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Challenges to developing materials for the 
transport and storage of hydrogen
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Hydrogen has the highest gravimetric energy density of any energy carrier 
and produces water as the only oxidation product, making it extremely 
attractive for both transportation and stationary power applications. 
However, its low volumetric energy density causes considerable difficulties, 
inspiring intense efforts to develop chemical-based storage using metal 
hydrides, liquid organic hydrogen carriers and sorbents. The controlled 
uptake and release of hydrogen by these materials can be described as a 
series of challenges: optimal properties fall within a narrow range, can only 
be found in few materials and often involve important trade-offs. In addition, 
a greater understanding of the complex kinetics, mass transport and 
microstructural phenomena associated with hydrogen uptake and release 
is needed. The goal of this Perspective is to delineate potential use cases, 
define key challenges and show that solutions will involve a nexus of several 
subdisciplines of chemistry, including catalysis, data science, nanoscience, 
interfacial phenomena and dynamic or phase-change materials.

Hydrogen has the highest gravimetric energy density of any energy 
carrier — with a lower heating value (LHV) of 120 MJ kg−1 at 298 K versus 
44 MJ kg−1 for gasoline — and produces only water when used to power a 
fuel cell. As an energy vector, it is also scalable, creating opportunities 
when alternatives are too expensive, too heavy or have insufficient 
capacity. Realizing this powerful approach to decarbonizing the energy 
economy will require its transport and storage in the form of chemical 
bonds1. Hydrogen-rich compounds can serve as a storage medium 
for both mobile and stationary applications, but can also address the 
intermittency of renewable power sources where large-scale energy 
storage for extended time periods is needed. However, the require-
ments of stationary use cases are very different from those of trans-
portation (Table 1)2–4.

Recent analysis indicates that the slow pace of infrastructure devel-
opment for hydrogen transport and storage is affecting its economics 
and consumer appeal2. A major barrier is the low hydrogen volumetric 
energy density, which is 27 gH2 l−1 at the 700-bar pressure used in com-
mercially available fuel cell electric vehicles. This falls short of the 
50 gH2 l−1 ultimate target set by the US Department of Energy (DOE) 

for light-duty vehicles5. Although cryo-compressed hydrogen has a 
higher value (44 gH2 l−1), it is uneconomical for some applications6. 
Consequently, material-based storage is essential if both mobile and 
stationary use cases are to be realized.

Thermodynamically, hydrogen storage is a classic 'Goldilocks 
challenge', in which the optimal Gibbs free energy change (ΔG°) for 
practical applications falls within a narrow range and achieving it 
may necessitate trade-offs with other properties. Hydrogen release 
and uptake at moderate temperatures and pressures require a low 
absolute value of ΔG°, but enthalpy considerations have dominated 
material design. Dehydrogenation enthalpies (ΔH°) of 15–25 kJ molH2

−1 
maximize the sorbent deliverable capacity at ambient temperature7, 
whereas modelling suggests that ΔH° ≅ 27 kJ molH2

−1 is optimal to allow 
desorption from metal hydrides using only residual heat from a fuel 
cell8. Consequently, optimal chemistries for storage under ambient 
conditions fall into an energy no-man’s land: hydrogen-binding ener-
gies are either too strong (complex metal hydrides, small molecules 
such as NH3, and liquid hydrocarbons) or too weak (sorbents). Com-
plicating the issue is the wide range of dehydrogenation entropies, 
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undesirable reaction conditions to store, release or regenerate the 
material. In contrast, kinetic barriers are often rate limiting for LOHCs 
and complex metal hydrides, requiring new strategies to enable H2 
release/uptake under practical conditions. Moreover, high selectivity 
for X–H bond activation (where X = C, N, B, O or metal) is essential to 
avoid kinetic sinks and control hydrogen purity. Consequently, material 
development must start with the use case requirements rather than 
simply the theoretical maximum hydrogen capacity.

