Advanced semiconductor catalyst designs for the photocatalytic reduction of CO2

Zhangsen Chen, Gaixia Zhang, Siyi Cao, Guozhu Chen, Cuncheng Li, Ricardo Izquierdo, Shuhui Sun

PII: S2666-9358(23)00030-7

DOI: https://doi.org/10.1016/j.matre.2023.100193

Reference: MATRE 100193

To appear in: *Materials Reports: Energy*

Received Date: 11 March 2023

Revised Date: 23 March 2023

Accepted Date: 23 March 2023

Please cite this article as: Chen Z, Zhang G, Cao S, Chen G, Li C, Izquierdo R, Sun S, Advanced semiconductor catalyst designs for the photocatalytic reduction of CO₂, *Materials Reports: Energy* (2023), doi: https://doi.org/10.1016/j.matre.2023.100193.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2023 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd.

Review

Advanced semiconductor catalyst designs for the photocatalytic reduction of CO₂

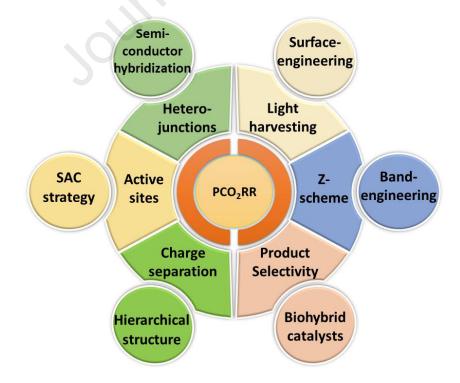
Zhangsen Chen^a, Gaixia Zhang^{b,*}, Siyi Cao^c, Guozhu Chen^c, Cuncheng Li^c, Ricardo Izquierdo^b, Shuhui Sun^{a,*}

^aInstitut National de la Recherche Scientifique – Centre Énergie Matériaux Télécommunications

Varennes, Québec J3X 1P7, Canada

^bDepartment of Electrical Engineering, École de Technologie Supérieure (ÉTS), Montréal, Québec H3C 1K3, Canada

^cSchool of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China


*Corresponding author. E-mail addresses: <u>gaixia.zhang@etsmtl.ca</u> (G. Zhang); <u>shuhui.sun@inrs.ca</u> (S. Sun)

Abstract:

Using clean solar energy to reduce CO₂ into value-added products not only consumes the overemitted CO₂ that causes environmental problems, but also generates fuel chemicals to alleviate energy crises. The photocatalytic CO₂ reduction reaction (PCO₂RR) relies on the semiconductor photocatalysts that suffer from high recombination rate of the photo-generated carriers, low light harvesting capability, and low stability. This review explores the recent discoveries on the novel semiconductors for PCO₂RR, focusing on the rational catalyst design strategies (such as surface engineering, band engineering, hierarchical structure construction, single-atom catalysts, and biohybrid catalysts) that promote the catalytic performance of semiconductor catalysts on PCO₂RR. The advanced characterization techniques that contribute to understanding the intrinsic properties of the photocatalysts are also discussed. Lastly, the perspectives on future challenges and possible solutions for PCO₂RR are presented.

Keywords: Photoreduction of CO₂, Semiconductor catalysts, Photocatalyst modification, Heterojunction construction, Catalytic efficiency, Activity, Environmental and sustainable applications

Graphical abstract:

1. Introduction

Over the decades, the large consumption of fossil fuels due to anthropogenic activities has released heat and greenhouse gas into the atmosphere. The concentration of CO₂, one of the major greenhouse gases, in the atmosphere exceeds 410 parts per million (ppm), which is much higher than 280 ppm in the pre-industrial period.¹ The thermal radiation from the sunlight and the surface of the earth can be trapped by CO₂ molecules, augmenting the global temperature and aggravating the issue of global warming.² The over-emitted CO₂ is truly one of the top concerns for human society. The CO₂ reduction reactions (CO₂RR) that convert CO₂ molecules into valueadded products such as CH₃OH, CH₄, CO, and HCOOH give an alternative strategy to consuming CO_2 while mitigating the energy crises. In addition, realizing CO_2RR by clean energies such as solar energy offers an approach to alleviate both global warming and energy crisis issues in a green concept.³ To fulfill this, photocatalytic CO₂ reduction reactions (PCO₂RR) has gained much attention because it utilizes semiconductor materials as photocatalysts to absorb sunlight as the driving force to reduce CO₂. Fig. 1a depicts the fundamentals of PCO₂RR on a semiconductor catalyst. Typically, the photocatalysis takes three main steps: i) the generation of the photo-generated carriers (e⁻/h⁺ paires) within the semiconductor photocatalyst through harvesting the incident light; ii) the transfer of the photo-generated electrons and holes to the surface of the photocatalyst; iii) the catalytic reactions (CO₂RR and the oxidation half-reaction) on the surface of the photocatalyst.⁴ The photo-generated carriers (e^{-}/h^{+} paires) are essential to PCO₂RR as they are the keys to the catalytic reactions. The photo-generated electrons in the conduction band (CB) participate in CO₂RR to reduce CO₂ molecules. The photo-generated holes in the valence band (VB) participate in the counter-reaction (oxidation half-reactions, such as water oxidation reaction). During the formation of the photo-generated carriers, the electrons

and holes tend to recombine with each other through surface recombination and volume recombination, which prohibits catalytic efficiency. Besides, the potentials of the VB maximum and the CB minimum need to straddle the redox potentials of the oxidation half-reactions and CO_2RR , respectively.⁵ Equation (1)-(8) shows some typical reaction steps involved in CO₂RR, along with the reactions for H₂ and O₂ productions (vs. Normal Hydrogen Electrode (NHE), in aqueous solution of pH=7).^{3, 6}

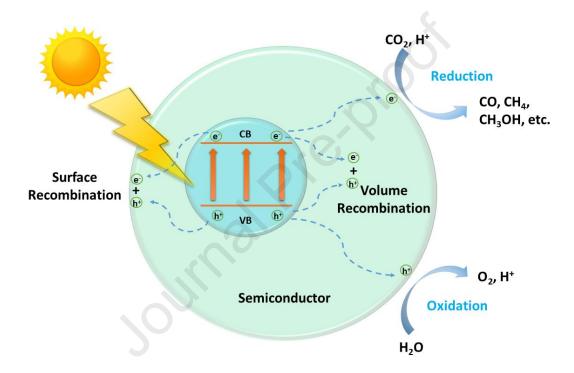


Fig. 1. Schematic of photocatalytic CO₂ reduction reactions (PCO₂RR). Reproduced with permission from Ref. 7.

L = 1.00 V	$CO_2 + e^- \rightarrow CO_2^{\cdot-}$	E = -1.90 V	(1)
------------	--	--------------	-----

$$CO_2 + 2H^+ + 2e^- \to HCO_2H$$
 $E = -0.61 V$ (2)

$$CO_2 + 2H^+ + 2e^- \rightarrow CO + H_2O$$
 $E = -0.53 V$ (3)

- $CO_2 + 4H^+ + 4e^- \rightarrow HCHO + H_2O \qquad E = -0.48 V$ (4)
- $2H^+ + 2e^- \to H_2$ E = -0.42 V (5)

$\mathrm{CO}_2 + 6\mathrm{H}^+ + 6\mathrm{e}^- \rightarrow \mathrm{CH}_3\mathrm{OH} + \mathrm{H}_2\mathrm{O}$	E = -0.38 V	(6)
$\mathrm{CO}_2 + 8\mathrm{H}^+ + 8\mathrm{e}^- \rightarrow \mathrm{CH}_4 + 2\mathrm{H}_2\mathrm{O}$	E = -0.24 V	(7)
$2H_2O - 4e^- \rightarrow O_2 + 4H^+$	$E = +0.82 \mathrm{V}$	(8)

The semiconductor catalyst needs to meet not only the kinetic barriers but also the thermodynamic requirements to achieve a successful PCO₂RR. Moreover, the bandgap between CB and VB determines the wavelength range that the semiconductor can absorb from sunlight. When the value of the bandgap is larger than ca. 3.1 eV, the semiconductor catalyst can solely harvest ultra-violet illumination, which is only a small fraction of the sunlight. Increasing the light-harvesting ability of the photocatalysts requires the bandgap of the semiconductor materials to be relatively narrow. The single pure semiconductor catalyst alone usually cannot afford sufficient catalytic efficiency for PCO₂RR. Great efforts are made in the modification of the semiconductor catalysts (e.g. the refinement of crystallinity, defect engineering, heterojunction construction, etc.) to increase the catalytic performance (e.g. product selectivity and activity, light harvesting capability, stability) during PCO₂RR.⁵ The goal is to design rational photocatalysts with I) the matching CB and VB potentials for CO₂RR and the oxidation halfreactions; II) the narrow bandgap to absorb sufficient sunlight; III) low recombination rate of the photo-generated carries; IV) sufficient and highly efficient active sites for CO₂RR and the oxidation half-reactions. This review concentrates on the most recent advanced photocatalyst designs for PCO₂RR, where the superiorities of semiconductor modification and integration are highlighted (Fig. 2). Hybridization strategies of photocatalysts such as surface engineering and band engineering are explained with some typical examples (e.g. co-catalyst designs, photosensitizer, heterojunction construction). Then, promising results from structural engineering and single-atom active site fabrications are exposed, along with the biohybrid

catalyst designs. Finally, the perspectives on the remaining challenges and future focuses are presented.

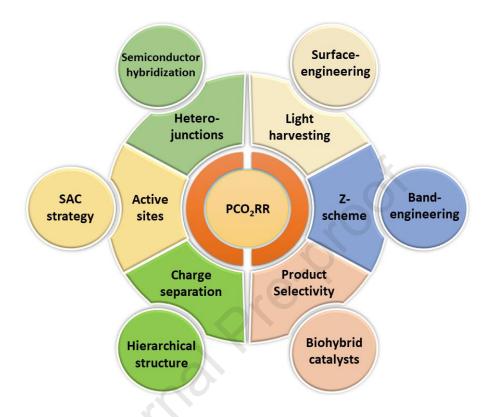


Fig. 2. Advanced semiconductor catalysts for PCO₂RR.

2. Hybridization of semiconductor catalysts for PCO₂RR

Currently, mainstream works focus on modifying the semiconductor photocatalysts by hybrid engineering such as surface modification and the integration of different semiconductors to form heterojunctions. Table 1 lists some typical hybrid photocatalysts for PCO₂RR.

2.1 Surface engineering

As the catalytic reaction takes place on the surface of the catalyst, its modification with active sites or support co-catalysts is a promising way to enhance the catalytic activities of the catalyst materials. For example, An et al. modified the Fe tetraphenyl porphyrin (FeTPP) catalyst with an

alkyne-functionalized supramolecular synthon to form an iron porphyrin box (PB) bearing 24 cationic groups (FePB-2(P)) that offered a synergy of porosity and charge effects. The modified FePB-2(P) exhibited a 41-times enhancement in catalytic performance, as compared to the original FeTPP, toward CO production in PCO₂RR.⁸ The modification of the metal co-catalysts on the semiconductor surface can serve as not only the active sites to capture CO₂ molecules for the activation but also the electron trap to separate photo-generated carriers, demonstrating excellent PCO₂RR performance (e.g, Au-Cu alloy modified on TiO₂ substrates for CH₄ and C₂H₄ productions⁹; Ni cluster shell on NiO core for the CO generation¹⁰).

