ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
Recently Viewed
You have not visited any articles yet, Please visit some articles to see contents here.
CONTENT TYPES

Photocatalytic Water Splitting: Quantitative Approaches toward Photocatalyst by Design

View Author Information
King Abdullah University of Science and Technology (KAUST), KAUST Catalysis Center (KCC) and Physical Sciences and Engineering Division (PSE), 4700 KAUST, Thuwal 23955-6900, Saudi Arabia
Cite this: ACS Catal. 2017, 7, 11, 8006–8022
Publication Date (Web):October 11, 2017
https://doi.org/10.1021/acscatal.7b02662
Copyright © 2017 American Chemical Society
ACS AuthorChoiceACS AuthorChoicewith CC-BY-NC-NDlicense
Article Views
33133
Altmetric
-
Citations
LEARN ABOUT THESE METRICS
PDF (4 MB)

Abstract

A widely used term, “photocatalysis”, generally addresses photocatalytic (energetically downhill) and photosynthetic (energetically uphill) reactions and refers to the use of photonic energy as a driving force for chemical transformations, i.e., electron reorganization to form/break chemical bonds. Although there are many such important reactions, this contribution focuses on the fundamental aspects of photocatalytic water splitting into hydrogen and oxygen by using light from the solar spectrum, which is one of the most investigated photosynthetic reactions. Photocatalytic water splitting using solar energy is considered to be artificial photosynthesis that produces a solar fuel because the reaction mimics nature’s photosynthesis not only in its redox reaction type but also in its thermodynamics (water splitting: 1.23 eV vs glucose formation: 1.24 eV). To achieve efficient photocatalytic water splitting, all of the parameters, though involved at different time scales and spatial resolutions, should be optimized because the overall efficiency is obtained as the multiplication of all these fundamental efficiencies. The purpose of this Review is to provide the guidelines of a concept, “photocatalysis by design”, which is the opposite of “black box screening”; this concept refers to making quantitative descriptions of the associated physical and chemical properties to determine which events/parameters have the most impact on improving the overall photocatalytic performance, in contrast to arbitrarily ranking different photocatalyst materials. First, the properties that can be quantitatively measured or calculated are identified. Second, the quantities of these identified properties are determined by performing adequate measurements and/or calculations. Third, the obtained values of these properties are integrated into equations so that the kinetic/energetic bottlenecks of specific properties/processes can be determined, and the properties can then be altered to further improve the process. Accumulation of knowledge ranging in fields from solid-state physics to electrochemistry and the use of a multidisciplinary approach to conduct measurements and modeling in a quantitative manner are required to fully understand and improve the efficiency of photocatalysis.

Introduction

ARTICLE SECTIONS
Jump To

General Strategy for Improved Photosynthetic Reactions

A photocatalyst is a substance that absorbs photons and generates excited states, which then cause photophysical and photochemical processes as they return to their original ground states. (1) Photocatalyst materials can consist of additional catalytic components, often called cocatalysts, that catalyze electrochemical redox reactions. (2) Such an electrocatalyst is often essential to the photocatalyst (photon absorber) because its surface is not typically designed to catalyze redox reactions unless the reaction is an outer-sphere electrochemical reversible reaction. The time scale of electrocatalysis during the photocatalytic process is sufficiently longer than the time scales of photophysical or photochemical processes; (3) in many photocatalytic reactions, the photocatalysis can thus be considered to be electrocatalysis where electrocatalyst components induce the redox reactions driven by the potential shifts caused by the photocatalyst (photon absorber). Photocatalysis eventually builds an electromotive force (emf), a difference in chemical potentials or Fermi levels, to enable electrocatalysis. (1) This emf transient charging at electrocatalytic sites is indeed required for water-splitting photocatalysts because both the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) require multiple electron transfer reactions at the active species and thus a relatively slow process compared to prior photophysical processes.
One may consider the difference between a photocatalyst (photon absorber and electrocatalyst) and a device that consists of a photovoltaic and an electrolyzer (PV + E). Making hydrogen by PV + E technology is still more expensive than using natural gas reforming. (4, 5) A large number of elementary events are common; however, the photocatalyst may induce charge separation utilizing an electrocatalyst–semiconductor interface and a solid–liquid junction directly, (1) potentially skipping the p–n junctions in solid–solid structures. This is the major driving force of cost reduction in photocatalytic system compared to PV + E system. Photocatalytic materials also do not require the wiring of a PV (but instead require the collection of produced gases). On the other hand, in a PV + E configuration, separating the functions of photovoltaic current generation (PV) and electrocatalysis (E) is easily optimizable for these two separate components, and PV + E systems are therefore expected to produce higher efficiencies than photocatalyst systems. (6) To combine these systems, PV material can be immersed into aqueous solution, (7-9) which allows the material to avoid a detrimental temperature increase (because of the water) and the resultant efficiency loss. There is a significant chance, however, that the PV material corrodes because the water itself is corrosive and even worse at extreme pH values; additionally, fewer photons are expected to be absorbed when the PV is in water because, besides photon loss due to reflection by the water, the absorption coefficient of water is nonzero especially beyond 600 nm. (10) Lewis recently reviewed the future possibilities for solar energy conversion technology in industry and academia. (5) Practical use of either of these systems requires future efforts: PV + E prices must be decreased by engineering or some technical advancement that produces a reasonable device and system, and the photocatalytic efficiency of photocatalysts must be improved without forgetting a final, scaled-up reactor design. Recently, immobilization of photocatalyst powder in sheets for use in overall water splitting was demonstrated, (11) but the overall efficiency of this catalyst remains low, predominantly because of inefficient charge separation by the photocatalyst materials. Collective efforts are needed to address these complex issues in clearly desired solar energy conversion technology.
As recently emphasized by Osterloh, (12) photosynthetic reactions (ΔG > 0) require detailed photon management and charge separation, in contrast to photocatalytic reactions (ΔG < 0), whose performance is most sensitive to surface area. Basing the selection of materials for photon absorption (photocatalyst) solely on their bandgap and electrocatalyst, often called the cocatalyst, is not enough to result in high photocatalytic efficiency. We will review that defect density, carrier concentrations, and interfaces (metal, semiconductor, electrolyte, etc.) strongly influence efficiency, even when the same materials are used. This fact is widely known, yet there is no consensus as to how to evaluate these properties and consequences. In addition to the use of disparate reporting protocols, (13-23) this discrepancy is the reason why every research article reports different efficiencies even when the same composition of photocatalyst is used. For instance, there are multiple methods to prepare photocatalyst materials, (24) but they result in different photocatalytic performances because unquantifiable or difficult-to-measure properties vary. (25) Photocatalysis research is becoming largely arbitrary because of an infinite number of variables, for example, different precursors, synthesis protocols, annealing, pre/post-treatment, and addition of small quantities of dopants/impurities/additives (often unconsciously); it is very difficult to reproducibly make photocatalysts. In a specific operation, one may want to concretely determine how overall efficiency is improved by a particular “quantity”. (25) There are excellent review articles concerning photocatalyst and photoelectrochemical reactions: many focus on various materials and techniques of characterization. (26-45) This Review is specifically targeted to developing a guideline as to what fundamental key parameters improve photocatalytic efficiencies, regardless of the photocatalyst material. It is time to integrate advanced modeling into the design of photocatalyst materials. Without these efforts, photocatalytic research remains abstract, unestablished, and unquantifiable.

Consolidation of Chemical Potentials and Fermi Levels

The basic concept of photocatalysis relies on the same protocol as all types of catalysis research: a description of chemical potentials of electrons, or Fermi levels. A strong connection between solid-state chemistry and physical chemistry, or photophysics and electrocatalysis, is the accurate description of chemical potentials of electrons in various substances (metals, semiconductors, redox ions in the solution, etc.) at thermodynamic equilibrium or under steady-state illumination. The concepts of the chemical potentials of electrons in metals to semiconductor is well described in an excellent book by Sato. (46) Each elementary step/event in “catalysis” including photocatalysis, in terms of thermodynamics and kinetics, becomes quantitatively describable if we have tools to appraise the chemical potentials of electrons, especially reactive ones, in molecules, nanoparticles, and solids (catalyst materials) and in both reactants and products during (photo)catalysis. Work functions of metals, Nernstian redox potentials of molecules/ions, and Fermi levels or flatband potentials of semiconductors are useful statistical measures of energy equilibrium and flow, although overlapping reactive energy states in solids and interfaces makes determining the value of these potentials difficult. Recent advances in solid-state physics and chemistry establishes reasonable theories that can measure (estimate) or calculate such energy levels and their densities of state. This estimate, consisting of a large number of quantifiable parameters, (25) can ideally be used to predict overall photocatalytic efficiency, even without experiments. It is thus possible to determine which parameter is most influential in improving overall efficiency. This strategy is one step forward to “photocatalysis by design”—the design of systems to reach a target by altering specific parameters rather than randomly screening materials.
Successful photocatalysis requires that charged-up electrocatalysts are maintained at the potentials where steady-state redox reactions occur. A scheme can be derived, on a scale of the chemical potential of electrons (and holes), that visualizes the ideal energy transfer (and loss) that occurs during sequential photocatalytic processes. Figure 1 describes an example of the use of a single semiconductor powder as a photocatalyst that is decorated with HER and OER electrocatalysts on the surface, in an attempt to achieve overall water splitting. The process is initiated with photon absorption, as depicted in the middle of Figure 1. Upon light absorption, an excited hole and electron are generated in the valence band and conduction band, respectively, on the femtosecond time scale. (47) After rapid relaxation to the edges of their respective bands in femto- to picoseconds, an exciton (electron–hole pair) is separated into free carriers and the semiconductor-catalyst interface guides the electron and hole to the HER and OER catalysts, respectively, generally in nano- to microseconds. (47) Substantial losses of potentials are expected at the interface (“interfacial loss”) and may originate from entropic contributions of electrons (48-50) and interfacial potential barriers that are generated by inadequate alignment. Successful electron/hole transfer to the electrocatalyst shifts the potentials either negatively or positively at transient time on the millisecond to second time scales, and then maintain steady-state potentials that are allowed to drive steady-state electrochemical redox reactions to produce H2 and O2. (47) The solution properties may influence the overall performance by limiting the mass transfer of the reactant ions. How can we draw this type of scheme for every photocatalyst? What properties are involved that determine such potentials at each event? Can we identify the bottleneck that limits the overall efficiency? In the next section, the selected key parameters as well as photocatalysis events that occur at different time scales are identified.

Figure 1

Figure 1. Schematic image of the photocatalytic water splitting process. The gear with the number indicates the order of the photocatalytic process to be successful for overall water splitting. For a detailed description, please refer to the text.

List of Properties Involved in Photocatalytic Water Splitting

The primary effort of this Review focuses on discussing the fundamental parameters that are involved in photocatalytic water splitting and their quantitative measurement using powdered semiconductor material (the concept can be applied to other photocatalysis as well). Photocatalysis for water splitting indeed involves a complex series of photophysical and electrocatalytic processes. (25) The processes involved in photocatalytic reactions are divided into the following six components:
1.

Photon absorption

2.

Exciton separation

3.

Carrier diffusion

4.

Carrier transport

5.

Catalytic efficiency

6.

Mass transfer of reactants and products

Events 3 and 4 can occur simultaneously and coherently, but are separated here for convenience. Figure 2 shows this six-gear concept, which represents the photocatalytic water-splitting process sequentially occurring at different time scales. (25) Photon absorption initiates nonequilibrium photophysical and photochemical processes. The photon absorption generates an exciton, that is, excitation of an electron in the valence band (VB) or the highest occupied molecular orbital (HOMO) to the conduction band (CB) or the lowest unoccupied molecular orbital (LUMO). (47) The probability to occupy such states are predominantly determined by the electronic structure (local displacement of atoms) of the semiconductor. This femtosecond process is followed by relaxation of the electron and the hole to the bottom of the CB and the top of the VB, respectively, on a similar time scale. (47) Next, the exciton (electron–hole pair) is generally separated after overcoming the exciton binding energy determined by the electronic structure; this structure should guide the excited electron and hole (polaron) to move independently, being influenced by their effective masses. The combination of carrier diffusion and transport effectively utilizes the introduced interfaces (i.e., potential differences) and successful charge transfer typically in microseconds to the electrocatalysts decorated on the surface needs to occur. Because the kinetics of electrocatalysis are unfortunately sluggish compared to the prior events, such electrocatalytically active species will be charged either negatively or positively and drive electrocatalytic redox reactions on a time scale typically longer than microseconds. (47) The key is that most of the semiconductor and electrocatalytic properties and measures of efficiency at each stage are listed separately and are quantitatively measurable by using various characterization and kinetics measurements. Once a material is synthesized, these properties and efficiencies are quantified so that the bottleneck of the process is identified, leading to improved overall efficiency. A previous report describes the associated equations and measurement protocols in more detail. (25) This contribution aims to emphasize the most influential key components in determining overall photocatalytic efficiency.

Figure 2

Figure 2. Parameters associated with photocatalysis. Overall water splitting is only successful for high efficiencies of all six gears depicted in the scheme. The different time scales of the reactions are also displayed.

Quantification of Key Properties Relevant to Photocatalytic Water Splitting

ARTICLE SECTIONS
Jump To

Generation Rate

When solar energy conversion is the primary concern, analysis of the solar spectrum provides useful information regarding theoretical maximum efficiency. The solar-to-hydrogen (STH) conversion efficiency is defined by the H2-energy generated divided by the entire solar irradiance. Using the NREL standard spectrum of AM 1.5G, (51) integration of UV photons accounts for a maximum of 3.3% STH efficiency. Including light from the UV to the visible (to 600 nm) results in a maximum theoretical STH efficiency of 17.8%, while up to 800 nm results in >35% (using a single semiconductor). Analysis of the solar spectrum reveals that development of a visible-light-responsive photocatalyst material is essential to achieving substantial solar energy conversion. (52) A representative scheme for various visible light responsive materials is shown in Figure 3, which is taken from the review paper by Sivula and van de Krol. (45) The bandgap of the materials is minimum thermodynamic requirement for high-efficiency photocatalysis; however, the shape of conduction and valence bands are unique to each electronic structure, and densities of state typically become very weak at band edges (bands are not rectangular as depicted in Figure 3).

Figure 3

Figure 3. Bandgap structure of oxide and oxynitride semiconductors for photoelectrochemical applications. Contribution of metal cation and oxygen anion states to the conduction and valence bands. The bandgap energy (red for n-type, black for p-type) is shown with respect to the reversible hydrogen electrode and the water redox energy levels (assuming Nernstian behavior four the band-edge energies with respect to electrolyte pH). Reprinted with permission from ref 45. Copyright 2016 Macmillan Publishers Limited.

It is obvious that if no photons are absorbed, no photocatalysis occurs. The initial step of photocatalysis is unambiguously the absorption of a photon and exciton generation by the photon absorber. Once the photocatalyst material is chosen for investigation, it is crucial to identify its electronic structure (displacements of the atoms or a crystal structure), which in turn determines the densities of the relevant energy states. Commonly, photon flux of incident light, I0, commonly lead to the following relationships:(1)where A% is absorptance, the ratio of the absorbed to incident electric field, and T, Rs, S, Rd are lights that are transmitted, specularly reflected, forward-scattered, and backscattered, respectively. (53) Most importantly, the absorption coefficient, α(λ), an indicator of how far photons of a particular wavelength can penetrate before it is absorbed by the material, can be measured or calculated as a function of wavelength. (25, 27) It also determines important absorption properties such as the bandgap, band positions (flatband potentials), and the direct/indirect nature of light absorption. The absorption spectra indicate the consequences of bandgap excitation, d–d transitions, phonon absorptions, and excitations associated with defect states. (53) To practically measure absorption coefficients, the single crystal thin-film configuration of semiconductors provides a more precise description because contribution of scattering is minimized and the film thickness is well-defined. (54) From transmittance, T, and reflectance, R, (55) values, we obtain α for the film thickness, d, when Reαd ≪1: (56)(2)The number of electron–hole pairs that are generated per photon striking the semiconductor as a function of depth, x, and wavelength, λ, is described using the generation rate, G, per geometric area. After considering Rayleigh and Mie scattering by the powder, which depend on the size of the particle, (57) and reflection and transmission by the medium with distinct refractive indices, (58) the Beer–Lambert law approximation leads to (59, 60)(3)where I0 is photon flux of irradiated light per geometric area. From this equation, it is thus obviously essential to obtain photon flux densities by irradiance measurements. Other intrinsic parameters can then also be quantified: for example, the refractive index, n; the extinction coefficient, κ(λ); and the dielectric constant, εr, which can be divided into contributions from the electronic density, ε, and from the motion of ions in the material, εvib; εr = ε+ εvib. (61) Methods to obtain these properties can be found in the literature. (25)
Once the absorption coefficient is obtained, we obtain the absorption depth, which is a useful measure how far light can penetrate into a material before being absorbed; the absorption depth can be determined by simply taking the inverse of the absorption coefficient α. (25) The absorption depth, together with scattering and reflection, is critical to deciding how thick a photocatalyst film or suspension should be or how many semiconductor particles are required to be able to report a useful photocatalytic efficiency. To be able to compare photocatalytic performances from different laboratories, the maximum photon absorption should be achieved by a photoreactor that is used to obtain an “optimal rate” that is not perturbed by the amount of photocatalyst used. (20) Absorption coefficients of typical direct bandgap semiconductors fall into the range of 1 × 104 – 1 × 106 cm–1, equivalent to absorption depths of 1000–10 nm. A typical indirect bandgap semiconductor, Si, possesses a typically low absorption coefficient of 1 × 103 – 1 × 105 cm–1, corresponding to absorption depths of up to a few micrometers for visible light (400–800 nm). (62) We emphasize that the density of state (DOS) is the primary criterion to select a semiconductor for photocatalysis. Essentially, the Franck–Condon principle (63, 64) suggests that the displacement of atom positions does not change upon photon absorption and that accurate determination of a local crystal structure (Brillouin zone) with an appropriate consideration of spin–orbit coupling predominantly determines these optoelectronic properties. Recent advances in density functional theory (DFT) calculations give quite accurate and reliable estimates of the electronic structures and resultant DOS of semiconductors with a given crystal structure. (61) When new photovoltaic and photocatalytic materials are developed, it is recommended that the accurate crystal structure (e.g., via Rietveld refinement), which dictates the electronic structure and resultant optoelectronic properties, be determined.
As mentioned, single-crystal thin films are preferred in measurements of optoelectronic properties because of minimized contribution of scattering and diffuse reflection. It is also noted that the Kubelka–Munk function, (65) used in diffuse reflectance spectroscopy equipped with an integrating sphere, is a useful tool for measuring the absorption properties of powder samples. However, use of this function often leads to an exaggerated interpretation of the absorption intensity, especially when close to bandgap. One must consider that near band edges, absorption coefficients can be exceptionally low, which is not obvious from the spectra plotted using a Kubelka–Munk function. The absorption spectra and the Kubelka–Munk function also contain quantitative information, where a value of zero is especially meaningful. When impurities are present in the system, nonzero absorption data reflects not only that the spectrum does not purely represent the desired compound or material but also the extent of dopant or metallic character; therefore, do not forget to plot zero in absorption spectra or Kubelka–Munk function. The impurity energy levels beyond the bandgap energy also empirically follow the Ulbach rule, (66) which can be additionally considered to quantify the absorption properties of the semiconductors.

Exciton Binding Energy

After successful photon absorption and the resultant exciton generation, electron–hole pairs (67) are to be separated to generate excited electrons and holes (free carriers), or otherwise to recombine easily. The next criterion for selection of a photocatalyst is the exciton binding energy, which represents the energy required to ionize an exciton from its lowest energy state. (68) For a Mott–Wannier-type exciton, the 1s state energy, E1, of an exciton described by the Bohr theory is the exciton binding energy, Rex, and it can be described as(4)where εr is a relative permittivity or dielectric constant, m* is the reduced effective mass of the electron (n)–hole (p) system (), e is the elemental charge, and h is Planck’s constant. (61) A database containing these parameters for a large number of typical semiconductors is already available. (69) The benchmark energy value is that of thermal energy (25 meV at room temperature), (61) and the efficient separation of excitons requires that the binding energy be lower than this value. For Mott–Wannier excitons, the typical binding energy is less than 10 meV, and the exciton radius is ∼10 nm. For Frenkel excitons, such as carbon nitride, these values can be greater than 1 eV and ∼1 nm. (70) Such a high exciton binding energy necessitates charge separation at the molecular level, similar to the case of bulk heterojunctions of organic semiconductors. The key properties that affect the values of the exciton binding energy are the effective masses and dielectric constant. The effective masses of the electron and hole are determined by the curvature of the electronic structure in the conduction and valence bands, respectively. The electronic dielectric constant is also predominantly determined by the electronic structure of a given material. High dielectric materials, such as perovskite structures, are typically excellent photocatalysts. Currently, DFT calculation can estimate exciton binding energies and effective masses as well as different crystal orientations at high accuracy; typically, high distortion creates an anisotropic electronic field upon exciton generation, and this field assists charge separation. (36)

Carrier Lifetime

For successful photocatalysis, the generated free carriers are transferred to redox-active sites on the catalyst surfaces (or to the back contact, in the case of photoelectrochemistry). The next useful parameter is the minority carrier lifetime, τ, which is another intrinsic indicator of whether a semiconductor material can be an effective photocatalyst. Generally, the recombination can occur through the following mechanisms; “surface” recombination, “bulk” Shockley–Read–Hall (defects) (srh), (71, 72) the band-to-band radiative (bbr), and the band-to-band Auger (bba), (73) and more; the lifetime of which are reciprocally correlated:(5)Once the carrier lifetime is obtained, recombination rate can be estimated, depending on the recombination models. Essentially, the generation rate will be canceled out by the recombination rate to leave the effective carrier rates for electrocatalysis. (25) The carrier lifetime also gives the minority carrier diffusion length, L, representing the average distance that the excess minority carrier travels from where it was generated to where it is annihilated.(6)where Dc is the diffusion coefficient of the carriers, which will be described more in details in the following section. The comparison of this value with the particle size of the photocatalyst or the film thickness of the photoelectrode is critical in designing the photon absorber. (74)
An empirical expression between carrier lifetime and dopant concentration was reported by Law et al. for indirect bandgap Si (Figure 4), but it describes very interesting trend as a function of dopant concentration. (75) Two types of srh and bba recombinations are integrated into this model:(7)where τ0 is the low-concentration lifetime, ND is the doping carrier concentration, Nref is the roll-off concentration, and CA is the Auger coefficient. From this analysis, it is obvious that the carrier lifetime increases as the doping level decreases, i.e., the more intrinsic semiconductor generally has longer carrier lifetimes. This parameter is primarily associated with bulk recombination that originates from the srh process and impurity concentrations (and therefore, strictly speaking, the descriptor is not the carrier concentration alone). The GaAs semiconductor shows a similar trend. (76) Relatedly, the surface treatment (etching or shell formation) of single-crystal surfaces substantially improves the minority carrier lifetime, as measured by time-resolved photoluminescence, or the photoconductivity lifetime, as measured by terahertz photoconductivity. Examples of this behavior include that of well-investigated photovoltaic semiconductors such as CdTe, (77, 78) InP, (79) and GaAs. (80)

Figure 4

Figure 4. (A) Hole and (B) electron lifetimes in heavily doped n-type and p-type silicon, respectively. Reprinted with permission from ref 75. Copyright 1991 Institute of Electrical and Electronics Engineers.

