.
- 60. I. H. Tseng, W. C. Chang and J. C. S. Wu, Appl. Catal., B, 2002, 37, 37.
- 61. H. Yamashita, K. Ikeue, T. Takewaki and M. Anpo, *Top. Catal.*, 2002, **18**, 95.
- 62. Y. Shioya, K. Ikeue, M. Ogawa and M. Anpo, *Appl. Catal., A*, 2003, 254, 251.
- 63. G. R. Dey, A. D. Belapurkar and K. Kishore, *J. Photochem. Photobiol., A*, 2004, **163**, 503.
- 64. Y. Ku, W. H. Lee and W. Y. Wang, J. Mol. Catal. A: Chem., 2004, 212, 191.
- 65. P. Pathak, M. J. Meziani, Y. Li, L. T. Cureton and Y. P. Sun, *Chem. Commun.*, 2004, 1234.
- 66. I. H. Tseng and J. C. S. Wu, Catal. Today, 2004, 97, 113.
- 67. I. H. Tseng, J. C. S. Wu and H. Y. Chou, *J. Catal.*, 2004, 221, 432.
- 68. J. S. Hwang, J. S. Chang, S. E. Park, K. Ikeue and M. Anpo, *Top. Catal.*, 2005, **35**, 311.
- 69. P. Pathak, M. J. Meziani, L. Castillo and Y. P. Sun, *Green Chem.*, 2005, 7, 667.
- 70. J. C. S. Wu and H. M. Lin, Int. J. Photoenergy, 2005, 7, 115.
- 71. J. C. S. Wu, H.-M. Lin and C.-L. Lai, Appl. Catal., A, 2005, 296, 194.
- 72. Y. Q. Liu, Y. Xu, Z. J. Li, X. P. Zhang, D. Wu and Y. H. Sun, *Acta Chim. Sin.*, 2006, **64**, 453.
- 73. G. R. Dey and K. K. Pushpa, Res. Chem. Intermed., 2007, 33, 631.
- 74. C.-C. Lo, C.-H. Hung, C.-S. Yuan and J.-F. Wu, Sol. Energy Mater. Sol. Cells, 2007, 91, 1765.
- 75. X. H. Xia, Z. H. Jia, Y. Yu, Y. Liang, Z. Wang and L. L. Ma, *Carbon*, 2007, **45**, 717.
- 76. T. V. Nguyen and J. C. S. Wu, Sol. Energy Mater. Sol. Cells, 2008, 92, 864.
- 77. T.-V. Nguyen and J. C. S. Wu, Appl. Catal., A, 2008, 335, 112.
- 78. J. C. S. Wu, T. H. Wu, T. C. Chu, H. J. Huang and D. P. Tsai, *Top. Catal.*, 2008, **47**, 131.
- 79. L. Chen, M. E. Graham, G. H. Li, D. R. Gentner, N. M. Dimitrijevic and K. A. Gray, *Thin Solid Films*, 2009, **517**, 5641.
- 80. K. Koci, L. Obalova, L. Matejova, D. Placha, Z. Lacny, J. Jirkovsky and O. Solcova, *Appl. Catal.*, *B*, 2009, **89**, 494.
- 81. O. K. Varghese, M. Paulose, T. J. LaTempa and C. A. Grimes, *Nano Lett.*, 2009, **9**, 731.
- 82. H. C. Yang, H. Y. Lin, Y. S. Chien, J. C. S. Wu and H. H. Wu, *Catal. Lett.*, 2009, **131**, 381.
- 83. L. F. Cueto, G. T. Martinez, G. Zavala and E. M. Sanchez, *J. Nano Res.*, 2010, **9**, 89.

- 84. Y. Li, W. N. Wang, Z. L. Zhan, M. H. Woo, C. Y. Wu and P. Biswas, *Appl. Catal., B*, 2010, **100**, 386.
- 85. K. Nalepa, J. Goralski, M. I. Szynkowska and J. Rynkowski, *Przem. Chem.*, 2010, **89**, 500.
