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ABSTRACT: In this work, we show using density functional
theory calculations that controlling the spin state of the surface of
magnetic metals has a substantial effect on their chemical
properties. For a range of adsorbates, the adsorption energy is
shown to be stronger on non-spin polarized surfaces than on spin
polarized ground state surfaces. This is true for Fe, Co, and Ni
surfaces, and the result is the same for three commonly used
exchange−correlation functionals. We further discuss the origin of
the effect in terms of the surface electronic structure and show that
a simple model based on the d-band model of adsorption can
explain the effect. Finally, we discuss how spin effects may be used
to control surface reactivity and provide guidance on how to alter
the surface spin state, e.g., adding a metal promotor.
KEYWORDS: spin effect, d-band model, surface spin state, reactivity, promoter

■ INTRODUCTION
Ammonia synthesis catalysts are usually promoted by the
addition of alkali metals.1−6 This effect has been explained as
primarily stemming from an electrostatic interaction between
the partially ionized alkali adsorbate and different intermedi-
ates�the slightly negatively charged transition state for N2
dissociation is stabilized, whereas adsorbed NHx intermediates
with an opposite dipole moment are destabilized. The former
increases the rate of N2 dissociation, while the latter effect
decreases the coverage of intermediates blocking N2
dissociation.7−9 There has, however, been some remarkable
data in the literature that cannot be explained that way. This
includes the finding that a Ba promoted Co catalyst can have
rates of ammonia synthesis higher than the usual Fe or Ru
based catalysts in spite of the fact that Co by itself is quite
unreactive for this process.10,11 It also includes several recent
findings that Li, Ca, La, and Ce can act as efficient
promotors.12−15

It has been suggested that the origin of the “unusual”
promotion of Co is mediated by the Co spin in the active site.9

The explanation has two steps: first, it is found that the energy
of adsorbed N and of the N2 dissociation transition state is
lower (more stable) on non-spin polarized Co than on spin
polarized Co. Second, certain adsorbed promoters like Cs, Li,
Ba, Ca, La, and Ce are found to lower the spin moment in their
vicinity, hence stabilizing the adsorbed N and N−N transition
state.

In the following, we explore the generality of this spin effect
for different transition metals and a range of different
adsorbates. We do that by calculating the difference between
adsorption energies on spin-polarized and non-spin polarized

surfaces as a measure of the strength of the spin mediated
promotion effect. The conclusion is that the effect is very
general; the effect is found on Ni, Co, and Fe surfaces and for
all adsorbates studied although the degree of the effect is
adsorbate-dependent. We also show that the effect is
independent of the exchange−correlation functional used.

■ RESULTS
Spin Effects in Adsorption Energies. To determine the

effect of the surface spin state on the adsorbate adsorption
energy, two Co(1015) surfaces with distinct spin moments,
namely, spin (ground state spin moment) and non-spin
polarized were introduced for comparison. Here, non-spin
polarized results have been obtained by setting the spin to zero
on all Co atoms in the system and recalculating the lattice
constant. Computational details can be found in the Methods
section as shown in the Supporting Information.

Figure 1a shows that the CO adsorption energy on non-spin
polarized Co is stronger than that on the spin polarized Co,
suggesting that decreasing the spin moment of Co atoms can
increase the affinity for CO adsorption. Figure 1b shows that
the N bonding to spin polarized Co becomes relatively
stronger at high coverage (>0.5ML) as a result of the fact that
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already adsorbed N reduces the spin moment of Co surface
atoms in the vicinity.16 Moreover, the effect on Co is found to
be independent of the adsorption site and employed functional
(Figure 1c,d). As a main result, Figure 1e shows that there is a
spin effect on the adsorption energy for a broad range of
adsorbates.