In the case of powder samples or nanostructured architectures, whose surface contributions are large relative to that of the bulk, the surface states largely influence the minority carrier lifetime. The carrier concentration is obviously an important factor in photocatalysis, but what is the relevant quantity in the semiconductor powders? When a highly defective material with a carrier concentration of 1018 cm–3 is used, a typical 10 nm cube of photocatalyst contains only one carrier per photocatalyst particle in the bulk. If fewer dopant materials with a carrier concentration of 1016 cm–3 can be synthesized, a 50 nm cube of photocatalyst contains one carrier per particle, and a 100 nm cube photocatalyst contains 10 carriers. Since the contribution from the bulk is so low, contributions from the surface are easily observed. (42) The surfaces and interfaces are, by definition, defects, often possessing nonstoichiometric and/or dangling bonds that are electronically active. The potential of the surface states is a difficult-to-measure quantity: surface dipoles associated with functional groups, adsorbate, and redox ions in electrochemical double layer all affect. The consequence is, however, known that they create intermittent states within bandgap or HER-OER redox potentials. (81) Therefore, the surface not only acts as a charge separation interface but also as a recombination site of excited carriers such as impurities and abrupt terminations. What is the concentration of such surface sites? In the case of an oxide material, the maximum concentration should be comparable to the surface hydroxyl site density, which typically reaches ∼4 nm–2, depending on the identity of the oxide, its treatment, and characteristics of the exposed facets. (82) On a fully hydroxylated surface, there are ∼60 000 surface sites on a 50 nm cube-shaped particle, giving a surface site to bulk carrier ratio >100. From this number, it is clear that management of surface states is critical to controlling the photocatalytic activity of powder materials. (83) If surface sites are insulated or deactivated to the point at which their concentration is 100 times less than that of complete exposure, the surface and bulk atoms of the same system become comparable. This idea is visualized in Figure 5, and it is consistent with the common observation that having “high crystallinity” and a minimal number of defects enhances photocatalytic efficiency, in contrast to a simple increase in surface area. (84) In summary, the minority carrier lifetime is prolonged with a more intrinsic semiconductor (fewer dopants) in the bulk, and surface modification at the interface is crucial for photocatalysts, which is further interacted with the following parameters.

Figure 5

Figure 5. Rough estimation of the ratios of the numbers between the active surface sites (assuming ∼4 nm–2 hydroxylated surface as maximum) (82) to the bulk carrier. The cubic particle of 100 nm diameter is used as an example.

Carrier Diffusion and Transport

The important parameters to consider when selecting photocatalyst materials are, at this point, predominantly the electronic structure, which determines the absorption coefficient, and the charge carrier concentration, which influences carrier lifetime and diffusion length. The next event that occurs during the photocatalytic process is excited carrier transport. Charge separation is a primary concern for the photosynthetic reaction, and solid liquid interface should be effectively utilized. (12) The generated free charge carriers must travel through the bulk of semiconductor to the surface redox sites. (85) Such phenomena can be described in terms of electron flow, i.e., current. There are two driving forces for electron (n) and hole (p) movement: diffusion driven by concentration gradient and drift driven by potential gradient: (67)(8)(9)(10)where e is the elementary charge, D is the diffusion coefficient, ∇p and ∇n are the gradients of electrons or holes, μ is the mobility of the charge carrier, p denotes hole concentration, n denotes electron concentration, and E is electric field. The diffusion contribution is associated with the diffusion coefficient and mobility of intrinsic semiconductors: (61)(11)where kB is the Boltzmann constant. The mobility in a specific direction can be further described by(12)where τc is the collision time of the charge carrier and m* is the effective mass. The criterion for good mobility under ambient condition is considered to be m* < 0.5me (e for electron). (61) As mentioned previously, the electronic structure predominantly determines the effective masses and thus the mobility and diffusion coefficient. Practically, the resistivity, charge carrier concentration, and resultant mobility of the semiconductors can be measured by using the van der Pauw technique and Hall measurements, (86, 87) although this method is better when using a high-quality semiconductor slab. If there is no potential gradient, free carriers are transferred via diffusion, which is a very inefficient form of carrier transport. The minority carrier diffusion length can be as short as a few nm, but only when the carrier lifetime is on the order of picoseconds.
Therefore, movement of free charge carriers must be adequately guided by potential gradients, generating drift current. Such gradients can be made by effective utilization of metal–semiconductor, semiconductor–electrolyte, and semiconductor–semiconductor interfaces including surface modifications. (85) The decoration of the surfaces of semiconductors causes several effects: the reduction of surface recombination, the introduction of potential gradient, and modification with catalytic components.
At the metal–semiconductor interface, the key parameters that control the energy level are the work function of the metal and the Fermi level of the semiconductor, (46) which may result in a Schottky barrier or ohmic contact, depending on their relative positions and the carrier concentrations. For details, please refer to, e.g., the work of Tung. (88) In the literature, (89, 90) barrier heights at the semiconductor–metal interface were correlated with the electronegativity of the metal and nature of a semiconductor, either ionic (Si, Ge, etc.) or covalent (oxides, like TiO2, SrTiO3, etc.). Figure 6 shows representative interesting trends of barrier heights, ϕBn0, for various metals and semiconductors. An index, “S”, the slope of Figure 6A, gives sensitivity of electronegativity of metal, XM, to the barrier heights. Relatively small S for ionic semiconductors shows that barrier heights are insensitive to electronegativity (or workfunction) of metals, whereas large S for covalent semiconductors indicate they are more sensitive to the difference between Fermi level of semiconductor and metal workfunction. Ohmic contacts have been reported for various combinations of semiconductor and metals and metal alloys. (89) Such smooth contacts may improve efficiency by bridging excited electrons to electrocatalysts. Practically, Ti is commonly used as a contact layer for p-Si, (91) and Ti and Ta are used for some covalent materials, such as SrTiO3 (92) and LaTiO2N. (93) For an unique case, the Cu2O photocathode achieved high photocathodic current when there is successive deposition of ZnO:Al and TiO2 before Pt catalyst deposition. (94) Powder semiconductor seem to be more challenging to achieve this type of decoration in nanoscale, so the establishing technique that allow to develop the smooth contact may lead to high efficiency.

Figure 6

Figure 6. (A) Barrier height versus electronegativity of metals deposited on Si, GaSe, and SiO2. (B) Index of interface behavior S as a function of the electronegativity difference of the semiconductors. Reprinted with permission from ref 89. Copyright 2006 John Wiley & Sons, Inc.

At the semiconductor–electrolyte interface, (95, 96) the Fermi level of the semiconductor and the reduction potential of the solution play a crucial role in determining potential gradient. A successful application of the solid–electrolyte interfaces is the dye-sensitized solar cell, where TiO2 collects excited electrons to its conduction band from the dyes anchored to its surface. (97) A key to avoid charge recombination is a band bending of TiO2, guiding the injected electrons to its back contact. (74) Similarly, the photocatalyst surface will experience the band bending when immersed in water. Solving the Poisson equation for x-direction (eq 13) leads to description of band bending, and this space charge layer should be utilized to achieve effective charge separation. (67)(13)where Φx is the potential as a function of x, ND is the majority carrier density, ε0 is the static permittivity in vacuum, εr is the static relative permittivity or dielectric constant of the semiconductor. The key parameters in determining the space charge layer are the carrier concentration and the dielectric constant of the semiconductor. The electrolyte is strongly influenced by the surface state and potential-determining ions at the surface. (98) In water, the isoelectric point of the semiconductor provides a useful indication of whether the surface is negatively or positively charged. (99) Semiconductor–semiconductor interfaces can form p–n junctions, but the details regarding this process are described elsewhere. (67)
The consequence of potential gradients at interfaces account for the photovoltage: the origin of emf of the electrocatalysts, determining primary efficiency of the photocatalytic system. It is emphasized that the bandgap is not equivalent with the photovoltage; substantial potential losses are expected at surfaces and other interfaces. The Si bandgap of 1.1 eV typically gives an open-circuit voltage or photovoltage gain of only 0.7 eV (∼40% loss) in photovoltaic system. (100) Therefore, reporting the bandgap is not likely to be sufficient in further understanding photocatalytic processes and material properties. At the same time, band alignment of various materials is a good start for discussion; however, the Fermi level equilibration between two materials (p–n or n–n junctions with type I and II alignments, etc.) does not result in smooth interface, which is strongly influenced by lattice match, impurities, degree of atom diffusion in mutual phases at interface (related to annealing). At this moment, there seems only empirical choices to achieve least-barrier interface for most cases, but in the case of simplified bulk semiconductor, there is a theory to predict the electronic structure, which certainly helps the guideline for material design. (101-106)
Simplified two-dimensional numerical modeling, a widely known calculation in solar cell community, is able to describe potential gradients inside the semiconductor using classical semiconductor device equations. (39, 107) These simulations can provide reasonable estimates of quantum efficiency and STH efficiency as a function of wavelength. The quantification of several parameters, i.e., absorption coefficient, band positions, dielectric constant, carrier concentrations, effective masses, mobility, and lifetime, has been discussed thus far. The beauty of this modeling is that the sensitivity of the fundamental parameters can be investigated and the properties that are most influential in determining the overall photocatalytic efficiencies can be identified, i.e., modeling brings us one step closer to “photocatalysis by design”. The overpotentials that are required for HER and OER on the surface are input variables (future work is required to make them outputs of the modeling) in this approach, (107) and the diffusion-drift current equation can be solved using generation and recombination rates when the system is under steady-state illumination. In this way, the influence of the metal dispersion on the photocatalytic performance can also be evaluated. (99) For many of the equations that are involved in the estimation of photovoltaic currents, the readers are referred to previous studies. (25, 107)
A scheme in Figure 7 shows how the potential gradient close to HER electrocatalyst on an n-type semiconductor under steady-state illumination may look in the bulk of the semiconductor when carrier concentrations, carrier lifetimes and carrier mobilities are varied. (107) The semiconductor surface was decorated with HER catalyst particle that collects excited electrons, assuming ohmic contact at the interface. The photocatalyst surface was designed to oxidize water, where Schottky contact with electrolyte was assumed. On the photocatalyst surface (left side of Figure 7A), it was assumed that potential gradient exists between HER catalyst and semiconductor bare surface to achieve overall water splitting (1.53 eV). In Figure 7B, excited electrons should flow from right (semiconductor bulk) to left (surface) and downward, following the slope generated at the semiconductor-electrolyte interface. At high carrier concentrations, a substantial energy barrier (peak), related to the so-called pinch-off effect, (88) was observed close to the surface, even if ohmic contact was assumed. On the other hand, lower carrier concentrations result in gradual slopes that guide the excited electron to the left side of the HER catalyst. This observation coincides with finding resultant larger AQE and STH efficiencies at lower carrier concentrations. This type of modeling certainly helps determining the properties that should be targeted to improve overall performance; for example, the carrier lifetime should be greater than hundreds of picoseconds, among other properties.

Figure 7

Figure 7. (A) Geometric model schemes using n-type semiconductor with HER catalyst decoration with the boundary conditions and the assumptions used for the simulations. (B) Potential gradients under the HER catalyst (red dotted line in A) at different donor concentrations, carrier mobility, and carrier lifetime. The x-direction represents the depth from surface (left) into the bulk (right) of the semiconductor. An ohmic junction was assumed for the HER catalyst in contact with the semiconductor, whereas a Schottky contact was assumed to calculate the electrolyte interface. The potential difference between HER site and OER site is assumed to be 1.53 eV. Reprinted with permission from ref 107. Copyright 2016 Royal Society of Chemistry.

Similar simulations suggest that using defective materials, such as dispersions (in particle size and density) of metal nanoparticles, on semiconductor absorbers does not significantly influence efficiency, although a metal catalyst is essential in achieving effective charge separation. (107) This result suggests that even though photocatalytic efficiency remains the same, the turnover frequency (TOF; e.g., rate per surface metal site) varies with different electrocatalyst dispersions. (23) This variation is because, in this case, charge separation efficiency determines overall efficiency, and electrocatalysts only consume carriers as they arrive. The potential, determined as a consequence of charge separation, is different for each particle, and the current (rate) per particle is also thus different; that is, photocatalysts are electrocatalysts, so the rate (current) is based on the potential. (23) A smaller particle, or greater surface area, does not necessarily result in the best overall STH efficiency, and moreover, a high TOF does not always lead to high photocatalytic efficiency of the entire system. On the contrary, it is expected that high exciton binding energy materials may only require high dispersion of catalyst to create more number/density of interfaces. As a result, the modeling provides guidance whether photocatalyst properties should be altered or the identity or dispersion of the electrocatalyst should be improved, which is another step forward to “photocatalysis by design”.
As seen above, a quantitative description of such optoelectronic properties can be used to estimate theoretical photocatalytic efficiency in ideal semiconductor situations. It gives, at minimum, a good estimate whether the improvement of a semiconductor (including its interface) or an electrocatalyst should be investigated and even which specific parameters should be altered, such as minority carrier concentrations or the catalyst dispersion on the surface. (23) It also may allow researchers to consider the potential loss associated at the interfaces. There are measurement techniques that can be used to estimate the potential drop at the (oxy)hydroxide layer on semiconductor surfaces. (108-112) It is already effective to simply isolate bare photocatalyst surface from the water electrolyte, for example, by using some oxide (e.g., SiO2, Al2O3, or TiO2), thus avoiding the surface state and the photocorrosion that is prevalent in some semiconductor compounds. (91, 94, 113-115) However, precisely describing the potential at the interface is still under development. For example, the classic model fails to describe realistic porous ion-permeable electrocatalysts (i.e., oxyhydroxide cocatalysts for water oxidation). Classical semiconductor equations are applicable to bulk materials (the smallest particle size in the COMSOL model used above was 100 nm). (107) The smaller particles have a higher specific surface area, a shorter travel distance to the surface for their charge carriers, a lower degree of band bending, and, possibly, a wider band gap because of quantum size effects. (83) Substantial efforts on efficient interfacial development have been made, especially in photoelectrochemistry applications, and one may refer to a recent excellent review by Li and co-workers on this topic. (116) Nevertheless, diffusion and drift remain fundamental principles that describe carrier transport from the bulk to the surface. Simple simulations, as described above, already predict a substantial loss in the potential gradient at the surface. Successfully incorporating anisotropy in electronic structures of crystals by a simple manner (simpler than conventional fabrication of a p–n junction) is the way to make photocatalysts more efficient and cheaper. (83) Other directions may include preventing electrolyte junctions from inducing surface recombination as well as improving the majority carrier pathway, for example, by using a metal–insulator–semiconductor-type junction or a carefully embedded buried-junction active-site that is electronically isolated from environmental effects. (117, 118) Paradoxically, an approach to insulating a semiconductor from solution is by actually minimizing the beneficial possible utilization of band bending at solid–liquid interfaces. Unlike photoelectrochemical measurement, photocatalysis using a powder photon absorber cannot apply external electric field: that is, the electrons and holes must find their own way to lead to electrocatalysts. A breakthrough to boost the photoconversion efficiency resides in unique establishment of the interface bridging photon absorber and electrocatalyst.

Electrocatalytic Activity

The climax of the water-splitting reaction finishes with the successful consumption of the photogenerated charge carriers by electrochemical redox reactions. The mismatch between the time scales of charge transfer and electrocatalysis causes accumulation of electrons/holes at their respective redox-active species at the surface, resulting in potential shifts (transient charge up) on metal or metal (oxy)hydroxide particles or, in some cases, the photocatalyst surface itself, as a catalyst component. Measurements of such potential shifts were reported for metal particles by using probe molecules under illumination. (119-123) and for metal (hydr)oxides using electrochemical techniques. (109-112) At given potentials, the catalysts should electrocatalyze HER and OER, respectively; the performances of these reactions can be separately measured by using electrochemical techniques that can determine the exact values of applied potentials. (1) Electrocatalysis is another unique interface event: (124) The reaction proceeds on the catalyst surface atoms together with electrolyte within a double-layer region where at least three-water-equivalent ions/molecules are involved in covalent and noncovalent nature. This requires consideration of not only inner Helmholtz layer but outer Helmholtz layer to describe, e.g., transition states, which means that counter “supporting ions” play significant role in electrocatalytic kinetics. (125) It is tremendously difficult, if not possible, to precisely describe the chemical potentials at double-layer region, (126) but various efforts are ongoing as electrocatalysis is indeed a core technology to convert renewable energy resources to useful chemical forms. (5)
Electrocatalytic water splitting itself is a field of study in which many efforts are currently ongoing. Electrocatalytic activity can be ranked using the quantitative values of the exchange current of a given catalyst, i0, and the transfer coefficient, α, which are described by the Tafel equation when the reverse reaction is neglected; (1) however, the terms of these extracted values are still ambiguous due to the lack of a method that can precisely determine active surface areas. Total product formation rate can be described as follows:(14)where n is the number of electrons involved in the reaction, F is the Faraday constant, Ecat and E0 are the Fermi level of the catalyst and the redox potential in solution, respectively, R is the universal gas constant, and T is the absolute temperature. The overpotential is defined as the difference between Ecat and E0, an additional voltage required relative to the thermodynamic potential to drive the respective redox reaction. Microkinetic Tafel analysis for water redox chemistries has been reviewed elsewhere. (127) Key aspects of the fundamental study of HERs and OERs include finding descriptors of electrocatalytic activity. Based on Sabatier’s principle, metal–hydrogen bond strengths characterize the HER exchange current density. (127, 128) Generally, the OER catalyst is also characterized by using the metal–oxygen bond strength as a descriptor, because a linear relationship exists among metal–oxygen, metal–hydroxide, and metal–oxyhydroxide bond strengths, all of which may be involved in the rate-determining steps. (129-131) When acidic conditions are chosen, the development of a non-noble metal electrodes with acid tolerance is required. The recent development of metal phosphide materials is of significant interest because they contain only abundant transition metals, such as Ni, Fe, and Co. (132-134) For OERs, mixed oxyhydroxides, (135) such as nickel–iron, (136, 137) perovskites, (138) and spinels (139) have also been reported as low overpotential electrocatalysts in alkaline conditions that do not use noble metals. One must remember that for industrial applications, catalyst durability is often more important than catalytic performance. (9) “Self-healing” capability, that is, the dissolution–redeposit process of the electrocatalyst during electro- and photocatalysis is a compelling method to achieve long-term durability. (140-144) Additionally, the temperature of the solution in a practical photoreactor may be substantially higher than room temperature because the photoreactor may absorb infrared irradiation; this factor should be considered in experiments regarding activation energy. Ironically, high activation energies lead to a highly sensitive current increase with temperature changes, resulting in excellent performance under certain relevant water-splitting conditions (e.g., 10 mA cm–2 at mild pH for Ni vs NiFe OER catalysts) (144) or enthalpy–entropy compensations (e.g., in the case of HER at mild pH for Pt, Ni, NiCu, etc.). (145)
One of the unique features of photocatalysis is that the photon absorber materials are not stable under extreme pH conditions (acidic or alkaline), which is the regime in which commercial electrolyzers are operated. (146) Interestingly, pure water without any supporting electrolyte can be used in overall water splitting with a powder semiconductor photocatalyst (147, 148) because of the very short distance between the HER (cathode) and the OER (anode), which should occur on the same surface with minimum solution resistance. Electrochemistry is a powerful tool to quantitatively evaluate reactions under near-neutral (or mild) pH conditions. (146) The impact of pH on these reactions will be discussed in greater detail later. In short, one must first identify the “reactants” of respective redox reactions: pH change will cause “reactant switching” at a given current level, which is associated with the diffusion contribution. (149) In general, hydronium ions (protons) are more easily reduced than water molecules, (149) and hydroxyl ions are more readily oxidized than water molecules. (146) One critical note is that the “water-splitting” reaction rather paradoxically does not prefer water molecules to be its reactant. (146, 149) This preference results from the fact that water molecules contain very strong O–H bonds (as is also obvious from the fact that H2O is one of the most thermodynamically stable compounds). To facilitate the water molecule dissociation, anisotropic sites on the surface are effective for heterolytic dissociation of water molecules. (150) For example, in alkaline conditions, Markovic and co-workers reported that islands of nickel or cobalt species on noble metal surfaces (such as Pt) further enhance both HERs and OERs. (151)
Knowledge obtained by electrocatalytic studies should be successfully transferred to the photocatalytic studies. In any case, electrocatalysis should catch up with current flow from the electrons and holes that are generated in the semiconductor underneath. It is obvious that small potential shifts should trigger the corresponding current flow, and excellent electrocatalysts are thus preferred as efficient photocatalysis. (52) An excellent example is rough CoOx modification on n-Si photoanode, where almost full utilization of the generated photovoltage was achieved for OER by CoOx under illumination. (152) If there is difference in “ranking” electrocatalyst materials during photocatalysis and pure electrocatalysis, it arises from different degrees of potential shifts at the catalyst/semiconductor interfaces, causing the electrocatalysts to not experience the same potentials due to, e.g., different degree of Schottky contact and barrier height, as discussed above, Figure 6. (52) On the contrary approach, if the kinetics of electrocatalysts for HER and OER require substantial overpotentials (e.g., overvoltage of ∼2.0 V), the required bandgap to maximize theoretical STH efficiency essentially becomes larger; the best scenario as large as ∼2.4 eV, thus never reaching 10% STH benchmarking efficiency. (153) Excellent activity of electrocatalysts that are optically transparent is desired.
To achieve efficient overall water splitting in a membrane-less configuration, as Gerischer stated in his early work, (85) the suppression of the back reactions of H2 and O2 to form H2O must be suppressed. Noble metals, in particular, are generally excellent HER catalysts but also typically catalyze the back reaction either thermally or electrocatalytically (oxygen reduction reaction). (154, 155) Successful suppression with nanometer-scale decorations on such electrocatalyst surfaces ([email protected] structure) have been reported and use chromium, (156, 157) molybdenum, (158) titanium, (159) and lanthanoids, (160) in the form of (oxyhydr)oxide as shells. The amorphous structure of very small hydrated clusters makes the materials function as a selective membrane that is not permeable to dissolved gases (including O2), thus preventing back reactions. (156, 158) There is a possibility to utilize this functionality to protect the surface from poisoning because this membrane function also insulates various redox-active species. (157) Development of shell materials that make the OER catalyst selective is also ongoing.
It is interesting to note that overall photocatalytic efficiency may be further improved by having better HER or OER electrocatalysts under all conditions. Based on this charge-up theory, enhancements in the rate of reduction or oxidation improve the overall efficiency of water splitting, which is determined by the photon flux and the efficiency of carrier transport from the photocatalyst to the redox catalysts because accelerated electron or hole processes affect the potential, which in turn perturbs the rates of the process on the opposite side. (161) Because electron and hole transport are parallel reactions, the overall photocatalysis process does not have a single rate-determining step unlike the case of half-reaction electrocatalysis). (44, 161) In other words, further improvement for electron consumption (HER) or hole consumption (OER) should improve overall efficiencies. Fast consumption of electrons will cause hole accumulation on the OER side, further enhancing the overall rate, or vice versa. (162, 163) It is also effective to analyze the sensitivity of HER or OER performance to overall photocatalysis performance, which can be evaluated using photocatalysis with isotope effects (44) or effectively comparing electrocatalytic reactions under dark conditions. (164)