LOHCs
LOHCs—small organic molecules that are liquid under ambient condi-
tions and can be reversibly hydrogenated and dehydrogenated, such 
as methanol, formic acid or cycloalkanes—are attractive because they 
are readily adapted to existing infrastructure. Recent reviews discuss 
their benefits and efforts to develop effective catalysts for their hydro-
genation and dehydrogenation14,29–32. Here, we consider the specific 
demands (power, energy, hydrogen capacity and average dehydroge-
nation rate) for various use cases (Table 1) and propose optimal LOHC 
physiochemical properties (Supplementary Table 2). To define these, 
we considered the efficiency of H2 release and regeneration, transport, 
storage, handling, separations and purification, as well as reaction rates 
and mass transport limits for catalysed H2 release and regeneration. 
Thus, not only basic thermodynamics and kinetics must be considered, 
but also properties such as the melting point, vapour pressure, viscos-
ity, reversibility and conversion.

In general, LOHCs having only liquid-phase dehydrogenated prod-
ucts facilitate the use of existing infrastructure and avoid the transport 
and capture of gas-phase species such as CO2 and CO. However, this cre-
ates a conflict, as the desirable reaction thermodynamics cause other 
physical properties to be suboptimal. A low melting point (<−20 °C) 
and vapour pressure (<0.01 atm at 50 °C), for example, facilitate H2 
separation (>99% pure H2 is achievable using a simple air condenser), 
while low viscosity reduces the pumping requirements, but these 
properties are frequently in opposition. Comparing methylcyclohex-
ane with other LOHCs provides a useful illustration. Although the H2 
content of methylcyclohexane (47 kgH2 m−3) is less than that of decalin 
or cyclohexane, it is nevertheless >50% higher than 250-bar compressed 

ΔS°9,10, which are often approximated as 8R (that is, 66.5 J mol−1 K−1, 
where R is the gas constant) for sorbents9 and 130.7 J mol−1 K−1 (gase-
ous H2) for metal hydrides, probably because it is difficult to predict 
and structure–property relationships are lacking. As will be evident 
below, however, thermodynamics is only one of several hydrogen 
storage challenges.

In this Perspective, we assess the primary challenges within the 
major storage material classes: liquid organic hydrogen carriers 
(LOHC)11–14, metal hydrides (both bulk15 and nanoscale16); and metal–
organic framework adsorbents (MOFs)7. The chemical challenges are 
defined in part by engineering considerations, which are in turn set 
by application-specific energy and power requirements (Table 1). For 
example, the development of robust catalysts to meet H2 release rates 
for specific use cases must take into account the practical limitations 
of industrial reactors. It is also clear that surmounting the challenges 
facing practical hydrogen storage will engage subdisciplines on the 
forefront of chemistry: single-site17, electrochemical11 and homoge-
neous18,19 catalysis; nanoscale and chemical confinement effects16,20; 
reactions at buried interfaces21; quantum chemistry of weak interac-
tions7,22; sorption at strong binding sites23,24; dynamic or phase-change 
sorbents25–27; and machine learning and data science10,28.

Hydrogen use cases
Although hydrogen has long been recognized as a versatile energy 
carrier, much of the research has focused on transportation, driven 
by detailed US DOE technical targets (Fig. 1)5. For the many other use 
cases (Table 1), such targets do not exist. For example, compensating 
for intermittent renewable energy generation is an often-cited motiva-
tion for developing reversible hydrogen storage materials, but research 
has typically focused on cross-cutting needs rather than specific use 
cases (for example, robust catalysts to enable reversible hydrogen 
release from LOHCs). The range of delivery rates (Table 1), reaction 
conditions (Supplementary Table 1) and purity requirements indi-
cate there is no one-size-fits-all material. Instead, material selection 
is typically governed by trade-offs among thermodynamics, kinetics 
and capacity. Thermodynamics typically limits the capacity of sorbents 
and main-group hydrides such as MgH2 and LiH (Fig. 2), which require 

Table 1 | Examples of use cases for hydrogen carriers, illustrating a range of power, energy, hydrogen usage and storage 
requirements