We also find a spin effect on the adsorption energy on other
magnetic 3d transition metals (Ni and Fe). Although the
adsorption energy difference between spin and non-spin
polarized surfaces is different for various adsorbates, all
adsorbates studied in Figure 2 showed a stronger bonding to

non-spin-polarized surfaces than to the ground state magnetic
phase. We further found that, both for adsorbed N and the N2

dissociation transition state, the adsorption energy difference
between spin and non-spin polarized surfaces scales well with
the spin moment of surface, as shown in Figure 3 (and Figure
S2 for other adsorbates). This is direct evidence that the
adsorption energy decreases as the spin moment decreases. A
similar effect was found in ref 9 for Co surfaces with different
promoters. Others have found similar effects for selected
adsorbates using model Hamiltonians.17

Figure 1. Spin effect on the adsorption energy on Co surfaces. (a) Potential energy diagram for the chemisorption of CO in the top site of a spin
polarized and non-spin polarized HCP Co(1015) surface (surface structures in Figure S1). The potential energy is shown as a function of the
distance between the outermost Co surface layer and the C atom of CO. (b) Energy difference (spin polarized minus non-spin polarized surface) in
N adsorption as a function of coverage on Co(1015). 1ML represents full coverage of N atoms in face-centered cubic (fcc) sites along the step. The
order of N adsorption is illustrated in the inset, where red and green spheres represent Co and N atom, respectively. (c,d) Energy difference in N
adsorption as a function of the adsorption site and applied exchange−correlation functional. (e) Energy difference for various adsorbates at the
most stable adsorption sites on Co(1015).
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Note that the above calculations were performed on the
stepped surfaces, which is considered to be the active sites for
many thermal reactions, such as ammonia synthesis and18

methanol synthesis for CO/CO2 hydrogenation.19 Also, we
have confirmed that the spin effect exists on the terraced metal
surfaces (Table S1). We therefore conclude that the spin effect
on magnetic metals is quite general.

Origin of Spin Effects. We now move to explore why the
spin state of surface has such a substantial impact on the
adsorbate chemisorption energy. One simple way to rationalize
the effect is based on the d-band model.20−23 It is found quite
generally that variations in adsorbate chemisorption energies

over various metals are correlated to variations in the metal d-
band center�the higher the d bands are in energy relative to
the Fermi level, the stronger the bond. We illustrate that in
Figure 4a for N adsorption on the 3d series (and for C, O, H,
and S adsorption in Figure S3). The rationale is that the higher
in energy the d states, the higher in energy the antibonding
adsorbate-metal d states are, and hence the more the
antibonding states are shifted above the Fermi level and
become unoccupied. The results in Figure 4a (and Figure S3)
are for non-spin polarized surfaces. To estimate the adsorption
energy of the spin polarized surfaces, we take the average of the
adsorption energy corresponding to the d-band center for the

Figure 2. Spin effect on Ni and Fe. The chemisorption energy difference for various adsorbates at the most stable adsorption sites between spin and
non-spin polarized fcc Ni(211) and body-centered cubic Fe(211) surfaces.

Figure 3. Relations between spin moment and adsorption energy difference. The chemisorption energy difference for the N adsorbate (N*) and N2
transition state (N−N*) as a function of the spin moment on metals. The yellow point means the spin moment is zero, where the adsorption
energy difference is zero.
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spin up and spin down states as illustrated in Figure 4b−d for
Co, Ni, and Fe. Since the dependence of the adsorption energy
on the d-band center has a positive curvature, the adsorption
energy on the spin polarized surface is higher (less bonding)
than on the non-spin polarized surface in agreement with the
full density functional theory (DFT) calculations (details in

Figure S7). The trend that the spin effect varies in the order Fe
> Co > Ni is well reproduced by the simple d-band model and
even the absolute magnitude of the spin effect is quite well
described.

The remaining question is what is the origin of the non-
linear behavior in Figure 4a. We note first that the range of d

Figure 4. Non-linear relationship between chemisorption energy and d-band center. (a) Calculated N binding energy on the stepped surface of the
3d transition metals shown as a function of the d-band center on the pristine surface. (b−d) explanation for the weak adsorption of N on spin
polarized Co, Ni, and Fe surfaces (details in Figures S3−S8 and Tables S2,S3).

