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xv

Preface

Conceptual density functional theory (CDFT), pioneered by Robert G. Parr and
coworkers, has been with us for over 30 years. As witnessed by the 32 chapters
presented in this book, there have been tremendous interests and enormous
developments on CDFT in the literature. Nevertheless, there has never been a
book dedicated to this topic. With the sad passing of Bob Parr, our beloved teacher,
mentor, collaborator, and friend, the goal for us to put collective efforts along that
direction had become more urgent. That was the reason why we held CCTC2018
Symposium in Changsha, China, where a roundtable discussion led to a CDFT
status report on Theoretical Chemical Accounts. When Aron Urbatsch of Wiley VCH
approached me in January 2020 with the book idea and I subsequently consulted
major players in CDFT about the possibility, the feedback that I obtained was
overwhelmingly positive. That’s how and when this book project got started in the
first place.

Coincidently, that’s also when the global pandemic of COVID-19 got started. Only
people who experienced it firsthand knew how hard and miserable life became dur-
ing that period. Amazingly, we still could get this book done as proposed. I am deeply
indebted and sincerely grateful to all authors who spent days and nights during this
extremely tough time working on their contributions. I wish also to thank the pub-
lishers for their hard work and flexibility. Without the commitment and dedication
of all of them, this book is simply impossible.

To wrap up, let us remember what Bob told us: “There is another whole side of
DFT which has concerned and still concerns many of us, the ‘conceptual’ side. This
side is rich in potential, and it is not without accomplishment. The concepts of DFT
neatly tie into older chemical reasoning, and they are useful for discussing molecules
in course of reaction as well as for molecules in isolation. Where solid state physics
has Fermi energy, chemical potential, band gap, density of states, and local density
of states, quantum chemistry has ionization potential, electron affinity, hardness,
softness, and local softness. Much more too.”

10 January 2022 Shubin Liu
Chapel Hill, North Carolina, USA
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Foreword

It was a great pleasure to read this book edited by Dr. Shubin Liu. The compre-
hensive collection of articles from leading scientist covers the field of conceptual
density functional theory (CDFT) from historical perspectives, didactic presen-
tations, chemical insights, critical analysis, and frontier ideas to computational
software and applications in chemistry. This is the book to read for students and
researchers.

Density functional theory (DFT) has become the most widely used method for
computational chemistry and materials science because of the optimal balance
between the accuracy of prediction on measurable physical quantities and the cost
of computation. In view of the power of computational predictions from DFT, what
is the role of CDFT? What is CDFT anyway?

Let us think over the meaning of conceptual. “The definition of conceptual is
something having to do with the mind, or with mental concepts or philosophical
or imaginary ideas”, according to a dictionary (https://www.yourdictionary.com/
conceptual). “Something is conceptual when it deals primarily with abstract or
original thoughts”, based on another one (https://www.vocabulary.com/dictionary/
conceptual). This appears to fit our appreciation of CDFT.

Chemical concepts are indeed mental or philosophical ideas of chemists about
molecules and their properties. Chemical concepts are therefore in general different
from physical quantities, which are observables, such as the ionization potentials,
electron affinities and the geometry of a molecule in its ground state. Chemical
concepts are in the mind of a chemist and are apparently not directly related to
observables. For examples, the concept of electronegativity describes the capabil-
ity of a molecule to attract electrons, and the concept of chemical hardness is related
to intrinsic chemical reactivities of a molecule. Chemical concepts are traditionally
somewhat fuzzy, without a mathematical definition. They are a very useful part of
the chemical language and chemical thinking framework.

In contrast, physical observables can often be directly computed from the electron
density or the wavefunction of a molecule, or the density matrix or the Green’s func-
tions of the statistical ensemble of a condensed matter. While wave function methods
can in principle rely on systematic improvement based on some natural orders or
hierarchy in the theory, density functional methods had (and still have) to fight with
a way to find good approximations. Thus, wave function methods had to find the

https://www.yourdictionary.com/conceptual
https://www.yourdictionary.com/conceptual
https://www.vocabulary.com/dictionary/conceptual
https://www.vocabulary.com/dictionary/conceptual
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best way to converge to the exact result, while the DFT framework stimulates one to
find out what approximate methods really do.

When a method is created, it is intended for users ultimately. Of course, calcu-
lations should produce numbers that can be compared to experiments. Validation
of computational predictions is critical for developing and accessing theoretical
methods. It was the successful validation of DFT calculations that lead the broad
application of DFT in chemistry and materials science and engineering. There is
also a more ambitious objective: we would like our calculations to be predictive. Of
course, “numbers don’t lie”, but there is something more we would like to produce
from our calculations. The users should get have some tools that they can apply on
the results of the calculations that should allow them to think further, to connect
the results with existing knowledge. In other words, to apply some concepts to the
results obtained.

Let us exemplify the statement above. Ionization potentials and electron affinities
are quantities that can be measured, and also be computed. The concept of reactivity
is vague. However, it is widely used. There are several definitions for electronegativ-
ity, but this does not mean that a given definition is not based on quantities that
cannot be derived from experimental measurements. For example, the electroneg-
ativity can be defined as half the sum of the ionization potential and the electron
affinity.

Cleary different from the commonly used computational prediction aspect of DFT,
as shown throughout the chapters in this book, CDFT is a framework of mathemat-
ical definitions of chemical concepts and application of the concepts to describing
chemical systems, based mainly on DFT. Therefore, CDFT provides the quantitative
connections to the concepts in the minds of chemists and the associated quantita-
tive understanding of chemical reactivities, using electronic structure theory, mainly
DFT. The 1978 identification by Parr and coworkers of electronegativity of atoms
and molecules as the negative of chemical potentials averaged over the two limits
of electron addition and removal is a great example, marking the birth of the field
of CDFT.

What aspects of DFT are uniquely important for quantitative connections to chem-
ical concepts? Using electron density, a reduced variable and much simpler object,
leads to more direct connection to conceptual thinking. Furthermore, the definition
on electronegativity highlights the feature of DFT in treating electron number as a
continuous variable (fractionals). Yes, fractional number of electrons can occur as
a grand canonical ensemble in quantum theory. However, there is no direct con-
nection from a grand canonical ensemble description to an isolated molecule in
its ground state. In other words, an isolated molecule in its ground state does not
need an ensemble description. Similarly, in DFT, fractional numbers of electrons can
occur in an ensemble. But there is an inherently more important role of fractional
numbers of electrons in DFT; namely, fractional numbers of electrons are the man-
ifestation in the electron density, a classical variable, of the quantum mechanical
principle of state degeneracy. As a result of the linearity of the Schrodinger equation,
any linear combination of degenerate eigenstate wavefunctions is also an eigenstate
with the same energy. In DFT with the basic variable being the electron density,
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any convex linear combination of electron density for the degenerate states has the
same total energy. This naturally leads to fractional charges and spins in the electron
density and their corresponding exact conditions, which are critical for developing
functional approximations.

As with electronegativity, a large part of CDFT has been developed for describing
responses of the system to changes in electron numbers and/or external potentials.
The corresponding total energy derivatives play a central role in CDFT. They have
been applied in broad fields of chemistry and materials. On the other hand, many
interesting mathematical definitions of chemical concepts are not expressed as such
energy derivatives. Two outstanding examples are the electron localization function
(ELF), capturing the electron localization features, and the non-covalent interaction
(NCI), revealing noncovalent interactions in molecules and bulk systems. Both ELF
and NCI are not about measurable quantities, but they describe quantitatively what
is in the minds of chemists. All these are featured in this book.

Many concepts used in interpreting results of density functional calculations
could be also computed from experimental densities if they were accurate enough.
Electronegativity, ELF and NCI are such examples. Even the fractional occupation
numbers, a construct of the Kohn-Sham method that shows up in situations when
(near-)degeneracy is important enter this category: once we have a density, we
can construct the exact Kohn-Sham potential, and check if fractional occupation
numbers show up.

Looking forward, CDFT would benefit from developing sets of standards or bench-
marks to evaluate concepts developed. The validation was critical for the develop-
ment and success of computational DFT and should be expected to further promote
the field of CDFT – it is important for CDFT to spreads out to users. This measures
its success. However, challenges remain on how to develop such test sets.

The Editor of this book, Dr. Shubin Liu is a leader in CDFT, having been trained
with the late Professor Robert G. Parr, the founding father of CDFT. Dr. Liu has
assembled a team of distinguished scientists. Together, they provide a feast of CDFT
for all to enjoy.

Durham, NC
Paris, France
February 2022

Weitao Yang
Duke University

Andreas Savin
CNRS and Sorbonne University
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Historic Overview
Paul Geerlings
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Bioengineering Science, Pleinlaan 2, Brussels 1050, Belgium

1.1 Introduction: From DFT to Conceptual DFT

Density Functional Theory goes back to the early days of Quantum Mechanics when,
in 1926, Thomas and Fermi [1–3] presented a model to study the electronic struc-
ture of atoms on the basis of the electron density 𝜌 (r) instead of the wave func-
tion. The simplification is spectacular: for an N-electron system, one passes from
an immensely complicated wave function 𝛹 (xN ), a function of 4N variables (three
spatial variables and one spin variable for each electron, gathered in a 4-vector x)
to just three variables in the density 𝜌(x, y, z). The results for atoms were encour-
aging, but the approach failed dramatically for (diatomic) molecules not being able
to account for their stability. Was the loss of information when passing from a wave
function to the density (in fact, an integration over 4N-3 variables) too drastic? An
important step was taken by Slater in the 1950s. In his X

𝛼
method [4], he presented a

simplification of the Hartree–Fock method replacing the complicated nonlocal Fock
operator with a local, single parameter, operator involving the density. The method
turned out to be a quite efficient technique for electronic structure calculations on
molecules and solids.

One has, however, to wait until 1964 when Hohenberg and Kohn [5] turned
density-based models into a full-fledged theory through their two famous theorems.
The first theorem is an existence theorem presenting the ground-state energy of a
system as functional of the density. The proof, based on a reductio ad absurdum, is,
as quoted by Parr and Yang [6], “disarmingly simple.” The second theorem offers
a variational principle, and so, at least in principle, a road to the “best” density:
look for the one yielding the lowest energy, as known for decades in wave function
quantum mechanics. The crux of the first theorem is that it is proven that for a
given N-electron system, its ground-state density 𝜌(r) is compatible with a single
external potential v(r), i.e. the potential felt by the electrons due to the nuclei, in the
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absence of external fields. This single external potential is equivalent to a unique
constellation of nuclei: their number, position, and charge. To put it all succinctly:
𝜌 determines v, and as it also determines N by integration, it also determines the
Hamiltonian, and at least in principle, “everything.” Coming back to the second
theorem, the variational procedure leads to the Euler equation of the problem

v(r) + 𝛿FHK∕𝛿𝜌(r) = 𝜇 (1.1)

where FHK is the Hohenberg–Kohn functional and 𝜇 the Lagrangian Multiplier
introduced during the variational procedure ensuring that the density remains
properly normalized to N. Equation (1.1) is the analogue of the time-independent
Schrödinger equation H𝜓 = E 𝜓 , which also can be obtained in a variational ansatz,
where the Lagrangian Multiplier ensuring proper normalization of the wave func-
tion𝜓 is at the end identified with the system’s energy E. The analogy is striking, but
two aspects of this equation deserve further consideration. What is FHK, and what
is the physical interpretation of 𝜇? The Hohenberg–Kohn functional is a universal
functional (i.e. v-independent), which contains unknown parts governing electron
correlation and exchange assembled in the exchange-correlation functional Exc
[𝜌], which will be highlighted in other chapters in the “Fundamentals” part in this
book. Quintessentially, it’s the price to be paid for the simplification when passing
from a wave function to the density, still retaining its essential information content.
By introducing, in the context of a non-interacting reference system, orbitals in
the variational procedure, Kohn and Sham [7] were able to cast the variational
equation into a series of pseudo-one-electron eigenvalue equations, similar to
the Hartree–Fock equations, be it, again, that part of the concerned operator is
unknown: the functional derivative of Exc with respect to 𝜌(r), 𝛿Exc/𝛿𝜌(r), termed
the exchange-correlation potential vxc (r).

The history of DFT is (among others) a quest for finding better and better
approximations for this unknown vxc (r). The simplest approximation, of standard
use, mainly by solid-state physicists, in the 1970s and the 1980s was the local density
approximation (LDA) [7], showing however substantial over-binding in molecules
[8]. Things became more interesting for chemists in the second half of the 1980s
when the generalized gradient approximations (GGA) were launched [9, 10]. The
great breakthrough, with the wide acceptance of DFT by the Quantum-Chemical
community, came in the early 1990s when hybrid functionals were introduced,
in which a fraction of the GGA exchange was replaced with exact HF exchange,
with as most prominent example the still ubiquitous B3LYP functional [8–10]. This
approach yielded at that time unsurpassed quality/computing time ratios, the latter
aspect being reinforced by its implementation in Pople’s widely used GAUSSIAN
package [11]. At that time, DFT was on its way to become the standard method for
obtaining an optimal quality/cost ratio for studying properties and reactions of not
too exotic systems of varying sizes. Afterward, its “popularity” grew at incredible
pace. In his excellent 2012 Journal of Chemical Physics perspective, Burke [12] plots
the number of papers retrieved from the Web of Science when searching for DFT as a
function of time, reaching in 1996 about 1000 papers, 5000 in 2005, and 8000 in 2010.
Nowadays, DFT is the workhorse “par excellence” used, not only by theoreticians
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but also by experimentalists, in combined experimental–computational papers,
when exploring structure, stability, electronic properties, reactivity, and reactions of
molecules, polymers, and solids in the most diverse subdomains of chemistry [8].

1.1.1 But, Where Is Conceptual DFT in This Story?

As highlighted at the very beginning of this chapter, the variational Eq. (1.1) stands
central in DFT, just as the Schrödinger equation in wave function theory. Besides
the quest for the exact Hohenberg–Kohn functional, we already mentioned that a
second fundamental question in relation to this equation arises: what is the physi-
cal/chemical meaning of the Lagrangian multiplier 𝜇? Its identification by Parr et al.
[13] can be considered as the birth of Conceptual DFT.

This genesis, its early years, and evolution with a short reflection on its present
status and its future will be described in the following paragraphs. Note that
detailed explanations and derivations leading to the various concepts, formulas,
and equations will mostly not be given in view of space limitations and because
the reader will find them in Part I (Foundations) and, in case of more recent
developments, in Part II (Extensions) of this book. This is also the reason why the
number of references is kept to the most essential ones. For the most extensive
reviews on Conceptual DFT, we can now already refer the reader to items [14–20]
in the reference list.

1.2 The Birth of Conceptual DFT: The Identification
of the Electronic Chemical Potential (1978)

In a landmark paper in 1978, Parr et al. [13] showed that the Lagrangian Multiplier in
the DFT variational equation could be written as the partial derivative of the system’s
energy with respect to the number of electrons at fixed external potential.

𝜇 = (𝜕E∕𝜕N)v (1.2)

The chemical importance of this demystification of the Lagrangian Multiplier
shows up when going back to the early 1960s, when Iczkowski and Margrave
[21] presented evidence, on the basis of experimental ionization energies and
electron affinities, that the energy of an atom could reasonably well be written as
a polynomial in n (the number of electrons N minus the nuclear charge) around
n = 0 as

E = E(n) = an4 + bn3 + cn2 + dn (n = N − Z) (1.3)

Assuming continuity and differentiability of E, the slope at n = 0 and at fixed
nuclear charge Z, (𝜕E/𝜕n)n=0, could easily be seen as a measure of electronegativity
𝜒 of the neutral system

𝜒 = −(𝜕E∕𝜕N)Z = −(𝜕E∕𝜕n)Z (1.4)
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As it was recognized that the cubic and quartic terms were negligible, Mulliken’s
electronegativity definition [22]

𝜒 = 1/2 (I + A) (1.5)

where I and A are the first ionization and electron affinity, respectively, were
regained as a special case, so that within this approximation

𝜇 = −𝜒 = −1/2 (I + A) (1.6)

Generalizing the constant Z condition for atoms to a constant v condition for
molecules, the Lagrangian Multiplier of the Euler Eq. (1.1) has now been identi-
fied with a cornerstone of (physical) chemistry: electronegativity. A bridge between
Density Functional Theory and (concepts in) Chemistry has thereby been established.

The analogy between 𝜇 and (the expression for) the macroscopic chemical poten-
tial of component i in a system at given pressure p and temperature T is beautiful.
Indeed, 𝜇i can be written as [23]

𝜇i = (𝜕G∕𝜕ni)nj≠ni,p,T (1.7)

with G the Gibbs free energy and ni the number of moles of component i. The resem-
blance between Eqs (1.4) and (1.7) was at the origin of later, even up to the present
moment, endeavor to scrutinize analogies between macroscopic thermodynamics
and “microscopic” Conceptual DFT.

1.3 The Early Years (1978–1985): Completing
the Launching of Conceptual DFT

Further exploring the E = E(N) function Parr and Pearson identified in 1983, quite
soon after Parr’s 1978 landmark paper, Pearson’s hardness as the second derivative
of E with respect to N at constant v, denoted as 𝜂 [24]

𝜂 = (𝜕2E∕𝜕N2)v (1.8)

Pearson had introduced the hardness concept in the early 1960s [25] in the context
of the study of generalized acid–base reactions, where he proposed a classification of
favorably interacting acids and bases, mainly built on the polarizability, terming low
polarizable species as “hard” and highly polarizable species as “soft.” Combining
this classification and the terminology then yields the famous hard-soft acid-base
(HSAB) principle: hard acids preferentially interact with hard bases; soft acids pref-
erentially interact with soft bases. But… no quantification of this hardness/softness
concept was available, be it a way to calculate it. It was the identification of 𝜂 as
the second derivative Eq. (1.8), which paved the way to quantitative studies on the
hardness of atoms and molecules and to use it as such or in the context of the HSAB
principle: a second achievement where a chemical concept is linked to DFT, as indeed
(𝜕2E/𝜕N2)v is nothing else than the N derivative of the Lagrangian Multiplier 𝜇. Both
𝜇 and 𝜂 are called global descriptors as they are associated to an overall characteristic
of the system.
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Soon after, in 1984, Parr and Yang [26] launched the first local, i.e. r-dependent
or varying from place to place descriptor, which further established the bridge
between DFT and chemistry. They generalized and extended Fukui’s frontier
Molecular Orbital concept [27] by considering a mixed second-order derivative
f (r) = (𝜕2E/𝜕N𝛿v(r)). Its chemical significance is clear when realizing that it can be
easily deduced from perturbation theory [6, 15] that

(𝛿E∕𝛿v(r))N = 𝜌(r) (1.9)

so that f (r) can also be written as (𝜕𝜌(r)/𝜕N)v indicating how a system partitions
the added or subtracted electrons in space. When the orbitals are kept unchanged
(frozen) upon adding or subtracting electrons, it is easily seen that f (r) boils down
to the highest occupied molecular orbital (HOMO) or lowest occupied molecular
orbital (LUMO) density (for decreasing or increasing N, respectively) and can
thereby directly be linked to the basic ingredients of Fukui’s reactivity descriptors.
In the early 1950s, Fukui emphasized the predominant role of the frontier orbitals
in (certain types of) reactions. His Frontier MO theory was considered both a
milestone and a guiding principle in studying chemical reactions and reactivity.
One of the most prominent examples are the celebrated Woodward–Hoffmann rules
[28], highlighting the conservation of orbital symmetry (with particular emphasis
on the frontier MOs) in the course of concerted reactions. In honor of Fukui, this
local descriptor f (r) was termed the Fukui function.

Note that when writing 𝜌(r) as (𝛿E/𝛿v(r))N , f (r) can also be written as (𝛿𝜇 /𝛿v(r))N
stressing again the link with the content of the variational Eq. (1.1).

Two points should be stressed. Again, a DFT routed quantity, the functional deriva-
tive of the Lagrangian Multiplier with respect to the external potential, has been con-
nected to a chemical “cornerstone,” this time at stake when scrutinizing reactivity. On
top of that, and almost unnoticed, the electron density itself also entered this series of
descriptors, in fact, as Eq. (1.9) shows, as the “first” local one: the derivative of E with
respect to v(r). It’s useful to reconsider the fundamental equation of DFT, Eq. (1.1),
again and to note that three of its main ingredients E, v(r), and 𝜇, and the number of
electrons are retrieved as pillars when establishing the link between the physicist’s
DFT and what was later on termed “the Chemist’s DFT,” “Chemical DFT,” or most
commonly “Conceptual DFT” [20, 29].

It can safely be said that at that time, i.e. around 1985, the launching of DFT was
completed. Remarkably, and when going back to the history of DFT, this moment is
situated in a period when DFT was not yet that popular in the quantum-chemical
community. The pioneering work by Parr and his school, not only in Conceptual
DFT but ongoing in other aspects of DFT too, undoubtedly further raised the
chemists’ interest in DFT in the post-1985 period. The publication, some years
later, of Parr and Yang’s “Density Functional Theory of Atoms and Molecules” is
a remarkable synthesis of that endeavor and this book largely contributed to the
acceptance, by chemists, of DFT, from the early 1990s on, as a highly valuable alter-
native to wave function theory. It has influenced now already several generations
of chemists, convincing them on both the conceptual richness and the amazing
computational advantages of DFT.
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The following paragraphs will highlight this post-1985 evolution along three main
themes, with the obvious danger of simplification and personal taste in this kind of
exercise in this limited space. As pillars or themes along which CDFT grew and blos-
somed after its birth and launching, we would like to discern: (1∘) the ever-growing
tree of response functions and its congeners, the so-called derived descriptors; (2∘)
the formulation and use of principles governing chemical reactions; and (3∘) the
applications of CDFT.

1.4 The Ever-Growing Tree of Response Functions
and Its Associated or Derived Quantities (1985-)

Looking back at the aforementioned DFT-based atomic and molecular descriptors
𝜌(r), 𝜇, 𝜂, and f (r), a common feature emerges: they are all functional, partial, or
mixed derivatives of the energy with respect to N and/or v. They can be identified
as response functions characterizing the sensitivity of the system’s energy to per-
turbations in its number of electrons N and/or its external potential v(r). These
perturbations are essentially those occurring during a chemical reaction from which
the chemical relevance of these particular response functions emerges. Response
functions, called “the bread and butter of theoretical physics” [30], thereby enter
the chemist’s playground. They find their place in a natural way when considering
the E = E [N,v(r)] functional as extensively commented in Parr and Yang’s book.
Changes in N and v of a given species due to the interaction/reaction with a second
species yield an energy change of the former species, which, up to first order, can
be written as

dE = (𝜕E∕𝜕N)v(r) dN +∫ (𝛿E∕𝛿v(r))N 𝛿v(r)dr = 𝜇dN +∫ 𝜌(r)𝛿v(r)dr

(1.10)

The identification of 𝜇 and 𝜌(r) as response functions is obvious, as is the possi-
bility to increase its number and diversity when passing to higher-order terms with
associated higher-order derivatives. It became standard to group these functions,
which can be written in general as 𝜕nE/𝜕Nm

𝛿v(r1) 𝛿v (r2) · · · 𝛿v(rm′ ) with n=m+m′

in a response function tree (see, for example, Senet [31] and Chermette [14]) that can
be found in many of the review papers mentioned in Section 1.1 and which is exten-
sively discussed in Chapters 2–4 of this book. Note that we will restrict ourselves to
the case of the Canonical Ensemble with the associated E = E [N,v(r)] functional;
other ensembles (Grand Canonical, Isomorphic, and Grand Isomorphic) give rise to
an analogous construction but are based on a different starting functional, Legendre
transformed from the E = E[N,v] functional [32].

Entering the response function tree for n = 3 is the hyper-hardness (𝜕3E/𝜕N3)v
introduced by Fuentealba and Parr [33]; it, however, received relatively restricted
attention due to its apparently limited chemical significance. The n = 3 derivative,
which received by far the most interest and turned out to be the most rewarding
n = 3 response function from a chemical point of view, is the dual descriptor f (2)
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(r) introduced by Morell et al. [34] as the N-derivative of the Fukui function:
(𝜕f (r)/𝜕N)v. It indeed turned out that this descriptor displays a one-shot picture of
both electrophilic and nucleophilic regions in a molecule. The remaining (cf Section
1.3) n = 2 derivative is (δ2E/𝛿v(r) 𝛿v(r’))N, termed the linear response function as
it represents the linear term in the response of the density 𝜌(r) to a perturbation
v at a point r’:(𝛿𝜌(r)/𝛿v(r’))N . Though present in earlier schemes and used before
in its time-dependent form in the solid-state community, it was scrutinized in
a Conceptual DFT context by Geerlings et al. [35, 36] only in the last 10 years,
addressing its computability, interpretation, and especially its chemical relevance.

Another way to extend the response function tree is increasing the number of vari-
ables in the E = E[N,v] functional. Natural extensions were presented in 1986 by
Galvan et al. [37] by including spin polarization, and in 1994, by Ghanty and Ghosh
[38] by resolving the number of electrons into its spin components by considering
the functionals E = E [N, NS, v, B] and E = E [Nα, Nβ, vα, vβ], respectively, where NS,
the spin number, is the difference between the number of α and β electrons (Nα and
Nβ). This approach allows to consider the energy and reactivity change of a system
when its spin state is perturbed, typically by a magnetic field B or by spin transfer
from its environment or another reagent.

Another extension was the introduction of external electric and magnetic fields,
promoted by Chattaraj and coworkers, in 2003 and 2014, respectively [39, 40]. Not
addressed frequently until now, the Brussels group is presently taking this subject
at heart, concentrating on the influence of oriented external electric fields (OEEFs)
on reactivity, including aspects of electric field–induced enantioselectivity and on
the changes of global descriptors like atomic electronegativity and hardness for high
magnetic fields, where changes in the atomic electronic configurations play a pre-
ponderant role [41, 42]. In the same vein, this group recently (2019) introduced
the inclusion of an external mechanical force, different in nature from an electro-
magnetic one [43, 44]. This issue is at stake in mechanochemistry, which, although
existing for centuries in its “macroscopic” form, has only recently been downscaled
to the molecular level [45].

An important step has been the introduction of temperature by the Ayers group
to cope with the N differentiability problem of the E = E[N,v] functional whose
N dependence was shown by Perdew to be a series of straight lines intersecting
at integer N in the zero-temperature limit of the (thermal) expectation value of
the electronic energy [46]. Average electronic energy (and its derivatives) becomes
the central quantity in finite temperature chemical reactivity theory, analogous in
form/interpretation but different in evaluation to those from traditional approaches
[47, 48]. Although the temperature values at which the deviation from the
zero-temperature limit becomes meaningful exceed by far the usual laboratory con-
ditions, the temperature-dependent approach, besides setting the differentiability
problem, also provides a new perspective and has led to new reactivity descriptors
such as heat capacity [49] and local heat capacity [50].

The reader will observe that most of the above-mentioned extensions are
addressed as separate chapters in the Extension (Part II) of this book. As a proviso to
this paragraph enlightening the fundamental importance of response functions as
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molecular (reactivity) descriptors, it should be remarked that those are not the only
acceptable descriptors. Other descriptors derived from the E = E[N,v] functional
and exploiting its characteristics (e.g. the position of the minimum in the quadratic
interpolation for E(N)) are perfectly acceptable and often boil down to combinations
of response functions. Parr’s electrophilicity [51] is the most prominent example
referring to the system’s maximal uptake of electrons from an electron reservoir,
leading to the expression

𝜔 = 𝜇2∕𝜂 (1.11)

where two response functions 𝜇 and 𝜂 are combined. Countless applications (vide
infra) using this “derived” descriptor have been published since its introduction in
1999, as evidenced in Chattaraj’s 2003/2006 Chemical Reviews [52]. What, however,
should be avoided is combining reactivity descriptors (response functions) in an ad
hoc fashion without conferring them any physical or chemical meaning as opposed
to the case of electrophilicity.

To close this more fundamental pillar of the history of CDFT, it should be noticed
that its evolution since 1985, and certainly the one in the last 20 years, has (much)
more to offer but is less easily systematized than this dominating response tree evo-
lution. The treatment of degeneracy (Bultinck and coworkers [53, 54]), excited-state
reactivity, whereas DFT, is in essence, a ground-state theory Morell et al. [55], the
coupling of CDFT with reaction path calculations by Toro-Labbé’s group in his reac-
tion force ansatz (the derivative of the electronic chemical potential with respect to
the reaction coordinate) [56] introducing also the reaction electronic flux as a key
indicator for chemical reactions [57], are prominent examples of these efforts. We
finally mention the intertwining of CDFT and the Information Theory [58], which,
after the pioneering work by Parr and coworkers [59], witnessed major develop-
ments by Liu’s group in an endeavor to join the best of both worlds [60, 61]. All
these subjects will be treated in separate chapters in Part II (Extensions).

1.5 Principles (1978;1985-)

When browsing through the history of Conceptual DFT, it emerges that in the major-
ity of papers, the above-discussed concepts (response functions and derived descrip-
tors) were used “as such” but that in an important part of the literature, they were
used in the context of “principles,” which can broadly be characterized as rules of
thumb to interpret/predict the direction of a reaction, sometimes concentrating on
its kinetic aspects, sometimes on its thermodynamics. This important line of the his-
tory of CDFT will be separately presented, though obviously intertwined with the
two other pillars (Response functions and Applications).

In view of the above-formulated characterization of these principles, the first
one, the Electronegativity Equalization Principle, is to some extent an outlier as it
essentially concentrates on charge distributions. Formulated already in 1951 by
Sanderson [62], long before the advent of DFT, let it be CDFT, it postulates that
upon molecule formation, the electronegativities of all constituent atoms equalize,
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yielding a molecular electronegativity equal to the geometrical mean of the original
atomic electronegativities [63]. This principle has been proven by Donnelly and Parr
[64] shortly after the electronegativity/electronic chemical potential identification:
they showed the constancy of the electronic chemical potential over the considered
system and proved that the electronegativities or chemical potentials of the natural
orbitals of a molecule in the ground state are equal. In 1982, Parr and Bartolotti [65]
presented theoretical and numerical evidence for the geometrical mean postulate.
A decisive step passing from an Electronegativity Equalization Principle toward
an Electronegativity Equalization Method was taken by Mortier et al. around
1985 [66, 67], turning the principle into an easy-to-implement computational
ansatz capable of calculating charge distributions in polyatomic molecules. Later
on, further refinements (e.g. by Bultinck et al. in 2002) [68] combined with the
ever-increasing computing power advanced EEM to the stage where nowadays
it can be used to yield a reasonable first estimate of charge distributions in large
series of (not too exotic) large molecules, e.g. at stake in drug discovery research.
Its implementation in popular molecular mechanics/force field packages largely
contributed to its popularity and consolidated the success of a CDFT-based method.

The second principle in which CDFT-based descriptors were incorporated in a nat-
ural way is, as already mentioned in Section 1.3, the Hard and Soft Acids and Bases
principle with the pioneering work by Parr and Pearson on hardness and softness
in 1983 [24]. In 1991, a formal proof was given by Chattaraj et al. [69] for its appli-
cation at global, i.e. molecular, level, whereas Mendez and Gazquez presented its
counterpart at the local level in 1994 [70], focusing on the interaction characteristics
between (only) the relevant atoms of the acid and the base. In the former case, the
stability issue (thermodynamic in nature) is at stake; in the latter case, the reactiv-
ity aspect (kinetic in nature) is predominant. In the subsequent period, the CDFT
approach to the HSAB principle knew not only many successes with extensive lit-
erature but also some failures (probably underreported). The principle has found a
firm place not only in the CDFT community but also in the much broader “general
chemistry” context and has been widely used both by experimentalists and theoreti-
cians. Over the years, it became, however, clear (cf. the above-mentioned “failures”)
that the conditions under which the HSAB principle can safely be applied deserve
more attention. In this way, one copes, for example, with Pearson’s caveat when he
formulated the principle stating that “all other things being equal, hard acids prefer
binding to hard bases and soft acids to soft bases” [71]. The “all other things being
equal” caveat is often forgotten, and, although never perfectly satisfied, the condi-
tions under which the HSAB principle is applied should always be scrutinized. One
of the Extension Chapters will deepen the discussion on this “second principle.”

The third principle is Pearson’s Maximum Hardness Principle (MHP) (1987) [72],
which in its verbal statement sounds that “there seems to be a rule of nature that
molecules arrange themselves to be as hard as possible” and for which Parr and
Chattaraj presented a proof in 1991 [73]. Overall, the MHP has found less acceptance,
outside the CDFT community, than the HSAB principle. However, its importance in
CDFT is unquestionable, as witnessed, for example, by the about 1000 citations to
Parr and Chattaraj’s proof. A possible reason for its more limited acceptance is that
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the constraints under which the MHP is rigorously valid (e.g. constant chemical and
external potential) are highly restrictive, leading to an even more important caveat
in its application than in the case of the HSAB principle.

As a companion to the MHP Chattaraj and Sengupta [74] formulated in 1996,
the Minimum Polarizability Principle (MPP), not unnatural as a positive correlation
between the softness, the inverse of the hardness, and the polarizability was put for-
ward already in 1987 by Politzer [75], later on, quantified by Gazquez and Fuentealba
and coworkers [76, 77]. The principle states that “the natural direction of evolution
of a system is towards a state of minimum polarizability.” A recent statistical analy-
sis on its validity has been successful though, in general, the domain of applicability
should also be scrutinized further. This concern turns out to be a general issue for
the principles described in this paragraph, as advocated in the recent “Status, Issues,
and Prospects” paper by a group of CDFT experts [20].

To end this chapter, Chattaraj’s Minimum Electrophilicity Principle (2003) [78]
should be mentioned, for which recent detailed studies showed encouraging statis-
tical performance data as compared to the MHP.

1.6 Applications

The volume of the CDFT literature has recently been estimated to exceed 4000 papers
[20], illustrating that CDFT as a subfield of DFT has been the subject of intense intel-
lectual activity in the past decades. Whereas, after its launching in 1978, the number
of papers remained relatively small in the 1980s, most papers being fundamental
in nature, a steady increase manifested itself in the 1990s with a balance between
fundamental and applied studies, turning after 2000 to an avalanche of papers
where applications clearly dominate. The applications in the early years mainly con-
centrated on reactivity studies in “classical” organic reactions scrutinizing different
types of organic reaction types/mechanisms, (general) acid–base and complexation
reactions, and an already important series of studies on clusters and catalysis with
Mortier’s work on zeolites as pioneering work (as witnessed in the 2003 review
by Geerlings et al. [15], presenting an almost complete literature survey on both
fundamental and applied CDFT). The literature, after, say, 2000, shows not only the
aforementioned quantitative explosion but also a hard-to-describe extension of the
field of applications. Nowadays, applications are published across really all branches
of chemistry, from inorganic and materials chemistry to organic, organometallic
and polymer chemistry, and biochemistry. Therefore, almost the full scope of
reaction types is covered, from gas-phase reactions to reactions in solutions to reac-
tions/rearrangements in solids and reactions at phase boundaries. A remarkable
example is the range of applications of the electrophilicity concept as summarized
in Chattaraj’s Chemical Reviews [52], extending to biological activity and toxicity.

1.7 The Present and the Future

The present situation of CDFT has already been succinctly addressed in the final
parts of the previous three paragraphs. The reader may find an alternative view
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of the present status of DFT in the aforementioned paper in Theoretical Chemical
Accounts [20], concentrating, among others, on accomplishments in the last
20 years. Even more important, in our view, is that in this paper, experts reflect on
the future of DFT and highlight issues (both from a fundamental and a method-
ological point of view) that should be considered in the near future, and suggest
directions both for fundamental and applied/computational research. Therefore,
a combination of respect for the basic philosophy of CDFT, and the ambition to
switch from interpretation to prediction, thereby enlarging the impact of CDFT, is
a guiding principle.

This philosophy behind CDFT, though implicitly present from the early, more fun-
damental CDFT literature, has – remarkably – never been written down explicitly
until recently in Ref. [20] (for a preliminary account, see [79, 80]), and in view of its
importance for future developments/applications of CDFT, we summarize it here.
CDFT’s philosophy can be traced back to three fundamental precepts: (i) Observabil-
ity: meaning that an understanding of chemical events should be based on quantum
mechanical observables: the density, the energy, and their derivatives; (ii) Universal-
ity: the tools that are used should not depend on the type of calculation (wave func-
tion, DFT, Quantum Monte Carlo); and (iii) Mathematical rigor: the tools should
fit in a well-defined mathematical framework. These are simple rules ensuring that
CDFT further evolves as a physically and mathematically sound approach to under-
stand/interpret chemical phenomena.

This passage from an interpretative mode (“explaining”) to a predictive mode
(“forecasting”) should absolutely be realized to increase the acceptance of
CDFT in a still broader chemical community. The development of user-friendly
and well-documented software packages that can be coupled to the existing
quantum-chemical packages is an essential condition for this endeavor and should
be undertaken. This issue is addressed in the two Part IV Chapters on Implementa-
tion by Heidar-Zadeh and the Ayers group discussing the ChemTools package [81]
and by Lu and Chen’s presenting the capabilities of the MultiWFN program [82].

1.8 Conclusions

The birth and early years of Conceptual DFT (1978–1985) can be situated in a time
frame where DFT was not that popular/accepted yet in the (quantum) chemists’
community. Its “chemical” approach undoubtedly promoted DFT into this com-
munity, together, of course, with the spectacular evolution in the development of
approximate but already remarkably efficient exchange-correlation potentials. This
“density”-based approach was steadily growing in the quantum-chemical commu-
nity toward and at the beginning of the 1990s. Of course, Bader’s contribution to
incite chemists on focusing on the density in his “Atoms in Molecules” [83] theory,
with the book with the same name published in 1990, should be mentioned here
with deep respect.

In globo, after the early years, Conceptual DFT witnessed impressive develop-
mental/fundamental research along the extension of the response function concept,
the extension and refinement of principles, and many other issues strengthening
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its mathematical/physical foundations. An avalanche of papers on applications has
meanwhile been published covering a large variety of subfields of chemistry and
neighboring sciences.

Looking ahead, at the end of this historic overview, this combination of deepen-
ing and widening the basic theory and its use in a well-thought and critical way in
the most diverse subfields of chemistry via dedicated software is the way in which
CDFT could and should ensure and strengthen its position as a full-fledged theory.
Characterized by a remarkable entwining of mathematical and physical rigor with
chemical intuition, it offers an intellectually rich approach to interpret and finally
predict chemical phenomena and thus contribute to the chemistry of the future.
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Belgium

2.1 Introduction: Density Functional Theory

Density functional theory (DFT) uses the electron density 𝜌(r) as the basic variable
for an atom, molecule, or solid instead of the wavefunctionΨ as is common in wave-
function quantum chemistry [1–11]. It is based on the famous Hohenberg–Kohn
theorems [1], of which the first one states that the external potential of the system
v(r) (for an isolated system, this is the potential due to the nuclei) is determined,
within an trivial, additive constant, by the electron density. As a result, the energy of
the system E can be written as a functional of the density 𝜌(r), i.e. E = E[𝜌(r)], com-
parable to writing E = E[Ψ] in wave function theory. More specifically, the ground
state energy can be written as

E[𝜌(r)] = T[𝜌(r)] + Vne[𝜌(r)] + Vee[𝜌(r)] = Vne[𝜌(r)] + FHK[𝜌(r)] (2.1)

with T[𝜌(r)] the kinetic energy, Vne[𝜌(r)] the nucleus-electron attraction energy,
and Vee[𝜌(r)] the electron–electron repulsion. As can be seen, in the second part of
Eq. (2.1), T and Vee have been grouped in the so-called Hohenberg–Kohn functional
FHK.

The Vne[𝜌(r)] is exactly expressed as

Vne[𝜌(r)] = ∫ 𝜌(r)v(r)dr (2.2)

The second Hohenberg–Kohn theorem establishes the variational principle
within DFT [1]. Given a trial density �̃�(r), such that �̃�(r) ≥ 0,∀r and ∫ �̃�(r)dr = N
(with N the number of electrons of the system), then E0 ≤ E[�̃�(r)], with E0 the exact
ground state energy of the system. Minimizing the energy (Eq. (2.1)) with respect to
changes in the electron density under the constraint that the density should at all
times integrate to the number of electrons N of the system yields

𝛿

𝛿𝜌(r)

[
E − 𝜇

(
∫ 𝜌(r)dr − N

)]
= 0 (2.3)
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where 𝜇 is the Lagrange multiplier attached to the above-mentioned constrained.
Working out this minimization yields

𝜇 = v(r) +
𝛿THK

𝛿𝜌(r)
+
𝛿Vee[𝜌(r)]
𝛿𝜌(r)

= v(r) +
𝛿FHK

𝛿𝜌(r)
(2.4)

This Euler equation is sometimes called the DFT analog of the Schrödinger equation.
It implies that at all points in space, the sum of the local quantities v(r) and 𝛿FHK

𝛿𝜌(r)
should be constant and equal to 𝜇. The Hohenberg–Kohn functional FHK is unfor-
tunately unknown and represents a large quantity. Consequently, only the slightest
(relative) error in its approximation will have a large impact.

In order to circumvent this problem, Kohn and Sham re-introduced orbitals in the
DFT minimization problem invoking a noninteracting reference system for which
the density is exactly the exact ground state density of the interacting system. A single
Slater determinant is an exact wavefunction for a system of independent noninteract-
ing electrons, and it will be presumed that this density expression spans all possible
N-electron densities, interacting or not. The electron density for the noninteracting
system can be written as

𝜌(r) =
N∑

i=1
|𝜓i(r)|2 (2.5)

where the 𝜓i(r) are the spin-orbitals in the Slater determinant.
For this noninteracting system, the kinetic energy, denoted Ts is exactly given as

Ts =
N∑

i=1

⟨
𝜓i

||||−1
2
∇2||||𝜓i

⟩
(2.6)

The quantity

t(r) = −1
2

N∑
i=1
𝜓
∗
i (r)∇

2
𝜓i(r) (2.7)

can be termed a kinetic energy density, although this definition is not unique [12].
Another expression for this quantity is the so-called “del dot del” [12] formula,
given as

t(r) =
N∑

i=1

(
∇𝜓i(r)

)∗
⋅ ∇𝜓i(r)

2
(2.8)

The local temperature T(r) is then introduced as

T(r) = 2t(r)
3kB𝜌(r)

(2.9)

with kB is the Boltzmann constant. This quantity was put forward as a measure of
the “nighness” of an electron pair [12] and was additionally proposed as a reactivity
index [13]; the time-dependent version of this quantity was used to compute the
time-dependent entropy in collision processes and resulted in the formulation of a
maximum entropy principle [14].
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It is a reasonable assumption that the kinetic energy Ts is a good approximation
to T in the Hohenberg–Kohn energy functional. It is also reasonable to approximate
Vee[𝜌] by the classical Coulomb self-repulsion J[𝜌], given as

J[𝜌] = 1
2 ∫ ∫

𝜌(r)𝜌(r′)|r − r′| drdr′ (2.10)

The error made by these approximations (which turns out to be a small quantity
as compared to the other exactly known contributions) was called the exchange-
correlation energy EXC:

FHK𝜌(r) = T[𝜌(r)] + Vee[𝜌(r)] = Ts[𝜌(r)] + J[𝜌(r)] + EXC[𝜌(r)] (2.11)

with

EXC[𝜌(r)] =
(

T[𝜌(r)] − Ts[𝜌(r)]
)
+
(

Vee[𝜌(r)] − J[𝜌(r)]
)

(2.12)

The Kohn–Sham total energy functional is thus given as

EKS[𝜌(r)] = Ts[𝜌(r)] + J[𝜌(r)] + ∫ 𝜌(r)v(r)dr + EXC[𝜌(r)] (2.13)

Again minimizing this energy with respect to the electron density with the con-
straint that the density should at all times integrate to the number of electrons yields

𝜇 = v(r) + ∫
𝜌(r′)|r − r′|dr′ +

𝛿EXC

𝛿𝜌(r)
+

𝛿Ts

𝛿𝜌(r)
(2.14)

Introducing the exchange-correlation potential vXC(r)

vXC(r) =
𝛿EXC

𝛿𝜌(r)
(2.15)

and

vJ(r) = ∫
𝜌(r′)|r − r′|dr′ (2.16)

yields

𝜇 = v(r) + vJ(r) + vXC(r) +
𝛿EXC

𝛿𝜌(r)
+

𝛿Ts

𝛿𝜌(r)
= vKS(r) +

𝛿Ts

𝛿𝜌(r)
(2.17)

with vKS(r) the effective Kohn–Sham potential. When comparing Eq. (2.14) with
Eq. (2.4), we now confirm the Kohn–Sham picture of a non-interacting systems
(Vee = 0) where the electrons move in an effective potential vKS(r).

Minimization of the energy with respect to the occupied Kohn–Sham orbitals
yields the celebrated Kohn–Sham equations,(

−1
2
∇2 + vKS(r)

)
= 𝜓i = 𝜖i𝜓i (2.18)

where 𝜖i are the Kohn–Sham orbital energies. Many papers have appeared discussing
these orbital energies; a recent discussion was given in [15], focusing, among others,
on differences in these quantities between finite systems (molecules) and extended
systems (solids).

In this chapter, the basic functions, i.e. the “basic” chemical concepts from
conceptual DFT are introduced. This chapter focuses on the zero temperature limit
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and mainly considers the change in the number of electrons N and/or the external
potential v(r) to probe the chemical reactivity of the system, as a chemical reaction
means that the system will undergo changes in these variables. In addition, the
reactivity concepts are introduced in a spin restricted manner, not considering
any spin polarization. These concepts introduced are often used to study chemical
reactivity, stability, and charge distributions as such or are adopted in the study
of chemical reactivity and stability principles; the latter will be the subject of
Chapter 4. Additionally, we will consider the various concepts for (isolated) individ-
ual molecules, and we will thus not treat concepts applied to two or more molecule
simultaneously, e.g. during the course of a chemical reaction. It should thus be
remarked that this chapter does not aim to provide an exhaustive introduction of
all DFT-based chemical concepts, rather an outline of the basic concepts that will
serve as a basis for more elaborate treatments throughout the course of this book.

2.2 The Electronic Chemical Potential and the Electron
Density as First Order Response Functions

The number of electrons of the system N and the external potential v(r) both fix
the Hamiltonian of the system and thus uniquely determine the energy E, so that
E = E[N, v(r)]. The change in energy from one ground state to another can thus be
written as

dE =
(
𝜕E
𝜕N

)
v
dN + ∫

[
𝛿E
𝛿v(r)

]
N
𝛿v(r)dr (2.19)

At constant external potential, the change in energy becomes

dEv =
(
𝜕E
𝜕N

)
v
dN (2.20)

Since the electron density integrates to the number of electrons, the infinitesimal
change in electron number N at constant external potential is accompanied by an
infinitesimal change in electron density with corresponding energy change

dEv = ∫
[
𝛿E
𝛿𝜌(r)

]
v
𝛿𝜌(r)dr (2.21)

Taking the functional derivative of the energy expression in Equation (2.1) with
respect to 𝜌 at constant external potential yields[

𝛿E
𝛿𝜌(r)

]
= v(r) +

𝛿FHK

𝛿𝜌(r)
= 𝜇 (2.22)

so that Eq. (2.21) becomes

dEv = ∫ 𝜇𝛿𝜌(r)dr = 𝜇 ∫ 𝛿𝜌(r)dr = 𝜇dN (2.23)

Comparing Eqs. (2.20) and (2.23) yields

𝜇 =
(
𝜕E
𝜕N

)
v

(2.24)
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As mentioned in Chapter 1, the birth of conceptual DFT [16–28] can be considered
to be the identification of the Lagrange multiplier 𝜇 in the DFT variational equation
with the negative of the electronegativity of the system 𝜒 , i.e. [29]

𝜇 = −𝜒 (2.25)

in line with the earlier definition of Iczkowski and Margrave [30] for this concept.
Electronegativity was initially introduced by Pauling as “the power of an atom in a
molecule to attract electrons to itself” [31, 32]. A detailed account of different scales
for this concept can e.g. be found in [33].

An important aspect in the evaluation of this quantity is the dependence of the
energy of the system on its number of electrons [34]. It was shown that the exact E
vs. N curve comprises a series of straight lines [35]; for a system with a fractional
number of electrons N and with an external potential v(r), the energy is a linear
interpolation of the two neighboring integer energy points:

E[N, v] = E[N0 + 𝛿, v)] = (1 − 𝛿)E(N0, v) + 𝛿E[N0 + 1, v] (2.26)

with 0 ≤ 𝛿 ≤ 1 or, more general,

E[N, v] = (1 − N + ⌊N⌋)E[⌊N⌋, v] + (⌈N⌉ − N)E[⌈N⌉, v] (2.27)

where ⌊N⌋ and ⌈N⌉ are the floor and ceiling functions, respectively. This linearity
condition was proven both using and ensemble [35] and pure state approach [36].
The violation of this condition for density functional approximations was termed the
“delocalization error,” and is e.g. responsible for the underestimation of the energy
for delocalized charge distributions [37, 38].