Use casea Relative size Power (MW)b Energy (MWh)c H2 usage (kg d−1)d Use duration (d)e H2 rate (kg h−1)f Basis reference

Mobile applications

 Light-duty vehicle Small 0.08 0.078 0.76 365 0.56 Ref. 5

 Long-haul truck Medium 0.24 0.8 60 365 5.4 Ref. 146

 Refuel medium-duty fleet Large 0.83 NA 1,000 365 41.7 Ref. 147

 High-speed ferry Very large 4.9 17 2,000 365 210 Ref. 148

 Regional fuel depot Extreme 41.7 NA 50,000 365 2,083 Ref. 149

Stationary applications

 Telecom backup Small 0.003 0.2 3.5 3 0.14 Ref. 150

 Seasonal microgrid storage Medium 0.027 85 39 130 1.6 Ref. 151

 International shipping Large 0.48 N/A 575 365 24 Ref. 152

 Hospital backup Large 0.59 99 709 7 29 Ref. 153

 Data centre backup Very large 20 1,440 30,000 3 1,250 Ref. 154

 Grid-scale long-duration storage Extreme 100 1,000 120,000 0.42 5,000 Ref. 155

 Steel mill DRI Extreme 250 NA 300,000 365 12,500 Ref. 45

This table shows how the number of applications under consideration has expanded dramatically from the early focus on transportation (especially light-duty vehicles) to include stationary 
(grid-scale storage), mobile energy storage (international shipping) and chemical reductant (for example, decarbonizing heavy industries such as steel production). aFor details on the basis for 
the values in the table, see the Supplementary Information (Section 1). bMaximum instantaneous power required, or that would be produced from the fuel cell. cMaximum energy or hydrogen 
storage required between refuelling events. dAverage H2 usage per day based on the yearly average. ePeriod of expected continuous operation, up to 1 year. fAverage H2 usage during operation, 
or equivalently, required dehydrogenation rate of the hydrogen storage material or carrier. DRI, direct reduced iron; NA, not applicable.
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H2 (≈17 kgH2 m−3). It is also a non-viscous liquid at −20 °C, whereas both 
cyclohexane and benzene are solid at 5 °C. These attributes are offset by 
the large enthalpy for H2 release (ΔH° ≈68 kJ mol H2

−1) and high vapour 
pressure at 50 °C, reducing H2 release efficiency and complicating 
purification.

Computational studies show that installing heter-
oatoms in the arene ring substantially reduces ΔH°33, making 
perhydro-N-ethylcarbazole (H12-NEC; 54 kgH2 m−3) of great interest. 
This molecule has both lower ΔH° (≈50 kJ molH2

−1) and lower vapour 
pressure at 50 °C, plus fast kinetics for the release and uptake of hydro-
gen. Unfortunately, the hydrogen-rich form is a solid at room tem-
perature, necessitating strategies to maintain the liquid phase by using 
additives or avoiding complete conversion34. Another computational 
study considered LOHCs with heteroatoms, suggesting that ethanola-
mine is not as stable as was previously assumed; thus, dehydrogenative 
coupling of 2-aminoethanol to form 2,5-piperazinedione has a lower 
reaction enthalpy than H12-NEC dehydrogenation35. In this case, the 
hydrogen-lean product is a solid with a melting point of >300 °C. Alco-
hols such as ethanol36, butanediol37, ethylene glycol12, 2-aminoethanol38 
and aqueous formate11,39,40 could be an alternative, balancing capacity 
against favourable liquid-phase (de)hydrogenation thermodynamics. 
However, the dehydrogenation rates are much lower than for cyclic 
alkanes. Consequently, a critical challenge is to develop catalysts and 
operating conditions for reactions that do not involve phase changes 
from liquids to solids.