Surface engineering for light harvesting enhancement is another approach to increase photocatalytic efficiency. As photocatalysis utilizes solar energy to drive the catalytic reactions, the photocatalysts' efficiency of harvesting sunlight is vital in the practical aspect. Currently, many good semiconductor catalysts such as metal oxides exhibit wide bandgap, which limits light absorption within the ultra-violet range, only a small fraction of the incident solar radiation (less than 5%).¹¹ It makes those wide-bandgap photocatalysts less attractive in industrial applications, as sunlight mostly contains visible and infrared lights. The integration of semiconductor catalysts with light-response-efficient materials allows for the improved lightharvesting ability of the photocatalysts. Modifying semiconductor catalyst surfaces with photosensitizers is one of the approaches to achieve this goal. Wang et al. constructed a number of photosensitizers of homoleptic Al (III) for PCO₂RR with emission quantum yields from 10% to 40%.¹² Fig. 3a shows the molecular structures of the homoleptic Al (III) complexes. The light absorption band center can be tuned by changing the ligands attached to the Al (III) photosensitizers (Fig. 3b). Fig. 3d illustrates the PCO₂RR activities of different catalysts coupled with Al (III) photosensitizers. The catalyst of $[Fe(qpy)(OH_2)_2](ClO_4)_2$ (FeQPY; qpy =

2,2':6',2"':6'',2"'-quaterpyridine) affords the most durable and stable CO production among all the catalysts. Fig. 3c demonstrates the reaction scheme for the PCO₂RR with Al (III) photosensitizers/ FeQPY with 1,3-dimethyl-2-phenyl-2,3-dihydro-1H-benzo[d]-imidazole (BIH) as the sacrificial electron donor. This noble-metal-free system achieves a CO selectivity of 99% and a TON value of 10250 under 450 nm light illumination in PCO₂RR (Fig. 3e). Das et al developed a porous organic polymer (POP) as a light harvester for improving PCO₂RR. The composite catalyst of In_{2.77}S₄ and POP was built by electrostatic interaction and exhibited a C₂H₄ product selectivity of 98.9% with a yield rate of 67.65 μ mol g⁻¹ h⁻¹ under irradiation of visible light.¹³

8

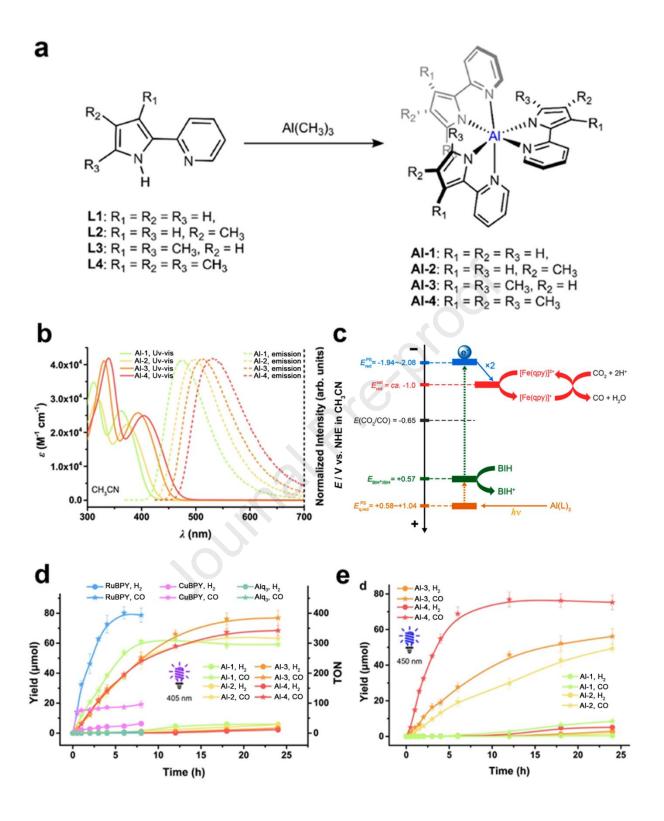


Fig. 3. (a) Synthetic diagram and molecular structures of different ligands applied for Al(III) PSs. (b) UV–vis absorption spectra and the normalized emission ($\lambda_{exc} = 355$ nm) spectra of Al-4 (red),

Al-3 (orange), **Al-2** (gold), and **Al-1** (lime) in purified CH₃CN solution at 293 K. (c) Simplified reaction and energy scheme for visible-light-induced CO production in PCO₂RR by Al(III)-PSs/**FeQPY** with BIH as sacrificial electron donor. Product yields of CO (star) and H₂ (circle) under irradiations of (d) 405 nm and (e) 450 nm with 0.05 mM **FeQPY** and 0.5 mM PS in CO₂-saturated, 0.3 M TEOA CH₃CN, and 50 mM BIH solutions. Reproduced with permission from Ref. 12.

To maximize the utilization of sunlight, scientists have discovered some promising semiconductor photocatalysts with narrow bandgap to harvest visible light, such as carbon nitride,¹⁴⁻¹⁶ bismuth oxyhalides,^{17, 18} CdS,¹⁹ layered double hydroxides (LDHs),^{4, 20, 21} etc. However, those visible light-response semiconductor materials suffer from severe recombination of the photo-generated carriers. The surface modification of the semiconductor catalyst with a metal co-catalyst such as Pd/TiO₂²² and Ag-TiO₂²³, which can trap the photo-generated electron, emerges as a powerful strategy to separate the photo-generated carries and contributes to for an enhanced PCO₂RR performance. It is well applied to visible light-response photocatalysts as well. For instance, Yue et al. reported a Bi-MOF/BiOBr photocatalyst where Bi-MOF was in-situ mounted on the BiOBr for PCO₂RR with a CO yield rate of 21.96 µmol g⁻¹ h⁻¹.²⁴

Another approach is to integrate the semiconductor catalysts with metal co-catalysts. In this strategy, using plasmonic metals offer extra benefits for light harvesting. The nanocatalysts of plasmonic metal interact strongly with incident light, generating a localized surface plasmon resonance (LSPR). The LSPR effect can easily tune the light absorption wavelength from ultraviolet to near-infrared through adjusting the geometry structure of the plasmonic metal catalyst.²⁵, ²⁶ For example, Cu/TiO₂ enables absorbance at 500–600 nm from the LSPR of Cu particles to

improve the CO production in PCO₂RR.²⁷ The LSPR effect of Au particles helps achieving the PCO₂RR under low-intensity irradiation at 420 nm.²⁶

Based on the promising results provided by the assistance of the plasmonic metal Au in light harvesting and catalytic performance, modifying Au catalyst with other metal alloys has proven to enhance the employment of photons with low energy for PCO₂RR. Hu et al. fabricated plasmonic light harvesting Au rods and coupled them with a co-catalyst shell of CuPd alloy to achieve highly effective PCO₂RR to CH₄ production.²⁸ Fig. 4a demonstrates the structure of the Au/CuPd core-shell composite. Plasmonic catalysis often happens close to the surface of the catalyst (within the range of plasmon-induced local field). Pure Au nanorods are unlikely to collide with CO₂ molecules, resulting in its low CO₂ conversion efficiency (Fig. 4a, left). For Au/CuPd, the CuPd shell can capture CO₂ molecules to increase the CO₂ concentration on the surface of the catalyst, promoting the probability of further conversion and activation (Fig. 4a, right). The thickness of the shell and the Cu/Pd ratio can be easily adjusted by controlling the number of metal precursors during the synthesis. The optimized Au/CuPd catalyst can achieve a CH₄ yield rate of 15.6 μ mol g⁻¹ h⁻¹, which is almost 40 times higher than the one achieved by pure Au rods (Fig. 4b). The apparent quantum efficiencies are up to 0.1% at 800 nm (Fig. 4d). The optimized thickness of the CuPd shell is believed to maximize the number of active sites on the catalyst surface and strengthen the electron-phonon scattering effect, contributing to the best CH₄ production. Fig. 4c illustrates that C_2H_4 and C_2H_6 can also be detected after the long-term reaction test. This suggests the multiple proton-coupled electron transfer ability of the Au/CuPd core-shell catalyst. To avoid the scattering loss of incident light during PCO₂RR, a sphericalstructured gas-solid reaction system is further applied (Fig. 4e). The novel spherical-structured reaction system can realize the re-incidence of scattered photons, which benefits the catalytic

reaction system with a plasmonic effect. With the optimization of the partial pressure of CO₂ and the volume of H₂O in the system, the production rate of CH₄ can be further improved to 0.55 mmol g^{-1} h⁻¹ (Fig. 4f). The spherical-structured reaction system affords a catalytic performance of around 35-folds to that of the conventional reaction system which only allows one single incident photon pass. Besides, the apparent quantum efficiency in the spherical-structured reaction system reaches 0.38% at 800 nm. It offers the opportunity to utilize the Au/CuPd coreshell catalyst in PCO₂RR under low-energy near-infrared irradiation.

12

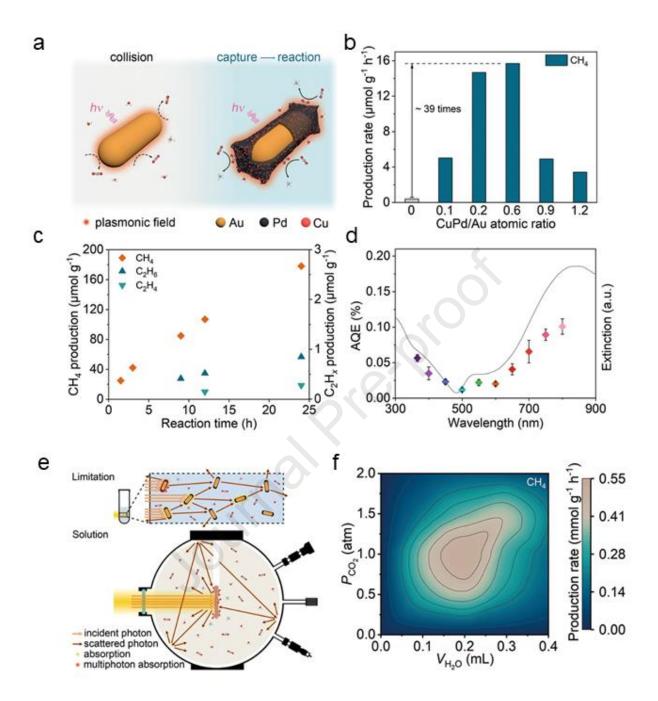


Fig. 4. (a) Schematic of CO₂ molecules being captured on the CuPd shell. (b) CH₄ production rates of Au/CuPd₂ with different thicknesses of the CuPd shell. (c) Time-dependent yield of CH₄ on Au/CuPd₂. (d) Calculated AQEs (dots) on Au/CuPd₂ under light illuminations with different monochromatic wavenumbers, compared to the UV-vis extinction spectrum (line). (e) Schematic of the gas-solid reaction, where full-spectrum light illuminates a spherical reactor. During

catalysis, the scattered photons are reflected on the surface of the catalyst, which leads to multiabsorption processes for efficient PCO₂RR. (f) CH₄ yield rates through plasmon-induced PCO₂RR in the gas-solid reactor on Au/CuPd₂ under different H₂O volumes and CO₂ pressures. Reproduced with permission from Ref. 28.

2.2 Band engineering

When applied in photocatalysis, single pure semiconductors often suffer from the issues of wide bandgap that limits the visible light harvesting, unmatched CB or VB potential positions to drive the catalytic reactions, etc. Integrating two semiconductors with different CB and VB potential positions to form a heterojunction becomes a useful approach to overcome these difficulties.

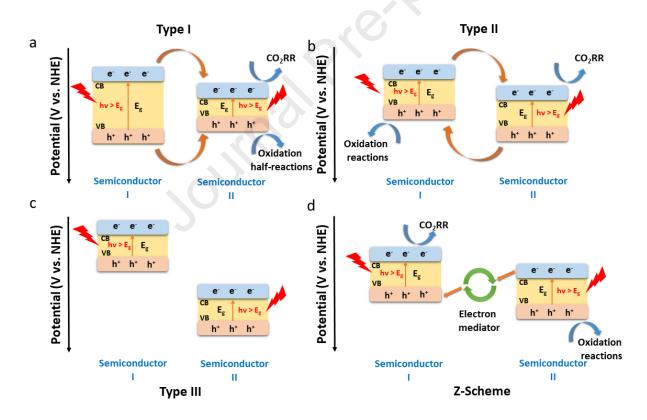


Fig. 5. Schematic of the band diagram on a semiconductor photocatalyst for CO₂RR and oxidation half-reactions: (a) Type I: straddling, (b) Type II: staggered, (c) Type III: broken gap, (d) Z-scheme. VB: valence band; CB: conduction band; h⁺: hole; e⁻: electron.

There are three types of heterojunctions when integrating two different semiconductors. Type I is "straddling" where the CB and VB of one semiconductor are entirely contained in those of another semiconductor (Fig. 5a). In this type of heterojunction, both photo-generated electrons in CB and holes in VB of semiconductor I tend to transfer to the CB and VB of semiconductor II by the potential difference, respectively. It comes with two drawbacks. First, the CB and VB potentials of semiconductor II are less powerful to drive the catalytic redox reactions. Second, the accumulated photo-generated holes and electrons in semiconductor II exacerbate the recombination of the photo-generated carriers. Hence, the "straddling type" heterojunction is not ideal for photocatalysis.

Type II is "staggered" where the CB and VB of one semiconductor overlap with those of another semiconductor (Fig. 5b), generating a favourable heterojunction. Once semiconductor I have more negative CB and VB potential positions than semiconductor II, the photo-generated electrons tend to transfer from the CB of semiconductor I to the CB of semiconductor II while photo-induced holes tend to transfer from the VB of semiconductor II to the VB of semiconductor I. This new possible transfer pathway created by the "staggered type" heterojunction can separate the photo-generated electrons and holes in the semiconductor I and semiconductor II, boosting photocatalytic performance. The only drawback of this type of heterojunction is that the CB and VB that participate in the catalytic reactions are the less effective ones. Namely, the CB potential of semiconductor II is less negative than that of semiconductor I, and the VB of semiconductor I is less positive than that of semiconductor I.