- 86. X. Feng, J. D. Sloppy, T. J. LaTempa, M. Paulose, S. Komarneni, N. Bao and C. A. Grimes, *J. Mater. Chem.*, 2011, 21, 13429.
- 87. K. Koci, V. Matejka, P. Kovar, Z. Lacny and L. Obalova, *Catal. Today*, 2011, **161**, 105.
- Y. T. Liang, B. K. Vijayan, K. A. Gray and M. C. Hersam, *Nano Lett.*, 2011, 11, 2865.
- J. Pan, X. Wu, L. Z. Wang, G. Liu, G. Q. Lub and H. M. Cheng, *Chem. Commun.*, 2011, 47, 8361.
- 90. S. Y. Qin, F. Xin, Y. D. Liu, X. H. Yin and W. Ma, J. Colloid Interface Sci., 2011, 356, 257.
- 91. K. S. Raja, Y. R. Smith, N. Kondamudi, A. Manivannan, M. Misra and V. Subramanian, *Electrochem. Solid-State Lett.*, 2011, 14, F5.
- 92. B. Srinivas, B. Shubhamangala, K. Lalitha, P. A. K. Reddy, V. D. Kumari, M. Subrahmanyam and B. R. De, *Photochem. Photobiol.*, 2011, **8**7, 995.
- 93. W.-N. Wang, J. Park and P. Biswas, Catal. Sci. Technol., 2011, 1, 593.
- 94. G. C. Xi, S. X. Ouyang and J. H. Ye, Chem.-Eur. J., 2011, 17, 9057.
- 95. C. C. Yang, J. Vernimmen, V. Meynen, P. Cool and G. Mul, *J. Catal.*, 2011, 284, 1.
- 96. T. Yui, A. Kan, C. Saitoh, K. Koike, T. Ibusuki and O. Ishitani, *ACS Appl. Mater. Interfaces*, 2011, **3**, 2594.
- 97. A. Cybula, M. Klein, A. Zielinska-Jurek, M. Janczarek and A. Zaleska, *Physicochem. Probl.*, 2012, **48**, 159.
- W. Jiao, L. Z. Wang, G. Liu, G. Q. Lu and H. M. Cheng, ACS Catal., 2012, 2, 1854.
- 99. W. Kim, T. Seok and W. Choi, Energy Environ. Sci., 2012, 5, 6066.
- 100. D. Liu, Y. Fernandez, O. Ola, S. Mackintosh, M. Maroto-Valer, C. M. A. Parlett, A. F. Lee and J. C. S. Wu, *Catal. Commun.*, 2012, **25**, 78.
- 101. J. Z. Y. Tan, Y. Fernandez, D. Liu, M. Maroto-Valer, J. C. Bian and X. W. Zhang, *Chem. Phys. Lett.*, 2012, **531**, 149.
- 102. W. G. Tu, Y. Zhou, Q. Liu, Z. P. Tian, J. Gao, X. Y. Chen, H. T. Zhang, J. G. Liu and Z. G. Zou, *Adv. Funct. Mater.*, 2012, **22**, 1215.
- 103. P. Q. Wang, Y. Bai, J. Y. Liu, Z. Fan and Y. Q. Hu, *Catal. Commun.*, 2012, **29**, 185.
- 104. W. N. Wang, W. J. An, B. Ramalingam, S. Mukherjee, D. M. Niedzwiedzki, S. Gangopadhyay and P. Biswas, *J. Am. Chem. Soc.*, 2012, **134**, 11276.
- 105. X. J. Zhang, F. Han, B. Shi, S. Farsinezhad, G. P. Dechaine and K. Shankar, *Angew. Chem.*, *Int. Ed.*, 2012, **51**, 12732.
- 106. C. Y. Zhao, A. Kroll, H. L. Zhao, Q. Y. Zhang and Y. Li, *Int. J. Hydrogen Energy*, 2012, **37**, 9967.
- 107. M. Hussain, P. Akhter, N. Russo and G. Saracco, *Catal. Commun.*, 2013, 36, 58.

- 108. L. Liu, F. Gao, H. Zhao and Y. Li, *Appl. Catal.*, *B*, 2013, **134–135**, 349.