The wide range of dehydrogenation rates in Table 1 underscores 
the importance of designing catalysts for specific applications. A single 
catalyst for both dehydrogenation and rehydrogenation is advanta-
geous, particularly for stationary applications. Maximizing the turnover 
frequency (TOF) has often motivated catalyst development; however, 
analysis by Weisz41,42 showed that this is not always necessary. Nev-
ertheless, trade-offs among reaction kinetics, mass transfer, reactor 
size limitations and product purity are required. The maximum rate of 
most industrial chemical processes is 1–10 mol s−1 m−3 of reactor volume 
(≈7–70 kgH2 h−1 m−3), allowing the reactor size and TOF to be estimated 
for various use cases. To illustrate, a bed of 2% Pd/C catalyst pellets with 
a density of 360 kg m−3 contains 67.7 mol m−3 Pd. A catalyst dispersion 
of 40% leads to a modest TOF of 0.37 s−1 to reach the upper limit of the 
Weisz window while minimizing the reactor size. To meet use case power 
requirements, this TOF must be the average needed to fully dehydrogen-
ate—not simply the maximum (usually initial) rate. For example, a high 
TOF of 17.5 s−1 was reported for H12-NEC dehydrogenation, but only 20% 
of the available hydrogen was released43, necessitating a fivefold larger 
storage tank than was theoretically required. Moreover, because 80% of 
the LOHC would be unreacted, transportation costs to rehydrogenation 
facilities would increase.

These constraints notwithstanding, the lack of economical, 
selective and robust (de)hydrogenation catalysts is a key barrier for 
LOHCs, regardless of application. Although precious-metal catalysts 
can dehydrogenate cycloalkanes such as methylcyclohexane44 at the 
maximum Weisz rate with acceptable selectivity and stability, they are 
probably not economically viable for medium-to-large-scale use cases 
(Table 1)45. Consequently, strategies to replace precious metals have 
focused primarily on supported metals14 such as Ni46 and bimetallics 
such as NiZn47. Alternatives are emerging, however. Homogeneous 
Ru- and Ir-based catalysts are promising for the dehydrogenation of 
N-heteroaromatics48, alcohols49 and ethylene glycol12. We uncovered 
an unexpected avenue incorporating elements of both heterogeneous 
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and homogeneous catalysts. Using Mg-MOF-74 to support undercoor-
dinated Ni2+ sites produced a catalyst that dehydrogenates alcohols 
at rates comparable to Raney nickel50. Intriguingly, several Mg MOFs 
with the IRMOF-74 topology also catalyse the hydrogenolysis of aryl 
ethers51, suggesting the possibility for reversible dehydrogenation.

Metal hydrides
Trade-offs between H2 release thermodynamics and reversible capacity 
are the primary factors when considering metal hydrides for trans-
portation, where minimizing storage system volume and weight are 
paramount. For stationary applications, gravimetric capacity is less of 
a concern, but the high usage requirements (Table 1) suggest that volu-
metric capacity will remain important. Metal hydrides excel here; their 
volumetric capacity is at least double 700-bar pressurized gas. However, 
those with the highest gravimetric capacities (Supplementary Table 1) 
also exhibit slow dehydrogenation rates due to strong M–H bonding  
(Fig. 2)16,52–64. For example, LiBH4 has a high gravimetric capacity 
(13.9 wt%H) but a very high ΔH° (72 kJ molH2

−1 at 298 K). Alternatively, 
interstitial hydrides have much lower ΔH° but low gravimetric capacity 
(for example, TiFeH2: 1.91 wt%H). Complex metal hydrides lie thermody-
namically between ionic and interstitial hydrides, but nucleation, mass 
transport or kinetic bottlenecks in borohydrides, amides and alanates 
arise due to their multistep dehydrogenation mechanisms15,16,65–67.