Mass Transfer (Ion Diffusion)

After decades of studying photocatalysis for water splitting, the efficiency of this process has been tremendously improved. (165) The primary focus of photosynthetic reactions is still based on managing photons in the bulk and on the surfaces of photon absorber materials, as mentioned previously. The research in this field has therefore been largely oriented by the synthesis of efficient photon absorber materials, including their electrocatalyst decorations. Nevertheless, when reaching commercially viable efficiency is considered, the mass transfer of reactants and ions in addition to solution resistance can no longer be ignored during electrocatalysis or photocatalysis. (150) Much research is focused on systems that work at room temperature, and under such conditions, it is often the case that the diffusion of ions contributes to the overall efficiency by creating a concentration overpotential; an additional loss originates from the depletion of reactants. This is certainly the case when photocatalytic remediation of low-concentration substances is the target reaction. (12) The rigorous and quantitative determination of parameters in such a process is essentially possible using the thermodynamic and kinetic information that can be generated using electrochemistry.
At a given current, sources of potentials are classified into kinetic overpotential (dependent on catalyst), concentration overpotential (independent of catalyst), and solution resistance. The contributions of the concentration overpotential and solution resistance can be quantitatively obtained by using the physical properties of the solution. Detailed quantification and methodology was reviewed in previous literature. Mass transport phenomena in electrochemistry are described by the Nernst–Planck equation with terms for (in this order) diffusion, migration, and convection (for species i in the x-direction): (1)(15)where J is the flux, D is the diffusion coefficient, z is the charge number and v is the velocity of the forces in the solution. (1) The Stokes–Einstein model gives the diffusion coefficient as(16)where k is the Boltzmann constant, d is the effective diameter of the ion in the hydrated form (Stokes diameter), and μ is the viscosity of the solution. (166) Therefore, the parameters governing mass transport flux are the effective size of the species, viscosity of the solution, and activity (or fugacity) of the species. Moreover, solubility of dissolved gases, another quantifiable parameter, is greatly influenced by the identity and molarity of the supporting electrolyte, which correlates with reverse reaction of products going back to water, or hydrogen oxidation reaction (HOR), and oxygen reduction reaction (ORR). (167) These physical properties can be obtained separately, often from a database, (168) and the contribution of mass transport is thus quantifiable. Under relevant reaction conditions, the benchmark STH efficiency of 10% corresponds to a hydrogen production rate of ∼154 μmol H2 cm–2 h–1 and a corresponding current of ∼8.3 mA cm–2 (assuming that a single semiconductor (or tandem semiconductors) is achieving the overall water splitting). Under static conditions (no convection) at 25 °C, even hydronium (proton) and hydroxide ions can face diffusion-limiting currents, causing “reactant switching”: pH values of ∼1.6 or lower (for hydronium ion) and ∼12.3 or higher (for hydroxide ion) are necessary in unbuffered conditions. Outside this range of pH (unbuffered, near-neutral pH), reactant switching between H+ (HER) and OH (OER) to H2O must occur, causing additional kinetic overpotential. (150) Obviously, this activity of the reactants, together with minimized solution resistance, is one reason why extreme pH conditions are chosen for the electrolysis of water. In addition, the HER causes an increase in the pH, and the OER causes a decrease in the pH, so the complete isolation of ions in a two-compartment cell will lead to a high concentration overpotential (shifting the thermodynamic potential by 59 mV pH–1), which causes additional loss of overall efficiency. The use of an ion-exchangeable membrane is mandatory to separate H2 and O2 while minimizing these concentration overpotentials. (169) Nafion or an alkaline membrane typically works in media with extreme pH, (170) although some membranes that may be used as neutral pH values have been recently developed. (171) One of the most significant benefits of coproducing an H2/O2 mixture is avoiding the use of membranes and minimizing solution resistance and the pH gradient (i.e., the concentration overpotential). (169) However, this process occurs at the expense of producing an explosive gas mixture (H2 and O2). (169)
Near-neutral pH conditions makes it possible to use many materials for stable photocatalytic water splitting. Under neutral pH conditions, buffering ions are commonly used to maintain local pH values by utilizing their buffering action. (172) In addition to the role of the supporting electrolyte in minimizing solution resistance (iR drop), the buffer ions significantly influence electrocatalysis. The buffer’s counteranion is a carrier for H+ and thus plays a role in transporting the H+ reactant to cathode or abstracting the H+ products from the anode. (173-175) At relevant current densities and under ambient conditions, the diffusion of buffer ions may therefore result in substantial concentration overpotentials. For example, using an excellent catalyst, such as Pt, for HER in NaH2PO4, the optimum buffer concentrations for the HER appear to be as high as 1.5–2.0 M at 25 °C. (174) It has also been recently determined that some OER catalysts also suffer from concentration overpotentials, or mass-transfer limitation of buffering ions, which can be seen because the rotating-disk electrode current depends on its rotation speed. (174) This fact is often neglected in the photocatalysis and photoelectrochemistry community.
Another interesting consideration of the activity of the reactants is the use of water vapor as a reactant (liquid water vs water vapor). Using vapor-phase water has advantages such as the ability to easily control its supply and the use of simple reactor designs, e.g., a fixed bed for powder systems. (175) However, using water vapor as a reactant encounters considerable difficulties due to an additional term for the adsorption of water vapor at low partial pressures, which may strongly decrease the overall efficiency. In contrast, using liquid-phase water (close to unity) or the associated ions (H+ or OH) as reactants can result in high activities, effectively utilizing the electric field applied at the double-layer region.
In static photoelectrochemical water splitting, high efficiency (currents) of photoelectrodes leads to additional efficiency loss due to the generated gas bubbles blocking the surface. It was reported that hydrophilic surface is preferred to detach the generated bubbles, which was also confirmed by the fact that introduction of surfactant was thus effective to remove gas bubbles. Contact angle at gas-surface interface is known to be correlated, but the details can be found elsewhere. (176) For photocatalyst powder systems, the gas bubble problems seem absent in the literature, yet probably because of low efficiency of the powder suspension system. Since the photocatalytic performance is being improved, one must consider the final form of photocatalyst samples, whether they should be immobilized in which substrates, and types of convective flow of liquids. Associated with this, the temperature of the reactant water may be considered, which impacts not only catalytic rates but also the mass transport which also has activation energy with Arrhenius relation.

Discussion and Perspectives

ARTICLE SECTIONS
Jump To

This contribution identified a number of quantifiable parameters associated with the complex processes that occur during photocatalytic water splitting. The processes are sequentially and often coherently connected in the following order and operate at different time scales as the six-gear concept as shown in Figure 2. These parameters and relevant useful information are summarized in Table 1. Strategy should be adequately planned to investigate photocatalytic materials and reactions. In photoelectrochemical water splitting study, there are some suggested guidelines in the literature, (177) which are also useful for investigating photocatalytic water splitting as many phenomena function in common principles. Most of the constants and the quantifiable variables are listed in Table 2. By identifying these “quantities”, one may predict efficiencies using various established equations and thus help directing the researches. For further details regarding the equations, the readers are referred to previous reviews for semiconductor study, (25, 107, 178) and electrochemistry study, (173) and literature cited therein. One may want to check the absorption coefficient (Gear 1), especially close to band edges, the exciton binding energy (Gear 2) and carrier lifetime (Gear 3). Next is to describe carrier diffusion (Gear 3) and transport (Gear 4). In simple cases, simulation can currently estimate maximum photocatalytic quantum efficiencies based on the quantified values of bulk semiconductor parameters. This will be the first assessment whether the bulk semiconductor properties should be ever suitable for efficient photocatalysis. The guidance obtained is whether the material itself should be altered, the synthesis protocol should be improved (crystallinity), or electrocatalyst decoration should be improved in terms of dispersion and loading, etc.
Table 1. List of Events, Parameters, Variables, Relevant Theories, and Useful Characterization Techniques for Photocatalysis Investigation
eventsparameters/variablestheorycharacterization techniques
1. photon absorptionabsorptance/reflectance/scatteringFranck–Condon principleX-ray diffraction
absorption coefficientLambert–Beer’s lawUV–vis-NIR spectroscopy
absorption depthelectromagnetic wave propagationspectroradiometer
density of stateMaxwell curl equations 
2. exciton separationeffective masselectrostatic forcetransient absorption spectroscopy
dielectric constant/dielectric lossMott–Wannier typephotoemission spectroscopy
refractive indexFrenkel typeoptical absorption spectroscopy
exciton binding energy photoconductivity screening potential spectroscopy
  magneto-optical spectroscopy
3. carrier diffusioncarrier mobilityrecombination models (srh, Auger)van der Pauw technique with Hall measurement
diffusion coefficientPoisson equationtime-resolved spectroscopy
carrier lifetimedrift and diffusion equationsTHz and microwave spectroscopies
carrier diffusion lengthcontinuity equations 
carrier concentrationsBoltzmann transport equation 
charge recombination kineticssemiconductor devices equations 
4. carrier transportelectric fieldEinstein relationconductivity measurement
drift currentMott–Schottky analysisphotoemission spectroscopy (in air)
depletion layer widthSchottky/ohmic contactultraviolet photoemission spectroscopy
flatband potential/workfunction/redox potential (potential-determining ion) electrochemistry (aqueous nonaqueous)
barrier height intensity modulated photocurrent/photovoltage spectroscopy
Fermi level pinning ambient-pressure X-ray photoelectron spectroscopy
density of surface states  
kinetics of charge transfer and recombination  
5. electrochemistryexchange current density (charge transfer resistance)Butler–Volmer analysisvoltammetry, Tafel analysis
charge/electron transfer coefficientTafel equationimpedance spectroscopy
conductivity  
Tafel slope  
activation energy  
6. mass transferdiffusion coefficient (ion size viscosity activity coefficient)Nernst–Planck–Poisson equationKoutechy–Levich analysis
solution resistanceFick’s lawviscometer
 Einstein–Smoluchowski equationpH meter
 Cottrell/Koutechy–Levich equationconductivity/impedance
other parameters/variables and characterization techniquestemperature scanning electron microscope
 activity/fugacity (of reactant and products)transmission electron microscope
 photon flux and photon distributionX-ray diffraction
 durabilityX-ray photoelectron spectroscopy
Table 2. Major Constants and Variables Involved in Photocatalysis
constants
symbolunitdescription
eCelementary charge
kBJ K–1Boltzmann constant
hJ sPlanck constant
ε0F m–1vacuum permittivity
mekgelectron mass
RJ mol–1 K–1gas constant
FC mol–1Faraday constant
variables for semiconductor equations
symbolunitdescription
TKtemperature
εr(s) relative permittivity (dielectric constant) of semiconductor
n, pm–3electron and hole concentration
nim–3intrinsic carrier concentration
n0, p0m–3quasi-equilibrium carrier density
NC, NVm–3effective density of states in the conduction and valence band
μn, μpm2 V–1 s–1electron and hole mobility
τn, τpselectron and hole lifetime
τcscollision time
Dn, Dpm2 s–1electron and hole diffusion coefficient
Lmdiffusion length
P0m2 s–1photons absorbed from AM 1.5G
α(λ)m–1absorption coefficient
λmwavelength of photon
xmdepth into the bulk of a semiconductor
ρmsurface of the semiconductor
r0, rsmcatalyst and semiconductor particle size (diameter)
χeVsemiconductor electron affinity
EgeVband gap
ECeVconduction band edge
EVeVvalence band edge
m*n, m*p effective electron and hole mass
A*n, A*pA m–2 K–2effective Richardson constant for electrons and holes
variables for electrochemical parameters
symbolunitdescription
n number of electrons in reaction
ai thermodynamic activity (of species i)
γ± activity coefficient
Dim2 s–1diffusion coefficient (of species i)
δmdiffusion layer thickness
um2 s–1 V–1ion mobility
amStokes radius
μPa sviscosity of solution
νm2 s–1kinematic viscosity of solution
εr(l) relative permittivity (dielectric constant) of solution
ηVoverpotential
α transfer coefficient
j0A cm–2exchange current density
θ surface coverage
k(depending on elementary steps)rate constant
A(depending on elementary steps)preexponential factor
EakJ mol–1activation energy
In a typical example, Si is widely available already in a commercial scale, and, upon purchasing, many parameters mentioned in the first part (Gears 1–4) are effectively quantified. Si wafers are commercially available with known dopant concentration and conductivity/resistivity. A μm-order diffusion length is accordingly obtainable, so the strategy is to focus on the further improvement in optical enhancement and surface charge separation with dispersed catalyst decoration. A deconvolution of such properties (including Gear 4–6) for 3D structure p-Si photocathode was well reported by Esposito and co-workers. (176) On the contrary, for another example, nonoxide materials, such as Ta3N5 used as a visible-light-responsive photocatalyst, have many parameters unknown and remain uncertainties to the semiconductor properties. Such quantities of the parameters were summarized in the literature for Ta3N5. (179) This type of (oxy)nitride materials is synthesized at each laboratory usually via nitridation of oxide precursors in NH3 flow at high temperatures. Nonstoichiometry due to remaining oxygen as well as anion vacancy associated with Ta5+ reduction to Ta3+ in the bulk structure is also recognized. (180) From the literature, despite the efforts for the surface alteration and catalyst decoration essential to enhance photocatalytic performance, there remain a lot to do to improve bulk properties and improve carrier lifetimes. (107) Diffusion lengths can be as short as a few nm when carrier trapping of Ta3N5 happens in a picosecond-order (181, 182) (although a part of carriers that have longer lifetimes was also reported for Ta3N5). (183, 184) It is still important that the synthesis protocol should be improved for prolong carrier lifetime and resultant diffusion lengths (e.g., flux-assisted protocols for improved crystallinity).
It is also time to thoroughly discuss the actual reaction conditions with practical reactor design for photocatalysis (pressure, temperature, activity, etc.), (185-189) because they will affect the photovoltage, electrocatalytic kinetics, the diffusion of ions, and so on. As a result, the performance/durability ranking of photocatalytic/electrocatalytic materials may be different from investigations at room temperature under low pressures. Accordingly, the era has come for solar fuel production study to seriously consider the practical photoreactor design together with reaction conditions. (186) In a photoreactor in large-scale application under solar irradiation, temperature may substantially rise by design, which may be beneficial because many photocatalytic systems are reported to have positive activation energy, (11) and kinetic isotope effects from D2O experiments; (189, 190) that is, surface electrocatalysis may be sluggish enough to influence overall efficiency. It is desired to maintain small density and high dispersion of the catalysts on the photon absorber not to absorb photons by the catalysts themselves. Such small quantities of the catalysts, especially when the efficiency is improved, prefers high temperature to catch up the electrocatalysis. Choice of materials should also be conducted based on durability and robustness of the photocatalyst materials under the operational reaction conditions.
This contribution may serve as a set of guidelines to help identify the kinetic bottleneck with “quantities” that limit the overall efficiency of photocatalysis and to help intentionally improve specific properties: steps forward toward “photocatalysis by design” concept. Finally, the concepts shown here are not limited to this reaction and may be applied to, e.g., photocatalytic CO2 reduction or even environmental remediation. To develop a commercial level of photocatalytic efficiency, consolidated efforts to achieve commercial solar energy conversion processes based on an understanding at the microscopic and macroscopic levels should be made.

Author Information

ARTICLE SECTIONS
Jump To

  • Corresponding Author
    • Kazuhiro Takanabe - King Abdullah University of Science and Technology (KAUST), KAUST Catalysis Center (KCC) and Physical Sciences and Engineering Division (PSE), 4700 KAUST, Thuwal 23955-6900, Saudi ArabiaOrcidhttp://orcid.org/0000-0001-5374-9451 Email: [email protected]
    • Notes
      The author declares no competing financial interest.

    Acknowledgment

    ARTICLE SECTIONS
    Jump To

    The research reported in this publication was supported by King Abdullah University of Science and Technology (KAUST). The author appreciates Dr. Angel T. Garcia-Esparza for thorough discussion on simulation data related to Figure 7.

    References

    ARTICLE SECTIONS
    Jump To

    This article references 190 other publications.