- 109. W. G. Tu, Y. Zhou, Q. Liu, S. C. Yan, S. S. Bao, X. Y. Wang, M. Xiao and Z. G. Zou, *Adv. Funct. Mater.*, 2013, **23**, 1743.
- 110. Y. G. Wang, B. Li, C. L. Zhang, L. F. Cui, S. F. Kang, X. Li and L. H. Zhou, *Appl. Catal.*, *B*, 2013, **130**, 277.
- 111. H. Xu, S. X. Ouyang, P. Li, T. Kako and J. H. Ye, *ACS Appl. Mater. Interfaces*, 2013, **5**, 1348.
- 112. Q. G. Zhai, S. J. Xie, W. Q. Fan, Q. H. Zhang, Y. Wang, W. P. Deng and Y. Wang, *Angew. Chem., Int. Ed.*, 2013, **52**, 5776.
- 113. C. L. Zhang, Q. Y. Zhang, S. F. Kang, B. Li, X. Li and Y. G. Wang, *ECS Solid State Lett.*, 2013, **2**, M49.
- 114. Slamet, H. W. Nasution, E. Purnama, S. Kosela and J. Gunlazuardi, *Catal. Commun.*, 2005, **6**, 313.
- 115. N. Sasirekha, S. J. S. Basha and K. Shanthi, Appl. Catal., B, 2006, 62, 169.
- 116. S. H. Liu, Z. H. Zhao and Z. Z. Wang, *Photochem. Photobiol. Sci.*, 2007, 6, 695.
- 117. O. Ozcan, F. Yukruk, E. U. Akkaya and D. Uner, *Top. Catal.*, 2007, 44, 523.
- 118. O. Ozcan, F. Yukruk, E. U. Akkaya and D. Uner, *Appl. Catal., B*, 2007, 71, 291.
- 119. T. V. Nguyen, J. C. S. Wu and C. H. Chiou, Catal. Commun., 2008, 9, 2073.
- 120. Z. H. Zhao, J. M. Fan, S. H. Liu and Z. Z. Wang, *Chem. Eng. J.*, 2009, **151**, 134.
- 121. Z. H. Zhao, J. M. Fan, M. M. Xie and Z. Z. Wang, *J. Cleaner Prod.*, 2009, **17**, 1025.
- 122. K. Koci, K. Mateju, L. Obalova, S. Krejcikova, Z. Lacny, D. Placha, L. Capek, A. Hospodkova and O. Solcova, *Appl. Catal.*, *B*, 2010, **96**, 239.
- 123. C. J. Wang, R. L. Thompson, J. Baltrus and C. Matranga, *J. Phys. Chem. Lett.*, 2010, **1**, 48.
- 124. T. W. Woolerton, S. Sheard, E. Reisner, E. Pierce, S. W. Ragsdale and F. A. Armstrong, *J. Am. Chem. Soc.*, 2010, **132**, 2132.
- 125. M. Abou Asi, C. He, M. H. Su, D. H. Xia, L. Lin, H. Q. Deng, Y. Xiong, R. L. Qiu and X. Z. Li, *Catal. Today*, 2011, **175**, 256.
- 126. J. Fan, E. Z. Liu, L. Tian, X. Y. Hu, Q. He and T. Sun, *J. Environ. Eng.-ASCE*, 2011, **137**, 171.
- 127. W. B. Hou, W. H. Hung, P. Pavaskar, A. Goeppert, M. Aykol and S. B. Cronin, *ACS Catal.*, 2011, **1**, 929.
- 128. D. M. Luo, Y. Bi, W. Kan, N. Zhang and S. G. Hong, *J. Mol. Struct.*, 2011, **994**, 325.
- 129. C. J. Wang, R. L. Thompson, P. Ohodnicki, J. Baltrus and C. Matranga, *J. Mater. Chem.*, 2011, **21**, 13452.
- 130. T. W. Woolerton, S. Sheard, E. Pierce, S. W. Ragsdale and F. A. Armstrong, *Energy Environ. Sci.*, 2011, 4, 2393.