Type III is a "broken gap" where the bandgaps of two semiconductors do not overlap (Fig. 5c). In this circumstance, the photo-generated electrons and holes between two semiconductors fail to

transfer.²⁹ Therefore, the type II heterojunction is of interest in photocatalysis. Many works focus on the fabrication of type II heterojunction to boost catalytic performance. For example, a heterojunction between CsPbBr₃ and graphitic carbon nitride (g-C₃N₄) is built based on the band position differences between g-C₃N₄ and CsPbBr₃. It provides a stable CO yield rate of 975.57 µmol g⁻¹ h⁻¹ in PCO₂RR for 76 hours.³⁰ Zhu et al. constructed the heterojunction in a heterostructure of ZnIn₂S₄-CdS for PCO₂RR.³¹ The ultrafast transient absorption spectroscopy proves the accelerated charge transport in the heterostructure (Fig. 6 a and b). With the assistance of Co(bpy)₃²⁺ as co-catalyst for CO₂RR and TEOA as the sacrificial compound to consume photo-generated holes (Fig. 6e), it exhibits the CO yield of around 33 µmol in the first hour (Fig. 6c) under visible light irradiation and retains its initial catalytic activity after 5 cycles (Fig. 6d) of the PCO₂RR measurements.

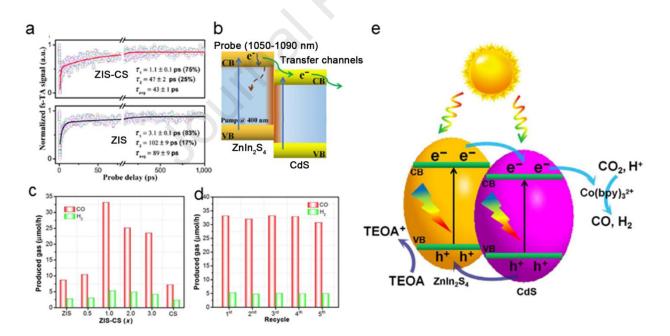


Fig. 6. (a) Global fitting and the ultrafast kinetics results (probing range: 1050–1090 nm with a 10 nm interval) for ZnIn₂S₄, and CdS QDs/ZnIn₂S₄. (b) Heterojunction schematic of ZnIn₂S₄-CdS. (c) PCO₂RR activities for ZnIn₂S₄, ZnIn₂S₄-CdS, and CdS. (d) Time-dependent PCO₂RR

performance on ZnIn₂S₄-CdS. (e) Possible charge carrier transfer mechanism of ZnIn₂S₄-CdS for PCO₂RR under the irradiation of visible light. Reproduced with permission from Ref. 31.

As aforementioned, the type II heterojunction still shows limits concerning the CB and VB positions that participate in the catalytic reactions. Inspired by natural photosynthesis, an electron transfer pathway where the photo-induced electron in the CB of semiconductor II travels to the VB of semiconductor I to perform the recombination is proposed (Fig. 5d). It creates an electron transfer pathway with the shape of the letter Z, which is named "Z-scheme" in the heterojunction construction. The Z-scheme electron transfer pathway allows photo-generated carriers from the stronger CB and VB in the two semiconductors to participate in the catalytic reactions, which overcomes the difficulty raised in the type II heterojunction catalysts.

In another approach, the Z-scheme is constructed without building any additional bridge between two semiconductors, this is called the direct Z-scheme system.⁶ The construction of the internal electric field in the heterojunction between two semiconductors proves to be an effective strategy to achieve the direct Z-scheme. Wang et al. built a 2D/2D Z-scheme heterostructure of Ni-CsPbBr₃/Bi₃O₄Br for PCO₂RR.³² Driven by the difference in the Fermi levels of the two semiconductors, the photo-generated electrons transfer from Ni-CsPbBr₃ to Bi₃O₄Br. It leads to increased charge densities at the interface, positive on the Ni-CsPbBr₃ side and negative on the Bi₃O₄Br side, respectively. The internal electric field formed in this space charge region creates the band-bending effect. Fig. 7a depicts the Z-scheme electron transfer pathway where the electrons are directed from the CB of Bi₃O₄Br to the VB of Ni-CsPbBr₃. Because of the bending effect, the shape of the electron pathway looks more like the letter "S" rather than "Z". Under this circumstance, the term "S-scheme" is preferred over "Z-scheme" to highlight the bandbending effect. The Ni-CsPbBr₃/Bi₃O₄Br with the S-scheme heterostructure demonstrates an

excellent 98.2% CO selectivity with a CO yield of 387.57 μ mol g⁻¹, which is more than 10 times higher than that of CsPbBr₃ (Fig. 7b). Long et al. combined Fe₂O₃ and CdS to achieve the direct Z-scheme charge transfer pathway by a built-in internal electric field as well. The Z-scheme heterojunction of Fe₂O₃/CdS enables a CO yield of 9.3 μ mol g⁻¹ in the first hour during PCO₂RR, which is much better than the sum of those of pure Fe₂O₃ and CdS.³³ The unique Z-scheme favors not only the separation of photo-generated electron/hole pairs but also the redox capacity of the photo-generated electrons and holes involved in catalytic reactions such as CO₂RR.

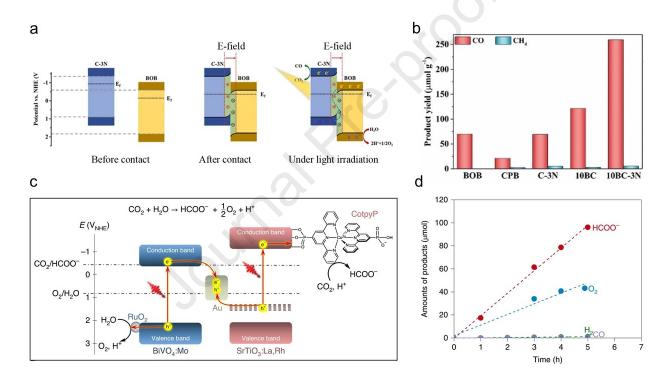


Fig. 7. (a) Schematic (individual, after contact, under the irradiation for CO₂RR with Z-scheme) of the band structures and the charge transfer pathways of C–3N and Bi₃O₄Br (BOB). (b) CO and CH₄ yield amount of C–3N, Bi₃O₄Br, and heterostructured catalysts. Reproduced with permission from Ref. 32. (c) Energy diagram of PCO₂RR coupled with water oxidation over SrTiO₃:La, Rh|Au|RuO₂-BiVO₄:Mo. The reduction potentials are given versus the NHE at pH 6.7. (d) Time course of the PCO₂RR and water oxidation over SrTiO₃:La, Rh|Au|RuO₂-

BiVO₄:Mo. The reaction conditions: CO₂-saturated 0.1M KHCO₃ aqueous solution, at 298 K. Reproduced with permission from Ref. 34.

Alternatively, when the Z-scheme is constructed with the help of the additional bridge between two semiconductors, it is called the indirect Z-scheme system. For example, Wang et al. delicately fabricated lanthanum (La)- and rhodium (Rh)-doped SrTiO₃ (SrTiO₃:La, Rh) and the light absorber of Co(II) bis(terpyridine) modified molybdenum (Mo)-doped BiVO₄ (BiVO₄:Mo) and the RuO₂ catalysts on a gold layer (SrTiO₃:La, Rh|Au|RuO₂-BiVO₄:Mo) for the PCO₂RR (Fig. 7c). The Au layer in SrTiO₃:La, Rh|Au|RuO₂-BiVO₄:Mo is believed to bridge the CB of RuO₂-BiVO₄:Mo and the VB of SrTiO₃:La, Rh, which constructs an effective indirect Z-scheme for the PCO₂RR to HCOO⁻ and the H₂O oxidation reaction. It affords an HCOO⁻ selectivity of 97% with a production rate of around 20 µmol g⁻¹ h⁻¹ (Fig. 7d).³⁴

3. Hierarchical structure construction of the catalysts for PCO₂RR

The catalyst structure plays an essential role during photocatalysis, benefiting the spatial separation of the photo-generated carriers for improved catalytic performance. Taking 2D catalysts as an example, the ultra-thin 2D nanosheets facilitate the transfer of the photo-generated electron/hole pairs to the surface of the catalyst, promoting catalytic activity. For instance, ultrathin 2D NiMgV-layered double hydroxide nanosheets afford excellent CO and CH₄ productions in PCO₂RR.³⁵ Liang et al. constructed a 2D dislocated bilayer MOF that allowed 100% product selectivity of CO in PCO₂RR.³⁶ However, 2D structured materials often suffer from agglomeration, leading to the prolongation of the carriers' transfer and a decreased active area of the catalysts, which jeopardizes the catalytic performance. Wang et al. morphologically modified CuInZnS by introducing negatively charged Ti₃C₂T_x to interfere with the nucleation and growth processes of CuInZnS. It creates a defect regulation in CuInZnS and results in thinner 2D

nanosheets of CuInZnS with a bigger specific surface area and larger pore size than those of the pristine CuInZnS. The hybrid 2D Ti₃C₂T_x-CuInZnS exhibits a CO production rate of 42.8 µmol g^{-1} h⁻¹ in PCO₂RR.³⁷ With the proper synthetic routes, escalated hierarchical structures such as leaf/flower/litchi-like nanostructures can be fabricated through 2D nanostructures.³⁸ As aforementioned, Zhu et al. constructed the heterojunction in a heterostructure of ZnIn₂S₄-CdS for PCO₂RR.³¹ The authors also took advantage of the hierarchical structure construction by anchoring 0D CdS quantum dots on the 3D ZnIn₂S₄ nanoflowers, which contributes to better charge transfer and separation during PCO₂RR. Other than the stacked 2D nanosheets/nanofibers to construct hierarchical structures, the 3D core-shell structure is also a hot topic in this field. Li et al. reported a 3D core-shell heterostructure made of c-TiO₂@aTiO_{2-x}(OH)_y with HO-Ti-[O]-Ti surface frustrated Lewis pairs (SFLPs) on the shell in PCO₂RR.³⁹ Fig. 8a illustrates that the SFLPs dissociate dihydrogen, forming hydrides and charge-balancing protonated hydroxyl groups at unsaturated Ti sites on the surface of the catalyst to promote the PCO₂RR performance. The crystalline-amorphous heterostructure prolongs the lifetime of the electron/hole carriers (Fig. 8b). It allows a CO production rate of 5.3 mmol $g^{-1} h^{-1}$ which is 350 times of the original c-TiO₂ catalyst.

Wei et al. developed a hollow multi-shelled structure (HoMS) of CeO₂@CeO₂/TiO₂ for CH₄ production in PCO₂RR. The high-angle annular dark field scanning TEM (HAADF-STEM) and X-ray energy dispersive spectral (EDS) mapping images in Figs. 8 e and f present the multi-shelled structure of CeO₂@CeO₂/TiO₂. The quadruple inner shells are made of CeO₂, which reduces CO₂ into CO accumulated within the multi-shelled structure. The amorphous outer shell is made of TiO₂, which further converts the accumulated CO into CH₄ (Fig. 8g). The tandem CO₂-CO-CH₄ reaction of the HoMS CeO₂@CeO₂/TiO₂ affords the CO and CH₄ production rates

of 97.6 μ mol g⁻¹ h⁻¹ and 15 μ mol g⁻¹ h⁻¹, respectively (Fig. 8 c and d). The HoMS structure can be destroyed by grinding CeO₂@CeO₂/TiO₂ into debris, causing a dramatic catalytic performance decrease (CH₄ production rate of 3.4 µmol g⁻¹ h⁻¹). The control experiment highlights the significance of the hierarchical structure for the tandem reaction in PCO₂RR.⁴⁰ It reveals that the rational structure construction strategy of hybrid catalysts can further promote catalytic performance by combining different functional semiconductors to achieve a complex reaction of PCO₂RR for high-value-added products. ournal pre-proo

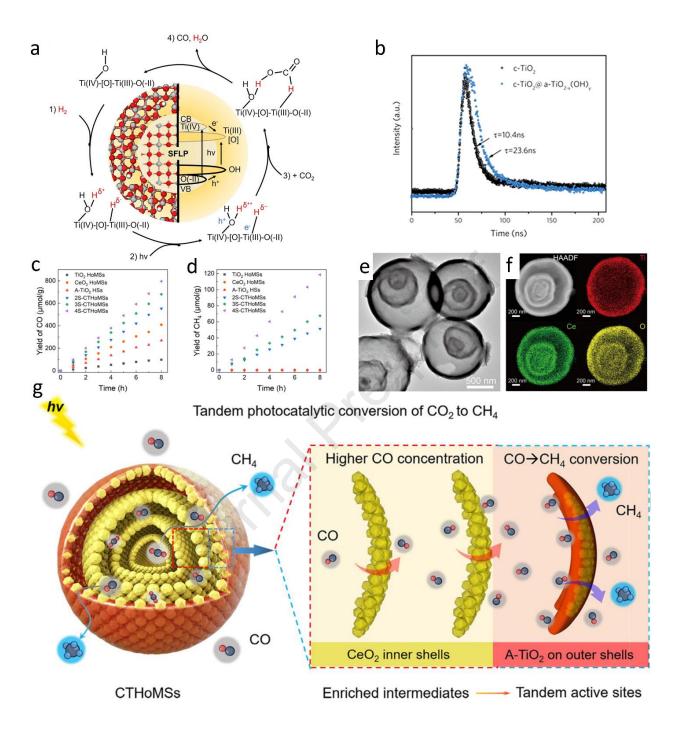


Fig. 8. (a) Illustration of the physicochemical properties of CO₂-to-CO by SFLPs in c-TiO₂@a-TiO_{2-x}(OH)_y. (b) Time-resolved photoluminescence spectroscopy decay curves of c-TiO₂ and c-TiO₂@a-TiO_{2-x}(OH)_y. Reproduced with permission from Ref. 39. (c) CO yield and d) the CH₄ yield of the corresponding samples under AM 1.5 G illumination for 8 h. (e) HAADF-STEM

images and (f) The EDS mapping images of quadruple-shelled CeO₂@CeO₂/TiO₂. (g) Schematic of the hetero-shell structure and the tandem PCO₂RR to CH₄ in CeO₂@CeO₂/TiO₂. Reproduced with permission from Ref. 40.