As a consequence of the linearity of E vs. N, the chemical potential 𝜇 is constant
between the integers and has a discontinuity at the integers; taking the derivative
with respect to N of Eq. (2.27) on the electron deficient and abundant side, respec-
tively, yields:

𝜕E
𝜕N N−𝜆

= −I (2.28)

and
𝜕E
𝜕NN+𝜆

= −A (2.29)

where I and A are the ionization energy and electron affinity, respectively. The
derivative discontinuities at the integer N lead to discontinuities in the exact
exchange-correlation potential; the exact potentials on the electron deficient
and electron abundant sides of the integer, denoted v−XC and v+XC, will differ by a
system-dependent positive constant ΔXC at all points in space

ΔXC = v+XC − v−XC (2.30)

For the removal of an electron from the highest occupied molecular orbital
(HOMO), it can be shown that the HOMO eigenvalue associated with the exact v−XC
equals the negative of the ionization energy [35]

𝜖
−
HOMO = −I (2.31)
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For addition of an electron to the lowest unoccupied molecular orbital (LUMO),
one finds

𝜖
+
LUMO = −A (2.32)

where 𝜖+LUMO is the LUMO eigenvalue associated with v+XC.
Cohen et al. have shown that the chemical potential is related to the Kohn–Sham

frontier orbital energies [39, 40]

𝜇 =
⟨
𝜙f

|||ĥKS
|||𝜙f

⟩
(2.33)

Taking the average of the left and right side derivative as an estimate of the chem-
ical potential at the integer number of electrons N yields

𝜇 = −𝜒 = − I + A
2

(2.34)

which is the Mulliken definition for the electronegativity [41], writing this quantity
as the arithmetic mean of the ground state ionization potential and electron affinity,
respectively. This expression can also be obtained by using a quadratic model for
the energy vs. the number of electrons. Within a Koopmans type of approximation
[42], the electronegativity can be obtained as the average of the HOMO and LUMO
energies [43]

𝜒 = −
𝜖HOMO + 𝜖LUMO

2
(2.35)

Returning to Eq. (2.16), a second derivative is present, i.e.
[
𝛿E
𝛿v(r)

]
N

Using Rayleigh–Schrödinger perturbation theory, this functional derivative
(which we will later call response function) can be proven to be equal to the electron
density of the system, i.e.[

𝛿E
𝛿v(r)

]
N
= 𝜌(r) (2.36)

Taking the functional derivative of Eq. (2.26) with respect to v(r) reveals that also
the electron density of the fractionally charged system is a mixture of the N0 and
N0 + 1 electron densities

𝜌(N0 + 𝛿) = (1 − 𝛿)𝜌(N0) + 𝛿𝜌(N0 + 1) (2.37)

It thus becomes clear that the two first-order energy derivatives are central
ingredients of the DFT variational equation and can thus be considered to be the
cornerstone of conceptual DFT.

Parr and Bartolotti have introduced the shape function 𝜎(r) (or the density per
particle) as the ratio of the electron density and the number of electrons, i.e. [44]

𝜎(r) ≡ 𝜌(r)
N

(2.38)

It was shown by Ayers that also this quantity determines any observable quantity of
a finite Coulombic system [45]. This quantity has also been used as a variable in the
conceptual DFT reactivity framework [46–51].
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2.3 Second and Higher Order Global Derivatives
and Derived Quantities

When studying generalized Lewis acid–base reactions of the type

A + :B ⥦ A − B

in the 1960s, Pearson proposed, based on experimental thermochemical data, to clas-
sify Lewis acids and bases as hard or soft and formulated the Hard and Soft Acids and
Bases (HSAB) principle: Hard acids prefer to bond to Hard bases and Soft acids pre-
fer to bond to Soft bases [52, 53]. Ayers et al. have pointed, however, to the fact that
the principle should be prefixed by “whenever other effects are similar” or “other
things being equal” [54]. The principle implies that the process

AhBs + AsBh −−−−→ AhBh + AsBs

should have a negative free energy change; in this equation Ah and As denote the
harder and the softer acid and Bh and Bs the harder and the softer base, respectively.

Parr and Pearson introduced the absolute hardness 𝜂 as [55]

𝜂 =
(
𝜕

2E
𝜕N2

)
v
=
(
𝜕𝜇

𝜕N

)
v

(2.39)

The chemical hardness measures the resistance of a chemical species toward
charge transfer; the Parr and Pearson definition enables to quantify the hardness of
different chemical species. Within the ensemble approach, however, the hardness
would be zero for noninteger N and undefined for integer values of the electron
number. One obtains values for this concept at integer N using a ΔN = 1 finite
difference approximation of the chemical potentials 𝜇+ and 𝜇− [56]

𝜂 = 𝜇+ − 𝜇− = I − A (2.40)

This expression is also obtained using a quadratic E vs. N model. Using again a Koop-
mans type of approximation yields

𝜂 = 𝜖LUMO − 𝜖HOMO (2.41)

i.e. the hardness is equal to the HOMO–LUMO gap of the system.
The chemical hardness is often evaluated through gas-phase computed I and A

values. In many cases, however, gas phase electron affinities are negative and the
anion is termed a temporary anion. This implies that the excess electron in the
anion is not bound and that the anion is unstable with respect to electron loss.
These metastable anions can readily be observed as sharp variations or resonances
in electron transmission spectroscopy [57] and play important roles in different
areas of chemistry [58]. Computation of these negative electron affinities is highly
challenging although some computational methods are available (see e.g. [59] and
the references cited in this paper). One solution consists in turning a resonance into
a bound state by adding an artificial potential to the Hamiltonian [60, 61]. Since a
negative electron affinity implies that the system accepts no electron at all, one can



24 2 Basic Functions

argue that, in these cases, the electron affinity should be set to zero, implying the use
of the ground state energy of the anion in the case of a negative electron affinity, i.e.

𝜂 = I −Max[0,A] (2.42)

Cárdenas et al. aimed to establish the preference for using or ignoring or including
the negative electron affinity in establishing the chemical hardness and advised for
the use of negative electron affinities when available [62]. Tozer and De Proft [63]
proposed a simple expression to determine the negative vertical electron affinities of
neutral systems that the negative vertical electron affinities of neutral systems can
be determined using the simple expression

A = −𝜖GGA
LUMO − 𝜖

GGA
HOMO − IGGA (2.43)

where 𝜖LUMO and 𝜖HOMO are the LUMO and HOMO eigenvalues, determined from a
DFT calculation on the neutral system, using a local density approximation or gen-
eralized gradient approximation functional. IGGA is the vertical ionization potential
of the neutral system computed using the same GGA. Using this expression for the
electron affinity, the global hardness can be computed as

𝜂 = 𝜖LUMO − 𝜖GGA
HOMO + 2(𝜖GGA

HOMO + IGGA) (2.44)

which can be considered as a corrected Koopmans type of approximation for the
hardness.

The inverse of the chemical hardness is called the (global) softness S [64]

S = 1
𝜂

=
(
𝜕N
𝜕𝜇

)
v

(2.45)

The global softness has been shown to be related to the polarizability and its cube
root [65–71].

With now the global first- and second-order global derivatives established, we can
write a Taylor series expansion for the energy E vs. the number of electrons N around
a reference state with number of electrons N0 and external potential v0 (at constant
external potential) up to second order,

E[N, v0] = E[N0
, v0] +

(
𝜕E
𝜕N

)
v=v0

(
N − N0) + 1

2

(
𝜕

2E
𝜕N2

)
v=v0

(
N − N0)2 (2.46)

or

ΔE = 𝜇ΔN + 1
2
𝜂ΔN (2.47)

Using this equation, Parr et al. considered the case where an electrophile would
be immersed in a free electron sea of chemical potential and derived the consequent
maximum charge transfer ΔNmax to this electrophile as [72]

ΔNmax = −
𝜇

𝜂

(2.48)

The negative of the accompanying energy lowering (to first order) ΔEmax of the
electrophile was introduced as the electrophilicity index 𝜔 [72–74]

−ΔEmax ≡ 𝜔 = 𝜇
2

2𝜂
(2.49)
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In order to appreciate the importance of both left and right derivatives in the global
quantities involved in this expression, Gázquez et al. considered the energy as a func-
tion of the number of electrons in the N − 1 to N and N to N + 1 regions, introducing
the electrodonating and electroaccepting powers 𝜔− and 𝜔+ as [75, 76]

𝜔
− ≡ 𝜇

−

2𝜂−
(2.50)

and

𝜔
+ ≡ 𝜇

+

2𝜂+
(2.51)

where 𝜇−, 𝜇+, 𝜂−, and 𝜂+ are now the slopes and the curvatures in the two parabolas
connecting the N − 1 and N and N and N + 1 points, respectively; these quan-
tities allow to differentiate the response of the system when it either accepts or
donates charge. Chattaraj et al. have additionally introduced the net electrophilicity
Δ𝜔± as [77]

Δ𝜔± = 𝜔+ − (−𝜔−) (2.52)

In parallel, the net reactivity index (NRI) was developed to assess the reactivity
between pairs of reactants on the basis of the difference of the electron-withdrawing
power of the more electrophilic reactant and (minus) the electron-donating power
of the less electrophilic reactant [78].

As can be seen, conceptual DFT allows the introduction of the concept of elec-
trophilicity from first principles; a similar approach for the nucleophilicity is, how-
ever, not available and nucleophilicities thus have to be introduced ad hoc within
the theory. Mayr has composed an extensive database of electrophilicities and nucle-
ophilicities from experimental data [79–82]. The Mayr scale is based on the following
expression for the rate constant (at 20 ∘C) for the combination of an electrophile and
a nucleophile

log k20 ∘C = sN (N + E) (2.53)

In this equation, E and N are the electrophilicity and nucleophilicity, respectively.
sN is called a sensitivity parameter that is nucleophile and solvent dependent. It
has been less straightforward to design an index for nucleophilicity within the
framework of conceptual DFT [83–85]. Domingo et al. proposed a nucleophilicity
index based on the difference between the Kohn–Sham HOMO orbital energy of
the nucleophile and the HOMO energy of tetracyanoethylene; the latter molecule
was used as a reference because of the low value of its HOMO. Tognetti et al.
quantified electrophilicity and nucleophilicity by performing a partitioning of the
dual descriptor (vide infra) [86]. These authors also introduced the concept of
an atomic electronegativity in a molecule [87], partitioning an expression for the
electronic chemical potential over atomic regions using Bader’s atoms in molecules
(AIM) approach [88]. For a series of carbocations, these AIM electronegativities
for C were found to be strongly correlated to the Mayr electrophilicities of these
compounds. Additionally, a machine learning approach has been adopted to predict
electrophilicities using different conceptual DFT and AIM descriptors [89].
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The quadratic model in Eq. (2.46) was also used to propose the so-called elec-
trofugality and nucleofugality indices, probing the quality of leaving groups [90, 91].
The dissociation or leaving energy of a nucleofuge ΔEnucleofuge and a electrofuge
ΔEelectrofuge from a neutral compound were defined as the energy difference between
ΔEmax and the energy of the anion and cation, respectively. The associated nucle-
ofugality 𝜆N and electrofugality 𝜆E were defined as

𝜆N ≡ e−𝛽NΔEnucleofuge (2.54)

and

𝜆E ≡ e−𝛽EΔEelectrofuge (2.55)

where the values of 𝛽N and 𝛽E were chosen so that the nucleofugality of the hydride
anion and the the electrofugality of the proton are equal to 1.

The derivative of the chemical hardness with respect to the number of electrons
was introduced by Parr and Fuentealba as the hyperhardness, a third-order deriva-
tive of the energy [92]

𝛾 = 𝜂(2) =
(
𝜕

3E
𝜕N3

)
v
=
(
𝜕𝜂

𝜕N

)
v

(2.56)

Fuentalba and Parr presented numerical values for the hyperhardness for atoms and
monoatomic ions and concluded that the numerical values were small. Values for
molecules were subsequently presented by Morell et al. [93] and Dunlap [94]. The
former provided interpretation for the hyper-hardness values through, among oth-
ers, a connection to the maximum hardness principle, stating that systems with a
positive hyper hardness exhibit high stability, whereas species with negative hyper-
hardness show high chemical reactivity. Further relationships between third-order
reactivity indices were derived by Cárdenas et al. [95].

2.4 Second- and Third-Order Local Quantities: The
Fukui Function and the Dual Descriptor

The change of the chemical potential𝜇when going from one ground state to another
is given by

d𝜇 =
(
𝜕𝜇

𝜕N

)
v
dN + ∫

[
𝛿𝜇

𝛿v(r)

]
N
𝛿v(r)dr (2.57)

Parr and Yang defined the Fukui function f (r) as [96, 97]

f (r) =
[
𝛿𝜇

𝛿v(r)

]
N
=
(
𝜕𝜌(r)
𝜕N

)
v

(2.58)

which can be considered as an extension of the frontier-electron theory of chemi-
cal reactivity within the DFT framework. Note that in Eq. (2.58), a Maxwell relation
has been used. In the same landmark paper, Parr and Yang put forward that the pre-
ferred approach of one reagent by another corresponds to the direction for which the
initial |d𝜇| is a maximum; since the first term of Eq. (2.57) is direction independent,
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it can then be assumed that the preferred direction of approach is the one show-
ing the largest value of the Fukui function at the reaction site. Recently, theoretical
evidence for this rule has been given [98]. The Fukui function integrates to unity
over space

∫ f (r)dr = 1 (2.59)

Due to the discontinuity of the electron density with respect to the number of elec-
trons, a Fukui function can be defined both on the electron deficient or abundant
side of the integer N. The derivative on the electron deficient side is the Fukui func-
tion for an electrophilic attack, i.e.

f −(r) =
(
𝜕𝜌(r)
𝜕N

)−

v
= 𝜌N (r) − 𝜌N−1(r) (2.60)

with 𝜌N (r) and 𝜌N−1(r) the electron density of the N and N − 1 electron system,
respectively. The Fukui function for a nucleophilic attack is given by the derivative
on the electron abundant side,

f +(r) =
(
𝜕𝜌(r)
𝜕N

)+

v
= 𝜌N+1(r) − 𝜌N (r) (2.61)

where 𝜌N+1(r) is now the electron density of the N + 1 electron system. For a radical
(neutral species) attack, the Fukui function f 0 is introduced, the average of f + and f −

f 0(r) =
f −(r) + f +(r)

2
(2.62)

Based on Eq. (2.37), these expressions are in fact exact provided the exact electron
densities of the N, N + 1, or N − 1 are used. Many aspects of the properties of this
function were analyzed, such as, e.g. the cusp condition [99], its topography [100]
and the fact that it can be negative in some molecular regions [101–107]. The Fukui
function is typically used to discuss differences in reactivity between different
sites within a molecule, more specifically reactivity in frontier molecular orbital
controlled reactions (i.e. charge transfer reactions and orbital controlled reactions,
i.e. soft–soft interactions) [108–111]. It was shown that the Fukui functions can
be approximated as the densities of the Kohn–Sham frontier molecular orbitals
[112], explicitly connecting the conceptual DFT framework with frontier molecular
orbital theory [113]

f −(r) = 𝜌HOMO(r) (2.63)

and

f +(r) = 𝜌LUMO(r) (2.64)

𝜌HOMO(r) and 𝜌LUMO(r) are the densities of the HOMO and LUMO, respectively.
From the work of Yang et al., it is clear that the Fukui function contains infor-

mation about not only the relevant frontier orbital but also about the change in
the shape of the orbitals when electrons are either added to or subtracted from the
system (the so-called orbital relaxation); an example where the latter are important
was discussed in e.g. [114]. The importance of orbital relaxation effects was also
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highlighted by Yang and coworkers who investigated the relaxation of Kohn–Sham
orbitals upon addition or subtraction of a fractional number of electrons on a finite
system using a perturbational approach [115]. Bultinck et al. introduced the Fukui
matrix as a generalization of the Fukui function, allowing, among others, to gain
insight into the occurrence of negative Fukui functions and to assess the quality of
the frontier molecular orbital approximation as [116]

f (r, r′) =
(
𝜕𝜌(r, r′)
𝜕N

)
v

(2.65)

which can then be e.g. projected on the basis of the Kohn–Sham orbitals of the
neutral system. Diagonalization of this matrix then yields the so-called Fukui
orbitals and Fukui eigenvalues. In the case of a perfect frontier molecular orbital
(FMO) approximation, only one eigenvalue will be different from zero (and equal
to one); in this case, the Fukui orbital is composed only of the frontier molecular
orbital of the neutral molecule. This approach bears resemblance to the Natural
Orbitals for Chemical Valence approach of Michalak and coworkers, where the
NOCVs are obtained by diagonalization of the deformation density, i.e. the change
of the density of two interacting fragments A and B with respect to the densities of
the individual A and B; these orbitals show great value in the characterization of
charge transfer processes in molecular interactions [117].

In order to locally probe chemical reactivity, the Fukui functions are often visu-
alized through contour plots, 3D isosurfaces or through mapping of the quantity
on a specific representative molecular surface. In Figure 2.1, the Fukui function

(a) (b)

(c) (d)
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Figure 2.1 2D and 3D representations of the Fukui function f + for a nucleophilic attack for
H2CO: (a) f+ 0.008 a.u. isosurface with positive values depicted in blue and negative in red.
(b) LUMO density (isovalue of 0.03 a.u.). (c) Contourplot with contours ranging from −0.02 to
0.02, with negative values depicted in red and positive in blue. (d) f + plotted on the van der
Waals surface.
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for a nucleophilic attack is plotted for the formaldehyde molecule. As can be seen,
the function shows the highest values around the carbon atom, correctly predicting
this atom as the preferred site for a nucleophilic addition; for comparison, the
LUMO density has been plotted as well, yielding the same conclusions about the
regioselectivity for the addition of a nucleophile. These quantities were obtained
using the ADF program [118], using the PBE exchange-correlation functional [119]
and a DZP basis set [120].

A remark has to be made, however, on the evaluation of f + in the gas phase. For a
neutral compound, evaluation of f + involves the evaluation of the molecular anion,
which often is unbound in the gas phase and is unstable with respect to electron
loss. In order to compute the electron density of the gas phase anion, two possible
approaches consist in binding of the excess electron using either a compact basis set
or a potential wall [60, 121].

For many applications, however, it is interesting to condense the function on an
atom, since analyzing the Fukui function and its variation among different sites in
a molecule cannot always be clearly appreciated from either the 2D or 3D spatial
plots. Yang and Mortier introduced the atom-condensed Fukui functions by taking
the difference of the atomic Mulliken populations [122] of the atom in the N, N − 1,
and N + 1 systems; the Fukui functions condensed to an atom k, for an electrophilic,
nucleophilic, and radical attack are then obtained as [123]

f −k = qk(N) − qk(N − 1) (2.66)

f +k = qk(N + 1) − qk(N) (2.67)

and

f 0
k = qk(N + 1) − qk(N − 1) (2.68)

Since the atom-condensed Fukui functions can also be evaluated using other pop-
ulation analysis schemes, their values are dependent on the particular way to iden-
tify the atom in a molecule. This issue has been addressed in many papers, among
others comparing different condensation schemes for this quantity [124–138]. In
addition, Bultinck et al. also pointed to different expressions that could be used for
the evaluation of the atom-condensed Fukui function, basically resulting from the
order of the condensation and function evaluation. In the Fragment of the Molecular
Response (FMR) approach to obtain the atom-condensed Fukui function, one first
evaluates the molecular Fukui function, followed by a partitioning of the function
over the atomic regions. Alternatively, one could first separately condense the con-
stituent parts of the Fukui functions (i.e. the electron densities of the N, N + 1, and
N − 1 electron systems) and then take the differences of these populations; this was
termed the response of the molecular fragment (RMF) approach. Equations (2.69) and
(2.70) illustrate the differences between the two approaches for a system containing
N0 number of electrons; the FMR atom-condensed Fukui function is obtained as

f ±A,FMR = wA(r,N0)f ±(r,N0) (2.69)

where wA(r,N0) is a weight function to project the molecular function onto the atom
A in the molecule.
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The RMF Fukui function is computed as

f ±A,RMF =
(
𝜕[wA(r,N)𝜌(r)]

𝜕N

)
v

(2.70)

Both approaches do not necessarily yield the same values for the atom-condensed
Fukui function. In the case of the Mulliken [121] and Hirshfeld [139] population
analyses schemes, both approaches yield the same results for the condensed Fukui
functions. These Hirshfeld AIM have been derived from information theory [134,
140, 141]. A connection between conceptual DFT and information theory was fur-
ther developed by Liu and coworkers [142].

Given the above-mentioned arbitrary choices, it thus might be appropriate to cer-
tainly also consider the local Fukui function next its atom condensed version. Alter-
natively, it has been suggested to condense Fukui functions to the different bonds in
a molecule [143].

Morell et al. introduced the dual descriptor f 2(r) as the derivative of the Fukui
function with respect to the number of electrons,

f (2)(r) =
(
𝜕f (r)
𝜕N

)
v
=
(

𝛿𝜂

𝛿v(r)

)
N
= f +(r) − f −(r) (2.71)

This quantity, a third-order energy derivative, was shown to provide a one-shot
picture of both the nucleophilic and electrophilic regions in a chemical compound
[144, 145]. It serves as an intramolecular reactivity index. In addition, it was found
to play a crucial role in regaining the famous Woodward–Hoffmann rules for
pericyclic reactions in conceptual DFT [25, 146]. In Figure 2.2, the dual descriptor
is depicted for H2CO, clearly showing positive (blue) regions where a nucleophilic
attack is preferred and negative (red) regions where an electrophile is predicted to
attach.

The dual descriptor was generalized to the state-specific dual descriptor Δfi(r),
defined for an excited state i as [147]

Δfi(r) = 𝜌i(r) − 𝜌0(r) (2.72)

(a) (b)

Figure 2.2 2D and 3D representation of the dual descriptor f 2 for H2CO: (a) f 2 ± 0.003 a.u.
isosurface with positive values depicted in blue and negative in red. (b) Contourplot with
contours ranging from −0.02 to 0.02, with negative values depicted in red and positive in
blue.
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where 𝜌0(r) and 𝜌i(r) are the electron densities of the ground state and excited state
i, respectively. This quantity can be associated with the density polarization of the
molecule resulting from an approaching reagent.

When a molecule undergoes a charge transfer during a chemical reaction, this will
result in a change on the forces on the nuclei of its constituent atoms, from which
an evaluation to a new equilibrium external potential will result. The magnitude
of these forces on the nuclei upon change in number of electrons of the system is
probed by the nuclear Fukui function 𝚽

𝛼
[148, 149]

𝚽
𝛼
=
(
𝜕F

𝛼

𝜕N

)
v

(2.73)

This quantity can be considered to be a so-called nuclear reactivity index and
probes the response of the nuclei toward changes in the number of electrons. The
interplay between electronic and nuclear degrees of freedom was discussed among
others by Nalewajski [150]. Different authors have obtained and discussed numeri-
cal values for this quantity and derived relations with other quantities from concep-
tual DFT [151–156]. Through the use of a Maxwell relationship, this quantity can be
expressed as a function of the nuclear displacement as [151]

𝚽
𝛼
=
(
𝜕F

𝛼

𝜕N

)
v
= −

(
𝛿𝜇

𝛿R
𝛼

)
N

(2.74)

where R
𝛼

indicates the position of nucleus 𝛼. It was shown to be related to the
electronic Fukui function through the Berlin binding function fv(r)dr [151], which
divides the molecule into binding and antibinding regions [157]

−
∑
𝛼

𝚽
𝛼
⋅ R

𝛼
= ∫ f (r)fv(r)dr (2.75)

The nuclear Fukui function was used in predicting the sites of DNA strand breaking
due to electron attachment [158]. The derivative of the nuclear Fukui function with
respect to the number of electrons is the nuclear stiffness [159]

G
𝛼
= −

(
𝜕𝚽

𝛼

𝜕N

)
v
= −

(
𝜕

2F
𝛼

𝜕N2

)
v
=
(
𝛿𝜂

𝛿R
𝛼

)
N

(2.76)

It was shown to be qualitatively related to the Raman scattering intensity [160].
Higher order derivatives have additionally been considered [161].

2.5 Local Softness and Local Hardness

The definition of the Fukui function given in Eq. (2.58) can be written as

f (r) =
[

𝛿𝜕E
𝜕N𝛿v(r)

]
(2.77)

It is the derivative of the state function of importance in the canonical ensemble
E with respect to the two natural variables N and v in this ensemble [162]. In the
grand canonical ensemble, with the grand potential Ω as the state function and the
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natural variables are v and 𝜇 (Chapter 3), the local softness s(r) can be introduced as
its counterpart, i.e. the derivative of Ω with respect to both natural variables

s(r) =
[

𝛿
2Ω

𝜕𝜇𝛿v(r)

]
(2.78)

with

Ω = E − 𝜇N (2.79)

Note that, besides E and Ω, also other state functions exist which will be treated in
Chapter 3. s(r) is the local counterpart of the global softness of the system. It equals

s(r) =
(
𝜕𝜌(r)
𝜕𝜇

)
v
=
(
𝜕𝜌(r)
𝜕N

)
v

(
𝜕N
𝜕𝜇

)
v
= Sf (r) (2.80)

As can be seen, the local softness distributes the global of the systems over the dif-
ferent regions of the system. It can thus be used as a quantity to probe differences
in reactivity between molecules (i.e. through comparison of local softness values
between different regions of different molecules). When integrated over space, the
local softness yields to global softness of the system

∫ s(r)dr = S (2.81)

The local softness can, in analogy with the Fukui functions from Eqs. (2.60)–(2.62)
be evaluated for an electrophilic, nucleophilic and radical attack, i.e.

s𝛼(r) = Sf 𝛼(r) (2.82)

with 𝛼 being either −, +, or 0. The condensed local softnesses are obtained in
turn as

s𝛼k = Sf 𝛼k (2.83)

with, again, 𝛼 being either −, +, or 0. The Fukui function naturally emerges here as
the partitioning function of global softness over space. It can be similarly applied to
the global electrophilicity index giving rise to Chattaraj’s philicity index [163]. In the
case of e.g. electron uptake by an electrophile, this yields

𝜔 = 𝜇
2

2𝜂
= 𝜇

2S
2

=
𝜇

2 ∫ s+(r)dr
2

= 𝜇
2

2𝜂 ∫ f +(r)dr (2.84)

So that

𝜔(r) = 𝜔f +(r) (2.85)

which is a local electrophilicity index. [163, 164] Using the dual descriptor to
partition the electrophilicity over the different atomic regions k in the molecule
yields the so-called multiphilic descriptor Δ𝜔k [165]

Δ𝜔k = 𝜔f (2)k (2.86)

A related quantity is the electrophilicity excess introduced for functional groups
[166]. The definition of a local counterpart of the chemical hardness has been proven
to be much less straightforward, and its definition has been the subject of many
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contributions [47, 48, 167–180]. Considering Eq. (2.80), a local counterpart of the
hardness, the local hardness, may be defined as [167, 169]

𝜂(r) =
(

𝛿𝜇

𝛿𝜌(r)

)
v

(2.87)

In this manner, the local softness and hardness integrate to 1 over space

∫ s(r)𝜂(r)dr (2.88)

Local softness and local hardness have been identified as measures of the local abun-
dance of the corresponding global quantities [181, 182]. This definition turns out to
be problematic, however, as it can be termed an “ambiguous constrained derivative”
[167, 171, 174, 178, 183]; the problem lies in the fact that for a ground state, the
electron density 𝜌(r) and v(r) are dependent because of the first Hohenberg–Kohn
theorem.

Some additional remarks on the local hardness will be made later on in this
chapter.

2.6 The Linear Response Function, Softness,
and Hardness Kernels

The linear response function is defined as the second functional derivative of the
energy with respect to the electron density, i.e.

𝜒(r, r′) =
[

𝛿
2E

𝛿v(r)𝛿v(r′)

]
N
=
[
𝛿𝜌(r)
𝛿v(r′)

]
N

(2.89)

This quantity expresses how the electron density at a given point r changes following
a change of the external potential at a point r′ and it is the static analogue of the
frequency-dependent linear response function 𝜒(r, r′, 𝜔), an important quantity in
time-dependent DFT [184]. It has been shown to be a quantity suitable of describing
electron delocalization in molecules [26]. An in-depth discussion of this quantity
and its use is given in Chapter 16.

Introducing the modified potential u(r) = 𝜇 − v(r), the so-called softness kernel is
introduced as [169]

s(r, r′) = 𝛿𝜌(r)
𝛿u(r′)

=
[
𝛿𝜌(r)
𝛿v(r′)

]
𝜇

(2.90)

The softness kernel is related to the linear response function through the
Berkowitz–Parr relation [169],

𝜒(r, r′) = −s(r, r′) + s(r)s(r′)
S

(2.91)

The local softness can be obtained straightforwardly from the softness kernel
through integration over one of the spatial coordinates,

s(r) = ∫ s(r, r′)dr′ (2.92)
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The hardness kernel is defined as

𝜂(r, r′) = 𝛿u(r)
𝛿𝜌(r′)

=
[

𝛿
2F

𝛿𝜌(r)𝛿𝜌(r′)

]
𝜇

(2.93)

The softness and hardness kernels are connected through

∫ s(r, r′)𝜂(r′, r′′)dr′ = 𝛿(r − r′′) (2.94)

The hardness kernel plays a key role in the variational determination of the Fukui
function [185]. Suppose that we construct a functional 𝜂[g] defined as

𝜂[g] = ∫ ∫ g(r)𝜂(r, r′)g(r′)drdr′ (2.95)

where the function g(r) integrates to unity, minimizing 𝜂[g]under the constraint that
g should at all times integrate to unity yields the exact Fukui function of the system;
at the solution point, 𝜂[f ] = 𝜂 is the chemical hardness of the system. This implies
that when a (suitable) expression for the hardness kernel would be available, one
could variationally determine the Fukui function of the system.

Using Eqs. (2.1) and (2.4), Parr and Gázquez rewrote the E[𝜌] functional as

E[𝜌] = N𝜇 −H[𝜌] (2.96)

with

H[𝜌] = ∫ 𝜌(r) 𝛿F
𝛿𝜌(r)

dr − F[𝜌] (2.97)

the hardness functional [186].
Ghosh and Berkowitz now introduced the local hardness as [168]

𝜂(r) = 1
N ∫

𝛿
2F

𝛿𝜌(r)𝛿𝜌(r′)
𝜌(r′)dr′ (2.98)

or, in terms of the hardness functional,

𝜂(r) = 1
N
𝛿H[𝜌]
𝛿𝜌(r)

(2.99)

This quantity was termed the “total local hardness” by Ayers and Parr
[174]. With this definition, the local hardness can be approximated, within a
Thomas-Fermi–Dirac ansatz [187], as the electronic part of the electrostatic
potential divided by twice the number of electrons, i.e. [167, 172]

𝜂(r) = 1
2N ∫

𝜌(r′)|r − r′|dr′ (2.100)

Harbola et al. have proposed the following explicit form of the local hardness [171]

𝜂(r) = ∫
𝛿

2F
𝛿𝜌(r)𝛿𝜌(r′)

𝜆(r′)dr′ (2.101)

where 𝜆(r′) is an arbitrary function integrating to 1. It can easily be seen that for the
Ghosh/Berkowitz definition,

𝜆(r′) = 𝜌(r′)
N

(2.102)
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Another choice for this function, however, could be the Fukui function, yielding
[170, 171]

𝜂(r) = ∫
𝛿

2F
𝛿𝜌(r)𝛿𝜌(r′)

f (r′)dr′ (2.103)

Since however

∫ 𝜂(r, r′)f (r′)dr′ = 𝜂 (2.104)

This definition gives rise to a constant local hardness in space and was termed the
frontier local hardness by Ayers and Parr [174] The authors provided an alternative
proposal for the definition of the local hardness, i.e. as the unconstrained derivative

𝜂(r) = 𝛿𝜇

𝛿𝜌(r)
(2.105)

but also this quantity turns out not to be free from problems [176].
All in all, local hardness remains a challenging and difficult concept preventing

its use on a routine basis in the study of chemical reactivity and stability. For
the evaluation of hard–hard or charge-controlled interactions, the atomic charge
appears to be of good quantity [109, 110]. A possibly connected reactivity index to
probe charge-controlled processes is the molecular electrostatic potential, intro-
duced as the interaction energy between a molecular system and a unit positive
charge, neglecting polarization effects [188],

V(r) =
M∑

A=1

ZA|r − RA| − ∫
𝜌(r′)|r − r′| (2.106)

As this indicator probes the interaction of the molecule with a hard system
(i.e. a unit positive charge), a link with local hardness might be expected. For
more complex cases, i.e. reactions that are neither charge- or orbital controlled,
Ayers and coworkers have derived a so-called all purpose reactivity indicator
that enables to probe the dual reactivity behavior and to quantify the shift in the
reactivity (site-selectivity) depending on the nature of the electrophile (hard or
soft) [189, 190]. Earlier, Geerlings and coworkers, in the framework of a study
of the regioselectivity in electrophilic aromatic substitutions on monosubstituted
benzenes, had proposed the following expression for a global reactivity index R(r),
consisting of a combination of the local softness s(r) and a local hardness estimate
h(r), both preceded by a local weight factor [172]

R(r) = A(r)s(r) + B(r)h(r) (2.107)

In the case of electrophilic aromatic substitution, the ratio A(r)∕B(r)was expected to
decrease with decreasing distance between the reagents, thus giving more weight to
the local softness, in line with the description of the regioselectivity in the Wheland
intermediate (𝜎-complex) of the reaction by this quantity. At larger distance, the
local hardness would dominate, which is in agreement with this quantity describing
the rate of the initial formation of the 𝜋-complex in this reaction.
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2.7 The Perturbational Perspective on Chemical
Reactivity

In Sections 2.2–2.6, we have been discussing a number of derivatives of the energy
with respect to either N or v(r) or both, i.e. 𝜕

m
𝛿

kE
𝜕Nm𝛿v(r)k

. In many practical applica-
tions, the N derivatives are evaluated using a finite difference approach, although
analytical expressions are available [191–199]. Fukui functions and dual descrip-
tors have also been obtained as the v derivatives of, respectively, 𝜇 and 𝜂, without
resorting to changes in number of electrons [200]; a similar methodology was devel-
oped for the linear response function [201]. The implication of degeneracy on com-
puted concepts and reactivity indicators has been scrutinized [202, 203]; Bultinck
et al. additionally investigated the consequences for atomic charges and electrostatic
potentials [204]. These energy derivatives are properties of an isolated system and
can be considered as the response of a system when it is perturbed in N and/or
v(r). These are the changes characterizing the perturbations at a microscopic level
when a system is undergoing a chemical reaction and can thus be termed response
functions. Their evaluation affords to do comparative studies of chemical reactivity,
either within a given systems (regioselectivity) or between different systems. Since
all of these considerations are based on perturbations, one can term this a pertur-
bational approach to chemical reactivity [20, 205]. Consider a reagent A character-
ized by a given number of electrons N0

A and ΔNA, v0
A(r). These quantities define the

Hamiltonian, and thus all properties 𝜉0 of A. During the chemical reaction, another
molecule B is approaching A leading to a perturbation in both N0

A and/orΔNA, v0
A(r).

Suppose that, upon this perturbation, both quantities change to N0
A and ΔNA, v0

A(r),
respectively, i.e.

NA = N0
A + ΔNA (2.108)

and

vA(r) = v0
A(r) + ΔvA(r) (2.109)

Analogously, N0
A and ΔNA, v0

A(r) determine all properties 𝜉 of the molecule after
the perturbation. One can then write a Taylor series expansion for 𝜉 around the
unperturbed situation 𝜉0 as

𝜉 = 𝜉0 + Δ𝜉

= 𝜉0 +
(
𝜕𝜉

𝜕NA

)
vA(r) = v0

A(r)
NA = N0

A

ΔNA + ∫
[

𝛿𝜉

𝛿vA(r)

]
vA(r) = v0

A(r)
NA = N0

A

Δv0
A(r)dr

+ 1
2

(
𝜕

2
𝜉

𝜕N2
A

)
vA(r) = v0

A(r)
NA = N0

A

ΔN2
A + ΔNA ∫

[
𝛿𝜕𝜉

𝜕NA𝛿vA(r)

]
vA(r) = v0

A(r)
NA = N0

A

Δv0
A(r)dr

+ 1
2 ∫ ∫

[
𝛿

2
𝜉

𝛿vA(r)𝛿vA(r′)

]
vA(r) = v0

A(r)
NA = N0

A

Δv0
A(r)drΔN2

A (2.110)
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Figure 2.3 Response function tree of the energy E vs. changes in the number of electrons N and the external potential v(r). Red arrows indicate
differentiation with respect to N, and green arrows indicate differentiation with respect to v(r).
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Putting 𝜉 = E, truncating at second order and introducing the symbols for the dif-
ferent response functions introduced in this chapter, yields

EA
[
N0

A + ΔNA, v0
A(r) + ΔvA(r)

]
= EA

[
N0

A, v
0
A(r)

]
+ 𝜇AΔNA +

1
2
𝜂A(ΔNA)2

+∫ 𝜌A(r)ΔvA(r)drΔNA + ∫ fA(r)ΔNAΔvA(r)dr

+1
2 ∫ ∫ 𝜒A(r, r′)ΔvA(r)ΔvA(r′)drdr′ (2.111)

The perturbational approach can thus be adopted to estimate the energy of the
transition state (or other relevant points on the potential energy surface) through
the properties of the isolated reactants; as such, it is expected to work best for cases
where the transition state is not too far from the reactants on the surfaces, i.e. for
early transition states [27] and when there is no crossing of competing reaction
pathways. It can be considered to be a generalization of the Klopman–Salem
equation [206], which has been used to rationalize frontier molecular orbital
theory and the HSAB principle. The analysis and principle have been criticized;
however, [207] a combination of conceptual DFT and the activation strain model
[208] was used to gain further insight into the failure of the principle for ambident
reactivity [209].

Two final remarks should be made:

1. The perturbation series is not guaranteed to converge, even if the necessary
derivatives at all orders would be available; it is thus not possible to guarantee
that one can accurately describe every point on the potential energy surface by
considering the perturbation expansion

2. As pointed out by Yang and coworker [198], the derivatives with respect to N in
Eq. (2.105) should be taken on either the electron deficient of abundant side, in
view of the derivative discontinuity of the energy at integer N. These concepts can
also be used to study density functional approximations in terms of their deriva-
tives [197, 198] The effect of the discontinuities on reactivity indices was further
scrutinized by Hellgren and Gross [210].

The response functions up to third order in the canonical ensemble are summarized
in the so-called response function tree [211–214] (Figure 2.3).

2.8 Conclusion

This chapter has provided a general treatment of the basic functions introduced
within the framework of conceptual DFT. The focus has been on derivatives of the
energy with respect to either the number of electrons and/or the external poten-
tials as basic variables describing chemical processes. Additionally, we have focused
on the description of these properties at zero temperature for isolated molecules.
In addition, we have not yet discussed the reactivity/stability principles in which
these concepts are often used; these will be outlined in the following chapter. In
subsequent chapters, extensions of both these functions will be discussed in more
detail.
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In this chapter, we introduce the basic formalism of conceptual density functional
theory (CDFT), whose foundation was laid out by Nalewajski and Parr [1] using
the analog to classical thermodynamics, where the internal energy U, enthalpy H,
Helmholtz free energy F, and Gibbs free energy G serve as the characteristic state
functions for four ensembles, related to each other through Legendre transform.
This framework was summarized in the book of Parr and Yang [2] and has been
overviewed and reviewed elsewhere [3–7]. This system of ensembles was later
expanded by Ghosh et al. [8–10] by introducing the concept of local temperature
and improved by Cedillo [11] and Baekelandt et al. [12] by employing the shape
function [13] to remove the interdependence of variables.

Here are the notations employed in this chapter and beyond. According to the
fundamental theorems of density functional theory (DFT) [14], all observable
properties of a molecular system, including its total energy, are functionals of
the ground-state electron density. Functionals are real-valued functions whose
domain is a space of functions. In DFT, the function space is a Banach space, not
a Hilbert space, and Banach spaces are not vector spaces. They are represented
by square brackets to avoid confusion with normal (multivariate) functions. For
example, the universal density functional is represented by F[𝜌], a functional of
the ground-state electron density 𝜌(r). In CDFT, we take the same format, just that
the variables could be different. They can be more than one variable, and they can
also be global (independent of spacious variables) and/or local (i.e. a function of
Cartesian coordinates x, y, and z). For example, the total energy E is a functional of
the total electron number N, which is a global variable, and the external potential
𝜐(r), which is local, so it can be written as E[N, 𝜐]. In addition, when a derivative
for a quantity, q, is taken, different symbols to represent the different nature of
this derivative are possible. Specifically, we denote total differential with dq, partial
derivatives with 𝜕q, and functional derivatives with 𝛿q.

Conceptual Density Functional Theory: Towards a New Chemical Reactivity Theory, First Edition.
Edited by Shubin Liu.
© 2022 WILEY-VCH GmbH. Published 2022 by WILEY-VCH GmbH.
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3.1 Legendre Transform

A Legendre transform converts a function or functional of one set of variables to
another function or functional of a conjugate set of variables. Let us consider a func-
tion of two independent variables, F(x, y), whose differential is

dF(x, y) =
(
𝜕F
𝜕x

)
y

dx +
(
𝜕F
𝜕y

)
x

dy (3.1)

Defining u≡ (𝜕F/𝜕x)y and w≡ (𝜕F/𝜕y)x, we have

dF(x, y) = udx + wdy (3.2)

We call u and x a conjugate pair of variables, and likewise w and y. A
Legendre-transformed function G is defined as follows

G ≡ F −
(
𝜕F
𝜕y

)
x
y = F − wy (3.3)

and has the differential

dG = dF − d(wy) = udx − ydw (3.4)

So G can be regarded as the function of two new independent variables x and w,
G(x, w). The variable change of y in F(x, y) to its conjugate variable w in G(x, w) is
made possible by Legendre transform.

In thermodynamics, using Legendre transforms, one can convert between the
internal energy U, enthalpy H, Helmholtz free energy F, and Gibbs free energy
G, using conjugate variable pairs of pressure P and volume V , temperature T and
entropy S, and the number of particles N and chemical potential 𝜇. According to
the thermodynamic identity

dU = TdS − PdV + 𝜇 dN (3.5)

where T, P, and 𝜇 are therefore the variables conjugate to S, V , and N, respectively,
and, from Eq. (3.5), we also have(

𝜕U
𝜕S

)
V ,N

= T,
(
𝜕U
𝜕V

)
S,N

= −P, and
(
𝜕U
𝜕N

)
S,V

= 𝜇 (3.6)

We can use Legendre transform to convert U(N, S, V) to a new thermodynamic
potential, enthalpy H(N, S, P)

H(N, S,P) ≡ U(N, S,V) −
(
𝜕U
𝜕V

)
S
V = U(N, S,V) + PV (3.7)

so its differential is as follows after Eq. (3.5) is applied,

dH(N, S,P) = TdS + VdP + 𝜇 dN (3.8)

with (
𝜕H
𝜕S

)
P,N

= T,
(
𝜕H
𝜕V

)
S,N

= V , and
(
𝜕H
𝜕N

)
S,P
= 𝜇 (3.9)

Formulas for the Gibbs free energy G(N, P, T) and the Helmholtz free energy
F(N, V , T) can be similarly obtained. In statistical mechanics, these thermodynamic
quantities, U, H, F, and G, are the state functions in their respective ensembles, such
as the canonical ensemble (N, V , T) and grand canonical ensemble (𝜇, V , T).
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3.2 Four Ensembles in CDFT

In the spirit of classical thermodynamics, a molecular electronic ground state may
be regarded as an equilibrium state at low temperature. For example, an atom or a
functional group in a molecule can be described as an open system embedded in a
bath that might be appropriately modeled at finite temperature. Since DFT focuses
on the electron density distribution function 𝜌(r), the canonical ensemble and grand
canonical ensemble provide the most obvious ensemble descriptions, which both
allow the electron density to fluctuate. In the microscopic world, V can be substi-
tuted by the external potential 𝜐(r), which represents the attractive potential to the
system’s atomic nuclei, which binds the electrons to a particular region of space. In
CDFT, ordinarily, the thermodynamic (but not necessarily the local [15–18]) temper-
ature is assumed to equal zero, though temperature-dependent extensions of CDFT
are emerging as a promising avenue for research [19–21], as introduced in Chapter 8
of this book.

Consider an electronic system consisting of N electrons moving in an external
potential 𝜐(r). The Schrödinger equation dictates that any ground-state property of
such a system can be solved via the conventional variational principle, suggesting
that the total energy E of the system can be thought of as a functional of N and 𝜐(r),

E = E[N, 𝜐] (3.10)

As a consequence, one has the (generalized) Hellmann–Feynman formula for the
energy change due to the infinitesimal change of these two variables,

dE =
(
𝜕E
𝜕N

)
𝜐

dN + ∫
(

𝛿E
𝛿𝜐(r)

)
N
𝛿𝜐(r)dr (3.11)

Assuming that E is differentiable with respect to N and 𝜐(r) and that N can be
treated as a continuous variable, in DFT, one finds [2](

𝜕E
𝜕N

)
𝜐

= 𝜇 and
(

𝛿E
𝛿𝜐(r)

)
N
= 𝜌(r) (3.12)

From Eq. (3.11), according to Eq. (3.2), we can see that N and 𝜇, and 𝜌(r) and 𝜐(r)
are two pairs of conjugate variables. In analog with classical thermodynamics, this
representation is called the canonical ensemble in CDFT. It is consistent with the
description of electronic systems in DFT, in which 𝜐(r) determines the density 𝜌(r)
and the density is normalized to N,

∫ 𝜌(r)dr = N (3.13)

While assuming that the (functional) derivatives exist is not rigorous mathe-
matically, it is not too difficult to “patch up” the mathematics [22–25]. The easiest
approach is to introduce a positive temperature, but this is not essential [20, 26, 27].

The Legendre transform allows one to convert the energy functional E[N, 𝜐] to
other state functionals, defined using different sets of conjugate variables. Specifi-
cally, the ground-state independent variables N and 𝜐(r) for the state function E[N,
𝜐] can be replaced by the corresponding conjugate variables 𝜇 and 𝜌(r), respectively,
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via Legendre transform. The three remaining natural functionals of the ground state
defined by the Legendre transform of E[N, 𝜐] represent three other ensembles in
CDFT. In the grand canonical ensemble, where Ω is a functional of 𝜇 and 𝜐(r),
defined by

Ω[𝜇, 𝜐] ≡ E −
(
𝜕E
𝜕N

)
𝜐

N = E − 𝜇N (3.14)

which is minimized by the equilibrium values of unconstrained internal variables
of the system at constant 𝜇 and 𝜐(r). In the grand canonical ensemble, the system
is said to be open in the sense that it can exchange both energy and particles with
the reservoir so that various possible states of the system can differ in both their
total energy and total number of particles. The system’s shape and external potential
are kept fixed in all possible states of the system. In this sense, the grand canonical
ensemble is suitable for the description of the molecular formation processes, where
charge transfer takes place among atoms. In the isomorphic ensemble,

F[N, 𝜚] ≡ E − ∫
(

𝛿E
𝛿𝜐(r)

)
N
𝜐(r) dr = E − ∫ 𝜚(r) 𝜐(r)dr (3.15)

where F[N,𝜌] is a functional of natural variables N and 𝜌(r). The last frequently used
ensemble is the grand isomorphic ensemble,

R[𝜇, 𝜚] ≡ E −
(
𝜕E
𝜕N

)
𝜐

N − ∫
(

𝛿E
𝛿𝜐(r)

)
N
𝜐(r) dr = E − 𝜇N − ∫ 𝜚(r) 𝜐(r)dr

(3.16)

in which R[𝜇,𝜌] is a functional of natural variables 𝜇 and 𝜌(r). Because of Eq. (3.4),
N and 𝜌(r) are dependent, a modified version for the isomorphic ensemble was pro-
vided by Cedillo [11] and Baekelandt et al. [12] in terms of the shape function 𝜎(r)
defined as

𝜎(r) = 𝜌(r)
N

(3.17)

so

F[N, 𝜎] ≡ E − N ∫ 𝜎(r) 𝜐(r)dr (3.18)

Owing to the Hohenberg–Kohn theorem, 𝜇 is a functional of 𝜌(r), so the grand
isomorphic ensemble can also be described as R[𝜇,𝜎] or even R[𝜌] [28].