One strategy to surmount this challenge is to maximize ΔS° while 
minimizing ΔH°. Metal hydride thermodynamics are governed by the 
van’t Hoff equation:

ln[peq] = −ΔH∘

RT + ΔS∘
R (1)

where peq is the equilibrium vapor pressure of H2, R is the gas constant, 
and T is the temperature. The extent to which ΔH° and ΔS° can be inde-
pendently controlled is unclear65,66,68,69. The modulation of ΔH° appears 
more straightforward using new approaches such as eutectic melting70, 
microstructure-induced strain71, high-entropy metal alloying72 and 
compositional tuning73. However, strategies to independently tune 
ΔS° have not been demonstrated16,65. These may be needed to reduce 
entropy–enthalpy compensation, in which decreasing ΔH° is counter-
acted by a smaller ΔS°71,74,75. Encouragingly, we recently found using 
a machine learning model that ΔS° of high-entropy alloys is related 
to the corresponding volume change72. The material features in this 
model that best predicted ΔH° differ from those for ΔS°10,72. Coupling 
this result with the lack of a clear entropy–enthalpy correlation for 
several hydride classes (Fig. 3a and Extended Data Fig. 1) suggests that 
independent ΔS° tuning should be possible.

Another challenge for bulk metal hydrides is controlling hydro-
gen release and uptake kinetics. For complex metal hydrides, these 
seldom occur via a single-step mechanism. Two recent investigations 
demonstrate the controlling role that surface and internal interfaces 
play. First, in contrast with previous assumptions, the thin oxide layer 
on the surface of NaAlH4 particles actually facilitates H2 release rather 
than impeding it76. Second, scanning transmission X-ray microscopy 
images of partially dehydrogenated LiNH2 particles reveal core-shell 
structures that could only form if H2 release is limited by surface desorp-
tion, rather than internal hydrogen mass transport21. These conclusions 
represent a radical departure from the conventional understanding of 
metal hydride reaction chemistry, motivating a reassessment of metal 
hydride kinetics mechanisms, even for well-studied materials such as 
Ti-doped NaAlH4

77.
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exhibit a fairly strong entropy–enthalpy correlation (also see Extended 
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the surface-to-volume ratio, which alters the thermodynamics and kinetics of 
hydrogen release and uptake. Acceleration of bulk hydride reaction kinetics 
by compounds such as metal halides (additives; purple circles) is sometimes 
observed at the nanoscale. During host interactions, porous host materials with 
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(green circles) reactivity and kinetics16. The host can also accelerate reactions by 
transporting heat more efficiently than the bulk material (thermal conductivity).
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Nanoscaling to increase surface energies, destabilize interme-
diates and eliminate difficult-to-control microstructural effects is 
a promising strategy for overcoming the limitations of bulk metal 
hydrides (Fig. 3b)16. Recent computational modelling suggests that 
beyond-ideal effects should be explored to optimize nanoparticle prop-
erties, including surface anharmonic dynamics, interface and surface 
energy penalties, mechanical stress, surface oxides/hydroxides and 
disordered phases78. However, a problem can arise if entropy–enthalpy 
compensation occurs. Entropic effects are observed for nanoscale 
MgH2

54, PdHx
79 and LaNi5

80, but thermodynamics data for most 
other nanoscale hydrides are too limited to assess their importance  
(Fig. 3a). However, our statistical analysis of the available nanohydride 
data16 suggests that ΔS° and ΔH° are correlated for MgH2 and PdHx 
(Extended Data Fig. 1).

Uncoupling ΔS° of nanohydrides from ΔH° may be possible 
using material formats that strongly immobilize nanoclusters, 
thereby lowering S°nanocluster and increasing ΔS°. Assuming a nano-
cluster is least mobile when locked in the bulk crystal structure, 
S°nanocluster increases with increasing mismatch between host size and 
decreasing host–nanocluster interaction. Data for MgH2 support 
this strategy: ΔS° for bulk75 > 7-nm ball-milled75 > reduced graphene 
oxide-encapsulated (3–4 nm)71 > infiltrated porous carbon (<3 nm)81 
(133.4, 129.6, 126.3 and 117.2 J molH2

−1 K−1, respectively). Alternatively, 
if a metastable metal hydride such as LiAlH4 or AlH3 could be ther-
modynamically stabilized, the increased ΔH° could offset a low ΔS°. 
We recently achieved this for LiAlH4 and AlH3 using, respectively, 
nitrogen-doped ordered mesoporous carbon (N-doped CMK-3)82 and 
a bipyridine-functionalized covalent triazine framework as supports83. 
Surprisingly, hydrogen release is reversible in both cases.