The production of C_{2+} is difficult for CO₂RR. Cu-based materials are the most known metal catalysts to facilitate the C-C coupling for the formation of C_{2+} products.⁴¹ Many Cu-based photocatalysts show catalytic activities towards the production of C_{2+} products, such as In-Cu SA/PCN for CH₃CH₂OH production,⁴² P/Cu SAs@CN for C₂H₆ production⁴³ and NiCo SA-TiO₂ for the CH₃COOH production.⁴⁴ With the assistance of the hierarchical structure engineering strategy, Cu-based photocatalysts demonstrate promising activity toward C₂₊ production in PCO₂RR. Chakraborty et al. applied the operando surface reconstruction of Wurtzite phase CuGaS₂ to form a 2D CuO layer-modified CuGaS₂, which led to a C₂H₄ production of 20.6 µmol g⁻¹ h⁻¹ with a selectivity of 75.1% in PCO₂RR.⁴⁵ Jia et al. grew p-type Cu₂O selectively on an Au bipyramid with the assistance of CTAB, fabricating a hetero-structure of dumbbell top which spatially separate Au and CuO active catalysts in an hybrid photocatalyst Au/CuO. Taking advantage of both the structural engineering and the LSPR effect, dumbbell-shaped Au/CuO affords much higher C₂₊ productions under near-infrared irradiation than under visible light irradiation.⁴⁶

4. Single-atom catalyst (SAC) strategy for PCO₂RR.

Nowadays, atomically dispersed catalysts and single-atom catalysts (SACs) have gained much attention for their maximum active site utilization and superior catalytic performance.^{47, 48} SACs have commonly supported metal catalysts that consist of isolated monometallic moieties (single metal atoms surrounded by neighboring atoms within the support), which offer well-defined active sites in the catalysts.^{49, 50} Integrating the state-of-art highly active SACs with

semiconductor substrates holds great promise in the catalytic performance enhancement of PCO₂RR. Anchoring the metal atoms on the substrate catalysts is currently one of the most common strategies to construct SAs such as Au, Ag, and Pt SAs on graphene.⁵¹ Ou et al. fabricated Au SAs on red P support (Au₁/RP) with low electronegativity to absorb CO₂ for PCO₂RR.⁵² RP is a single-element constituent, which provides a uniform coordination environment for Au SAs. Fig. 9 a-e depicts that Au SAs are evenly distributed on the RP support. Au₁/RP affords a C₂H₆ production rate of 1.32 µmol g⁻¹ h⁻¹ with a selectivity of 96% (Fig. 9f). The turnover frequency (TOF) also reaches 7.39 h⁻¹, which is pretty high among many photocatalysts (Fig. 9g). The CO₂ adsorption analysis (Fig. 9h) and the in-situ diffuse reflectance infrared Fourier-transform spectroscopy (DRIFTS, Fig. 9i) confirm that Au₁/RP provides better CO₂ adsorption and activation than those of pure RP. It is suggested that the P atoms around the Au SAs are electron rich and capable of serving as active sites for CO₂ activation. In the meantime, the Au SAs can decrease the C-C coupling energy barrier for C₂H₆ production in PCO₂RR (Fig. 9j).

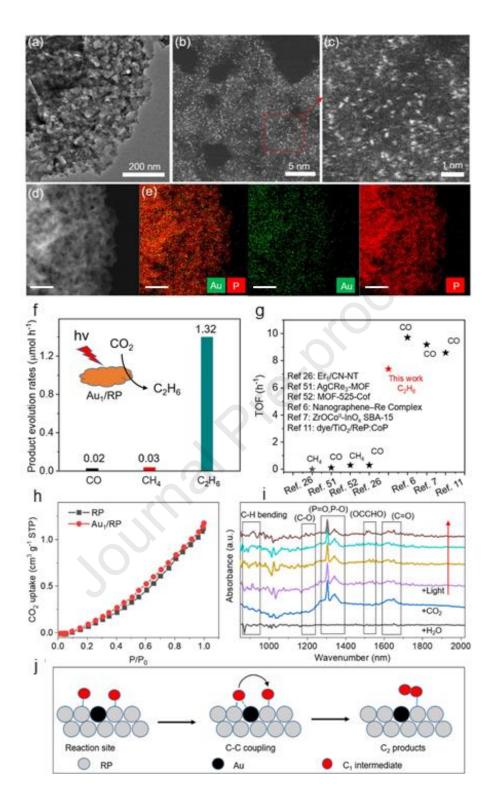


Fig. 9. (a) TEM image of Au₁/RP. (b) HAADF-STEM image and (c) enlarged image of Au₁/RP.
(d) HAADF-STEM image of Au₁/RP (scale bar: 100 nm). (e) EDS mapping images of P and Au of Au₁/RP (scale bar: 100 nm). (f) PCO₂RR performance evaluation. (g) TOF values for

PCO₂RR of Au₁/RP with the recently reported values in literature. (h) CO₂ adsorption of RP and Au₁/RP. (i) In-situ DRIFTS spectra of Au₁/RP for PCO₂RR. (J) Schematic of Au₁/RP for C–C coupling. Reproduced with permission from Ref. 52.

Metal organic frameworks (MOFs) are popular precursors and templates in the CO₂RR catalyst fabrication, as well as in the SACs synthesis.⁵³⁻⁵⁵ The metal node and organic ligand structure of MOFs facilitate the formation of SAs with a post-treatment of pyrolysis.^{56, 57} Using MOFs as the precursors is a solid strategy to fabricate SAC-combined semiconductor catalysts. Other than the MOF strategy, the facile thermal polymerization strategy is also successful in SACs fabrication. Shi et al. reported a Cu-In dual-metal SAC by the polymerization strategy for PCO₂RR.⁵⁸ As demonstrated in Fig. 10a, the metal ion salt, urea, and MIL-68 are used as precursors to fabricate the polymer. Followed by the calcination, Cu-In dual site SACs are prepared. TEM results in Fig. 10 b-d show that Cu and In are evenly distributed on the CN nanosheets with isolated atom spots. The X-ray absorption spectroscopy reveals that the coordination environments of Cu and In in CuInCN are dominated by Cu-N and In-N rather than Cu-Cu and In-In, which confirms the single Cu and In atoms in the CuInCN catalyst (Fig. 10 e-p). The Cu-In dual site SAC affords the superior CO yield rate of 1.2 mmol $g^{-1} h^{-1}$ that is almost ten times of the one of the original CN catalyst under visible light irradiation while maintaining the catalytic activities after 6 runs of the tests (Fig. 10 q and r).

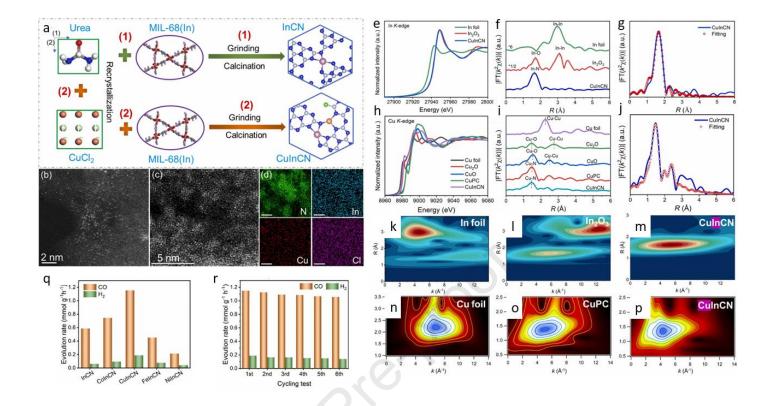


Fig. 10. (a) Schematic of the synthetic process for CuInCN and InCN (green: Cl atom, orange: Cu atom, pale purple: In atom, red: O atom, blue: N atom, light gray: C atom, white: H atom). HAADF-STEM images of (b) InCN and (c) CuInCN. (d) EDS mapping images of CuInCN (scale bar: 2 μm). (e) In K-edge XANES of CuInCN. (f) EXAFS spectra. (g) EXAFS fitting curves. (h) Cu K-edge XANES of CuInCN. (i) XAFS spectra. (j) EXAFS fitting curves. In Kedge Wavelet transforms contour plots of (k) In foil, (l) In₂O₃, (m) CuInCN. Cu K-edge Wavelet transforms contour plots of (n) Cu foil, (o) CuPC, (p) CuInCN. (q) PCO₂RR productions on CuInCN with different Cu loadings. (r) Repeat reaction test with the reaction time of 3 h. Reproduced with permission from Ref. 58.

Besides, many novel synthetic strategies were discovered over recent years. For instance, Wang et al. applied a co-dissolution strategy to dissolve $[PtV_9O_{28}]^{7-}$ into $[V_{10}O_{28}]^{6-}$ to obtain the Pt single-atom catalyst that allowed a CH₄ production rate of 247.6 µmol g⁻¹ h⁻¹, much higher than

that of Pt particles.⁵⁹ The numerous possibilities for the SAC synthesis of different elements hold great potential for refining the PCO₂RR catalysts for better catalytic activities.

5. Biohybrid catalysts for PCO₂RR

For abiotic photocatalysts, the effective transfer of the photo-generated electrons into chemical bonds for CO₂RR is challenging. Biohybrid catalysts offer alternative means for CO₂RR for the production of biofuels and biochemicals with higher product selectivity by integrating catalyst materials with biological cells.⁶⁰⁻⁶⁶ Many successful biohybrid semiconductor photocatalysts have been developed for PCO₂RR. For example, moorella thermoacetica-based biohybrid photocatalysts are efficient for the production of acetic acid from CO₂, such as the self-photosensitization of moorella thermoacetica/CdS nanoparticles (Fig. 11 a and b) ⁶⁷ and moorella thermoacetica/Au nanoclusters (Fig. 11 c and d).⁶⁸ Moreover, light-harvesting artificial cells containing cyanobacteria afford to fix CO₂ into glucose.⁶⁹

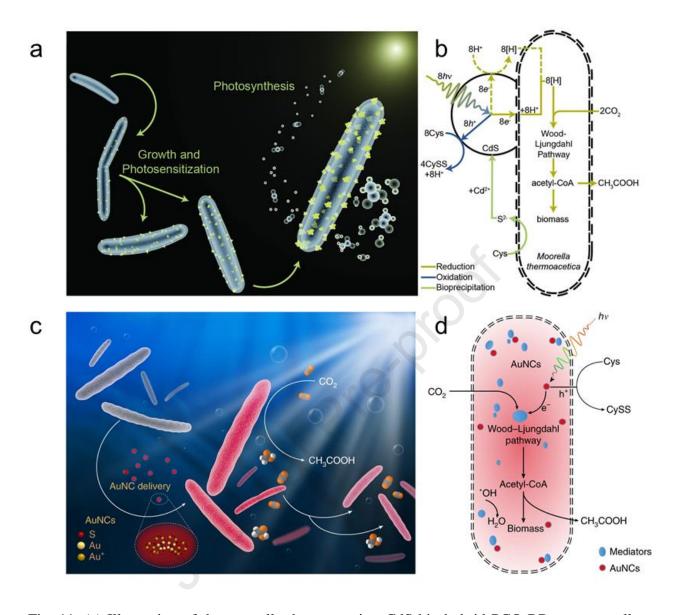


Fig. 11. (a) Illustration of the moorella thermoacetica–CdS bio-hybrid PCO₂RR system, yellow dots: CdS nanoparticles. CO₂ (center right) is converted to acetic acid (right). (b) Schematic of the moorella thermoacetica–CdS bio-hybrid PCO₂RR system. [H] generates outside the cell (marked in dashed line) or generated by the direct electron transport to the cell (marked in solid line). Reproduced with permission from Ref. 67. (c) Illustration of the moorella thermoacetica/AuNCs bio-hybrid PCO₂RR system. Au₂₂(SG)₁₈ nanoclusters are delivered into bare moorella thermoacetica (grey) during the catalyst synthesis to form moorella thermoacetica/AuNCs with red emission. Insert: the simulated chemical structure of

Au₂₂(SG)₁₈ nanoclusters. (Au atoms in the core: light yellow spheres; Au atoms in the staple motifs: dark yellow; S atoms in the shell: red; Oxygen atoms: orange; Carbon atoms: grey; hydrogen atoms: white.) (d) Schematic of the bacterium. The photo-generated electrons in AuNCs under irradiation are utilized by the enzymatic mediators inside the cytoplasm, which pass on to the Wood–Ljungdahl pathway. Reproduced with permission from Ref. 68.