- 131. Q. Y. Zhang, Y. Li, E. A. Ackerman, M. Gajdardziska-Josifovska and H. L. Li, *Appl. Catal.*, *A*, 2011, **400**, 195.
- 132. S.-I. In, D. D. Vaughn and R. E. Schaak, *Angew. Chem., Int. Ed.*, 2012, **51**, 3915.

- 133. S. Krejcikova, L. Matejova, K. Koci, L. Obalova, Z. Matej, L. Capek and O. Solcova, *Appl. Catal., B*, 2012, **111**, 119.
- 134. X. Li, H. L. Liu, D. L. Luo, J. T. Li, Y. Huang, H. L. Li, Y. P. Fang, Y. H. Xu and L. Zhu, *Chem. Eng. J.*, 2012, **180**, 151.
- 135. X. K. Li, Z. J. Zhuang, W. Li and H. Q. Pan, Appl. Catal., A, 2012, 429, 31.
- 136. L. J. Liu, C. Y. Zhao and Y. Li, *J. Phys. Chem. C*, 2012, **116**, 7904.
- 137. L. J. Liu, H. L. Zhao, J. M. Andino and Y. Li, ACS Catal., 2012, 2, 1817.
- 138. P. L. Richardson, M. L. N. Perdigoto, W. Wang and R. J. G. Lopes, *Appl. Catal.*, *B*, 2012, **126**, 200.
- 139. Q. D. Truong, T. H. Le, J. Y. Liu, C. C. Chung and Y. C. Ling, *Appl. Catal.*, *A*, 2012, **437**, 28.
- 140. Q. D. Truong, J. Y. Liu, C. C. Chung and Y. C. Ling, *Catal. Commun.*, 2012, **19**, 85.
- 141. Q. Wang, W. Wu, J. F. Chen, G. W. Chu, K. Ma and H. K. Zou, *Colloids Surf.*, *A*, 2012, **409**, 118.
- 142. Y. J. Yuan, Z. T. Yu, J. Y. Zhang and Z. G. Zou, *Dalton Trans.*, 2012, **41**, 9594.
- 143. Q. Y. Zhang, T. T. Gao, J. M. Andino and Y. Li, *Appl. Catal., B*, 2012, **123**, 257.
- 144. C. Y. Zhao, L. J. Liu, Q. Y. Zhang, J. Wang and Y. Li, *Catal. Sci. Technol.*, 2012, **2**, 2558.
- 145. W. J. Ong, M. M. Gui, S. P. Chai and A. R. Mohamed, *RSC Adv.*, 2013, 3, 4505.
- 146. G. Qin, Y. Zhang, X. Ke, X. Tong, Z. Sun, M. Liang and S. Xue, *Appl. Catal.*, *B*, 2013, **129**, 599.
- 147. P. L. Richardson, M. L. N. Perdigoto, W. Wang and R. J. G. Lopes, *Appl. Catal.*, *B*, 2013, **132–133**, 408.
- 148. Y. S. Liao, S. W. Cao, Y. P. Yuan, Q. Gu, Z. Y. Zhang and C. Xue, *Chem.–Eur. J.*, 2014, **20**, 10220.
- 149. X. Meng, S. Ouyang, T. Kako, P. Li, Q. Yu, T. Wang and J. Ye, *Chem. Commun.*, 2014, **50**, 11517.
- 150. T. Wang, X. Meng, P. Li, S. Ouyang, K. Chang, G. Liu, Z. Mei and J. Ye, *Nano Energy*, 2014, **9**, 50.
- 151. H. Xu, S. X. Ouyang, L. Q. Liu, D. F. Wang, T. Kako and J. H. Ye, *Nanotechnology*, 2014, **25**, 165402, paper.
- 152. J. C. Hemminger, R. Carr and G. A. Somorjai, *Chem. Phys. Lett.*, 1978, 57, 100.
- 153. D. D. Sui, X. H. Yin, H. Z. Dong, S. Y. Qin, J. S. Chen and W. L. Jiang, *Catal. Lett.*, 2012, **142**, 1202.