A second, largely overlooked aspect of nanoscaling is the depend-
ence of maximum usable capacity on particle size (the usable capac-
ity is the difference in hydrogen uptake between the absorption and 
desorption conditions). As seen in a number of cases16, nanoconfine-
ment can change the behaviour of metal hydride particles compared 

with both the free-standing counterpart and the bulk as a result of 
non-innocent hosts that exhibit charge transfer with the hydride  
(Fig. 3b). Consequently, tuning the size and composition of confined 
hydride nanoparticles could be a useful tool for maximizing usable 
capacity. This effect needs to be carefully assessed by comparing the 
uptake of nanoconfined and free-standing particles for a range of both 
hydrides and host types so that design principles can be determined.

Sorbents
Extensive research on adsorbent materials has revealed that isosteric 
heats of adsorption (Fig. 2) are typically too low for non-cryogenic 
onboard vehicular storage84,85, but may not be a barrier for stationary 
applications such as refuelling stations86 (Table 1) or applications where 
the disadvantages of compressed gas or liquid H2 are prohibitive87. 
Improved thermodynamics can be achieved by incorporating strong 
binding sites, yet no existing materials have sufficient volumetric den-
sity of these to meet the demanding DOE targets for light-duty vehicles. 
Even with plentiful chemisorption sites having optimal thermodynam-
ics, inaccessible capacity in the 0–5 bar range remains problematic for 
fuel cell-related use cases88. Thus, a trifecta of fundamental chemistry 
challenges arises that must be surmounted to meet the requirements 
of many gas storage applications5.

Currently, the only adsorbents with sufficient design versatility 
are MOFs, particularly those with exposed charge density at underco-
ordinated open metal sites (OMSs) that interact strongly with H2

89. For 
example, Ni 2(m-dobdc) (where m-dobdc = 4,6-dioxido-1
,3-benzenedicarboxylate), which has a favourably low crystallographic 
volume per OMS (νOMS ≈ 0.22 nm3) and isosteric heat of adsorption 
(qst = 12.3 kJ mol−1), provides the current record usable capacity 
(11.9 g l−1; 5↔100 bar pressure swing at 298 K)24,90. Even lower 
νOMS ≈ 0.11 nm3 could be achieved if the computationally predicted 
Ni2(fuma) (where fuma = 2,3-dihydroxyfumarate) analogue can be 
synthesized91. Alternatively, CuI-MFU-4l (post-synthetic replacement 
of ZnII-Cl with CuI in [Zn5Cl4(BTDD)3], where BTDD is bis(1H-1,2,3-tria
zolo[4,5-b],[4′,5′-i])dibenzo[1,4]dioxin)) exhibits a remarkably high 
qst (32 kJ mol−1)92 but this is offset by high νOMS (0.77 nm3). Unfortu-
nately, only one known MOF has the optimal binding strength, but 
again its νOMS is too large93,94. This begs the question: ‘Can DOE targets 
be met solely by minimizing νOMS and optimizing qst in a 
yet-to-be-identified material?’.

Insight can be gained from a multi-site Langmuir adsorption analy-
sis95, which can predict the quantity of adsorbed hydrogen, and thus 
the usable capacity, as a function of the pressure, temperature and 
binding site energies in rigid materials. An optimal heat of adsorption 
(≈15 < qst < 20 kJ mol−1) in rigid materials is a necessary but insufficient 
criterion for high usable capacity, since low νOMS is simultaneously 
required to maximize the deliverable capacity. Structures with decreas-
ing νOMS are illustrated through Ni2(m-dobdc), Ni2(fuma) and a hypo-
thetical material with a very high density of OMSs (Fig. 4). Both 
Ni2(m-dobdc) and Ni2(fuma) have qst below the optimal range; further-
more, even if qst could be increased into the optimal range in these 
particular frameworks (for example, by substituting the metal for one 
with a stronger hydrogen-binding energy), their insufficiently low νOMS 
values preclude them from reaching the ultimate DOE storage targets 
(50 gH2 l−1), regardless of how well any OMS would bind hydrogen.