3.3 Basic Relations in the Canonical Ensemble

In the canonical ensemble, the total energy E is represented as a functional of the
global variable N and the local variable 𝜐(r), E[N, 𝜐]. Assuming E to be differentiable
and using Eq. (3.10), one then has the following differential expression for E

dE = 𝜇dN + ∫ 𝜌(r)𝛿𝜐(r)dr (3.19)
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The Maxwell relation originates from the symmetry requirement on the
second-order derivatives of a twice-differentiable function F(x,y), i.e. 𝜕

𝜕x

(
𝜕F
𝜕y

)
=

𝜕

𝜕y

(
𝜕F
𝜕x

)
. These Maxwell relations are useful in connecting one set of derivatives

with another set of derivatives. For Eq. (3.19), one has

𝜕

𝜕N

(
𝛿E
𝛿𝜐(r)

)
= 𝛿

𝛿𝜐(r)

(
𝜕E
𝜕N

)
(3.20)

With Eq. (3.10), so the Maxwell relation associated with Eq. (3.19) is the following(
𝜕𝜌(r)
𝜕N

)
𝜐

=
(

𝛿𝜇

𝛿𝜐(r)

)
N
= f (r) (3.21)

which is nothing but the definition of the Fukui function [29]. As will be discussed
in detail in later chapters, this function can be utilized to predict electrophilic and
nucleophilic attacks and thus recover the frontier molecular orbital theory by Fukui
et al. [30]. With the Maxwell equation Eq. (3.21), it becomes clear that two definitions
for the Fukui function are possible. Also, in the canonical ensemble, both chemical
potential 𝜇 and electron density 𝜌(r) are functionals of N and 𝜐(r). The differential
form for chemical potential 𝜇, d𝜇, is as follows.

d𝜇 = 𝜂dN + ∫ f (r)𝛿𝜐(r)dr (3.22)

where 𝜂 is the hardness [31], defined as

𝜂 =
(
𝜕

2E
𝜕N2

)
𝜐

=
(
𝜕𝜇

𝜕N

)
𝜐

(3.23)

whose inverse is the softness S= 1/𝜂 [32]. For 𝜌(r), one has the following differential
form

dρ(r) = f (r)dN + ∫ 𝜔(r, r′)𝛿𝜐(r′)dr′ (3.24)

with the response function 𝜔(r,r′) is defined by [33, 34]

𝜔(r, r′) =
(
𝛿𝜌(r)
𝛿𝜐(r′)

)
N

(3.25)

The Maxwell relations for Eqs. (3.22, 3.24) are, respectively,(
𝜕f (r)
𝜕N

)
𝜐

=
(

𝛿𝜂

𝛿𝜐(r)

)
N

(3.26)

and (
𝜕𝜔(r, r′)
𝜕N

)
𝜐

=
(
𝛿f(r)
𝛿𝜐(r)

)
N

(3.27)

These quantities in Eqs. (3.26) and (3.27) are higher-order derivatives, which were
first systematically investigated by Fuentealba and Parr [35]. Later, further studies
led to actual applications of these higher-order derivatives as the dual descriptor and
hardness responses [36–39].
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3.4 Basic Relations in the Grand Canonical Ensemble

In the grand canonical ensemble, the natural variables are the chemical potential 𝜇
and the external potential 𝜐(r). The grand potentialΩ is defined in Eq. (3.14), whose
differential form is as follows

dΩ = −Nd𝜇 + ∫ 𝜌(r)𝛿𝜐(r)dr (3.28)

This equality is obtained by differentiating Eq. (3.14) and then employing
Eq. (3.19). One thus has(

𝜕𝛺

𝜕𝜇

)
𝜐

= −N and
(
𝛿Ω
𝛿𝜐(r)

)
𝜇

= 𝜌(r) (3.29)

The Maxwell relation associated with Eq. (3.28) brings in the definition of local
softness s(r) [8](

𝜕𝜌(r)
𝜕𝜇

)
𝜐

= −
(
𝛿N
𝛿𝜐(r)

)
𝜇

= s(r) (3.30)

The other two variables, N and 𝜌(r), can also be expressed as functionals of the
chemical potential 𝜇 and external potential 𝜐(r) in the grand canonical ensemble,
leading to

dN = −Sd𝜇 + ∫ s(r)𝛿𝜐(r)dr (3.31)

and

d𝜌(r) = s(r)d𝜇 − ∫ s(r, r′)𝛿𝜐(r)dr (3.32)

respectively, where the softness S is

S =
(
𝜕N
𝜕𝜇

)
𝜐

(3.33)

and the softness kernel s(r,r′) [10] is

s(r, r′) = −
(
𝛿𝜌(r)
𝛿𝜐(r′)

)
𝜇

(3.34)

The Maxwell relations associated with Eqs. (3.31) and (3.32) are, respectively
[35, 40],

−
(
𝜕s(r)
𝜕𝜇

)
𝜐

= −
(

𝛿S
𝛿𝜐(r)

)
𝜇

(3.35)

and

−
(
𝜕s(r, r′)
𝜕𝜇

)
𝜐

= −
(
𝛿s(r)
𝛿𝜐(r)

)
𝜇

(3.36)
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3.5 Basic Relations in the Isomorphic Ensemble

In the isomorphic ensemble, the state function is F, which is also the universal func-
tional in DFT [1, 2]. Its natural variables are N and 𝜎(r). Differentiating Eq. (3.18),
one has

dF =
[
𝜇 − ∫ 𝜎(r)𝜐(r)dr

]
dN − N ∫ 𝜐(r)𝛿𝜎(r)dr (3.37)

so we have(
𝜕F
𝜕N

)
𝜎

= 𝜇 − ∫ 𝜎(r)𝜐(r)dr (3.38)

and (
𝛿F
𝛿𝜎(r)

)
N
= −N𝜐(r) (3.39)

The Maxwell relation with Eq. (3.37) gives [3, 11, 12]

h(r) + g(r) = ∫ q(r, r′)𝜎(r′)dr′ (3.40)

with

h(r) = 1
N

(
𝛿𝜇

𝛿𝜎(r)

)
N

(3.41)

g(r) =
(
𝜕𝜐(r)
𝜕N

)
𝜎

(3.42)

and

q(r, r′) = 1
N

(
𝛿𝜐(r)
𝛿𝜎(r′)

)
N

(3.43)

The two other variables, chemical potential 𝜇 and external potential 𝜐(r), can also
be represented by N and 𝜎(r) in the isomorphic ensemble, whose differential forms
are, respectively,

d𝜇 = 𝜂𝜎dN + N ∫ h(r)𝛿𝜎(r)dr (3.44)

and

d𝜐(r) = g(r)dN + N ∫ q(r, r′)𝛿𝜎(r′)dr′ (3.45)

where

𝜂
𝜎 =

(
𝜕𝜇

𝜕N

)
𝜎

(3.46)

The corresponding Maxwell relation for Eq. (3.44) is

h(r) + N
(
𝜕h(r)
𝜕N

)
𝜎

=
(
𝛿𝜂

𝜎

𝛿𝜎(r)

)
N

(3.47)

and that for Eq. (3.45) is

q(r, r′) + N
(
𝜕q(r, r′)
𝜕N

)
𝜎

=
(
𝛿g(r)
𝛿𝜎(r′)

)
N

(3.48)
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3.6 Basic Relations in the Grand Isomorphic Ensemble

Equation (3.16) represents the grant isomorphic ensemble, whose state function is
R and natural variables are chemical potential 𝜇 and electron density 𝜌(r). Differen-
tiating Eq. (3.16) with the use of Eq. (3.19) yields

dR = −Nd𝜇 − N ∫ 𝜐(r)𝛿𝜌(r)dr (3.49)

so we have(
𝜕R
𝜕𝜇

)
𝜌

= −N (3.50)

and (
𝛿R
𝛿𝜌(r)

)
𝜇

= −𝜐(r) (3.51)

The Maxwell relation associated with Eq. (3.49) is as follows(
𝜕𝜐(r)
𝜕𝜇

)
𝜌

=
(

𝛿N
𝛿𝜌(r)

)
𝜇

= 1 (3.52)

To express the other independent variables, N and 𝜐(r), in the grand isomorphic
ensemble, one has the following differential forms

dN =
(
𝜕N
𝜕𝜇

)
𝜌

d𝜇 + ∫
(

𝛿N
𝛿𝜌(r)

)
𝜇

𝛿𝜌(r) dr = ∫ 𝛿𝜌(r) dr (3.53)

and

d𝜐(r) =
(
𝜕𝜐(r)
𝜕𝜇

)
𝜌

d𝜇 + ∫
(
𝛿𝜐(r)
𝛿𝜌(r′)

)
𝜇

𝛿𝜌(r′) dr′ (3.54)

with Eq. (3.52), Eq. (3.54) becomes

d𝜐(r) = d𝜇 + ∫ 𝜂(r, r′)𝛿𝜌(r′) dr′ (3.55)

where the hardness kernel is defined as [10]

𝜂(r, r′) =
(
𝛿𝜐(r)
𝛿𝜌(r′)

)
𝜇

= 𝛿
2F[𝜌]

𝛿𝜌(r)𝛿𝜌(r′)
(3.56)

The Maxwell relation for Eq. (3.55) is(
𝜕 𝜂(r, r′)
𝜕𝜇

)
𝜌

= 0 (3.57)

3.7 Relations Among Quantities from Different
Ensembles

Many relations among different quantities from different ensembles have been dis-
covered [2, 3, 11, 12], including:

S = ∫ s(r)dr (3.58)
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s(r) = ∫ s(r, r′)dr′ (3.59)

s(r) = S f (r) (3.60)

𝜂 = ∫ f (r)𝜂(r)dr′ (3.61)

∫ s(r)𝜂(r)dr = 1 (3.62)

with local hardness 𝜂(r) defined as

𝜂(r) =
(

𝛿𝜇

𝛿𝜌(r)

)
𝜐

(3.63)

Four other well-known relations [2, 3, 10–12] are

𝜔(r, r′) = s(r)s(r′)
S

− s(r, r′) (3.64)

𝜂
𝜎 = 𝜂 + ∫ h(r)[f (r) − 𝜎(r)]dr (3.65)

h(r) = ∫ f (r′) q(r, r′)dr′ (3.66)

and

g(r) = ∫ q(r, r′)[𝜎(r′) − f (r′)]dr′ (3.67)

3.8 Second-order Taylor Expansions in the Four
Ensembles

Now, let us consider in the canonical ensemble the following scenario where an
attacking agent induces changes in the number of electrons and external potential
of the system,ΔN andΔ𝜐(r). Using the Taylor expansion up to the second order, the
subsequent change in the total energy reads

ΔE ≡ E[N + ΔN, 𝜐(r) + 𝜐(r)] − E[N, 𝜐(r)]

=
(
𝜕E
𝜕N

)
𝜐

ΔN + ∫
(

𝛿E
𝛿𝜐(r)

)
N
Δ𝜐(r)dr

+ 𝟏
𝟐!

{(
𝜕

2E
𝜕N2

)
𝜐

ΔN2 + 2∫
(
𝜕

𝜕N

(
𝛿E
𝛿𝜐(r)

)
N

)
𝜐

ΔNΔ𝜐(r)dr

+∫ ∫
(

𝛿
𝟐E

𝛿𝜐(r)𝛿𝜐(r′)

)
N
Δ𝜐(r)Δ𝜐(r′)drdr′

}
(3.68)

where (𝜕E/𝜕N)
𝜈

and [𝛿E/𝛿𝜐(r)]N are the first-order partial derivatives of the total
energy with respect to N and 𝜐(r) with 𝜐(r) and N fixed, respectively, and, similarly,
(𝜕2E/𝜕N2)

𝜈
and [𝛿2E/𝛿𝜐2(r)]N are the corresponding second-order terms, whereby
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[𝜕/𝜕N (𝛿E/𝛿𝜐)N ]
𝜈

is the second-order cross term. With the quantities introduced in
the above sections, we have

ΔE =𝜇ΔN + ∫ 𝜌(r)Δ𝜐(r)dr + 𝟏
𝟐

{
𝜂ΔN2 + 2ΔN ∫ f (r)Δ𝜐(r)dr

+∫ ∫ 𝜔(r, r′)Δ𝜐(r)Δ𝜐(r′)drdr′
}

(3.69)

where chemical potential 𝜇, hardness 𝜂, Fukui function f (r), and linear response
function 𝜔(r,r′) are employed to obtain the total energy change.

Similarly, in the grand canonical ensemble,

Δ𝛺 ≡ Ω[𝜇 + Δ𝜇, 𝜐(r) + 𝜐(r)] − Ω[𝜇, 𝜐(r)]

=
(
𝜕𝛺

𝜕𝜇

)
𝜐

Δ𝜇 + ∫
(
𝛿Ω
𝛿𝜐(r)

)
𝜇

Δ𝜐(r)dr

+ 𝟏
𝟐!

{(
𝜕

2Ω
𝜕𝜇2

)
𝜐

Δ𝜇2 + 2∫
(
𝜕

𝜕𝜇

(
𝛿Ω
𝛿𝜐(r)

)
𝜇

)
𝜐

Δ𝜇Δ𝜐(r)dr

+∫ ∫
(

𝛿
2Ω

𝛿𝜐(r)𝛿𝜐(r′)

)
𝜇

Δ𝜐(r)Δ𝜐(r′)drdr′
}

(3.70)

Again, with the quantities introduced above, we have

Δ𝛺 = − NΔ𝜇 + ∫ 𝜌(r)Δ𝜐(r)dr − 𝟏
𝟐

{
SΔ𝜇2 − 2Δ𝜇 ∫ s(r)Δ𝜐(r)dr

+∫ ∫ s(r, r′)Δ𝜐(r)Δ𝜐(r′)drdr′
}

(3.71)

where softness S, local softness s(r), and softness kernel s(r,r′) are involved in deter-
mining the total ΔΩ change. In the isomorphic ensemble,

ΔF ≡ F[N + ΔN, 𝜎(r) + Δ𝜎(r)] − F[N, 𝜎(r)]

=
(
𝜕F
𝜕N

)
𝜎

𝛥𝜇 + ∫
(

𝛿F
𝛿𝜎(r)

)
N
Δ𝜎(r)dr + 𝟏

𝟐!

{(
𝜕

2F
𝜕N2

)
𝜎

ΔN2

+ 2∫
(
𝜕

𝜕N

(
𝛿F
𝛿𝜎(r)

)
N

)
𝜎

ΔNΔ𝜎(r)dr + ∫ ∫
(

𝛿
𝟐F

𝛿𝜎(r)𝛿𝜎(r′)

)
N
Δ𝜎(r)Δ𝜎(r′)drdr′

}
(3.72)

with quantities introduced above, so

ΔF =𝜇ΔN − N ∫ 𝜐(r)Δ𝜎(r)dr + 𝟏
𝟐

{
𝜂
𝜎ΔN2 − 3ΔN ∫ g(r)Δ𝜎(r)dr

+∫ N2 ∫ ∫ q(r, r′)Δ𝜎(r)Δ𝜎(r′)drdr′
}

(3.73)

and in the grand isomorphic ensemble,

ΔR ≡ R[𝜇 + Δ𝜇, 𝜌(r) + 𝜌(r)] − R[𝜇, 𝜌(r)]
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=
(
𝜕R
𝜕𝜇

)
𝜌

𝛥𝜇 + ∫
(

𝛿R
𝛿𝜎(r)

)
𝜇

Δ𝜌(r)dr + 𝟏
𝟐!

{(
𝜕

2R
𝜕𝜇2

)
𝜌

Δ𝜇2

+ 2∫
(
𝜕

𝜕𝜇

(
𝛿R
𝛿𝜌(r)

)
𝜇

)
𝜌

Δ𝜇Δ𝜌(r)dr + ∫ ∫
(

𝛿
𝟐R

𝛿𝜌(r)𝛿𝜌(r′)

)
𝜇

Δ𝜌(r)Δ𝜌(r′)drdr′
}

(3.74)

so

ΔR = −∫ 𝜐(r)Δ𝜌(r)dr + 𝟏
𝟐 ∫ ∫ 𝜂(r, r′)Δ𝜌(r)Δ𝜌(r′)drdr′ (3.75)

3.9 Generalized Considerations

Assuming the existence of all derivatives, the preceding Taylor expansion can be
generalized to any quantity Q, whose natural variables include one global parameter
g and one local variable l(r), as the following

ΔQ[g, l] ≡ Q[g + Δg, l(r) + Δl(r)] − Q[g, l(r)]

=
(
𝜕Q
𝜕g

)
l
Δg + ∫

(
𝛿Q
𝛿l(r)

)
g
Δl(r)dr + 𝟏

𝟐!

{(
𝜕

2Q
𝜕g2

)
l
Δg2

+2∫
(
𝜕

𝜕g

(
𝛿Q
𝛿l(r)

)
g

)
l

ΔgΔl(r)dr + ∫ ∫
(

𝛿
𝟐Q

𝛿l(r)𝛿l(r′)

)
N
Δl(r)Δl(r′)drdr′

}
+

(3.76)

𝟏
𝟑!

{(
𝜕

3Q
𝜕g3

)
l
Δg3 + 3∫

(
𝜕

2

𝜕g2

(
𝛿Q
𝛿l(r)

)
g

)
l

Δg2Δl(r)dr

+ 3∫ ∫
(
𝜕

𝜕g

(
𝛿
𝟐Q

𝛿l(r)𝛿l(r′)

)
g

)
l

ΔgΔl(r)Δl(r′)drdr′ + ∫ ∫ ∫
(

𝛿
𝟑Q

𝛿l(r)𝛿l(r′)𝛿l(r′′)

)
g

Δl(r)Δl(r′)Δl(r′′)drdr′dr′′
}
+ · · · +

n∑
m=1 ∫ · · ·∫ ∫

n!
m!(n −m)!

(
𝜕

mQ
𝜕gm

)
l

(
𝛿

n−mQ
𝛿l(r) · · · 𝛿l(rn−m)

)
ΔgmΔl(r) · · · Δl(rn−m)dr · · · drn−m + · · ·

One question regularly coming up is whether higher-order derivatives are impor-
tant in chemical processes. According to Fuentealba and Parr [35], the answer is
seemingly no. Nevertheless, more recent works by Morell et al. [37–39] suggest oth-
erwise. In that work, they defined a new CDFT quantity called the dual descriptor,

f (2)(r) =
(
𝜕

2

𝜕2N

(
𝛿E
𝛿𝜐(r)

)
N

)
𝜐

=
(

𝛿

𝛿𝜐(r)

(
𝜕

2E
𝜕2N

)
𝜐

)
N
=
(
𝜕f (r)
𝜕N

)
𝜐

=
(

𝛿𝜂

𝛿𝜐(r)

)
N

(3.77)
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which is the derivative of Fukui function f (r) with respect to the total number of
electrons N. This third-order derivative recovers the Woodward–Hoffman rules
[40–42], which were previously only understood using the symmetry of molecular
orbitals. The significance of this work is that using density-based quantities, one can
mimic what frontier molecular orbitals can do for explaining and predicting chem-
ical reactivity. Nonetheless, CDFT is still valid in cases where frontier molecular
orbital theory fails, e.g. because of strong orbital-relaxation or electron-correlation
effects [43, 44].

The validity of the above formalism in CDFT is based on the following two
assumptions. First, the response of a molecular system to the external impact
during the process of chemical transformations can be approximated by a Taylor
series. Second, the derivatives in the Taylor series are well behaved. That is, they are
existent and continuous. As mentioned above, these assumptions are not mathe-
matically rigorous, yet they work in practice. This is perhaps because for a reacting
(sub)system, one is always considering a pseudo-mixed state, which mimics (to
some reasonable approximation) a thermodynamic ensemble [19, 45–47]. This,
however, is a topic for future research.

Before wrapping up, we notice in passing that there is another totally differ-
ent expansion method in the literature in CDFT, called the functional expansion
approach [3, 48], using the hierarchical identity of functional derivatives. Numerous
applications of this functional expansion approach are available in the literature
[49–56].

To summarize, these formulations form the foundation of CDFT and are expected
to be insightful and/or useful in explaining chemical processes and transformations.
More discussion about the basic functions and basic principles stemming from the
above formulations will be ensued in the next chapters, followed by their numerous
extensions in various scenarios and a variety of applications to solve real chemical
problems.
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4.1 Introduction

Although Dirac had assured us almost a century back, with a caveat, by saying:
“The underlying physical laws necessary for the mathematical theory of a large

part of physics and the whole of chemistry are thus completely known, and the dif-
ficulty is only that the exact application of these laws leads to equations much too
complicated to be soluble.” [1]

We are still not in a position to accurately predict the behavior of majority of
the chemical systems. Since then, a major goal has been to develop appropriate
numerical methods so that the time-independent (and time-dependent) Schrodinger
equation for atoms and molecules could be solved. Once the wave function for the
given problem is known, various observable properties for the system could be calcu-
lated, which can help to understand physical as well as chemical processes. However,
obtaining the wave function, which is a function of several variables, is not a trivial
task. Fortunately, density functional theory (DFT) [2–9] provides an effective alter-
native theoretical method. With the help of DFT, information concerning a given
system could be obtained albeit at a much cheaper computational cost in comparison
to ab initio wave-function-based methods. One can completely define the Hamil-
tonian (Ĥ) of an N-electron system by knowing N and the external potential v(r).
The solution of the Schrodinger equation for a given Ĥ provides the 3N-dimensional
wave function 𝜓(r1, r2, …, rN ). One can obtain the single-particle density 𝜌(r) by
performing the following integration:

𝜌(r) = N ∫ ………∫ 𝜓
∗(r, r2,… , rN )𝜓(r, r2,… , rN )dr2 … drN (4.1)

where,

∫ 𝜌(r)dr = N (4.2)

Conceptual Density Functional Theory: Towards a New Chemical Reactivity Theory, First Edition.
Edited by Shubin Liu.
© 2022 WILEY-VCH GmbH. Published 2022 by WILEY-VCH GmbH.
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It becomes quite clear that a mapping in between v(r) and 𝜌(r) exists. According to
the Hohenberg and Kohn [4] theorem, an inverse mapping between 𝜌(r) and v(r) also
exists. This observation lies at the heart of the formal development of DFT. Electron
density is a three-dimensional quantity. Therefore, it becomes convenient to use 𝜌(r)
to provide chemically meaningful interpretations [9]. The most important aspect
of 𝜌(r) is that one can use it to develop various theoretical models. In this context,
conceptual density functional theory (CDFT) [9–16] represents a major (and among
the most celebrated) theoretical framework where 𝜌(r) is used to understand chem-
ical reactivity.

Reactivity of a system could be gauged by its propensity in reacting against an
action. The action could be generated by several external factors such as another
atom/molecule, external electric/magnetic field, change in temperature or external
pressure, catalyst, solvent, and confinement. The response of the system could be
measured by reactivity when acted upon by any of the aforementioned external
factors. As the Hamiltonian of the given system could be completely defined by
fixing the values of N and v(r), one could analyze the change in density or energy by
varying N, v(r) or both. In this way, one could understand the change in reactivity.
To appreciate the reasoning behind the formulation of CDFT, one can invoke the
Hohenberg–Kohn theorem, which provides a recipe of variational optimization
of the energy functional E[𝜌], which attains the minimum value for the true
density. The following associated Euler–Lagrange equation can be solved to obtain
the density:

𝛿E[𝜌]
𝛿𝜌

= 𝜇 (4.3)

Here, the electronic chemical potential, 𝜇, takes care of the normalization
(Eq. (4.2)) as it is the related Lagrange multiplier. As shown by Parr et al. [17, 18],
there exists a relationship in between the zero temperature limit of the chemical
potential of the thermodynamic grand canonical ensemble and 𝜇. In addition,
it was shown that 𝜇 is the negative of electronegativity (𝜒). This consideration
established a direct correlation in between chemical reactivity and CDFT [17].
Within a grand canonical ensemble, the atoms in a molecule can be considered as
open systems. This assumption allows us to study the variation in electron density
by using DFT. We note that E[𝜌] attains the minimum value at the electronic ground
state. Considering such a set of densities at a finite temperature, the equilibrium
state could be identified with the help of the minimum Helmholtz free energy
A[𝜌] within a canonical ensemble. Similarly, within a grand canonical ensemble,
grand potential functionals Ω[𝜌] could be utilized. One can consider the ground
electronic state as the thermodynamic equilibrium state [9] at zero temperature.
The aforementioned ideas form the backbone of the theoretical development of
CDFT. Chemical reactions comprise change and redistribution of electron densities.
Thus, different reactivity descriptors, both global and local, have been formulated
within the premise of CDFT. These descriptors can be made use of in understanding
various chemical processes [19, 20]. Associated electronic structure principles
could also be utilized to shed light on a given problem of interest. The purpose
of this chapter is to introduce the reader to these principles. Now, we would like
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to introduce the readers to various reactivity descriptors and the associated basic
electronic structure principles of CDFT.

4.2 Global and Local Reactivity Descriptors

As N and v(r) can fix the Hamiltonian of a system, by varying these quantities one
can go from one ground electronic state to another, and the associated changes in
energy and density corresponding to that process help us in developing different
reactivity descriptors so that a comprehensive theory of chemical reactivity can be
developed [9, 21].

Various reactivity descriptors are properly delineated in the previous chapter.
Important global reactivity descriptors include electronegativity [9], hardness
[22–25], softness [26], and electrophilicity [27, 28]. They are generally calculated
[22, 29] using the electron affinity and ionization potential or by using Koopmans’
theorem in terms of the energies of highest occupied and lowest unoccupied
molecular orbitals.

Various other definitions of these descriptors exist for the charge acceptance and
depletion processes [30, 31]. This is due to the fact that a discontinuity in energy vs.
N curve is observed in several situations [18, 32]. To take care of this problem [33–36]
in the definition of these quantities, an atom in a molecule is considered as a ther-
modynamic open system, and the zero temperature limit [18, 37–39] of a relevant
grand canonical ensemble can be introduced. These global descriptors can take care
of the reactivity and conversely the stability of a system.

For the chemical reactions where spin multiplicity changes, spin-polarized ver-
sion of reactivity descriptors defined through the spin density (𝜌s(r)) and the total
charge density (𝜌C(r)) can be used to understand reactivity [40–42].

In this context, it must be emphasized that the spin densities alone cannot
uniquely determine effective and external potentials in spin-polarized DFT. We
need to consider spin-polarized DFT to describe the properties of a system under
the influence of magnetic fields. Similarly, in the cases of systems having odd
number of electrons, spin-polarized DFT becomes important. We refer the reader
to the following chapters in this book where these issues are discussed in detail.

To understand the site selectivity in a molecule, many local reactivity descrip-
tors are defined. Important local reactivity descriptors include electron density and
Fukui function (f (r)) [43–50].

The condensed-to-atoms variants of the Fukui function (f k) [50] need the
electronic population of the relevant atom in the molecule. Mulliken population
analysis as well as Hirshfeld population analysis could be utilized to compute the
values of the electronic population of the concerned atom within a given molecule.
However, the Mulliken population analysis sometimes leads to the negative [51–53]
values of the Fukui functions. Therefore, Hirshfeld population analysis [51–53] is
usually recommended to evaluate the population. Thereby, the computed values
of the Fukui functions would be positive in most cases if the Hirshfeld population
analysis is utilized. We note, however, that there exist systems for which negative
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Fukui functions are meaningful as they can shed some light on the nature of some
processes [54–57].

These local reactivity descriptors are not suitable for gauging intermolecular
reactivity. However, these descriptors can be used to analyze the intramolecu-
lar reactivity. When two moieties interact with each other at a large separation,
the given moieties cannot “feel” the local reactivity changes. At large intermolecular
distances, mainly the electrostatic effects dominate the intermolecular interactions,
while the orbital interactions play a less significant role in such situations. In such
cases, other reactivity descriptors such as local softness s𝛼(r) [25, 58, 59] and philic-
ity 𝜔(r) [60] could be used instead of the Fukui functions. It is possible to generate
the corresponding group quantities by taking a sum over all condensed-to-atoms
quantities over the group of corresponding atoms [61]. By following suitable
variational procedures, the local reactivity descriptors such as s𝛼(r), 𝜔𝛼(r), 𝜌(r), and
f (r) can be evaluated.

There have been attempts to define a local hardness under some constraints
[62–64]. Due to the inter-dependence of v(r) and 𝜌(r) within the realm of DFT,
formal inconsistencies arise [65–69] for the simultaneous description of local
hardness and local softness. While Hardness (𝜂(r)) provides an estimate of nuclear
reactivity, softness (s(r)) provides a measure of the electronic reactivity [70, 71].

Furthermore, many other local reactivity descriptors are also used to understand
chemical reactivity. The most important examples in this category include the
gradient (∇𝜌(r)) and Laplacian (∇2

𝜌(r)) of electron density [72], electron local-
ization function [73], quantum potential [74, 75], multiphilic descriptor (Δ𝜔(r))
[76], dual descriptors (Δf (r)) [77–79], and molecular electrostatic potential [80–83].
By utilizing the kinetic energy density and density expressions for an ideal gas,
a local temperature Θ(r) has been defined [49, 84–87]. The local temperature
could be defined in time-dependent situations [88–92]. It could be defined for
the excited states possessing non-vanishing current density [88–92] as well.
A condensed-to-atom variant of Θ(r) has been proposed. However, such a conden-
sation may face a formal limitation [93–95]. Θ(r) is non-linearly dependent on 𝜌(r).
Therefore, its condensation utilizing the concerned electron population becomes
ad hoc. However, it does not suffer from any drawback in case population is not
used. All of the above descriptors depend on the underlying density partitioning
scheme used. Therefore, a careful examination is needed before employing these
descriptors so that any unphysical behavior could be eradicated. Generally, in
the cases of hard–hard interactions, atomic charge plays [96] the dominant role
in deciding the nature of interaction and thus reactivity. So, in these instances,
local reactivity descriptors based on atomic charges can characterize the reactivity
satisfactorily [96–98]. However, in the instances of soft–soft interactions, the nature
of interaction is dictated by frontier-orbitals. So, in such situations, intramolecular
descriptors like Fukui function or the inter-molecular variants such as s(r) and 𝜔(r)
can be used.

The global as well as local reactivity descriptors tend to adhere to some electronic
structure principles, and they together form the backbone of the CDFT. In the
next section, we will introduce these principles. Mostly they are of three types,
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viz. similarity principles such as hard–soft acid–base (HSAB) principle, extremum
principles like maximum hardness and entropy and minimum polarizability and
electrophilicity as well as equalization principles, including electronegativity,
hardness, and electrophilicity equalization principles.

4.3 Electronic Structure Principles

4.3.1 Electronegativity-Based Principle

Pauling [99] introduced the idea of electronegativity in chemistry. Electronegativity
provides an estimate of the relative ability of electron donation and acceptance
between two interacting species. Sanderson proposed that the electron transfer
process continues until their electronegativity values become equal [100–103].
Sanderson’s electronegativity equalization principle (EEP) states that the final
molecular electronegativity becomes equal to the geometric mean of the electroneg-
ativity values of constituent atoms at the isolated state. This is expressed as follows
[100–103]:

𝜒GM ≈

( P∑
k=1
𝜒k

) 1
P

(4.4)

Here, the given molecule comprises P atoms and 𝜒k signifies the electronegativity
value for the kth atom at the free state.

Let us consider a process where a complex X : Y is formed from acid X and base Y .
In such situations, the amount of charge transfer (ΔN) and change in energy (ΔE)
can be written in the following way [26]:

ΔN =
𝜒

0
X − 𝜒

0
Y

𝜂X + 𝜂Y
(4.5)

ΔE = −
(
𝜒

0
X − 𝜒

0
Y
)2

2(𝜂X + 𝜂Y )
(4.6)

Parr and Pearson proposed the aforementioned equations. These equations have
been utilized in several contexts. Equations (4.5) and (4.6) were used to find an
analytical justification for the HSAB principle [104–112]. These equations proved
their worth while defining an electrophilicity index [113–115] as well. Nevertheless,
the aforementioned equations fail to take into account several crucial factors. These
factors include entropy, solvent effects, and electrostatic interaction. This approach
depends mainly on the charge transfer effects [116] and faces the derivative dis-
continuity issue [48, 49]. To find a solution to these issues, a relevant thermody-
namic grand canonical ensemble in its zero temperature limit is introduced [18,
33–39]. To define reactivity descriptors at a finite temperature [9], concepts derived
from statistical mechanics could be properly used. In this context, the softness could
be described in terms of the number fluctuations [25] by borrowing concepts from
statistical mechanics.
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It has been argued that the chemical reactivity can be better analyzed within
a grand canonical ensemble defined at a finite external temperature and consid-
ering its zero temperature limit [9, 38, 39]. Inclusion of temperature [117–119]
within the definition of E [N, v] shifts the CDFT formalism from a canonical to a
grand-canonical ensemble [18, 34–39]. In this temperature-dependent CDFT, the
average electronic energy and its derivatives play the crucial role. As a result of
the inclusion of finite temperature effects, the changes in the different response
functions are negligible from their corresponding zero temperature counterparts.
It is possible to define heat capacity (both global and local) [119] in such a
temperature-dependent CDFT. Therefore, it becomes possible to study energy
transfer processes by using the temperature-dependent CDFT. Other reactivity
descriptors such as the thermodynamic hardness and dual descriptor have also
been defined within the framework of temperature-dependent CDFT [119].

4.3.2 Hardness-Based Principles

The hardness sum represents an important descriptor to understand electron trans-
fer processes. The hardness provides an estimate [26] for the reluctance of a chem-
ical moiety for electron transfer. For both the directions of electron transfer in a
molecule, the value ofΔE is always negative. Therefore, theΔN values are to be con-
sidered to understand the direction of electron flow. The condensed-to-atom version
of the Fukui function could be used to predict the direction of electron transfer.

Electronegativity alone cannot properly describe the reactivity of chemical
systems. The corresponding values for hardness need to be considered as well to
describe the reactivity of a system. Pearson [26] proposed the concept of hardness.
The usefulness of this concept was verified while trying to describe the characteris-
tics of acid–base reactions through his HSAB principle. The HSAB principle is stated
as follows: “Hard acids prefer to coordinate with hard bases and soft acids prefer to
coordinate with soft bases for both their kinetic and thermodynamic properties.” It has
been shown that by using the definition of hardness within CDFT, the hard–soft
nature of acids and bases can be explained, as obtained from several experiments.
An extension of the HSAB principle to a local level is not straightforward [96].

Another electronic structure principle concerning the hardness is designated as
the maximum hardness principle (MHP) [30, 120–125]. MHP states the following:
“There seems to be a rule of nature that molecules arrange themselves so as to be as hard
as possible.” In the cases of several physicochemical processes, the validity of MHP
has been authenticated. In this regard it is prudent to mention a few examples as
follows: the cases of various chemical reactions [126], Woodward–Hoffmann rules
[127, 128], molecular vibrations and internal rotations [129–134], time-dependent
situations [135], chaotic ionization from Rydberg states [136], aromaticity [137], etc.
It has also been demonstrated [108, 109] that HSABP and MHP are intimately con-
nected. In this context, it should be noted that a hardness equalization principle
(HEP) has been proposed by considering two factors. The conceptual genesis for
this principle lies at the EEP as well as in the observation that the global softness of
a molecule could be denoted as the mean of the concerned local softness values of
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the concerned atoms. As hardness is directly correlated with the electronegativity,
one can arrive at the following expression for the HEP [138]:

𝜂GM ≈

( P∑
k=1
𝜂k

) 1
P

(4.7)

Here, 𝜂k represents the hardness values for the constituent atoms (in the corre-
sponding free state) within a given molecule. In several situations, the aforemen-
tioned principle remains valid as evidenced by comparison in between computed
and experimental hardness values. However, as a result of the ambiguities in the
definition of local hardness, the universal validity of the HEP could be questioned.
It has been argued that this ambiguity allows [62] us to equate local hardness with
global hardness, a direct ramification of the HEP.

As hard systems are also less magnetizable as well as less polarizable, two more
principles, viz. minimum magnetizability principle (MMP) and minimum polariz-
ability principle (MPP), were proposed. MPP [135] states the following: “The natural
direction of evolution of any system is towards a state of minimum polarizability (𝛼)”.
On the other hand, MMP states [139]: “A stable configuration/conformation of a
molecule or a favourable chemical process is associated with a minimum value of the
magnetizability (𝜉).”

4.3.3 Electrophilicity-Based Principles

Utilizing 𝜂 and 𝜇, one could calculate the extremum values of electrophilicity (𝜔)
[140–142]. It was shown that a minimum electrophilicity principle (MEP) could
remain operational in many situations [143–146]. In this context, by invoking con-
cepts from classical electrostatics, it has been proposed [147] that MEP is implicitly
described within the definition of Maynard–Parr description of 𝜔. When a chemical
reaction takes place, the electrophilicity of an electrophile (which is an electron defi-
cient species) decreases while the corresponding electrophilicity of the nucleophile
(which is an electron rich species) increases. Due to this concept, an electrophilicity
equalization principle might be proposed that may be valid in many situations. Since
electrophilicity depends on hardness and chemical potential, it could be argued that
in situations where hardness and chemical potential get simultaneously equalized,
electrophilicity too would get equalized. Thus equalized electrophilicity could be
expressed in the following way [148]:

𝜔GM =
𝜒

2
GM

2𝜂GM
≈

( P∑
k=1
𝜔k

) 1
P

(4.8)

Here, 𝜔k represents the electrophilicity values for the constituent atoms (in the
corresponding free state) within a given molecule. During the course of a given
chemical process, extrema in 𝜔 arise in points when the following condition is sat-
isfied [140–143]:

𝜕𝜇

𝜕𝜆

= 𝜇

2𝜂

[
𝜕𝜂

𝜕𝜆

]
(4.9)
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𝜆 denotes the reaction coordinate for a chemical process. It could also represent any
concerned internal degree of freedom. It should be noted that 𝜂 is always positive
while 𝜇 is always negative. This property arises due to the convex nature of energy.
As a result of this, electrophilicity attains the extremum value, when the interdepen-
dencies of 𝜂 and 𝜇 on 𝜆 are reversed.

4.3.4 Electronic Entropy-Based Principle

Now it will be described as to how the concept of entropy is described and used
within the premise of DFT. Upon considering an N electron system (comprising
N non-interacting particles) under the influence of an effective potential veff(r, t),
entropy density in a time-dependent situation can be defined using an average den-
sity argument as [88, 136, 149]:

s(r, t) = 5
2

k𝜌 − k𝜌 ln 𝜌 + 3
2

k𝜌 ln
(

k𝜃
2𝜋

)
(4.10)

Here, k is the Boltzmann constant whereas 𝜃 denotes a space-time dependent
“temperature.” The kinetic energy density could be used to define 𝜃 in the following
manner:

ts(r; 𝜌(r, t)) =
3
2
𝜌(r, t)k𝜃(r, t) +

(| j|2
2𝜌

)
(4.11)

Here, j denotes the current density. It should be noted that one can arrive at
Eq. (4.11) by utilizing information theory as well. In this regard, the Shannon
entropy for the entity could be defined in terms of the density of the concerned
entity. Upon maximizing Shannon entropy under certain conditions, one can derive
Eq. (4.11). The global entropy could be evaluated by integrating Eq. (4.11) over the
complete space in the following manner:

S = ∫ s(r, t)dr (4.12)

In several time-dependent situations, favorable processes are accompanied by
the maximization of entropy. It could be stated that in such situations, a maxi-
mum entropy principle remains operational [125, 136]. Concepts emanating from
information theory [150] could be used and suitable reactivity descriptors could be
described to provide many important insights. The information theory has been
helpful in understanding the theory of atoms-in-molecule [151]. Shannon entropy,
when defined as a functional of 𝜌(r), can on its own characterize Coulombic entities
[152]. It has been proposed that the Shannon entropy has the potential to be as
important as 𝜌(r). Shannon entropy could be used to characterize several chemical
processes. In this regard, several other density functionals are also proposed such
as Onicescu information energy [153], Fisher information [154] as well as Rényi
entropy [155]. Kullback–Leibler information measure also comprises significant
insights [89]. The information conservation principle has been used to define
[156–160] reactivity descriptors such as nucleophilicity, electrophilicity as well as
regioselectivity.
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4.4 Conclusion

As discussed above, in this chapter, we try to set the stage for the reader to under-
stand and appreciate CDFT. In the following chapters, several formal as well as
applied points of view of CDFT will be discussed. It will be seen in the following
chapters, how one can employ CDFT-based reactivity descriptors to gain chemically
intuitive information regarding several processes. The global and local reactivity
descriptors are helpful in understanding stability, reactivity, dynamics, etc. These
aspects are better appreciated through the use of the associated electronic structure
principles. Therefore, one needs to understand the implication of the computed val-
ues of these descriptors in conjunction with these principles. The local reactivity
descriptors, on the other hand, are useful in determining site selectivity. The CDFT
has been shown to be capable of taking care of several interpretative aspects of chem-
ical systems as well as processes and hopefully, in the course of time, the predictive
[161–164] power of CDFT would be further improved.
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5.1 Introduction

Conceptual density functional theory (DFT) [1–3], by its explicit dependence over
the first Hohenberg–Kohn theorem [4], is a ground state theory. Therefore, the very
purpose of this chapter may then seem out of scope of conceptual DFT. How can one
include excited states in a ground state only representation? And for which aim?

Several approaches were undertaken in the past years to embrace this topic, which
we propose to revisit here. Broadly speaking, two axes can be drawn: either one is
interested in characterizing the excited states properties, by studying them or conjec-
turing their properties from the ground state, or either one is interested in using the
excited states to improve the representation of the ground state. Illustrations of both
ideas are provided in Sections 5.1 and 5.2, respectively. Note, however, this chapter
does not aim at being exhaustive. Noticeably, many developments were proposed
over the years, especially at times when no efficient computational framework for
excited states was available (before the advent of time-dependent density functional
theory [TDDFT], so to say). Additionally, some works focused on the development of
time-independent DFT models, looking for the definition and construction of either
state-specific or generic energy density functionals [5, 6]. We believe such develop-
ments, though precious and meaningful, fall out of the scope of the chapter, and for
the sake of clarity and concision we decided not to include them in the following.

5.2 Reactivity and Selectivity of Excited States

5.2.1 Photochemical Reactivity

Study of excited states properties is particularly interesting for photochemical reac-
tions (reactions performed under photoexcitation) [7]. Experimentally, it is indeed
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often observed that the course of a chemical reaction is altered when this reaction
is performed under exposition to light. This is for instance the case of the electro-
cyclic reactions, whose reactivity is explained by the famous Woodward–Hoffmann
rules [8].

In such photochemical reactions, one reactant is electronically excited to one of
the very first excited states. Following Kasha’s rule [9], light absorption may indeed
lead to high excited singlet states, which quickly decay to the lowest excited one
(S1). This singlet state may also convert to a lower energy triplet state T1 through
intersystem crossing (ISC). Hence, among the excited states manifold, one may
restrict the study to states S1 and T1 only to explain photochemical reactivity and
selectivity.

The case of triplet state T1 is noteworthy. Formally speaking, this excited state is
indeed a ground state for the triplet spin multiplicity. Hence, many photochemical
reactions can be straightforwardly studied by the means of genuine ground state
conceptual DFT tools. This has been nicely illustrated by a series of publication
from Geerlings and de Proft group in the case of photochemical cycloadditions
[10, 11]. They showed that the sign of the hardness variation at the onset of the
reaction is a reliable indicator of the feasibility of the reaction (in connection with
Woodward–Hoffmann rules) [12]. They also demonstrated, by deriving original
spin-polarized descriptors (spin donicity and philicity), that selectivity in the
[2+2] photochemical cycloaddition of enones with substituted alkenes is better
explained by the differential spin coupling between reactive sites than by standard
charge-transfer arguments [13].

5.2.2 Insight from Frontier MO Theory

Nonetheless, how can one address cases for which ISC is not active, or not leading to
chemical reactivity? In such a case, a genuine excited state (S1) needs to be studied
and a model for predicting its chemical behavior should be proposed.

At first, one may rely on the formalism of molecular orbital (MO) theory and
employ “usual” approximations to delineate the chemical behavior of the first
excited state. If one neglects orbital relaxation, the first excitation may be seen as
arising from the promotion of one electron from the highest occupied molecular
orbital (HOMO) to the lowest unoccupied molecular orbital (LUMO). The resulting
excited state configuration can then be written as (HO)1(LU)1.

This approximate electron configuration can then be used to express usual con-
ceptual density functional theory (C-DFT) descriptors. Let us for instance consider
the electrophilic Fukui function [14]. Under the finite difference approximation, it
is expressed as the following electron density difference:

f +ex(r) = 𝜌N+1(r) − 𝜌N (r) (5.1)

where the indices refer to the total number of electrons in the system. Here, one has
to consider the neutral excited configuration and a configuration with one additional
electron (N + 1). Keeping the frozen orbital hypothesis, the lowest N + 1 configura-
tion in energy is (HO)2(LU)1. Hence, in the excited state and under the previous
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approximations, the electrophilic Fukui function will equal the HOMO density:

f +ex(r) = 𝜌HO(r) = f −gs(r) (5.2)

which is itself equal to the nucleophilic ground state Fukui function. Using the same
line of arguments, one has f −ex(r) = f +gs(r). Ultimately, one may infer that the dual
descriptor (DD) [15] in the excited state will be the opposite of that of the ground
state:

Δfex(r) = f +ex(r) − f −ex(r) = 𝜌HO(r) − 𝜌LU(r) = −Δfgs(r) (5.3)

Sites with positive (respectively negative) values of Δf (r) will be nucleophilic
(respectively electrophilic) in S1 and electrophilic (respectively nucleophilic) in
the ground state. Such a simple development was used and allowed to retrieve the
regioselectivity of photochemically induced cycloaddition (Woodward–Hoffmann
rules) [16]. Even though this naive model holds and provides results in agreement
with experiments, there is room for an improved and more grounded theory
(Figure 5.1).

5.2.3 Chemical Potential Locality

So, how can one derive more general knowledge on the excited states, thus without
the need to rely on the rather drastic frozen orbital hypothesis? One of the very few
proposals rely on the electronic chemical potential.

Let us recall that the electronic chemical potential 𝜇 is defined, according to Parr,
as the functional derivative of the energy with respect to the electron density:

𝜇 =
(

𝛿E
𝛿𝜌(r)

)
N
= v(r) +

𝛿FHK[𝜌(r)]
𝛿𝜌(r)

(5.4)

This global quantity interestingly arises from the sum of two local quantities,
namely the external potential and the Hohenberg–Kohn universal functional
derivative against the density. Actually, 𝜇 is constant because the ground state

Forbidden

Δf(r) < 0: nucleophilic domain Δf(r) < 0: electrophilic domain

Δf(r) < 0: nucleophilic domain Δf(r) < 0: nucleophilic domain

Allowed

Figure 5.1 [2+2] cycloaddition of ethylene explained by the dual descriptor. Molecules in
the ground state are depicted in red, while molecules in the first excited state are depicted
in blue.
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electron density is stationary (it minimizes E). In 2009, it was proposed to use a
vertical excited state density 𝜌k(r) (thus at constant external potential) instead of
the ground state electron density in this derivative [17]:

𝜆k(r) =
(

𝛿E
𝛿𝜌k(r)

)
N
= v(r) +

𝛿FHK[𝜌k(r)]
𝛿𝜌k(r)

(5.5)

The excited state concerned in the above equation is called Hot Excited State as it
is both electronically and vibrationally excited. In this approach, 𝜆k is a local quan-
tity, since the excited density does not minimize the ground state energy functional.
Indeed, the above formulation uses the universal Hohenberg–Kohn functional that
only works for ground states. This nonconstant chemical potential is thus fitted to
translate the tendency of the electron density to relax to the ground state configura-
tion, at fixed geometry through the integrated equation:

dE ≈ ∫ 𝜆k(r)𝛿𝜌(r)dr (5.6)

Levy and Nagy proposed an excited state formulation of DFT in which the
Hohenberg–Kohn functional is no longer universal, in the sense that it is a
functional of both the electron density and the external potential [18]. To reach a
stationary state, the external potential need to evolve (geometry relaxation)

Ek = ∫ 𝜌k(r)𝛿v(r)dr + Fk[𝜌k(r), v(r)] (5.7)

𝜆k would have been global should this excited state formulation has been used.
After some developments, it could be shown that for the low-lying excited states

one may write

𝜆k(r) = 𝜇 + ∫
𝜌k(r′) − 𝜌0(r′)|r − r′| dr′ = 𝜇 + ∫

Δfk(r′)|r − r′|dr′ (5.8)

with 𝜌k the kth excited state electron density (0 meaning ground state), and Δfk the
so-called kth state-specific dual descriptor (SSDD). Hence, the difference between
the global and local potentials is equal to the difference in the electrostatic potential
induced by the electron density distributions in the ground and excited states. A site
that lost electron density under excitation will then become attractive to electrons in
the excited state (thus become electrophilic). Conversely, a site that gained electron
density will become repulsive to electrons, thus bear some nucleophilicity.