Figure 5. Origin of the non-linear behavior between adsorption energy and d band center. (a) Projected density of states (DOS) for N atomically
chemisorbed on the step surface of Cu, Co, and V. The DOS is projected onto the atomic N 2p state (red line). The surface d band DOS of metal
atoms at the N adsorption sites are shown for comparison (blue line). The peaks of N 2p anti-bonding states are indicated by wide arrows. Dashed
lines represent the Fermi level. As indicated by the gray shade, only states below the Fermi energy (which is the energy zero in all cases) are filled.
(b) Scheme of the relations between the d-band center and the filling of the antibonding state of N.

ACS Catalysis pubs.acs.org/acscatalysis Research Article

https://doi.org/10.1021/acscatal.2c06319
ACS Catal. 2023, 13, 3456−3462

3459

https://pubs.acs.org/doi/suppl/10.1021/acscatal.2c06319/suppl_file/cs2c06319_si_001.pdf
https://pubs.acs.org/doi/10.1021/acscatal.2c06319?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acscatal.2c06319?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acscatal.2c06319?fig=fig4&ref=pdf
https://pubs.acs.org/doi/suppl/10.1021/acscatal.2c06319/suppl_file/cs2c06319_si_001.pdf
https://pubs.acs.org/doi/10.1021/acscatal.2c06319?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acscatal.2c06319?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acscatal.2c06319?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acscatal.2c06319?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acscatal.2c06319?fig=fig5&ref=pdf
pubs.acs.org/acscatalysis?ref=pdf
https://doi.org/10.1021/acscatal.2c06319?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


band centers is quite large, spanning from the coinage metal
Cu to the early transition metal V. In the mid-range, the
variation of adsorption energy with εd is relatively linear, but
two regions stand out, the highest and the lowest values of εd.
Note that our point about the dependence being linear in the
mid-range just reflects that any curve is well described by the
first derivative in a narrow range and refers to the fact that
most studies24−27 of the d-band model have indeed considered
a fairly narrow range of d band energies and hence found an
approximately linear dependence. Qualitatively, the non-linear
behavior can be understood as follows.

For the coinage metals, εd is so low that the d bands are
completely full and the antibonding states formed between the
adsorbate states and the d states are almost filled (Figure 5).
This means that the εd dependence becomes weaker (when all
d states are well below the Fermi level, all antibonding states
are also well below the Fermi level and the d center
dependence vanishes). For the highest values of εd
corresponding to the early transition metals (like V), the d
states are so high in energy that the antibonding adsorbate/d
states become more and more empty, and again, the εd
dependence gradually disappears. It is the latter effect that
gives the curvature in Figures 4a and S3 that leads to the
weaker adsorption on the spin polarized surfaces. Or to put it
differently: the up-shift of the minority-spin (spin down) metal
d states does not give as enough extra bonding to compensate
for the weaker bonding due to the down-shift of the majority-
spin (spin up) d states relative to the non-spin polarized case.

■ DISCUSSION
We note that surface spin states have been discussed
extensively in connection with electrocatalysis.28−30 For
example, Cu doped NiFe-layered double hydroxides were
suggested to be an excellent oxygen evolution reaction (OER)
catalyst due to the regulation of Cu2+ to the spin states of the
Fe3+ sites.31 The addition of V into Co3O4 also shows superior
performance for oxygen reduction reaction (ORR) compared
to pure Co3O4, as a result of the Co2+ cations at the octahedral
sites taking the lower spin state (with one eg filled) than that in
the pure Co3O4.

32 The influence of the spin polarization on
ORR activity is explicitly reflected in the case of single atom
catalysts, because the spin state of the metal center can be
directly tuned by the coordination environment.33,34 Similarly,
for alkaline water electrolysis, the activity is significantly
enhanced for NiZnFe4Ox oxide when a moderate magnetic
field is applied to the anode.35 The corresponding working
mechanism of spin polarization on OER and ORR has been
well studied by Shao-Horn et al.36,37 and Gracia.38,39 These
effects are outside the scope of the present paper, which
focusses only on transition metal surfaces, but they could very
possibly be understood in the same general scheme.