The hypothetical material with an ultra-low νOMS could still only 
achieve ultimate DOE targets (50 gH2 l−1) within a narrow binding energy 
range because simply increasing the binding strength at any given νOMS 
universally leads to higher uptake under the desorption conditions, 
thereby reducing the usable capacity. This trade-off has been remedied 
in other gas storage applications through flexible nonporous-to-porous 
transitions88,96. Indeed, H2-induced breathing is observed in the 
non-OMS Co(BDP) framework (where BDP is 1,4-benzenedi(4′-p
yrazolyl))97, but the weak H2–framework interactions (estimated at 
around 2–8 kJ mol−1) cannot stabilize the porous state above cryogenic 

Ni2(m-dobdc)

νOMS = 0.22 nm3

Ni2(fuma)

νOMS = 0.11 nm3

??

νOMS = 0.054 nm3

OMS Weak site

Fig. 4 | High open metal site density MOFs. Schematic of Ni2(m-dobdc), 
computationally predicted Ni2(fuma) and an unknown, hypothetical material 
(shown as a grey square) with different ratios of OMSs and weak sites and different 
νOMS values (C, brown; O, red; Ni, grey). Adsorption sites at OMSs and weak sites 
are represented by blue and green circles, respectively. Exceptionally low νOMS 
MOFs such as the hypothetical material would provide the best chances of 
reaching the ultimate DOE storage targets, yet still must exhibit the narrowly 
optimal hydrogen-binding energy range. While large binding energies decrease 
the usable capacity under all conditions in rigid MOFs, this could be circumvented 
in the future via flexible MOFs that undergo a nonporous-to-porous transition that 
is stabilized by strong hydrogen–OMS interactions.
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temperatures. We conclude that sorbent development efforts should 
target flexible materials with buried OMSs in the nonporous state and 
with strong (≥15 kJ mol−1) OMS–H2 interactions that facilitate a nonpo-
rous–porous transition closer to ambient temperature.

Data science and machine learning
Computational and machine learning approaches are playing an impor-
tant role in predicting the properties of all of the material classes dis-
cussed above, including the capacity and thermodynamics of LOHCs98 
and various hydride and superhydride phases10,99. Nanoporous mate-
rials provide a clear illustration, as high-throughput screening has 
both elucidated their performance limits and identified promising 
candidates for various gas storage and separation applications100–104. 
Screening for H2 physisorption has typically used either approximate 
correlations for estimating uptake101 or Monte Carlo simulations105–107 
based on potentials such as the universal force field (UFF)108. This is 
necessary to make simulations of hundreds of thousands of materials 
computationally feasible. However, although the UFF is applicable 
across the periodic table, it does not accurately capture the poten-
tial energy surface of some chemical and structural motifs observed 
in MOFs109–111—a prime example being strong H2 interactions with 
OMSs112–114. Moreover, most screening studies assumed cryogenic 
temperatures (77 K), favouring a high probability of H2 occupation 
of weak physisorption sites and allowing materials lacking OMSs to 
still have very large volumetric uptake on par with the DOE targets. 
Consequently, although screening studies have been very useful for 
elucidating structure–property relationships and design trade-offs at 
cryogenic temperatures, it is unclear whether their results translate 
to near-ambient-temperature adsorption in MOFs with strong (open 
metal) binding sites. For example, the UFF accurately assesses MOF-5 
as a high-capacity material at 77 K, even though it is much less useful 
in practice at non-cryogenic temperatures than Ni2(m-dobdc), whose 
capacity at ambient temperature is not accurately predicted by the UFF. 
In other words, a MOF with ‘Goldilocks’ binding sites will be inaccurately 
assessed by high-throughput screening studies using off-the-shelf force 
fields, which were initially developed for other materials.