If we now focus only on the first excited state, then we retrieve our previous results
on the signification of the DD sign in the excited states. Indeed, it is often assumed
that the first SSDD is equal to the “usual” C-DFT and ground state DD (vide infra).
Thus, the ground state DD may indeed be used to retrieve the reactivity and selec-
tivity in the first excited state, but the relation between the sign of the DD and the
philicities is reversed (see Figure 5.2). Nucleophilic regions will be characterized by
a positive sign of the DD in the excited state, while electrophilic regions are asso-
ciated with a negative DD. Eventually, this model grounds the naive view that the
opposite of the ground state DD can ascribe the electro/nucleophilicity of molecu-
lar regions. This approach has been successful to recover the Woodward–Hoffmann
rules, predict the regioselectivity of Paterno–Buchi reactions [17], and has also been
used for explaining DNA photochemically induced lesions [19].
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Figure 5.2 The ground state DD (a) and the
first SSDD (b) of ethylen.

DD SSDD-1(a) (b)

5.2.4 In Summary

Very few attempts have been made to propose a theory able to predict the reactivity
and selectivity of excited states. Generally, the proposed approaches intend to only
tackle the low-lying excited states, which are expected to be the major player in pho-
toreactivity. In fact, in several cases, these excited states are formally ground states
for the triplet multiplicity; hence, ground state descriptors are perfectly working.

Otherwise, the electron densities can be described from a Taylor’s expansion of the
ground state density, allowing to delineate excited state properties using “standard”
C-DFT developments. In this spirit, a descriptor based on a local chemical potential
was proposed and successfully applied to predict the regioselectivity of various [2+2]
photochemical cycloadditions.

5.3 Excited States Used to Describe the Ground State

The use of excited states to understand the reactivity of a ground state electron sys-
tem goes back to a publication by Walsh in the 1940s [20]. At that time, Walsh was
arguing that ethylene oxide and ethylene are more reactive than ethane because the
first excited state wavelengths of the former are lower (respectively 1950 and 1745 Å)
than that of the latter. After this first rough approach, the subject was left almost
untouched till Pearson [21], Bader [22], and Salem [23] revived it up in the 1960s.
In three different papers, they provided a series of conditions for an excited state to
favor a chemical reaction. In this part, starting from their development, it is shown
that lot of information about the ground state reactivity, region, and stereoselectivity
can be obtained from the excited states.

5.3.1 Reactivity from Excitation Energy: An Early Formulation of the
Maximum Hardness Principle

In the late 1980s, Pearson was working on the physical meaning of the chemical
potential and the absolute hardness. His main concern was chemical reactivity and
how to compare the stability of molecules. In the following years, he was about to
propose the Maximum Hardness Principle. In this context, he published an article
in the journal of the American Chemical Society entitled “Electronic spectra and
chemical reactivity” [24]. In this paper, actually a follow-up of the series of origi-
nal papers published by Bader, Salem, and himself, he proposed a reactivity model
based on the wavefunction and energy perturbation of a molecular fragment experi-
encing a modification of its surrounding, due for instance to the approach of another
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molecule or an internal reorganization (isomerization). Its perturbed wavefunction,
as it is common in this theory, was expanded through the set of the unperturbed
eigenfunctions.

Following Pearson’s notation, let U be the nuclear–nuclear and nuclear–electron
potential energy, and Q be the reaction coordinate. The molecular (total) Hamilto-
nian can be expanded as a Taylor series:

H = H0 +
(
𝜕U
𝜕Q

)
Q + 1

2

(
𝜕

2U
𝜕Q2

)
Q2 + · · · (5.9)

and according to Rayleigh–Schrödinger perturbation theory ground state energy and
wavefunction vary according to the perturbation as:

E = E0 +
⟨
𝜓0

||||𝜕U
𝜕Q

||||𝜓0

⟩
Q +

⟨
𝜓0

||||𝜕2U
𝜕Q2

||||𝜓0

⟩
Q2

2
+
∑
k≠0

[⟨
𝜓0

||| 𝜕U
𝜕Q

|||𝜓k

⟩
Q
]2

E0 − Ek

(5.10)

𝜓 = 𝜓0 +
∑
k≠0

⟨
𝜓0

||| 𝜕U
𝜕Q

|||𝜓k

⟩
Q

E0 − Ek
𝜓k (5.11)

where (E0, 𝜓0) and (Ek, 𝜓k) are the unperturbed solutions of the Schrödinger
equation for, respectively, the ground and kth excited state.

Pearson then used Eqs. (5.10) and (5.11) to deduce simple rules to evaluate the
reactivity of a given compound. In the energy response, he noticed that the two
first terms basically translate how the energy changes when nuclei move while
electron density remains frozen. Obviously, if the reference geometry is a mini-
mum, this contribution is positive (destabilization). On the other hand, the last
contribution is stabilizing, since the numerator is by construction positive, while
denominator is negative. This term translates the energy change experienced by
the system as the electronic configuration is changed along the perturbation.
As such, chemical reaction will take place only in cases where the last term has non-
negligible values. This will be more likely to occur if transition energies Ek − E0
are small; thus, easily excitable compounds are expected to be rather reactive.
Lot of examples were provided to support Pearson’s statement that the lower
the excitation energy, the more reactive the molecule. As for instance, the nucle-
ophilic attack of carbonyl compounds that turn out to be easier in the following
order: HCOF(45.5 × 103 cm−1) > CH3COCl (42.6 × 103cm−1) > CH3COCH3(35 ×
103cm−1) > CH3CHO(34 × 103cm−1) > CH2 = CHCHO (26.5 × 103 cm−1). Another
example given was the decreasing bond strength of the following alkylhalides:
CH3F (75.4 × 103 cm−1) > CH3Cl (59 × 103 cm−1) > CH3Br (50 × 103 cm−1) > CH3I
(38.5 × 103 cm−1). The numbers between brackets are the first excitation wavenum-
bers. Later, it has been shown by Nagy [25] that the first excitation energy is very
likely the best way to measure the hardness of a molecule. As a consequence,
Pearson’s article can be retrospectively regarded as an early formulation of the
Principle of Maximum Hardness. A question naturally follows: would it be possible
to get regioselectivity information by pursuing this research axis?
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5.3.2 States-Specific Dual Descriptors

At the core of Pearson’s and Bader’s approaches, one finds perturbation theory,
which basically states that response to perturbation of a given system can be
developed on the basis of its unperturbed eigenstates. Then, treating chemical
interaction as a perturbation and identifying eigenstates as the set of ground and
excited states, it is possible to account for the ground state chemical properties
through a careful analysis of the excited states.

In a related approach, it was proposed in 2013 that evolution of the electron
density along a chemical process, that is, following a reaction coordinate, could
also be extrapolated from a set of excited state electron densities [26]. More specifi-
cally, it was proposed that ground state electron density at a given point P on the
potential energy surface, closer to the transition state of interest than the reagent R
is, reads

𝜌P,0(r) =
∑
i≥0
𝛼i𝜌R,i(r) (5.12)

where indices P and R refer to the geometry, and i to the energy state (ith excited
state, 0 meaning ground state). From the conservation of the electron number, we
directly obtain that∑

i≥0
𝛼i = 1 (5.13)

from which we see that electron density reorganization from R to P is

Δ𝜌R→P(r) =
∑
i≥1
𝛼i
[
𝜌R,i(r) − 𝜌R,0(r)

]
=
∑
i≥1
𝛼iΔfR,i(r) (5.14)

Thus, one gets that electron density reorganization along a chemical process can
be expressed thanks to the electron density reorganization under excitation of the
reagent. Analytical formulas for the coefficients 𝛼 are unknown, but following Pear-
son’s arguments it may be expected that high-lying excited states will not contribute
significantly to the ground state reactivity. Following Fukui’s development, one may
even expect that the first excited state, likely stemming from a HO → LU excitation,
will be the principal player. Under a frozen orbital hypothesis, such a transition will
indeed yield

ΔfR,1(r) = 𝜌R,1(r) − 𝜌R,0(r) = 𝜌R,LU(r) − 𝜌R,HO(r) ≈ Δf (r) (5.15)

Thus, the electron density reorganization from R to P will be roughly equal to the
frontier molecular orbital (FMO) approximation of the DD. From this identification,
it was proposed to coin Δfi = 𝜌i − 𝜌0 the ith SSDD.

Interestingly, though in most cases the correct reactivities and selectivities are
grasped by the first SSDD (see Figure 5.2), situations arise where higher excitations
are required (in line with Pearson’s observation). This is obviously expected for cases
where frontier molecular orbital theory (FMOT) itself is failing. But more interest-
ingly, this is also often the case when one studies reactant complexes at the onset
of a chemical reaction – thus with a rather large separation between reagents [27].
An illustrative example is given below. In Figure 5.3, both the second and third
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(a) (b)

(c) (d)

Figure 5.3 SSDD and NOCV 3D maps pertaining to the [4+2] cycloaddition between
ethylene (top) and butadiene (bottom): (a) second SSDD, (b) first NOCV, (c) third SSDD, and
(d) second NOCV, in red regions where both functions are positive, in yellow regions where
both functions are negative.

SSDDs are represented on the top and bottom left, and on the top and bottom
right the electron density reorganisation associated to the first and second natural
orbitals for chemical valence (NOCV) for a butadiene–ethylene complex. Basically,
the NOCVs analyse in terms of orbitals the electron density deformation during a
chemical reaction. The first SSDD actually consists on an intra-fragment excitation
located on butadiene that quite likely suggests that butadiene is more prone to react
with itself than with ethylene. It is in perfect line with the FMOT as both butadiene
HOMO and LUMO are located in between those of ethylene making the [4+2]
cyclo-adduct of butadiene with itself the major product of the reaction. Nonetheless,
the first density reshuffling located on one reagent alone does not necessarily bring
relevant information about reactivity or selectivity. On the other hand, charge trans-
fers from one reagent to the other may be observed in higher excited states, and thus
translate how electron density is likely to distort along the reaction path, especially
regarding the direction of the easiest electron flow. SSDD may then ascertain the
reagents relative to philicities and site selectivities, as expected for a DD avatar. Still
on the example of cycloaddition between butadiene and ethylene, it can be observed
on figure 5.3 that the second SSDD describes the electron donation from the ethy-
lene to butadiene, while the third SSDD pictures the back donation from ethylene
to butadiene. Interestingly, these inter-fragment SSDDs uncannily look like the
first and second ETS-NOCVs density deformations calculated at the transition state
structure [27].

Dewar [28] pointed out in his critic isoquinoline, as a usual heterocycle for which
the use of FMOT fails to predict the correct orientation of electrophilic aromatic
substitution (EAS). Using HOMO coefficients, FMOT suggests that the order of
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DD SSDD

Figure 5.4 The usual DD and SSDD for isoquinoline, in red regions where both functions
are positive, in yellow regions where both functions are negative (Isovalue= 0.005 a.u.)

reactivity is C4 < C5 < C8 and is not in good agreement with the experimental
data. Indeed, the 4-derivative has never been observed. All the experimental
results are consistent with a high reactivity of carbon C5 followed closely by
carbon C8.

Concerning the regioselectivity of the EAS, it seems that the DFT-based descrip-
tors, such as Fukui functions or the usual DD, are not better than FMOTs. As can
be seen in Figure 5.4, the usual DD and the first SSDD calculated for isoquinoline
are different. As can be seen, the usual DD does not give the correct prediction of
regioselectivity. Therefore, for the usual DD, EAS should occur at carbons 3 and 7,
the positions known to be nonreactive with respect to EAS. The first SSDD provides
an alternative prediction. It indicates that the electrophiles should target the nitro-
gen lone pair. This example underlines the advantage of calculating the DD using
excited states. Once protonated, the DD and the first SSDD of isoquinoline become
identical.

In a final note, it is interesting to note that resorting to explicit evaluation of excited
states has two significant advantages. First, since excited states are not restricted
to single MO excitations, SSDDs are expected to incorporate fine details about the
electron density reorganization, e.g. 𝜎 relaxation for a reaction involving unsatu-
rated compounds. MO relaxation may thus be grasped, at least partially. Second, as
a “side-product” of the excited state calculations, one ends up with charge transfer
excitation energies. These energies could serve as quantitative reactivity indicators,
as long as one is interested in comparable chemical systems. Interestingly, this point
was overlooked so far.

5.3.3 Electron Polarization Rationalized with Excited States

In 2020, some of the present authors retraced Pearson’s, Walsh’, and Bader’s footsteps
and used explicit Rayleigh–Schrödinger perturbation theory to study the response
of a chemical system [29]. The premises are thus known: let pert be a perturbation
Hamiltonian, acting on a system whose quantum states (En, |n⟩) are known. From
the first-order development of the ground state wavefunction,

|𝜓⟩ = c0

(|0⟩ +∑
k≠0

⟨k|pert|0⟩
E0 − Ek

|k⟩) = c0

(|0⟩ +∑
k≠0

ck|k⟩
)

(5.16)
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it is possible to express the perturbed electron density:

𝜌pert(r) = ⟨𝜓|�̂�(r)|𝜓⟩ ≈ 𝜌0(r) + 2
∑
k≠0

ck 𝜌
0
k(r) (5.17)

In the previous expressions, c0 is a normalization constant, which is assumed to be
close to unity (small perturbation), and 𝜌0

k = ⟨k|�̂�(r)|0⟩ is the transition density from
the ground state to the excited state k.1

Electron density reshuffling under perturbation will thus be

𝛿𝜌(r) = 𝜌pert(r) − 𝜌0(r) = 2
∑
k≠0

ck 𝜌
0
k(r) (5.18)

hence be expressed as a weighted sum of transition densities, which can themselves
be obtained from any TDDFT calculation. Several features of 𝛿𝜌 deserve to be delin-
eated. First, if the perturbation is designed to mimic the approach of a reagent, then
this quantity translates the electron density polarization caused by this approach.
This is a missing term in usual reactivity developments (Klopman–Salem [30, 31]
for instance) and relates to soft/hard interactions in the nomenclature of Pearson.
Interestingly, it proves more relevant than expected to describe chemical reactivity
and selectivity, as various known chemical properties can be grasped from such a
quantity.

Second, since transition densities integrate to 0, so does 𝛿𝜌: we indeed work at
constant electron count. Regarding the ck coefficients, it may be noted that they are
decreasing as excitation energy increases, thus only the lowest excited states need
to be computed. Nevertheless, and in perfect line with Pearson, one cannot rely on
the very first excited states alone, since the numerator may be negligible for these
states (poor overlap between unperturbed states through the perturbation). In fact,
in the case of a simple point charge perturbation, it could be shown that the largest
contribution could stem from rather high excited states – up to the 33rd excitation in
the case of a cobalt complex!

Similarly, energy responses can be defined, up to the second order:

E(1) = ⟨0|pert|0⟩ (5.19)

E(2) = −
∑
k≠0

|⟨k|pert|0⟩|2
Ek − E0

= −
∑
k≠0

c2
k(Ek − E0) (5.20)

If the perturbation Hamiltonian is the electrostatic potential induced by a point
charge at point r, E(1) will then simply be proportional to the electronic component
of the molecular electrostatic potential (MEP) at point r. It will be stabilizing if the
point charge is positive, and destabilizing otherwise.

On the other hand, E(2) will always be a stabilizing contribution, translating the
stabilization undergone by the system by distorting its electron density within the
perturbing potential. Following Pearson, if we consider a perturbation potential
mimicking the approach of a reagent, the favored geometry of approach should be

1 Note this quantity is different from the kth SSDD, Δfk(r) = ⟨k|�̂�(r)|k⟩ − ⟨0|�̂�(r)|0⟩.
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Figure 5.5 Seventh formaldehyde transition density and electron density response for
formaldehyde perturbed by a −0.5 a.u. point charge placed at 2 Å from the C atom,
represented by the light blue sphere. Color scheme: 𝛿𝜌 > 0, red; 𝛿𝜌 < 0, yellow. Isodensity:
0.0004 a.u.

associated with the most negative (stabilizing) value of E(2). Hence, polarization
energy can bring valuable information on reactivity and selectivity. And indeed,
studying the evolution of E(2) for carbonyl compounds perturbed by a negative
point charge placed at a constant distance from the C and for various angles of
attack on the C=O function, the well-known Bürgi–Dunitz angle of attack can
be retrieved, see Figure 5.5. According to the density polarization sign, the main
excited state involved in this charge transfer is associated with the promotion of a
small fraction of electron of the π(C–O) bonding orbital to the π∗(C–O) antibonding
orbital. The transition density that allows this electron excitation is represented in
Figure 5.5.

In a further study, it could furthermore be shown that the more the system can
spread its electron density reorganization, both through space and among the excited
states manifold, the larger the second-order stabilization [32]. This could in fact be
quantified. Recalling Eq. (5.16) and considering we now study a large number of
replicas of the molecule under study, one may see that c2

k will provide the proportion
of molecules reaching excited state k as a consequence of perturbation. Thus, the
collection of c2

k values (including c2
0 = 1 −

∑
c2

k) is a statistical distribution of excited
states populations induced by perturbation. According to Gibbs and Shannon, an
entropy can be associated with this statistical distribution:

S = −kB

∑
k

c2
k ln c2

k (5.21)

It may be noted that the same entropy can be defined for the unperturbed system
(ck = 𝛿0k) but it equals 0. Hence, S here can be alternatively seen as the entropy of
the perturbed configuration or the entropy change induced by the perturbation.
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Figure 5.6 Polarization spectrum when Cα and Cβ are perturbed by a 0.1e point charge.

Strong correlations were observed between E(2) and S values for a given system,
confirming that most reactive positions in molecules lead to a maximal response in
terms of excited states population.

This is, for instance, illustrated in the case of furan in Figure 5.6: placing a 0.1e
perturbing point charge on carbon atom Cα results in a much larger polarization
response, translated either in the transition probabilities for each excited state or in
the total entropy, than placing the same charge on carbon atom Cβ. At the same time,
polarization energy is significantly more stabilizing in the case of a perturbation at
Cα, in the line with the expected higher reactivity on this position.

In fact, successively perturbing all nuclei in the furan molecule allows to draw
a clear linear relation between entropy and energy, as shown in Figure 5.7. This
linearity suggests that a statistical temperature,

T =
(
𝜕E
𝜕S

)
(5.22)

could be constructed, if not rigorously defined. Here, one obtains T = 9300 K, which
is interestingly in agreement with the calculated temperature necessary to excite 1%
of the total population of a collection of molecules in the first excited state.

1400

1200

1000

800

600

200

0
0.00

Polarization energy vs. polarization entropy for furane

(q = 0.1e)

Q = 9365.2 s

R2 = 0.986

0.02 0.04 0.06 0.08 0.10 0.12 0.14

400

Figure 5.7 Absolute polarization energy vs. entropy for furane; q = 0.1e.
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Linearity in the E = f (S) plots was also shown in various other examples, sug-
gesting this is a general feature. In the end, external perturbation can be seen as
interaction with a “heat source,” and polarization as a heat exchange between the
perturber and the system. Said otherwise, interaction of two reagents along a chem-
ical reaction could be understood in terms of heating and cooling; it is then possible
to say “how hot” or “how cold” an electron density is expected to become as a con-
sequence of the approach of a reagent.

5.3.4 In Summary

To summarize, by its very vocabulary and concepts, chemistry invites to study chem-
ical reactions through a “perturbation perspective.” As such, it is not surprising that
mathematical expressions derived in this context rely explicitly on excited states.
But, this is not a mere mathematical coincidence. In fact, as pointed out first by
Walsh, a formal connection between reactivity and excitability is expected, since
both properties are linked to the propensity of the electron distribution in a system
to reorganize under external stress. It is also not surprising that Pearson came to the
same idea, since he proposed to analyze reactivity through polarizability, which is
also another way to describe the plasticity of the electron distribution. Overall, reac-
tivity can then be conceived as “states-specific” excitation of a molecule induced by
the approach of a reagent, or conversely excitation can be seen as a “reagent-specific”
distortion of the electron cloud in view of a reaction.

5.4 Conclusion and Perspectives

In a more general conclusion, although C-DFT is usually conceived as a ground
state theory, extensions to excited states are possible. As retraced previously, one can
either focus on the properties of excited states themselves or try to extract ground
state properties from excitations (through a perturbation framework). Formally
speaking, both ideas were already present in early theoretical developments (in
Walsh’s, Bader’s, Fukui’s, and Pearson’s papers, for instance). Nevertheless, it is
only rather recently – say in the last 20 years or so – that they bloomed, owing to the
developments of more and more efficient tools to compute excited states. Nowadays,
excited state calculations are rather cheap, and computer developments allows the
simultaneous calculation of large sets of excited states for relatively large systems;
hence, “brute force” evaluations are now feasible.

Because of this, it could be tempting to declare that the perspectives are rather
limited, since equations are known and can now be evaluated. Yet, the case of the
electron density polarization illustrates that there is always room for more develop-
ment. First, this phenomenon proved to be more relevant than expected, although
polarization is the fifth wheel of usual reactivity model.

Second, a quantity displaying the features of a temperature could be constructed
from polarization. What is the actual meaning and extent of this temperature? Could
it be used to help developing T-dependent DFT models?
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6.1 Introduction

In density functional theory (DFT), the energy is a function of the electron density
which is, in turn, intimately and uniquely linked to the external potential and the
number of electrons [1]. Hence, the energy can also be expressed as E

[
N, vext

]
,

where E is the energy, N is the number of electrons, and vext is the external potential
and so a function of position r, so vext ≡ vext(r) [1]. The intimate connection
between the electron density 𝜌(r) and the external potential is central in the
Hohenberg–Kohn theorem [2]. The first Hohenberg–Kohn theorem in its original
proof is an ex absurdo proof. If one considers two systems A and B and thus two
Hamiltonians that only differ in the external potential (but more than the addition
of a constant), it is straightforward to show that the two systems cannot have the
same density: 𝜌A(r) ≠ 𝜌B(r) ∶ ∀r. So at some points the density may be the same
but not for all points. This entails that the difference in the external potential is
embedded in the electron density, and there is a unique correspondence between
both. In fact, the so-called holographic electron density theorem [3] states that
each and every positive volume density fragment already encodes the complete
molecular information. The complete molecular information provided by the
Hohenberg–Kohn theorem is already provided, in full, by any arbitrarily small
electron density fragment. There is, however, a major caveat in the proof of the
Hohenberg–Kohn theorem. The variation theorem is used with the exclusion of the
equality, so the ground states cannot be degenerate. This constraint is admittedly
relieved in Levy’s constrained search method [4] by including degenerate wave
functions in the space of Hilbert that produces a given density. This, however,
remains a problem in conceptual DFT.

The energy may be written as a Taylor expansion in terms of N and vext. Chemical
interactions and reactions can be considered processes where for each of the reacting
partners, these ingredients change as a function of the progress of the reaction [5].

Conceptual Density Functional Theory: Towards a New Chemical Reactivity Theory, First Edition.
Edited by Shubin Liu.
© 2022 WILEY-VCH GmbH. Published 2022 by WILEY-VCH GmbH.
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Starting from a number of electrons N0 and external potential v0
ext, the energy of a

system for a number of electrons N and external potential vext is given by

E
[
vext,N

]
= E

[
v0

ext,N
0] +(

𝜕E
[
vext,N

]
𝜕N

)
vext = v0

ext
N = N0

(
N − N0)

+ 1
2

(
𝜕

2E
[
vext,N

]
𝜕N2

)
vext = v0

ext
N = N0

(
N − N0)2 + · · ·

+ ∫
(
𝛿E

[
vext,N

]
𝛿vext (r)

)
vext = v0

ext
N = N0

(
vext (r) − v0

ext (r)
)

dr + · · ·

+ ∫
(
𝜕𝛿E

[
vext,N

]
𝜕N𝛿vext (r)

)
vext = v0

ext
N = N0

(
N − N0) (vext (r) − v0

ext (r)
)

dr + · · ·

(6.1)

The entire area of conceptual DFT [1, 6–10] is built around the expansion coeffi-
cients and their use and meaning in chemical reactions. It is clear from the above
that energy derivatives play a very major part in all of conceptual DFT. Many of the
terms have a specific chemical meaning, but most often the theoretical background
is only given based on nondegenerate states. Cardenas et al. [11] realized that the
extension to degenerate states would become quite problematic as was confirmed
with practical tests by the authors of this chapter and coworkers [12–16].

Take, for example, an atom with electron configuration 1s22s22p1. The p-orbital
may be any of the three different p-orbitals with the same principal quantum
number and all three states are degenerate. Now consider the interaction with some
other system that can select one of the states (or a specific ensemble of some of the
degenerate states). This other system may be something as simple as a point charge
at a very far distance. Depending on the state considered, the interaction energy
may result very different than the one of a non-degenerate case. Such a dependence
is clearly undesirable as an infinite number of linear combinations of degenerate
wavefunctions may be made that all lead to the same energy of the unperturbed
system but may react radically differently with the point charge. The underlying
reason is obviously that although the energy does not change when picking a
different state, the key ingredient of DFT, the electron density, does change.

Given its central role in DFT, we first introduce it here starting from the
one-density matrix. When no degeneracy is present, the one-density matrix for an
N-electron system is given by

𝜈(r, r′) = ∫ dx1 … dxN dx′1 … dx′N

⎡⎢⎢⎢⎢⎣
Ψ∗(x1,… , xN )(

N∑
i=1
𝛿(ri − r)𝛿(r′i − r′)

N∏
j≠i
𝛿(xj − x′j )

)
Ψ(x′1,… , x′N )

⎤⎥⎥⎥⎥⎦
(6.2)
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xi and ri stand for the collection of the space and spin coordinates of electron i or the
space coordinates only, respectively. If no subscript is added, as in 𝜈(r, r′), r is simply
a position inℝ3.Ψ(x′1,… , x′N ) is the value of the nondegenerate (ground-state) wave-
function at the coordinates indicated and 𝛿(ri − r) is a Dirac delta function. Note that
there are admittedly many other expressions for how to obtain 𝜈(r, r′). Among the
more often encountered ones, one has

𝜈(r, r′) = N ∫ d𝝎1 … dxNΨ
∗(x1,… , xN )𝛿(r1 − r)𝛿(r′1 − r′)Ψ(x′1,… , xN ) (6.3)

The electron density corresponds to the diagonal of the density matrix, so

𝜌(r) ≡ 𝜈(r, r) = N ∫ d𝝎1 … dxNΨ
∗(x1,… , xN )𝛿(r1 − r)Ψ(x1,… , xN ) (6.4)

In what follows, wavefunctions will be assumed to be normalized and for the same
system mutually orthogonal.

This chapter deals with the issue what happens when there is no longer one sin-
gle Ψ that gives the same (ground-state) energy, so when a manifold of {Ψi} exist
that all give the same energy. As is well known, any linear combination within this
manifold is again an eigenfunction of the Hamiltonian with the same energy, and
depending on what specific linear combination was used, the expectation values for
other operators may differ. This is also true for the electron density. Depending on
the coefficients {ci}, a different electron density may be found. The electron density
in the presence of a d-fold degeneracy is given by

𝜌c(r) = ∫ dx1 … dxN dx′1 … dx′N

⎡⎢⎢⎢⎢⎢⎢⎢⎣

d∑
i=1

c∗i Ψ
∗
i (x1,… , xN )(

N∑
i=1
𝛿(ri − r)𝛿(r′i − r)

N∏
j≠i
𝛿(xj − x′j)

)
d∑

j=1
cjΨj(x′1,… , x′N )

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(6.5)

𝜌c denotes that the electron density has indeed become dependent on the set of coef-
ficients ci. So when a perturbation of a system arises that couples to the electron
density, essentially any result is possible. This is rather discomforting, but it will be
shown that perturbation theory reveals effectively d different outcomes in a straight-
forward way. The nature of the perturbation will determine the coefficients.

This relationship between the nature of a perturbation and the set of coefficients
will be illustrated for several cases. First, a coarse grain analysis of the electron den-
sity itself is considered through atoms in molecules, then the electrostatic potential
as an example of an external potential perturbation, and finally the Fukui function
as an example of a second-order effect.

6.2 Theory

As the major part of this chapter deals with electron density and (energy) response
to external perturbations, it is appropriate to first establish the relation between
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energy and electron density. Instead of moving immediately to the external poten-
tial, we first start with the Hamiltonian for an N-electron system with M nuclei
with charges Z at positions R. We do not include external fields and work within
the Born–Oppenheimer approximation. The Hamiltonian therefore consists of the
following terms:

Ĥ = T̂ + V̂ ee + V̂ NN + V̂ Ne (6.6)

T̂ =
N∑

i=1
− 1

2
∇̂2

i (6.7)

V̂ ee =
N∑

i=1

N∑
j>i

1|ri − rj| (6.8)

V̂ NN =
M∑

A=1

N∑
B>A

ZAZB|RA − RB| (6.9)

V̂ Ne =
N∑

i=1

M∑
A=1

−
ZA|ri − RA| (6.10)

The energy is given by E =
⟨
Ψ |||Ĥ|||Ψ⟩ = ⟨

Ψ |||T̂ + V̂ ee + V̂ NN + V̂ Ne
|||Ψ⟩. In what

follows, we will be particularly interested in V̂ Ne. This is a scalar operator, meaning
it is multiplicative and so one can arrive at⟨

Ψ |||V̂ Ne
|||Ψ⟩ = ∫ dx1 … dxNΨ

∗(x1 … xN )

[ N∑
i=1

M∑
A=1

−
ZA|ri − RA|

]
Ψ(x1 … xN )

= ∫ dx1 … dxN

[ N∑
i=1

M∑
A=1

−
ZA|ri − RA|

]
Ψ∗(x1 … xN )Ψ(x1 … xN )

(6.11)

In DFT, often use is made of a quantity called the external potential, which replaces
the above expressions with one that in the operator does not hold reference to an
electron label and allows for the introduction of electron density. A natural way of
doing it is as follows:⟨

Ψ |||V̂ Ne
|||Ψ⟩ = ∫ dx1 … dxNΨ

∗(x1 … xN )

[ N∑
i=1

M∑
A=1

−
ZA|ri − RA|

]
Ψ(x1 … xN )

= ∫ dr
M∑

A=1
−

ZA|r − RA| ∫ dx1 … dxN dx′1 … dx′NΨ
∗(x1 … xN )

×

( N∑
i=1
𝛿(ri − r)𝛿(r′i − r)

N∏
j≠i
𝛿(xj − x′j)

)
Ψ(x′1 … x′N )

= ∫ drvext(r)𝜌(r) (6.12)

This properly introduces the external potential as a scalar function of r that upon
multiplication with 𝜌(r) and integration gives the desired energy contribution. The
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external potential is then given by

vext(r) =
M∑

A=1
−

ZA|r − RA| (6.13)

Starting again with a nondegenerate case, we first establish that the electron
density – in this case – is the functional derivative of the energy with respect to the
external potential. We work field-free, so we do not consider an external magnetic
or external field and write the energy as a function of the number of electrons N
in a system and as a function of the external potential v̂(r): E[N, v]. Imagine that
another source of the external potential is added:

v′ext(r) = vext(r) + 𝜖𝜂(r) (6.14)

𝜂(r) could correspond to adding a nucleus or a simple point charge at some point
in space and rests unspecified. 𝜖 is a real number that “scales” the added potential.
The energy change, at fixed density, corresponds to

E[N, v′] − E[N, v] = 𝜖 ∫ dr𝜂(r)𝜌(r) (6.15)

The functional derivative of E with respect to a change in the external potential is
denoted 𝛿E

𝛿v(r)
and is defined as

lim
𝜖→0

E[N, v + 𝜖𝜂] − E[N, v]
𝜖

= ∫ dr𝜂(r) 𝛿E
𝛿v(r)

(6.16)

By comparison, it is clear that

𝛿E
𝛿v(r)

= 𝜌(r) (6.17)

The electron density at some point in space is equal to the functional derivative of
the energy with respect to a change in the external potential field at that point.

This was the case of a nondegenerate state. When a d-fold degeneracy occurs,
problems arise. As shown in Eq. (6.5), the electron density depends on the choice
of coefficients in a linear combination of the d degenerate wavefunctions. It is
unacceptable to equate a density that has such degree of freedom to the functional
derivative that should be a unique energy response to some perturbation. However,
the impact of a perturbation at a point r may be calculated using perturbation theory.
Degenerate perturbation theory is ideally suited to establish a new form of assessing
the energy response without appealing to functional derivatives that are ill-defined
in degenerate states. We return to the original Hamiltonian and add a perturbation.
The perturbation in the Hamiltonian is

∑N
i=1 𝜂(ri), and 𝜖 plays the role of the scaling

parameter that tunes the strength of the perturbation. The Hamiltonian is altered to

Ĥ = Ĥ0 + 𝜖
N∑

i=1
𝜂(ri) (6.18)

In the case of a system with degenerate states, rather than having simply a first-order
energy change

⟨
Ψ |||∑N

i=1 𝜂(ri)
|||Ψ⟩, the first-order energy correction is obtained from
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diagonalizing the perturbation matrix:

P =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⟨
Ψ1

|||||
N∑

i=1
𝜂(ri)

|||||Ψ1

⟩ ⟨
Ψ1

|||||
N∑

i=1
𝜂(ri)

|||||Ψ2

⟩
· · ·

⟨
Ψ1

|||||
N∑

i=1
𝜂(ri)

|||||Ψd

⟩
⟨
Ψ2

|||||
N∑

i=1
𝜂(ri)

|||||Ψ1

⟩ ⟨
Ψ2

|||||
N∑

i=1
𝜂(ri)

|||||Ψ2

⟩
· · ·

⟨
Ψ2

|||||
N∑

i=1
𝜂(ri)

|||||Ψd

⟩
⋮ ⋮ ⋮ ⋮⟨

Ψd

|||||
N∑

i=1
𝜂(ri)

|||||Ψ1

⟩ ⟨
Ψd

|||||
N∑

i=1
𝜂(ri)

|||||Ψ2

⟩
· · ·

⟨
Ψd

|||||
N∑

i=1
𝜂(ri)

|||||Ψd

⟩

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(6.19)

whereΨ1…d are the degenerate wavefunctions. The diagonal elements of this matrix
may be expressed using the electron density obtained from a specific wavefunction,
but a small generalization of electron density to transition electron density allows
to write

P =

⎡⎢⎢⎢⎢⎢⎣

∫ dr𝜂(r)𝜌11(r) ∫ dr𝜂(r)𝜌12(r) · · · ∫ dr𝜂(r)𝜌1d(r)∫ dr𝜂(r)𝜌21(r) ∫ dr𝜂(r)𝜌22(r) · · · ∫ dr𝜂(r)𝜌2d(r)
⋮ ⋮ ⋮ ⋮

∫ dr𝜂(r)𝜌d1(r) ∫ dr𝜂(r)𝜌d2(r) · · · ∫ dr𝜂(r)𝜌dd(r)

⎤⎥⎥⎥⎥⎥⎦
(6.20)

The transition density matrix corresponds to

𝜈ij(r, r′) = ∫ dx1 … dxN dx′1 … dx′N

⎡⎢⎢⎢⎢⎣
Ψ∗i (x1,… , xN )(

N∑
i=1
𝛿(ri − r)𝛿(r′i − r′)

N∏
j≠i
𝛿(xj − x′j)

)
Ψj(x′1,… , x′N )

⎤⎥⎥⎥⎥⎦
(6.21)

from which the transition density is obtained:

𝜌ij(r) ≡ 𝜈ij(r, r) (6.22)

The matrix (6.20) is generally not diagonal, and its eigenvalues correspond to
different responses of the degenerate system to a perturbation 𝜂(r). These are the
first-order changes in energy E(1). Finding the eigenvectors of the matrix (6.19)
corresponds to finding those linear combinations of degenerate eigenfunctions
of the unperturbed Hamiltonian that diagonalize the matrix. These eigenvectors
give rise to the electron density that, however, cannot be equated to a functional
derivative because the derivative does not exist. Hence, it is not so that the response
of the energy with respect to the perturbation does not correspond to a density,
it is rather that it corresponds to a very specific density obtained from a linear
combination of degenerate wavefunctions. A further observation is that the matrix
depends on a specific perturbation. For example, imagine that one adds a point
charge in the molecule. The external potential changes by an amount:

𝜂(r) = − Q|||r − RQ
||| (6.23)
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where Q is the magnitude of the point charge and RQ is its position. Depending on
the sign of the charge and its location, the matrix changes and so do its eigenvalues
and eigenvectors.

6.2.1 An Illustrative Example

To sketch the impact of degeneracy, consider first a 4-electron atomic or ionic system
that is in its ground state with electron configuration 1s2 2s2. The response to a point
charge placed at some point RQ corresponds to the integral − ∫ dr Q|r−RQ|𝜌(r) where
𝜌(r) is the density of this nondegenerate wavefunction. If we put the nucleus in the
origin and move the point charge on a sphere around the origin, the same response
results. If we change the sign of the point charge, the response again remains the
same in magnitude but opposite sign.

Now imagine a 5-electron atomic or ionic system with electron configuration 1s2

2s2 2p1. In an orbital picture, there are three 2p orbitals that can be populated. The
corresponding three wavefunctions denoted Ψx, Ψy, and Ψz are degenerate and so
any linear combination

Ψ(r) =
∑

i={x,y,z}
ciΨi(r) (6.24)

is again an eigenfunction of the Hamiltonian for this anion. From this Ψ, one can
construct the electron density by quadrature as was done above. Now consider a
perturbation with a point charge. A perturbation matrix needs to be composed. The
diagonal elements are readily computed, showing that depending on the position
of the point charge, the three diagonal elements may differ. Suppose that we put a

unit point charge along the z-axis. The matrix element
⟨
Ψz

|||| −Q|r−RQ| ||||Ψz

⟩
is definitely

different from the other two diagonal elements. Suppose, however, that one would
only consider Ψz. The first-order energy change is

E(1)(Q,RQ) = −Q∫
||Ψz(r)||2(r)|||r − RQ

||| dr⃗ (6.25)

A different diagonal element is

−Q∫
||Ψx(r)||2(r)|||r − RQ

||| dr⃗ (6.26)

If we keep the point charge at the same location on the z-axis, the last term defi-
nitely differs from the previous one. The arbitrariness of hand-picking a degenerate
wavefunction is alleviated if we consider the perturbation matrix (6.19). The wave-
functionsΨx,y,z differ in only one orbital; as the perturbing operator is a one-electron
operator, there are clearly also off-diagonal elements such as

−Q∫
Ψ∗x (r)Ψz(r)|||r − RQ

||| dr⃗ (6.27)
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Depending on the position and sign of the point charge, all matrix elements can
change and so do the eigenvalues and eigenvectors. With d = 3, three eigenvalues
and three eigenvectors can be distinguished. Although the perturbation matrix may
completely lift the degeneracy, this is not required, and it may also not be lifted
completely. The important issue is that the interaction energy changes as the per-
turbation changes, and so it becomes parametrically dependent on the parameters
that characterize the perturbation.

The importance of considering the entire perturbation matrix can hardly be
stressed enough. Several authors have, in case of degeneracies, used some ad hoc
averages [17–21] over the diagonal elements of the perturbation matrix. This is a
purely pragmatic but unfounded approach as it again does not take degeneracy
into account properly. As a further note, the above concentrates on the “quantum
contributions” due to the electronic wavefunction. One needs to include also
the extra Coulombic interaction with the nucleus. However, this is computed
classically, so an energy change

∑M
A=1

ZAQ|RQ−RA| must also be added. This will reduce
the energetic impact of the electronic interaction with the point charge, but the
difference between perturbation matrix eigenvalues remains the same.

6.3 Impact of Degeneracy on Chemical Concepts

In this section, a didactic approach is used to illustrate the importance of properly
taking into account the effect of degeneracy on many chemical concepts. The main
focus lies on concepts that are directly related to electron density but where the
“usual” relationships cannot be used anymore.

6.3.1 Electron Density

According to the most common interpretation of quantum mechanics, the wave-
function in itself has not much meaning beyond being a good vehicle to extract
relevant information from a system. This information is encapsulated in expectation
values for which the electron density is one. In a one-electron system, the electron
density is immediately related to probability. The electron density at some point mul-
tiplied with an infinitesimal volume element dV gives the probability of finding the
electron in that volume element around that point.

P(x) = 𝜌(x)dV (6.28)

dV includes both the spatial components and spin. The probability density function
𝜌 must obviously be positive and the probability must have norm equal to 1. There
is little confusion at this stage in the meaning of the electron density as linked to
probability and the electron density is obtained from quadrature of the wavefunction
for the one-electron system.

𝜌(x) = Ψ∗(x)Ψ(x) (6.29)
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Matters get somewhat more complicated in the case of a multielectron system. Tak-
ing a two-electron system, the probability is introduced for finding electron 1 in a
volume element dV1 and electron 2 in a volume element dV2:

P(x1, x2) = Ψ
∗(x1, x2)Ψ(x1, x2)dV1dV2 (6.30)

Some confusion sometimes arises for these probabilities and the connection to what
is called electron density in DFT on the one hand and other chemical interpretation
tools [22]. When considering the so-called marginal probability Pm to find electron 1
in some volume element dV1 around x1, the second electron in the joint distribution
is integrated over all space, including again the space dV1.

Pm(x1) = dV1 ∫
+∞

−∞
Ψ∗(x1, x2)Ψ(x1, x2)dV2 (6.31)

This marginal probability from Eq. (6.31) is then recast in the shape of Eq. (6.28) by
defining

𝜌(x1) = ∫
+∞

−∞
Ψ∗(x1, x2)Ψ(x1, x2)dV2 (6.32)

Electron density is often described as the probability density amplitude for finding
electron 1 at x1, but it should always be included explicitly “irrespective of where the
other electrons are.” The total probability of finding an electron at x is then obtained
as the sum of the probability of finding electron 1 summed with that of finding
electron 2:

𝜌(x) = 2∫
+∞

−∞
Ψ∗(x, x2)Ψ(x, x2)dV2 (6.33)

The contributions are the same for any electron thanks to the anti-symmetry and
equivalence of all electrons, but each individual contribution always integrates out
all other electrons. When reporting 𝜌(x) and interpreting in terms of a probability
density amplitude, it is important to remain aware that it counts the probability of
finding at least one electron in the volume element. In the two-electron case, it holds
the probability of having only one electron in dV but also having two electrons in
that same volume element. That is, it counts the average number of electrons in dV .
So the marginal probability should be kept separate from the conditional or joint
probability that are used elsewhere in DFT concepts and chemical bond methods
such as domain-averaged Fermi holes [23], maximum probability domains [24], and
electron distribution statistics [25], for example.

The chief problem with systems with degenerate states lies in the fact that for the
same energy, there are several different states that may yield totally different electron
densities. Any concept based on the electron density can then give a different answer
depending on the linear combination of eigenstates chosen. For example, we con-
sider the electrostatic potential and Fukui functions. In both cases, a specific external
perturbation is required to reveal precisely what a linear combination of degen-
erate states is required for a specific response. The electrostatic potential is often
mimicked through atoms-in-molecules charges, which are in turn in many atomic
charge methods derived from the electron density. Hence, also atomic charges
become ill-defined and extra input in the shape of a specific perturbation is required.
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6.3.2 Electrostatic Potential

As a second example, we consider the electrostatic potential. The electrostatic poten-
tial is defined in terms of the energy in the following way. The charged species inside
a molecule generate a potential Φ(r) at every point in space r. Essentially, it can be
computed easily as

Φ(r) =
M∑

A=1

ZA||r − RA
|| − ∫ dr′ 𝜌(r)|r − r′| (6.34)

This poses no problem for a nondegenerate state. The electron density is easily
obtained from quadrature. However, what with degenerate states? As argued above,
the density is a rather problematic quantity. There is also another way to approach
the problem. The electrostatic potential at some point in space is equal to the
electrostatic potential energy U generated by a point charge put at this same point:

U(r) = Q(r)Φ(r) (6.35)

This means that we put a point charge at r and compute the change in energy. The
ratio between the energy and the value of the point charge equals the potential.
When degenerate states come into play, the electrostatic potential has to be com-
puted by effectively putting a point charge at some point in space and computing
the change in energy. This change in energy may be computed using perturbation
theory, and the potential equals the first-order response divided by the value of the
point charge. The issue that arises is that depending on the nature of the pertur-
bation, a different linear combination of zero-order wavefunctions will be obtained
from the perturbation matrix and hence a different electron density. One immedi-
ately realizes that the sign of the point charge will also matter. Taking as an example
again the 1s2 2s2 2p1 electron configuration, this is easily rationalized appealing to
the symmetry of the p orbitals. When a positive charge approaches the atom along
the z direction, an electron will be attracted to it and the energy is minimized when
the pz orbital is populated by the single valence electron. Contrary, in the case of a
negative charge the pz orbital will remain empty while the electron occupies a linear
combination of py and px. There is, however, a link between the perturbation caused
by a positive and a negative charge. The perturbation matrix elements simply are
opposite sign, so the magnitude of the eigenvalues is the same but the sign opposite.
As we choose the lowest energy response, what is the lowest energy for one charge
becomes the highest energy response when we change the sign of the probe charge.

To illustrate the effect of the sign of the point charge (probe) on the electrostatic
potential, we performed CASSCF(1,3)/6-31G* calculations for N2+ in the presence
of a point charge placed at different distances from the nucleus. The perturbation
matrix was set up and diagonalized. To ensure that the response falls within the lin-
ear regime of perturbation, smaller and smaller charges were used at every point and
a linear regression was used to estimate the limit in which q → 0. For both a nega-
tive and a positive point charge, the lowest energy solution was obtained from the
perturbation matrix. As Figure 6.1 shows, the electrostatic potential for a positive
probe,Φ+, is always larger than that for a negative one,Φ−. Although the difference
is small for large distances, it is more than 100 kcal mol−1 at the covalent radius of N,
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Figure 6.1 Electrostatic potential, Φ, of N2+. A positive (blue) and a negative (red) point
charge were used as probes.

which is the order of the chemically relevant distances (see the inset in Figure 6.1).
This means that computing ‘the “electrostatic potential” is an ill-posed question and
that one can only compute such a quantity with an explicit specification of the probe
charge and position used. This result clearly confirms that care must be taken when
treating degenerate states in conceptual DFT. Any attempt at using any sort of aver-
age of the diagonal elements in the perturbation matrix is sure to fail.

6.3.3 Atomic Charges

There exists a wealth of methods [26, 27] to compute atomic charges including those
based on the attachment between a basis function and atomic nucleus (the so-called
Mulliken population analysis [28]), statistical methods such as those where the elec-
trostatic potential at a selection of points is used to fit an atomic charge [29–32] and
atomic density methods where not only a charge is obtained but a true density from
which other properties can also be computed. Here, focus is on atomic density meth-
ods. The ill-defined nature of the electrostatic potential makes those atomic charges
also depend parametrically on the position and magnitude of the precise perturba-
tion used. Atomic density methods are methods based on the general scheme

𝜌A(r) = wA(r)𝜌Mol(r) (6.36)

where wA(r) is a weight coefficient with value between 0 and 1 and whose sum∑M
A=1 wA(r) = 1. Different methods exist with both binary weights including the

Quantum Theory of Atoms and Molecules [33, 34] and fuzzy weights such as in
diverse information-theory-based methods [35]. The main issue remains that 𝜌Mol(r)
depends on the method of perturbation used and its parameters. The electrostatic
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potential is just one such method that holds as parameters the magnitude, sign,
and position of the atomic charge but other methods could be conceived. The
chapter authors have previously [12] shown that, for instance, CAS(3,4)/cc-pVDZ
Hirshfeld-I [36, 37] and QTAIM [33, 34] atomic charges on one and the same
atom in the trans butadiene radical cation, with three near-degenerate states, may
change sign depending on where the electrostatic potential probe was put. Such
complete reversal of even the sign of the atomic charge is obviously dramatic. The
reason for this effect was shown to be due to the change of the coefficients of the
quasi-degenerate states in the lowest energy eigenvector of the perturbation matrix.
The source of the problem is fundamental and is not, in any way, due to a specific
choice of the atoms-in-molecules method although symmetry may sometimes hide
the problem [21].