Other than bacteria, protein can also be used in biohybrid semiconductor systems for PCO₂RR. Saif et al. designed a –NH₂ group functionalized 1D protein-encapsulated CeO₂ nanorods (PCNRs) for CO and CH₄ productions in PCO₂RR.⁷⁰ As depicted in Fig. 12a, the bovine serum albumin (BSA) is applied as an efficient biotemplate to synthesize PCNRs. With TEOA as the electron donor to consume the holes and the assistance of RhB, PCNRs demonstrate excellent activity toward H₂ production (Fig. 12b). When carried out in a CO₂ gas environment, PCNRs show catalytic activities towards CH₄ and CO productions under light irradiation of 400 nm < λ < 780 nm (Fig. 12c) with great suppression of H₂ production. Fig. 12d and e reveal that PCNRs exhibit CO and CH₄ production rates of 5.0 and 3.3 µmol h⁻¹ g⁻¹, which are 50 and 83 times higher than those of non-biohybrid CeO₂, respectively. The authors believe that the protein hybrid PCNRs significantly enhance the material stability and facilitate the transfer of photogenerated holes to promote the separation process of photo-generated carriers.

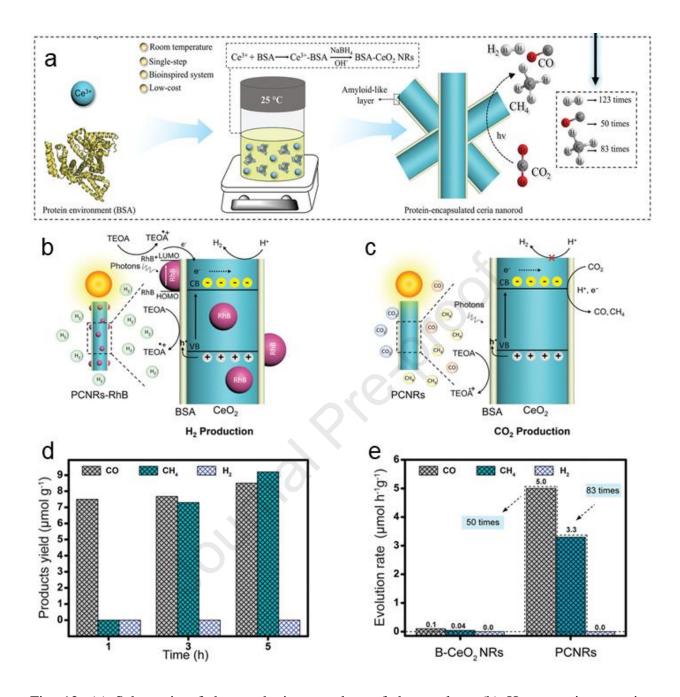


Fig. 12. (a) Schematic of the synthetic procedure of the catalyst. (b) H₂ generation reaction mechanism on the PCNRs. TEOA serves as the electron donor to consume the photo-generated hole. (c) PCO₂RR mechanism. (d) CO, CH₄, and H₂ yields during PCO₂RR on PCNRs. (e) CO, CH₄, and H₂ production rates on PCNRs and B-CeO₂ NRs. Reproduced with permission from Ref. 70.

Researchers should still pay attention to some key points, concerning the future design of biohybrid photocatalysts. First, semiconductor materials that are compatible with bio cells need to be rationally constructed to protect microbial cells from deactivation while sufficiently harvesting visible light to provide enough electrons for CO₂RR. Second, the interface of the biotic–abiotic should be tailored for quick charge transfer, accelerating the separation rate of electron/hole pairs for better catalytic performance. Finally, the integrated bio-material should be able to efficiently utilize photo-generated electrons to produce fuel chemicals from PCO₂RR.⁶⁰

Luce ruel che

Catalyst	Light source	Reduction Product (selectivity)	Production rate (μ mol $g^{-1} h^{-1}$)	Stability	Other parameters	Ref.
		Ν	Metal oxides			
CoO _x /N-C-ZnO	AM 1.5G light	СО	CO: 2.6	5 h	CO ₂ + H ₂ O; Apparent quantum yield: 1.49% at 420 nm	71
NiO/hexaniobate-Ni cluster	Simulated solar light (150 W)	СО	CO: 730	5	$CO_2 + H_2O$	72
Ag-TiO ₂ /GDL	UV light (λ < 400 nm)	CO (~66%), CH ₄ (~33%)	CO+ CH ₄ : 305.7	60 h	$\mathrm{CO}_2 + \mathrm{H}_2\mathrm{O}$	23
CeO ₂ @CeO ₂ /TiO ₂	AM 1.5G light	CO (~87%), CH ₄ (~13%)	CO: 97.6 CH ₄ : 15.0	8 h	CO ₂ + H ₂ O and triethanolamine (TEOA)	40
Au _{0.2} Cu _{0.8} /TiO ₂	AM 1.5G light	CH ₄ (~90%), C ₂ H ₄ (~10%)	CH ₄ : 3578.9 CH ₄ : 369.8	8 h	$CO_2 + H_2O$	9
Pd-HPP-TiO ₂	300 W Xe lamp	CO (~41%), CH ₄ (~59%)	CO: 34.0 CH ₄ : 48.0	20 h	CO ₂ /O ₂ mixed gas, or air	22
Cu ₂ O-111-Cu ⁰	300 W Xe lamp	CH ₄ (~97%), C ₂ H ₄ , CO, H ₂	CH ₄ : 78.4	8 h	$\mathrm{CO}_2 + \mathrm{H}_2\mathrm{O}$	73
			Alloys			
Au/CuPd	400 mW cm ⁻² full-spectrum light	CH ₄ (100%)	CH ₄ : 15.6	30	CO ₂ + H ₂ O Apparent quantum efficiency: 0.38% at 800 nm	28
			Bi-based			
BiOCl-V _{Bi}	300 W Xe lamp	СО	CO: 21.99	30 h	In air	74
Ni@MOF/BiVO4	300 W Xe lamp	CO (99.2%), H ₂	CO: 178.0	28 h	$CO_2 + H_2O$	75
SrTiO3:La,Rh/Au/Bi VO4:Mo	AM 1.5G light	HCOO ⁻ (97%)	HCOO ⁻ : ~20.0	24 h	CO ₂ -saturated 0.1 M KHCO ₃ aqueous solution + CO ₂ ; Turnover number (TON):	34

Table 1. Photocatalytic performance of some typical hybrid catalysts.

					427	
		Cd	S-based			
α-Fe ₂ O ₃ /CdS	AM 1.5G light	СО	CO: 9.3	6 h	$CO_2 + H_2O$	33
ZnIn ₂ S ₄ -CdS	visible light ($\lambda > 420 \text{ nm}$)	CO (~85%), H ₂	CO: 2182.5	20 h	CO ₂ + H ₂ O, TEOA, MeCN, CoCl ₂ , and 2,2-bipyridine;	31
					TON = 43.65	
		Layered do	uble hydroxides			
NiAl-LDH visible light ($\lambda > 600 \text{ nm}$)	visible light ($\lambda > 600 \text{ nm}$)	CO (29.7%), CH ₄	CO: 43.0 4 h	4 h	$CO_2 + H_2O$, acetonitrile (ACN), TEOA, and Ru(bpy) ₃ Cl ₂ .	20
	(70.3%)	CH ₄ : 103.0		6H ₂ O;		
Pd/CoAl-LDH visible light ($\lambda > 400 \text{ nm}$)	CO(500(1)) II (500(1)	CO. 1690.0	4.1	$CO_2 + H_2O$, TEOA, and $Ru(bpy)_3Cl_2$.	01	
	visible light ($\lambda > 400 \text{ nm}$)	CO (50%), H ₂ (50%)	CO: 1680.0	4 h	6H ₂ O;	21
		Carb	onaceous			
CN/MRF	visible light ($\lambda > 420 \text{ nm}$)	CH ₃ OH	CH ₃ OH: 0.99	5 h	CO ₂ + H ₂ O, 80 °C; Quantum efficiency: 5.5% at 380 nm	76
Co ₂ P@BP/g-C ₃ N ₄	300 W Xe lamp	CO (96%), CH ₄	CO: 16.21	20 h	CO_2 + acetonitrile, H ₂ O, and TEOA	77
Cu ₁ N ₃ @PCN	visible light ($\lambda > 420 \text{ nm}$)	СО	CO: 49.8	25 h	$CO_2 + H_2O$	78
Fe SA/COF	visible light ($\lambda > 420 \text{ nm}$)	CO (96.4%), H ₂	CO: 980.3	20 h	CO_2 + acetonitrile, H ₂ O, and TEOA	79
HOF-Ni/GO	visible light ($\lambda > 420 \text{ nm}$)	CO (96.3%), H ₂	CO: 24323.0	8 h	$CO_2 + H_2O$, MeCN, TIPA, and $Ru(bpy)_3Cl_2$.	80
Au/N-graphene	300 W Xe lamp	CO (95%)	CO: 111360	36 h	$\frac{6H_2O}{CO_2 + H_2O}$	51
Au/IN-graphene	500 w Ae lamp			50 11	$CO_2 + H_2O$	51
		Per	ovskite			
$Cs_2NaBiCl_6$ 300 W Xe la:	300 W Xe lamp	300 W Xe lamp CO (96.4%), CH ₄	CO: 30.22	50 h	Gas $(CO_2 + H_2O)$	81
-	•	(3.6%)	CH ₄ : 1.12		· · · ·	
Ni-CsPbBr3/Bi3O4Br visibl	visible light ($\lambda > 420 \text{ nm}$)	CO (98.2%), CH ₄	CO: 96.9	20 h	Gas (air $+$ H ₂ O)	32
	visible light ($\lambda > \pm 20$ lill)	(1.8%)	CH ₄ : 1.7	20 11		52

6. Characterization techniques in PCO₂RR

After the design of highly efficient catalysts, many characterization techniques are required to understand the properties and uniqueness of the photocatalyst material for excellent catalytic efficiency. X-ray photoelectron spectroscopy (XPS), X-ray powder diffraction (XRD), UV-Vis spectroscopy, and X-ray absorption spectroscopy (XAS) are common techniques for exploring the element valence, crystallization, bandgap value, and coordination environment information of the materials. Scanning electron microscopes (SEM), transmission electron microscopy (TEM), and energy dispersive spectroscopy (EDS) can directly provide visual images of morphologies and element distributions of catalyst materials. The combination of different characterization techniques is important to confirm one's assumption. For example, the analysis of XAS and XPS helps to confirm the N/O ratio in N-Ti-O/V[O] for the production of C₂₊ products on TiO₂ catalysts.⁸² For revealing the reaction mechanism of CO₂RR, the density functional theory (DFT) simulations emerge as one of the most useful tools to demystify the structure-activity relationship and catalytic mechanism for complex catalytic systems such as hybrid catalysts.⁸³⁻⁸⁶ In the meantime, in-situ characterizations, such as in-situ XRD, in-situ XAS, and in-situ Raman spectroscopy, are powerful experimental approaches to trace the evolution of the catalyst structures and reaction intermediates during the catalytic reaction of CO₂RR.⁸⁷⁻⁹⁰ Apart from Raman spectroscopy, in-situ Fourier transform infrared absorption spectroscopy (FTIR) can also provide evidence of reaction intermediates, uncovering the reaction pathway of CO₂RR.^{91, 92} Wu et al. prepared an oxygen vacancy (V₀)-rich MoO_{2-x} for PCO₂RR.⁹³ The V₀-rich MoO_{2-x} exhibits a CH₄ production rate of 5.8 and 12.2 μ mol g⁻¹ h⁻¹ under NIR and full light irradiation in PCO₂RR, which is around 10- and 7-fold to those of the V₀-poor MoO_{2-x},

respectively (Fig. 13a). Besides, the V₀-rich MoO_{2-x} performs PCO₂RR directly under an air atmosphere with a CO production rate of 6.5 µmol g⁻¹ h⁻¹ under NIR irradiation (Fig. 13b). V₀rich MoO_{2-x} also demonstrates good stability in PCO₂RR activity under NIR irradiation in concentrated CO₂ after 4 runs (Fig. 13c). In-situ FTIR is applied to reveal the reaction mechanism of PCO₂RR over the MoO_{2-x} catalysts. Fig. 13d shows that carbonate species and *CO₂⁻ appear in the dark, suggesting the absorption and activation of CO₂ on the V₀-rich MoO_{2-x} surface. Additional peaks of *COOH (1593 cm⁻¹), *CH₃O (1170 and 1100 cm⁻¹), and *CHO (1082 cm⁻¹) appear and are gradually strengthened with the increase of illumination time under NIR (Fig. 13e). These intermediates are essential to the production of CH₄ in CO₂RR. When illuminated under full spectrum light, the IR peak intensities of the intermediates further increased (Fig. 13f). It reveals the efficient light response of V₀-rich MoO_{2-x} and the possible reaction pathway (CO₂→ *CO₂→*COOH→ *CO→CO or *CHO→*CH₂O→*CH₃O→CH₄) for PCO₂RR.