The most recent version of the Computation-Ready, Experimental 
(CoRE) MOF database115, which automatically identifies MOFs with 
OMSs, sheds new light on the scope of this problem. Approximately 
50% of all CoRE MOF structures contain OMSs (Supplementary Fig. 
1), which in some cases constitute most if not all possible adsorption 
sites. Next-generation high-throughput screening studies will more 
accurately evaluate such materials through a variety of computational 
approaches. Density functional theory calculations are now regularly 
executed within high-throughput material property predictions116–118 
and have already been used for large-scale relaxation of MOF struc-
tures119. An important step forward, therefore, would be to relax at least 
a subset (several hundred) of MOFs with OMSs and to compute their H2 
binding energy. Statistical/machine learning techniques could then be 
used to construct a model of H2 interactions that, at minimum, would 
provide higher accuracy than the UFF. Such concepts have already been 
used to screen other classes of hydrogen storage materials10,120. Atom-
istic machine learning potentials121,122, which provide first-principles 
accuracy but are computationally more expensive than classical force 
field predictions, might eventually be used for direct simulation of 
hydrogen uptake by MOFs with OMSs, given recent substantial algo-
rithmic improvements123.

Conclusions and future directions
For years, hydrogen storage research focused primarily on light-duty 
vehicles, which is understandable given the large greenhouse gas emis-
sions from this sector. The DOE targets for these vehicles5 performed 
a valuable service by focusing research on the most critical issues. 
Unfortunately, this has led to an overemphasis on gravimetric capac-
ity and enthalpy tuning to enable ambient-temperature storage or 

release using only the residual fuel cell heat. Another unanticipated 
consequence was that some material classes (for example, interstitial 
hydrides) were neglected. Encouragingly, materials that could not meet 
DOE targets for light-duty vehicles may prove to be ideal for other uses 
(Table 1), including MOFs with high capacity at low temperatures124 
and nanoscale hydrides with attractive thermodynamics compared 
with bulk16.

In future efforts to develop materials-based storage, some estab-
lished theories should be re-examined to identify strategies to over-
come the challenges discussed above. First, ideal (that is, defect-free) 
X-ray crystal structures may be insufficient to describe material behav-
iours; examples include the nonporous-to-porous transitions discussed 
above and adaptive MOF pores125. A corollary is that surface chemistry, 
not bulk processes, may govern kinetic behaviour, as has been shown 
for some complex hydrides21,76. Second, the role of entropy cannot be 
neglected. For example, reversible hydrogen desorption by metasta-
ble hydrides (which was long thought to be infeasible) was recently 
achieved by nanoscaling82,83, but will entropy–enthalpy compensation 
limit further improvements? Finally, in all cases, usable capacity—not 
the theoretical maximum uptake—is paramount. Although it is well 
recognized for sorbents, this is underappreciated for metal hydrides. 
Moreover, material design must consider other properties, such as heat 
transfer, to achieve the required dehydrogenation and refuelling rates. 
Fortunately, the ever-expanding hydrogen storage literature suggests 
that the challenges discussed here will be surmounted, enabling this 
technology to fulfil its vital role in a renewable energy economy.
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Extended Data Fig. 1 | Linear regression of entropy and enthalpy of 
dehydrogenation for bulk and nanoscale hydrides. Figure 1 shows linear 
least-squares fits to the thermodynamic data for (a) bulk and (b) nanoscale 
hydrides. The bulk data, which are a subset of the full HydPARK database10, at 
best show a weak correlation between the entropy ΔS° and enthalpy ΔH° of H2 
dehydrogenation, as indicated by the low values of R2 and the Spearman Rank 
Correlation Coefficient R. Excluding outlier compositions, as detailed in Ref. 10,  

improves the fit somewhat, yielding R2 = 0.42 and R=0.68 across the entire 
ML-ready HydPARK dataset, suggesting a moderate correlation. In contrast, 
the data for nanoscale hydrides, although admittedly limited, exhibit a fairly 
strong correlation, with R2 = 0.738 and R = 0.891. Within specific hydride classes, 
stronger ΔH° and ΔS° correlations can be found. For example, for nano-PdH R2 = 
0.954 and R = 0.939 and for bulk AB materials R2 = 0.924 and R = 0.964.Source data
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