6.3.4 Fukui Function

As another example, we may consider the Fukui function [38–40]. This is a
second-order term in the Taylor expansion of the energy in terms of the number
of electrons N and the external potential [41, 42]. It is an r dependent quantity,
defined by

f (r) =
⎡⎢⎢⎢⎣
𝜕

[
𝛿E

𝛿vext(r)

]
N

𝜕N

⎤⎥⎥⎥⎦vext

(6.37)

Most often, it is also written as

f (r) =
[
𝜕𝜌(r)
𝜕N

]
vext

(6.38)

But this is again problematic for a degenerate state where the electron density is
not the functional derivative of the energy vs. the external potential. It is therefore
highly recommendable to always work with energy derivatives and delay any
substitution in the Taylor series coefficients to a later stage once the intricacies of
the system are known. This entails that the Fukui function for a degenerate state
will depend again on where the probe charge was put as well as its value. Moreover,
since the Fukui function is most often computed via finite differences, care must
be taken to check whether the charged system is also not degenerate. This would
be the case for adding an electron to N2+,for example. Hence, in every calculation
of a Fukui function, one must consider carefully whether none of the calculated
systems has a degenerate state.

(Quasi-)Degeneracy has a pronounced effect on the Fukui function. While in
the case of nondegenerate states and single determinant theories (and Kohn–Sham
theory) the so-called Fukui matrix [13, 43, 44] eigenvalues have a very specific
eigenvalue spectrum, the need to include more states here makes that the Fukui
matrix has the characteristic properties following from a correlated method. Again
also notice that the effect of degeneracy on the Fukui function does not only appear
in its atom condensed form [45] but in general. The extra complications induced
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by degeneracy especially manifest in the case of the Fukui matrix as not only
there are – like in a density matrix – r and r′ coordinates but also the parametric
dependence on the choice of the perturbing potential, including the sign of the
charge and its location in the case of a point charge [13].

As an example, take the NO molecule whose ground state is doubly degenerate.
If neither the ground state nor its vertical cations were degenerate, the Fukui func-
tion would have the axial symmetry of the molecule (C∞v). However, this is not the
case of NO, and the resulting symmetry of the Fukui function depends on the type
and location of the perturbation. Figure 6.2 shows, in a color code, the values of the
Fukui function f −(r) for NO when an attractive Dirac delta acts as a perturbation.
The perturbation is located at the point indicated with an arrow, and the points of
the plot correspond to the van der Waals surface of the molecule. Contrary to what
intuition gained in nondegenerate states, the perturbation breaks the symmetry, and
the Fukui function in this case has only symmetry (C2v).

6.4 Further Considerations

The need to treat the full perturbation matrix is clear from the above discussion, but
the question as to what perturbation must be considered in practice remains, that is,
can a point charge mimic an approaching molecule? Probably a point charge it is too
simple and crude a model and a more realistic model could be a set of small point
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charges that mimic the entire electrostatic field of an approaching molecule. Every
other set of point charges or other perturbing operator will, in general, result in a
different response density. This naturally makes use of conceptual DFT to predict,
rather than to a posteriori explain, the outcome of a much more difficult chemical
reaction. Moreover, not only point charges are a possibility, but Dirac delta functions
are also a useful perturbing operator.

Another relevant question is when one should start worrying about quasi-
degeneracy. Quasi-degenerate states should be treated in the same way as degener-
ate states. We have proposed to use the Fermi level (i.e. the energy halfway between
the highest occupied molecular orbital [HOMO] and lowest unoccupied molecular
orbital [LUMO] orbitals) as a reference. If there are orbitals within 0.25 Hartree of
this level, we propose to consider them quasi-degenerate. Also note that although
we have only considered here a subset of chemical concepts, the problem is univer-
sal and will also appear in the chemical potential, dual descriptor, etc. However, the
effect must not always be immediately visible, and, e.g., symmetry may occasionally
hide the underlying necessity to use a full perturbation matrix treatment [21].

6.5 Conclusions

The calculation of many conceptual DFT quantities becomes highly problematic
or they simply become ill-defined when (quasi-)degenerate states occur in the
system(s) considered. The underlying reason is that ‘the’ “density” no longer has
meaning and that the proper density to use is rather determined by the source of the
perturbation associated with the concept considered. The dramatic effect is illus-
trated for concepts intimately related to the functional derivative of the energy with
respect to the external potential. In the of degenerate eigenfunctions of the Hamilto-
nian, this quantity becomes ill-defined. Notably, its calculation using perturbation
theory shows that it depends on the nature of the perturbation used. If a point charge
is used, there is a clear dependence on the sign of the point charge. This makes it
clear that degeneracies do have a possibly dramatic effect on the proper calculation
of chemical concepts and that more attention to their calculation is needed.

The present results also show that using an average of densities of degenerate
states is not accounted for. The transition density (matrix) elements definitely play
a role as well and must be properly considered.
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7.1 Introduction

A perspective about the current status and prospect of the so-called conceptual
density functional theory (CDFT) framework has been presented very recently
by Geerlings et al. [1]. The aim, fundamentals, philosophy, accomplishments,
and a brief of several possible exciting directions for future development of the
CDFT were discussed. This work has already become one of the Highly Cited
Papers as defined from the Essential Science Indicators of the Web of Science
Core Collection. CDFT provides a “nonempirical, mathematically and physically
sound, density-based, quantum–mechanical theory for interpreting and predicting
chemical phenomena, especially chemical reactions” [1]. The DFT framework [2]
offers a formal mathematical structure for the interpretation/prediction of exper-
imental/theoretical chemical reactivity patterns based on a series of responses of
state functions (e.g. the electronic energy) to changes or perturbations in essential
ground-state variables (e.g. the number of electrons or the external potential v(r))
[3, 4]. These descriptors configure complete hierarchies defined in terms of Taylor
series expansions of the energy functional within Legendre-transformed ensemble
representations (e.g. canonical, grand-canonical, isomorphic, and grand-isomorphic)
[5] of DFT with impact on several areas of chemistry. The advances in this field
are related to both conceptual and computational aspects, being the subject of
extensive discussions connected with the so-called electronic descriptors. The
CDFT framework is nowadays intrinsically connected with the rationalization of
the electronegativity equalization principle [6], the hard and soft acids and bases
principle [7, 8], and the maximum hardness principle [9, 10]. These rationalizing
principles impact a great variety of applications, including, for instance, the inter-
play of electrophilicity–nucleophilicity patterns of reactivity [11], the understanding
of polar interactions in pericyclic reactions [12, 13], and the consideration of
finite-temperature based approaches [8, 14–16]. In this chapter, we just intend a
pedagogically focused revision of the most fundamental aspects of the so-called

Conceptual Density Functional Theory: Towards a New Chemical Reactivity Theory, First Edition.
Edited by Shubin Liu.
© 2022 WILEY-VCH GmbH. Published 2022 by WILEY-VCH GmbH.
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spin-polarized conceptual DFT framework (SP-CDFT) [17, 18], which is associated
with the non-relativistic limit of spin-dependent DFT (SDFT) [19, 20]. Our emphasis
is primarily intended to provide a bird’s-eye view of the subject, including reference
to critical applications of the formalisms and its conceptual implications, which
could be attractive, in the author’s very subjective opinion, for non-experts and
graduate students entering for the first place in the field. Detailed authoritative
reviews on the many aspects of the SP-CDFT conceptual extensions are also
available [21–24].

7.2 Non-relativistic Spin Density Functional Theory

Let us start recalling that within the realm of non-relativistic spin-resolved density
functional theory (S-DFT) [21–24], the ad hoc consideration of the α-spin electron
density 𝜌α(r) and the β-spin electron density 𝜌β(r) plays a crucial role as fundamen-
tal variables. The introduction of the electron spin degrees of freedom is oriented
to properly treat the electronic problem for N-electron M-nuclei systems with
open-shell structures featuring spin-uncompensated (i.e. spin-polarized) electron
distributions, either in isolated systems or as the result of the electronic interaction
with an external magnetic field B(r). In the most basic approach to the electronic
problem, the scalar field originated by the M nuclei

(
v(r) = −

∑M
k Zk∕ ∣ r − Rk ∣

)
as

well as the external vector magnetic field (B(r)) couples with the spin magnetization
density (m(r)) arising from the electron spin angular momentum vector, i.e.
m(r) = −2𝜇B

⟨
Ψ[ρ,m]||| |||∑N

i 𝛔i𝛅(r − ri)
|||Ψ[ρ,m]|||⟩. Note that the angular compo-

nent is here not included. In this expression, 𝜇B is the Bohr magneton and 𝜎i are
the 2× 2 Hermitian Pauli matrices [20]. Hence, the electronic energy is explicitly
considered to depend on both scalar and vector fields, namely (all equations are
written in atomic units),

EV ,B[𝜌,m] = F[𝜌,m] + ∫ 𝜌(r)v(r)dr − ∫ B(r) ⋅ m(r)dr (7.1)

The universal functional F[𝜌, m] refers specifically to the sum of the total kinetic
electronic energy Te[𝜌, m] and the total electron–electron repulsion V ee[𝜌, m]
[20], i.e.

F[𝜌,m] =
⟨
Ψ[𝜌,m] |||T̂e + V̂ee

|||Ψ[𝜌,m]|||⟩ (7.2)

In such a general case of Eqs (7.1) and (7.2), the v-representability problem is severe,
given the nontrivial still open problem associated with the non-uniqueness map
between the set of potentials, i.e. (v(r), B(r)), and densities, i.e. (𝜌(r), m(r)) [25–29].

Both theoretical and computational simplifications arise by considering only
one-component magnetic fields, i.e. B(r) = (0, 0, γ(r)), for which the one-to-one
correspondence between the density and the non-vanishing component of magne-
tization is granted. The magnetic field and magnetization m(r) are thus entirely
collinear, e.g. along the z-component for instance. In such a case, Eq. (7.1) becomes
[23, 28, 30, 31].

E[𝜌α, 𝜌β] = F[𝜌α, 𝜌β] + ∫ vα(r)𝜌α(r)dr + ∫ vβ(r)𝜌β(r)dr (7.3)
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given that mz(r) = −𝜇B(𝜌α(r)− 𝜌β(r)) = −𝜇B𝜌S(r), and where vα(r) = v(r)+𝜇B𝛾(r)
and vβ(r) = v(r)−𝜇B𝛾(r) [22, 32]. Note that we here explicitly use the selected
component of the magnetic field γ(r) to expressly emphasize the imposed limita-
tions of the approach. Of course, the universal functional Eq. (7.2) now stands for
F[𝜌α, 𝜌β] =

⟨
Ψ[𝜌α, 𝜌β] |||T̂e + V̂ee

|||Ψ[ρα, ρβ]⟩, and can be appropriately considered
within the context of the Hohenberg–Kohn theorem holding for spin densities
[32, 33]. The minimization of the energy functional in Eq. (7.3) for both 𝜌

α(r)
and 𝜌

β(r), subject to the constraints ∫ 𝜌α(r) = Nα and ∫ 𝜌β(r) = Nβ, yields the
fundamental Euler–Lagrange S-DFT equations,

𝜇α =
[
𝛿F
𝛿𝜌α

]
𝜌β

+ vα(r), and 𝜇β =
[
𝛿F
𝛿𝜌β

]
𝜌α

+ vβ(r) (7.4)

that would provide the ground-state minimum energy associated to the fixed pair
values of Nα and Nβ. Equation (7.4) can also be written as

𝜇N =
[
𝛿F
𝛿𝜌

]
𝜌S

+ v(r), and 𝜇S =
[
𝛿F
𝛿𝜌S

]
𝜌

− 𝜇B𝛾(r) (7.5)

Within the spirit of the Kohn–Sham (KS) approach, one-electron (spin) orbitals
𝜓 iα(r) = 𝜙iα(r)α(s) and 𝜓 iβ(r) = 𝜙iβ(r)β(s), are introduced to deal with the kinetic
energy TS[𝜌α, 𝜌β] of a reference system of noninteracting electrons with densities
𝜌
α(r) and 𝜌β(r),

TS[𝜌𝛼, 𝜌𝛽] =
∑

i𝜎
ni𝜎

⟨
𝜙i𝜎(r)

||||
(
−1

2
∇2

)||||𝜙i𝜎(r)
⟩

(7.6)

𝜙iα(r) and 𝜙iβ(r) denote the spatial orbitals of each spin symmetry described by the
spin functions α(s) and β(s). This fact is just an ad hoc introduction of spin in such
a non-relativistic limit for an S-DFT framework. Henceforth, the energy functional
in Eq. (7.3) becomes a functional of spin orbitals, and we can write that

E[𝜌α, 𝜌β] = TS[𝜌α, 𝜌β] + J[𝜌α, 𝜌β] + EXC[𝜌α, 𝜌β]

+∫ vα(r)𝜌α(r)dr + ∫ vβ(r)𝜌β(r)dr (7.7)

where J[𝜌α, 𝜌β] and EXC[𝜌α, 𝜌β] stand for the electrostatic Coulomb interaction
and the exchange-correlation functional, respectively. Correspondingly, Eq. (7.4)
becomes,

𝜇α =
𝛿TS[𝜌α, 𝜌β]
𝛿𝜌α(r)

+ vαeff(r), and 𝜇β =
𝛿TS[𝜌α, 𝜌β]
𝛿𝜌β(r)

+ vβeff(r) (7.8)

where effective potentials can be defined as

vαeff(r) = ∫
𝛿𝜌(r′)|r − r′|dr′ +

𝛿EXC[𝜌α, 𝜌β]
𝛿𝜌α(r)

+ v(r) + 𝜇B𝛾(r), and

vβeff(r) = ∫
𝛿𝜌(r′)|r − r′|dr′ +

𝛿EXC[𝜌α, 𝜌β]
𝛿𝜌β(r)

+ v(r) − 𝜇B𝛾(r) (7.9)

Note we are pointing out an explicit consideration of the one-component nature
of the magnetic field. To deal with Eq. (7.7), the KS approach implies solving
N(=Nα +Nβ) one-electron equations,[
−1

2
∇2 + vαeff(r)

]
𝜙iα(r) = 𝜀iα𝜙iα(r) and

[
−1

2
∇2 + vβeff(r)

]
𝜙iβ(r) = 𝜀iβ𝜙iβ(r) (7.10)
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where the normalization constraints are ⟨𝜙iα|𝜙iα⟩= 1 and ⟨𝜙iβ|𝜙iβ⟩= 1. Thus, after a
suitable model for the spin-resolved exchange-correlation functional and/or associ-
ated potential is defined, i.e. vα∣βXC(r) ≡ 𝛿EXC[𝜌α, 𝜌β]∕𝛿𝜌α∣β(r), a self-consistent iterative
procedure implying Eqs. (7.8–7.10) yields the optimum spin densities consistent
with the chosen selection of the total number of electrons N and a given spin number
NS(=Nα −Nβ), i.e.

𝜌
α(r) =

Nα∑
i

niα|𝜙iα(r)|2 and 𝜌β(r) =
Nβ∑
i

niβ|𝜙iβ(r)|2 (7.11)

The electron spin-density functions are considered the primary carriers of informa-
tion on the system within such a framework.

It is important to emphasize that the above non-relativistic and collinear magnetic
field restricted version of S-DFT, has served as a basic framework for developing
what has been named a conceptual spin-polarized version of DFT (SP-DFT) treatment
of chemical reactivity [21–24]. It is clear that within such a conceptual SP-DFT con-
text [23, 32], equivalent representations can be built based on both 𝜌(r) and 𝜌S(r) or
both 𝜌α(r) and 𝜌β(r) as pairs of essential variables. It can be noted that by fixing NS
and N, non-uniqueness can be removed, providing a conceptual spin-resolved frame-
work to describe reactivity involving both charge transfer and spin polarization. It was
indeed pointed out by Gal et al. [34] that even the non-uniqueness of B(r) implies
the nonexistence of the total derivative of Ev(r), B(r)(𝜌(r), 𝜌S(r)) with respect to 𝜌S(r), it
does not inhibit the associated one-sided derivatives, providing a sound basis for the
concept of spin potential [34]. Hence, and within a perturbative perspective to chem-
ical reactivity [22], the SP-DFT formalism can be conveniently exploited using suited
Legendre-transformed [21, 23, 24] ensemble representations based on the [𝜌, 𝜌S] (or
[N, NS]) and [𝜌α, 𝜌β] (or [Nα, Nβ]) equivalent representations. It has been shown that
the derivation of critical identities linking the [N, NS] and [Nα, Nβ] SP-DFT represen-
tations is possible using a simple matrix-vector notation [21–24]. Indeed, it has been
emphasized that, in terms of such notation (and associated transformation rules), all
formal identities involving chemical descriptors of the conceptual DFT share essen-
tially the same mathematical structure [22].

7.3 Conceptual SP-DFT: Electronic Descriptors

It is clear that within the so-called “perturbative approximation to chemical
reactivity” [3, 4, 33, 35, 36], global, local, and non-local electronic hierarchies of
descriptors arise from the Taylor series expansion associated with the variation of
energy-related functionals, described in terms of essential variables of any chosen
suitable (ensemble)-representation. The coefficients of such a series expansion are
there identified with the different chemical reactivity responses. Chemical reactivity
becomes thus represented and understood in terms of responses against perturba-
tions. These descriptors are the essential ingredients entering any conceptual ratio-
nalization of both charge transfer and/or spin polarization (i.e. spin-transfer), within
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the limits of applicability associated with the SP-DFT framework. Correspondingly,
and using a matrix notation [21, 23, 24], we can express the change in the state
functions representing the electronic energy E, the grand potential, Ω = E − 𝜇 ⋅ N⃗,
and even the universal functional, F = E − ∫ ←→

𝜌 (r) ⋅ v⃗(r)dr, of any system, as [22],

ΔE = 𝜇 ⋅ ΔN⃗ + ∫ 𝜌(r) ⋅ (Δv⃗(r))dr + 1
2!
[(ΔN⃗)T ⋅←→𝜂 ⋅ (ΔN⃗)]+

∫ (Δv⃗(r))T ⋅
←→
f (r) ⋅ (ΔN⃗)dr + 1

2! ∫ ∫ (Δv⃗(r))T ⋅←→𝜒 (r, r′) ⋅ (Δv⃗(r′))drdr′ + · · ·

(7.12)

ΔΩ = −N⃗ ⋅ Δ𝜇 + ∫ 𝜌(r) ⋅ (Δv⃗(r))dr − 1
2!
[(Δ𝜇)T ⋅

←→
S ⋅ (Δ𝜇)]+

∫ (Δv⃗(r))T ⋅←→s (r) ⋅ (Δ𝜇)dr − 1
2! ∫ ∫ (Δv⃗(r))T ⋅←→s (r, r′) ⋅ (Δv⃗(r′))drdr′ + · · ·

(7.13)

ΔF = −∫ u⃗(r) ⋅ (Δ𝜌(r))dr + 1
2! ∫ ∫ (Δv⃗(r))T ⋅←→𝜂 (r, r′) ⋅ (Δ𝜌(r′))drdr′ + · · ·

(7.14)

representing the way the ground-state function responds to changes in proper state
variables defining a closed-system (i.e. E is the state function), an open-system (Ω
is the state function), and/or a density (e.g. F is the state function) representation,
respectively. In Eqs (7.12)–(7.14), the global quantities corresponding to the number
of electrons N⃗, the chemical potential 𝜇, softness S⃗, and hardness ←→

𝜂 ; the local
descriptors such as the electron density 𝜌(r), the external potential v⃗(r), the grand
potential u⃗(r), the softness ←→s (r), and the Fukui function

←→
f (r); and the non-local

indices such as the linear response of density function ←→
𝜒 (r, r′), the softness ←→s (r, r′)

and hardness ←→
𝜂 (r, r′) define complete sets of reactivity hierarchies. The global

descriptors characterize the system as a single entity, being associated with global
responses against global perturbations. Such global responses are intrinsically
connected to electronic or even thermodynamic stability. The local indicators (i.e.
r-dependent) on the other hand, are associated with both global or local responses
against local or global perturbations, respectively. Such local descriptors can thus
be connected to chemical concepts of regional selectivity. The non-local indices r-,
r′-dependent) correspond to local responses against local perturbations, and they
can be associated with activation/deactivation concepts of chemical reactivity. The
universal matrix–vector notation for conceptual DFT enables the efficient transfer-
ring of results to any formulation of S-DFT and even to spin-free conceptual DFT
(see Ref. [22] for complete details), offering a unifying perspective on conceptual
DFT as a whole [21–24].

The link between the global, local, and non-local reactivity indicators that
features the CDFT framework, including the inverse relationships between the
global softness and global hardness [37, 38], the inverse relationship between the
hardness kernel and the softness kernel [37, 39, 40], the Berkowitz–Parr identity
[37], ←→𝜒 (r, r′) =

←→
f (r) ⋅

←→
S ⋅ (

←→
f (r′))T −←→s (r, r′), which links the Fukui function and
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the local softness, and the Harbola–Chattaraj–Cedillo–Parr identity [22, 41, 42],
←→
𝜂 = ∫ ←→

𝜂 (r, r′) ⋅
←→
f (r′)dr′, are straightforward examples. These facts are valuable

in the analysis of electrophilicity/nucleophilicity interactions, as well as in testing
the general validity of chemical principles (e.g. maximum hardness principle
(MHP) [9, 43], hard-soft acid–base principle (HSAB) [6, 7, 43]) in the context of a
chemical process involving both charge transfer and spin polarization effects.

7.3.1 On Global and Local Electronic Descriptors

Spin-resolved global and local chemical reactivity descriptors were presented for the
first time by Galván et al. [17] within the [N, NS] representation, and later by Ghanty
and Ghosh within a [Nα, Nβ] representation in 1994 [18]. We will explicitly con-
sider the [N, NS]representation, where the Euler–Lagrange multipliers 𝜇N and 𝜇S
in Eq. (7.5) constitute indeed NS-constant chemical potential and N-constant spin
potential, respectively [44], namely [21, 23, 24]

𝜇N = [𝜕E∕𝜕N]NS,v(r),γ(r) and 𝜇S = [𝜕E∕𝜕NS]N,v(r),𝛾(r) (7.15)

These quantities describe constrained responses of the entire system against global per-
turbations. Their changes with respect to variations in the number of electrons N,
at constant NS (i.e. constrained charge transfer), or in the spin number NS at con-
stant N (i.e. spin-polarization processes) are identified as a different type of hardness
responses, i.e.

𝜂NN = [𝜕𝜇N∕𝜕N]NS,v(r),γ(r), 𝜂NS = [𝜕𝜇N∕𝜕NS]N,v(r),𝛾(r),

𝜂SN = [𝜕𝜇S∕𝜕N]NS,v(r),γ(r), and 𝜂SS = [𝜕𝜇S∕𝜕NS]N,v(r),𝛾(r) (7.16)

Spin-resolved extensions for the electrophilicity index [22] arise naturally, i.e.
2𝜔 = (𝜇)T ⋅

←→
S ⋅ 𝜇 = (𝜇)T ⋅ (←→𝜂 )−1 ⋅ 𝜇. Intended to study local regioselectivity, the [N,

NS] SP-DFT Fukui functions [21, 23, 24] arise from the derivatives of 𝜇N and 𝜇S
potentials with respect to variations in v(r) and vS(r) at N and/or NS held constant,
namely,

fNN(r) = [𝜕𝜌(r)∕𝜕N]NS,v(r),γ(r), fNS(r) = [𝜕𝜌(r)∕𝜕NS]N,v(r),γ(r),

fSN (r) = [𝜕𝜌S(r)∕𝜕N]NS,v(r),γ(r), and fSS(r) = [𝜕𝜌S(r)∕𝜕NS]N,v(r),γ(r) (7.17)

Note that Maxwell relations allow us a direct connection with variations of 𝜌(r) and
𝜌S(r) against changes in N and/or NS,

fNN(r) = [𝛿𝜇N∕𝛿v(r)]N,NS,γ(r), fNS(r) = [𝛿𝜇N∕𝛿𝛾(r)]N,NS,v(r),

fSN (r) = [𝛿𝜇S∕𝛿v(r)]N,NS,γ(r), and fSS(r) = [𝛿𝜇S∕𝛿𝛾(r)]N,NS,v(r) (7.18)

Evaluation of the simplest condensed-to-atom SP-DFT model of Fukui functions
[45] is straightforward within the KS framework. Even though there is a complicated
coupling between electron transfer and spin transfer in higher-order terms within
a [N, NS] representation [21, 23, 24], such a framework has demonstrated to be
helpful for the characterization of both excitation/deexcitation processes implying
singlet-triplet multiplicities [21–24] and radical reactions [46, 47]. Straightforward
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extensions concerning other descriptors include local electrophilicities and dual
descriptors [48] and reaction indicators [49–51].

7.3.2 Non-local Electronic Descriptors

Local responses to local perturbations constitute non-local electronic responses
[39, 40, 45, 52, 53]. In such a context, linear responses associated with density
𝜒(r, r′) = [𝛿𝜌(r)/𝛿v(r′)]N [54], Fukui function f (r, r′) = [𝛿f (r)/𝛿v(r′)]N , and softness
s(r, r′)= [𝛿𝜌(r)/𝛿v(r′)]

𝜇
[37] are well-known examples in non-spin-polarized CDFT.

Reactivity kernels for hardness and softness hierarchies of reactivity in the SP-DFT
framework were discussed by Chamorro et al. [55]. Fias and coworkers [56, 57]
have presented analytical expressions for the SP-DFT linear response functions in
the [Nα, Nβ] representation,

𝜒
𝜎𝜏
(r, r′) =

𝛿𝜌σ(r)
𝛿vτ(r′)

= −2
∑

ia

(∑
jb
(M−1)iaσ,jbτ𝜙jτ(r′)𝜙∗bτ(r

′)𝜙iσ(r)𝜙∗aσ(r)

)
(7.19)

which, as immediately noted, is linearly related to the corresponding [N, NS]
representation. In this expression, we have that, Miaσ, jbτ = (𝜀c − 𝜀j)𝛿στ𝛿ij𝛿bc +
2⟨𝜙iσ𝜙jτ|𝜙aσ𝜙bτ⟩+ 2⟨𝜙iσ𝜙jτ|f XC(r, r′)|𝜙aσ𝜙bτ⟩, where f XC(r, r′) = 𝛿2EXC/𝛿𝜌(r)𝛿𝜌(r′).
The radial distribution of the associated kernels has been discussed for first- and
second-row atoms, including open-shell configurations [56], and noble gases [57].

7.3.3 The Finite-Difference Approximations for Spin-Resolved
Descriptors Within Kohn–Sham Theory

Ayers and Miranda–Quintana have presented a critical discussion concerning work-
ing formulae for spin-resolved CDFT descriptors based on Kohn–Sham formalism
[58]. Finite-difference approximations to spin-resolved global reactivity indicators
require a parabolic interpolation model for the dependence of the energy on Nα and
Nβ (i.e. two-side spin-reactivity descriptors), yielding the central-difference approx-
imation for the spin potentials and hardness responses,

𝜇
0
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1
2
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𝜀
α
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α
H
)
, 𝜇

0
β ≈

1
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𝜀
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β
H

)
, 𝜂

0
αα ≈ 𝜀αL − 𝜀

α
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0
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β
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β
H

𝜇
0
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1
2

(
𝜇

0
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, 𝜇

0
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0
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, 𝜂

0
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0
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1
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(
𝜂

0
α + 𝜂0

β

)
(7.20)

Preliminary numerical results concerning the estimation of spin potentials and spin
philicities indicate better performance than results using only linear interpolation
models or mixed combinations [58]. An analysis comparing frozen-core and
finite-differences approximations for evaluating both global and local descriptors
was earlier presented by Garza et al. [59], also emphasizing the straightforward
linear transformation connecting the [N, NS] and [Nα, Nβ] SP-DFT representations.
Vargas et al. [60] discussed the impact of Koopmans’-like approximations on
evaluating reactivity indicators within a Kohn–Sham context. A general discussion
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concerning a proper formulation of CDFT reactivity indicators for degenerate
and quasi-degenerate ground states has been presented by Ayers and coworkers
[61]. It should be noted at this point that all the above-defined global, local, and
non-local DFT electronic hierarchy of descriptors essentially describes electron
or spin-density responses against perturbations at some specific fixed nuclei
configuration. A complete picture of chemical reactivity should also incorporate
the nucleus responses.

7.4 Conceptual SP-DFT: Nuclei-Related Descriptors

Following Cohen’s formulations [62], the so-called nuclear reactivity indices ΦN,k
and ΦS,kextensions to the spin-polarized density functional theory were first pre-
sented by Chamorro et al. [63] and also discussed by Cardenas et al. [64], i.e.

ΦN,k =
[
𝜕Fk

𝜕N

]
NS

= −
[
𝛿𝜇N

𝛿Rk

]
{Rl≠k}

= Zk ∫
fNN(r)|r − Rk|3 (r − Rk)dr, and

ΦS,k =
[
𝜕Fk

𝜕NS

]
N
= −

[
𝛿𝜇S

𝛿Rk

]
{Rl≠k}

= Zk ∫
fNS(r)|r − Rk|3 (r − Rk)dr (7.21)

where Fk is the Hellmann–Feynman force on the k-nucleus in the system,
i.e. [62, 65–67].

Fk = Zk ∫
𝜌(r)(r − Rk)|r − Rk|3 dr − Zk

∑
l≠k

Zl(Rl − Rk)|Rl − Rk|3 (7.22)

Note that the spin-resolved nuclear Fukui functions also represent the change of the
restrained electronic chemical potential and spin potentials [defined in Eqs (7.5) and
(7.18)] upon nuclear displacement. The [Nα, Nβ] SP-DFT representation becomes
simply,

Φσk =
[
𝜕Fk

𝜕Nσ

]
σ′
= −

[
𝛿𝜇

σ

𝛿Rk

]
{Rl≠k}

= Zk ∫
f σσ(r) + f σσ′ (r)|r − Rk|3 (r − Rk)dr (7.23)

where σ stands for the {α|β}-spin symmetries. These nuclear reactivity descriptors
can be understood within a perturbative approach by explicitly considering the
nuclei position dependence of the external potential v(r) on the nuclei coordinates
{Rk} [4]. Thus, for instance, within a canonical [N, NS] representation of the total
energy of the system W = E+V nn (i.e. adding the nuclear–nuclear interaction
term to the electronic energy), it is clear that the Hellmann–Feynman force on
nuclei is Fk = −(𝛿W∕𝛿Rk)N,NS,γ(r). Indeed, further considerations of such a force
in terms of the basic variables of the [N, NS] SP-DFT representation allow us to
write the second terms in Eq. (7.23), given that 𝜇N = −(𝜕W∕𝜕N)NS ,{Rk},γ(r) and
𝜇S = −(𝜕W∕𝜕NS)N,{Rk},γ(r). The treatment of nuclei changes becomes thus related
to the explicit consideration, within the realm of validity of the Born–Oppenheimer
approximation, of changes in the nuclei forces.
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The applicability of such a nuclei-related descriptor in connection with the
spin-resolved framework of electronic indicators can be explored in terms of the
local Berlin function 𝜗v(r),∑

k
ΦN,kRk = −∫ fNN(r)𝜗v(r)dr, and

∑
k
ΦS,kRk = −∫ fNS(r)𝜗v(r)dr (7.24)

where 𝜗v(r)≡ −
∑

kZkRk • (r−Rk)/|r−Rk|3. The usefulness of such descriptors has
been less explored. However, illustrative examples devoted to measuring the magni-
tude of the onset of the perturbation (note, not the actual response of the potential)
in the spin number in excitation/deexcitation processes are available for simple sys-
tems, including water, formaldehyde, and substituted nitrenes and phosphinidenes
[63], as well as triatomic carbenic species [64].

7.5 Brief Update Concerning Conceptual SP-DFT
Applications (2010–2020)

The current literature indicates a diversity of discoveries over the last ten years,
evidencing a continuous activity concerning the development and application of
SP-DFT descriptors, which we shall outline in the following. Ghashghaee and
Ghambarian have explored the usefulness of the spin-resolved chemical potential,
hardness, and philicity indices to characterize ZnO-doped black phosphorene
monolayer slabs for sensing nitrogen dioxide [68]. Anota and coworkers [69] used
global SP-DFT descriptors to rationalize the adsorption of caffeine on boron nitride
fullerene, the interaction between the octahedral B12N12 cage and iron clusters
Fen [70], the global stability of boron nitride cages BxNy (x + y = 28) [69], the
interactions of B12N12 fullerenes on graphene and boron nitride nanosheets [71],
and the adsorption processes of CO on magnetic BNF− and on the [BNF:B6]− and
[BNF:C6]− composites [72]. An SP-DFT analog to the reaction flux descriptor,
namely, J(𝜉) = − 𝜕𝜇N /𝜕𝜉 has been introduced by Vargas and coworkers [73] to
understand energy profiles and reactivity patterns associated with hydrogen-atom
transfer mechanisms in phenolic compounds toward radicals. Based on the pre-
viously established connection between pairing energies and the SP-DFT spin
potential [44], Galván and coworkers [74] have analyzed confinement effects on
the spin potential (within Kohn–Sham formalism) of first-row transition metals.
The global spin reactivity of carbenes, silylenes, and germylenes was re-examined
using descriptors based on proper interpolation formulas for the energy either as a
function of the basic variables of both the [Nα, Nβ] and [N, NS] representations
[58]. Peng and Yang [75] have proposed analytical expressions for the spin-resolved
Fukui function and other response functions within the consideration of non-local
fractional systems. Lamsabhi et al. [76] have explored the usefulness of the [N,
NS] SP-DFT global and philicity derived indicators in the rationalization of the
spin-allowedness nature concerning the oxygenation of phenylhalocarbenes. The
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[N, NS] SP-DFT global and philicity descriptors were applied by Du et al. [77]
in the analysis of spin-catalysis effects of tantalum clusters cations. The vertical
lower-upper spin energies are found linearly correlated with spin-philicity descrip-
tors [77]. Gal and Geerlings [78] have presented an SP-DFT generalization for the
Perdew–Parr–Levy–Balduz relationship within the E[N, NS] SP-DFT representation,
providing a formal basis for a proper discussion of the energy surface E[N, NS] and
its implications on chemical potentials, highest-occupied and lowest-unoccupied KS
spin energies, and derivative discontinuities [78]. General considerations associated
with fractional particle and spin numbers connected to the Lieb functional were
also discussed [79]. Geerlings and coworkers [80] rationalized the intrinsic stability
pattern and reactivity of series of silylenes and p-benzynes intermediates exhibiting
a different degree of biradical character using global SP-DFT [N, NS] descriptors.
Pérez and Chamorro [81] described the stability and regional selectivity associated
with to series of N-heterocyclic carbenes incorporating B and P atoms. As is the case
for analog systems [45, 82], the philicities for spin polarization and the vertical
energy gap are shown to be linearly correlated [81]. The role played by the local
spin-density distribution in directing the reactivity of (di/poly)radical compounds to
participate in radical reactions [83], and the way it contributes to model potential
energy surfaces in connection to qualitative valence bond theories has been discussed
[84]. López-Albarrán and coworkers [85] applied the [N, NS] Fukui functions,
within the frozen-core approximation, to study the key role of monoligols in lignin
polymerization processes. As measured through the [N, NS] SP-DFT hyper-softness,
sNNN(r) ≃ S2

NNfNNN(r), Fe centers’ local reactivity has been related to the catalytic
activity by Martínez-Araya and Glossman-Mitnik [86] in ethylene polymerization
processes. Morrison used [Nα, Nβ] Fukui functions to characterize attached electrons’
effect in temporary anion resonance states in Be−, Mg−, and Ca− [87]. Martínez-Araya
et al. have discussed the importance of the spin-resolved dual descriptor components
[88], i.e. f (2)(r) = (𝜕fNN(r)∕𝜕N)NS,v(r),γ(r) =

(
f (2)ΔNS<0(r) + f (2)ΔNS>0(r)

)
∕2, in the assess-

ment of substituent effects in open-shell systems such as molybdenum-oxo complexes
[89], and the rationalization of catalytic activity in polymerization processes driven by
Bis(imino)pyridine (BIMP)-Fe(II) cations [90]. Martínez explored the usefulness of
working equations based on frontier molecular orbital densities on open-shell systems,
including NO, O, and cyclic saturated carbenes [91]. Salas-Reyes and coworkers
[92] used SP-DFT Fukui functions to analyze the reaction mechanism proposed
for the aprotic-medium electrochemical oxidation of amides derived from Feluric
acid. Chamorro et al. [13] have associated the f ±αα(r) SP-DFT Fukui function to the
so-called electrophilic and nucleophilic Parr functions P±(r) empirically introduced
by Domingo et al. [93] in the context of rationalizing polar chemical reactions
within a free radical-like perspective. Kovalenko and coworkers [94] have presented
a methodological framework for evaluating Fukui functions, based on the extended
Koopmans’ approximation for multiconfigurational Green’s functions. Chamorro and
coworkers [95] have explored the usefulness of the condensed-to-atoms approach
to the f ±NN(r) SP-DFT Fukui in predicting the intramolecular cyclization process’s
selectivity of 2′aminochalcones. Lain and coworkers [96] have presented a matrix
implementation for the SP-DFT Fukui and dual-descriptor functions applied to both
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closed- and open-shell systems of arbitrary spin symmetry and uncorrelated/correlated
level of theory. SP-DFT Fukui function’s usefulness was also demonstrated by Zhong
et al. [97] in analyzing H2S bonding to metal(II) porphyrin complexes. Gal et al. [98]
have proposed new definitions for the [Nα, Nβ] SP-DFT chemical hardness based
on the definition of local chemical potentials. De Proft and coworkers [99] used the
SP-DFT dual descriptor ΔfNN(r) = f +NN(r) − f +NN(r) for the suitable rationalization of
the observed regioselectivity of radical additions to substituted alkenes. Liu applied
both global and local [N, NS] SP-DFT to the analysis of a series of (pyridine)n −metal
(ll)− porphyrin complexes with metal =Mg, Ca, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ru,
and Cd and n = 0, 1, and 2, revealing the unique selectivity and specificity of
Fe-porphyrin complexes [100].

7.6 Illustrating the Usefulness of Local SP-DFT Fukui
Descriptors

In the following section and within a pedagogical approach, we focus on the
widespread finite-difference frozen-core condensed-to-atom implementation [45]
of the SP-DFT Fukui descriptors defined by Eq. (7.17). Such an implementation
is a key basis for evaluating philicities [53] and dual descriptors [88] within the
same context of atom-based resolution of descriptors. By considering that the
norms of the spin-orbitals 𝜑σi (r) ≡ |𝜙iσ(r)|2 as shape factors of densities [entering in
Eq. (7.11)] can be expanded in any atomic basis set {𝜒

𝜇
(r)},

𝜑
σ
i (r) =

∑
𝜇

∑
𝜈

cσ
𝜇,ic

σ
𝜈,i𝜒𝜇(r)𝜒𝜈(r) (7.25)

the “condensation” of the local response to a given atom k arises by summing only
on the basis set contributions directly associated to such a center and by taking the
complete overlap matrices S

𝜇𝜈
≡ ∫ 𝜒

𝜇
(r)𝜒

𝜈
(r)dr, namely,

𝜑
σ
i,k ≡ |𝜙iσ,k|2 =∑

𝜇∈k

∑
𝜈

cσ
𝜇,ic

σ
𝜈,iS𝜇𝜈 (7.26)

Average shape factors can be indeed considered in evaluating Eq. (7.26) by sum-
ming over the complete number of degenerate spin-orbitals (if any) of each given
σ-spin state [45]. It should be emphasized that this approach corresponds to a simple
Mulliken-type partition at the frontier spin orbitals. Hence, a frozen-core approxi-
mation to Eq. (7.17), within the general validity of Eqs (7.25) and (7.26), yields simple
expressions in terms of the highest occupied (HO) and lowest unoccupied (LU) spin
orbitals, namely [17, 23, 45, 59],
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Table 7.1 SP-DFT condensed-to-atoms Fukui descriptors for 2NO optimized at the
(U)wB97XD/6-31G(d) level of theory.

Atom k f +
NN,k

f −
NN,k

f +
SN,k

f −
SN,k

f +
NS,k

f −
NS,k

f +
SS,k

f −
SS,k

N +0.6495 +0.6712 −0.0098 −0.0494 −0.0405 −0.0187 +0.6801 +0.6406
O +0.3505 +0.3288 +0.0098 +0.0494 +0.0405 +0.0187 +0.3199 +0.3594

Evaluation of working Eq. (7.27) is straightforward from results of any quantum
mechanical program [101, 102]. Indeed, the MS Jaguar suite of programs [101]
provides direct access to the evaluation of Fukui functions and Fukui atomic indices
based on such approaches [45]. As a simple illustrative example, we will considerer
the characterization of the intrinsic reactive patterns in both charge transfer pro-
cesses and spin polarization phenomena for nitric oxide NO, a ubiquitous species
implied in the catalytic regulation of several biological processes as well as in spin
catalytic reactions [103]. Table 7.1 reports the values of SP-DFT condensed-to-atoms
Fukui descriptors evaluated from Gaussian 16 [102] results for optimizations. The
keyword IOP (3/33 = 1) has been used to output the required overlap matrix of
Eq. (7.26).

The predicted reactivity trends are the same as discussed earlier in Ref. [45]. For
instance, concerning spin polarization processes occurring at constant number of
electrons (i.e. spin-flip phenomena centered at NO), the negative (positive) value
of f −NS,k at nitrogen (oxygen) indicates that charge density 𝜌(r) is accumulated
(depleted) on the N (O) center in a α→ β transition, associated to the doublet state.
The positive f −SS,kindicators at N and O reveal that in such a spin-flip situation, the
spin density 𝜌S(r) is consistently twofold decreased at the N center. By considering
β→ α which increases the spin multiplicity of the system, the predicted responses
in both density and spin density are inferred from the f +NS,k and f +SS,k responses.
Charge density rearrangement is predicted to polarize the system whereas spin
density is expected to increase at N by a factor of 1.8 compared to the O center. This
fact points out to the N center as the active one within the arsenal of spin catalysis
interests [103].

In Figure 7.1, we present isosurface maps for each of these descriptors. The
rendering has been produced via the VMD [104] and Multiwfn [105] packages using
cube files generated for the r-dependent frozen-core approximations to Eq. (7.17)
[whose condensed-to-atom resolution are Eq. (7.27)]. Panels (a) and (c) reveal the
response in 𝜌(r) and 𝜌S(r), respectively, for the spin-flip α→ β process associated
with the doublet state. Panels (b) and (d) are the corresponding responses for the
spin-flip β→ α increasing the spin multiplicity from 2 to 4. Given the underlying
finite-difference approach to Eq. (7.17), f −NS(r) > 0 regions are associated with
those with Δ𝜌(r)< 0, and vice versa. The opposite “rule” holds for the f +NS(r)
responses. Within the same context, the decrease (or increase) of 𝜌S(r) is easily
associated with f −SS(r) (or f +SS(r)) maps given the change in spin number is negative
(positive) definite.
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fNS (r)–

fSS (r)– fSS (r)+

fNS (r)+
(a) (b)

(c) (d)

Figure 7.1 Isosurface maps for the SP-DFT Fukui descriptors for spin-polarization
phenomena evaluated at the doublet of the NO species. A positive iso value of +0.05 is
depicted in green color and the negative one of −0.05 in blue. (a) f −NS(r), (b) f +NS(r), (c) f −SS(r),
(d) f −SS(r).

It can be instructive to highlight in this point about the increasing number of stud-
ies focused on the characterization of selectivity in drug discovery and material-related
sciences on the basis of these straightforward available implementations [101] based
on Eq. (7.27) [17, 45]. Valuable results in such specific context include for instance
new insights for selectivity characterization of derivatives based on structures of
quinoline [106–108], thiourea [109–113], benzoxazole [114–116], benzene [117],
xylene [118], imidazole [119–123], oxadiazole [124, 125], triazole [126], thiazole
[127], pyrazine [125, 128], semicarbazide [129], amide [130–136], acids [137, 138],
pyrazole [139], chalcone [140], quinoline [141–143], pyridoxylidene aminoguanidine
[144], arylpiperazine [145], oxime [146], isoindoline [147], pirymidine [148, 149],
pyrrolizidine alkaloids [150], and peptides [151]. In all these explorations, the local
SP-DFT Fukui functions have probed its usefulness in characterizing the most
reactive sites, as it has been also the case along polar organic chemical reactions,
including [3+ 2] and [4+ 2] cycloadditions [12, 13, 93, 96, 152, 153].

7.7 Concluding Remarks and Perspectives

This work has presented fundamental aspects of the conceptual SP-DFT framework,
also called spin-polarized CDFT (SP-CDFT). It is the non-relativistic limit of spin-
DFT, where spin becomes incorporated just in the form of spin orbitals. Our revi-
sion is introductory and pedagogical [21–24]. The conceptual SP-DFT framework
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allows us, within a perturbative approach, to explore both charge transfer processes
and spin-polarization phenomena. The exact relationships between electronic
[40, 45, 53] and nuclei-forces related chemical descriptors [154, 155] certainly
provide a general reference framework for exploring chemical responses as
exemplified through the exciting applications of SP-DFT reported in several
areas of chemical sciences. A defying focus for further conceptual SP-DFT
applications is the characterization of magnetic responses and/or materials for
spintronic-derived technologies. The development of this field, even the limita-
tions imposed for the underlying non-relativistic frameworks, is far away to be
complete. Examples of areas where further work is desirable include extensions
of arbitrarily defined Legendre-transformed ensemble representations. Practical
applications for older and new relationships connecting both electrophilicity and
nucleophilicity spin-related responses with nuclei rearrangements in chemical
reactions [22, 154] are also open to further research. The subject offers several
possibilities for developing theoretical and/or computational approaches that
broaden the scope of applicability of chemical principles aimed to improve our
understanding and interpretation of chemical phenomena and reactivity [1]. Areas
for future development of spin-dependent formalisms include (i) finite-temperature
extensions [8, 14, 16] and free-energy-based formalisms for SP-DFT [156, 157];
(ii) development of a fully relativistic treatment of spin-dependent electronic
and nuclei-related chemical “reactivity”, (iii) time-dependent considerations
of reactivity hierarchies defined within the spirit of the SP-DFT approaches,
and (iv) exploration of SP-DFT nuclei-related reactivities considering static
and dynamic approaches to modeling chemical reactions involving different
electronic states.

Despite the above generalizations, we should undoubtedly be aware that proper
and complete incorporation of spin (within a density-related framework) should
be intrinsically related to conceptual aspects derived from a full quantum elec-
trodynamical density functional theory framework. This field [158–163] remains
completely open and fully defying for the entire scientific community seeking
for the establishment of a formal and deeply theoretical basis for many of the
successful classical principles employed in rationalizing chemical facts. Certainly,
such formal advancements will contribute to strongly extend the range of standard
applications, broadening the possibilities for interpretation of chemical reactivity
based on development for new concepts firmly grounded within the frame-
work offered by the mathematical structure of density-functional theory and its
extensions [1].
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8.1 Introduction

The framework of conceptual density functional theory (CDFT) is mainly based on
the response functions that arise from changes in the electronic energy (E) with
respect to changes in the number of electrons (N) and in the external potential
v(r). Through this consideration, four fundamental concepts emerge. The chemical
potential [1] (𝜇e) and the hardness [2] (𝜂e), which are given by the first and second
derivatives of the energy with respect to N, respectively, and the Fukui function
[3–5] (f e(r)) and the dual descriptor [6, 7] (Δf e(r)) that correspond to the first and
second derivatives of the electronic density, 𝜌(r), with respect to N, respectively.

The relevance of these response functions to describe very important aspects
of the global reactivity, in the case of 𝜇e and 𝜂e, and regioselectivity, in the case
of f e(r) and Δf e(r), comes from the fact that they provide a link with intuitive
chemically meaningful concepts. The chemical potential is equal to the negative
of the electronegativity [1] (𝜒) defined by Iczkowski and Margrave [8] who made
a generalization of the formula proposed by Mulliken [9]. The definition given for
hardness corresponds to the identification of the concept originally proposed by
Pearson [10, 11]. The Fukui function was defined through the analysis of the total
differential [3] of E and of 𝜇e as functions of N and v(r), that leads to the Maxwell
relation (𝛿𝜇e/𝛿v(r))N = (𝜕𝜌(r)/𝜕N)v(r) = f e(r), and it reduces to the electronic density
of the frontier orbitals, the highest occupied molecular orbital (HOMO) and the low-
est unoccupied molecular orbital (LUMO), when the relaxation effects associated
with the removal or addition of an electron from the system are neglected [3, 4].