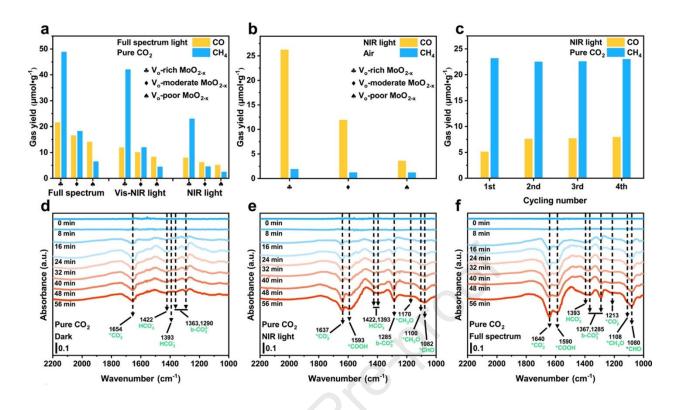


Fig. 13. PCO₂RR performance on MoO_{2-x} under (a) whole light illumination in pure CO₂, (b) NIR illumination in air, and (c) repeat tests of PCO₂RR under NIR illumination in pure CO₂. Insitu FTIR experiments on V₀-rich MoO_{2-x} (d) under the dark, (e) under NIR illumination, and (f) under whole light illumination in pure CO₂. Reproduced with permission from Ref. 93.

With the advancing of characterization techniques, powerful characteristic techniques are exploited for revealing the compositional effects in hybrid catalysts for PCO₂RR. Chen et al. recently applied spatiotemporally resolved surface photovoltage measurements (SPVM) on the facet and defect-engineered Cu₂O catalysts (Fig. 14a) to map the holistic charge transfer processes at the single-particle level on the femtosecond timescale.⁹⁴ Fig. 14b depicts that the {001} facet has more accumulated photo-generated electrons than the {111} facet of the Cu₂O octahedron, owing to the high Cu vacancies (V_{Cu}) on the {001} facet. Fig. 14c demonstrates that the anisotropic charge transfer is optimized with a truncated octahedral configuration, suggesting the contribution of the inter-facet built-in electric field to the anisotropic charge transfer. SPVM

in Fig. 14d further illustrates that the moderate hydrogen-compensated V_{Cu} (H- V_{Cu}) results in an efficient spatial separation of the photo-generated carriers on {111} and {001} facets. On the contrary, the extreme incorporation of H- V_{Cu} leads to the quench of the photo-generated electron/hole pairs (Fig. 14e). The photoemission electron images in Fig. 14f visualize the dynamics of anisotropic electron transfer for single Cu₂O particle, indicating that the ultrafast inter-facet electron transfer contributes significantly to the anisotropic electron distribution. Au being selectively deposited on the {001} facet of Cu₂O can also be successfully probed by SPVM (Fig. 14 g-i). It is confirmed that the H₂ evolution performance is associated with the anisotropic charge transfer of Cu₂O (Fig. 14j). This powerful SPVM technique brings meaningful insights into the photo-carrier transfer dynamics, which can be transplanted to PCO₂RR. With more advanced characterization techniques developed and applied to the PCO₂RR catalysts, the rational design of the next-generation photocatalyst for excellent catalytic performance can be precisely and systematically guided.

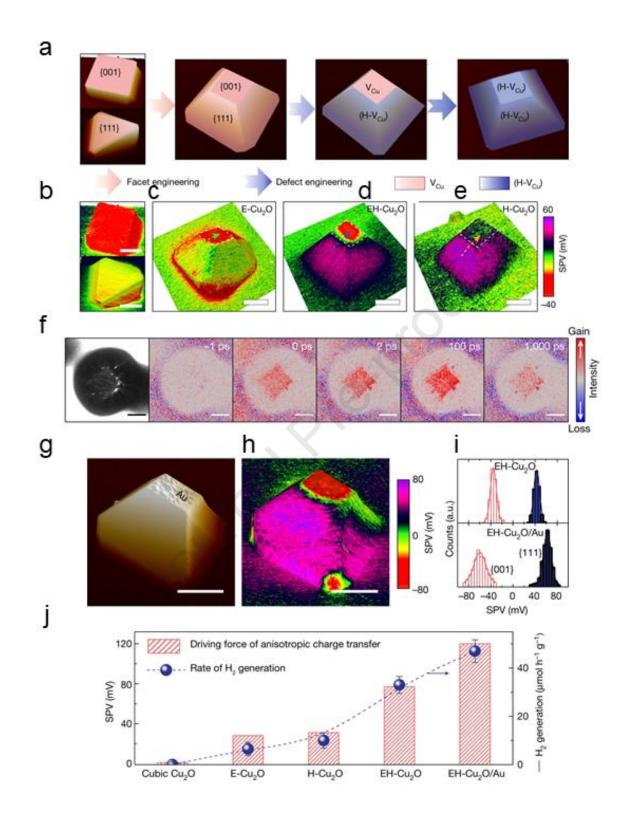


Fig. 14. (a) Schematic of the anisotropic facets and defects engineering on Cu₂O particles. (b) SPVM images of octahedral (bottom) and cubic (top) Cu₂O particles. SPVM images of truncated

octahedral Cu₂O particles of (c) without incorporation of (H-VCu) defects, (d) with moderate incorporation of (H-VCu) defects, and (e) with extreme incorporation of (H-VCu) defects. Timeresolved photoemission electron microscopy of E-Cu₂: (f) PEEM image and a series of TR-PEEM images of EH-Cu₂O O at different pump–probe delay times, as labeled. Scale bars: 2 μm. (g) AMF image and (h) corresponding SPVM image of EH-Cu₂O O/Au. (i) Comparison of the statistical SPV signals on the {001} and {111} facets of EH-Cu₂O with Au particles selectively deposited on the {001} facet (marked as EH-Cu₂O/Au. (j) Driving forces of the anisotropic charge transfer and the PCO₂RR performance. Reproduced with permission from Ref. 94.

7. Perspectives

To sum up, semiconductor photocatalysts often suffer from unsatisfying catalytic performance (e.g. with production rate at the level of μ mol g⁻¹ h⁻¹) in PCO₂RR, owing to the poor light harvesting ability, the low separation rate of the photo-induced carriers, and stability issues. Designing novel semiconductor materials with highly efficient catalytic performance for PCO₂RR that address these issues is a priority. The hybridization of semiconductor catalysts through different approaches such as surface modification and band engineering strategies can integrate the advantages of the different semiconductor catalysts and co-catalysts to prohibit the recombination of the photo-generated electron/hole pairs and promote the light response of the semiconductor catalysts for PCO₂RR. The hierarchical structure construction of semiconductor catalysts also contributes to the separation of the photo-generated electron/hole pairs and sometimes can even achieve a spatially coordinated tandem reaction to produce C₂₊ products from PCO₂RR. Active sites are essential to catalysis. Anchoring highly catalytically effective SACs on semiconductor catalysts holds great promise for the augmentation of catalytic activities

in PCO₂RR. To improve product selectivity, integrating biological materials that are highly selective in photosynthesis with semiconductor catalysts has been proven to be an effective solution. Moreover, by using advanced characterization techniques for in-situ probing, the underlying mechanism of the reaction pathway and catalyst structure evolution can be demystified for next-generation PCO₂RR catalyst design. Other than the proposed solutions discussed above, current research on PCO₂RR still needs to focus on the following perspectives:

- The duration of the catalytic performance is always a big issue in PCO₂RR. Most photocatalysts present a catalytic activity duration of dozens of hours, which is excessively low for industrial requirements (more than thousands of hours).^{95, 96} The fabrication of highly active semiconductor materials for CO₂RR without accumulating residues of poisoning intermediates is forever a priority. Besides, the addition of the protective layer on the surface of photocatalysts to mitigate the decay of the catalyst structure during PCO₂RR could be a possible solution to enhance the catalyst stability.⁷
- In addition, the combination of photocatalysis with other catalytic methods such as electrochemical catalysis and thermal catalysis (e.g. photo-electrocatalysis) holds great potential to improve both the catalytic activities and product selectivity in CO₂RR.^{97, 98} CO₂ capture and storage (CCS) takes a vital part in the mitigation of over-emitted CO₂ because it is energy-consuming.⁹⁹ Sorbent porous materials such as metal oxides,¹⁰⁰⁻¹⁰² zeolites and amine-functionalized silicas,¹⁰³ covalent organic frameworks (COFs),¹⁰⁴⁻¹⁰⁶ MOFs,¹⁰⁷⁻¹⁰⁹ and porous carbons¹¹⁰ are effective toward CO₂ captures. Many of these sorbent materials also demonstrate photocatalytic activity towards CO₂RR. Hence, coupling CO₂-capture with PCO₂RR can be a practical means in the further market for better efficiency.¹¹¹⁻¹¹⁵

• To finally achieve a practical application, a rational catalysis setup needs to be designed for high catalytic efficiency and scale-up production. Many promising CO₂RR systems have been developed for electrolysis, such as gas phase flow cells, solid oxide electrolysis cells (SOECs), etc.¹¹⁶⁻¹¹⁸ For the photocatalysis-related setup upgrade, there are also some interesting discoveries, e.g., the back-illuminated photoelectrochemical flow cell for the increased solar-to-fuel conversion efficiency,¹¹⁹ the aerobic environment for the improved PCO₂RR in a less restricted reaction condition.¹²⁰

Acknowledgments

This work was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC), the Fonds de Recherche du Québec-Nature et Technologies (FRQNT), Centre Québécois sur les Materiaux Fonctionnels (CQMF), Institut National de la Recherche Scientifique (INRS), and École de Technologie Supérieure (ÉTS). Dr. G. Zhang thanks for the support from the Marcelle-Gauvreau Engineering Research Chair program.

Declaration of competing interest

There is no conflict of interest to declare.

Reference

1. Su JJ, Liu Y, Song Y, et al. Recent development of nanomaterials for carbon dioxide electroreduction, *Smartmat*. 2022;3(1):35-53.

Wang Y, Chen E, Tang J. Insight on reaction pathways of photocatalytic CO₂ conversion, *ACS Catal*.
 2022;12(12):7300-7316.

3. Chen Z, Zhang G, Du L, et al. Nanostructured cobalt-based electrocatalysts for CO₂ reduction: Recent progress, challenges, and perspectives, *Small*. 2020;16(52):e2004158.

4. Wang R, Wang X, Xiong Y, et al. Modulation of trivalent/tetravalent metallic elements in Ni-based layered double hydroxides for photocatalytic CO₂ reduction, *ACS Appl Mater Interfaces*. 2022;14(31):35654-35662.

5. Maeda K. Metal-complex/semiconductor hybrid photocatalysts and photoelectrodes for CO₂ reduction driven by visible light, *Adv. Mater.* 2019;31(25):e1808205.

6. Zhang W, Mohamed AR, Ong WJ. Z-Scheme photocatalytic systems for carbon dioxide reduction: Where are we now?, *Angew. Chem. Int. Ed. Engl.* 2020;59(51):22894-22915.

7. Chen ZS, Zhang GX, Prakash J, et al. Rational design of novel catalysts with atomic layer deposition for the reduction of carbon dioxide, *Advanced Energy Materials*. 2019;9(37):1900889.

8. An L, De La Torre P, Smith PT, et al. Synergistic porosity and charge effects in a supramolecular porphyrin cage promote efficient photocatalytic CO₂ reduction, *Angew. Chem. Int. Ed. Engl.* 2023;62(5):e202209396.

9. Yu Y, Dong X, Chen P, et al. Synergistic effect of Cu single atoms and Au-Cu alloy nanoparticles on TiO₂ for efficient CO₂ photoreduction, *ACS Nano*. 2021;15(9):14453-14464.

10. Yoshida H, Zhang L, Sato M, et al. Calcium titanate photocatalyst prepared by a flux method for reduction of carbon dioxide with water, *Catal. Today.* 2015;251:132-139.

11. Dong Y, Duchesne P, Mohan A, et al. Shining light on CO₂: From materials discovery to photocatalyst, photoreactor and process engineering, *Chem. Soc. Rev.* 2020;49(16):5648-5663.

12. Wang JW, Ma F, Jin T, et al. Homoleptic Al(III) photosensitizers for durable CO₂ photoreduction, *J. Am. Chem. Soc.* 2023;145(1):676-688.

13. Das R, Paul R, Parui A, et al. Engineering the charge density on an $In_{2.77}S_4$ /porous organic polymer hybrid photocatalyst for CO₂-to-ethylene conversion reaction, *J. Am. Chem. Soc.* 2023;145(1):422-435.

14. Liang YJ, Wu X, Liu XY, et al. Recovering solar fuels from photocatalytic CO_2 reduction over W_6^+ incorporated crystalline g-C₃N₄ nanorods by synergetic modulation of active centers, *Appl Catal B*-*Environ*. 2022;304:120978.