    1. 1
      Electrochemical Methods, 2nd ed.; Bard, A. J., Faulkner, L. R., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, 2001; pp 736 768.
    2. 2
      Kraeutler, B.; Bard, A. J. J. Am. Chem. Soc. 1978, 100, 2239 2240 DOI: 10.1021/ja00475a049
    3. 3
      Calvo, E. J. In Electrode Kinetics: Principles and Methodology, Bamford, C. H.; Tipper, C. F. H.; Compton, R. G., Eds.; Elsevier: Amsterdam, 1986; Vol. 26, pp 1 74.
    4. 4
      Shaner, M. R.; Atwater, H. A.; Lewis, N. S.; McFarland, E. W. Energy Environ. Sci. 2016, 9, 2354 2371 DOI: 10.1039/C5EE02573G
    5. 5
      Lewis, N. S. Science 2016, 351, Article No. aad1920 DOI: 10.1126/science.aad1920
    6. 6
      Nakamura, A.; Ota, Y.; Koike, K.; Hidaka, Y.; Nishioka, K.; Sugiyama, M.; Fujii, K. Appl. Phys. Express 2015, 8, 107101 DOI: 10.7567/APEX.8.107101
    7. 7
      Khaselev, O.; Turner, J. A. Science 1998, 280, 425 427 DOI: 10.1126/science.280.5362.425
    8. 8
      Nocera, D. G. Acc. Chem. Res. 2012, 45, 767 776 DOI: 10.1021/ar2003013
    9. 9
      Sun, K.; Saadi, F. H.; Lichterman, M. F.; Hale, W. G.; Wang, H.-P.; Zhou, X.; Plymale, N. T.; Omelchenko, S. T.; He, J.-H; Papadantonakis, K. M.; Brunschwig, B. S.; Lewis, N. S. Proc. Natl. Acad. Sci. U.S.A. 2015, 112, 3612 3617 DOI: 10.1073/pnas.1423034112
    10. 10
      Kageshima, Y.; Shinagawa, T.; Kuwata, T.; Nakata, J.; Minegishi, T.; Takanabe, K.; Domen, K. Sci. Rep. 2016, 6, 24633 DOI: 10.1038/srep24633
    11. 11
      Wang, Q.; Hisatomi, T.; Jia, Q.; Tokudome, H.; Zhong, M.; Wang, C.; Pan, Z.; Takata, T.; Nakabayashi, M.; Shibata, N.; Li, Y.; Sharp, I. D.; Kudo, A.; Yamada, T.; Domen, K. Nat. Mater. 2016, 15, 611 615 DOI: 10.1038/nmat4589
    12. 12
      Osterloh, F. E. ACS Energy Lett. 2017, 2, 445 453 DOI: 10.1021/acsenergylett.6b00665
    13. 13
      Mills, A.; Wang, J. J. Photochem. Photobiol., A 1999, 127, 123 134 DOI: 10.1016/S1010-6030(99)00143-4
    14. 14
      Yan, X.; Ohno, T.; Nishijima, K.; Abe, R.; Ohtani, B. Chem. Phys. Lett. 2006, 429, 606 610 DOI: 10.1016/j.cplett.2006.08.081
    15. 15
      Ohtani, B. Chem. Lett. 2008, 37, 216 229 DOI: 10.1246/cl.2008.216
    16. 16
      Mills, A. Appl. Catal., B 2012, 128, 144 149 DOI: 10.1016/j.apcatb.2012.01.019
    17. 17
      Kisch, H. Angew. Chem., Int. Ed. 2013, 52, 812 847 DOI: 10.1002/anie.201201200
    18. 18
      Buriak, J. M.; Kamat, P. V.; Schanze, K. S. ACS Appl. Mater. Interfaces 2014, 6, 11815 11816 DOI: 10.1021/am504389z
    19. 19
      Buriak, J. M. Chem. Mater. 2014, 26, 2211 2213 DOI: 10.1021/cm5010449
    20. 20
      Kisch, H.; Bahnemann, D. J. Phys. Chem. Lett. 2015, 6, 1907 1910 DOI: 10.1021/acs.jpclett.5b00521
    21. 21
      Coridan, R. H.; Nielander, A. C.; Francis, S. A.; McDowell, M. T.; Dix, V.; Chatman, S. M.; Lewis, N. S. Energy Environ. Sci. 2015, 8, 2886 2901 DOI: 10.1039/C5EE00777A
    22. 22
      Buriak, J. M.; Jones, C. W.; Kamat, P. V.; Schanze, K. S.; Schatz, G. C.; Scholes, G. D.; Weiss, P. S. Chem. Mater. 2016, 28, 3525 3526 DOI: 10.1021/acs.chemmater.6b01854
    23. 23
      Qureshi, M.; Takanabe, K. Chem. Mater. 2017, 29, 158 167 DOI: 10.1021/acs.chemmater.6b02907
    24. 24
      Takanabe, K.; Domen, K. ChemCatChem 2012, 4, 1485 1497 DOI: 10.1002/cctc.201200324
    25. 25
      Takanabe, K. Top. Curr. Chem. 2015, 371, 73 103 DOI: 10.1007/128_2015_646
    26. 26
      Nozik, A. J. Annu. Rev. Phys. Chem. 1978, 29, 189 222 DOI: 10.1146/annurev.pc.29.100178.001201
    27. 27
      Nosaka, Y.; Ishizuka, Y.; Miyama, H. Ber. Bunsenges. Phys. Chem. 1986, 90, 1199 1204 DOI: 10.1002/bbpc.19860901216
    28. 28
      Memming, R. Top. Curr. Chem. 1988, 143, 79 112 DOI: 10.1007/BFb0018072
    29. 29
      Hagfeldt, A.; Grätzel, M. Chem. Rev. 1995, 95, 49 68 DOI: 10.1021/cr00033a003
    30. 30
      Photocatalysis Science and Technology; Kaneko, M.; Okura, I., Eds.; Kodansha-Springer: Tokyo-New York, 2002, : pp 1 360.
    31. 31
      Domen, K. In Photocatalysis—Heterogeneous. Encyclopedia of Catalysis; Horvath, I. T., Ed., Wiley: Weinheim, 2002.
    32. 32
      Maeda, K.; Domen, K. J. Phys. Chem. C 2007, 111, 7851 7861 DOI: 10.1021/jp070911w
    33. 33
      Kamat, P. V. J. Phys. Chem. C 2007, 111, 2834 2860 DOI: 10.1021/jp066952u
    34. 34
      Osterloh, F. E. Chem. Mater. 2008, 20, 35 54 DOI: 10.1021/cm7024203
    35. 35
      Kudo, A.; Miseki, Y. Chem. Soc. Rev. 2009, 38, 253 278 DOI: 10.1039/B800489G
    36. 36
      Inoue, Y. Energy Environ. Sci. 2009, 2, 364 386 DOI: 10.1039/b816677n
    37. 37
      Walter, M. G.; Warren, E. L.; McKone, J. R.; Boettcher, S. W.; Mi, Q.; Santori, E. A.; Lewis, N. S. Chem. Rev. 2010, 110, 6446 6473 DOI: 10.1021/cr1002326
    38. 38
      Maeda, K.; Domen, K. J. Phys. Chem. Lett. 2010, 1, 2655 2661 DOI: 10.1021/jz1007966
    39. 39
      Hisatomi, T.; Minegishi, T.; Domen, K. Bull. Chem. Soc. Jpn. 2012, 85, 647 655 DOI: 10.1246/bcsj.20120058
    40. 40
      Tong, H.; Ouyang, S.; Bi, Y.; Umezawa, N.; Oshikiri, M.; Ye, J. Adv. Mater. 2012, 24, 229 251 DOI: 10.1002/adma.201102752
    41. 41
      Tachibana, Y.; Vayssieres, L.; Durrant, J. R. Nat. Photonics 2012, 6, 511 518 DOI: 10.1038/nphoton.2012.175
    42. 42
      Osterloh, F. E. Chem. Soc. Rev. 2013, 42, 2294 2320 DOI: 10.1039/C2CS35266D
    43. 43
      Hisatomi, T.; Kubota, J.; Domen, K. Chem. Soc. Rev. 2014, 43, 7520 7535 DOI: 10.1039/C3CS60378D
    44. 44
      Hisatomi, T.; Takanabe, K.; Domen, K. Catal. Lett. 2015, 145, 95 108 DOI: 10.1007/s10562-014-1397-z
    45. 45
      Sivula, K.; van de Krol, R. Nat. Rev. Mater. 2016, 1, 15010 DOI: 10.1038/natrevmats.2015.10
    46. 46
      Sato, N. Electrochemistry at Metal and Semiconductor Electrodes; Sato, N., Ed.; Elsevier, Amsterdam, 1998, : pp 1 396.
    47. 47
      Modern Molecular Photochemistry of Organic Molecules; Turro, N. J.; Ramamurthy, V.; Scaiano, J. C., Eds.; University Science Books: Sausalito, CA, 2010; pp 1 38.
    48. 48
      Polman, A.; Atwater, H. A. Nat. Mater. 2012, 11, 174 177 DOI: 10.1038/nmat3263
    49. 49
      Osterloh, F. E. J. Phys. Chem. Lett. 2014, 5, 3354 3359 DOI: 10.1021/jz501740n
    50. 50
      Omelchenko, S. T.; Tolstova, Y.; Atwater, H. A.; Lewis, N. S. ACS Energy Lett. 2017, 2, 431 437 DOI: 10.1021/acsenergylett.6b00704
    51. 51
      National Renewable Energy Laboratory (NREL). Website: http://rredc.nrel.gov/solar/spectra/am1.5.
    52. 52
      Takanabe, K.; Domen, K. Green 2011, 1, 313 322 DOI: 10.1515/GREEN.2011.030
    53. 53
      Chen, Z.; Dinh, H. N.; Miller, E. Photoelectrochemical Water Splitting Standards, Experimental Methods, and Protocols; Springer: New York. 2013.
    54. 54
      Wemple, S. H.; Seman, J. A. Appl. Opt. 1973, 12, 2947 2949 DOI: 10.1364/AO.12.002947
    55. 55
      Di Giulio, M.; Micocci, G.; Rella, R.; Siciliano, P.; Tepore, A. Phys. Stat. Sol. a 1993, 136, K101 K104 DOI: 10.1002/pssa.2211360236
    56. 56
      Lodenquai, J. F. Sol. Energy 1994, 53, 209 210 DOI: 10.1016/0038-092X(94)90483-9
    57. 57
      Absorption and Scattering of Light by Small Particles; Bohren, C. F.; Huffman, D. R., Eds.; Wiley-VCH, Weinheim, 2004, : pp 1 476.
    58. 58
      Interpreting Diffuse Reflectance and Transmittance; Dahm, D. J.; Dahm, K. D., Eds.; NIR Publications: West Sussex, 2007, : pp 1 286.
    59. 59
      Light Scattering by Particles in Water, Jonasz, M.; Fournier, G. R., Eds.; Academic Press: Oxford, 2007, : pp 145 558.
    60. 60
      Bae, D.; Pedersen, T.; Seger, B.; Malizia, M.; Kuznetsov, A.; Hansen, O.; Chorkendorff, I.; Vesborg, P. C. K. Energy Environ. Sci. 2015, 8, 650 660 DOI: 10.1039/C4EE03723E
    61. 61
      Le Bahers, T.; Rérat, M.; Sautet, P. J. Phys. Chem. C 2014, 118, 5997 6008 DOI: 10.1021/jp409724c
    62. 62
      Green, M. A. Sol. Energy Mater. Sol. Cells 2008, 92, 1305 1310 DOI: 10.1016/j.solmat.2008.06.009
    63. 63
      Franck, J.; Dymond, E. G. Trans. Faraday Soc. 1926, 21, 536 542 DOI: 10.1039/tf9262100536
    64. 64
      Condon, E. Phys. Rev. 1926, 28, 1182 1201 DOI: 10.1103/PhysRev.28.1182
    65. 65
      Džimbeg-Malčić, V.; Barbarić-Mikočević, Ž.; Itrić, K. Technical Gazette 2011, 18, 117
    66. 66
      Kurik, M. V. Phys. Stat. Sol. a 1971, 8, 9 45 DOI: 10.1002/pssa.2210080102
    67. 67
      Introduction to Solid State Physics, 8th ed.; Kittel, C., Ed.; Wiley: Weinheim, 2005, : pp 1 704.
    68. 68
      Bastard, G.; Mendez, E. E.; Chang, L. L.; Esaki, L. Phys. Rev. B: Condens. Matter Mater. Phys. 1982, 26, 1974 1979 DOI: 10.1103/PhysRevB.26.1974
    69. 69
      Semiconductors: Data Handbook, 3rd ed.; Madelung, O., Ed.; Springer: New York, 2004.
    70. 70
      Melissen, S.; Le Bahers, T.; Steinmann, S. N.; Sautet, P. J. Phys. Chem. C 2015, 119, 25188 25196 DOI: 10.1021/acs.jpcc.5b07059
    71. 71
      Shockley, W.; Read, W. T., Jr. Phys. Rev. 1952, 87, 835 842 DOI: 10.1103/PhysRev.87.835
    72. 72
      Hall, R. N. Phys. Rev. 1952, 87, 387 DOI: 10.1103/PhysRev.87.387
    73. 73
      Auger, P. Comptes Rendus de l'Académie des Sciences 1952, 177, 169
    74. 74
      Leng, W. H.; Barnes, P. R. F.; Juozapavicius, M.; O’Regan, B. C.; Durrant, J. R. J. Phys. Chem. Lett. 2010, 1, 967 972 DOI: 10.1021/jz100051q
    75. 75
      Law, M. E.; Solley, E.; Liang, M.; Burk, D. E. IEEE Electron Device Lett. 1991, 12, 401 403 DOI: 10.1109/55.119145
    76. 76
      Ito, H.; Furuta, T.; Ishibashi, T. Appl. Phys. Lett. 1991, 58, 2936 2938 DOI: 10.1063/1.104727
    77. 77
      Cohen, R.; Lyahovitskaya, V.; Poles, E.; Liu, A.; Rosenwaks, Y. Appl. Phys. Lett. 1998, 73, 1400 1402 DOI: 10.1063/1.122169
    78. 78
      Kuciauskas, D.; Kanevce, A.; Dippo, P.; Seyedmohammadi, S.; Malik, R. IEEE J. Photovoltaics 2015, 5, 366 371 DOI: 10.1109/JPHOTOV.2014.2359738
    79. 79
      Rosenwaks, Y.; Shapira, Y.; Huppert, D. Phys. Rev. B: Condens. Matter Mater. Phys. 1992, 45, 9108 9119 DOI: 10.1103/PhysRevB.45.9108
    80. 80
      Casey, H. C., Jr.; Miller, B. I.; Pinkas, E. J. Appl. Phys. 1973, 44, 1281 1287 DOI: 10.1063/1.1662340
    81. 81
      Lewis, N. S. Inorg. Chem. 2005, 44, 6900 6911 DOI: 10.1021/ic051118p
    82. 82
      Zhuravlev, L. T. Colloids Surf., A 2000, 173, 1 38 DOI: 10.1016/S0927-7757(00)00556-2
    83. 83
      Yoneyama, H. Crit. Rev. Solid State Mater. Sci. 1993, 18, 69 111 DOI: 10.1080/10408439308243416
    84. 84
      Fukasawa, Y.; Takanabe, K.; Shimojima, A.; Antonietti, M.; Domen, K.; Okubo, T. Chem. - Asian J. 2011, 6, 103 109 DOI: 10.1002/asia.201000523
    85. 85
      Gerischer, H. J. Phys. Chem. 1984, 88, 6096 6097 DOI: 10.1021/j150669a007
    86. 86
      van der Pauw, L. J. Philips Res. Rep. 1958, 13, 1
    87. 87
      Heaney, M. B. The Measurement, Instrumentation and Sensors Handbook; CRC, Boca Raton, 2000.
    88. 88
      Tung, R. T. Appl. Phys. Rev. 2014, 1, 011304 DOI: 10.1063/1.4858400
    89. 89
      Physics of Semiconductor Devices, 3rd ed., Sze, S. M.; Ng, K. K., Eds.; Wiley: New York, 2006, : pp 134 196.
    90. 90
      Kurtin, S.; McGill, T. C.; Mead, C. A. Phys. Rev. Lett. 1969, 22, 1433 1436 DOI: 10.1103/PhysRevLett.22.1433
    91. 91
      Esposito, D. V.; Levin, I.; Moffat, T. P.; Talin, A. A. Nat. Mater. 2013, 12, 562 568 DOI: 10.1038/nmat3626
    92. 92
      Ham, Y.; Minegishi, T.; Hisatomi, T.; Domen, K. Chem. Commun. 2016, 52, 5011 5014 DOI: 10.1039/C6CC00497K
    93. 93
      Minegishi, T.; Nishimura, N.; Kubota, J.; Domen, K. Chem. Sci. 2013, 4, 1120 1124 DOI: 10.1039/c2sc21845c
    94. 94
      Paracchino, A.; Laporte, V.; Sivula, K.; Grätzel, M.; Thimsen, E. Nat. Mater. 2011, 10, 456 461 DOI: 10.1038/nmat3017
    95. 95
      Gerischer, H. Electrochim. Acta 1990, 35, 1677 1699 DOI: 10.1016/0013-4686(90)87067-C
    96. 96
      Zhang, Z.; Yates, J. T., Jr. Chem. Rev. 2012, 112, 5520 5551 DOI: 10.1021/cr3000626
    97. 97
      Grätzel, M. Nature 2001, 414, 338 344 DOI: 10.1038/35104607
    98. 98
      Chamousis, R. L.; Osterloh, F. E. Energy Environ. Sci. 2014, 7, 736 743 DOI: 10.1039/C3EE42993H
    99. 99
      Butler, M. A.; Ginley, D. S. J. Electrochem. Soc. 1978, 125, 228 232 DOI: 10.1149/1.2131419
    100. 100
      Green, M. A.; Hishikawa, Y.; Warta, W.; Dunlop, E. W.; Levi, D. H.; Hohl-Ebinger, J.; Ho-Baillie, A. W. H. Prog. Photovoltaics 2017, 25, 668 676 DOI: 10.1002/pip.2909
    101. 101
      Turner, J. A. J. Chem. Educ. 1983, 60, 327 329 DOI: 10.1021/ed060p327
    102. 102
      Lewis, N. S. J. Electrochem. Soc. 1984, 131, 2496 2503 DOI: 10.1149/1.2115347
    103. 103
      Rossi, R. C.; Tan, M. X.; Lewis, N. S. Appl. Phys. Lett. 2000, 77, 2698 2700 DOI: 10.1063/1.1319534
    104. 104
      Rossi, R. C.; Lewis, N. S. J. Phys. Chem. B 2001, 105, 12303 12318 DOI: 10.1021/jp011861c
    105. 105
      Bisquert, J.; Cendula, P.; Bertoluzzi, L.; Gimenez, S. J. Phys. Chem. Lett. 2014, 5, 205 207 DOI: 10.1021/jz402703d
    106. 106
      Xiang, C.; Weber, A. Z.; Ardo, S.; Berger, A.; Chen, Y.; Coridan, R.; Fountaine, K. T.; Haussener, S.; Hu, S.; Liu, R.; Lewis, N. S.; Modestino, M. A.; Shaner, M. M.; Singh, M. R.; Stevens, J. C.; Sun, K.; Walczak, K. Angew. Chem., Int. Ed. 2016, 55, 12974 12988 DOI: 10.1002/anie.201510463
    107. 107
      Garcia-Esparza, A. T.; Takanabe, K. J. Mater. Chem. A 2016, 4, 2894 2908 DOI: 10.1039/C5TA06983A
    108. 108
      Cendula, P.; Tilley, S. D.; Gimenez, S.; Bisquert, J.; Schmid, M.; Grätzel, M.; Schumacher, J. O. J. Phys. Chem. C 2014, 118, 29599 29607 DOI: 10.1021/jp509719d
    109. 109
      Mills, T. J.; Lin, F.; Boettcher, S. W. Phys. Rev. Lett. 2014, 112, 148304 DOI: 10.1103/PhysRevLett.112.148304
    110. 110
      Lin, F.; Boettcher, S. W. Nat. Mater. 2014, 13, 81 86 DOI: 10.1038/nmat3811
    111. 111
      Lichterman, M. F.; Hu, S.; Richter, M. H.; Crumlin, E. J.; Axnanda, S.; Favaro, M.; Drisdell, W.; Hussain, Z.; Mayer, T.; Brunschwig, B. S.; Lewis, N. S.; Liu, Z.; Lewerenz, H. J. Energy Environ. Sci. 2015, 8, 2409 2416 DOI: 10.1039/C5EE01014D
    112. 112
      Laskowski, F. A. L.; Nellist, M. R.; Venkatkarthick, R.; Boettcher, S. W. Energy Environ. Sci. 2017, 10, 570 579 DOI: 10.1039/C6EE03505A
    113. 113
      Hu, S.; Shaner, M. R.; Beardslee, J. A.; Lichterman, M.; Brunschwig, B. S.; Lewis, N. S. Science 2014, 344, 1005 1009 DOI: 10.1126/science.1251428
    114. 114
      Verlage, E.; Hu, S.; Liu, R.; Jones, R. J. R.; Sun, K.; Xiang, C.; Lewis, N. S.; Atwater, H. A. Energy Environ. Sci. 2015, 8, 3166 3172 DOI: 10.1039/C5EE01786F
    115. 115
      Zhou, X.; Liu, R.; Sun, K.; Chen, Y.; Verlage, E.; Francis, S. A.; Lewis, N. S.; Xiang, C. ACS Energy Lett. 2016, 1, 764 770 DOI: 10.1021/acsenergylett.6b00317
    116. 116
      Ding, C.; Shi, J.; Wang, Z.; Li, C. ACS Catal. 2017, 7, 675 688 DOI: 10.1021/acscatal.6b03107
    117. 117
      Hill, J. C.; Landers, A. T.; Switzer, J. A. Nat. Mater. 2015, 14, 1150 1156 DOI: 10.1038/nmat4408
    118. 118
      Digdaya, I. A.; Adhyaksa, G.; Trzesniewski, B. J.; Garnett, E.; Smith, W. A. Nat. Commun. 2017, 8, 15968 DOI: 10.1038/ncomms15968
    119. 119
      Kamat, P. V. Pure Appl. Chem. 2002, 74, 1693 1706 DOI: 10.1351/pac200274091693
    120. 120
      Jakob, M.; Levanon, H.; Kamat, P. V. Nano Lett. 2003, 3, 353 358 DOI: 10.1021/nl0340071
    121. 121
      Subramanian, V.; Wolf, E. E.; Kamat, P. V. J. Am. Chem. Soc. 2004, 126, 4943 4950 DOI: 10.1021/ja0315199
    122. 122
      Yoshida, M.; Yamakata, A.; Takanabe, K.; Kubota, J.; Osawa, M.; Domen, K. J. Am. Chem. Soc. 2009, 131, 13218 13219 DOI: 10.1021/ja904991p
    123. 123
      Lu, X.; Bandara, A.; Katayama, M.; Yamakata, A.; Kubota, J.; Domen, K. J. Phys. Chem. C 2011, 115, 23902 23907 DOI: 10.1021/jp207484q
    124. 124
      Stamenkovic, V. R.; Strmcnik, D.; Lopes, P. P.; Markovic, N. M. Nat. Mater. 2017, 16, 57 69 DOI: 10.1038/nmat4738
    125. 125
      Suntivich, J.; Perry, E. E.; Gasteiger, H. A.; Shao-Horn, Y. Electrocatalysis 2013, 4, 49 55 DOI: 10.1007/s12678-012-0118-x
    126. 126
      Fuel Cell Catalysis, A Surface Science Approach; Koper, M. T. M., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, 2009, : pp 1 158.
    127. 127
      Shinagawa, T.; Garcia-Esparza, A. T.; Takanabe, K. Sci. Rep. 2015, 5, 13801 DOI: 10.1038/srep13801
    128. 128
      Trasatti, S. J. Electroanal. Chem. Interfacial Electrochem. 1972, 39, 163 184 DOI: 10.1016/S0022-0728(72)80485-6
    129. 129
      Greeley, J.; Jaramillo, T. F.; Bonde, J.; Chorkendorff, I.; Nørskov, J. K. Nat. Mater. 2006, 5, 909 913 DOI: 10.1038/nmat1752
    130. 130
      Matsumoto, Y.; Sato, E. Mater. Chem. Phys. 1986, 14, 397 426 DOI: 10.1016/0254-0584(86)90045-3
    131. 131
      Man, I. C.; Su, H.-Y.; Calle-Vallejo, F.; Hansen, H. A.; Martinez, J. I.; Inoglu, N. G.; Kitchin, J.; Jaramillo, T. F.; Nørskov, J. K.; Rossmeisl, J. ChemCatChem 2011, 3, 1159 1165 DOI: 10.1002/cctc.201000397
    132. 132
      Grimaud, A.; May, K. J.; Carlton, C. E.; Lee, Y. L.; Risch, M.; Hong, W. T.; Zhou, J.; Shao-Horn, Y. Nat. Commun. 2013, 4, 3439 DOI: 10.1038/ncomms3439
    133. 133
      Popczun, E. J.; McKone, J. R.; Read, C. G.; Biacchi, A. J.; Wiltrout, A. M.; Lewis, N. S.; Schaak, R. E. J. Am. Chem. Soc. 2013, 135, 9267 9270 DOI: 10.1021/ja403440e
    134. 134
      Jiang, P.; Liu, Q.; Liang, Y.; Tian, J.; Asiri, A. M.; Sun, X. Angew. Chem., Int. Ed. 2014, 53, 12855 12859 DOI: 10.1002/anie.201406848
    135. 135
      Popczun, E. J.; Read, C. G.; Roske, C. W.; Lewis, N. S.; Schaak, R. E. Angew. Chem., Int. Ed. 2014, 53, 5427 5430 DOI: 10.1002/anie.201402646
    136. 136
      Smith, R. D. L.; Prévot, M. S.; Fagan, R. D.; Zhang, Z.; Sedach, P. A.; Siu, J. M. K.; Trudel, S.; Berlinguette, C. P. Science 2013, 340, 60 63 DOI: 10.1126/science.1233638
    137. 137
      Gong, M.; Li, Y.; Wang, H.; Liang, Y.; Wu, J. Z.; Zhou, J.; Wang, J.; Regier, T.; Wei, F.; Dai, H. J. Am. Chem. Soc. 2013, 135, 8452 8455 DOI: 10.1021/ja4027715
    138. 138
      Gong, M.; Zhou, W.; Tsai, M. C.; Zhou, J.; Guan, M.; Lin, M. C.; Zhang, B.; Hu, Y.; Wang, D. Y.; Yang, J.; Pennycook, S. J.; Hwang, B. J.; Dai, H. Nat. Commun. 2014, 5, 5695 DOI: 10.1038/ncomms5695
    139. 139
      Suntivich, J.; May, K. J.; Gasteiger, H. A.; Goodenough, J. B.; Shao-Horn, Y. Science 2011, 334, 1383 1385 DOI: 10.1126/science.1212858
    140. 140
      Wei, C.; Feng, Z.; Scherer, G. G.; Barber, J.; Shao-Horn, Y.; Xu, Z. J. Adv. Mater. 2017, 29, 1606800 DOI: 10.1002/adma.201606800
    141. 141
      Kanan, M. W.; Nocera, D. G. Science 2008, 321, 1072 1075 DOI: 10.1126/science.1162018
    142. 142
      Lutterman, D. A.; Surendranath, Y.; Nocera, D. G. J. Am. Chem. Soc. 2009, 131, 3838 3839 DOI: 10.1021/ja900023k
    143. 143
      Dinca, M.; Surendranath, Y.; Nocera, D. G. Proc. Natl. Acad. Sci. U. S. A. 2010, 107, 10337 10341 DOI: 10.1073/pnas.1001859107
    144. 144
      Kuang, Y.; Jia, Q.; Ma, G.; Hisatomi, T.; Minegishi, T.; Nishiyama, H.; Nakabayashi, M.; Shibata, N.; Yamada, T.; Kudo, A.; Domen, K. Nat. Energy 2016, 2, 16191 DOI: 10.1038/nenergy.2016.191
    145. 145
      Shinagawa, T.; Ng, M. T.-K.; Takanabe, K. Angew. Chem., Int. Ed. 2017, 56, 5061 5065 DOI: 10.1002/anie.201701642
    146. 146
      Shinagawa, T.; Takanabe, K. J. Phys. Chem. C 2016, 120, 24187 24196 DOI: 10.1021/acs.jpcc.6b07954
    147. 147
      Electrochemistry, 2nd ed.; Hamann, C. H.; Hamnett, A.; Vielstich, W., Eds.; Wiley-VCH: Weinheim, 2007; pp 397 438.
    148. 148
      Kato, H.; Asakura, K.; Kudo, A. J. Am. Chem. Soc. 2003, 125, 3082 3089 DOI: 10.1021/ja027751g
    149. 149
      Sakata, Y.; Matsuda, Y.; Nakagawa, T.; Yasunaga, R.; Imamura, H.; Teramura, K. ChemSusChem 2011, 4, 181 184 DOI: 10.1002/cssc.201000258
    150. 150
      Shinagawa, T.; Garcia-Esparza, A. T.; Takanabe, K. ChemElectroChem 2014, 1, 1497 1507 DOI: 10.1002/celc.201402085
    151. 151
      Subbaraman, R.; Tripkovic, D.; Chang, K. C.; Strmcnik, D.; Paulikas, A. P.; Hirunsit, P.; Chan, M.; Greeley, J.; Stamenkovic, V.; Markovic, N. M. Nat. Mater. 2012, 11, 550 557 DOI: 10.1038/nmat3313
    152. 152
      Yang, J.; Cooper, J. K.; Toma, F. M.; Walczak, K. A.; Favaro, M.; Beeman, J. W.; Hess, L. H.; Wang, C.; Zhu, C.; Gul, S.; Yano, J.; Kisielowski, C.; Schwartzberg, A.; Sharp, I. D. Nat. Mater. 2017, 16, 335 341 DOI: 10.1038/nmat4794
    153. 153
      Seitz, L. C.; Chen, Z.; Forman, A. J.; Pinaud, B. A.; Benck, J. D.; Jaramillo, T. F. ChemSusChem 2014, 7, 1372 1385 DOI: 10.1002/cssc.201301030
    154. 154
      Maeda, K.; Teramura, K.; Lu, D.; Saito, N.; Inoue, Y.; Domen, K. Angew. Chem., Int. Ed. 2006, 45, 7806 7809 DOI: 10.1002/anie.200602473
    155. 155
      Maeda, K.; Domen, K. Top. Curr. Chem. 2011, 303, 95 119 DOI: 10.1007/128_2011_138
    156. 156
      Yoshida, M.; Takanabe, K.; Maeda, K.; Ishikawa, A.; Kubota, J.; Sakata, Y.; Ikezawa, Y.; Domen, K. J. Phys. Chem. C 2009, 113, 10151 10157 DOI: 10.1021/jp901418u
    157. 157
      Qureshi, M.; Shinagawa, T.; Tsiapis, N.; Takanabe, K. ACS Sustainable Chem. Eng. 2017, 5, 8079 8088 DOI: 10.1021/acssuschemeng.7b01704
    158. 158
      Garcia-Esparza, A. T.; Shinagawa, T.; Ould-Chikh, S.; Qureshi, M.; Peng, X.; Wei, N.; Anjum, D. H.; Clo, A.; Weng, T.-C.; Nordlund, D.; Sokaras, D.; Kubota, J.; Domen, K.; Takanabe, K. Angew. Chem., Int. Ed. 2017, 56, 5780 5784 DOI: 10.1002/anie.201701861
    159. 159
      Pan, C.; Takata, T.; Nakabayashi, M.; Matsumoto, T.; Shibata, N.; Ikuhara, Y.; Domen, K. Angew. Chem., Int. Ed. 2015, 54, 2955 2959 DOI: 10.1002/anie.201410961
    160. 160
      Yoshida, M.; Maeda, K.; Lu, D.; Kubota, J.; Domen, K. J. Phys. Chem. C 2013, 117, 14000 14006 DOI: 10.1021/jp402240d
    161. 161
      Hisatomi, T.; Maeda, K.; Takanabe, K.; Kubota, J.; Domen, K. J. Phys. Chem. C 2009, 113, 21458 21466 DOI: 10.1021/jp9079662
    162. 162
      Maeda, K.; Xiong, A.; Yoshinaga, T.; Ikeda, T.; Sakamoto, N.; Hisatomi, T.; Takashima, M.; Lu, D.; Kanehara, M.; Setoyama, T.; Teranishi, T.; Domen, K. Angew. Chem., Int. Ed. 2010, 49, 4096 4099 DOI: 10.1002/anie.201001259
    163. 163
      Townsend, T. K.; Browning, N. D.; Osterloh, F. E. Energy Environ. Sci. 2012, 5, 9543 9550 DOI: 10.1039/c2ee22665k
    164. 164
      Takanabe, K. In Nanotechnology in Catalysis: Applications in the Chemical Industry, Energy Development, and Environment Protection; Sels, B.; Voorde, M. V., Eds.; Wiley-VCH: Weinheim, 2017; pp 891 906.
    165. 165
      Rajeshwar, K. J. Phys. Chem. Lett. 2011, 2, 1301 1309 DOI: 10.1021/jz200396h
    166. 166
      Atkins, P.; Paula, J. D. Atkins’ Physical Chemistry, 10th ed.; W. H. Freeman and Company: New York, 2014.
    167. 167
      Shinagawa, T.; Takanabe, K. J. Power Sources 2015, 287, 465 471 DOI: 10.1016/j.jpowsour.2015.04.091
    168. 168
      Haynes, W. M.; Lide, D. R. Handbook of Chemistry and Physics, 92nd ed.; CRC Press: Boca Raton, FL, 2011.
    169. 169
      Jin, J.; Walczak, K.; Singh, M. R.; Karp, C.; Lewis, N. S.; Xiang, C. Energy Environ. Sci. 2014, 7, 3371 3380 DOI: 10.1039/C4EE01824A
    170. 170
      Chabi, S.; Papadantonakis, K. M.; Lewis, N. S.; Freund, M. S. Energy Environ. Sci. 2017, 10, 1320 1338 DOI: 10.1039/C7EE00294G
    171. 171
      Kutz, R. B.; Chen, Q.; Yang, H.; Sajjad, S. D.; Liu, Z.; Masel, I. R. Energy Technol. 2017, 5, 929 936 DOI: 10.1002/ente.201600636
    172. 172
      Klingan, K.; Ringleb, F.; Zaharieva, I.; Heidkamp, J.; Chernev, P.; Gonzalez-Flores, D.; Risch, M.; Fischer, A.; Dau, H. ChemSusChem 2014, 7, 1301 1310 DOI: 10.1002/cssc.201301019
    173. 173
      Shinagawa, T.; Takanabe, K. ChemSusChem 2017, 10, 1318 1336 DOI: 10.1002/cssc.201601583
    174. 174
      Shinagawa, T.; Ng, M. T.-K.; Takanabe, K. ChemSusChem, DOI:  DOI: 10.1002/cssc.201701266 .
    175. 175
      Dionigi, F.; Vesborg, P. C. K.; Pedersen, T.; Hansen, O.; Dahl, S.; Xiong, A.; Maeda, K.; Domen, K.; Chorkendorff, I. Energy Environ. Sci. 2011, 4, 2937 2942 DOI: 10.1039/c1ee01242h
    176. 176
      Esposito, D. V.; Lee, Y.; Yoon, H.; Haney, P. M.; Labrador, N. y.; Moffat, T. P.; Talin, A. A.; Szalai, V. A. Sustainable Energy Fuels 2017, 1, 154 173 DOI: 10.1039/C6SE00073H
    177. 177
      Chen, Z.; Jaramillo, T. F.; Deutsch, T. G.; Kleiman-Shwarsctein, A.; Forman, A. J.; Gaillard, N.; Garland, R.; Takanabe, K.; Heske, C.; Sunkara, M.; McFarland, E. W.; Domen, K.; Miller, E. L.; Turner, J. A.; Dinh, H. N. J. Mater. Res. 2010, 25, 3 16 DOI: 10.1557/JMR.2010.0020
    178. 178
      van de Krol, R.; Grätzel, M. Photoelectrochemical Hydrogen Production; Springer: Berlin, 2012.
    179. 179
      Nurlaela, E.; Ziani, A.; Takanabe, K. Mater. Renew. Sustainable Energy 2016, 5, 18 DOI: 10.1007/s40243-016-0083-z
    180. 180
      Nurlaela, E.; Ould-Chikh, S.; Harb, M.; del Gobbo, S.; Aouine, M.; Puzenat, E.; Sautet, P.; Domen, K.; Basset, J.-M.; Takanabe, K. Chem. Mater. 2014, 26, 4812 4825 DOI: 10.1021/cm502015q
    181. 181
      Ziani, A.; Nurlaela, E.; Dhawale, D. S.; Silva, D.; Alarousu, E.; Mohammed, O. F.; Takanabe, K. Phys. Chem. Chem. Phys. 2015, 17, 2670 2677 DOI: 10.1039/C4CP05616G
    182. 182
      Nurlaela, E.; Wang, H.; Shinagawa, T.; Flanagan, S.; Ould-Chikh, S.; Qureshi, M.; Mics, Z.; Sautet, P.; Le Bahers, T.; Cánovas, E.; Bonn, M.; Takanabe, K. ACS Catal. 2016, 6, 4117 4126 DOI: 10.1021/acscatal.6b00508
    183. 183
      de Respinis, M.; Fravventura, M.; Abdi, F. F.; Schreuders, H.; Savenije, T. J.; Smith, W. A.; Dam, B.; van de Krol, R. Chem. Mater. 2015, 27, 7091 7099 DOI: 10.1021/acs.chemmater.5b02938
    184. 184
      Vequizo, J. J. M.; Hojamberdiev, M.; Teshima, K.; Yamakata, A. J. Photochem. Photobiol., A 2017,  DOI: 10.1016/j.jphotochem.2017.09.005
    185. 185
      Xing, Z.; Zong, X.; Pan, J.; Wang, L. Chem. Eng. Sci. 2013, 104, 125 146 DOI: 10.1016/j.ces.2013.08.039
    186. 186
      Setoyama, T.; Takewaki, T.; Domen, K.; Tatsumi, T. Faraday Discuss. 2017, 198, 509 527 DOI: 10.1039/C6FD00196C
    187. 187
      Singh, M. R.; Xiang, C.; Lewis, N. S. Sustain. Energy Fuels 2017, 1, 458 466 DOI: 10.1039/C7SE00062F
    188. 188
      Pinaud, B. A.; Benck, J. D.; Seitz, L. C.; Forman, A. J.; Chen, Z.; Deutsch, T. G.; James, B. D.; Baum, K. N.; Baum, G. N.; Ardo, S.; Wang, H.; Miller, E.; Jaramillo, T. F. Energy Environ. Sci. 2013, 6, 1983 2002 DOI: 10.1039/c3ee40831k
    189. 189
      Hisatomi, T.; Miyazaki, K.; Takanabe, K.; Maeda, K.; Kubota, J.; Sakata, Y.; Domen, K. Chem. Phys. Lett. 2010, 486, 144 146 DOI: 10.1016/j.cplett.2010.01.006
    190. 190
      Hisatomi, T.; Maeda, K.; Takanabe, K.; Kubota, J.; Domen, K. J. Phys. Chem. C 2009, 113, 21458 21466 DOI: 10.1021/jp9079662