These identifications have provided a theoretical framework to get a better
understanding of commonly used principles of chemical reactivity. Thus, the
electronegativity equalization principle proposed by Sanderson [12, 13] follows
immediately from the relationship 𝜒 = −𝜇e, since it indicates that it is equivalent
to a chemical potential equalization in a charge-transfer process. The hard and

Conceptual Density Functional Theory: Towards a New Chemical Reactivity Theory, First Edition.
Edited by Shubin Liu.
© 2022 WILEY-VCH GmbH. Published 2022 by WILEY-VCH GmbH.
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soft acids and bases principle [10, 11, 14, 15] and the maximum hardness principle
[16, 17] proposed by Pearson can be analyzed through CDFT from several perspec-
tives. On the other hand, from the relationship between the Fukui function and
the frontier orbitals one can get important insights that provide additional support
to the relevant aspects contained in the frontier orbital theory of chemical reactiv-
ity [18, 19]. In general the CDFT framework allows one to establish the conditions
required for the fulfillment of these principles and its implications with respect to the
interacting species [17, 20–57]. Moreover, through this approach it has been possible
to introduce global, local, and non-local descriptors that have enriched the analysis
of chemical reactivity in terms of a chemically meaningful language [58–80].

A very important relationship used in the analysis and understanding of the
concepts and principles mentioned in the previous paragraphs is the smooth
quadratic interpolation [2] between the energy of the systems with N0 − 1, N0, and
N0 + 1 electrons, where N0 is an integer,

ΔE = 𝜇e ΔN + 1
2
𝜂e (ΔN)2 (8.1)

withΔN =N −N0 and we have used the definitions of 𝜇e and 𝜂e in terms of the first
and second derivatives of E with respect to N at constant v(r). Since these derivatives
must be evaluated at N0, one finds that𝜇e = − (I +A)/2 and 𝜂e = I −A, where I and A
are the vertical first ionization potential and electron affinity of the reference system,
respectively. These are very important relationships because, if one makes use of
the experimental values of I and A, one finds that the values obtained through them
for the chemical potential (minus the Mulliken electronegativity) and the hardness
follow approximately the same behavior of the qualitative scales of Pauling [81, 82]
for 𝜒 = −𝜇e and of Pearson [10, 11, 14, 15] for 𝜂e. This result, derived by Parr and
Pearson, strengthened the association of the first and second derivatives with 𝜇e and
𝜂e, and became, together with Eq. (8.1), the basis for the study of charge-transfer pro-
cesses [14, 15, 49–57, 83–97] and, as mentioned, the principles associated with them.

The detailed analysis of the four concepts and the principles mentioned, together
with other important indexes and complementary principles of chemical reactivity,
which were derived in the framework of CDFT can be seen in several chapters of
this book and in several revisions [98–108].

In this chapter we will focus on the implications associated to the fact that
to evaluate the derivatives just mentioned, one needs to define the energy and
the electronic density for a fractional number of electrons. In this context, the
appropriate theoretical framework is given by the grand canonical ensemble and
finite temperature density functional theory (DFT), [109–111] to allow the system
to exchange electrons with the reservoir (bath) in which it is immersed. Through
this approach the number of electrons fluctuates, so that one needs to consider the
average value for the ensemble, which may be an integer or a real number. Although
there have been in the past several approaches [112–121] to analyze these aspects,
here we will concentrate on the development we have achieved recently [122–134].

In the process of performing this analysis, we will derive the temperature-
dependent expressions of 𝜇e, 𝜂e, f e(r), and Δf e(r), and from them, their behavior in
the limit when the temperature goes to zero and at temperatures of chemical interest
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will be established. Additionally, we will discuss new concepts that arise through
this approach that provide a complement to the CDFT theoretical framework, and
finally, we will examine the fundamental equations for a chemical change with the
temperature-dependence perspective incorporated.

8.2 First-Order Response Functions in the Grand
Canonical Ensemble

The natural variables of the grand canonical ensemble are the chemical potential of
the reservoir 𝜇Bath, the external potential v(r), and the temperature T. In this ensem-
ble the partition function is given by

Ξ(𝜇Bath,T)[v(r)] =
∑

N

∑
i

e−𝛽(EN,i−𝜇BathN) (8.2)

where EN,i is the energy of the ith N-electron excited state (i = 0 corresponds to the
ground state), 𝛽 = 1/kBT, and kB is Boltzmann’s constant.

By making use of the weighting factor, which is expressed in terms of the grand
partition function as

wN,i =
1
Ξ

e−𝛽(EN,i−𝜇BathN) (8.3)

one can determine other variables in terms of their average value in the ensemble.
Thus, to obtain the response functions that arise from changes in the energy and
in the electronic density with respect to changes in the number of electrons and the
external potential, discussed in the previous section, one must consider their average
value in the ensemble, that is

⟨N⟩ =∑
N

∑
i

wN,i N (8.4)

⟨E⟩ =∑
N

∑
i

wN,i EN,i (8.5)

and

⟨𝜌(r)⟩ =∑
N

∑
i

wN,i 𝜌N,i(r) (8.6)

Now, in terms of the natural variables of the grand canonical ensemble, the flux of
electrons to or from the system is controlled by 𝜇Bath. The response of the average
electronic energy of the system to this change in the average number of electrons
corresponds to the finite temperature definition of the chemical potential [1, 123],

𝜇e =
(
𝜕⟨E⟩
𝜕⟨N⟩

)
T,v(r)

(8.7)

which may be expressed in terms of changes in the chemical potential of the reservoir
using the chain rule, that is(

𝜕⟨E⟩
𝜕⟨N⟩

)
T,v(r)

=
(
𝜕⟨E⟩
𝜕𝜇Bath

)
T,v(r)

(
𝜕𝜇Bath

𝜕⟨N⟩
)

T,v(r)
(8.8)
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The two derivatives in the right-hand side of this equation may be expressed in
terms of the thermal fluctuations between the average energy and the average num-
ber of electrons, 𝜎EN , and in the average number of electrons, 𝜎NN ,(

𝜕⟨E⟩
𝜕𝜇Bath

)
T,v(r)

= 𝛽𝜎EN = 𝛽(⟨EN⟩ − ⟨E⟩⟨N⟩) (8.9)

and (
𝜕⟨N⟩
𝜕𝜇Bath

)
T,v(r)

= 𝛽𝜎NN = 𝛽(⟨N2⟩ − ⟨N⟩⟨N⟩) (8.10)

Therefore, substituting these two expressions in Eq. (8.8), and using Eq. (8.7) one
obtains that

𝜇e =
𝜎EN

𝜎NN
=

⟨EN⟩ − ⟨E⟩⟨N⟩⟨N2⟩ − ⟨N⟩⟨N⟩ (8.11)

It is important to note that 𝜇e in the grand canonical ensemble is not an independent
variable, and therefore it must be determined through the thermodynamic variables
𝜇Bath and T. In fact, one can show that the relationship between 𝜇e and 𝜇Bath is
given by

𝜇e = 𝜇Bath + T
(
𝜕⟨ST⟩
𝜕⟨N⟩

)
T,v(r)

(8.12)

where

⟨ST⟩ = −kB

∑
N

∑
i

wN,i ln wN,i (8.13)

is the average electronic entropy. Thus Eq. (8.12) implies that the electronic chemical
potential and the chemical potential of the bath are equal to each other only at zero
temperature, because when T ≠ 0 there is an additional entropic contribution.

Now, to obtain a simpler expression that may be useful for studies of chemical
reactivity, one can evaluate directly the derivative of the average electronic energy
with respect to the average number of electrons using Eqs. (8.4) and (8.5), in com-
bination with the three ground-states ensemble model, which is composed of the
systems with N0 − 1, N0, and N0 + 1 electrons in their ground state. Thus, the frac-
tional charge, defined as the difference between the average number of electrons and
N0, evaluated for this ensemble adopts the form

𝜔 = ⟨N⟩ − N0 =
exp[𝛽(A + 𝜇Bath)] − exp[−𝛽(I + 𝜇Bath)]

1 + exp[𝛽(A + 𝜇Bath)] + exp[−𝛽(I + 𝜇Bath)]
(8.14)

while the difference between the average energy and the ground-state energy of the
reference system is given by

Δ⟨E⟩ = ⟨E⟩ − EN0,0 =
I exp[−𝛽(I + 𝜇Bath)] − A exp[𝛽(A + 𝜇Bath)]
1 + exp[𝛽(A + 𝜇Bath)] + exp[−𝛽(I + 𝜇Bath)]

(8.15)

From these two relationships, one can derive the expression for the energy difference
in terms of the fractional charge given in Table 8.1, Eq. (T1-1), with

𝛼 = (𝜔2 + 4(1 − 𝜔2) exp[−𝛽(I − A)])1∕2 (8.16)



Table 8.1 First-order response functions of the electronic energy and the electronic density evaluated with the three ground-states ensemble.a)

Electronic energy Electronic density

Temperature dependent expressions Temperature dependent expressions

Δ⟨E⟩ = −1
2
(I + A)𝜔 + 1

2
(I − A)𝛼 + 𝜔

2

1 + 𝛼
(T1-1) Δ⟨𝜌(r)⟩ = 1

2
[
f −e (r) + f +e (r)

]
𝜔 + 1

2
[
f +e (r) − f −e (r)

] 𝛼 + 𝜔2

1 + 𝛼
(T1-7)

𝜇e = −
1
2
(I + A) + 𝜔

2 𝛼
(I − A) (T1-2) fe(r) =

1
2
[
f −e (r) + f +e (r)

]
− 1

2
[
f −e (r) − f +e (r)

] 𝜔
𝛼

(T1-8)

𝜇e(r) = −
1
2
[
I f −e (r) + Af +e (r)

]
+ 1

2
[
I f −e (r) − Af +e (r)

] 𝜔
𝛼

−
[

f +e (r) − f −e (r)
]
(I − A)𝜆−1

(T1-3)

fe(r, r′) =
1
2
[
f −e (r) f −e (r

′) + f +e (r) f +e (r
′)
]

+ 1
2
[
f +e (r) f +e (r

′) − f −e (r) f −e (r
′)
] 𝜔
𝛼

+
[
f +e (r) − f −e (r′)

] [
f −e (r) − f +e (r′)

]
𝜆
−1

(T1-9)

Expressions at T = 0 and at temperatures of chemical interest Expressions at T = 0 and at temperatures of chemical interest

⟨E⟩ ={
(1 + 𝜔)EN0

− 𝜔EN0−1, for 0 ≥ 𝜔 ≥ −1
(1 − 𝜔)EN0

+ 𝜔EN0+1, for 0 ≤ 𝜔 ≤ +1
(T1-4) ⟨𝜌(r)⟩ ={

(1 + 𝜔)𝜌N0
(r) − 𝜔 𝜌N0−1(r), for 0 ≥ 𝜔 ≥ −1

(1 − 𝜔)𝜌N0
(r) + 𝜔 𝜌N0+1(r), for 0 ≤ 𝜔 ≤ +1

(T1-10)

𝜇e =
⎧⎪⎨⎪⎩
−I 𝜔 < 0
−(I + A)∕2 𝜔 = 0
−A 𝜔 > 0

(T1-5) fe(r) =

⎧⎪⎪⎨⎪⎪⎩

f −e (r) 𝜔 < 0
1
2
[
f −e (r) + f +e (r)

]
𝜔 = 0

f +e (r) 𝜔 > 0

(T1-11)

𝜇e(r) =
⎧⎪⎨⎪⎩
−If −e (r) 𝜔 < 0
−
(

If −e (r) + Af +e (r)
)
∕2 𝜔 = 0

−Af +e (r) 𝜔 > 0

(T1-6) fe(r, r′) =

⎧⎪⎪⎨⎪⎪⎩
f −e (r) f −e (r′) 𝜔 < 0[
f −e (r) f −e (r′) + f +e (r) f +e (r′)

]
∕2 𝜔 = 0

f +e (r) f +e (r′) 𝜔 > 0

(T1-12)

a) The definitions of 𝜔 and 𝛼 are given in Eqs. (8.14) and (8.16).
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Figure 8.1 Average energy as a
function of the fractional charge at
several temperatures.

One can note that Eq. (T1-1) bears some resemblance with the quadratic smooth
interpolation given in Eq. (8.1). However, Eq. (T1-1) is not quadratic in 𝜔, because
Eq. (8.16) establishes that 𝛼 is also a function of 𝜔. In fact, at zero temperature this
expression reduces to the straight lines connecting the integer values of ⟨N⟩ behavior
established in 1982 by Perdew et al. [135–137], Eq. (T1-4).

In Figure 8.1 it may be seen that Eq. (T1-1) qualitatively resembles the piecewise
continuous straight-lines shape up to rather high temperatures. Nevertheless, in gen-
eral, the temperature smoothens this profile, so that the derivatives of the average
energy with respect to the average number of electrons to all orders exist and can
be evaluated analytically. However, it is important to note that at temperatures of
chemical interest the average energy becomes practically equal to the value it has at
T = 0.

In this context, the electronic chemical potential can be determined by taking the
first derivative of Eq. (T1-1) with respect to the fractional charge. This procedure
leads to Eq. (T1-2), that when it is evaluated at zero temperature leads to Eq. (T1-5),
which, as a consequence of the piecewise straight-line shape of the energy, it shows a
Heaviside step function behavior, that is qualitatively retained also up to rather high
temperatures, although the effect of temperature smoothens this profile. Thus, at
temperatures of chemical interest, the values for 𝜇e are equal to the values at T = 0.

As in the case of the average energy, the response of the average electronic density
of the system to the change in the average number of electrons corresponds to the
finite temperature definition of the Fukui function [3, 122],

fe(r) =
(
𝜕⟨𝜌(r)⟩
𝜕⟨N⟩

)
T,𝜐(r)

(8.17)

which, through the chain rule, can be expressed as(
𝜕⟨𝜌(r)⟩
𝜕⟨N⟩

)
T,v(r)

=
(
𝜕⟨𝜌(r)⟩
𝜕𝜇Bath

)
T,v(r)

(
𝜕𝜇Bath

𝜕⟨N⟩
)

T,v(r)
(8.18)

The first derivative in the right-hand side of this equation, as in the case of the aver-
age energy, may be associated with the thermal fluctuations between the average



8.2 First-Order Response Functions in the Grand Canonical Ensemble 143

electron density and the average number of electrons, 𝜎
𝜌(r)N ,(

𝜕⟨𝜌(r)⟩
𝜕𝜇Bath

)
T,v(r)

= 𝛽 𝜎
𝜌(r)N = 𝛽(⟨𝜌(r)N⟩ − ⟨𝜌(r)⟩⟨N⟩) (8.19)

while the inverse of the second derivative in Eq. (8.18) was already identified with
𝜎NN , through Eq. (8.10), so that the Fukui function may be expressed as

fe(r) =
𝜎
𝜌(r)N

𝜎NN
=

⟨𝜌(r)N⟩ − ⟨𝜌(r)⟩⟨N⟩⟨N2⟩ − ⟨N⟩⟨N⟩ (8.20)

An important consequence of the finite temperature definition of the Fukui function
comes from the fact that the Maxwell relation [138] (𝛿𝜇e/𝛿v(r))N = (𝜕𝜌(r)/𝜕N)v(r) is
only fullfilled at T = 0, because it can be shown that, in general,

fe(r) =
(
𝛿𝜇e

𝛿v(r)

)
T,⟨N⟩ − T

[
𝜕

𝜕⟨N⟩
(
𝛿⟨ST⟩
𝛿v(r)

)
T,⟨N⟩

]
T,v(r)

(8.21)

Thus, one can see that there is an additional entropic contribution.
Now, to determine the temperature-dependent expression for the Fukui function,

one must consider the difference between the average electronic density and the
ground-state electronic density, 𝜌N0,0(r), for the three ground-states ensemble,
that is

Δ⟨𝜌(r)⟩ = ⟨𝜌 (r)⟩ − 𝜌N0,0(r) =
f +e (r)e𝛽(EA+𝜇Bath) − f −e (r)e−𝛽(IP+𝜇Bath)

1 + e𝛽(EA+𝜇Bath) + e−𝛽(IP+𝜇Bath)
(8.22)

where

f −e (r) = 𝜌N0 ,0(r) − 𝜌N0−1,0(r) (8.23)

and

f +e (r) = 𝜌N0+1,0(r) − 𝜌N0,0(r) (8.24)

Combining the expression given in Eq. (8.22) with Eq. (8.14) one can express the
electron density in terms of the fractional charge in the form given by Eq. (T1-7).
As in the case of the average energy, at zero temperature this expression reduces
to the straight lines connecting the integer values of ⟨N⟩ behavior established also
in 1982 by Perdew et al., Eq. (T1-10). Through this approach, the Fukui function
can be determined by taking the first derivative of the average electronic density
with respect to the fractional charge, leading to Eq. (T1-8), that at zero temperature
reduces to Eq. (T1-11). This expression shows the Heaviside step function behav-
ior, and it can be used to evaluate the Fukui function at temperatures of chemical
interest.

Up to this point we have considered the first-order response functions associated
with the changes in the average energy and in the average electronic density with
respect to changes in the average number of electrons. In the first case one is led
to a global-type indicator that characterizes the molecules as a whole, while in the
second case one is led to a local type indicator that distinguishes between different
sites within the molecule. However, in the first case, it is important to establish a
local counterpart that describes the distribution of the global property at the local
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level within the molecule, whereas in the second case one can define a non-local
counterpart that distinguishes the sites or regions that make the largest contribu-
tions to the value of the property at a given point. In both cases it seems reasonable
to develop these counterparts so that their integral over the whole space recovers the
original global and local indicators.

To achieve this goal, one may consider first that the local counterpart of the average
number of electrons is the average electronic density, since

⟨N⟩ = ∫ dr ⟨𝜌(r)⟩ (8.25)

Then, in the case of the electronic chemical potential, one may replace the aver-
age number of electrons that appears in the numerator of Eq. (8.11) by its local
counterpart, the average electronic density, to obtain that the local counterpart of
𝜇e, is [127]

𝜇e(r) =
𝜎EN

𝜎NN
=

⟨E𝜌(r)⟩ − ⟨E⟩⟨𝜌(r)⟩⟨N2⟩ − ⟨N⟩⟨N⟩ (8.26)

that clearly satisfies the condition

𝜇e = ∫ dr 𝜇e(r) (8.27)

and in the case of the electronic density, one can perform the same substitution in
Eq. (8.20) to introduce the Fukui kernel [130], that is

fe(r, r′) =
𝜎
𝜌(r)N

𝜎NN
=

⟨𝜌(r)𝜌(r′)⟩ − ⟨𝜌(r)⟩⟨𝜌(r′)⟩⟨N2⟩ − ⟨N⟩⟨N⟩ (8.28)

which indicates that

fe(r) = ∫ dr′fe(r, r′) (8.29)

Once the local chemical potential and the kernel of the Fukui function have been
defined, one can proceed to establish their explicit temperature-dependent expres-
sions, by making use of the three ground-states ensemble. This procedure leads to
Eq. (T1-3) in the case of 𝜇e(r) and to Eq. (T1-9) in the case of f e(r, r′), with

𝜆 = 4 + e𝛽(I+𝜇Bath) + e−𝛽(A+𝜇Bath) (8.30)

The expressions for these two quantities, in the limit of zero temperature, and up to
temperatures of chemical interest are given by Eqs. (T1-6) and (T1-12).

It is important to note that the expression for the local chemical potential at
temperatures of chemical interest, Eq. (T1-6), in the case of 𝜔 = 0 leads to what
could be identified as the negative of a local Mulliken electronegativity. But also,
the expressions for 𝜔< 0 and 𝜔> 0 are very important, since they can be associated
with the local ionization energy [139–144], and the local electron affinity energy
[145–147], respectively. These two concepts have been used to describe the most
favorable sites for electrophilic and nucleophilic attacks, and the acid–base behavior
of different chemical species. On the other hand, the kernel of the Fukui function,
Eq. (T1-12), is a new, important concept that allows one to study bond reactivity and
stability [134].
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8.3 Second-Order Response Functions in the Grand
Canonical Ensemble

From the results established in the previous section, let us proceed to determine
and analyze second-order response functions, particularly, the hardness and the
dual descriptor. Thus, the finite temperature definition of the chemical hardness is
expressed in terms of the second derivative of the average energy with respect to the
average number of electrons, that is [123],

𝜂e =
(
𝜕

2⟨E⟩
𝜕⟨N⟩2

)
T,v(r)

=
(
𝜕𝜇e

𝜕⟨N⟩
)

T,v(r)
(8.31)

where the second equality comes from the finite temperature definition of the
chemical potential given by Eq. (8.7). In a similar way, one finds the corresponding
expression for the finite temperature dual descriptor, which is given by [122]

Δfe(r) =
(
𝜕

2⟨𝜌(r)⟩
𝜕⟨N⟩2

)
T,𝜐(r)

=
(
𝜕fe(r)
𝜕⟨N⟩

)
T,𝜐(r)

(8.32)

Where we have used Eq. (8.17) to obtain the second equality.
Therefore, from the definition given by these two expressions, one can proceed to

evaluate the second derivatives making use of the three ground-states ensemble, to
obtain the explicit temperature-dependent equations. The results are presented in
Table 8.2, Eqs. (T2-1) and (T2-9), together with their corresponding expressions for
T = 0, and for temperatures of chemical interest, Eqs. (T2-5) and (T2-13). For the lat-
ter, one can note that the Heaviside step function behavior of the chemical potential
and the Fukui function lead to the presence of the Dirac delta function in the hard-
ness and in the dual descriptor, respectively [148]. As a matter of fact, although at
temperatures different from zero these profiles smoothen, at temperatures of chemi-
cal interest they retain a strong Dirac delta function–like behavior. However, we had
already argued that the identification of the hardness with the second derivative of
the average energy with respect to the average number of electrons, and its evalua-
tion through a smooth quadratic interpolation leads to 𝜂e = I −A, which provides a
satisfactory description of the intuitive concept developed by Pearson, and a similar
situation applies to the dual descriptor when identified as Δfe(r) = f +e (r) − f −e (r).
Therefore, one may consider alternative approaches that avoid the Dirac delta
function-type behavior, to derive the second-order reponse functions.

In this context, one alternative consists of making use of the local chemical poten-
tial that satisfies Eq. (8.27), since one can derive this expression with respect to the
average number of electrons to obtain that [127]

𝜂
𝜏
= ∫ dr 𝜂

𝜏
(r) (8.33)

where the subindex 𝜏 is used to indicate that the origin of this hardness is based on
the temperature-dependent approach through the use of Eq. (8.26). Similarly, in the
case of the dual descriptor one can make use of Eq. (8.29) so that [130]

Δf
𝜏
(r) = ∫ dr′Δf

𝜏
(r, r′) (8.34)



Table 8.2 Second-order response functions of the electronic energy and the electronic density evaluated with the three ground-states ensemble.

Electronic energy Electronic density

Temperature dependent expressions Temperature dependent expressions

𝜂e = (I − A) 2e−𝛽(I−A)

𝛼3 (T2-1) Δfe(r) =
[
f +e (r) − f −e (r)

] 2e−𝛽(I−A)

𝛼3 (T2-9)

𝜂
𝜏
= ∫ dr 𝜂

𝜏
(r) = I −A (T2-2) Δf

𝜏
(r) = ∫ dr′Δ f

𝜏
(r, r′) = f +e (r) − f −e (r) (T1-10)

𝜂Th =
𝛽

2
CT(IP − EA) (T2-3) Δ fTh(r) =

𝛽

2
CT

[
f +e (r) − f −e (r)

]
(T2-11)

𝜂
𝜏
(r) = If−e (r) − Af+e (r)

+ 𝜔

2
(I − A)

(
f +e (r) − f −e (r)

) (T2-4)
Δ f

𝜏
(r, r′) = f +e (r)f +e (r′) − f −e (r)f −e (r′)

+ 𝜔

2
Δfe(r)Δfe(r′)

(T2-12)

Expressions at T = 0 and at temperatures of chemical interest Expressions at T = 0 and at temperatures of chemical interest

𝜂e =
⎧⎪⎨⎪⎩

0 𝜔 < 0
(I − A) 𝛿(𝜔) 𝜔 = 0
0 𝜔 > 0

(T2-5) Δfe(r) =
⎧⎪⎨⎪⎩

0 𝜔 < 0(
f +e (r) − f −e (r)

)
𝛿(𝜔) 𝜔 = 0

0 𝜔 > 0

(T2-13)

𝜂
𝜏
=
⎧⎪⎨⎪⎩

I − A 𝜔 < 0
I − A 𝜔 = 0
I − A 𝜔 > 0

(T2-6) Δf
𝜏
(r) =

⎧⎪⎨⎪⎩
f +e (r) − f −e (r) 𝜔 < 0
f +e (r) − f −e (r) 𝜔 = 0
f +e (r) − f −e (r) 𝜔 > 0

(T2-14)

𝜂Th =
⎧⎪⎨⎪⎩

0 𝜔 < 0
𝛽

2
(I − A) 𝜔 = 0

0 𝜔 > 0

(T2-7) ΔfTh(r) =
⎧⎪⎨⎪⎩

0 𝜔 < 0
𝛽

2

[
f +e (r) − f −e (r)

]
𝜔 = 0

0 𝜔 > 0

(T2-15)

𝜂
𝜏
(r)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

I f −e (r) − Af +e (r)
− (I − A )

[
f +e (r) − f −e (r)

]
∕2 𝜔 < 0

I f −e (r) − Af+e (r) 𝜔 < 0
I f −e (r) − Af +e (r)
− (I − A )

[
f +e (r) − f −e (r)

]
∕2 𝜔 < 0

(T2-8) Δf
𝜏
(r, r′)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

f +e (r)f +e (r′) − f −e (r)f −e (r′)
−
[
f +(r) − f −(r)

] [
f +(r′) − f −(r′)

]
∕2 𝜔 < 0

f +e (r)f +e (r′) − f −e (r)f −e (r′) 𝜔 < 0
f +e (r)f +e (r′) − f −e (r)f −e (r′)
−
[
f +(r) − f −(r)

] [
f +(r′) − f −(r′)

]
∕2 𝜔 < 0

(T1-16)
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When one considers the three ground-states ensemble to obtain the explicit
expressions for the quantities involved in these two relationships, one obtains
Eqs. (T2-2) and (T2-4) for the hardness, and Eqs. (T2-10) and (T2-12) for the dual
descriptor, while at T = 0 and at temperatures of chemical interest, one finds
that these expressions reduce to Eqs. (T2-6) and (T2-8) for the hardness, and Eqs.
(T2-14) and (T2-16) for the dual descriptor. One can note that in the global and
local counterpart of the hardness, there is no explicit dependence on the Dirac delta
function, because it cancels in the derivation, so that one recovers, in the case of the
global hardness, the chemically useful identification with the quantity (I −A). The
same situation occurs in the local and non-local counterpart of the dual descriptor,
where one also is led to the chemically important quantity

[
f +e (r) − f −e (r)

]
.

An additional important outcome of this procedure lies in the local hardness thus
obtained, Eq. (T2-4), and particularly Eq. (T2-8), which corresponds to temperatures
of chemical interest. It is well known that the original definition of local hardness
based on the construction of a hierarchy of global, local, and non-local hardnesses
that are inverses of the global, local, and non-local softnesses, respectively, is intrin-
sically ambiguous [43, 58, 61]. However, one can see that the local hardness derived
from the grand canonical ensemble is well defined, it recovers the intuitive proposal
of Meneses et al. [65, 67], and it provides, in general, valuable information about
site selectivity. A similar result occurs with the dual descriptor kernel that contains
valuable information about the balance between the electrophilic and nucleophilic
characteristics of a chemical bond.

A second alternative to avoid the Dirac delta function–like behavior comes from
the fact that the response of a system to changes in the chemical potential of the
reservoir when the temperature and the external potential are kept constant is equiv-
alent to the response of the system to changes in the average number of electrons,
since the latter is modified through charge transfer between the system and the
surroundings. Thus, to obtain the second-order responses of the energy and of the
electronic density one can consider the derivatives of the chemical potential and of
the Fukui function with respect to 𝜇Bath, that is [128]

𝜂Th =
(

𝜕𝜇e

𝜕𝜇Bath

)
T,𝜐(r)

(8.35)

and [132]

ΔfTh(r) =
(
𝜕fe(r)
𝜕𝜇Bath

)
T,𝜐(r)

(8.36)

The expressions for these two derivatives associated with the three ground-states
ensemble are given by Eq. (T2-3) for the thermodynamic hardness, and by
Eq. (T2-11) for the thermodynamic dual descriptor, where

CT =
sech2[𝛽Δ𝜇] − sech[𝛽Δ𝜇]e−

𝛽

2
(I−A)

1 + 2 sech[𝛽Δ𝜇]e−
𝛽

2
(I−A)

(
1 + 4e−

𝛽

2
(I−A) sech[𝛽Δ𝜇]

) (8.37)

sech is the hyperbolic secant function and Δ𝜇 = 𝜇Bath + (I +A)/2. One can also
see that in the limit when T = 0, and for temperatures of chemical interest CT = 1
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when 𝜔 = 0, and CT = 0 when 𝜔< 0 or 𝜔> 0, leading to the relationships expressed
in Eqs. (T2-7) and (T2-15). These show that through this procedure the final
expressions do not depend on the Dirac delta function and that the thermodynamic
hardness and dual descriptor become proportional to (I −A) and

[
f +e (r) − f −e (r)

]
,

respectively, which are the expressions that provide good estimates of these
two quantities.

8.4 Response Functions to Changes in the Temperature
and Their Central Role in a Chemical Event

Since we are dealing with the temperature-dependent approach, it is important to
consider and to analyze response functions associated with changes in the temper-
ature – in particular the first-order responses of the average energy and the average
density. The former leads to an electronic heat capacity, namely [125],

Cv(r) =
(
𝜕⟨E⟩
𝜕T

)
⟨N⟩,v(r) (8.38)

while the latter can be identified with a local heat capacity, that is [126],

Cv(r)(r) =
(
𝜕⟨𝜌(r)⟩
𝜕T

)
⟨N⟩,v(r) (8.39)

On the other hand, in the case of second-order response functions it is important to
consider the change in the electronic chemical potential with respect to the change
in the temperature that leads to the following Maxwell relationship [125],(

𝜕𝜇e

𝜕T

)
⟨N⟩,v(r) =

(
𝜕 Cv(r)

𝜕⟨N⟩
)

T,v(r)
(8.40)

where we have used Eqs. (8.7) and (8.38).
The explicit expressions for these three indexes associated with the three

ground-states ensemble can be obtained by determining the derivative of ⟨E⟩ (Eq.
(T1-1)), ⟨𝜌(r)⟩ (Eq. (T1-7)) and 𝜇e (Eq. (T1-2)) with respect to T, taking into account
Eq. (8.14) for 𝜔 and Eq. (8.16) for 𝛼, since these two quantities are the ones that
contain the dependence on the temperature. It is found that in the low-temperature
limit that includes the interval of temperatures of chemical interest, the three
indexes are equal to zero for 𝜔< 0 and 𝜔> 0, whereas for 𝜔 = 0 they adopt the form

Cv(r) =
(
𝜕⟨E⟩
𝜕T

)
⟨N⟩,v(r) =

e−
𝛽

2
(I−A)

2kBT2 (I − A)2 (8.41)

Cv(r)(r) =
(
𝜕⟨𝜌 (r)⟩
𝜕T

)
⟨N⟩,𝜐(r) =

e−
𝛽

2
(I−A)

2kBT2 (I − A)
[
f +e (r) − f −e (r)

]
(8.42)

And (
𝜕𝜇e

𝜕T

)
⟨N⟩,v(r) =

(
𝜕 Cv(r)

𝜕⟨N⟩
)

T,v(r)
= − e−

𝛽

2
(I−A)

4kBT2 (I − A)2 (8.43)
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It is important to note that these three indexes become exactly equal to zero when
T = 0, a result that is consistent with the overall discussion, since in this limit there
should be no contributions from the response functions associated to changes in the
temperature.

Now, let us consider the total differential for the average energy and the average
electronic density. At first instance, in the grand canonical ensemble, we should con-
sider𝜇Bath, v(r), and T as the independent variables that characterize the differential.
However, it has been shown that one can make a transformation from this set to one
in which ⟨E⟩ and ⟨𝜌(r)⟩ are treated as functions of ⟨N⟩, v(r), and T. In this framework
the total differentials are expressed as

d⟨E⟩ = 𝜇ed⟨N⟩ + ∫ [⟨𝜌(r)⟩ + T(𝛿⟨ST⟩∕𝛿v(r))T,⟨N⟩]𝛿v(r)dr

+ (𝜕⟨E⟩∕𝜕T)⟨N⟩,v(r)dT (8.44)

and

d⟨𝜌(r)⟩ = fe(r) d⟨N⟩ + ∫ (𝛿⟨𝜌(r)⟩∕𝛿v(r′))T,⟨N⟩𝛿v(r′)dr′

+ Cv(r)(r) dT (8.45)

In the analysis of these fundamental changes, one must take into account that at
the onset of a chemical interaction, the participating species have an integer aver-
age number of electrons. At this point, precisely, as we have just seen, the three
indexes just described are different from zero, so that one can infer that accord-
ing to Eqs. (8.41) and (8.44) there is an energy exchange associated with changes in
the temperature and according to Eqs. (8.42) and (8.45) these changes also promote
charge transfer, which is governed by the regioselectivity features characterized by
the nucleophilic–electrophilic balance expressed in the directional Fukui functions.
However, once the average number of electrons starts to adopt small fractional val-
ues, because of the charge transferred, the two response functions of Eqs. (8.41) and
(8.42) become very small, so that the interaction after this point is dominated by the
changes in the external potential and in the average number of electrons, rather than
by changes in the temperature.

If we consider the total differential for the electronic chemical potential, then

d𝜇e = 𝜂ed⟨N⟩ + ∫ [fe(r) + T(𝛿2⟨ST⟩∕𝜕⟨N⟩𝛿v(r))]𝛿v(r)dr

+ (𝜕𝜇e∕𝜕T)⟨N⟩,v(r)dT (8.46)

At zero temperature the entropic contribution and the last term in the right-hand
side of this equation vanish, so that in this limit this differential becomes identical
to the one first introduced by Parr and Yang to define the Fukui function [3]. In their
work they postulated through this expression that the site preferred for a chemical
interaction to occur is the one that corresponds to the largest change in the chemical
potential, which implies that the sites with the largest values of the Fukui functions
are the most reactive sites. Since the frontier orbitals are closely related with the
Fukui function, Parr and Yang concluded that the frontier orbital theory could be
seen as a consequence of the “∣Δ𝜇∣ big is good” rule for chemical reactivity. Recently,
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this last statement was proven, together with its implications in the hard and soft
acids and bases principle and in the principle of maximum hardness [54, 56, 57].

Now, from the perspective of the temperature-dependent approach, at the onset
of the interaction, before the charge transferred has occurred, the value of ⟨N⟩ for
each one of the participating species is an integer. At this point, the changes in
the chemical potential arise from changes in the temperature, until charge trans-
fer begins, when the response function given by Eq. (8.43) becomes very small, and
the charge-transfer process is controlled then by the changes in the external poten-
tial and in the average number of electrons. Thus, one can see that the “∣Δ𝜇∣ big is
good” rule has two components. An initial one caused by changes in T and expressed
in Eq. (8.42) combined with Eq. (8.45), and a subsequent one caused by changes in
v(r) and ⟨N⟩ and expressed in Eq. (8.21) combined with Eq. (8.46). In both cases the
regioselectivity information contained in the directional Fukui functions for elec-
trophilic and nucleophilic attacks plays an important role.

8.5 Concluding Remarks

Through this chapter, we have seen that the generalization of the CDFT to the grand
canonical ensemble has very important consequences in the study of chemical
reactivity.

In first place, we have seen that although𝜇Bath, v(r), and T are the natural indepen-
dent variables of the grand canonical ensemble, it is more convenient to make use of
the set of variables constituted by ⟨N⟩, v(r), and T, together with the average values
of the energy and the electronic density in the ensemble, to determine directly the
temperature-dependent derivatives associated with the definitions of the different
response functions. Through this procedure, we have seen, for the particular case
of the three ground-states ensemble, that when these relationships are evaluated at
T = 0, they become identical to the zero-temperature expressions obtained by Perdew
and collaborators in 1982. This result provides a strong support to the procedure just
outlined in terms of average properties of the ensemble.

It is also important to note that quantities that are equal to each other at zero
temperature, like 𝜇e and 𝜇Bath, may be, in general, different from each other at
other temperatures due to the presence of additional terms that are different from
zero for T ≠ 0, as established in Eq. (8.12). A similar situation occurs with f e(r) and
(𝛿𝜇e/𝛿v(r))T,⟨N⟩, as expressed in Eq. (8.21).

A remarkable aspect comes from the fact that dependence on the temperature
smoothens the piecewise continuous straight lines behavior of the average energy
and the average electron density, so that derivatives of these two quantities with
respect to the average number of electrons to all orders exist and can be evaluated
analytically. Although it is important to take into account that the values of the
response functions at T = 0 remain practically unchanged at temperatures of chem-
ical interest, because temperatures of the order of 104 K are required to observe a
significant change in their values. An important consequence of this behavior is that
the three ground-states ensemble include the most relevant contributions required
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to obtain a good description of the response functions, so that one really does not
need to go beyond this ensemble, except for very small number of specific cases [129].

Now, the fact that the response functions retain the characteristics associated with
them at T = 0 up to temperatures of chemical interest implies that the chemical
potential will show the Heaviside step function behavior. This aspect could be seen
as a reasonable result from the chemical viewpoint, because one can expect that the
response of a system to charge donation (𝜔< 0) will be different from its response to
charge acceptance (𝜔> 0), and different from its response when at the end neither
donates nor accepts charge (𝜔 = 0).

However, the hardness will show the Dirac delta function–type behavior in the
range of temperatures important for chemical reactivity, a situation which, indeed,
will not lead to satisfactory description of this important index. Nevertheless we
have seen that through the temperature-dependent approach we have been able
to develop two alternative definitions that avoid the Dirac delta function, and, at
the same time, are proportional to the quantity (I −A), to essentially recover the
main characteristics of the global hardness. Additionally, two new concepts, the local
chemical potential and the local hardness, have emerged. These new concepts have
been shown to be very useful to analyze regioselectivity issues in several chemical
interactions.

In summary, although the contribution to the values of the response functions
associated with CDFT, arising from the temperature are fundamentally negligible,
with respect to the values they adopt at zero temperature, the analysis in the grand
canonical ensemble is essential to get a more complete and more solid framework
to study chemical reactivity through this approach.
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9.1 Introduction

Density functional theory (DFT) [1, 2] successfully describes the electronic structure
of many-electron systems and the related chemical concepts like chemical hardness
[3–6], chemical potential [7], electronegativity [7], and polarizability are defined
within conceptual DFT [8, 9]. The foundation of DFT has been based on the two
well-known theorems given by Hohenberg and Kohn [1, 2], which mainly revolve
around the density of ground state of the system. According to the theorems, all the
ground-state properties of that particular system may be calculated using the density.

For an N-electronic system, associated with an external potential, v(r), the
Hamiltonian H may be identified by the two quantities, N and v(r). In addition, as
proven by Hohenberg and Kohn, the energy functional E[𝜌] assumes a minimum
for the true N-electron density for a given N and v(r). By solving the following
Euler–Lagrange equation, one can obtain the density,

𝛿E[𝜌]
𝛿𝜌

= 𝜇 (9.1)

where 𝜇 is the Lagrange multiplier associated with the normalization constraint. It
is known as the chemical potential [10].

The energy functional E[𝜌] may be given by [11],

E[𝜌(r)] = F[𝜌(r)] + ∫ 𝜌(r)v(r)dr (9.2)

where F[𝜌(r⃗)] is known as the Hohenberg–Kohn universal functional [12], given as

F[𝜌(r⃗)] = T[𝜌(r⃗)] + 1
2 ∫ ∫

𝜌(r⃗)𝜌(r⃗′)|r⃗ − r⃗′| dr⃗dr⃗′ + EXC[𝜌(r⃗)] (9.3)

In the above equation, the first term T[𝜌(r⃗)] corresponds to kinetic energy func-
tional, the second term is the classical Coulomb part of the electron–electron inter-
action energy, and the third term EXC[𝜌(r⃗)] is known as the exchange-correlation
functional.

Conceptual Density Functional Theory: Towards a New Chemical Reactivity Theory, First Edition.
Edited by Shubin Liu.
© 2022 WILEY-VCH GmbH. Published 2022 by WILEY-VCH GmbH.
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Chemical reactivity of any system can be understood by identifying 𝜇 as the
negative of electronegativity (𝜒) [5]. The stability of a molecular system may be
assessed with the help of the reactivity parameters like hardness and electrophilicity
[3–6, 13, 14] through the related electronic structure principles such as Pearson’s
hard and soft acids and bases (HSAB) principle [15–18], maximum hardness prin-
ciple (MHP) [19, 20], Sanderson’s electronegativity equalization principle [21, 22],
minimum electrophilicity principle (MEP) [23–25], and minimum polarizability
principle (MPP) [26, 27]. These principles play a major role in explaining the
change in reactivity parameters, which a system undergoes during a chemical
reaction [28–38].

Chemical hardness (𝜂) may be obtained by differentiating energy (E) twice with
respect to number of electrons (N) keeping the external potential fixed as given by
Parr and Pearson [5]:

𝜂 =
(
𝜕

2E
𝜕N2

)
v(r⃗)

=
(
𝜕𝜇

𝜕N

)
v(r⃗)

(9.4)

According to Koopmans’ theorem [39], the energy difference (energy gap) in
between the two frontier molecular orbitals, i.e. highest occupied molecular orbital
(HOMO) and lowest unoccupied molecular orbital (LUMO), of any system may
also be termed as chemical hardness.

Electrophilicity index, defined by Parr and coworkers, gives an indication about
the stabilization energy of the corresponding system when extra amount of charge
is loaded to it from the surrounding as [13, 14, 40–46],

𝜔 = 𝜇
2

2𝜂
(9.5)

Inverse of global hardness is known as global softness, given by [47]:

S = 1
𝜂

(9.6)

Polarizability (𝛼) of a system can be mathematically represented as the
second-order variation of energy, which is defined as the linear response of
the electron density when the particular system is subjected to an infinitesimally
small electric field F [48]:

𝛼a,b = −
(

𝜕
2E

𝜕Fa𝜕Fb

)
a,b=x,y,z

(9.7)

Again global softness is related to polarizability, i.e. with an increase in polariz-
ability, a system becomes softer and vice versa.

Another parameter given by the name Fukui function (FF) is a local reactivity
descriptor, which is used for getting knowledge on the chemical reactivity and site
selectivity of any atom in a molecule[30, 49–54]:

f (r⃗) =
[
𝜕𝜌(r⃗)
𝜕N

]
v(r⃗)
=
[
𝛿𝜇

𝛿v(r⃗)

]
N

(9.8)

where,

∫ f (r⃗)dr⃗ = 1 (9.9)
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FFs can be of three types (nucleophilic, electrophilic, and radical) and with the
help of frozen core and finite difference approximations, these may be represented
as [55–57]:

For nucleophilic attack,

f +(r⃗) =
(
𝜕𝜌

𝜕N

)+

v(r⃗)
≅ 𝜌N+1(r⃗) − 𝜌N (r⃗) ≈ 𝜌LUMO(r⃗) (9.10)

For electrophilic attack,

f −(r⃗) =
(
𝜕𝜌

𝜕N

)−

v(r⃗)
≅ 𝜌N (r⃗) − 𝜌N−1(r⃗) ≈ 𝜌HOMO(r⃗) (9.11)

For radical attack,

f 0(r⃗) =
(
𝜕𝜌

𝜕N

)0

v(r⃗)
≅ 1

2
(𝜌N+1(r⃗) − 𝜌N−1(r⃗)) ≈

1
2
(𝜌HOMO(r⃗) + 𝜌LUMO(r⃗)) (9.12)

Also more the magnitude of f +, f 0, and f − at any site, more will be the change in
chemical potential.

One may also define a local philicity index 𝜔(r⃗), which is again divided into three
different types and may be given as [44]:

𝜔
𝛼(r⃗) = 𝜔f 𝛼(r⃗) (9.13)

The superscript 𝛼 = + ,− , 0 implies electrophilic, nucleophilic, and radical
attacks, respectively. Information of FF and electrophilicity is contained in this
parameter. In addition, knowledge about other chemical reactivity parameters
such as electronegativity, hardness, and local and global softness along with site
selectivity can be realized using the local philicity index.

A time-dependent version of DFT, i.e. time-dependent density functional theory
(TDDFT), gained attention of the researchers [58–61] worldwide to take care
of dynamical problems. Reactivity dynamics has also been investigated using
Born-Oppenheimer Molecular Dynamics (BOMD) method [62–66]. This TDDFT
and quantum fluid dynamics (QFD) together resulted in a new theory, known as
quantum fluid density functional theory (QFDFT), which is generally based on the
solution of a generalized nonlinear Schrödinger equation (GNLSE) [67].

9.2 Theoretical Background

With the help of the following density functional, one may realize a time-dependent
energy functional as:

E(t) = 1
2 ∫ 𝜌(r, t)|∇𝜉|2dr + T[𝜌] + Exc[𝜌] + ∫ vcore(r)𝜌(r, t)dr

+ 1
2 ∫ ∫

𝜌(r, t)𝜌(r′, t)|r − r′| drdr′ + ∫ vext(r)𝜌(r, t)dr (9.14)

Here, for hydrogen atom, vcore(r) = v1core(r), whereas, for that of helium atom,
vcore(r) = v2core(r) for all the states.
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For a dynamic system, QFDFT is used to get information about the time evolution
of charge density 𝜌(r, t) and current density j(r, t). The dynamics of a helium atom
in its ground state can be obtained by solving the following GNLSE (in a.u.):[

−1
2
𝛁2 + veff(r⃗, t)

]
𝜑(r⃗, t) = i𝜕𝜑(r⃗, t)

𝜕t
, i =

√
−1 (9.15)

where,

veff =
5
3

Ck𝜌
2∕3 − 4

3
Cx𝜌

1∕3 − a(N)
r2 − Q(r⃗)

r
− 1|R − r⃗| + f (R,N)

N
(9.16)

Here,

𝜌(r⃗, t) = |𝜑(r⃗, t)|2 (9.17)

Q(r⃗, t) = Z − r ∫
𝜌(r⃗′, t)|r⃗ − r⃗′|dr′ (9.18)

𝛼(N) = a0 +
a1

N1∕3 +
a2

N2∕3 and f (R,N) = 1
R12 −

( N
10

)14
R2 exp (−0.8R)

(9.19)

Here veff(r⃗, t) is a pulsating dynamical external potential associated with the actual
process and Q(r⃗, t) is screened nuclear charge.

The QFDFT approach stands on Eqs. (9.14)–(9.16). It is to be noted that for the
first time, Deb and coworker have provided solution to these equations considering
both time-dependent as well as time-independent cases [68].

The dynamic current density on the other hand is represented by,

j⃗(r⃗, t) = 𝜑re𝛁𝜑im − 𝜑im𝛁𝜑re (9.20)

Herein follows some specific examples of dynamical problems analyzed through
the time evolution of various reactivity descriptors using QFDFT and the dynamical
variants of different associated electronic structure principles.

9.3 An Atom Interacting with an External Electric Field

Time-dependent reactivity parameters of helium atom when exposed to electric field
strengths of 𝜀0 = 10−6, 0.01 and 100 have been studied in both ground state (n = 1)
and excited state (n> 1) of the atom. It is observed that the hardness and electroneg-
ativity in ground state are higher than the corresponding values in excited states,
which proves the validity of MHP. The system also follows maximum entropy prin-
ciple with a larger value of entropy in ground state in comparison to that in the
excited state. The MPP is also followed by the helium atom since it is less polarizable
in ground state as compared to excited state.

Chemical potential of the system is always more in excited state over the ground
state and it shows characteristic oscillations (Figure 9.1). The oscillations are found
to be in sync with the applied field. One may find that for low field intensity, oscilla-
tions are out of phase with the field, but with increasing intensity, beautiful in-phase
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oscillations can be seen for all the studied electronic states. The chemical hardness
achieves an almost consistent value just after the completion of the initial transients,
but the ground-state value of hardness is larger than the excited-state value of hard-
ness (Figure 9.2), which follows from the MHP [69].

9.4 An Atom Interacting with an External Electric Field
in a Confined Environment

The reactivity parameters for the same system when exposed to an external electric
field in the presence of confinement exhibit remarkable changes. The frequency of
the applied field is taken as Π. The time-evolved hardness decreases as soon as the
system changes from its ground state to excited state, in confined condition, which
validates the MHP. On increasing the degree of compression, hardness is found to
increase for all electronic states. The other reactivity descriptors like polarizability,
chemical potential, electrophilicity and entropy in dynamic state are also studied
by varying the laser radiation under confinement. The chemical potential of the
system shows negligible change for the most intense laser field, but its magnitude
lowers in ground state and rises in excited state when low and intermediate field
strengths are applied (Figure 9.3). Time-dependent electrophilicity follows the
chemical potential trend in low and intermediate field strengths, while it relates
to that of hardness (Figure 9.4) with the higher electric field strength. Similar to
ground state, dynamic polarizability follows same trend in excited state in both
confined as well as unconfined situations; however, the ground-state value is lower
than the excited-state one, validating the MPP. Under confinement, decrease in the
ground-state value of entropy is observed (as compared to unconfined state) [70].