15. Liang MF, Borjigin T, Zhang YH, et al. Controlled assemble of hollow heterostructured g- $C_3N_4@CeO_2$ with rich oxygen vacancies for enhanced photocatalytic CO₂ reduction, *Appl Catal B-Environ*. 2019;243:566-575.

16. Li B, Si Y, Zhou BX, et al. Doping-induced hydrogen-bond engineering in polymeric carbon nitride to significantly boost the photocatalytic H₂ evolution performance, *ACS Appl Mater Interfaces*. 2019;11(19):17341-17349.

17. Shi X, Dong XA, He Y, et al. Photoswitchable chlorine vacancies in ultrathin Bi₄O₅Cl₂ for selective CO₂ photoreduction, *ACS Catalysis*. 2022;12(7):3965-3973.

18. Wang Q, Miao Z, Zhang Y, et al. Photocatalytic reduction of CO₂ with H₂O mediated by Ce-tailored bismuth oxybromide surface frustrated Lewis pairs, *ACS Catalysis*. 2022;12(7):4016-4025.

19. Wang N, Cheong S, Yoon DE, et al. Efficient, selective CO₂ photoreduction enabled by facetresolved redox-active sites on colloidal CdS nanosheets, *J. Am. Chem. Soc.* 2022;144(37):16974-16983. 20. Tan L, Xu SM, Wang Z, et al. Highly selective photoreduction of CO₂ with suppressing H₂ evolution over monolayer layered double hydroxide under irradiation above 600 nm, *Angew. Chem. Int. Ed. Engl.* 2019;58(34):11860-11867.

21. Wang X, Wang ZL, Bai Y, et al. Tuning the selectivity of photoreduction of CO₂ to syngas over Pd/layered double hydroxide nanosheets under visible light up to 600 nm, *Journal of Energy Chemistry*. 2020;46:1-7.

22. Ma Y, Yi X, Wang S, et al. Selective photocatalytic CO₂ reduction in aerobic environment by microporous Pd-porphyrin-based polymers coated hollow TiO₂, *Nat Commun.* 2022;13(1):1400.

23. Huang H, Shi R, Li Z, et al. Triphase photocatalytic CO₂ reduction over silver-decorated titanium oxide at a gas-water boundary, *Angew. Chem. Int. Ed. Engl.* 2022;61(17):e202200802.

24. Yue X, Cheng L, Li F, et al. Highly strained Bi-MOF on bismuth oxyhalide support with tailored intermediate adsorption/desorption capability for robust CO₂ photoreduction, *Angew. Chem. Int. Ed. Engl.* 2022;61(40):e202208414.

25. Jiang Y, Yu Y, Zhang X, et al. N-heterocyclic carbene-stabilized ultrasmall gold nanoclusters in a metal-organic framework for photocatalytic CO₂ reduction, *Angew. Chem. Int. Ed. Engl.* 2021;60(32):17388-17393.

26. Shangguan W, Liu Q, Wang Y, et al. Molecular-level insight into photocatalytic CO₂ reduction with H₂O over Au nanoparticles by interband transitions, *Nat Commun.* 2022;13(1):3894.

27. Zhu K, Zhu Q, Jiang M, et al. Modulating Ti t_{2g} orbital occupancy in a Cu/TiO₂ composite for selective photocatalytic CO₂ reduction to CO, *Angew. Chem. Int. Ed. Engl.* 2022;61(34):e202207600.

28. Hu C, Chen X, Low J, et al. Near-infrared-featured broadband CO₂ reduction with water to hydrocarbons by surface plasmon, *Nat Commun.* 2023;14(1):221.

29. He X, Kai T, Ding P, Heterojunction photocatalysts for degradation of the tetracycline antibiotic: A review, *Environ Chem Lett.* 2021;19(6):4563-4601.

30. Chen Q, Lan X, Ma Y, et al. Boosting CsPbBr₃-driven superior and long-term photocatalytic CO_2 reduction under pure water medium: Synergy effects of multifunctional melamine foam and graphitic carbon nitride (g-C₃N₄), *Solar RRL*. 2021;5(7):2100186.

31. Zhu ZZ, Li XX, Qu YT, et al. A hierarchical heterostructure of CdS QDs confined on 3D $ZnIn_2S_4$ with boosted charge transfer for photocatalytic CO₂ reduction, *Nano Research*. 2021;14(1):81-90.

32. Wang XT, Wang ZZ, Li Y, et al. Efficient photocatalytic CO₂ conversion over 2D/2D Ni-doped CsPbBr₃/Bi₃O₄Br Z-scheme heterojunction: Critical role of Ni doping, boosted charge separation and mechanism study, *Appl Catal B-Environ*. 2022;319:121895.

33. Long L, Lv G, Han Q, et al. Achieving direct Z-scheme charge transfer through constructing 2D/2D α-Fe₂O₃/CdS heterostructure for efficient photocatalytic CO₂ conversion, *The Journal of Physical Chemistry C*. 2021;125(42):23142-23152.

34. Wang Q, Warnan J, Rodriguez-Jimenez S, et al. Molecularly engineered photocatalyst sheet for scalable solar formate production from carbon dioxide and water, *Nature Energy*. 2020;5(9):703-710.

35. Bai S, Ning C, Wang H, et al. VO₄-modified layered double hydroxides nanosheets for highly selective photocatalytic CO_2 reduction to C_1 products, *Small*. 2022;18(40):e2203787.

36. Liang J, Yu H, Shi J, et al. Dislocated bilayer MOF enables high-selectivity photocatalytic reduction of CO₂ to CO, *Adv. Mater.* 2023;35(10):e2209814.

37. Wang LJ, Zhang Z, Guan RQ, et al. Synergistic CO_2 reduction and tetracycline degradation by CuInZnS-Ti₃C₂T_x in one photoredox cycle, *Nano Research*. 2022;15(9):8010-8018.

38. Hiragond C, Ali S, Sorcar S, et al. Hierarchical nanostructured photocatalysts for CO₂ photoreduction, *Catalysts*. 2019;9(4):370.

39. Li Z, Mao C, Pei Q, et al. Engineered disorder in CO₂ photocatalysis, *Nat Commun.* 2022;13(1):7205.

40. Wei Y, You F, Zhao D, et al. Heterogeneous hollow multi-shelled structures with amorphouscrystalline outer-shells for sequential photoreduction of CO₂, *Angew. Chem. Int. Ed. Engl.* 2022;61(49):e202212049.

41. Wang XD, Hu Q, Li GD, et al. Recent advances and perspectives of electrochemical CO₂ reduction toward C₂₊ products on Cu-based catalysts, *Electrochemical Energy Reviews*. 2022;5(Suppl 2):28.

42. Shi H, Wang H, Zhou Y, et al. Atomically dispersed indium-copper dual-metal active sites promoting C-C coupling for CO₂ photoreduction to ethanol, *Angew. Chem. Int. Ed. Engl.* 2022;61(40):e202208904.

43. Wang G, Chen Z, Wang T, et al. P and Cu dual sites on graphitic carbon nitride for photocatalytic CO_2 reduction to hydrocarbon fuels with high C_2H_6 evolution, *Angew. Chem. Int. Ed. Engl.* 2022;61(40):e202210789.

44. Jia G, Sun M, Wang Y, et al. Asymmetric coupled dual-atom sites for selective photoreduction of carbon dioxide to acetic acid, *Adv. Funct. Mater.* 2022;32(41):2206817.

45. Chakraborty S, Das R, Riyaz M, et al. Wurtzite $CuGaS_2$ with an in-situ-formed CuO layer photocatalyzes CO_2 conversion to ethylene with high selectivity, *Angew. Chem. Int. Ed. Engl.* 2023;62(9):e202216613.

46. Jia H, Li F, Chow TH, et al. Construction of spatially separated gold nanocrystal/cuprous oxide architecture for plasmon-driven CO₂ reduction, *Nano Lett.* 2022;22(17):7268-7274.

47. Hulva J, Meier M, Bliem R, et al. Unraveling CO adsorption on model single-atom catalysts, *Science*. 2021;371(6527):375-379.

48. Vijay S, Gauthier JA, Heenen HH, et al. Dipole-field interactions determine the CO₂ reduction activity of 2D Fe-N-C single-atom catalysts, *ACS Catalysis*. 2020;10(14):7826-7835.

49. Jeong H, Kwon O, Kim BS, et al. Highly durable metal ensemble catalysts with full dispersion for automotive applications beyond single-atom catalysts, *Nature Catalysis*. 2020;3(4):368-375.

50. Chen ZS, Zhang GX, Chen HR, et al. Multi-metallic catalysts for the electroreduction of carbon dioxide: Recent advances and perspectives, *Renew Sust Energ Rev.* 2022;155:111922.

51. Guo S, Song C, Liu F, et al. Bionic optical leaf for photoreduction of CO₂ from noble metal atom mediated graphene nanobubble arrays, *ACS Nano*. 2022;16(2):1909-1918.

52. Ou H, Li G, Ren W, et al. Atomically dispersed Au-assisted C-C coupling on red phosphorus for CO₂ photoreduction to C₂H₆, *J. Am. Chem. Soc.* 2022;144(48):22075-22082.

53. Wang X, Zou Y, Zhang Y, et al. Tin-based metal organic framework catalysts for high-efficiency electrocatalytic CO₂ conversion into formate, *J. Colloid Interface Sci.* 2022;626:836-847.

54. Guan Y, Zhang X, Zhang Y, et al. Achieving high selectivity towards electro-conversion of CO₂ using In-doped Bi derived from metal-organic frameworks, *J. Colloid Interface Sci.* 2022;612:235-245.

55. Wang XY, Fan MY, Guan YY, et al. MOF-based electrocatalysts for high-efficiency CO₂ conversion: Structure, performance, and perspectives, *Journal of Materials Chemistry A*. 2021;9(40):22710-22728.

56. Cho JH, Lee C, Hong SH, et al. Transition metal ion doping on ZIF-8 enhances the electrochemical CO₂ reduction reaction, *Adv. Mater.* 2022:e2208224.

57. Chen Z, Zhang G, Wen Y, et al. Atomically dispersed Fe-Co bimetallic catalysts for the promoted electroreduction of carbon dioxide, *Nanomicro Lett*. 2021;14(1):25.

58. Shi HN, Li JH, Wang HZ, et al. Chlorine tailored p-d blocks dual-metal atomic catalyst for efficient photocatalytic CO₂ reduction, *Appl Catal B-Environ*. 2023;322:122139.

59. Wang YJ, Zhuang GL, Zhang JW, et al. Co-dissolved isostructural polyoxovanadates to construct single-atom-site catalysts for efficient CO₂ photoreduction, *Angew. Chem. Int. Ed. Engl.* 2023;62(6):e202216592.

48

60. Zhang J, Liu LM, Chen XL. Pushing hybrids to the limits, Nature Catalysis. 2022;5(11):975-976.

61. Zhou X, Zeng Y, Lv F, et al. Organic semiconductor-organism interfaces for augmenting natural and artificial photosynthesis, *Acc. Chem. Res.* 2022;55(2):156-170.

62. Zhou Y, Guo X, Li X, et al. Effect of different soaking time on catalytic performance of CuO/Cu@BC electrode for CO₂ reduction, *Chin. J. Process Eng.* 2020;20(8):989-996.

63. Kim J, Cestellos-Blanco S, Shen YX, et al. Enhancing biohybrid CO₂ to multicarbon reduction via adapted whole-cell catalysts, *Nano Lett*. 2022;22(13):5503-5509.

64. Cobb SJ, Badiani VM, Dharani AM, et al. Fast CO₂ hydration kinetics impair heterogeneous but improve enzymatic CO₂ reduction catalysis, *Nat Chem.* 2022;14(4):417-424.

65. Contaldo U, Curtil M, Perard J, et al. A Pyrene-triazacyclononane anchor affords high operational stability for CO₂RR by a CNT-supported histidine-tagged CODH, *Angew. Chem. Int. Ed. Engl.* 2022;61(21):e202117212.

66. Wang Q, Kalathil S, Pornrungroj C, et al. Bacteria–photocatalyst sheet for sustainable carbon dioxide utilization, *Nature Catalysis*. 2022;5(7):633-641.

67. Sakimoto KK, Wong AB, Yang P. Self-photosensitization of nonphotosynthetic bacteria for solar-tochemical production, *Science*. 2016;351(6268):74-77.

68. Zhang H, Liu H, Tian Z, et al. Bacteria photosensitized by intracellular gold nanoclusters for solar fuel production, *Nat Nanotechnol*. 2018;13(10):900-905.

69. Yang B, Li S, Mu W, et al. Light-harvesting artificial cells containing cyanobacteria for CO₂ fixation and further metabolism mimicking, *Small*. 2022:e2201305.

70. Saif B, Gu Q, Yang P. The synthesis of protein-encapsulated ceria nanorods for visible-light driven hydrogen production and carbon dioxide reduction, *Small*. 2021;17(45):e2103422.