- 154. H. Zhou, J. J. Guo, P. Li, T. X. Fan, D. Zhang and J. H. Ye, *Sci. Rep.*, 2013, **3**, 075506.
- 155. M. Ulman, B. Aurianblajeni and M. Halmann, Isr. J. Chem., 1982, 22, 177.
- 156. G. Q. Guan, T. Kida, T. Harada, M. Isayama and A. Yoshida, *Appl. Catal.*, *A*, 2003, **249**, 11.
- 157. G. Q. Guan, T. Kida and A. Yoshida, Appl. Catal., B, 2003, 41, 387.
- 158. K. Iizuka, T. Wato, Y. Miseki, K. Saito and A. Kudo, *J. Am. Chem. Soc.*, 2011, **133**, 20863.

- 159. Y. Y. Liu, B. B. Huang, Y. Dai, X. Y. Zhang, X. Y. Qin, M. H. Jiang and M. H. Whangbo, *Catal. Commun.*, 2009, **11**, 210.
- 160. P. Li, Y. Zhou, W. G. Tu, Q. Liu, S. C. Yan and Z. G. Zou, *ChemPlusChem*, 2013, **78**, 274.
- 161. K. Sayama and H. Arakawa, J. Phys. Chem., 1993, 97, 531.
- 162. Y. Kohno, T. Tanaka, T. Funabiki and S. Yoshida, *Chem. Commun.*, 1997, 841.
- 163. Y. Kohno, T. Tanaka, T. Funabiki and S. Yoshida, J. Chem. Soc., Faraday Trans., 1998, 94, 1875.
- 164. Y. Kohno, T. Tanaka, T. Funabiki and S. Yoshida, *Phys. Chem. Chem. Phys.*, 2000, 2, 2635.
- 165. X. K. Li, W. Li, Z. J. Zhuang, Y. S. Zhong, Q. Li and L. Y. Wang, *J. Phys. Chem. C*, 2012, **116**, 16047.
- 166. X. K. Li, H. Q. Pan, W. Li and Z. J. Zhuang, *Appl. Catal., A*, 2012, **413**, 103.
- 167. D. S. Lee, H. J. Chen and Y. W. Chen, *J. Phys. Chem. Solids*, 2012, 73, 661.
- 168. H. F. Shi, T. Z. Wang, J. Chen, C. Zhu, J. H. Ye and Z. G. Zou, *Catal. Lett.*, 2011, **141**, 525.
- 169. M. Stock and S. Dunn, Ferroelectrics, 2011, 419, 9.
- 170. P. Li, S. X. Ouyang, G. C. Xi, T. Kako and J. H. Ye, *J. Phys. Chem. C*, 2012, **116**, 7621.
- 171. H. Shi and Z. Zou, J. Phys. Chem. Solids, 2012, 73, 788.
- 172. P. Li, S. X. Ouyang, Y. J. Zhang, T. Kako and J. H. Ye, *J. Mater. Chem. A*, 2013, **1**, 1185.
- 173. P. Li, H. Xu, L. Liu, T. Kako, N. Umezawa, H. Abe and J. Ye, *J. Mater. Chem. A*, 2014, **2**, 5606.
- 174. Y. Z. P. Li, W. G. Tu, R. Wang, C. F. Zhang, Q. Liu, H. J. Li, Z. D. Li, H. Dai, J. J. Wang, S. C. Yan and Z. G. Zou, *CrystEngComm*, 2013, **15**, 9855.
- 175. S. Sato, T. Morikawa, S. Saeki, T. Kajino and T. Motohiro, *Angew. Chem., Int. Ed.*, 2010, **49**, 5101.
- 176. T. M. Suzuki, H. Tanaka, T. Morikawa, M. Iwaki, S. Sato, S. Saeki, M. Inoue, T. Kajino and T. Motohiro, *Chem. Commun.*, 2011, 47, 8673.
- 177. P. W. Pan and Y. W. Chen, Catal. Commun., 2007, 8, 1546.
- 178. H. C. Chen, H. C. Chou, J. C. S. Wu and H. Y. Lin, *J. Mater. Res.*, 2008, 23, 1364.