9.5 A Molecule Interacting with an External Electric
Field in a Confined Environment

Changes in the time-evolved chemical reactivity parameters of hydrogen molecule
subjected to an intense laser radiation in ground and excited states are analyzed.
Chemical potential for the system in its ground state is lower than its corresponding
excited state (Figure 9.5), in case of free state of the system. But chemical potential
in the ground state decreases when the extent of confinement increases, although in
the excited state it remains unchanged. Amplitude of ground-state chemical poten-
tial increases with a rise in the degree of confinement, while the excited-state value
remains unchanged. According to MEP, the electrophilicity value for the free sys-
tem in ground state is not as much as that of the excited state. With an increase in
the extent of confinement, electrophilicity profile of the system shows a decrease in
both the electronic states. The 𝜂 value is greater in ground state than excited state
(Figure 9.6) when no confinement is present for the system, validating the MHP.
Confinement, however, increases the highest 𝜂 value in both the electronic states.
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Excited state

2
9.80

9.82

9.84

9.86

9.88

9.90

4 6 8 10 12

Length of the cylinder = 7.2 a.u.

t

μ

14 16 18 20

2
–150

–75

0

75

150

4 6 8 10 12

Length of the cylinder = 7.2 a.u.

t

μ

14 16 18 20

2
9.80

9.82

9.84

9.86

9.88

9.90

4 6 8 10 12

Length of the cylinder = 5.6 a.u.

t

μ

14 16 18 20 2
9.80

9.82

9.84

9.86

9.88

9.90

4 6 8 10 12

Length of the cylinder = 3.8 a.u.

t
μ

14 16 18 20

Length of the cylinder = 5.6 a.u.

–150

–100

–50

0

50

100

150

200

t

μ

2 4 6 8 10 12 14 16 18 20

Length of the cylinder = 3.8 a.u.

–150

–100

–50

0

50

100

150

200

t

μ

2 4 6 8 10 12 14 16 18 20

ε0 = 100

ε0 = 0.01

Figure 9.5 (Continued)



0
0

10

20

30

40

2 4 6 8 10 12

2 4

35.697760

35.697752

35.697744

35.697736

35.697728

35.697720
6 8 10 12 14 16 18 20

t

η

14 16 18 20

Length of cylinder = 6 a.u.

Ground state

ε0 = 0.01

ε0 = 100

0
5

10

15

20

25

30

35

40

2 4 6 8 10 12

2 4
35.68

35.69

35.70

35.71

35.72

6 8 10 12 14 16 18 20

t

η

14 16 18 20

Length of cylinder = 6 a.u.

0
0

10

20

30

40

5 10

2 4

39.75909

39.75910

39.75911

39.75912

39.75913

6 8 10 12 14 16 18 20

t

η

15 20

Length of cylinder = 5.4 a.u.

0
0

10

20

30

40

2 4 6 8 10 12 14 16 18

2 4
39.75

39.76

39.77

6 8 10 12 14 16 18 20

t

η

20 0 2 4 6 8 10 12 14 16 18

t

t

20

Length of cylinder = 5.4 a.u.

0
0

40

20

60

80

100

120

5 10

2 4
102.226900

102.226904

102.226908

102.226912

102.226916

102.226920

6 8 101214161820

t

η
15 20

Length of cylinder = 2.16 a.u.

0

40

20

60

80

100

120

2 4
102.2264

102.2266

102.2268

102.2270

102.2272

102.2274

6 8 10 12 14 16 18 20

η

η

Length of cylinder = 2.16 a.u.

Figure 9.6 Ground- and first excited-state dynamic chemical hardness (𝜂) profile of H2 molecule under different field strength. Source: Khatua et al. [71].
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On the other hand, for unconfined system, the minimum value of 𝛼 is lower in the
ground state in comparison to the excited state as expected from MPP. We may find
that both in ground and excited states, the minimum polarizability value decreases,
with increasing the amount of confinement [71].

9.6 An Atom Interacting with an External Magnetic
Field in a Confined Environment

Next we present here the dynamic changes observed in chemical reactivity parame-
ters when a hydrogen atom is placed in a magnetic field within confinement. Chem-
ical potential profile for the system resonates with the magnetic field and when the
compression on the system increases, it gets lowered for ground and excited states.
The amplitude of μ rises with the rise in the amplitude of the magnetic field. Ampli-
tude of chemical potential increases when there is an increase in the strength of the
applied field. While studying the 𝜂 profile of the system, it is observed that its magni-
tude increases with the increase in the magnetic field strength, which infers that the
system becomes further stabilized in stronger magnetic field. Under confinement,
the 𝜂 value in ground state is more than that in the excited state. This finding is true
in case of unconfined condition as well, thus validating the MHP. Most importantly,
it describes that in case of hydrogen atom there is a chance of chaotic ionization
from its Rydberg state. Just like the chemical potential, electrophilicity index also
oscillates in phase with the magnetic field. The excited-state electrophilicity of the
system is greater than its corresponding ground-state value and with an increase in
the degree of confinement, electrophilicity profile shows a decrease in its magnitude,
which again implies the stability of the system by obeying the MEP [34].

9.7 A Molecule Interacting with an External Magnetic
Field in a Confined Environment

The time-dependent chemical reactivity parameters when a hydrogen molecule sub-
jected to magnetic field of amplitudes, 𝛽max = 0.001, 1.0, and 50.0 have been studied.
The ground-state chemical potential of the system shows a decrease when the degree
of confinement increases for lower field strength. But no such effect can be seen
either for intermediate or high field since confinement does not play any significant
role in these regions. The amplitude of ground-state chemical potential, however,
increases with the rise in the external field strength (Figure 9.7). The excited-state
chemical potential is insensitive toward confinement effect. The chemical hardness
of the system does not vary with the field strength significantly in both ground and
excited states. But in stronger electric field regions, change in hardness profile can
be found in ground state only. One may find that the system becomes harder upon
confinement, which may be based on the finding that both ground- and excited-state
hardnesses increase with increasing amount of compression. Here also as expected
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from MHP, the 𝜂 value of excited state is less as compared to the ground-state value
irrespective of confinement or in free state. When the molecule is not in confined
condition, the ground-state electrophilicity is lower compared to excited-state one.
However, electrophilicity profile lowers down with an increase in the confinement
degree for both the electronic states, making the system attain stability upon con-
finement [35].

9.8 Ion–Atom Collision

Here we present the changes in the reactivity parameters when collision process
occurs between a helium atom and an incoming proton [72]. The time evolution
of the chemical potential associated with the collision process is presented in
Figure 9.8. The whole collision process is described by three distinct regions
namely, approach region, encounter region, and departure region. The chemical
potential is not calculable in encounter zone while in the approach region, once
the initial transients get over, chemical potential becomes stable. But due to rapid
charge oscillations, chemical potential changes drastically, when the departure
region begins and also when the approach region ends. For the ground state, 𝜇 is
negative, but for the excited state, it becomes positive as well in these time steps.
In the departure zone, 𝜇 again shows drastic change to attain a stable value, which
is almost similar to that found in the approach region. The detailed insights into
the collision process associated with a chemical reaction are well described by the
dynamics of electronegativity. The time-dependent electronegativity profile helps
us to distinguish the whole interaction into approach, encounter, and departure
regimes. Time-evolved hardness profile is presented in Figure 9.9. In the approach
region, hardness remains almost constant. However, it increases all of a sudden
and goes through a region of maximum in the encounter region. The larger value
of maximum hardness in ground state and the maximization of hardness in the
encounter region clearly validate the MHP dynamically. Again in the departure
zone, hardness acquires the similar constant value as found in the approach region.
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Figure 9.8 Dynamic chemical potential (𝜇) profile during a collision process between a He
atom and a proton. Source: Chattaraj et al. [72].
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The maximization of hardness and entropy and the minimization of polarizability
in the encounter region for the collision process clarify that at least for a moment a
HeH+ molecule is formed, which in course of time breaks into He and H+ due to
the high kinetic energy of proton [72].

9.9 Ion–Molecule Collision

A collision process occurring between various atoms or molecules with that of an ion
has been a subject of interest because of its importance in the field of nuclear physics
as well as astrophysics. Dynamics of collision process starting from one-electron to
many-electron systems have been investigated both theoretically and experimen-
tally. Chemical reaction among two species may be described with the help of colli-
sion process, where the reactant species collide with one another to form the product
species. To this end, ion–atom and ion–molecule reactions are studied widely by
Chattaraj and group [73]. Ion–molecule reactions are important especially since they
govern the chemistry of formation of molecule in dense interstellar clouds. Here we
will discuss the time evolution of hardness and polarizability for collision happen-
ing between a proton and some homonuclear and heteronuclear diatomic molecules
both in ground and excited states. To check the regioselectivity in a chemical reaction
where multiple sites are involved, heteronuclear molecules are considered.

The densities of N2 and F2 molecules in their ground and excited electronic states
are symmetric in all the electronic states. One may find that the densities at the two
nuclei of the diatomic molecules are symmetric in all the electronic states. Density
decreases at the nuclear sites, in the first excited state, while in the outer region it
spreads out more radially for these molecules.

When these molecules are hit by a proton, hardness increases and polarizability
decreases in the vicinity of the nuclei. They are found to be symmetric in ground
and excited states of the studied N2 and F2 molecules. In the encounter region,
due to speedy oscillations of charge (since electron density is being shared by both
the nuclei), 𝜂 becomes very large. Hardness exceptionally becomes greater when



180 9 Chemical Reactivity in Time-Dependent Situations

the two nuclei come very close to each other because of the Coulomb singularity.
The molecule in its first excited state is softer and consequently more polarizable, it
shows lower magnitude of 𝜂max and higher magnitude of 𝛼min on being compared to
the corresponding ground-state values.

For the heteronuclear molecules, electron densities are localized in the vicinity of
the nuclei of those two atoms forming the molecule (H, F atoms of HF, B, F atoms
of BF, and C, O atoms of CO molecules). For the excited state, density is found to
decrease at the nuclear sites, although it spreads more when one radially moves away
from the nuclei. In ground as well as excited states, electron density of F nuclei in
HF and BF, and O nuclei in CO are greater than H nuclei in HF, B nuclei in BF, and
C nuclei in CO [70]. It has been shown that when collision process takes place under
confined environment, the highest value of hardness increases and the lowest value
of polarizability decreases when compared with unconfined system [70].

9.10 Conclusion

Time evolution of various chemical reactivity descriptors like chemical poten-
tial, chemical hardness, electrophilicity, and polarizability is tracked for the
atom/molecule interaction with external electric/magnetic field and collision
processes between atom/molecule and a proton in both ground and excited states.
The whole study is done within the context of QFDFT. The dynamical variants
of the associated electronic structure principles such as the MHP, MPP, and MEP
have been found to be operative when the time evolution of different reactivity
parameters involving in different processes is analyzed. In addition, confinement
effects on these processes are also understood.
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10.1 Introduction

Molecular orbitals (MOs) have reigned supreme for a long time in chemistry [1, 2].
Not only our most accurate computational methods [3] (configuration interaction
[4], coupled cluster [5], geminals [6], density matrix renormalization group [7], etc.)
are orbital-based, chemists often “think” in terms of orbitals. Highest occupied and
lowest unoccupied orbitals (HOMO and LUMO, respectively) [8–12], resonant struc-
tures [2, 13, 14], Mulliken charges [15–18], bonding and antibonding, all of these
terms are deeply engraved in our chemical minds, to the point where we use them
as primary descriptors of a plethora of chemical processes. All things considered, it
is hard to argue against the utility of the orbital picture in modern chemistry, but as
useful as they are, MOs are not directly accessible via experiments, and they cannot
be univocally defined (e.g. the phase of an orbital is completely arbitrary).

The electron density is the only reality facing the MOs in many different aspects.
For one, density functional theory (DFT) [19–21], while not as precise as many of
the ab initio methods, is every bit as formally rigorous, and has the upper hand
when it comes to computational efficiency and ability to treat larger systems [22].
Additionally, the electron density is directly related to seminal chemical concepts
like atomic charges [23–28] and molecular electrostatic potentials [29–32], which
play a large role in our understanding of molecular structures. Moreover, by the
end of the 1970s, Parr et al. [33] realized that a deeper scrutiny of the foundations
of DFT, combined with an incisive thermodynamic point of view, naturally led to
a formalism that seamlessly accommodated much of chemical reactivity. This is
what we now call density functional chemical reactivity theory, chemical reactivity
from DFT, chemical DFT or, more generally, conceptual density functional theory
(CDFT) [21, 34–38]. The most immediate impact of CDFT is the newfound abil-
ity to define several chemical concepts in a precise mathematical way. Moreover,
CDFT also provides a framework to understand the relations between these concepts
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and well-established physical principles, allowing us to provide analytical proofs for
many reactivity principles [39–50].

Molecular electron density theory (MEDT) [51] is a more recent outlook on the
chemical reactivity problem in which the electron density takes center stage. MEDT
was proposed in 2016 by Domingo as a new reactivity theory according to which,
changes in electron density, but not MO interactions as the frontier molecular orbital
(FMO) proposed [52], are responsible for the chemical reactivity. Thus, the applica-
tion of MEDT is intrinsically linked to the use of quantum chemical tools based only
on the analysis of electron distribution functions such as the electron density or the
electron localization function (ELF) [53]. For instance, besides an exhaustive explo-
ration and characterization of reaction paths, CDFT [21, 34–38], the quantum theory
of atoms in molecules (QTAIM) [54, 55], and/or bonding evolution theory (BET) [56]
may be used. Thus, it is worth emphasizing that MEDT is not a mere compilation or
application of already well-established quantum chemical tools, but a different ratio-
nalization of chemistry based on electron density instead on MOs. Note that MEDT
can be applied even using the electron density obtained from ab initio methods.

In this chapter we aim to provide a pedagogical (yet, not exhaustive) discussion
about how MEDT, in particular CDFT and Parr functions, can be used to study some
types of selectivity, such as chemo-, regio-, and pseudocyclic selectivities. We start
by presenting a brief introduction to CDFT descriptors and their relations. Given its
importance, we explore the Fukui functions in particular detail (not only going over
their analytical properties, but also about the ways to calculate them), and we present
their several connections to FMO theory. We then discuss how the Fukui function
plays a fundamental role in different matching criteria used to explain regio- and
chemoselectivity patterns in the context of several reactivity principles. Finally, we
discuss the close connections between the Fukui function and the dual descriptor.
Then, we present a brief introduction to MEDT in which we will show the applica-
tion of the empiric Parr functions [56] (presented in more detail in Chapter 24, “Polar
Diels–Alder Reactions”) to predict and understand the experimental selectivities in
several cycloaddition reactions.

10.2 Conceptual Density Functional Theory

10.2.1 The Fukui Function and Frontier Molecular Orbitals

The Fukui function [51, 52, 57] is defined as the response in the system’s energy
with respect to changes in number of electrons and external potential: f (r) = 𝛿

2E
𝛿v(r)N

.
This can be re-written as the response of the chemical potential to an external
perturbation:

f (r) =
(

𝛿𝜇

𝛿v(r)

)
N

(10.1)
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However, the more popular working expressions are derived after the fact that the
response of the energy to changes in the external potential is nothing more than the
electron density, 𝜌(r), so we can write instead:

f (r) =
(
𝜕𝜌(r)
𝜕N

)
v(r)

(10.2)

(Notice that Eqs. (10.1) and (10.2) are just Maxwell relations of each other.)
This makes it clear that the Fukui function represents a generalization of the

concepts of FMOs. If we approximate the ground state of the system by a single Slater
determinant formed by orbitals {𝜙i}, then electron density will be given by:

𝜌(r) =
∑

i
|𝜑i(r)|2 (10.3)

This simple picture implies that if we remove an electron (while ignoring the subse-
quent orbital relaxation), we must do so from the most energetic level, that is, from
the highest occupied orbital, which implies that:

f −(r) = |𝜑HOMO(r)|2 (10.4)

while if we add an extra electron the most stable configuration will result from doing
so in the available orbital with lowest possible energy, hence:

f +(r) = |𝜑LUMO(r)|2 (10.5)

(In Eqs (10.4) and (10.5) the supra-indices “−" and “+” mean removing and adding
an electron, respectively, a notation that we will explore in more detail in the next
section.)

In this sense, the FMOs represent a “zeroth-order” approximation to the Fukui
function, but it is important to realize that the latter are a much more general con-
cept. For one, the Fukui functions can be calculated for every electronic-structure
method, independent of whether they use orbitals or not. This means that they can
encapsulate electron correlation effects, which are in principle absent from the sim-
plistic HOMO/LUMO picture.

Equations (10.4) and (10.5) are usually presented as the only link between the
Fukui functions and the FMOs; however, if this was the case, it would imply that
FMO theory is more fundamental than CDFT. FMO not only identifies the HOMO
and LUMO as critical to explain the local reactivity of a system, but also provides a
first-principles explanation for this observation based on the Klopman–Salem per-
turbative model [53–56, 58–62]. Thus, while we have seen that the Fukui functions
can identify the regions in space associated to these orbitals, the importance of such
regions is derived from FMO theory. Fortunately, Parr and Yang realized a long time
ago that CDFT could also provide an explanation for this fact, based on Eq. (10.1)
[63]. These authors argued that if one could show that a chemical process will tend
to be favored if it entails a bigger variation in the chemical potential, this will in
turn imply that regions with large values of the Fukui function will dictate the local
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reactivity of a system. As they put it: “Of two different sites with generally similar
dispositions for reacting with a given reagent, the reagent prefers the one which
on the reagent’s approach is associated with the maximum response of the system’s
chemical potential” [21]. In more succinct terms, for CDFT to provide a theoretical
justification for FMO theory we need to show that: “|Δ𝜇| big is good” (DMB) [39, 64–
66]. An elementary argument [64] in favor of this seminal principle can be obtained
from a simple reduction of the charge transfer reaction between reagents A and B in
which we only take into account the global descriptors:

A + B = AB ⇒ ΔEABrxn = −
1
2
(𝜇B − 𝜇A)2

(𝜂A + 𝜂B)
(10.6)

Now, noting that since the chemical potential is an intensive quantity we must
calculate its variation along this reaction according to:

Δ𝜇AB = 𝜇AB −
1
2
(𝜇A + 𝜇B) =

(𝜇B − 𝜇A)(𝜂A − 𝜂B)
2(𝜂A + 𝜂B)

(10.7)

We can then assume (without losing any generality) that B is the base and A is the
acid, which in turn implies that: [40, 67, 68]

𝜇B − 𝜇A > 0 (10.8)

What is left then is noticing that:

ΔEABrxn = −(𝜇B − 𝜇A)
Δ𝜇AB

(𝜂A − 𝜂B)
(10.9)

but since Δ𝜇AB
(𝜂A−𝜂B)

= (𝜇B−𝜇A)
2(𝜂A+𝜂B)

> 0, we get that:

0 ≤ Δ𝜇(2)AB

𝜂A − 𝜂B
=
||||||
Δ𝜇(2)AB

𝜂A − 𝜂B

|||||| =
|||Δ𝜇(2)AB

||||𝜂A − 𝜂B| (10.10)

Eq. (10.9) then turns into:

ΔE(2)ABrxn = −(𝜇B − 𝜇A)
|||Δ𝜇(2)AB

||||𝜂A − 𝜂B| (10.11)

from which is clear that:
𝜕𝛥E
𝜕|Δ𝜇| < 0 (10.12)

In other words, increasing |Δ𝜇| should decrease ΔE: the DMB principle.
There are more detailed proofs of this principle, including extensions to more

realistic charge transfer models than the truncated parabolic model [64], as well
as studies of the validity of the principle in simple cycloaddition reactions [66],
and showing its relation to other classical reactivity rules [65], but for our present
purposes the most important result is that by proving the DMB principle we have
established a rigorous link between CDFT and FMO theory, showing that indeed
the former is a more general framework.

10.2.2 Calculating the Fukui Function

The simplest possible way to calculate the Fukui functions is to just use Eqs (10.4)
and (10.5); however, while this is a perfectly valid approach, it is perhaps too
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contrived in the sense that we will be foregoing all the power of CDFT by limiting
ourselves to the standard FMO result. According to Eq. (10.2), to calculate the
Fukui function we need to consider how the state of a system will change when
it changes its number of particles. This is the well-known E vs. N problem. The
exact E vs. N dependency for isolated systems at absolute zero is given by straight
lines connecting the integer particle number states [69–73]. This means that the
electron density of a system with N = M +ΔN electrons (M being an integer, and
0≤ΔN ≤ 1) is:

𝜌M+ΔN (r) = (1 − ΔN)𝜌M(r) + ΔN𝜌M+1(r) (10.13)

While the derivative with respect to N of this expression is univocal and well defined
when ΔN ∈ (0; 1), when we have an integer number of particles the pairwise-linear
nature of this dependency means that we must consider directional derivatives. In
other words, the derivative when the system is losing electrons:

f −M(r) = 𝜌M(r) − 𝜌M−1(r) (10.14)

and the derivative when the system is gaining electrons:

f +M(r) = 𝜌M+1(r) + 𝜌M(r) (10.15)

(Notice how in both cases the correct normalization is achieved.)
This simple mathematical nuance reflects the fact that a molecule will most cer-

tainly react in different ways when it encounters an electrophile or a nucleophile. It
is also easy to see that these equations represent a generalization of the FMO results.

While the linear E vs. N model is perhaps the most popular at the time of
calculating the Fukui function, CDFT practitioners often make use of other E
vs. N dependencies that correspond to higher-order truncations of the parabolic
model [74–76]. Analogous to the linear case, these models are usually interpreted
as interpolations between a selected number of integer-particle states. While there
are theoretical arguments against the statistical thermodynamic validity of such
models [77, 78], the simplest of them (proposed by Parr and Pearson) is a mainstay
in CDFT [76]. Under the assumption that the state of a system can be described as
a (incoherent) superposition of three integer-particle states, we get:

𝜌M+ΔN (r) =
(
ΔN2 − ΔN

2

)
𝜌M−1(r) + (1 − ΔN2)𝜌M(r) +

(
ΔN2 + ΔN

2

)
𝜌M+1(r)

(10.16)

One of the advantages of this approach is that now the derivative of the density
with respect to the number of particles is univocally well defined in every possible
state, so:

fM+ΔN (r) =
(2ΔN − 1

2

)
𝜌M−1(r) + (1 − 2ΔN)𝜌M(r) +

(2ΔN + 1
2

)
𝜌M+1(r)

(10.17)

In particular, for an integer-particle state:

fM(r) =
𝜌M+1(r) − 𝜌M−1(r)

2
(10.18)
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This equation is often referred to (in a rather unfortunate convention) as the “radical
Fukui function,” and notice that it can be rewritten as:

fM(r) =
f +M+1(r) + f −M−1(r)

2
(10.19)

so in a sense it averages the nucleophilic and electrophilic behaviors contained in
Eqs (10.14) and (10.15).

In any event, the workflow to calculate the Fukui functions is pretty simple:

1. Optimize the geometry of the system with M electrons.
2. Perform single-point calculations of the systems with M + 1 and M − 1 electrons.

We need to keep the system’s geometry fixed in the second step because, as indicated
in Eq. (10.2), the response to the change in number of electrons must be calculated
at constant external potential.

Note that using this recipe we will get a 3D function, which can be very useful
in identifying which regions in a molecule are more prone to a nucleophilic or elec-
trophilic attack. However, in some cases we might want to take a closer look at which
individual atoms contribute the most to the reactivity of a molecule. In this case
we need the condensed (atom-resolved) form of the Fukui function [79–81]. Denot-
ing by qA

M the charge of atom A in a system with M electrons, the corresponding
working equations can be easily obtained within the fragment of molecular response
approach [80] (in the response of molecular fragment [81] approach we would have
to consider the response of the atomic partition, which introduces an extra level of
complexity). For the linear case:

f −M(A) = qA
M−1 − qA

M

f +M(A) = qA
M − qA

M+1 (10.20)

and for the parabolic case:

fM(A) =
qA

M−1 − qA
M+1

2
(10.21)

Finally, it is important to remark that there are more sophisticated versions of the
Fukui functions that correspond to further generalizations of the CDFT formalism.
For instance, we can calculate spin-resolved Fukui functions [82–87], which play a
key role in understanding the reactivity of open-shell species. On the other hand, the
finite-temperature [47, 88–97] formulation of CDFT leads to very elegant expressions
for the Fukui function:

fM+ΔN (r) = fM(r) −
f −M(r) − f +M(r)

2
𝛼

ΔN
𝛼 =

√
ΔN2 − 4(ΔN2 − 1) exp[−𝛽(I − A)] (10.22)

where 𝛽 = 1
kT

, and I and A are the ionization potential and electron affinity of the
system, respectively. Note that despite the apparent complexity of this expression,
the steps outlined above to calculate the zero-temperature Fukui function are still
all that is necessary to calculate the finite-temperature analogue.
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In 2013, Domingo proposed the Parr functions P(r) as an approach to the Fukui
functions proposed in 1984 within CDFT. The Parr functions are given by the fol-
lowing equations: [56]

P−(r) = 𝜌rc
s (r) for electrophilic attacks (10.23)

and

P+(r) = 𝜌ra
s (r) for nucleophilic attacks (10.24)

where 𝜌rc
s (r) 𝜌rc

s is the atomic spin density (ASD) at the r atom of the radical cation
of a considered frozen molecule and 𝜌ra

s 𝜌
rc
s (r) is the ASD at the r atom of the radical

anion. Each ASD gathered at the different atoms of the radical cation and the radical
anion of a molecule provides the nucleophilic P−k and electrophilic P+k Parr functions
of the neutral molecule.

10.2.3 Matching Criteria Based on the Fukui Function

Given the previously explored connection between FMO theory and the Fukui func-
tions, we can arrive at the natural conclusion that the latter should play a key role in
our understanding of local reactivity. We can look at this as a “matching problem,”
that is, finding ways to say which atoms in a molecule A should bind to a set of atoms
in a molecule B. The simplest way to this is by just looking at the Fukui functions
and trying to match the regions with high values of f − in an electron donor with
the regions with large values of f + in an electron acceptor (notice that this is just a
straightforward generalization of the classical FMO rule of maximizing the overlap
between the HOMO and LUMO of the reactants).

However, probably the most popular matching rule in CDFT makes use of the
local hard/soft acid/base (HSAB) principle [98–105]. The global (and more funda-
mental) version of this principle states that “other things being equal, hard acids
prefer binding to hard bases when soft acids are binding to soft bases” [68]. There are
several theoretical and experimental arguments supporting the global HSAB rule, so
it seems natural to extend this principle to study the reactivity of moieties inside a
molecule. To fix ideas, let us focus on the case in which we have two reactants, A
and B, each with two reactive centers, 1 and 2. The first step then is defining a local
analogue to the (global) softness of molecule X , SX =

1
𝜂X

, for the kth atom, which we
can do with the help of the Fukui function:

sXk
= fXk

SX (10.25)

From the global HSAB, it makes sense now to consider a measure of how
different two local softnesses are, d(sBk

, sAj
). For instance a L1 or L2 norm,|sBk

− sAj
|, (sBk

− sAj
)2, respectively. Then, the matching 1-1 will be favored over the

matching 2-2 if:

d(sB1
, sA1

) + d(sB2
, sA2

) > d(sB1
, sA2

) + d(sB2
, sA1

) (10.26)

which means that the two molecules will react in a way that the difference between
the matched local softnesses is minimal. Apparently simple at first sight, the problem
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of selecting the right d is far from trivial, since seemingly equivalent difference mea-
sures can lead to selecting different reactivity patterns [106, 107]. This means that
we must consider an energetic criterion to identify how to quantify the difference in
hardness between the reacting sites.

This is exactly what Ponti did [108], taking into account the variation in the
grand-potential, Ω, along the reaction. Here we will illustrate his result from a
simpler point of view, noting that in a general A+B = AB reaction:

ΔE = ΔEA + ΔEB = ΔΩA + ΔΩB = ΔΩ (10.27)

Then we just need to consider the (local) reactions:

A1 + B1

A2 + B2 (10.28)

for which:

A1 + B1 → A1B1, ΔE1
1 = −

1
2
(𝜇A − 𝜇B)2

sA1
sB1

sA1
+ sB1

A2 + B2 → A2B2, ΔE2
2 = −

1
2
(𝜇A − 𝜇B)2

sA2
sB2

sA2
+ sB2

⎫⎪⎪⎬⎪⎪⎭
→ ΔE12

12 = ΔE1
1 + ΔE2

2

(10.29)

We can repeat this analysis and get, for the 1-2 and 2-1 interaction:

A1 + B2 → A1B2, ΔE2
1 = −

1
2
(𝜇A − 𝜇B)2

sA1
sB2

sA1
+ sB2

A2 + B1 → A2B1, ΔE1
2 = −

1
2
(𝜇A − 𝜇B)2

sA2
sB1

sA2
+ sB1

⎫⎪⎪⎬⎪⎪⎭
→ ΔE21

12 = ΔE2
1 + ΔE1

2

(10.30)

The first matching will be the favored if:

ΔE12
12 − ΔE21

12 < 0

1
2
(𝜇A − 𝜇B)2

[
sA2

sB1
sB2
+ sA1

sB1
sB2
+ sA1

sA2
sB2
+ sA1

sA2
sB1

(sA1
+ sB1

)(sA2
+ sB2

)(sA1
+ sB2

)(sA2
+ sB1

)

]
× (sA1

− sA2
)(sB2

− sB1
) < 0 (10.31)

which (due to the energy convexity) can in turn be written as:

ΔE12
12 − ΔE21

12 < 0 ⇔ (sA1
− sA2

)(sB2
− sB1

) < 0 (10.32)

Finally, we can rewrite this as:

(sA1
− sA2

)(sB2
− sB1

) < 0 ⇔ (sA1
− sB1

)2 + (sA2
− sB2

)2 < (sA1
− sB2

)2 + (sA2
− sB1

)2

(10.33)

This means that, under the current assumptions, the L2 norm is the one that should
give the preferred local interaction, and indeed this is the most popular formulation



10.2 Conceptual Density Functional Theory 195

of the local HSAB principle. However, this formulation has been criticized because
the predictions made by it, while correct in some instances, fail catastrophically in
many cases. It is thus a pressing issue to find explanations as to why the above deriva-
tion does not provide accurate results.

There are other selectivity criteria that are essentially based on “spreading out” a
global descriptor into local atomic basins using the Fukui function (like matching
local electrophilicities and/or nucleophilicities) [109–111], but while also popular,
they lack rigorous footing.

10.2.4 The Dual Descriptor

The Fukui function seems like the ideal tool to describe the reactivity of a species
that is either only going to gain or lose electrons. However, while these extreme
cases are important and common, there are cases in which different parts of the
same molecule are going to accept and/or donate electrons. A typical instance of this
are cycloaddition reactions, particularly those with the presence of a well-defined
dipole. This means that we need a tool to identify which predominant behavior (elec-
trophilic or nucleophilic) will be present in different parts of a molecule. The way to
do so was found by Morell coworkers [83, 112–114] and is based on the dual descrip-
tor, Δf (r):

Δf (r) = 𝛿
3E

𝛿v(r)𝜕N2 =
(
𝜕

2
𝜌(r)
𝜕N2

)
v(r)

=
(
𝜕f (r)
𝜕N

)
v(r)

(10.34)

The last expression is actually the most convenient to study the properties of this
descriptor. First of all, its normalization can be easily derived:

∫ Δf (r)dr = ∫
(
𝜕f (r)
𝜕N

)
v(r)

dr =

(
𝜕 ∫ f (r)dr

𝜕N

)
v(r)

=
(
𝜕1
𝜕N

)
v(r)

= 0 (10.35)

Moreover, by using a finite difference approximation to obtain a working equation
for the derivative we get:

Δf (r) = f +(r) − f −(r) (10.36)

It is easy to see how this satisfies the normalization condition, but more impor-
tantly, this provides a simple interpretation for the dual descriptor, since regions with
positive values will indicate a larger tendency to accept electrons, while regions with
negative values will be more prone to donate electrons. This provides a very conve-
nient and unambiguous matching criterion between two reactants: just matching
regions with different Δf (r) signs. This should provide a good estimate of how the
electrons will flow during the reaction, particularly, how the new bonds will form.

Beyond this simple application, the dual descriptor has been used to highlight
a deeper connection between FMO and CDFT, since it can be used to re-derive the
Woodward–Hoffmann rules, without the need to consider MOs [115–120]. The other
key advantage of the dual descriptor is that it can be easily generalized to include
contributions from excited states [121], which can be critical to understand the reac-
tivity patterns in complex reactions.
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10.3 Molecular Electron Density Theory

In this section, we will show how MEDT, in particular, CDFT and Parr functions,
are applied to explain chemo-, regio-, and pseudocyclic selectivities in several types
of experimental cycloaddition reactions.

10.3.1 Pseudocyclic Selectivity in Polar DA (P-DA) Reactions

Reactions taking place through a more or less distorted cyclic TS, in which all atoms
are not necessarily bound, were recently classified as pseudocyclic reactions [122].
The term pseudocyclic selectivity refers to the selective formation of structural iso-
mers through pseudocyclic reactions [123]. This type of selectivity, yielding structural
isomers, can be found in highly polar DA reactions involving strong nucleophilic and
electrophilic species.

10.3.1.1 Competitive [2+4] vs. [4+2] Cycloadditions
The treatment of 4-aza-6-nitrobenzofuroxan (ANBF, 2) with a large excess of
cyclopentadiene (Cp) 1 overnight at room temperature led to the formation of
the [4+ 2] cycloadduct 4 (see Scheme 10.1) [125]. When the reaction was initially
carried out at −20 ∘C, the NMR spectra revealed the formation of a mixture of the
[2+ 4] cycloadduct 3 and [4+ 2] cycloadduct 4. Raising the temperature to 0 ∘C, the
complete conversion of the [2+ 4] cycloadduct 3 into the [4+ 2] cycloadduct 4 was
observed [125].

N N

N
N

N N

NN
NN

N

O
O

O
O O

O O2N O

O
O

O –20 °C

[2 + 4] [4 + 2]0 °C

1

3 42

Scheme 10.1 Competitive [2+ 4] vs. [4+ 2] cycloadditions in the P-DA reaction of Cp 1
with ANBF 2. Source: Domingo [124]/American Chemical Society.

Only one highly asynchronous TS associated with the formation of the [2+ 4]
cycloadduct 3 was found in the P-DA reaction of ANBF 2 with Cp 1. A subsequent
[3,3]-sigmatropic rearrangement on the [2+ 4] cycloadduct 3 allowed its conversion
into the thermodynamically more stable formal [4+ 2] cycloadduct 4 [126].

As a consequence of the high global electron density transfer (GEDT) [124] taking
place at the TS of this P-DA reaction, 0.40e, which fluxes from the nucleophilic Cp 1
toward the strong electrophilic ANBF 2, a high amount of electron density is accu-
mulated at the nitro group of the nitroethylene framework (see the electrophilic P+k
Parr functions of nitroethylene in Figure 10.1). Consequently, after the correspond-
ing highly asynchronous TS, the subsequent ring closure takes place via the attack
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Figure 10.1 3D representations
of the Mulliken ASD of the
radical anion of nitroethylene
and the radical cation 1⋅+ ,
together with the electrophilic
P+k and nucleophilic P−k Parr
functions of nitroethylene and
Cp 1, respectively.

of one negatively charged oxygen of the nitro group to the positively charged allylic
framework of the Cp moiety, yielding the [2+ 4] cycloadduct 3, but the formal [4+ 2]
cycloadduct 4 was found thermodynamically more stable.

A similar pseudocyclic selectivity was observed in the P-DA reactions of furan
derivatives with masked o-benzoquinones [127], in which furan 6 acts as a strong
nucleophilic ethylene and masked o-benzoquinones 5 acts as a strong electrophilic
species yielding [2+ 4] cycloadducts (see Scheme 10.2). Note that the experimental-
ists did not expect the ethylenic behavior of furan 6 [127], a usual nucleophilic diene.
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7 8
[2 + 4] [4 + 2]

Scheme 10.2 [2+ 4] cycloaddition in the P-DA reaction of furan derivative 6 with masked
o-benzoquinone 5.

Analysis of the electrophilic Parr functions at masked o-benzoquinone 5 shows
that the C1 carbon is the most electrophilic center of this species, P+k = 0.48 (see
Figure 10.2). After the nucleophilic attack of the non-substituted C5 position of
1-methyl-furan 6, P−k = 0.48, on the C1 carbon of masked o-benzoquinone 5, the
subsequent ring closure takes place at the C4 position of 5.

5•– 6•+

Figure 10.2 3D representations of the Mulliken ASD of the radical anion 5⋅− and radical
cation 6⋅+ together with the electrophilic P+k and nucleophilic P−k Parr functions of 5 and 6,
respectively.
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10.3.1.2 Competitive [4+2] vs. [2+2] Cycloadditions
In 2004, Takasu reported the catalytic [2+ 2] cycloaddition reactions of silyl enol
ether 9 with the α,β-unsaturated esters 10 leading to the formation of cyclobutane
rings 11 (see Scheme 10.3) [129].

OTMS CO2R

CH2Cl2
–78 °C

CO2R
OTMS

9 10 11

LA catalyst

20%

Scheme 10.3 [2+ 2] cycloaddition reactions of silyl enol ether 9 with the α,β-unsaturated
esters 10. Source: Domingo et al. [128]/American Chemical Society.

A study on the formation of the simpler formal [2+ 2] cycloadduct 16 [130]
showed that this reaction is a domino process in which the [4+ 2] cycloadduct 15 is
first kinetically formed through a stepwise P-DA reaction of forward electron density
flux (FEDF) (see Scheme 10.4) [128]; however, 14 was found to be thermodynam-
ically unstable [130]. A subsequent isomerization converts the [4+ 2] cycloadduct
14 into the thermodynamically more stable formal [2+ 2] cycloadduct 15.

TMSO

TMSO

anti-14

FEDF

P-DA reaction
12 13 15 16

OTMS

O

2 4

6

5

31

TMSO

Isomerization

reaction

OCH3

OCH3OCH3

COCH3

AlCl3
O

AlCl3
AlCl3

AlCl3

O
O

[4 + 2] [2 + 2]

Scheme 10.4 Domino reaction bettween silyl enol ether 12 and Lewis-acid complex 13
yielding cyclobutane 16. Source: IUPAC [131]/Royal Society of Chemistry.

Similar to the reactions shown in Schemes 10.1 and 10.2, the pseudocyclic
selectivity found in these highly polar cycloaddition reactions is controlled at the
ring-closure process taking place after the highly asynchronous TSs. These P-DA
reactions can take place through a two-stage one-step [132] or a two-step mecha-
nism; while the reaction rate is usually determined by the nucleophilic/electrophilic
interactions taking place at the beginning of the reaction, the pseudocyclic selectivity
is played at the ring-closure step taking place at the end of the reaction.

The electrophilic and nucleophilic Parr functions at the intermediate anti-14
involved in the polar cycloaddition reaction of silyl enol ether 12 with Lewis-acid
complex 13 are shown in Figure 10.3. As can be seen, zwitterionic intermediate 14
has the most electrophilic P+k Parr function at the C2 carbon of the enol framework,
P+k = 0.84, and the most nucleophilic P−k Parr function at the C4 carbon of the
α,β-unsaturated ester moiety, P−k = 0.73. Consequently, from an electronic point of
view, the most favorable ring closure will be that yielding cyclobutane 16. However,
some geometrical restriction associated to the formation of the cyclobutane ring
might be responsible for the initial formation of the six-membered dihydropyran 15.
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14•– 14•+

14

Figure 10.3 3D representations of the intermediate anti-14 involved in the polar
cycloaddition reaction of silyl enol ether 12 with Lewis-acid complex 13, and Mulliken ASD
of the radical anion and radical cation of this species together with the corresponding
electrophilic P+k and nucleophilic P−k Parr functions.

10.3.2 Regioselectivity in [3+2] Cycloaddition (32CA) Reactions

A regioselective reaction is one in which one direction of bond making or breaking
occurs preferentially over all other possible directions [131]. 32CA reactions consist
of the addition of a multiple bond system to a three-atom component (TAC) giving
rise to the formation of a five-member heterocyclic compound (see Scheme 10.5) in
a more or less regioselective manner. A great number of MEDT studies of 32CA reac-
tions have allowed finding a very good correlation between the electronic structure
of TACs and their reactivity [133]. Thus, depending on the electronic structure of
TACs, i.e. pseudodiradical, pseudo(mono)radical, carbenoid, and zwitterionic, 32CA
reactions have been classified into the four respective types (see Chart 10.1), which
present different mechanism and kinetics. For instance, while pdr-type 32CA reac-
tions take place very easily even with low-polar character, zw-type 32CA reactions
demand adequate nucleophilic/electrophilic interactions to take place.

Multiple bond

system
Heterocyclic

compound
TAC

Z
Z

C
32CA

Reaction
C C

C

Y Y

X
X

4e

Scheme 10.5 32CA reaction between a TAC and a multiple bond system, yielding a
five-membered heterocyclic compound.
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Chart 10.1 Classification of 32CA reactions depending on the electronic structure of TACs
and their reactivity.

Although 32CA reactions lack a general reactivity model like DA reactions
and present lower selectivities than the latter, the local reactivity and preferred
regioisomeric reaction path can be equally ascertained through the analysis of the
Parr functions. In the following, we will present two representative examples.

In 2009, Sibi et al. [134] showed that the 32CA reaction of nucleophilic nitrile ylide
17 with electrophilic chiral oxazolidinone 18 takes place in high yield and high regio-
and stereoselectivities (see Scheme 10.6).
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Scheme 10.6 32CA reaction of nitrile ylide 17 with chiral oxazolidinone 18 yielding
pyrrolines 19.

Analysis of the nucleophilic P−k Parr functions of nitrile ylide 17 indicates that
the carbenoid C1 carbon is the most nucleophilic center of this species with the
maximum value of P−k = 0.59, while the electrophilic P+k Parr functions of oxazo-
lidinone 18 indicate that the β-conjugated C5 carbon is the most electrophilic center,
P+k = 0.48 (see Figure 10.4) [136]. Consequently, the most favorable interaction along
this polar reaction is that between the carbenoid C1 carbon of nitrile ylide 17 and the
β-conjugated C5 carbon, in clear agreement with the experimental outcomes.

Another example of complete regioselectivity is the 32CA reaction of nitrile
oxide 20 with 2,2,4,4-tetramethyl-3-thioxocyclobutan-1-one 21 as a thioketone
derivative, experimentally studied by Mlostoń et al. [137], which affords the
corresponding 1-oxo-3-thio-4,5-dihydro-azole derivative 22 in good (58%) yield,
quite C-S chemoselectivity, and complete regioselectivity with no formation of
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17•+
18•–

Figure 10.4 3D representations of the Mulliken ASD of the radical cation 17⋅+ and radical
anion 18⋅− , together with the nucleophilic P−k and electrophilic P+k Parr functions of 17 and
18, respectively. Source: Emamian et al. [135]/Royal Society of Chemistry.

furoxan derivative 23 from the competitive dimerization process of nitrile oxide 20
(see Scheme 10.7).

Thioketone

32CA reaction

1-oxo-3-thio-4,5-dihydro-azole derivative

Dimerization reaction
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Scheme 10.7 32CA reaction of in situ – generated nitrile oxide 20 with thioketone 21,
yielding cycloadduct 22 as the only product experimentally isolated.

Analysis of the calculated electrophilic P+k Parr functions at the reactive sites of
nitrile oxide 20 indicates that the C1 carbon atom, P+k = 0.30, is noticeably more
electrophilic than the O3 oxygen atom, P+k = 0.13 [135]. Note that in this case the
electrophilic P+k Parr functions are analyzed at the TAC framework because this
reaction is classified as of reverse electron density flux (REDF) [128]. On the other
hand, the nucleophilic P−k Parr functions in thioketone 21 indicate that while the
P−k value at the S5 sulfur atom (P−k = 0.67) is larger than that at the O7 oxygen
atom (P−k = 0.21) by more than three times, both C4 and C6 carbons are deactivated
nucleophilic centers with negative P−k values. Therefore, the Parr functions predict
that the most favorable path will involve the C1 carbon atom of nitrile oxide 20
and the S5 sulfur atom of thioketone 21, in clear agreement with the chemo- and
regioselectivity experimentally observed [137] (Figure 10.5).
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Figure 10.5 3D
representations of the Mulliken
ASD of the radical anion 20⋅−

and radical cation 21⋅+ ,
together with the electrophilic
P+k and nucleophilic P−k Parr
functions of 20 and 21,
respectively.

10.3.3 Chemoselectivity in 32CA Reactions

Chemoselectivity is the preferential reaction of a chemical reagent with one of two
or more different functional groups [131]. In 2016, Mlostoń et al. reported the 32CA
reactions of thiocarbonyl S-methanides (TCY) with fluorinated enones [138]. In the
case of enones containing the CF3CH=CH moiety, the 32CA reaction takes place
chemo- and regioselectively onto the C=C double bond to give trifluoromethylated
tetrahydrothiophenes (Scheme 10.8).

Ph
O

O

S

S

Ph

Ph

TCY 24

25

26

Ph
Ph CF3

CF3

CH2 Ph

Scheme 10.8 32CA reaction of TCY 24 with enone 25.

In these 32CA reactions, TCY 24 participates as a strong nucleophile toward the
electrophilic fluorinated enone 25 [139]. Thus, the nucleophilic Parr functions were
computed at TCY 24 and the electrophilic Parr functions were evaluated at enone
25. The corresponding values are shown in Figure 10.6. Analysis of Parr functions

Figure 10.6 3D representations of the Mulliken ASD of the radical cation 24⋅+ and radical
anion 25⋅− , together with the nucleophilic P−k and electrophilic P+k Parr functions of 24 and
25, respectively.
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Ph
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Scheme 10.9 32CA reaction of CY 27 with αMK 28.

Figure 10.7 3D
representations of the
Mulliken ASD of the radical
cation 27⋅+ and radical anion
28⋅− , together with the
nucleophilic P−k and
electrophilic P+k Parr functions
of 27 and 28, respectively.

shows that the most nucleophilic center of TCY 24 is the C2 carbon, while the most
electrophilic center of enone 25 is the C3 carbon, indicating that the most favor-
able nucleophile–electrophile interaction is in agreement with the experimentally
observed regioselectivity.

On the other hand, Muthusamy et al. [140] reported the stereo-, regio-, and
chemoselective syntheses of oxa-bridged spirocycles by the 32CA reaction of
the Padwa carbonyl ylide (CY) 27 with the α-methylene ketone (αMK) 28 (see
Scheme 10.9).

As CY 27 is a strong nucleophile and αMK 28 is a strong electrophile, the
nucleophilic P−k and electrophilic P+k Parr functions were analyzed, respectively
[141]. As can be observed in Figure 10.7, the Parr functions predict that the most
favorable two-center interaction is that between the most nucleophilic C3 carbon
of CY 27 and the most electrophilic C6 carbon of αMK 28, in total agreement with
the regio- and the chemoselectivity experimentally observed.

10.4 Conclusions and Perspective

We have provided a short review of the use of the electron density as primary variable
in understanding the regio-, chemo-, and pseudocyclic selectivities in cycloaddition
reactions. As discussed above, while the FMO picture has certainly been of great
use, the electron density gives us not only more information, but also in a more
meaningful way. The very enticing prospect of relying on well-established physical
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principles, and the fact that we can use a simple mathematical framework to gain
further insight as to how to combine different descriptors are powerful reasons to
prefer the electron density description of reactivity. This is amplified by the success
of simple (and inexpensive) computational workflows, especially those used within
MEDT, which provide accurate predictions over diverse families of reactions.

All of this is not to say that there are areas that deserve a closer look in the study
of local reactivity. For instance, the methods described here usually perform better
in polar reactions controlled by the GEDT effect, but not so much when electro-
static interactions (and/or polarization) are paramount. Other important factors, like
steric effects, are also hard to incorporate into this framework. Moreover, in some
cases it might be necessary to take into account the influence of the molecular sur-
roundings on the descriptors used to understand the reactivity. These are some of
the challenges facing the electron density-based description of chemical reactivity,
which we anticipate will motivate further work in this field.
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137 Mlostoń, G., Kowalski, M.K., Obijalska, E., and Heimgartner, H. (2017).