The adsorption energy of key reaction intermediates to the
catalyst surface has been widely used as a descriptor to capture
trends in the activity of the catalyst with a volcano-type plot.
For example, the adsorption energy of OH*/H*/N*/HCOO*
has a strong correlation with the activities of the ORR,40 the
hydrogen evolution reaction (HER),41 N2 reduction,42 and

Figure 6. Spin effect promoted the activity of ammonia synthesis. Two-dimensional activity heatmap describing the steady-state time-of-flight to
NH3 as a function of N2 transition-state energy (EN−N) and N2 dissociation energy (2EN), computed at a temperature of 673 K, a stoichiometric
ratio of H2 to N2 (3:1), a total pressure of 1 bar, corresponding to 0.2% of N2 conversion respectively. Two scaling lines are shown (upper dashed
black corresponding to stepped transition metal surfaces and lower dashed black line corresponding to the ideal limit). The left configurations show
the adsorption structure of N* and N−N TS on Ba promoted Co catalyst, where metallic Ba is adsorbed on the Co(1015) surface. Pink, green, and
blue spheres represent Co, Ba, and N atoms, respectively. The purple spheres around Ba means the degree of spin moment change, where the
darker the purple color, the larger the spin moment drop. Note that, we only show the spin moment change on Co atoms at the adsorption site of
N and N−N TS. Detailed spin moment change is shown in Figure S9.
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CO2 electro-reduction.43 Consequently, a change in the
adsorption energy of the descriptor will cause an alteration
in the catalytic activity. According to Figures 1−3, the spin
state of the metal surface has a significant impact on the
adsorption energy of the adsorbate. The spin effect is therefore
likely to control the reactivity of many reactions.

The spin effect provides a strategy to drive the activity of
magnetic catalysts toward the tip of the volcano plot, by
optimizing the binding energy between the reaction
intermediates and the catalyst via tuning the surface spin
state. As an example, consider the rate of ammonia synthesis
on different stepped metal surfaces. The transition state energy
for N2 dissociation scales with the N adsorption energy, as
shown in Figure 6. Here, we also include the rate of ammonia
synthesis as a contour plot calculated in a mean field kinetic
model44 using the scaling relations found for all intermediates
as a function of the N adsorption energy. It can be seen that Ru
and Fe have the highest rates, whereas ground state magnetic
Co has a considerably lower rate in agreement with
experimental data.10,45 If we could make non-spin-polarized
Co, on the other hand, it should be comparable to Ru in
ammonia synthesis activity according to the present model.

It is worth noting that the adsorption energy of various
adsorbates is affected by the surface spin state to a varying
degree, that is, some adsorbates are spin-sensitive while others
are less so. The effect, for example, is up to 0.8 eV for N and
quite small ∼0.1 eV for H (Figures 1e and 2). It suggests that
the spin effect over magnetic metal catalysts is evident for
ammonia synthesis, while it is suggested to be marginal for
HER.

The fact that the spin effect affects different adsorbates
differently can be used to break the scaling relations,
particularly for reactions that require two descriptors and in
which the two descriptors behave differently in response to the
surface spin state, such as C and O.46 In addition, change in
the surface spin of a magnetic surface due to another adsorbate
(promoter) is not uniform and hence may affect, e.g., the N2
dissociation transition state more than the final state N
adsorption. This breaking of the pure metal scaling relation is
what makes Ba promoted Co considerably better than un-
promoted Fe or Ru for ammonia synthesis; see Figure 6. As
shown in Figure S9, electrons will transfer from the Ba
promoter to the Co surface and then set up an electrostatic
effect. In addition, the spin moment of Co atoms that around
the Ba promoter was also reduced and then induced a spin
effect.

We suggest that there may be additional interesting
opportunities in using the tuning of surface spin in catalyst
design.
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