- 179. Z.-Y. Wang, H.-C. Chou, J. C. S. Wu, D. P. Tsai and G. Mul, *Appl. Catal., A*, 2010, **380**, 172.
- 180. P. Y. Liou, S. C. Chen, J. C. S. Wu, D. Liu, S. Mackintosh, M. Maroto-Valer and R. Linforth, *Energy Environ. Sci.*, 2011, 4, 1487.
- 181. C. W. Tsai, H. M. Chen, R. S. Liu, K. Asakura and T. S. Chan, *J. Phys. Chem. C*, 2011, **115**, 10180.
- 182. K. Teramura, S.-i. Okuoka, H. Tsuneoka, T. Shishido and T. Tanaka, *Appl. Catal., B*, 2010, **96**, 565.
- 183. X. Y. Chen, Y. Zhou, Q. Liu, Z. D. Li, J. G. Liu and Z. G. Zou, ACS Appl. Mater. Interfaces, 2012, 4, 3372.

- 184. Y. P. Xie, G. Liu, L. C. Yin and H. M. Cheng, *J. Mater. Chem.*, 2012, 22, 6746.
- 185. Y. Zhou, Z. P. Tian, Z. Y. Zhao, Q. Liu, J. H. Kou, X. Y. Chen, J. Gao, S. C. Yan and Z. G. Zou, *ACS Appl. Mater. Interfaces*, 2011, **3**, 3594.
- 186. H. F. Cheng, B. B. Huang, Y. Y. Liu, Z. Y. Wang, X. Y. Qin, X. Y. Zhang and Y. Dai, *Chem. Commun.*, 2012, **48**, 9729.
- 187. A. Kudo and Y. Miseki, Chem. Soc. Rev., 2009, 38, 253.
- 188. J. J. Guo, S. X. Ouyang, T. Kako and J. H. Ye, *Appl. Surf. Sci.*, 2013, **280**, 418.
- 189. H. Tsuneoka, K. Teramura, T. Shishido and T. Tanaka, *J. Phys. Chem. C*, 2010, **114**, 8892.
- 190. H. A. Park, J. H. Choi, K. M. Choi, D. K. Lee and J. K. Kang, *J. Mater. Chem.*, 2012, **22**, 5304.
- 191. K. Teramura, H. Tsuneoka, T. Shishido and T. Tanaka, *Chem. Phys. Lett.*, 2008, **467**, 191.
- 192. S. C. Yan, S. X. Ouyang, J. Gao, M. Yang, J. Y. Feng, X. X. Fan, L. J. Wan, Z. S. Li, J. H. Ye, Y. Zhou and Z. G. Zou, *Angew. Chem., Int. Ed.*, 2010, 49, 6400.
- 193. S. C. Yan, J. J. Wang, H. L. Gao, N. Y. Wang, H. Yu, Z. S. Li, Y. Zhou and Z. G. Zou, *Adv. Funct. Mater.*, 2013, **23**, 758.
- 194. J. W. Lekse, M. K. Underwood, J. P. Lewis and C. Matranga, *J. Phys. Chem. C*, 2012, **116**, 1865.
- 195. Z. D. Li, Y. Zhou, J. Y. Zhang, W. G. Tu, Q. Liu, T. Yu and Z. G. Zou, *Cryst. Growth Des.*, 2012, **12**, 1476.
- 196. Q. Liu, Y. Zhou, J. H. Kou, X. Y. Chen, Z. P. Tian, J. Gao, S. C. Yan and Z. G. Zou, *J. Am. Chem. Soc.*, 2010, **132**, 14385.
- 197. S. C. Yan, L. J. Wan, Z. S. Li and Z. G. Zou, *Chem. Commun.*, 2011, 47, 5632.
- 198. N. Zhang, S. X. Ouyang, P. Li, Y. J. Zhang, G. C. Xi, T. Kako and J. H. Ye, *Chem. Commun.*, 2011, **47**, 2041.
- 199. Q. Liu, Z. X. Low, L. X. Li, A. Razmjou, K. Wang, J. F. Yao and H. T. Wang, *J. Mater. Chem. A*, 2013, **1**, 11563.