    Cited By

    This article is cited by 545 publications.

    1. Tengfei Jiang, Jingying Wei, Jianyang Li, Huaiguo Xue, Jingqi Tian, Romain Gautier. Rapid Identification of Efficient Photocatalysts by Visualizing the Spatial Distribution of Photoinduced Charge Carriers. ACS Catalysis 2023, 13 (7) , 4168-4177. https://doi.org/10.1021/acscatal.3c00149
    2. Masato Takeuchi, Tadateru Kikuchi, Atsushi Kondo, Ryo Kurosawa, Junichi Ryu, Masaya Matsuoka. Near-Infrared Spectroscopic Analysis─Formation of Ca(OH)2 and Ca(OD)2 by Hydration of CaO with H2O and D2O. The Journal of Physical Chemistry C 2023, 127 (13) , 6406-6413. https://doi.org/10.1021/acs.jpcc.3c00285
    3. Emmanuel N. Musa, Sumandeep Kaur, Trenton C. Gallagher, Thao Mi Anthony, William F. Stickle, Líney Árnadóttir, Kyriakos C. Stylianou. Two Birds, One Stone: Coupling Hydrogen Production with Herbicide Degradation over Metal–Organic Framework-Derived Titanium Dioxide. ACS Catalysis 2023, 13 (6) , 3710-3722. https://doi.org/10.1021/acscatal.3c00265
    4. Yosuke Kageshima, So Kato, Sota Shiga, Fumiaki Takagi, Hikari Minamisawa, Masaomi Horita, Tomohiko Yamakami, Katsuya Teshima, Kazunari Domen, Hiromasa Nishikiori. Impact of Ball Milling on the Hydrogen Evolution Performance of Cu2Sn0.38Ge0.62S3 Photocatalytic Particles Synthesized via a Flux Method. ACS Applied Materials & Interfaces 2023, 15 (10) , 13108-13120. https://doi.org/10.1021/acsami.2c23103
    5. Shimpei Naniwa, Kosaku Kato, Akira Yamamoto, Hisao Yoshida, Akira Yamakata. Particle Size Dependent Trap States of Photoexcited Carriers in Anatase TiO2 Nanoparticles. The Journal of Physical Chemistry C 2023, 127 (8) , 4295-4302. https://doi.org/10.1021/acs.jpcc.2c08125
    6. Celal Avcıoǧlu, Suna Avcıoǧlu, Maged F. Bekheet, Aleksander Gurlo. Photocatalytic Overall Water Splitting by SrTiO3: Progress Report and Design Strategies. ACS Applied Energy Materials 2023, 6 (3) , 1134-1154. https://doi.org/10.1021/acsaem.2c03280
    7. Van-Huy Trinh, Jeongsuk Seo. Porous Cuboidal SrNbO2N Crystals Grown on a Nb Substrate as an Active Photoanode for Neutral Seawater Splitting under Sunlight. ACS Sustainable Chemistry & Engineering 2023, 11 (5) , 1655-1665. https://doi.org/10.1021/acssuschemeng.2c05261
    8. Rohit Mann, Deepa Khushalani. Role of Seawater Ions in Forming an Effective Interface between Photocatalyst/Cocatalyst. ACS Applied Materials & Interfaces 2023, 15 (1) , 1219-1226. https://doi.org/10.1021/acsami.2c17919
    9. Riza Ariyani Nur Khasanah, Chi-Hung Lee, Yi Chen Li, Chang-Heng Chen, Tsong-Shin Lim, Chang-Ren Wang, Po-Ya Chang, Hwo-Shuenn Sheu, Forest Shih-Sen Chien. Enhancement of Photocatalytic Activity of Electrodeposited Cu2O by Reducing Oxygen Vacancy Density. ACS Applied Energy Materials 2022, 5 (12) , 15326-15332. https://doi.org/10.1021/acsaem.2c02963
    10. Bramhaiah Kommula, Pandiselvi Durairaj, Samita Mishra, Subhajit Kar, Adhra Sury, Amit Kumar, Arijit K. De, Sunandan Sarkar, Santanu Bhattacharyya. Self-Assembled Oligothiophenes for Photocatalytic Hydrogen Production and Simultaneous Organic Transformation. ACS Applied Nano Materials 2022, 5 (10) , 14746-14758. https://doi.org/10.1021/acsanm.2c03061
    11. Mian Zahid Hussain, Zhuxian Yang, Bart van der Linden, Werner R. Heinz, Mounib Bahri, Ovidiu Ersen, Quanli Jia, Roland A. Fischer, Yanqiu Zhu, Yongde Xia. MOF-Derived Multi-heterostructured Composites for Enhanced Photocatalytic Hydrogen Evolution: Deciphering the Roles of Different Components. Energy & Fuels 2022, 36 (19) , 12212-12225. https://doi.org/10.1021/acs.energyfuels.2c02319
    12. Zachary J. Baum, Leilani Lotti Diaz, Tatyana Konovalova, Qiongqiong Angela Zhou. Materials Research Directions Toward a Green Hydrogen Economy: A Review. ACS Omega 2022, 7 (37) , 32908-32935. https://doi.org/10.1021/acsomega.2c03996
    13. Takuya Suguro, Fuminao Kishimoto, Kazuhiro Takanabe. Photocatalytic Hydrogen Production under Water Vapor Feeding─A Minireview. Energy & Fuels 2022, 36 (16) , 8978-8994. https://doi.org/10.1021/acs.energyfuels.2c01478
    14. Aloka Kumar Sahu, Meenakshi Pokhriyal, Sreedevi Upadhyayula, Xiu Song Zhao. Modulating Charge Carrier Dynamics among Anisotropic Crystal Facets of Cu2O for Enhanced CO2 Photoreduction. The Journal of Physical Chemistry C 2022, 126 (31) , 13094-13104. https://doi.org/10.1021/acs.jpcc.2c02306
    15. Yiqiang He, Cailing Chen, Yuxin Liu, Yilin Yang, Chunguang Li, Zhan Shi, Yu Han, Shouhua Feng. Quantitative Evaluation of Carrier Dynamics in Full-Spectrum Responsive Metallic ZnIn2S4 with Indium Vacancies for Boosting Photocatalytic CO2 Reduction. Nano Letters 2022, 22 (12) , 4970-4978. https://doi.org/10.1021/acs.nanolett.2c01666
    16. Hyunho Park, Soo Young Park. Enhancing the Alkaline Hydrogen Evolution Reaction of Graphene Quantum Dots by Ethylenediamine Functionalization. ACS Applied Materials & Interfaces 2022, 14 (23) , 26733-26741. https://doi.org/10.1021/acsami.2c04703
    17. Sebastian Pios, Wolfgang Domcke. Ab Initio Electronic Structure Study of the Photoinduced Reduction of Carbon Dioxide with the Heptazinyl Radical. The Journal of Physical Chemistry A 2022, 126 (18) , 2778-2787. https://doi.org/10.1021/acs.jpca.2c00615
    18. Haiyun Wang, Hao Cheng, Haifeng Lv, Hangxun Xu, Xiaojun Wu, Jinlong Yang. Molecular Design of Two-Dimensional Covalent Heptazine Frameworks for Photocatalytic Overall Water Splitting under Visible Light. The Journal of Physical Chemistry Letters 2022, 13 (17) , 3949-3956. https://doi.org/10.1021/acs.jpclett.2c00819
    19. Bing Han, Yunchao Lou, Zhe Liu, Chutong Zhou, Zhiyu Wang, Guodong Qian. O,N-Codoped CeF3 Upconversion Nanoparticles for Efficient Photocatalytic Oxygen Evolution under Visible Light. ACS Applied Nano Materials 2022, 5 (4) , 5096-5102. https://doi.org/10.1021/acsanm.2c00140
    20. Wolfgang Domcke, Andrzej L. Sobolewski. Water Oxidation and Hydrogen Evolution with Organic Photooxidants: A Theoretical Perspective. The Journal of Physical Chemistry B 2022, 126 (15) , 2777-2788. https://doi.org/10.1021/acs.jpcb.2c00705
    21. Maria Bouri, Nicolas Niederhauser, Benjamin Künzli, Maximilian Amsler, Ulrich Aschauer. Oxygen Evolution Reaction Activity of Sr2Ta2O7 and Sr2Nb2O7 Surfaces. The Journal of Physical Chemistry C 2022, 126 (15) , 6556-6563. https://doi.org/10.1021/acs.jpcc.2c00649
    22. Xuesong Lu, Jeannie Z. Y. Tan, M. Mercedes Maroto-Valer. Investigation of CO2 Photoreduction in an Annular Fluidized Bed Photoreactor by MP-PIC Simulation. Industrial & Engineering Chemistry Research 2022, 61 (8) , 3123-3136. https://doi.org/10.1021/acs.iecr.1c04035
    23. Hong-Jia Wang, Jia-Sheng Lin, Hua Zhang, Yue-Jiao Zhang, Jian-Feng Li. Plasmonic Core–Shell Materials: Synthesis, Spectroscopic Characterization, and Photocatalytic Applications. Accounts of Materials Research 2022, 3 (2) , 187-198. https://doi.org/10.1021/accountsmr.1c00217
    24. Rito Yanagi, Tianshuo Zhao, Devan Solanki, Zhenhua Pan, Shu Hu. Charge Separation in Photocatalysts: Mechanisms, Physical Parameters, and Design Principles. ACS Energy Letters 2022, 7 (1) , 432-452. https://doi.org/10.1021/acsenergylett.1c02516
    25. Hajime Suzuki, Masanobu Higashi, Osamu Tomita, Yusuke Ishii, Takafumi Yamamoto, Daichi Kato, Tetsu Kotani, Daichi Ozaki, Shunsuke Nozawa, Kouichi Nakashima, Koji Fujita, Akinori Saeki, Hiroshi Kageyama, Ryu Abe. PbBi3O4X3 (X = Cl, Br) with Single/Double Halogen Layers as a Photocatalyst for Visible-Light-Driven Water Splitting: Impact of a Halogen Layer on the Band Structure and Stability. Chemistry of Materials 2021, 33 (24) , 9580-9587. https://doi.org/10.1021/acs.chemmater.1c02876
    26. Xiao Li, Shanlin Pan. Transparent Ultramicroelectrodes for Studying Interfacial Charge-Transfer Kinetics of Photoelectrochemical Water Oxidation at TiO2 Nanorods with Scanning Electrochemical Microscopy. Analytical Chemistry 2021, 93 (48) , 15886-15896. https://doi.org/10.1021/acs.analchem.1c02598
    27. Areen Sherryna, Muhammad Tahir. Role of Ti3C2 MXene as Prominent Schottky Barriers in Driving Hydrogen Production through Photoinduced Water Splitting: A Comprehensive Review. ACS Applied Energy Materials 2021, 4 (11) , 11982-12006. https://doi.org/10.1021/acsaem.1c02241
    28. Yang Liu, Chensi Tang, Min Cheng, Ming Chen, Sha Chen, Lei Lei, Yashi Chen, Huan Yi, Yukui Fu, Ling Li. [email protected]–Organic Framework Composites as Effective Photocatalysts. ACS Catalysis 2021, 11 (21) , 13374-13396. https://doi.org/10.1021/acscatal.1c03866
    29. Hiromasa Nishikiori, Yosuke Kageshima, Nasrin Hooshmand, Mostafa A. El-Sayed, Katsuya Teshima. Observation of Excited State Proton Transfer between the Titania Surface and Dye Molecule by Time-Resolved Fluorescence Spectroscopy. The Journal of Physical Chemistry C 2021, 125 (40) , 21958-21963. https://doi.org/10.1021/acs.jpcc.1c05843
    30. Mirabbos Hojamberdiev, J. Manuel Mora-Hernandez, Ronald Vargas, Akira Yamakata, Kunio Yubuta, Eva Maria Heppke, Leticia M. Torres-Martínez, Katsuya Teshima, Martin Lerch. Time-Retrenched Synthesis of BaTaO2N by Localizing an NH3 Delivery System for Visible-Light-Driven Photoelectrochemical Water Oxidation at Neutral pH: Solid-State Reaction or Flux Method?. ACS Applied Energy Materials 2021, 4 (9) , 9315-9327. https://doi.org/10.1021/acsaem.1c01539
    31. Kai Han, Diane M. Haiber, Julius Knöppel, Caroline Lievens, Serhiy Cherevko, Peter Crozier, Guido Mul, Bastian Mei. CrOx-Mediated Performance Enhancement of Ni/NiO-Mg:SrTiO3 in Photocatalytic Water Splitting. ACS Catalysis 2021, 11 (17) , 11049-11058. https://doi.org/10.1021/acscatal.1c03104
    32. Yosuke Kageshima, Yui Gomyo, Hikaru Matsuoka, Hiroto Inuzuka, Hajime Suzuki, Ryu Abe, Katsuya Teshima, Kazunari Domen, Hiromasa Nishikiori. Z-Scheme Overall Water Splitting Using ZnxCd1–xSe Particles Coated with Metal Cyanoferrates as Hydrogen Evolution Photocatalysts. ACS Catalysis 2021, 11 (13) , 8004-8014. https://doi.org/10.1021/acscatal.1c01187
    33. Leo Diehl, Douglas H. Fabini, Nella M. Vargas-Barbosa, Alberto Jiménez-Solano, Theresa Block, Viola Duppel, Igor Moudrakovski, Kathrin Küster, Rainer Pöttgen, Bettina V. Lotsch. Interplay between Valence Band Tuning and Redox Stability in SnTiO3: Implications for Directed Design of Photocatalysts. Chemistry of Materials 2021, 33 (8) , 2824-2836. https://doi.org/10.1021/acs.chemmater.0c04886
    34. Yosuke Kageshima, Sota Shiga, Tatsuki Ode, Fumiaki Takagi, Hiromasa Shiiba, Myo Than Htay, Yoshio Hashimoto, Katsuya Teshima, Kazunari Domen, Hiromasa Nishikiori. Photocatalytic and Photoelectrochemical Hydrogen Evolution from Water over Cu2SnxGe1–xS3 Particles. Journal of the American Chemical Society 2021, 143 (15) , 5698-5708. https://doi.org/10.1021/jacs.0c12140
    35. Yudai Kawase, Tomohiro Higashi, Masao Katayama, Kazunari Domen, Kazuhiro Takanabe. Maximizing Oxygen Evolution Performance on a Transparent NiFeOx/Ta3N5 Photoelectrode Fabricated on an Insulator. ACS Applied Materials & Interfaces 2021, 13 (14) , 16317-16325. https://doi.org/10.1021/acsami.1c00826
    36. Akinobu Miyoshi, Akihide Kuwabara, Kazuhiko Maeda. Effects of Nitrogen/Fluorine Codoping on Photocatalytic Rutile TiO2 Crystal Studied by First-Principles Calculations. Inorganic Chemistry 2021, 60 (4) , 2381-2389. https://doi.org/10.1021/acs.inorgchem.0c03262
    37. Yanuo Shi, Luyao Wang, Ziyu Wang, Giovanni Vinai, Luca Braglia, Piero Torelli, Carmela Aruta, Enrico Traversa, Weimin Liu, Nan Yang. Defect Engineering for Tuning the Photoresponse of Ceria-Based Solid Oxide Photoelectrochemical Cells. ACS Applied Materials & Interfaces 2021, 13 (1) , 541-551. https://doi.org/10.1021/acsami.0c17921
    38. Alberto Piccioni, Daniele Catone, Alessandra Paladini, Patrick O’Keeffe, Alex Boschi, Alessandro Kovtun, Maria Katsikini, Federico Boscherini, Luca Pasquini. Ultrafast Charge Carrier Dynamics in Vanadium-Modified TiO2 Thin Films and Its Relation to Their Photoelectrocatalytic Efficiency for Water Splitting. The Journal of Physical Chemistry C 2020, 124 (49) , 26572-26582. https://doi.org/10.1021/acs.jpcc.0c06790
    39. Run-Dong Zhao, Yi-Man Zhang, Qing-Lu Liu, Zong-Yan Zhao. Effects of the Preparation Process on the Photocatalytic Performance of Delafossite CuCrO2. Inorganic Chemistry 2020, 59 (22) , 16679-16689. https://doi.org/10.1021/acs.inorgchem.0c02678
    40. L. Piccolo, P. Afanasiev, F. Morfin, T. Len, C. Dessal, J. L. Rousset, M. Aouine, F. Bourgain, A. Aguilar-Tapia, O. Proux, Y. Chen, L. Soler, J. Llorca. Operando X-ray Absorption Spectroscopy Investigation of Photocatalytic Hydrogen Evolution over Ultradispersed Pt/TiO2 Catalysts. ACS Catalysis 2020, 10 (21) , 12696-12705. https://doi.org/10.1021/acscatal.0c03464
    41. Danila Vasilchenko, Polina Topchiyan, Alphiya Tsygankova, Tatyana Asanova, Boris Kolesov, Andrey Bukhtiyarov, Anna Kurenkova, Ekaterina Kozlova. Photoinduced Deposition of Platinum from (Bu4N)2[Pt(NO3)6] for a Low Pt-Loading Pt/TiO2 Hydrogen Photogeneration Catalyst. ACS Applied Materials & Interfaces 2020, 12 (43) , 48631-48641. https://doi.org/10.1021/acsami.0c14361
    42. Ananth Govind Rajan, John Mark P. Martirez, Emily A. Carter. Why Do We Use the Materials and Operating Conditions We Use for Heterogeneous (Photo)Electrochemical Water Splitting?. ACS Catalysis 2020, 10 (19) , 11177-11234. https://doi.org/10.1021/acscatal.0c01862
    43. Kang Rui Garrick Lim, Albertus D. Handoko, Srinivasa Kartik Nemani, Brian Wyatt, Hai-Ying Jiang, Junwang Tang, Babak Anasori, Zhi Wei Seh. Rational Design of Two-Dimensional Transition Metal Carbide/Nitride (MXene) Hybrids and Nanocomposites for Catalytic Energy Storage and Conversion. ACS Nano 2020, 14 (9) , 10834-10864. https://doi.org/10.1021/acsnano.0c05482
    44. Divya Priyadarshani, Pradipkumar Leuaa, Rajan Maurya, Anil Kottantharayil, Manoj Neergat. Semiconductor-to-Metal-like Behavior of Si with Dopant Concentration—An Electrochemical Investigation and Illustration with Surface Hydride Formation and Hydrogen Evolution Reaction. The Journal of Physical Chemistry C 2020, 124 (37) , 19990-19999. https://doi.org/10.1021/acs.jpcc.0c05616
    45. Ashish Kumar, Ajay Kumar, Venkata Krishnan. Perovskite Oxide Based Materials for Energy and Environment-Oriented Photocatalysis. ACS Catalysis 2020, 10 (17) , 10253-10315. https://doi.org/10.1021/acscatal.0c02947
    46. Ton Nu Quynh Trang, Nguyen Dang Nam, Le Thi Ngoc Tu, Hau Pham Quoc, Tran Van Man, Van Thi Thanh Ho, Vu Thi Hanh Thu. In Situ Spatial Charge Separation of an [email protected] Multiphase Photosystem toward Highly Efficient Photocatalytic Performance of Hydrogen Production. The Journal of Physical Chemistry C 2020, 124 (31) , 16961-16974. https://doi.org/10.1021/acs.jpcc.0c03590
    47. Riddhiman Medhi, Maria D. Marquez, T. Randall Lee. Visible-Light-Active Doped Metal Oxide Nanoparticles: Review of their Synthesis, Properties, and Applications. ACS Applied Nano Materials 2020, 3 (7) , 6156-6185. https://doi.org/10.1021/acsanm.0c01035
    48. Amgad R. Rezk, Heba Ahmed, Tarra L. Brain, Jasmine O. Castro, Ming K. Tan, Julien Langley, Nicholas Cox, Joydip Mondal, Wu Li, Muthupandian Ashokkumar, Leslie Y. Yeo. Free Radical Generation from High-Frequency Electromechanical Dissociation of Pure Water. The Journal of Physical Chemistry Letters 2020, 11 (12) , 4655-4661. https://doi.org/10.1021/acs.jpclett.0c01227
    49. Yunhong Pi, Xuanyu Feng, Yang Song, Ziwan Xu, Zhong Li, Wenbin Lin. Metal–Organic Frameworks Integrate Cu Photosensitizers and Secondary Building Unit-Supported Fe Catalysts for Photocatalytic Hydrogen Evolution. Journal of the American Chemical Society 2020, 142 (23) , 10302-10307. https://doi.org/10.1021/jacs.0c03906