71. Wang Y, Fan G, Wang S, et al. Implanting CoO_x clusters on ordered macroporous ZnO nanoreactors for efficient CO_2 photoreduction, *Adv. Mater.* 2022;34(42):e2204865.

72. Zhang G, Wang F, Tubul T, et al. Complexed semiconductor cores activate hexaniobate ligands as nucleophilic sites for solar-light reduction of CO_2 by water, *Angew. Chem. Int. Ed. Engl.* 2022;61(49):e202213162.

73. Deng Y, Wan CA, Li C, et al. Synergy effect between facet and zero-valent copper for selectivity photocatalytic methane formation from CO₂, *ACS Catalysis*. 2022;12(8):4526-4533.

74. Wang L, Wang R, Qiu T, et al. Bismuth vacancy-induced efficient CO₂ photoreduction in BiOCl directly from natural air: A progressive step toward photosynthesis in nature, *Nano Lett*. 2021;21(24):10260-10266.

75. Zhao L, Bian J, Zhang X, et al. Construction of ultrathin s-scheme heterojunctions of single Ni atom immobilized Ti-MOF and BiVO₄ for CO₂ photoconversion of nearly 100% to CO by pure water, Adv. *Mater*. 2022;34(41):e2205303.

76. Ding J, Tang Q, Fu Y, et al. Core-shell covalently linked graphitic carbon nitride-melamineresorcinol-formaldehyde microsphere polymers for efficient photocatalytic CO₂ reduction to methanol, *J. Am. Chem. Soc.* 2022;144(22):9576-9585.

77. Hu J, Yang T, Yang X, et al. Highly selective and efficient solar-light-driven CO₂ conversion with an ambient-stable 2D/2D Co₂P@BP/g-C₃N₄ heterojunction, *Small*. 2022;18(7):e2105376.

78. Sun X, Sun L, Li G, et al. Phosphorus tailors the d-band center of copper atomic sites for efficient CO₂ photoreduction under visible-light irradiation, *Angew. Chem. Int. Ed. Engl.* 2022;61(38):e202207677.

79. Ran L, Li Z, Ran B, et al. Engineering single-atom active sites on covalent organic frameworks for boosting CO₂ photoreduction, *J. Am. Chem. Soc.* 2022;144(37):17097-17109.

80. Yu B, Meng T, Ding X, et al. Hydrogen-bonded organic framework ultrathin nanosheets for efficient visible-light photocatalytic CO₂ reduction, *Angew. Chem. Int. Ed. Engl.* 2022;61(43):e202211482.

81. Pi J, Jia X, Long Z, et al. Surface and defect engineering coupling of halide double perovskite Cs₂NaBiCl₆ for efficient CO₂ photoreduction, *Advanced Energy Materials*. 2022;12(43):2202074.

82. Ni B, Zhang G, Wang H, et al. Correlating oxidation state and surface ligand motifs with the selectivity of CO₂ photoreduction to C₂ products, *Angew. Chem. Int. Ed. Engl.* 2023;62(6):e202215574.

83. Pei W, Zhou S, Zhao JJ, et al. Immobilized trimeric metal clusters: A family of the smallest catalysts for selective CO₂ reduction toward multi-carbon products, *Nano Energy*. 2020;76:105049.

84. Gong LL, Zhang DT, Shen Y, et al. Enhancing both selectivity and activity of CO₂ conversion by breaking scaling relations with bimetallic active sites anchored in covalent organic frameworks, *J. Catal.* 2020;390:126-134.

85. Han ZK, Sarker D, Ouyang R, et al. Single-atom alloy catalysts designed by first-principles calculations and artificial intelligence, *Nat Commun*. 2021;12(1):1833.

86. Zheng X, Ji Y, Tang J, et al. RETRACTED ARTICLE: Theory-guided Sn/Cu alloying for efficient CO₂ electroreduction at low overpotentials, *Nature Catalysis*. 2018;2(1):55-61.

87. Herzog A, Bergmann A, Jeon HS, et al. Operando investigation of Ag-decorated Cu₂O nanocube catalysts with enhanced CO₂ electroreduction toward liquid products, *Angew. Chem. Int. Ed. Engl.* 2021;60(13):7426-7435.

88. Shan W, Liu R, Zhao H, et al. In situ surface-enhanced raman spectroscopic evidence on the origin of selectivity in CO₂ electrocatalytic reduction, *ACS Nano*. 2020;14(9):11363-11372.

89. Chang CJ, Lin SC, Chen HC, et al. Dynamic reoxidation/reduction-driven atomic interdiffusion for highly selective CO₂ reduction toward methane, *J. Am. Chem. Soc.* 2020;142(28):12119-12132.

90. Li YC, Wang Z, Yuan T, et al. Binding site diversity promotes CO₂ electroreduction to ethanol, *J. Am. Chem. Soc.* 2019;141(21):8584-8591.

91. Zhong D, Zhao ZJ, Zhao Q, et al. Coupling of Cu(100) and (110) facets promotes carbon dioxide conversion to hydrocarbons and alcohols, *Angew. Chem. Int. Ed. Engl.* 2021;60(9):4879-4885.

92. Dong H, Zhang L, Li L, et al. Abundant Ce^{3+} ions in Au-CeO_x nanosheets to enhance CO_2 electroreduction performance, *Small*. 2019;15(17):e1900289.

93. Wu X, Zhang W, Li J, et al. Identification of the active sites on metallic MoO_{2-x} nano-sea-urchin for atmospheric CO_2 photoreduction under UV, visible, and near-infrared light illumination, *Angew. Chem. Int. Ed. Engl.* 2023;62(6):e202213124.

94. Chen R, Ren Z, Liang Y, et al. Spatiotemporal imaging of charge transfer in photocatalyst particles, *Nature*. 2022;610(7931):296-301.

95. Xu D, Li K, Jia B, et al. Electrocatalytic CO₂ reduction towards industrial applications, *Carbon Energy*. 2022;5(1).

96. Jin S, Hao Z, Zhang K, et al. Advances and challenges for the electrochemical reduction of CO₂ to CO: from fundamentals to industrialization, *Angew. Chem. Int. Ed. Engl.* 2021;60(38):20627-20648.

97. Gao J, Li J, Liu Y, et al. Solar reduction of carbon dioxide on copper-tin electrocatalysts with energy conversion efficiency near 20, *Nat Commun*. 2022;13(1):5898.

98. Wang YR, Ding HM, Sun SN, et al. Light, heat and electricity integrated energy conversion system: photothermal-assisted Co-electrolysis of CO₂ and methanol, *Angew. Chem. Int. Ed. Engl.* 2022;61(50):e202212162.

99. Do TN, You C, Kim J. A CO₂ Utilization framework for liquid fuels and chemical production: Techno-economic and environmental analysis, *Energy & Environmental Science*. 2022;15(1):169-184.

100. Lund A, Manohara GV, Song AY, et al. Characterization of chemisorbed species and active adsorption sites in Mg-Al mixed metal oxides for high-temperature CO_2 capture, *Chem. Mater.* 2022;34(9):3893-3901.

101. Shao B, Hu GH, Alkebsi KAM, et al. Heterojunction-redox catalysts of $Fe_xCo_yMg_{10}CaO$ for hightemperature CO_2 capture and in situ conversion in the context of green manufacturing, *Energy & Environmental Science*. 2021;14(4):2291-2301.

102. Zhu X, Ge T, Yang F, et al. Efficient CO₂ capture from ambient air with amine-functionalized Mg– Al mixed metal oxides, *Journal of Materials Chemistry A*. 2020;8(32):16421-16428.

103. Siegelman RL, Kim EJ, Long JR. Porous materials for carbon dioxide separations, *Nat Mater*. 2021;20(8):1060-1072.

104. Guo Z, Wu H, Chen Y, et al. Missing-linker defects in covalent organic framework membranes for efficient CO₂ separation, *Angew. Chem. Int. Ed. Engl.* 2022;61(41):e202210466.

105. He C, Si DH, Huang YB, et al. A CO₂-masked carbene functionalized covalent organic framework for highly efficient carbon dioxide conversion, *Angew. Chem. Int. Ed. Engl.* 2022;61(40):e202207478.

106. Wang P, Peng Y, Zhu C, et al. Single-phase covalent organic framework staggered stacking nanosheet membrane for CO₂-selective separation, *Angew. Chem. Int. Ed. Engl.* 2021;60(35):19047-19052.

107. Alivand MS, Mazaheri O, Wu Y, et al. Engineered assembly of water-dispersible nanocatalysts enables low-cost and green CO₂ capture, *Nat Commun*. 2022;13(1):1249.

108. Lin JB, Nguyen TTT, Vaidhyanathan R, et al. A scalable metal-organic framework as a durable physisorbent for carbon dioxide capture, *Science*. 2021;374(6574):1464-1469.

109. Zurrer T, Wong K, Horlyck J, et al. Mixed-metal MOF-74 templated catalysts for efficient carbon dioxide capture and methanation, *Adv. Funct. Mater.* 2020;31(9):2007624.

110. Algozeeb WA, Savas PE, Yuan Z, et al. Plastic waste product captures carbon dioxide in nanometer pores, *ACS Nano*. 2022;16(5):7284-7290.

111. Seo H, Rahimi M, Hatton TA. Electrochemical carbon dioxide capture and release with a redoxactive amine, *J. Am. Chem. Soc.* 2022;144(5):2164-2170.

112. Sullivan I, Goryachev A, Digdaya IA, et al. Coupling electrochemical CO₂ conversion with CO₂ capture, *Nature Catalysis*. 2021;4(11):952-958.

113. Prajapati A, Sartape R, Galante MT, et al. Fully-integrated electrochemical system that captures CO₂ from flue gas to produce value-added chemicals at ambient conditions, *Energy & Environmental Science*. 2022;15(12):5105-5117.

114. Schappi R, Rutz D, Dahler F, et al. Drop-in fuels from sunlight and air, *Nature*. 2022;601(7891):63-68.

115. Fan JX, Yue XX, Liu YA, et al. An Integration system derived from LDHs for CO₂ direct capture and photocatalytic coupling reaction, *Chem Catalysis*. 2022;2(3):531-549.

116. Zheng Y, Chen ZW, Zhang JJ. Solid oxide electrolysis of H₂O and CO₂ to produce hydrogen and low-carbon fuels, *Electrochemical Energy Reviews*. 2021;4(3):508-517.

117. Li W, Luo JL. High-temperature electrochemical devices based on dense ceramic membranes for CO₂ conversion and utilization, *Electrochemical Energy Reviews*. 2021;4(3):518-544.

118. He JF, Li YL, Huang AX, et al. Electrolyzer and catalysts design from carbon dioxide to carbon monoxide electrochemical reduction, *Electrochemical Energy Reviews*. 2021;4(4):680-717.

119. Liu B, Wang T, Wang S, et al. Back-illuminated photoelectrochemical flow cell for efficient CO₂ reduction, *Nat Commun.* 2022;13(1):7111.

120. Xie S, Deng C, Huang Q, et al. Facilitated photocatalytic CO₂ reduction in aerobic environment on a copper-porphyrin metal-organic framework, *Angew. Chem. Int. Ed. Engl.* 2023;62(10):e202216717.

Biographies of authors

Zhangsen Chen obtained his BS degree at Fuzhou University (2014) and master's degree in physical chemistry from the Research Institute of Photocatalysis, Fuzhou University, in 2017. He is now a Ph.D. student in Prof. Shuhui Sun's group at Institut National de la Recherche Scientifique, Center for Energy, Materials, and Telecommunications (INRS-EMT), Canada. His current research interests focus on the development of advanced nanomaterials and their applications in catalysis and CO₂ conversion to value-added chemicals and fuels.

Gaixia Zhang is a Marcelle-Gauvreau Engineering Research Chair Professor at École de Technologie Supérieure (ÉTS), University of Quebec, Montréal, Canada. She received her Ph.D. degree from Polytechnique Montréal, and then continued her research at Western University and INRS, Canada. Her research interests focus on advanced materials (catalysts, electrodes and electrolytes) for sustainable energy conversion and storage applications, including fuel cells, batteries, hydrogen production, and CO₂ reduction. She is also interested in interface and device engineering, as well as in-situ characterizations and theoretical simulations.

Shuhui Sun is a Full Professor at the Institut National de la Recherche Scientifique (INRS), center for Energy, Materials, and Telecommunications, Canada. He is a Fellow of the Canadian Academy of Engineering (CAE), and a Member of the Royal Society of Canada (RSC College). His current research interests focus on multifunctional nanomaterials for energy conversion and storage applications, including fuel cells, Li-metal batteries, metal-air batteries, Li-/Na-/Zn-ion batteries, H₂ production, and CO₂ reduction. He is the Vice President of the International Academy of Electrochemical Energy Science (IAOEES). He serves as the Executive Editor-inchief of *Electrochemical Energy Reviews* (EER) and Associate Editor of *SusMat*, as well as the editorial board member of over 10 journals related to nanomaterials and sustainable energy.