- 200. Q. Liu, Y. Zhou, Y. Ma and Z. G. Zou, RSC Adv., 2012, 2, 3247.
- 201. Y. Inoue, Energy Environ. Sci., 2009, 2, 364.
- 202. J. Sato, H. Kobayashi, K. Ikarashi, N. Saito, H. Nishiyama and Y. Inoue, *J. Phys. Chem. B*, 2004, **108**, 4369.
- 203. K. Ikarashi, J. Sato, H. Kobayashi, N. Saito, H. Nishiyama and Y. Inoue, *J. Phys. Chem. B*, 2002, **106**, 9048.
- 204. B. R. Eggins, J. T. S. Irvine, E. P. Murphy and J. Grimshaw, *J. Chem. Soc., Chem. Commun.*, 1988, 1123.
- 205. M. Kanemoto, T. Shiragami, C. J. Pac and S. Yanagida, *J. Phys. Chem.*, 1992, **96**, 3521.
- 206. H. Inoue, H. Moriwaki, K. Maeda and H. Yoneyama, *J. Photochem. Photobiol.*, *A*, 1995, **86**, 191.
- 207. H. Fujiwara, H. Hosokawa, K. Murakoshi, Y. Wada, S. Yanagida, T. Okada and H. Kobayashi, *J. Phys. Chem. B*, 1997, **101**, 8270.

- 208. P. Johne and H. Kisch, J. Photochem. Photobiol., A., 1997, 111, 223.
- 209. B. R. Eggins, P. K. J. Robertson, E. P. Murphy, E. Woods and J. T. S. Irvine, *J. Photochem. Photobiol.*, *A.*, 1998, **118**, 31.
- 210. H. Fujiwara, H. Hosokawa, K. Murakoshi, Y. Wada and S. Yanagida, *Langmuir*, 1998, **14**, 5154.
- 211. B. J. Liu, T. Torimoto and H. Yoneyama, *J. Photochem. Photobiol., A*, 1998, **113**, 93.
- 212. H. Kisch and P. Lutz, Photochem. Photobiol. Sci., 2002, 1, 240.
- 213. P. Praus, O. Kozak, K. Koci, A. Panacek and R. Dvorsky, J. Colloid Interface Sci., 2011, **360**, 574.
- 214. Y. S. Chaudhary, T. W. Woolerton, C. S. Allen, J. H. Warner, E. Pierce, S. W. Ragsdale and F. A. Armstrong, *Chem. Commun.*, 2012, **48**, 58.
- 215. J.-Y. Liu, B. Garg and Y.-C. Ling, Green Chem., 2011, 13, 2029.
- 216. T. Arai, S. Tajima, S. Sato, K. Uemura, T. Morikawa and T. Kajino, *Chem. Commun.*, 2011, **47**, 12664.
- 217. T. Arai, S. Sato, K. Uemura, T. Morikawa, T. Kajino and T. Motohiro, *Chem. Commun.*, 2010, **46**, 6944.
- 218. S. Sato, T. Arai, T. Morikawa, K. Uemura, T. M. Suzuki, H. Tanaka and T. Kajino, *J. Am. Chem. Soc.*, 2011, **133**, 15240.
- 219. T. Arai, S. Sato, T. Kajino and T. Morikawa, *Energy Environ. Sci.*, 2013, 6, 1274.
- 220. E. E. Barton, D. M. Rampulla and A. B. Bocarsly, *J. Am. Chem. Soc.*, 2008, **130**, 6342.
- 221. M. Halmann, Nature, 1978, 275, 115.
- 222. H. L. Li, Y. G. Lei, Y. Huang, Y. P. Fang, Y. H. Xu, L. Zhu and X. Li, *J. Nat. Gas Chem.*, 2011, **20**, 145.
- 223. M. A. Gondal, M. A. Ali, M. A. Dastageer and X. F. Chang, *Catal. Lett.*, 2013, **143**, 108.