    50. Ángel Morales-García, Rosendo Valero, Francesc Illas. Morphology of TiO2 Nanoparticles as a Fingerprint for the Transient Absorption Spectra: Implications for Photocatalysis. The Journal of Physical Chemistry C 2020, 124 (22) , 11819-11824. https://doi.org/10.1021/acs.jpcc.0c02946
    51. Jiawei Sun, Weiwei Xia, Qian Zheng, Xianghua Zeng, Wei Liu, Gang Liu, Pengdi Wang. Increased Active Sites on Irregular Morphological α-Fe2O3 Nanorods for Enhanced Photoelectrochemical Performance. ACS Omega 2020, 5 (21) , 12339-12345. https://doi.org/10.1021/acsomega.0c01072
    52. Hajime Suzuki, Shohei Kanno, Masahiko Hada, Ryu Abe, Akinori Saeki. Exploring the Relationship between Effective Mass, Transient Photoconductivity, and Photocatalytic Activity of SrxPb1–xBiO2Cl (x = 0–1) Oxyhalides. Chemistry of Materials 2020, 32 (10) , 4166-4173. https://doi.org/10.1021/acs.chemmater.9b05366
    53. Xunfu Zhou, Yuxuan Fang, Xin Cai, Shengsen Zhang, Siyuan Yang, Hongqiang Wang, Xinhua Zhong, Yueping Fang. In Situ Photodeposited Construction of Pt–CdS/g-C3N4–MnOx Composite Photocatalyst for Efficient Visible-Light-Driven Overall Water Splitting. ACS Applied Materials & Interfaces 2020, 12 (18) , 20579-20588. https://doi.org/10.1021/acsami.0c04241
    54. Shuai Chen, Scott Prins, Aicheng Chen. Patterning of BiVO4 Surfaces and Monitoring of Localized Catalytic Activity Using Scanning Photoelectrochemical Microscopy. ACS Applied Materials & Interfaces 2020, 12 (15) , 18065-18073. https://doi.org/10.1021/acsami.9b22605
    55. Constantin A. Walenta, Carla Courtois, Sebastian L. Kollmannsberger, Moritz Eder, Martin Tschurl, Ueli Heiz. Surface Species in Photocatalytic Methanol Reforming on Pt/TiO2(110): Learning from Surface Science Experiments for Catalytically Relevant Conditions. ACS Catalysis 2020, 10 (7) , 4080-4091. https://doi.org/10.1021/acscatal.0c00260
    56. Warren Athol Thompson, Eva Sanchez Fernandez, M. Mercedes Maroto-Valer. Review and Analysis of CO2 Photoreduction Kinetics. ACS Sustainable Chemistry & Engineering 2020, 8 (12) , 4677-4692. https://doi.org/10.1021/acssuschemeng.9b06170
    57. Kamonchanok Roongraung, Surawut Chuangchote, Navadol Laosiripojana, Takashi Sagawa. Electrospun Ag-TiO2 Nanofibers for Photocatalytic Glucose Conversion to High-Value Chemicals. ACS Omega 2020, 5 (11) , 5862-5872. https://doi.org/10.1021/acsomega.9b04076
    58. Yi Huang, Cuibo Liu, Mengyang Li, Huizhi Li, Yongwang Li, Ren Su, Bin Zhang. Photoimmobilized Ni Clusters Boost Photodehydrogenative Coupling of Amines to Imines via Enhanced Hydrogen Evolution Kinetics. ACS Catalysis 2020, 10 (6) , 3904-3910. https://doi.org/10.1021/acscatal.0c00282
    59. Qian Wang, Kazunari Domen. Particulate Photocatalysts for Light-Driven Water Splitting: Mechanisms, Challenges, and Design Strategies. Chemical Reviews 2020, 120 (2) , 919-985. https://doi.org/10.1021/acs.chemrev.9b00201
    60. Deobrat Singh, Sudip Chakraborty, Rajeev Ahuja. Emergence of Si2BN Monolayer as Efficient HER Catalyst under Co-functionalization Influence. ACS Applied Energy Materials 2019, 2 (12) , 8441-8448. https://doi.org/10.1021/acsaem.9b01292
    61. Sabari Ghosh, Ankit Kumar Srivastava, Radha Govu, Ujjwal Pal, Samudranil Pal. A Diuranyl(VI) Complex and Its Application in Electrocatalytic and Photocatalytic Hydrogen Evolution from Neutral Aqueous Medium. Inorganic Chemistry 2019, 58 (21) , 14410-14419. https://doi.org/10.1021/acs.inorgchem.9b01726
    62. Lei Zhang, Xin Mao, Sri Kasi Matta, Yuantong Gu, Aijun Du. Two-Dimensional CuTe2X (X = Cl, Br, and I): Potential Photocatalysts for Water Splitting under the Visible/Infrared Light. The Journal of Physical Chemistry C 2019, 123 (42) , 25543-25548. https://doi.org/10.1021/acs.jpcc.9b06116
    63. Yong-Jun Yuan, Zhi-Kai Shen, Shixin Song, Jie Guan, Liang Bao, Lang Pei, Yibing Su, Shiting Wu, Wangfeng Bai, Zhen-Tao Yu, Zhenguo Ji, Zhigang Zou. Co–P Bonds as Atomic-Level Charge Transfer Channel To Boost Photocatalytic H2 Production of Co2P/Black Phosphorus Nanosheets Photocatalyst. ACS Catalysis 2019, 9 (9) , 7801-7807. https://doi.org/10.1021/acscatal.9b02274
    64. Jie Liu, Jingnan Zhang, Ding Wang, Deyuan Li, Jun Ke, Shaobin Wang, Shaomin Liu, Huining Xiao, Rujie Wang. Highly Dispersed NiCo2O4 Nanodots Decorated Three-Dimensional g-C3N4 for Enhanced Photocatalytic H2 Generation. ACS Sustainable Chemistry & Engineering 2019, 7 (14) , 12428-12438. https://doi.org/10.1021/acssuschemeng.9b01965
    65. Hajime Suzuki, Masanobu Higashi, Hironobu Kunioku, Ryu Abe, Akinori Saeki. Photoconductivity–Lifetime Product Correlates Well with the Photocatalytic Activity of Oxyhalides Bi4TaO8Cl and PbBiO2Cl: An Approach to Boost Their O2 Evolution Rates. ACS Energy Letters 2019, 4 (7) , 1572-1578. https://doi.org/10.1021/acsenergylett.9b00793
    66. David S. D. Gunn, Jonathan M. Skelton, Lee A. Burton, Sebastian Metz, Stephen C. Parker. Thermodynamics, Electronic Structure, and Vibrational Properties of Snn(S1–xSex)m Solid Solutions for Energy Applications. Chemistry of Materials 2019, 31 (10) , 3672-3685. https://doi.org/10.1021/acs.chemmater.9b00362
    67. Amal BaQais, Nina Tymińska, Tangui Le Bahers, Kazuhiro Takanabe. Optoelectronic Structure and Photocatalytic Applications of Na(Bi,La)S2 Solid Solutions with Tunable Band Gaps. Chemistry of Materials 2019, 31 (9) , 3211-3220. https://doi.org/10.1021/acs.chemmater.9b00031
    68. Mamta Devi Sharma, Chavi Mahala, Mrinmoyee Basu. Shape-Controlled Hematite: An Efficient Photoanode for Photoelectrochemical Water Splitting. Industrial & Engineering Chemistry Research 2019, 58 (17) , 7200-7208. https://doi.org/10.1021/acs.iecr.9b00739
    69. Kento Yamada, Hajime Suzuki, Ryu Abe, Akinori Saeki. Complex Photoconductivity Reveals How the Nonstoichiometric Sr/Ti Affects the Charge Dynamics of a SrTiO3 Photocatalyst. The Journal of Physical Chemistry Letters 2019, 10 (8) , 1986-1991. https://doi.org/10.1021/acs.jpclett.9b00880
    70. Yu Bai, Yueer Zhou, Jing Zhang, Xuebing Chen, Yonghui Zhang, Jifa Liu, Jian Wang, Fangfang Wang, Changdong Chen, Chun Li, Rengui Li, Can Li. Homophase Junction for Promoting Spatial Charge Separation in Photocatalytic Water Splitting. ACS Catalysis 2019, 9 (4) , 3242-3252. https://doi.org/10.1021/acscatal.8b05050
    71. Ossama Elbanna, Mingshan Zhu, Mamoru Fujitsuka, Tetsuro Majima. Black Phosphorus Sensitized TiO2 Mesocrystal Photocatalyst for Hydrogen Evolution with Visible and Near-Infrared Light Irradiation. ACS Catalysis 2019, 9 (4) , 3618-3626. https://doi.org/10.1021/acscatal.8b05081
    72. Ying Wang, Shaoqi Zhan, Mårten S. G. Ahlquist. Nucleophilic Attack by OH2 or OH–: A Detailed Investigation on pH-Dependent Performance of a Ru Catalyst. Organometallics 2019, 38 (6) , 1264-1268. https://doi.org/10.1021/acs.organomet.8b00544
    73. Junsang Cho, Aaron Sheng, Nuwanthi Suwandaratne, Linda Wangoh, Justin L. Andrews, Peihong Zhang, Louis F. J. Piper, David F. Watson, Sarbajit Banerjee. The Middle Road Less Taken: Electronic-Structure-Inspired Design of Hybrid Photocatalytic Platforms for Solar Fuel Generation. Accounts of Chemical Research 2019, 52 (3) , 645-655. https://doi.org/10.1021/acs.accounts.8b00378
    74. Deqian Zeng, Ting Zhou, Wee-Jun Ong, Mingda Wu, Xiaoguang Duan, Wanjie Xu, Yuanzhi Chen, Yi-An Zhu, Dong-Liang Peng. Sub-5 nm Ultra-Fine FeP Nanodots as Efficient Co-Catalysts Modified Porous g-C3N4 for Precious-Metal-Free Photocatalytic Hydrogen Evolution under Visible Light. ACS Applied Materials & Interfaces 2019, 11 (6) , 5651-5660. https://doi.org/10.1021/acsami.8b20958
    75. Yosuke Kageshima, Tsutomu Minegishi, Sho Sugisaki, Yosuke Goto, Hiroyuki Kaneko, Mamiko Nakabayashi, Naoya Shibata, Kazunari Domen. Surface Protective and Catalytic Layer Consisting of RuO2 and Pt for Stable Production of Methylcyclohexane Using Solar Energy. ACS Applied Materials & Interfaces 2018, 10 (51) , 44396-44402. https://doi.org/10.1021/acsami.8b14814
    76. Xiaogang Yang, Dunwei Wang. Photocatalysis: From Fundamental Principles to Materials and Applications. ACS Applied Energy Materials 2018, 1 (12) , 6657-6693. https://doi.org/10.1021/acsaem.8b01345
    77. Justin L. Andrews, Junsang Cho, Linda Wangoh, Nuwanthi Suwandaratne, Aaron Sheng, Saurabh Chauhan, Kelly Nieto, Alec Mohr, Karthika J. Kadassery, Melissa R. Popeil, Pardeep K. Thakur, Matthew Sfeir, David C. Lacy, Tien-Lin Lee, Peihong Zhang, David F. Watson, Louis F. J. Piper, Sarbajit Banerjee. Hole Extraction by Design in Photocatalytic Architectures Interfacing CdSe Quantum Dots with Topochemically Stabilized Tin Vanadium Oxide. Journal of the American Chemical Society 2018, 140 (49) , 17163-17174. https://doi.org/10.1021/jacs.8b09924
    78. Hamidreza Hajiyani, Rossitza Pentcheva. Surface Termination and Composition Control of Activity of the CoxNi1–xFe2O4(001) Surface for Water Oxidation: Insights from DFT+U Calculations. ACS Catalysis 2018, 8 (12) , 11773-11782. https://doi.org/10.1021/acscatal.8b00574
    79. Tae Hwa Jeon, Min Seok Koo, Hyejin Kim, Wonyong Choi. Dual-Functional Photocatalytic and Photoelectrocatalytic Systems for Energy- and Resource-Recovering Water Treatment. ACS Catalysis 2018, 8 (12) , 11542-11563. https://doi.org/10.1021/acscatal.8b03521
    80. Hwan Lee, D. Amaranatha Reddy, Yujin Kim, So Yeon Chun, Rory Ma, D. Praveen Kumar, Jae Kyu Song, Tae Kyu Kim. Drastic Improvement of 1D-CdS Solar-Driven Photocatalytic Hydrogen Evolution Rate by Integrating with NiFe Layered Double Hydroxide Nanosheets Synthesized by Liquid-Phase Pulsed-Laser Ablation. ACS Sustainable Chemistry & Engineering 2018, 6 (12) , 16734-16743. https://doi.org/10.1021/acssuschemeng.8b04000
    81. Dandan Cui, Liang Wang, Yi Du, Weichang Hao, Jun Chen. Photocatalytic Reduction on Bismuth-Based p-Block Semiconductors. ACS Sustainable Chemistry & Engineering 2018, 6 (12) , 15936-15953. https://doi.org/10.1021/acssuschemeng.8b04977
    82. Bastian Mei, Kai Han, Guido Mul. Driving Surface Redox Reactions in Heterogeneous Photocatalysis: The Active State of Illuminated Semiconductor-Supported Nanoparticles during Overall Water-Splitting. ACS Catalysis 2018, 8 (10) , 9154-9164. https://doi.org/10.1021/acscatal.8b02215
    83. Amitava Banerjee, Sudip Chakraborty, Naresh K. Jena, Rajeev Ahuja. Scrupulous Probing of Bifunctional Catalytic Activity of Borophene Monolayer: Mapping Reaction Coordinate with Charge Transfer. ACS Applied Energy Materials 2018, 1 (8) , 3571-3576. https://doi.org/10.1021/acsaem.8b00813
    84. Ghazal Salehi, Reza Abazari, Ali Reza Mahjoub. Visible-Light-Induced Graphitic–[email protected]–Aluminum Layered Double Hydroxide Nanocomposites with Enhanced Photocatalytic Activity for Removal of Dyes in Water. Inorganic Chemistry 2018, 57 (14) , 8681-8691. https://doi.org/10.1021/acs.inorgchem.8b01636
    85. Saher Hamid, Ralf Dillert, Detlef W. Bahnemann. Photocatalytic Reforming of Aqueous Acetic Acid into Molecular Hydrogen and Hydrocarbons over Co-catalyst-Loaded TiO2: Shifting the Product Distribution. The Journal of Physical Chemistry C 2018, 122 (24) , 12792-12809. https://doi.org/10.1021/acs.jpcc.8b02691
    86. Xiang Gao, Yuanjing Wen, Dan Qu, Li An, Shiliang Luan, Wenshuai Jiang, Xupeng Zong, Xingyuan Liu, Zaicheng Sun. Interference Effect of Alcohol on Nessler’s Reagent in Photocatalytic Nitrogen Fixation. ACS Sustainable Chemistry & Engineering 2018, 6 (4) , 5342-5348. https://doi.org/10.1021/acssuschemeng.8b00110
    87. Xiaoqing Yan, Mengyang Xia, Hanxuan Liu, Bin Zhang, Chunran Chang, Lianzhou Wang, Guidong Yang. An electron-hole rich dual-site nickel catalyst for efficient photocatalytic overall water splitting. Nature Communications 2023, 14 (1) https://doi.org/10.1038/s41467-023-37358-3
    88. Anqiang Jiang, Heng Guo, Shan Yu, Fengying Zhang, Tingyu Shuai, Yubin Ke, Peng Yang, Ying Zhou. Dual charge-accepting engineering modified AgIn5S8/CdS quantum dots for efficient photocatalytic hydrogen evolution overall H2S splitting. Applied Catalysis B: Environmental 2023, 332 , 122747. https://doi.org/10.1016/j.apcatb.2023.122747
    89. Shufang Chang, Li Shi, Jinxing Yu, Ran Wang, Xiaoxiang Xu, Gang Liu. Boosted Z-scheme photocatalytic overall water splitting with faceted Bi4TaO8Cl crystals as water oxidation photocatalyst. Applied Catalysis B: Environmental 2023, 328 , 122541. https://doi.org/10.1016/j.apcatb.2023.122541
    90. Driss Mazkad, Nour-eddine Lazar, Abdellah Benzaouak, Ali Moussadik, Mohamed El Habib Hitar, Noureddine Touach, Mohammed El Mahi, El Mostapha Lotfi. Photocatalytic properties insight of Sm-doped LiNbO3 in ferroelectric Li1− xNbSm1/3xO3 system. Journal of Environmental Chemical Engineering 2023, 11 (3) , 109732. https://doi.org/10.1016/j.jece.2023.109732
    91. Alberto Puga. Photocatalytic Hydrogen Production in the Context of Sustainable Energy. 2023, 1-18. https://doi.org/10.1002/9783527835423.ch1
    92. Alberto Puga. Photocatalytic Overall Water Splitting and Related Processes for Strategic Energy Storage into Hydrogen. 2023, 63-93. https://doi.org/10.1002/9783527835423.ch4
    93. Mariano Curti, Yamen AlSalka, Osama Al‐Madanat, Detlef W. Bahnemann. Isotopic Substitution to Unravel the Mechanisms of Photocatalytic Hydrogen Production. 2023, 35-61. https://doi.org/10.1002/9783527835423.ch3
    94. Kai Yu, Tianyang Zhang, Yingming Wang, Jie Wu, Hui Huang, Kui Yin, Fan Liao, Yang Liu, Zhenhui Kang. Anchoring Co3O4 on CdZnS to accelerate hole migration for highly stable photocatalytic overall water splitting. Applied Catalysis B: Environmental 2023, 324 , 122228. https://doi.org/10.1016/j.apcatb.2022.122228
    95. Guoan Lin, Xiaoqin Sun, Xiaoxiang Xu. Mg modified LaTiO2N with ameliorated photocarrier separation for solar water splitting. Applied Catalysis B: Environmental 2023, 324 , 122258. https://doi.org/10.1016/j.apcatb.2022.122258
    96. Zhiyun Long, Xiaohang Yang, Xuyang Huo, Xuanze Li, Qiuju Qi, Xingbo Bian, Qiyao Wang, Fengjian Yang, WeilunYu, Lei Jiang. Bioinspired Z-scheme In2O3/C3N4 heterojunctions with tunable nanorod lengths for enhanced photocatalytic hydrogen evolution. Chemical Engineering Journal 2023, 461 , 141893. https://doi.org/10.1016/j.cej.2023.141893
    97. Chitiphon Chuaicham, Yuto Noguchi, Sulakshana Shenoy, Kaiqian Shu, Jirawat Trakulmututa, Assadawoot Srikhaow, Karthikeyan Sekar, Keiko Sasaki. Simultaneous Photocatalytic Sugar Conversion and Hydrogen Production Using Pd Nanoparticles Decorated on Iron-Doped Hydroxyapatite. Catalysts 2023, 13 (4) , 675. https://doi.org/10.3390/catal13040675
    98. P. Velusamy, Xinghui Liu, M. Sathiya, Norah Salem Alsaiari, Fatimah Mohammed Alzahrani, M. Tariq Nazir, Elangovan Elamurugu, M. Senthil Pandian, Fuchun Zhang. Investigate the suitability of g-C3N4 nanosheets ornamented with BiOI nanoflowers for photocatalytic dye degradation and PEC water splitting. Chemosphere 2023, 321 , 138007. https://doi.org/10.1016/j.chemosphere.2023.138007
    99. Xunfu Zhou, Meng Li, Pai Wang, Minfu Wu, Bei Jin, Jin Luo, Meifeng Chen, Xiaoqin Zhou, Yanning Zhang, Xiaosong Zhou. Synergistic effect of phosphorus doping and MoS2 co-catalysts on g-C3N4 photocatalysts for enhanced solar water splitting. Journal of Materials Science & Technology 2023, 120 https://doi.org/10.1016/j.jmst.2023.02.041
    100. Xiang Xie, Peng Ge, Ruiting Xue, Hongfei Lv, Wenhua Xue, Enzhou Liu. Enhanced photocatalytic H2 evolution and anti-photocorrosion of sulfide photocatalyst by improving surface reaction: A review. International Journal of Hydrogen Energy 2023, 417 https://doi.org/10.1016/j.ijhydene.2023.03.193
    Load more citations
    • Abstract

