Catalysis Database

Boronation of Biomass-Derived Materials for Hydrogen Storage

Andrea Lazzarini, Andrea Lazzarini and Alessia Marino, Alessia Marino and Roberta Colaiezzi, Roberta Colaiezzi and Oreste De Luca, Oreste De Luca and Giuseppe Conte, Giuseppe Conte and Alfonso Policicchio, Alfonso Policicchio and Alfredo Aloise, Alfredo Aloise and Marcello Crucianelli, Marcello Crucianelli (2023) Boronation of Biomass-Derived Materials for Hydrogen Storage. Compounds, 3, . 244-279..

[img] PDF - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
2MB

Abstract

Abstract: In spite of the widespread range of hydrogen applications as one of the greenest energy vectors, its transportation and storage still remain among the main concerns to be solved in order to definitively kickstart a rapid takeoff of a sustainable H2 economy. The quest for a simple, efficient, and highly reversible release storage technique is a very compelling target. Many studies have been undertaken to increase H2 storage efficiency by exploiting either chemisorption or physisorption processes, or through entrapment on different porous solid materials as sorbent systems. Among these, biomass-derived carbons represent a category of robust, efficient, and low-cost materials. One question that is still open-ended concerns the correlation of H2 uptake with the kind and number of heteroatoms as dopant of the carbonaceous sorbent matrix, such as boron, aiming to increase whenever possible bonding interactions with H2. Furthermore, the preferred choice is a function of the type of hydrogen use, which may involve a short- or long-term storage option. In this article, after a brief overview of the main hydrogen storage methods currently in use, all the currently available techniques for the boronation of activated carbonaceous matrices derived from recycled biomass or agricultural waste are discussed, highlighting the advantages and drawbacks of each of them. Keywords: hydrogen uptake; green economy; activated carbons;

Item Type:Article
Subjects:Q Science > QD Chemistry
ID Code:3925
Deposited By: Prof Viswanathan B
Deposited On:16 Mar 2023 08:53
Last Modified:16 Mar 2023 08:53

Repository Staff Only: item control page