- 224. N. Ahmed, Y. Shibata, T. Taniguchi and Y. Izumi, *J. Catal.*, 2011, 279, 123.
- 225. K. Teramura, S. Iguchi, Y. Mizuno, T. Shishido and T. Tanaka, *Angew. Chem., Int. Ed.*, 2012, **51**, 8008.
- 226. N. Ahmed, M. Morikawa and Y. Izumi, Catal. Today, 2012, 185, 263.
- 227. G. H. Dong and L. Z. Zhang, J. Mater. Chem., 2012, 22, 1160.
- 228. J. Mao, T. Peng, X. Zhang, K. Li, L. Ye and L. Zan, *Catal. Sci. Technol.*, 2013, **3**, 1253.
- 229. L. Cao, S. Sahu, P. Anilkumar, C. E. Bunker, J. A. Xu, K. A. S. Fernando, P. Wang, E. A. Guliants, K. N. Tackett and Y. P. Sun, *J. Am. Chem. Soc.*, 2011, **133**, 4754.
- 230. H. Zhou, P. Li, J. Guo, R. Yan, T. Fan, D. Zhang and J. Ye, *Nanoscale*, 2015, 7, 113.
- 231. N. Zhang, S. X. Ouyang, T. Kako and J. H. Ye, *Chem. Commun.*, 2012, **48**, 1269.
- 232. S. C. Yan, J. J. Wang, H. L. Gao, N. Y. Wang, H. Yu, Z. S. Li, Y. Zhou and Z. G. Zou, *Adv. Funct. Mater.*, 2013, **23**, 1839.
- 233. G. Liu, J. C. Yu, G. Q. Lu and H. M. Cheng, *Chem. Commun.*, 2011, 47, 6763.

- 234. M. Lazzeri, A. Vittadini and A. Selloni, Phys. Rev. B., 2001, 63, 155409.
- 235. M. Lazzeri, A. Vittadini and A. Selloni, Phys. Rev. B., 2002, 65, 119901.
- 236. H. G. Yang, C. H. Sun, S. Z. Qiao, J. Zou, G. Liu, S. C. Smith, H. M. Cheng and G. Q. Lu, *Nature*, 2008, **453**, 638.
- 237. H. Yamashita, N. Kamada, H. He, K. Tanaka, S. Ehara and M. Anpo, *Chem. Lett.*, 1994, 855.
- 238. M. Anpo, H. Yamashita, Y. Ichihashi and S. Ehara, *J. Electroanal. Chem.*, 1995, **396**, 21.
- 239. A. Ignatchenko, D. G. Nealon, R. Dushane and K. Humphries, *J. Mol. Catal. A: Chem.*, 2006, **256**, 57.
- 240. V. P. Indrakanti, J. D. Kubicki and H. H. Schobert, *Energy Fuels*, 2008, **22**, 2611.
- 241. Y. S. Liao, S. W. Cao, Y. P. Yuan, Q. Gu, Z. Y. Zhang and C. Xue, *Chem.–Eur. J.*, 2014, **20**, 10220.
- 242. W. Choi, A. Termin and M. R. Hoffmann, Angew. Chem., 1994, 106, 1148.
- 243. K. Maeda, K. Teramura, D. L. Lu, T. Takata, N. Saito, Y. Inoue and K. Domen, *Nature*, 2006, **440**, 295.
- 244. Q. Liu, Y. Zhou, Z. P. Tian, X. Y. Chen, J. Gao and Z. G. Zou, *J. Mater. Chem.*, 2012, **22**, 2033.
- 245. K. Maeda and K. Domen, J. Phys. Chem. Lett., 2010, 1, 2655.
- 246. D. Wang, T. Hisatomi, T. Takata, C. Pan, M. Katayama, J. Kubota and K. Domen, *Angew. Chem., Int. Ed.*, 2013, **52**, 11252.
- 247. W. Tu, Y. Zhou and Z. Zou, Adv. Funct. Mater., 2013, 23, 4996.
- 248. K. Sekizawa, K. Maeda, K. Domen, K. Koike and O. Ishitani, *J. Am. Chem. Soc.*, 2013, **135**, 4596.