      Figure 1

      Figure 1. Schematic image of the photocatalytic water splitting process. The gear with the number indicates the order of the photocatalytic process to be successful for overall water splitting. For a detailed description, please refer to the text.

      Figure 2

      Figure 2. Parameters associated with photocatalysis. Overall water splitting is only successful for high efficiencies of all six gears depicted in the scheme. The different time scales of the reactions are also displayed.

      Figure 3

      Figure 3. Bandgap structure of oxide and oxynitride semiconductors for photoelectrochemical applications. Contribution of metal cation and oxygen anion states to the conduction and valence bands. The bandgap energy (red for n-type, black for p-type) is shown with respect to the reversible hydrogen electrode and the water redox energy levels (assuming Nernstian behavior four the band-edge energies with respect to electrolyte pH). Reprinted with permission from ref 45. Copyright 2016 Macmillan Publishers Limited.

      Figure 4

      Figure 4. (A) Hole and (B) electron lifetimes in heavily doped n-type and p-type silicon, respectively. Reprinted with permission from ref 75. Copyright 1991 Institute of Electrical and Electronics Engineers.

      Figure 5

      Figure 5. Rough estimation of the ratios of the numbers between the active surface sites (assuming ∼4 nm–2 hydroxylated surface as maximum) (82) to the bulk carrier. The cubic particle of 100 nm diameter is used as an example.

      Figure 6

      Figure 6. (A) Barrier height versus electronegativity of metals deposited on Si, GaSe, and SiO2. (B) Index of interface behavior S as a function of the electronegativity difference of the semiconductors. Reprinted with permission from ref 89. Copyright 2006 John Wiley & Sons, Inc.

      Figure 7

      Figure 7. (A) Geometric model schemes using n-type semiconductor with HER catalyst decoration with the boundary conditions and the assumptions used for the simulations. (B) Potential gradients under the HER catalyst (red dotted line in A) at different donor concentrations, carrier mobility, and carrier lifetime. The x-direction represents the depth from surface (left) into the bulk (right) of the semiconductor. An ohmic junction was assumed for the HER catalyst in contact with the semiconductor, whereas a Schottky contact was assumed to calculate the electrolyte interface. The potential difference between HER site and OER site is assumed to be 1.53 eV. Reprinted with permission from ref 107. Copyright 2016 Royal Society of Chemistry.

    • References

      ARTICLE SECTIONS
      Jump To

      This article references 190 other publications.

      1. 1
        Electrochemical Methods, 2nd ed.; Bard, A. J., Faulkner, L. R., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, 2001; pp 736 768.
      2. 2
        Kraeutler, B.; Bard, A. J. J. Am. Chem. Soc. 1978, 100, 2239 2240 DOI: 10.1021/ja00475a049
      3. 3
        Calvo, E. J. In Electrode Kinetics: Principles and Methodology, Bamford, C. H.; Tipper, C. F. H.; Compton, R. G., Eds.; Elsevier: Amsterdam, 1986; Vol. 26, pp 1 74.
      4. 4
        Shaner, M. R.; Atwater, H. A.; Lewis, N. S.; McFarland, E. W. Energy Environ. Sci. 2016, 9, 2354 2371 DOI: 10.1039/C5EE02573G
      5. 5
        Lewis, N. S. Science 2016, 351, Article No. aad1920 DOI: 10.1126/science.aad1920
      6. 6
        Nakamura, A.; Ota, Y.; Koike, K.; Hidaka, Y.; Nishioka, K.; Sugiyama, M.; Fujii, K. Appl. Phys. Express 2015, 8, 107101 DOI: 10.7567/APEX.8.107101
      7. 7
        Khaselev, O.; Turner, J. A. Science 1998, 280, 425 427 DOI: 10.1126/science.280.5362.425
      8. 8
        Nocera, D. G. Acc. Chem. Res. 2012, 45, 767 776 DOI: 10.1021/ar2003013
      9. 9
        Sun, K.; Saadi, F. H.; Lichterman, M. F.; Hale, W. G.; Wang, H.-P.; Zhou, X.; Plymale, N. T.; Omelchenko, S. T.; He, J.-H; Papadantonakis, K. M.; Brunschwig, B. S.; Lewis, N. S. Proc. Natl. Acad. Sci. U.S.A. 2015, 112, 3612 3617 DOI: 10.1073/pnas.1423034112
      10. 10
        Kageshima, Y.; Shinagawa, T.; Kuwata, T.; Nakata, J.; Minegishi, T.; Takanabe, K.; Domen, K. Sci. Rep. 2016, 6, 24633 DOI: 10.1038/srep24633
      11. 11
        Wang, Q.; Hisatomi, T.; Jia, Q.; Tokudome, H.; Zhong, M.; Wang, C.; Pan, Z.; Takata, T.; Nakabayashi, M.; Shibata, N.; Li, Y.; Sharp, I. D.; Kudo, A.; Yamada, T.; Domen, K. Nat. Mater. 2016, 15, 611 615 DOI: 10.1038/nmat4589
      12. 12
        Osterloh, F. E. ACS Energy Lett. 2017, 2, 445 453 DOI: 10.1021/acsenergylett.6b00665
      13. 13
        Mills, A.; Wang, J. J. Photochem. Photobiol., A 1999, 127, 123 134 DOI: 10.1016/S1010-6030(99)00143-4
      14. 14
        Yan, X.; Ohno, T.; Nishijima, K.; Abe, R.; Ohtani, B. Chem. Phys. Lett. 2006, 429, 606 610 DOI: 10.1016/j.cplett.2006.08.081
      15. 15
        Ohtani, B. Chem. Lett. 2008, 37, 216 229 DOI: 10.1246/cl.2008.216
      16. 16
        Mills, A. Appl. Catal., B 2012, 128, 144 149 DOI: 10.1016/j.apcatb.2012.01.019
      17. 17
        Kisch, H. Angew. Chem., Int. Ed. 2013, 52, 812 847 DOI: 10.1002/anie.201201200
      18. 18
        Buriak, J. M.; Kamat, P. V.; Schanze, K. S. ACS Appl. Mater. Interfaces 2014, 6, 11815 11816 DOI: 10.1021/am504389z
      19. 19
        Buriak, J. M. Chem. Mater. 2014, 26, 2211 2213 DOI: 10.1021/cm5010449
      20. 20
        Kisch, H.; Bahnemann, D. J. Phys. Chem. Lett. 2015, 6, 1907 1910 DOI: 10.1021/acs.jpclett.5b00521
      21. 21
        Coridan, R. H.; Nielander, A. C.; Francis, S. A.; McDowell, M. T.; Dix, V.; Chatman, S. M.; Lewis, N. S. Energy Environ. Sci. 2015, 8, 2886 2901 DOI: 10.1039/C5EE00777A
      22. 22
        Buriak, J. M.; Jones, C. W.; Kamat, P. V.; Schanze, K. S.; Schatz, G. C.; Scholes, G. D.; Weiss, P. S. Chem. Mater. 2016, 28, 3525 3526 DOI: 10.1021/acs.chemmater.6b01854
      23. 23
        Qureshi, M.; Takanabe, K. Chem. Mater. 2017, 29, 158 167 DOI: 10.1021/acs.chemmater.6b02907
      24. 24
        Takanabe, K.; Domen, K. ChemCatChem 2012, 4, 1485 1497 DOI: 10.1002/cctc.201200324
      25. 25
        Takanabe, K. Top. Curr. Chem. 2015, 371, 73 103 DOI: 10.1007/128_2015_646
      26. 26
        Nozik, A. J. Annu. Rev. Phys. Chem. 1978, 29, 189 222 DOI: 10.1146/annurev.pc.29.100178.001201
      27. 27
        Nosaka, Y.; Ishizuka, Y.; Miyama, H. Ber. Bunsenges. Phys. Chem. 1986, 90, 1199 1204 DOI: 10.1002/bbpc.19860901216
      28. 28
        Memming, R. Top. Curr. Chem. 1988, 143, 79 112 DOI: 10.1007/BFb0018072
      29. 29
        Hagfeldt, A.; Grätzel, M. Chem. Rev. 1995, 95, 49 68 DOI: 10.1021/cr00033a003
      30. 30
        Photocatalysis Science and Technology; Kaneko, M.; Okura, I., Eds.; Kodansha-Springer: Tokyo-New York, 2002, : pp 1 360.
      31. 31
        Domen, K. In Photocatalysis—Heterogeneous. Encyclopedia of Catalysis; Horvath, I. T., Ed., Wiley: Weinheim, 2002.
      32. 32
        Maeda, K.; Domen, K. J. Phys. Chem. C 2007, 111, 7851 7861 DOI: 10.1021/jp070911w
      33. 33
        Kamat, P. V. J. Phys. Chem. C 2007, 111, 2834 2860 DOI: 10.1021/jp066952u
      34. 34
        Osterloh, F. E. Chem. Mater. 2008, 20, 35 54 DOI: 10.1021/cm7024203
      35. 35
        Kudo, A.; Miseki, Y. Chem. Soc. Rev. 2009, 38, 253 278 DOI: 10.1039/B800489G
      36. 36
        Inoue, Y. Energy Environ. Sci. 2009, 2, 364 386 DOI: 10.1039/b816677n
      37. 37
        Walter, M. G.; Warren, E. L.; McKone, J. R.; Boettcher, S. W.; Mi, Q.; Santori, E. A.; Lewis, N. S. Chem. Rev. 2010, 110, 6446 6473 DOI: 10.1021/cr1002326
      38. 38
        Maeda, K.; Domen, K. J. Phys. Chem. Lett. 2010, 1, 2655 2661 DOI: 10.1021/jz1007966
      39. 39
        Hisatomi, T.; Minegishi, T.; Domen, K. Bull. Chem. Soc. Jpn. 2012, 85, 647 655 DOI: 10.1246/bcsj.20120058
      40. 40
        Tong, H.; Ouyang, S.; Bi, Y.; Umezawa, N.; Oshikiri, M.; Ye, J. Adv. Mater. 2012, 24, 229 251 DOI: 10.1002/adma.201102752
      41. 41
        Tachibana, Y.; Vayssieres, L.; Durrant, J. R. Nat. Photonics 2012, 6, 511 518 DOI: 10.1038/nphoton.2012.175
      42. 42
        Osterloh, F. E. Chem. Soc. Rev. 2013, 42, 2294 2320 DOI: 10.1039/C2CS35266D
      43. 43
        Hisatomi, T.; Kubota, J.; Domen, K. Chem. Soc. Rev. 2014, 43, 7520 7535 DOI: 10.1039/C3CS60378D
      44. 44
        Hisatomi, T.; Takanabe, K.; Domen, K. Catal. Lett. 2015, 145, 95 108 DOI: 10.1007/s10562-014-1397-z
      45. 45
        Sivula, K.; van de Krol, R. Nat. Rev. Mater. 2016, 1, 15010 DOI: 10.1038/natrevmats.2015.10
      46. 46
        Sato, N. Electrochemistry at Metal and Semiconductor Electrodes; Sato, N., Ed.; Elsevier, Amsterdam, 1998, : pp 1 396.
      47. 47
        Modern Molecular Photochemistry of Organic Molecules; Turro, N. J.; Ramamurthy, V.; Scaiano, J. C., Eds.; University Science Books: Sausalito, CA, 2010; pp 1 38.
      48. 48
        Polman, A.; Atwater, H. A. Nat. Mater. 2012, 11, 174 177 DOI: 10.1038/nmat3263
      49. 49
        Osterloh, F. E. J. Phys. Chem. Lett. 2014, 5, 3354 3359 DOI: 10.1021/jz501740n
      50. 50
        Omelchenko, S. T.; Tolstova, Y.; Atwater, H. A.; Lewis, N. S. ACS Energy Lett. 2017, 2, 431 437 DOI: 10.1021/acsenergylett.6b00704
      51. 51
        National Renewable Energy Laboratory (NREL). Website: http://rredc.nrel.gov/solar/spectra/am1.5.
      52. 52
        Takanabe, K.; Domen, K. Green 2011, 1, 313 322 DOI: 10.1515/GREEN.2011.030
      53. 53
        Chen, Z.; Dinh, H. N.; Miller, E. Photoelectrochemical Water Splitting Standards, Experimental Methods, and Protocols; Springer: New York. 2013.
      54. 54
        Wemple, S. H.; Seman, J. A. Appl. Opt. 1973, 12, 2947 2949 DOI: 10.1364/AO.12.002947
      55. 55
        Di Giulio, M.; Micocci, G.; Rella, R.; Siciliano, P.; Tepore, A. Phys. Stat. Sol. a 1993, 136, K101 K104 DOI: 10.1002/pssa.2211360236
      56. 56
        Lodenquai, J. F. Sol. Energy 1994, 53, 209 210 DOI: 10.1016/0038-092X(94)90483-9
      57. 57
        Absorption and Scattering of Light by Small Particles; Bohren, C. F.; Huffman, D. R., Eds.; Wiley-VCH, Weinheim, 2004, : pp 1 476.
      58. 58
        Interpreting Diffuse Reflectance and Transmittance; Dahm, D. J.; Dahm, K. D., Eds.; NIR Publications: West Sussex, 2007, : pp 1 286.
      59. 59
        Light Scattering by Particles in Water, Jonasz, M.; Fournier, G. R., Eds.; Academic Press: Oxford, 2007, : pp 145 558.
      60. 60
        Bae, D.; Pedersen, T.; Seger, B.; Malizia, M.; Kuznetsov, A.; Hansen, O.; Chorkendorff, I.; Vesborg, P. C. K. Energy Environ. Sci. 2015, 8, 650 660 DOI: 10.1039/C4EE03723E
      61. 61
        Le Bahers, T.; Rérat, M.; Sautet, P. J. Phys. Chem. C 2014, 118, 5997 6008 DOI: 10.1021/jp409724c
      62. 62
        Green, M. A. Sol. Energy Mater. Sol. Cells 2008, 92, 1305 1310 DOI: 10.1016/j.solmat.2008.06.009
      63. 63
        Franck, J.; Dymond, E. G. Trans. Faraday Soc. 1926, 21, 536 542 DOI: 10.1039/tf9262100536
      64. 64
        Condon, E. Phys. Rev. 1926, 28, 1182 1201 DOI: 10.1103/PhysRev.28.1182
      65. 65
        Džimbeg-Malčić, V.; Barbarić-Mikočević, Ž.; Itrić, K. Technical Gazette 2011, 18, 117
      66. 66
        Kurik, M. V. Phys. Stat. Sol. a 1971, 8, 9 45 DOI: 10.1002/pssa.2210080102
      67. 67
        Introduction to Solid State Physics, 8th ed.; Kittel, C., Ed.; Wiley: Weinheim, 2005, : pp 1 704.
      68. 68
        Bastard, G.; Mendez, E. E.; Chang, L. L.; Esaki, L. Phys. Rev. B: Condens. Matter Mater. Phys. 1982, 26, 1974 1979 DOI: 10.1103/PhysRevB.26.1974
      69. 69
        Semiconductors: Data Handbook, 3rd ed.; Madelung, O., Ed.; Springer: New York, 2004.
      70. 70
        Melissen, S.; Le Bahers, T.; Steinmann, S. N.; Sautet, P. J. Phys. Chem. C 2015, 119, 25188 25196 DOI: 10.1021/acs.jpcc.5b07059
      71. 71
        Shockley, W.; Read, W. T., Jr. Phys. Rev. 1952, 87, 835 842 DOI: 10.1103/PhysRev.87.835
      72. 72
        Hall, R. N. Phys. Rev. 1952, 87, 387 DOI: 10.1103/PhysRev.87.387
      73. 73
        Auger, P. Comptes Rendus de l'Académie des Sciences 1952, 177, 169
      74. 74
        Leng, W. H.; Barnes, P. R. F.; Juozapavicius, M.; O’Regan, B. C.; Durrant, J. R. J. Phys. Chem. Lett. 2010, 1, 967 972 DOI: 10.1021/jz100051q
      75. 75
        Law, M. E.; Solley, E.; Liang, M.; Burk, D. E. IEEE Electron Device Lett. 1991, 12, 401 403 DOI: 10.1109/55.119145
      76. 76
        Ito, H.; Furuta, T.; Ishibashi, T. Appl. Phys. Lett. 1991, 58, 2936 2938 DOI: 10.1063/1.104727
      77. 77
        Cohen, R.; Lyahovitskaya, V.; Poles, E.; Liu, A.; Rosenwaks, Y. Appl. Phys. Lett. 1998, 73, 1400 1402 DOI: 10.1063/1.122169
      78. 78
        Kuciauskas, D.; Kanevce, A.; Dippo, P.; Seyedmohammadi, S.; Malik, R. IEEE J. Photovoltaics 2015, 5, 366 371 DOI: 10.1109/JPHOTOV.2014.2359738
      79. 79
        Rosenwaks, Y.; Shapira, Y.; Huppert, D. Phys. Rev. B: Condens. Matter Mater. Phys. 1992, 45, 9108 9119 DOI: 10.1103/PhysRevB.45.9108
      80. 80
        Casey, H. C., Jr.; Miller, B. I.; Pinkas, E. J. Appl. Phys. 1973, 44, 1281 1287 DOI: 10.1063/1.1662340
      81. 81
        Lewis, N. S. Inorg. Chem. 2005, 44, 6900 6911 DOI: 10.1021/ic051118p
      82. 82
        Zhuravlev, L. T. Colloids Surf., A 2000, 173, 1 38 DOI: 10.1016/S0927-7757(00)00556-2
      83. 83
        Yoneyama, H. Crit. Rev. Solid State Mater. Sci. 1993, 18, 69 111 DOI: 10.1080/10408439308243416
      84. 84
        Fukasawa, Y.; Takanabe, K.; Shimojima, A.; Antonietti, M.; Domen, K.; Okubo, T. Chem. - Asian J. 2011, 6, 103 109 DOI: 10.1002/asia.201000523
      85. 85
        Gerischer, H. J. Phys. Chem. 1984, 88, 6096 6097 DOI: 10.1021/j150669a007
      86. 86
        van der Pauw, L. J. Philips Res. Rep. 1958, 13, 1
      87. 87
        Heaney, M. B. The Measurement, Instrumentation and Sensors Handbook; CRC, Boca Raton, 2000.
      88. 88
        Tung, R. T. Appl. Phys. Rev. 2014, 1, 011304 DOI: 10.1063/1.4858400
      89. 89
        Physics of Semiconductor Devices, 3rd ed., Sze, S. M.; Ng, K. K., Eds.; Wiley: New York, 2006, : pp 134 196.
      90. 90
        Kurtin, S.; McGill, T. C.; Mead, C. A. Phys. Rev. Lett. 1969, 22, 1433 1436 DOI: 10.1103/PhysRevLett.22.1433
      91. 91
        Esposito, D. V.; Levin, I.; Moffat, T. P.; Talin, A. A. Nat. Mater. 2013, 12, 562 568 DOI: 10.1038/nmat3626
      92. 92
        Ham, Y.; Minegishi, T.; Hisatomi, T.; Domen, K. Chem. Commun. 2016, 52, 5011 5014 DOI: 10.1039/C6CC00497K
      93. 93
        Minegishi, T.; Nishimura, N.; Kubota, J.; Domen, K. Chem. Sci. 2013, 4, 1120 1124 DOI: 10.1039/c2sc21845c
      94. 94
        Paracchino, A.; Laporte, V.; Sivula, K.; Grätzel, M.; Thimsen, E. Nat. Mater. 2011, 10, 456 461 DOI: 10.1038/nmat3017
      95. 95
        Gerischer, H. Electrochim. Acta 1990, 35, 1677 1699 DOI: 10.1016/0013-4686(90)87067-C
      96. 96
        Zhang, Z.; Yates, J. T., Jr. Chem. Rev. 2012, 112, 5520 5551 DOI: 10.1021/cr3000626
      97. 97
        Grätzel, M. Nature 2001, 414, 338 344 DOI: 10.1038/35104607
      98. 98
        Chamousis, R. L.; Osterloh, F. E. Energy Environ. Sci. 2014, 7, 736 743 DOI: 10.1039/C3EE42993H
      99. 99
        Butler, M. A.; Ginley, D. S. J. Electrochem. Soc. 1978, 125, 228 232 DOI: 10.1149/1.2131419
      100. 100
        Green, M. A.; Hishikawa, Y.; Warta, W.; Dunlop, E. W.; Levi, D. H.; Hohl-Ebinger, J.; Ho-Baillie, A. W. H. Prog. Photovoltaics 2017, 25, 668 676 DOI: 10.1002/pip.2909
      101. 101
        Turner, J. A. J. Chem. Educ. 1983, 60, 327 329 DOI: 10.1021/ed060p327
      102. 102
        Lewis, N. S. J. Electrochem. Soc. 1984, 131, 2496 2503 DOI: 10.1149/1.2115347
      103. 103
        Rossi, R. C.; Tan, M. X.; Lewis, N. S. Appl. Phys. Lett. 2000, 77, 2698 2700 DOI: 10.1063/1.1319534
      104. 104
        Rossi, R. C.; Lewis, N. S. J. Phys. Chem. B 2001, 105, 12303 12318 DOI: 10.1021/jp011861c
      105. 105
        Bisquert, J.; Cendula, P.; Bertoluzzi, L.; Gimenez, S. J. Phys. Chem. Lett. 2014, 5, 205 207 DOI: 10.1021/jz402703d
      106. 106
        Xiang, C.; Weber, A. Z.; Ardo, S.; Berger, A.; Chen, Y.; Coridan, R.; Fountaine, K. T.; Haussener, S.; Hu, S.; Liu, R.; Lewis, N. S.; Modestino, M. A.; Shaner, M. M.; Singh, M. R.; Stevens, J. C.; Sun, K.; Walczak, K. Angew. Chem., Int. Ed. 2016, 55, 12974 12988 DOI: 10.1002/anie.201510463
      107. 107
        Garcia-Esparza, A. T.; Takanabe, K. J. Mater. Chem. A 2016, 4, 2894 2908 DOI: 10.1039/C5TA06983A
      108. 108
        Cendula, P.; Tilley, S. D.; Gimenez, S.; Bisquert, J.; Schmid, M.; Grätzel, M.; Schumacher, J. O. J. Phys. Chem. C 2014, 118, 29599 29607 DOI: 10.1021/jp509719d
      109. 109
        Mills, T. J.; Lin, F.; Boettcher, S. W. Phys. Rev. Lett. 2014, 112, 148304 DOI: 10.1103/PhysRevLett.112.148304
      110. 110
        Lin, F.; Boettcher, S. W. Nat. Mater. 2014, 13, 81 86 DOI: 10.1038/nmat3811
      111. 111
        Lichterman, M. F.; Hu, S.; Richter, M. H.; Crumlin, E. J.; Axnanda, S.; Favaro, M.; Drisdell, W.; Hussain, Z.; Mayer, T.; Brunschwig, B. S.; Lewis, N. S.; Liu, Z.; Lewerenz, H. J. Energy Environ. Sci. 2015, 8, 2409 2416 DOI: 10.1039/C5EE01014D
      112. 112
        Laskowski, F. A. L.; Nellist, M. R.; Venkatkarthick, R.; Boettcher, S. W. Energy Environ. Sci. 2017, 10, 570 579 DOI: 10.1039/C6EE03505A
      113. 113
        Hu, S.; Shaner, M. R.; Beardslee, J. A.; Lichterman, M.; Brunschwig, B. S.; Lewis, N. S. Science 2014, 344, 1005 1009 DOI: 10.1126/science.1251428
      114. 114
        Verlage, E.; Hu, S.; Liu, R.; Jones, R. J. R.; Sun, K.; Xiang, C.; Lewis, N. S.; Atwater, H. A. Energy Environ. Sci. 2015, 8, 3166 3172 DOI: 10.1039/C5EE01786F
      115. 115
        Zhou, X.; Liu, R.; Sun, K.; Chen, Y.; Verlage, E.; Francis, S. A.; Lewis, N. S.; Xiang, C. ACS Energy Lett. 2016, 1, 764 770 DOI: 10.1021/acsenergylett.6b00317
      116. 116
        Ding, C.; Shi, J.; Wang, Z.; Li, C. ACS Catal. 2017, 7, 675 688 DOI: 10.1021/acscatal.6b03107
      117. 117
        Hill, J. C.; Landers, A. T.; Switzer, J. A. Nat. Mater. 2015, 14, 1150 1156 DOI: 10.1038/nmat4408
      118. 118
        Digdaya, I. A.; Adhyaksa, G.; Trzesniewski, B. J.; Garnett, E.; Smith, W. A. Nat. Commun. 2017, 8, 15968 DOI: 10.1038/ncomms15968
      119. 119
        Kamat, P. V. Pure Appl. Chem. 2002, 74, 1693 1706 DOI: 10.1351/pac200274091693
      120. 120
        Jakob, M.; Levanon, H.; Kamat, P. V. Nano Lett. 2003, 3, 353 358 DOI: 10.1021/nl0340071
      121. 121
        Subramanian, V.; Wolf, E. E.; Kamat, P. V. J. Am. Chem. Soc. 2004, 126, 4943 4950 DOI: 10.1021/ja0315199
      122. 122
        Yoshida, M.; Yamakata, A.; Takanabe, K.; Kubota, J.; Osawa, M.; Domen, K. J. Am. Chem. Soc. 2009, 131, 13218 13219 DOI: 10.1021/ja904991p
      123. 123
        Lu, X.; Bandara, A.; Katayama, M.; Yamakata, A.; Kubota, J.; Domen, K. J. Phys. Chem. C 2011, 115, 23902 23907 DOI: 10.1021/jp207484q
      124. 124
        Stamenkovic, V. R.; Strmcnik, D.; Lopes, P. P.; Markovic, N. M. Nat. Mater. 2017, 16, 57 69 DOI: 10.1038/nmat4738
      125. 125
        Suntivich, J.; Perry, E. E.; Gasteiger, H. A.; Shao-Horn, Y. Electrocatalysis 2013, 4, 49 55 DOI: 10.1007/s12678-012-0118-x
      126. 126
        Fuel Cell Catalysis, A Surface Science Approach; Koper, M. T. M., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, 2009, : pp 1 158.
      127. 127
        Shinagawa, T.; Garcia-Esparza, A. T.; Takanabe, K. Sci. Rep. 2015, 5, 13801 DOI: 10.1038/srep13801
      128. 128
        Trasatti, S. J. Electroanal. Chem. Interfacial Electrochem. 1972, 39, 163 184 DOI: 10.1016/S0022-0728(72)80485-6
      129. 129
        Greeley, J.; Jaramillo, T. F.; Bonde, J.; Chorkendorff, I.; Nørskov, J. K. Nat. Mater. 2006, 5, 909 913 DOI: 10.1038/nmat1752
      130. 130
        Matsumoto, Y.; Sato, E. Mater. Chem. Phys. 1986, 14, 397 426 DOI: 10.1016/0254-0584(86)90045-3
      131. 131
        Man, I. C.; Su, H.-Y.; Calle-Vallejo, F.; Hansen, H. A.; Martinez, J. I.; Inoglu, N. G.; Kitchin, J.; Jaramillo, T. F.; Nørskov, J. K.; Rossmeisl, J. ChemCatChem 2011, 3, 1159 1165 DOI: 10.1002/cctc.201000397
      132. 132
        Grimaud, A.; May, K. J.; Carlton, C. E.; Lee, Y. L.; Risch, M.; Hong, W. T.; Zhou, J.; Shao-Horn, Y. Nat. Commun. 2013, 4, 3439 DOI: 10.1038/ncomms3439
      133. 133
        Popczun, E. J.; McKone, J. R.; Read, C. G.; Biacchi, A. J.; Wiltrout, A. M.; Lewis, N. S.; Schaak, R. E. J. Am. Chem. Soc. 2013, 135, 9267 9270 DOI: 10.1021/ja403440e
      134. 134
        Jiang, P.; Liu, Q.; Liang, Y.; Tian, J.; Asiri, A. M.; Sun, X. Angew. Chem., Int. Ed. 2014, 53, 12855 12859 DOI: 10.1002/anie.201406848
      135. 135
        Popczun, E. J.; Read, C. G.; Roske, C. W.; Lewis, N. S.; Schaak, R. E. Angew. Chem., Int. Ed. 2014, 53, 5427 5430 DOI: 10.1002/anie.201402646
      136. 136
        Smith, R. D. L.; Prévot, M. S.; Fagan, R. D.; Zhang, Z.; Sedach, P. A.; Siu, J. M. K.; Trudel, S.; Berlinguette, C. P. Science 2013, 340, 60 63 DOI: 10.1126/science.1233638
      137. 137
        Gong, M.; Li, Y.; Wang, H.; Liang, Y.; Wu, J. Z.; Zhou, J.; Wang, J.; Regier, T.; Wei, F.; Dai, H. J. Am. Chem. Soc. 2013, 135, 8452 8455 DOI: 10.1021/ja4027715
      138. 138
        Gong, M.; Zhou, W.; Tsai, M. C.; Zhou, J.; Guan, M.; Lin, M. C.; Zhang, B.; Hu, Y.; Wang, D. Y.; Yang, J.; Pennycook, S. J.; Hwang, B. J.; Dai, H. Nat. Commun. 2014, 5, 5695 DOI: 10.1038/ncomms5695
      139. 139
        Suntivich, J.; May, K. J.; Gasteiger, H. A.; Goodenough, J. B.; Shao-Horn, Y. Science 2011, 334, 1383 1385 DOI: 10.1126/science.1212858
      140. 140
        Wei, C.; Feng, Z.; Scherer, G. G.; Barber, J.; Shao-Horn, Y.; Xu, Z. J. Adv. Mater. 2017, 29, 1606800 DOI: 10.1002/adma.201606800
      141. 141
        Kanan, M. W.; Nocera, D. G. Science 2008, 321, 1072 1075 DOI: 10.1126/science.1162018
      142. 142
        Lutterman, D. A.; Surendranath, Y.; Nocera, D. G. J. Am. Chem. Soc. 2009, 131, 3838 3839 DOI: 10.1021/ja900023k
      143. 143
        Dinca, M.; Surendranath, Y.; Nocera, D. G. Proc. Natl. Acad. Sci. U. S. A. 2010, 107, 10337 10341 DOI: 10.1073/pnas.1001859107
      144. 144
        Kuang, Y.; Jia, Q.; Ma, G.; Hisatomi, T.; Minegishi, T.; Nishiyama, H.; Nakabayashi, M.; Shibata, N.; Yamada, T.; Kudo, A.; Domen, K. Nat. Energy 2016, 2, 16191 DOI: 10.1038/nenergy.2016.191
      145. 145
        Shinagawa, T.; Ng, M. T.-K.; Takanabe, K. Angew. Chem., Int. Ed. 2017, 56, 5061 5065 DOI: 10.1002/anie.201701642
      146. 146
        Shinagawa, T.; Takanabe, K. J. Phys. Chem. C 2016, 120, 24187 24196 DOI: 10.1021/acs.jpcc.6b07954
      147. 147
        Electrochemistry, 2nd ed.; Hamann, C. H.; Hamnett, A.; Vielstich, W., Eds.; Wiley-VCH: Weinheim, 2007; pp 397 438.
      148. 148
        Kato, H.; Asakura, K.; Kudo, A. J. Am. Chem. Soc. 2003, 125, 3082 3089 DOI: 10.1021/ja027751g
      149. 149
        Sakata, Y.; Matsuda, Y.; Nakagawa, T.; Yasunaga, R.; Imamura, H.; Teramura, K. ChemSusChem 2011, 4, 181 184 DOI: 10.1002/cssc.201000258
      150. 150
        Shinagawa, T.; Garcia-Esparza, A. T.; Takanabe, K. ChemElectroChem 2014, 1, 1497 1507 DOI: 10.1002/celc.201402085
      151. 151
        Subbaraman, R.; Tripkovic, D.; Chang, K. C.; Strmcnik, D.; Paulikas, A. P.; Hirunsit, P.; Chan, M.; Greeley, J.; Stamenkovic, V.; Markovic, N. M. Nat. Mater. 2012, 11, 550 557 DOI: 10.1038/nmat3313
      152. 152
        Yang, J.; Cooper, J. K.; Toma, F. M.; Walczak, K. A.; Favaro, M.; Beeman, J. W.; Hess, L. H.; Wang, C.; Zhu, C.; Gul, S.; Yano, J.; Kisielowski, C.; Schwartzberg, A.; Sharp, I. D. Nat. Mater. 2017, 16, 335 341 DOI: 10.1038/nmat4794
      153. 153
        Seitz, L. C.; Chen, Z.; Forman, A. J.; Pinaud, B. A.; Benck, J. D.; Jaramillo, T. F. ChemSusChem 2014, 7, 1372 1385 DOI: 10.1002/cssc.201301030
      154. 154
        Maeda, K.; Teramura, K.; Lu, D.; Saito, N.; Inoue, Y.; Domen, K. Angew. Chem., Int. Ed. 2006, 45, 7806 7809 DOI: 10.1002/anie.200602473
      155. 155
        Maeda, K.; Domen, K. Top. Curr. Chem. 2011, 303, 95 119 DOI: 10.1007/128_2011_138
      156. 156
        Yoshida, M.; Takanabe, K.; Maeda, K.; Ishikawa, A.; Kubota, J.; Sakata, Y.; Ikezawa, Y.; Domen, K. J. Phys. Chem. C 2009, 113, 10151 10157 DOI: 10.1021/jp901418u
      157. 157
        Qureshi, M.; Shinagawa, T.; Tsiapis, N.; Takanabe, K. ACS Sustainable Chem. Eng. 2017, 5, 8079 8088 DOI: 10.1021/acssuschemeng.7b01704
      158. 158
        Garcia-Esparza, A. T.; Shinagawa, T.; Ould-Chikh, S.; Qureshi, M.; Peng, X.; Wei, N.; Anjum, D. H.; Clo, A.; Weng, T.-C.; Nordlund, D.; Sokaras, D.; Kubota, J.; Domen, K.; Takanabe, K. Angew. Chem., Int. Ed. 2017, 56, 5780 5784 DOI: 10.1002/anie.201701861
      159. 159
        Pan, C.; Takata, T.; Nakabayashi, M.; Matsumoto, T.; Shibata, N.; Ikuhara, Y.; Domen, K. Angew. Chem., Int. Ed. 2015, 54, 2955 2959 DOI: 10.1002/anie.201410961
      160. 160
        Yoshida, M.; Maeda, K.; Lu, D.; Kubota, J.; Domen, K. J. Phys. Chem. C 2013, 117, 14000 14006 DOI: 10.1021/jp402240d
      161. 161
        Hisatomi, T.; Maeda, K.; Takanabe, K.; Kubota, J.; Domen, K. J. Phys. Chem. C 2009, 113, 21458 21466 DOI: 10.1021/jp9079662
      162. 162
        Maeda, K.; Xiong, A.; Yoshinaga, T.; Ikeda, T.; Sakamoto, N.; Hisatomi, T.; Takashima, M.; Lu, D.; Kanehara, M.; Setoyama, T.; Teranishi, T.; Domen, K. Angew. Chem., Int. Ed. 2010, 49, 4096 4099 DOI: 10.1002/anie.201001259
      163. 163
        Townsend, T. K.; Browning, N. D.; Osterloh, F. E. Energy Environ. Sci. 2012, 5, 9543 9550 DOI: 10.1039/c2ee22665k
      164. 164
        Takanabe, K. In Nanotechnology in Catalysis: Applications in the Chemical Industry, Energy Development, and Environment Protection; Sels, B.; Voorde, M. V., Eds.; Wiley-VCH: Weinheim, 2017; pp 891 906.
      165. 165
        Rajeshwar, K. J. Phys. Chem. Lett. 2011, 2, 1301 1309 DOI: 10.1021/jz200396h
      166. 166
        Atkins, P.; Paula, J. D. Atkins’ Physical Chemistry, 10th ed.; W. H. Freeman and Company: New York, 2014.
      167. 167
        Shinagawa, T.; Takanabe, K. J. Power Sources 2015, 287, 465 471 DOI: 10.1016/j.jpowsour.2015.04.091
      168. 168
        Haynes, W. M.; Lide, D. R. Handbook of Chemistry and Physics, 92nd ed.; CRC Press: Boca Raton, FL, 2011.
      169. 169
        Jin, J.; Walczak, K.; Singh, M. R.; Karp, C.; Lewis, N. S.; Xiang, C. Energy Environ. Sci. 2014, 7, 3371 3380 DOI: 10.1039/C4EE01824A
      170. 170
        Chabi, S.; Papadantonakis, K. M.; Lewis, N. S.; Freund, M. S. Energy Environ. Sci. 2017, 10, 1320 1338 DOI: 10.1039/C7EE00294G
      171. 171
        Kutz, R. B.; Chen, Q.; Yang, H.; Sajjad, S. D.; Liu, Z.; Masel, I. R. Energy Technol. 2017, 5, 929 936 DOI: 10.1002/ente.201600636
      172. 172
        Klingan, K.; Ringleb, F.; Zaharieva, I.; Heidkamp, J.; Chernev, P.; Gonzalez-Flores, D.; Risch, M.; Fischer, A.; Dau, H. ChemSusChem 2014, 7, 1301 1310 DOI: 10.1002/cssc.201301019
      173. 173
        Shinagawa, T.; Takanabe, K. ChemSusChem 2017, 10, 1318 1336 DOI: 10.1002/cssc.201601583
      174. 174
        Shinagawa, T.; Ng, M. T.-K.; Takanabe, K. ChemSusChem, DOI:  DOI: 10.1002/cssc.201701266 .
      175. 175
        Dionigi, F.; Vesborg, P. C. K.; Pedersen, T.; Hansen, O.; Dahl, S.; Xiong, A.; Maeda, K.; Domen, K.; Chorkendorff, I. Energy Environ. Sci. 2011, 4, 2937 2942 DOI: 10.1039/c1ee01242h
      176. 176
        Esposito, D. V.; Lee, Y.; Yoon, H.; Haney, P. M.; Labrador, N. y.; Moffat, T. P.; Talin, A. A.; Szalai, V. A. Sustainable Energy Fuels 2017, 1, 154 173 DOI: 10.1039/C6SE00073H
      177. 177
        Chen, Z.; Jaramillo, T. F.; Deutsch, T. G.; Kleiman-Shwarsctein, A.; Forman, A. J.; Gaillard, N.; Garland, R.; Takanabe, K.; Heske, C.; Sunkara, M.; McFarland, E. W.; Domen, K.; Miller, E. L.; Turner, J. A.; Dinh, H. N. J. Mater. Res. 2010, 25, 3 16 DOI: 10.1557/JMR.2010.0020
      178. 178
        van de Krol, R.; Grätzel, M. Photoelectrochemical Hydrogen Production; Springer: Berlin, 2012.
      179. 179
        Nurlaela, E.; Ziani, A.; Takanabe, K. Mater. Renew. Sustainable Energy 2016, 5, 18 DOI: 10.1007/s40243-016-0083-z
      180. 180
        Nurlaela, E.; Ould-Chikh, S.; Harb, M.; del Gobbo, S.; Aouine, M.; Puzenat, E.; Sautet, P.; Domen, K.; Basset, J.-M.; Takanabe, K. Chem. Mater. 2014, 26, 4812 4825 DOI: 10.1021/cm502015q
      181. 181
        Ziani, A.; Nurlaela, E.; Dhawale, D. S.; Silva, D.; Alarousu, E.; Mohammed, O. F.; Takanabe, K. Phys. Chem. Chem. Phys. 2015, 17, 2670 2677 DOI: 10.1039/C4CP05616G
      182. 182
        Nurlaela, E.; Wang, H.; Shinagawa, T.; Flanagan, S.; Ould-Chikh, S.; Qureshi, M.; Mics, Z.; Sautet, P.; Le Bahers, T.; Cánovas, E.; Bonn, M.; Takanabe, K. ACS Catal. 2016, 6, 4117 4126 DOI: 10.1021/acscatal.6b00508
      183. 183
        de Respinis, M.; Fravventura, M.; Abdi, F. F.; Schreuders, H.; Savenije, T. J.; Smith, W. A.; Dam, B.; van de Krol, R. Chem. Mater. 2015, 27, 7091 7099 DOI: 10.1021/acs.chemmater.5b02938
      184. 184
        Vequizo, J. J. M.; Hojamberdiev, M.; Teshima, K.; Yamakata, A. J. Photochem. Photobiol., A 2017,  DOI: 10.1016/j.jphotochem.2017.09.005
      185. 185
        Xing, Z.; Zong, X.; Pan, J.; Wang, L. Chem. Eng. Sci. 2013, 104, 125 146 DOI: 10.1016/j.ces.2013.08.039
      186. 186
        Setoyama, T.; Takewaki, T.; Domen, K.; Tatsumi, T. Faraday Discuss. 2017, 198, 509 527 DOI: 10.1039/C6FD00196C
      187. 187
        Singh, M. R.; Xiang, C.; Lewis, N. S. Sustain. Energy Fuels 2017, 1, 458 466 DOI: 10.1039/C7SE00062F
      188. 188
        Pinaud, B. A.; Benck, J. D.; Seitz, L. C.; Forman, A. J.; Chen, Z.; Deutsch, T. G.; James, B. D.; Baum, K. N.; Baum, G. N.; Ardo, S.; Wang, H.; Miller, E.; Jaramillo, T. F. Energy Environ. Sci. 2013, 6, 1983 2002 DOI: 10.1039/c3ee40831k
      189. 189
        Hisatomi, T.; Miyazaki, K.; Takanabe, K.; Maeda, K.; Kubota, J.; Sakata, Y.; Domen, K. Chem. Phys. Lett. 2010, 486, 144 146 DOI: 10.1016/j.cplett.2010.01.006
      190. 190
        Hisatomi, T.; Maeda, K.; Takanabe, K.; Kubota, J.; Domen, K. J. Phys. Chem. C 2009, 113, 21458 21466 DOI: 10.1021/jp9079662

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect

    This website uses cookies to improve your user experience. By continuing to use the site, you are accepting our use of cookies. Read the ACS privacy policy.

    CONTINUE