J. Fluorine Chem. 99: 92.
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11.1 Introduction

One of the aims of chemistry is to understand the outcome of putting together two
or more chemicals, under some given conditions. In other words, one aspires having
a predictive model for the reaction

Ri + T
conditions
=======⇒ Products (11.1)

where Ri, i = 1, 2,… ,NR represents a set of NR molecules with positions where dif-
ferent chemical groups are substituted, T is a fixed “target,” and within the products,
there is normally one that is the desired product. As indicated in Eq. (11.1), the reac-
tions are done under certain conditions. Determining how efficient is a reaction is
evaluated by measuring thermodynamic quantities like equilibrium constants, or
kinetic properties like rate constants. The scenario just described is the typical study
that we call chemical reactivity. Therefore, after a chemical reactivity study is done,
one has a table associating each of the reactant molecules Ri with either an equi-
librium or a rate constant, sometimes both, or probably another property like the
position of an IR or NMR signal. This information can now be used to develop a pre-
dictive model using properties of the Ri and T reactants. One of the most successful
approaches in this direction is the quantitative structure–activity relation (QSAR),
which is crucial in many important chemical industries like the pharmaceutical,
oil, catalysis, pesticide, food, and materials [1–3]. Understanding why a reaction
proceeds as it does, and with the thermodynamic and kinetic properties observed,
means that one has elucidated the reaction mechanism. This reaction mechanism
consists of a series of elementary steps, leading to the formation of the products. Let
us assume that the energy profile of the crucial step in the mechanism has the shape
depicted in Figure 11.1. This profile describes the typical behavior of the energy as a
function of the reaction coordinate corresponding to an association reaction, and the
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Figure 11.1 Association reaction.
Schematic representation of the energy
profile of an association reaction.

point to be noted is that the difference of the values of the reaction coordinate for the
reactants Ri + T and the transition state TS is small and, therefore, the geometries of
the reacting species will be very similar to those of the free species. In Sections 11.3,
11.6, and 11.7, it will be shown how this association reaction is studied with the
tools available in conceptual density functional theory (CDFT). It should be men-
tioned that within CDFT there are other approaches to describe charge transfer, like
the electronegativity equalization method [4–6], which will not be discussed in this
chapter. The reader is encouraged to see Chapters 2–4 for a deeper review of the
fundamentals of CDFT.

11.2 Taylor Expansion of the Energy

From the cornerstone of density functional theory (DFT), the Hohenberg and Kohn
(HK) theorems, it is concluded that the total energy E of a system with N electrons
and in the presence of the external potential v(r) is a function of N and a functional
of v(r), i.e. E(N)[v(r)], where the function-like dependence is denoted by (N) and the
functional-like dependence by [v(r)]. Assuming that E(N)[v(r)] is differentiable with
respect to both variables, one can write, up to third order, the Taylor series expansion
of the energy as [7, 8]

E(N0 + ΔN)[v0(r) + Δv(r)] − E(N0)[v0(r)]

= 𝜇 ΔN + ∫ dr 𝜌(r) Δv(r)

+ 1
2
𝜂 (ΔN)2 + ∫ drf (r) ΔN Δv(r) + 1

2 ∫ ∫ dr dr′ 𝜒(r, r′)Δv(r) Δv(r′)

+ 1
3!
𝛾 (ΔN)3 + 1

2 ∫ dr f (2)(r) (ΔN)2 Δv(r)

+ 1
2 ∫ ∫ dr dr′

(
𝜕𝜒(r, r′)
𝜕N

)
v(r)

ΔN Δv(r) Δv(r′)

+ 1
3! ∫ ∫ ∫ dr dr′ dr′′ 𝜒 (2)(r, r′, r′′) Δv(r) Δv(r′) Δv(r′′) + · · ·

(11.2)
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In this expression, the quantities multiplying the changes in the number of electrons
and/or the external potential are the reactivity coefficients, that have been stud-
ied extensively by several groups in the past three decades and that are also more
deeply discussed in Chapters 2 through 4 of this book. For our purposes, one can say
that these responses can be classified in global, local, and non-local. The global
response coefficients are quantities that are associated to the chemical species as a
whole, and in Eq. (11.2), we include the chemical potential, 𝜇 [9], the chemical hard-
ness, 𝜂 [10, 11], and the first hyperhardness, 𝛾 [12]. The local response coefficients
or indexes are quantities depending on one point in space and shown in the pre-
vious expansion are the electron density, 𝜌(r), the Fukui function, f (r) [13, 14], and
the dual descriptor, f (2)(r) [15–17]. Finally, non-local indexes are response quantities
depending on two or more points in space; so far, of the three non-local coefficients
shown in Eq. (11.2), the linear response function, 𝜒(r, r′) is the one that has been
explored in more detail [18–20]. In Chapters 2, 3, 4, 7, 8, 14, and 15 of this book the
reader can see the rich chemical information contained in these chemical response
coefficients or indexes. Extracting and interpreting this information is at the heart
of CDFT.

Coming back to the association reaction discussed in Section 11.1, when the val-
ues of the reaction coordinate between the reactants and the transition state are very
close, then the external potential of the reactants v0(r) and the external potential of
the transition state v(r) are very similar, for every point in space, and it is reason-
able assuming that for this association reaction, one can neglect the change of the
external potential, i.e. Δv(r) ≈ 0. Then, the Taylor series expansion reduces to

ΔE(ΔN) = 𝜇 ΔN + 1
2
𝜂 (ΔN)2 + 1

3!
𝛾 (ΔN)3 + · · · (11.3)

meaning that in this case the change in the energy can be mainly attributed to a
charge transfer process occurring between the reactants.

In Sections 11.3 and 11.6, these charge transfer processes will be explored for the
case when the Taylor series expansion of the energy with respect to the number of
electrons is truncated at second order, i.e.

ΔE(ΔN) = 𝜇 ΔN + 1
2
𝜂 (ΔN)2 (11.4)

11.3 One-Parabola Model: The Venerable Parr
and Pearson Model

Probably the first result that attracted the attention of the chemical community
toward CDFT was the identification of the chemical potential 𝜇 with the negative
of the electronegativity. This identification was derived in a seminal paper authored
by Robert G. Parr et al. [9], and it can be considered the milestone of CDFT. These
authors identified the Lagrange multiplier 𝜇, introduced in the second HK theorem
to satisfy the constraint that the electron density 𝜌(r) integrates to the correct
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number of electrons N, with the chemical potential, and by the work of Iczkowski
and Margrave [21], with the negative of the electronegativity, 𝜒 , which is

𝜇 =
(

𝛿E
𝛿𝜌(r)

)
v(r)

=
(
𝜕E
𝜕N

)
v(r)

= −𝜒 (11.5)

From this identification, it is not difficult to recover, by finite differences, the defini-
tion of electronegativity provided by Robert Mulliken in 1934 [22]

𝜇 = −𝜒 = − I + A
2

(11.6)

where I is the first vertical ionization potential and A the vertical electron affinity,
which are defined as

I = E(N − 1)[v(r)] − E(N)[v(r)] (11.7)

and

A = E(N)[v(r)] − E(N + 1)[v(r)] (11.8)

In Eqs. (11.7) and (11.8), E(N)[v(r)] is the ground state energy of the system with
N electrons and external potential v(r), using the notation introduced Section 11.2.
Note that these two properties are evaluated at constant external potential, i.e. they
correspond to vertical energy differences.

Few years later, in 1983, to be more specific, Parr and Pearson [10] introduced
another key concept, the global hardness, defined as

𝜂 =
(
𝜕

2E
𝜕N2

)
v(r)

=
(
𝜕𝜇

𝜕N

)
v(r)

(11.9)

indicating that the global hardness is the concavity of the energy with respect to the
number of electrons. It is also a measure of the resistance of the chemical potential
to change its value when the system undergoes a change in the number of electrons.
By finite differences, it can be expressed in terms of the first ionization potential and
the electron affinity as

𝜂 = I − A (11.10)

Note that the definition of the global hardness in Eq. (11.9) differs from the orig-
inal by a factor of 1∕2. In the recent years, it has been recognized that for nota-
tional convenience, it is better dropping the 1∕2 and, thus, defining global hardness
as shown in Eq. (11.9). Together with defining hardness, Parr and Pearson, with
a tremendous physical and chemical insight, made use of a continuity hypothesis
for the energy and its derivatives with respect to the number of electrons, arguing
that “it is convenient to consider that a smooth curve connects the various points,”
where they are referring to the points of the energy corresponding to a reference
number of electrons N0 and those with N0 − 1 and N0 + 1 electrons. This continuity
assumption allows one writing the energy of a chemical species as a function of the
number of electrons as a quadratic function (parabola) on the number of electrons
shown in Eq. (11.4). This is the one-parabola or the venerable Parr and Pearson
(PP) model [23]. From the discussion above, it is clear that knowing the ioniza-
tion potential I and the electron affinity A suffices to obtain the chemical potential
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𝜇 and the hardness 𝜂 that are the coefficients characterizing the parabolic PP model
of Eq. (11.4).

More insight can be gained about the chemical content of this model by consider-
ing the system as an open quantum system in contact with a reservoir of electrons
that fixes the chemical potential of the system and allows the exchange of electrons
between the system and the bath. In this case, the grand potential Ω determines
the equilibrium and spontaneity direction of the processes. The grand potential is
given by

ΔΩ(ΔN) = ΔE(ΔN) − 𝜇b ΔN (11.11)

When the chemical potential of the system, 𝜇, not equals that of the reservoir or
bath, 𝜇b, there is a spontaneous flow of electrons from the part with higher chemical
potential to the part with lower chemical potential. Using Eq. (11.4), the amount of
electrons involved in this process ΔN is obtained by minimizing the change in the
gran potential ΔN and is given by

ΔN =
𝜇b − 𝜇
𝜂

(11.12)

It is not difficult showing that the minimum energy attainable in this process cor-
responds to the case when the chemical potential of the bath is zero and the number
of electrons exchanged in this situation is given byΔNMAX = −𝜇∕𝜂, which is positive.
Evaluating the change in the energy for this charge transferred leads to

ΔEMIN = −
𝜇

2

2 𝜂
= −𝜔 (11.13)

where 𝜔 is a new reactivity coefficient introduced by Parr et al. and is called the
electrophilicity index [24]. This index has been widely used as it can be seen in
the reviews by Chattaraj et al. [25–27].

It should be noted that the continuity of the PP model implies that the directions
of charge transfer are immaterial. More precisely, with the fact that the derivative of
the energy with respect to the number of electrons exists, it determines that the rate
of change of the energy with respect to the number of electrons, evaluated at any
integer number of electrons, is the same in any direction.

11.4 Derivative Discontinuities

For almost three decades, the PP model was the iconic model to study within CDFT
problems where charge transfer is involved. However, it has also been severely crit-
icized from its roots; the questionable issue is the discontinuity of the derivative of
the energy with respect to the number electrons. This fundamental issue was consid-
ered from the very beginning of CDFT. In 1982, Perdew et al. [28] demonstrated that
the ground state energy of a system as a function of the number of electrons, at 0 K,
is composed of a series of straight lines joined at every integer number of electrons.
This is the ensemble or PPLB theorem. The theorem was generalized [29, 30], and
it can be stated as follows.
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Theorem 11.1 At 0 K, the dependence on the number of electrons of any size consis-
tent property P is given by

P(N + ΔN) =

{
−ΔN P(N − 1) + (1 + ΔN) P(N), −1 ≤ ΔN ≤ 0
(1 − ΔN) P(N) + ΔN P(N + 1), 0 ≤ ΔN ≤ 1

where N is any positive integer.

In this theorem, a size consistent property is defined as a property P such that if a
supermolecule is composed of Q infinitely separated subsystems with wavefunctions
Ψ1, Ψ2,…, and ΨQ, then the total value of the property in the supermolecule is the
sum of the values of the properties in the subsystems, namely,

Ptotal =
Q∑

q=1
Pq (11.14)

A very important size consistent property is the energy for which the ensemble
theorem dictates that its behavior, at 0 K, as a function of the numbers of electrons
is given by

E(N + ΔN) =

{
E(N) + (E(N) − E(N − 1)) ΔN, −1 ≤ ΔN ≤ 0
E(N) + (E(N + 1) − E(N)) ΔN, 0 ≤ ΔN ≤ 1

or in terms of the ionization potential and the electron affinity,

E(N + ΔN) =
{

E(N) − I ΔN, −1 ≤ ΔN ≤ 0
E(N) − A ΔN, 0 ≤ ΔN ≤ 1

This last expression shows that indeed, at 0 K, the energy as a function of the num-
ber of electrons is a piecewise function comprised by straight lines joined at integer
number of electrons. Taking N as the number of electrons of the neutral system, then
the slopes of the straight lines are the negative of the ionization potential, when the
number of electrons is less than N, and the negative of the electron affinity, when
the number of electrons is greater than N.

11.5 Two-Parabola Model

A quick look of Figure 11.2 immediately tells that the PP model and the behavior
predicted by the ensemble theorem are quite different. Two features are evident;
first, the smooth behavior of PP going from the cation to the anion, compared with
the linear behavior of the ensemble theorem, and second, the fact that at integer
number of electrons, the derivatives of the energy with respect to the number of
electrons coming from the left (cations) are different from those coming from the
right (anions). Let us designate the derivative from the left 𝜇− and that from the right
𝜇
+. Trying to keep the richness of the quadratic PP model but also incorporating

the derivatives discontinuities was the motivation behind the two-parabola model
introduced in 2007 [31]. The ansatz is very simple: it is proposed that the energy as
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Figure 11.2 Energy vs. number of
electrons. The blue curve corresponds to the
Parr and Pearson (PP) quadratic model, and
the brown curve to the two-parabola or
Gázquez, Cedillo, and Vela (GCV) model. The
experimental values are for the fluorine
atoms, and energies are in eV.
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a function of the number of electrons is a piecewise continuous function composed
of parabolas. Analytically, the function is

ΔE+∕−(ΔN) = 𝜇+∕− ΔN + 1
2
𝜂
+∕− (ΔN)2 (11.15)

The superindexes distinguish the cationic (−) branch from the anionic branch (+).
The model has four parameters, and they are obtained imposing the following con-
ditions: (i) ΔE−(−1) = I, (ii) ΔE+(1) = −A, (iii) 𝜂− = 𝜂+ = 𝜂, and (iv) 𝜂 = 𝜇+ − 𝜇−.
Conditions (i) and (ii) are the same used in the PP model to find the expression for
𝜇 and 𝜂. Condition (iv) is supported on the fact that the derivative with respect to
the number of electrons of the ensemble expression for the energy leads to a step
function, and if this expression is derived again, one obtains(

𝜕
2E
𝜕N2

)
v(r)

= (𝜇+ − 𝜇−) 𝛿(ΔN) (11.16)

where 𝛿(x) is the Dirac delta function. With these conditions, one obtains the fol-
lowing expressions for the parameters of the model:

𝜇
− = −3I + A

4
(11.17)

𝜇
+ = − I + 3A

4
(11.18)

and

𝜂 = I − A
2

(11.19)

Using Eqs. (11.15) and (11.17)–(11.19), together with the experimental values of
I and A for the fluorine atom, one obtains the curves depicted in Figure 11.2. The
deviations of the PP model from the ensemble theorem are noticeable, while the
two-parabola model are closer to the linear behavior predicted by the ensemble
theorem.
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Proceeding analogously as it was done in the derivation of the electrophilicity, one
can now consider an open quantum system in contact with a reservoir of electrons
but with the capability of distinguishing the direction of charge transfer. In
this case there are two grand potentials; one for the direction when the system gives
away electrons, the branch labeled with the − superindex, and another correspond-
ing to the direction when the system receives electrons, which is labeled with the +
superindex. These grand potentials are

ΔΩ+∕−(ΔN) = ΔE+∕−(ΔN) − 𝜇b ΔN (11.20)

where 𝜇b is the chemical potential of the reservoir. Minimizing each grand potential
branch with respect to number of electrons and evaluating the corresponding energy,
one obtains that

ΔE+∕− =
(
𝜇b
)2 −

(
𝜇
+∕−)2

2𝜂
(11.21)

Evaluating each of these energies for the case when the chemical potential of the
bath is zero, 𝜇b = 0, one obtains that the minimum energies for each branch are
given by ΔE+∕−MIN = −𝜔

+∕− where 𝜔− is the electrodonating power and 𝜔+ is the
electroaccepting power, global reactivity indexes that are given by the expressions

𝜔
+∕− =

(
𝜇
+∕−)2

2𝜂
(11.22)

that in terms of the ionization potential and electron affinity are

𝜔
+ = 1

16
(I + 3A)2

(I − A)
and

𝜔
− = 1

16
(3I + A)2

(I − A)

(11.23)

A deeper analysis of the charge transfer in the two-parabola model and the behav-
ior of the electrodonating and electroaccepting powers can be found in Reference
[32]. These reactivity indexes have been successfully used in classifying the observed
chemical behavior of antioxidants, marine drugs, corrosion inhibitors, solar cells,
and pharmaceuticals used in several neurological disorders [33–37].

As it will be discussed in Sections 11.6 and 11.7, the two-parabolas model opens
the possibility of studying charge transfer reactions where the direction of electron
flow can be distinguished.

11.6 Association Reaction

As discussed in Sections 11.1 and 11.2 of this chapter, we are interested in describing
and analyzing association reactions of the type shown in Eq. (11.1). For notational
simplicity, we will write this reactions as

A + B
conditions
=======⇒ AB (11.24)
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where AB is the associated product. The change in the energy for this reaction is
given by ΔEAB = EAB − EA0 − EB0 where EAB is the energy of the associated product
and EA0 , EB0 are the energies of the free reactants. Considering that the energy of
the product AB as additive, i.e. EAB ≈ EA + EB where EA and EB are the energies of
the chemical species or fragments in the molecule AB, then one can approximate the
change of the energy corresponding to the association reaction by ΔEAB ≈ ΔEA +
ΔEB, where ΔEA = EA − EA0 and ΔEB = EB − EB0 . Recalling the consideration that
the structures of A and B do not change much when they are brought from being free
to be in the associated product and therefore that the changesΔvA(r) = vA(r) − v0

A(r)
and ΔvB(r) = vB(r) − v0

B(r) can be neglected, then one can write that the change of
the energy of the reaction is approximately given by

ΔEAB ≈ ΔEA(ΔNA) + ΔEB(ΔNB) (11.25)

where it is emphasized that the only reason for the energy of the fragments to change
is through changes on their corresponding number of electrons, NA and NB. It must
be clear that provided the system is closed, the total number of electrons of the sys-
tem NAB is constant and equal to the sum of the number of electrons in the free
fragments or species, i.e. NAB = NA0 + NB0 = NA + NB = constant, implying that the
changes in the number of electrons of the fragments are not independent. Rearrang-
ing the charge conservation condition, it follows that the changes in the number of
electrons of the species must satisfy the charge conservation condition

ΔNB = −ΔNA (11.26)

The amount of charge transferred in the formation of the product AB is that which
minimizes the interaction energy, subject to the charge conservation constraint
(Eq. (11.26)). Substituting Eq. (11.26) in Eq. (11.25) leaves only one independent
variable; let us say ΔNA, and therefore, the amount of charge transferred is found
from solving

𝜕ΔEAB(ΔNA)
𝜕ΔNA

=
𝜕ΔEA(ΔNA)
𝜕ΔNA

+
𝜕ΔEB(−ΔNA)

𝜕ΔNA
= 0 (11.27)

where, certainly, all the partial derivatives are taken at fixed external potential, i.e.
the geometries of the species or fragments are unchanged, in compliance with our
ansatz. Obtaining concrete and specific results for the amount of charge transferred
in the association reaction requires establishing a model for the energy as function
of the number of electrons. In Sections 11.6.1–11.6.3 and 11.7, the results provided
by the PP and the two-parabola models will be discussed.

11.6.1 Partitioning of the Charge Transferred in the PP Model

Using the PP model for the energy (Eq. (11.4)) in the minimization condition
(Eq. (11.27)) leads to solving

𝜇A + 𝜂A ΔNA − 𝜇B + 𝜂B ΔNA = 0 (11.28)

where for notational convenience we are dropping the 0 for the global reactivity
indexes. Moreover, it should be clear that all these reactivity coefficients correspond
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to those of the free noninteracting fragments or species. Solving this last equation
for ΔNA, one finds that the amount of charge transferred in the association reaction
is given by

ΔNA =
𝜇B − 𝜇A

𝜂A + 𝜂B
(11.29)

classical and beautiful result that was derived for the first time by Sanderson [38–40]
and very successfully used by Parr and Pearson in the rationalization of the hard/soft
acid/base principle, the HSAB principle [41–46]. This result establishes that the gra-
dients of the chemical potential, or electronegativity, are the driving force behind
charge transfer, and it also indicates that the global hardness of the species or frag-
ments mediates the amount of electron exchange. Another consequence is that elec-
trons move from the fragment with higher chemical potential to that with lower. This
is the spontaneous direction of electron flow.

In complete agreement with the continuity ansatz of the PP model, the total
amount and direction of charge transfer is dictated by Eq. (11.29), however, it
does not allow distinguishing that the processes of electron donation and electron
acceptance are different, as mandated by the PPLB theorem. It has been shown
[47] that one possibility to overcome this aspect of the PP model is obtained by
inserting the definitions for 𝜇 (Eq. (11.6)) and 𝜂 (Eq. (11.10)) in Eq. (11.29), which
after rearranging, it is possible to write the amount of electron transfer as the sum
of two contributions:

ΔNA = −
AB − IA

2(𝜂A + 𝜂B)
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

ΔNele
A

+
AA − IB

2(𝜂A + 𝜂B
)

⏟⏞⏞⏞⏟⏞⏞⏞⏟

ΔNnuc
A

= −ΔNB (11.30)

These terms can be identified as the electrophilic (ele) and nucleophilic (nuc) contri-
butions to the total charge transferred to species A. The justification to called them
in this way stands on the fact that considering that the global hardnesses are positive
and that IA > AB → AB − IA < 0, thenΔNele

A > 0, species A is receiving electrons, and
it is undergoing an electrophilic charge transfer process. A similar analysis shows
that the second term indeed is negative, corresponding to a process where species
A is donating charge, and it is undergoing a nucleophilic charge transfer process.
This global partitioning of the charge transferred in the PP model was also extended
to its local version. The detailed derivation of the local partitioning can be found in
Reference [47]. It must be mentioned that Roy and coworkers proposed a compre-
hensive decomposition analysis of stabilization energy (CDASE) using an energy
partitioning based on the changes of the energy of the species obtained from the PP
model [48–50]

11.6.2 Global Charge Transfer in the Two-Parabola Model

Let us consider an association reaction A + B → AB where A is donating electrons
to B and the geometries of the fragments or species are practically unchanged when
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Figure 11.3 Alignment of chemical potentials.
(a) Unfavorable alignment ⇒ NO charge transfer.
(b) Favorable alignment ⇒ THERE IS charge transfer.

(a)
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B
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(b)

forming the association product AB from those when they are free [51, 52]. Then,
since the two-parabola model distinguishes the direction of charge transfer, it is
possible to write that the change in the energy to form the associated complex con-
sists of one term related to the change in the energy of A where this species is donat-
ing electrons, ΔE−A, and another related to B where this species is gaining electrons,
ΔE+B , that is,

ΔEAB = ΔE−A + ΔE+B
= 𝜇−AΔN−

A +
1
2
𝜂A
(
ΔN−

A
)2 + 𝜇+BΔN+

B +
1
2
𝜂B
(
ΔN+

B
)2 (11.31)

Minimizing the previous equation with respect to ΔN−
A , imposing charge conserva-

tion, i.e. ΔN−
A = −ΔN+

B , one obtains that the number of electrons donated from A to
B is given by

ΔN−
A =

𝜇
+
B − 𝜇

−
A

𝜂A + 𝜂B
(11.32)

and the interaction energy is given by

ΔEAB = −
1
2

(
𝜇
+
B − 𝜇

−
A
)2

𝜂A + 𝜂B
(11.33)

It is straightforward, obtaining an expression for ΔN+
A considering that A is now

accepting electrons from B.
Consistency in using Eq. (11.32) demands that 𝜇−A must be greater than 𝜇+B , com-

plying that electrons flow from the species with higher chemical potential to that
with smaller. However, the evaluation of the chemical potentials, 𝜇− and 𝜇+ for the
neutral and isolated species, according to Eqs. (11.17)–(11.19), will provide values
aligned as shown in Figure 11.3. Figure 11.3a is the typical situation obtained for two
neutral species: the chemical potentials 𝜇− and 𝜇+ are very similar, and, as depicted,
it is impossible to fulfill the condition 𝜇−A > 𝜇

+
B . On the contrary, Figure 11.3b clearly

satisfies the condition, and, therefore, it is possible to have electron flow from A
to B. To obtain this alignment, it is necessary to consider the conditions on which
the reaction is taking place. Normally, one of the species in this association step
has acquired charge, positive or negative, and this suffices to obtain the alignment
shown. The message is that the correct application of the two-parabola model needs
a clear understanding of the reaction mechanism to explain that the reacting species
have their chemical potentials aligned allowing the electronic transfer among the
fragments.
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11.6.3 Local Charge Transfer in the Two-Parabola Model

The functional Taylor expansion of the energy with respect to the electron density,
up to second order, is given by

ΔE = ∫ dr
(

𝛿E
𝛿𝜌(r)

)
v(r)

Δ𝜌(r)

+ 1
2 ∫ ∫ dr dr′

(
𝛿

2E
𝛿𝜌(r)𝛿𝜌(r′)

)
v(r)

Δ𝜌(r) Δ𝜌(r′)
(11.34)

Substituting Eq. (11.5) for the chemical potential, identifying the second functional
derivative as the hardness kernel 𝜂(r, r′), and writing the change in the electron den-
sity as Δ𝜌(r) = f (r) ΔN, one has that

ΔE = ∫ dr 𝜇 f (r)ΔN + 1
2 ∫ ∫ dr dr′ 𝜂(r, r′) f (r) f (r′) (ΔN)2 (11.35)

which can be written as

ΔE = ∫ dr f (r)
[
𝜇 ΔN + 1

2
𝜂 (ΔN)2

]
= ∫ drΔ𝜀(r) (11.36)

where we have introduced the local energy change per volume or local energy den-
sity,Δ𝜀(r). This equation can be written distinguishing the directions of charge trans-
fer and using the ansatz of the two-parabola model. Then, it takes the form

ΔE+∕− = ∫ dr f +∕−(r)
[
𝜇
+∕− ΔN+∕− + 1

2
𝜂

(
ΔN+∕−)2

]
= ∫ drΔ𝜀+∕−(r)

(11.37)

Writing the integral over all space as a sum of integrals over the atoms comprising
the molecule or fragment,

ΔE+∕− =
∑

k
𝜀
+∕−
k

=
∑

k
f +∕−k

[
𝜇
+∕− ΔN+∕− + 1

2
𝜂

(
ΔN+∕−)2

] (11.38)

where the sum over k runs over the atoms in the molecule. Note that given that the
term in brackets does not depend on the index k, it can be taken out of the sum, and
using the fact that the integral of the Fukui function equals one, the last expression
reduces correctly to the energy change in terms of the global reactivity indexes of
the two-parabola model (Eq. (11.15)). Proceeding analogously as it was done in the
global case, but using the local energy density 𝜀 for each of the reacting species,
then, for a reaction where A gives away electrons to B, the local change in the energy
density can be written as

Δ𝜀ab =
a∑

𝛼∈A
Δ𝜀−

𝛼
+

b∑
𝛽∈B
Δ𝜀+

𝛽

=
a∑

𝛼∈A
f −
𝛼

[
𝜇
−
A ΔN−

A +
1
2
𝜂A

(
ΔN−

A
)2
]

+
a∑
𝛽∈B

f +
𝛽

[
𝜇
+
B ΔN+

B +
1
2
𝜂B

(
ΔN+

B
)2
]

(11.39)
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The energy density is labeled with the indexes ab indicating that in its evaluation,
one is considering a atoms from species A and b atoms from species B. The num-
ber of atoms considered must be less than the total number atoms in each fragment;
otherwise, the results of the local approach will be identical to those of the local one.
In the application discussed below, the determination of the number of atoms will
be clarified. Minimizing Eq. (11.39) with respect to ΔN−

A , imposing charge conser-
vation, ΔN+

B = −ΔN−
A , leads to the following expression for the number of electrons

transferred by species A when selecting a atoms from A and b atoms from B

ΔN−
A,ab =

(
𝜇
+
B
∑b
𝛽∈B f +

𝛽

)
−
(
𝜇
−
A
∑a
𝛼∈A f −

𝛼

)
(
𝜂B

∑b
𝛽∈B f +

𝛽

)
+
(
𝜂A

∑a
𝛼∈A f −

𝛼

) (11.40)

The successful application of the local model depends very strongly on the proper
selection of the reactive atoms in species A and B, as it has been shown in the
literature [53].

11.7 An Illustrative Application

The charge transfer models presented in Section 11.6 have been applied to the follow-
ing problems: complexation reaction of nickel by alkenes (back-donation), hydration
of aldehydes and ketones producing geminal diols, addition of molecular bromine to
alkenes, the [4+2] Diels–Alder cycloaddition of cyclopentadiene and cyanoalkenes,
back-donation of phosphines in transition metal complexes, nucleophilic reactivity
of indoles, hydration of alkenes, aromatic nitration, and electron donor–acceptor
complexes. These are presented and discussed in References [47, 53–57].

As an illustrative application of the formalism, the global and local two-parabola
models are used to study the formation of complexes between a series of substituted
nitrobenzenes and 1,3-diethylurea. These complexes are of importance in the
electrochemical technique called electron transfer-controlled hydrogen bonding
(ETCHB) where the strength of H-bonds is increased either by reduction of a
H-acceptor or oxidation of a H-donor. The experimental binding constants (Kb)
between substituted reduced nitrobenzenes (H-acceptor) and urea derivatives
(H-donor) have been recently determined [57]. The details of this problem can be
found in Reference [53].

Thirteen substituted nitrobenzenes were considered. The geometries of the
nitrobenzenes and 1,3-diethylurea were fully optimized, without symmetry con-
straints; the stationary points were characterized by a frequency analysis, showing
that all the structures reported are minima on the potential energy surface.
The generalized gradient approximation exchange correlation energy functional
(PBE) and the split valence triple zeta with polarization basis function (TZVP)
basis set were used. The condensed Fukui functions were calculated through the
response-of-molecular fragment approach [58], with the scheme proposed by Yang
and Mortier [59], using the Hirshfeld population analysis [60]. This problem shows
very clearly the relevance of reaction conditions in the calculation of the chemical
reactivity indexes necessary to evaluate the amount of charge transfer. In this case,
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the electrochemical control drives the nitrobenzenes to its reduced form, i.e. they
have a negative charge. Thus, the reference system nitrobenzene species is the
anion, and with this reference, the chemical potentials of all nitrobenzenes are
higher than the chemical potential of the diethyl urea, thus fulfilling the condition
𝜇
−
A > 𝜇

+
B . As it can be seen in Table 4 of Reference [53], the chemical potentials of

the anionic nitrobenzenes are between−0.91 and 0.31, while the chemical potential
of 1,3-diethylurea is−0.93 eV. Therefore, the transfer of electrons from the nitroben-
zenes to the 1,3-diethylurea is possible. The data in Table 4 of Reference [53] shows
that the increase in the binding constant Kb is related with a corresponding increase
in the absolute value ofΔN−

A . The correlation between Kb and the amount of charge
transferred from the nitrobenzenes to the diethylurea is depicted in Figure 11.4.
Using the values of the global reactivity indexes reported in Table 4 of Reference
[53] and the condensed Fukui functions reported in this same reference, it is
possible to evaluate the local charge transfer for different combinations of a atoms
from the nitrobenzenes and b atoms from the 1,3-diethylurea. The protocol used
in selecting the best combination or the most reactive atoms is to start with those
atoms with the higher values of the condensed Fukui functions and subsequently
adding atoms with lower values of the condensed Fukui functions. The pattern
most frequently observed is that there are optimal combinations ab providing the
best correlation coefficients. Interestingly, in several cases, the atoms associated
to the best correlation do not follow the order of decreasing condensed Fukui
functions. In the situation discussed here, the correlation coefficient of the linear fit
is marginally better in the local model than in the global model. However, the most
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Figure 11.4 Correlation between the binding constants Kb and the amount of GLOBAL
charge transferred ΔN−

A . The data are from Table 4 in Reference [53]. The linear fit equation
and the correlation coefficient are displayed on the top right.
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Figure 11.5 (a) Most favourable atomic interactions predicted by the local model;
(b) correlation between the binding constants Kb and the amount of LOCAL charge
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A,ab. The data are from Table 4 in Reference [53]. The linear fit equation and
the correlation coefficient are displayed on the top right. For this correlation, the three
atoms circled in red on the nitrobenzene and the three atoms circled in blue on the
1,3-diethylurea are the ones included in the calculation of the local charge transferred.
Thus, in this case, a = 3 and b = 3, and consequently, the local charge transferred is
denoted as ΔN−

A,33.

surprising and satisfying result is that, as it can be seen in Figure 11.5, the optimal
combination of atoms in the local model, the red and blue circled atoms, is indeed
those responsible for the formation of the H-bonds in the associated complex.
This result shows nicely the applicability of the perturbative approach to chemical
reactivity provided by CDFT.

11.8 Summary and Perspectives

The fundamentals of the charge transfer models developed within the context of
CDFT, which are supported on the perturbative approach, were presented and
used to justify that for association reactions where the geometries of the interacting
species are not distorted much from their free structures, then the changes in the
energy of reaction can be attributed mainly to charge transfer.

The prototypical and emblematic model proposed by Parr and Pearson, the ven-
erable PP model, was discussed with didactic extension and intention. It was shown
how from this very simple model key concepts in chemistry like electronegativity
and hardness find a strong theoretical support.

The Perdew, Parr, Levy, and Balduz (PPLB), or ensemble, theorem was presented,
and its consequences were briefly discussed, focusing on the behavior of the energy
as a function of the number of electrons at 0 K. It was discussed that the PPLB implies
that the derivatives of the energy, and any other size consistent property, with respect
to the number of electrons at 0 K are discontinuous when evaluated at any positive
integer number of electrons. This corollary of the ensemble theorem has important
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chemical consequences, namely, the process of electron transfer is not symmetric,
i.e. the processes of giving and accepting electrons at 0 K occur at different rates.

It was mentioned several times along the text that the discontinuities in the deriva-
tives occur at 0 K. The statement was not elaborated any further to avoid opening a
topic requiring more space, and it indeed is explored in detail in Chapter 8 of this
book. Let us just mention that incorporating temperature in CDFT paves the way
to several conflicting issues at 0 K, like the derivative discontinuities. Readers are
encouraged to see Chapter 8 for more details about this issue.

Arguing that incorporating the derivatives discontinuities is very important for
a better description of the charge transfer processes, the two-parabola model pro-
posed by Gázquez, Cedillo, and Vela was presented and discussed, emphasizing that
this model motivates and justifies the introduction of two new chemical reactivity
indexes, the electrodonating and electroaccepting powers, having a global and local
version.

For an association reaction where the external potentials of the interacting species
or fragments are unchanged, the general approach to determine the amount of
charge transfer is derived. This simple derivation is very well known to the expert
in CDFT, but again, its presentation has mainly didactic intentions.

The amount of charge transferred was derived for the PP and the two-parabola
model. For the former a very simple approach is introduced to partition the amount
of charge transferred in an electrophilic and nucleophilic contribution. In the later,
the direction of charge transfer is naturally and automatically incorporated by
construction of the energy function. Both models have global and local versions,
but for the sake of space, the local model was only explained in detail for the
two-parabola case.

A representative application of the model to the description of the electro-
chemical formation of hydrogen bonded complexes of substituted nitrobenzenes
and 1,3-diethylurea was discussed; this example shows that the CDFT charge
transfer models provide excellent correlation between binding constants, reaction
constants, and other properties of associated reactions where charge transfer is the
most important mechanism underlying the reaction process.

Let us conclude this chapter mentioning briefly some of the avenues that, in our
opinion, are opened and waiting to be explored. First and very obvious is the appli-
cation of the theoretical formalism herein presented to other systems. A second
direction is exploring the incorporation of terms accounting for the change in the
external potentials. This will give the possibility of relaxing the assumption that the
geometries of the interacting fragments or species are unchanged in the association
reaction. Directly related to the previous topic, it is possible considering that this
model is very well suited for a better educated approach to molecular docking and
maybe force fields. Finally, the good correlations obtained can shed some light about
the underlying reasons for the success of the many reactivity scales that have been
empirically proposed in several branches of chemistry.



References 225

References

1 Muratov, E.N., Bajorath, J., Sheridan, R.P. et al (2020). QSAR without borders.
Chem. Soc. Rev. 49 (11): 3525–3564.

2 Le, T., Epa, V.A., Burden, F.R., and Winkler, D.A. (2012). Quantitative
structure-property relationship modeling of diverse materials properties. Chem.
Rev. 112 (5): 2889–2919.

3 Verma, R.P. and Hansch, C. (2011). Use of C-13 NMR chemical shift as QSAR/
QSPR descriptor. Chem. Rev. 111 (4): 2865–2899.

4 Mortier, W.J. (1987). Electronegativity equalization and its applications. Struct.
Bond. 66: 125–143.

5 Mortier, W.J., Ghosh, S.K., and Shankar, S. (1986). Electronegativity equalization
method for the calculation of atomic charges in molecules. J. Am. Chem. Soc. 108
(15): 4315–4320.

6 Mortier, W.J., Van Genechten, K., and Gasteiger, J. (1985). Electronegativ-
ity equalization: application and parametrization. J. Am. Chem. Soc. 107 (4):
829–835.

7 Parr, R.G. and Yang, W. (1994). Density-Functional Theory of Atoms and
Molecules, International Series of Monographs on Chemistry). New York, USA:
Oxford University Press.

8 Ayers, P.W., Anderson, J.S.M., and Bartolotti, L.J. (2005). Perturbative perspec-
tives on the chemical reaction prediction problem. Int. J. Quantum Chem. 101
(5, SI): 520–534.

9 Parr, R.G., Donnelly, R.A., Levy, M., and Palke, W.E. (1978). Electronegativity -
density functional viewpoint. J. Chem. Phys. 68 (8): 3801–3807.

10 Parr, R.G. and Pearson, R.G. (1983). Absolute hardness: companion parameter to
absolute electronegativity. J. Am. Chem. Soc. 105 (26): 7512–7516.

11 Pearson, R.G. (1997). Chemical Hardness. Wiley.
12 Fuentealba, P. and Parr, R.G. (1991). Higher-order derivatives in density-

functional theory, especially the hardness derivative delta-Eta/delta-N. J. Chem.
Phys. 94 (8): 5559–5564.

13 Ayers, P.W. and Levy, M. (2000). Perspective on “Density functional approach
to the frontier-electron theory of chemical reactivity” - Parr, R.G., Yang,
W. (1984) J. Am. Chem. Soc. 106: 4049–4050. Theor. Chem. Acc. 103 (3–4):
353–360.

14 Parr, R.G. and Yang, W.T. (1984). Density functional-approach to the frontier-
electron theory of chemical-reactivity. J. Am. Chem. Soc. 106 (14): 4049–4050.

15 De Proft, F., Ayers, P.W., Fias, S., and Geerlings, P. (2006). Woodward–Hoffmann
rules in density functional theory: initial hardness response. J. Chem. Phys. 125
(21). 214101–214110.

16 Morell, C., Grand, A., and Toro-Labbe, A. (2006). Theoretical support for using
the Delta f(r) descriptor. Chem. Phys. Lett. 425 (4–6): 342–346.



226 11 Charge Transfer Models in Conceptual DFT

17 Morell, C., Grand, A., and Toro-Labbe, A. (2005). New dual descriptor for chemi-
cal reactivity. J. Phys. Chem. A 109 (1): 205–212.

18 Sablon, N., De Proft, F., and Geerlings, P. (2010). The linear response kernel:
inductive and resonance effects quantified. J. Phys. Chem. Lett. 1 (8): 1228–1234.

19 Liu, S., Li, T., and Ayers, P.W. (2009). Potentialphilicity and potentialphobic-
ity: reactivity indicators for external potential changes from density functional
reactivity theory. J. Chem. Phys. 131 (11). 114106–114113

20 Berkowitz, M. and Parr, R.G. (1988). Molecular hardness and softness, local
hardness and softness, hardness and softness kernels, and relations among these
quantities. J. Chem. Phys. 88 (4): 2554–2557.

21 Iczkowski, R. and Margrave, J.L. (1961). Electronegativity. J. Am. Chem. Soc. 83
(17): 3547–3551.

22 Mulliken, R.S. (1934). A new electroaffinity scale; together with data on valence
states and on valence ionization potentials and electron affinities. J. Chem. Phys.
2 (11): 782–793.

23 Miranda-Quintana, R.A., Ayers, P.W., and Heidar-Zadeh, F. (2021). Reactivity and
charge transfer beyond the parabolic model: the “—Delta mu— Big is Good”
principle. ChemistrySelect 6 (1): 96–100.

24 Parr, R.G., Von Szentpaly, L., and Liu, S.B. (1999). Electrophilicity index. J. Am.
Chem. Soc. 121 (9): 1922–1924.

25 Chattaraj, P.K., Sarkar, U., and Roy, D.R. (2006). Electrophilicity index. Chem.
Rev. 106 (6): 2065–2091.

26 Chattaraj, P.K. and Roy, D.R. (2007). Update 1 of: electrophilicity index. Chem.
Rev. 107 (9): PR46–PR74.

27 Chattaraj, P.K., Giri, S., and Duley, S. (2011). Update 2 of: electrophilicity index.
Chem. Rev. 111 (2): PR43–PR75.

28 Perdew, J.P., Parr, R.G., Levy, M., and Balduz, J.L. (1982). Density-functional the-
ory for fractional particle number - derivative discontinuities of the energy. Phys.
Rev. Lett. 49 (23): 1691–1694.

29 Yang, W.T., Zhang, Y.K., and Ayers, P.W. (2000). Degenerate ground states and a
fractional number of electrons in density and reduced density matrix functional
theory. Phys. Rev. Lett. 84 (22): 5172–5175.

30 Ayers, P.W. (2008). The dependence on and continuity of the energy and other
molecular properties with respect to the number of electrons. J. Math. Chem. 43
(1): 285–303.

31 Gázquez, J.L., Cedillo, A., and Vela, A. (2007). Electrodonating and electroaccept-
ing powers. J. Phys. Chem. A 111 (10): 1966–1970.

32 Orozco-Valencia, Á.U. and Vela, A. (2012). The electrodonating and electroac-
cepting powers in atoms. J. Mex. Chem. Soc. 56 (3): 294–301.

33 Yanez, O., Osorio, M.I., Areche, C. et al (2021). Theobroma cacao L. compounds:
theoretical study and molecular modeling as inhibitors of main SARS-CoV-2
protease. Biomed. Pharmacother. 140. 111764–111776.

34 Martinez, A. (2021). Electron donor-acceptor capacity of selected pharmaceuti-
cals against COVID-19. Antioxidants 10 (6). 979–990.



References 227

35 Goode-Romero, G., Dominguez, L., Vargas, R. et al. (2021). Analyzing the inter-
action energy between dopaminergic agents and DRD2: is there any difference
between risperidone (antagonist), aripiprazole (partial agonist) and pramipexole
(agonist)? Comput. Theor. Chem. 1197. 113125–113130.

36 Dahmani, K., Galai, M., Ouakki, M. et al. (2021). Quantum chemical and molec-
ular dynamic simulation studies for the identification of the extracted cinnamon
essential oil constituent responsible for copper corrosion inhibition in acidified
3.0 wt% NaCl medium. Inorg. Chem. Commun. 124. 108409–108420.

37 Goode-Romero, G., Winnberg, U., Dominguez, L. et al. (2020). New information
of dopaminergic agents based on quantum chemistry calculations. Sci. Rep. 10
(1). 21581–21592.

38 Sanderson, R.T. (1983). Electronegativity and bond-energy. J. Am. Chem. Soc. 105
(8): 2259–2261.

39 Sanderson, R.T. (1955). Partial charges on atoms in organic compounds. Science
121 (3137): 207–208.

40 Sanderson, R.T. (1951). An interpretation of bond lengths and a classification of
bonds. Science 114 (2973): 670–672.

41 Ayers, P.W. (2007). The physical basis of the hard/soft acid/base principle.
Faraday Discuss. 135: 161–190.

42 Ayers, P.W., Parr, R.G., and Pearson, R.G. (2006). Elucidating the hard/soft
acid/base principle: a perspective based on half-reactions. J. Chem. Phys. 124
(19). 194107–194114.

43 Chattaraj, P.K. and Ayers, P.W. (2005). The maximum hardness principle implies
the hard/soft acid/base rule. J. Chem. Phys. 123 (8). 086101–086102.

44 Ayers, P.W. (2005). An elementary derivation of the hard/soft-acid/base principle.
J. Chem. Phys. 122 (14). 141102–141104.

45 Chattaraj, P.K., Gomez, B., Chamorro, E. et al. (2001). Scrutiny of the HSAB
principle in some representative acid-base reactions. J. Phys. Chem. A 105 (38):
8815–8820.

46 Chattaraj, P.K., Lee, H., and Parr, R.G. (1991). HSAB principle. J. Am. Chem. Soc.
113 (5): 1855–1856.

47 Orozco-Valencia, A.U., Gázquez, J.L., and Vela, A. (2017). Global and local par-
titioning of the charge transferred in the Parr–Pearson model. J. Phys. Chem. A
121 (20): 4019–4029.

48 Sarmah, A., Saha, S., Bagaria, P., and Roy, R.K. (2012). On the complementar-
ity of comprehensive decomposition analysis of stabilization energy (CDASE) -
scheme and supermolecular approach. Chem. Phys. 394 (1): 29–35.

49 Saha, S., Roy, R.K., and Pal, S. (2010). CDASE-A reliable scheme to explain the
reactivity sequence between Diels–Alder pairs. Phys. Chem. Chem. Phys. 12 (32):
9328–9338.

50 Bagaria, P., Saha, S., Murru, S. et al. (2009). A comprehensive decomposition
analysis of stabilization energy (CDASE) and its application in locating the
rate-determining step of multi-step reactions. Phys. Chem. Chem. Phys. 11 (37):
8306–8315.



228 11 Charge Transfer Models in Conceptual DFT

51 Ramirez-Ramirez, J.Z., Vargas, R., Garza, J., and Gázquez, J.L. (2010). Sim-
ple charge-transfer model for metallic complexes. J. Phys. Chem. A 114 (30):
7945–7951.

52 Vazquez-Mayagoitia, A., Garza, J., Vargas, R. et al (2010). Simple charge transfer
model for one electron oxidation and reduction processes: describing reactive
sites in benzocarbazolediones and gallates. J. Mol. Struct. THEOCHEM 943
(1–3, SI): 59–64.

53 Orozco-Valencia, U., Gázquez, J.L., and Vela, A. (2018). Role of reaction con-
ditions in the global and local two parabolas charge transfer model. J. Phys.
Chem. A 122 (6): 1796–1806.

54 Orozco-Valencia, U., Gázquez, J.L., and Vela A. (2018). Global and local charge
transfer in electron donor-acceptor complexes. J. Mol. Model. 24 (9). 250–263.

55 Orozco-Valencia, U., Gázquez, J.L., and Vela, A. (2018). Reactivity of indoles
through the eyes of a charge-transfer partitioning analysis. Acta Phys. Chim. Sin.
34 (6): 692–698.

56 Orozco-Valencia, U., Gázquez, J.L., and Vela, A. (2017). Donation and back-
donation analyzed through a charge transfer model based on density functional
theory. J. Mol. Model. 23 (7). 207–215.

57 Martinez-Gonzalez, E. and Frontana, C. (2014). Employment of electrodonating
capacity as an index of reactive modulation by substituent effects: application for
electron-transfer-controlled hydrogen bonding. J. Org. Chem. 79 (3): 1131–1137.

58 Bultinck, P., Fias, S., Van Alsenoy, C. et al. (2007). Critical thoughts on comput-
ing atom condensed Fukui functions. J. Chem. Phys. 127 (3). 034102–034112.

59 Yang, W. and Mortier, W.J. (1986). The use of global and local molecular-
parameters for the analysis of the gas-phase basicity of amines. J. Am. Chem.
Soc. 108 (19): 5708–5711.

60 Hirshfeld, F.L. (1977). Bonded-atom fragments for describing molecular
charge-densities. Theor. Chim. Acta 44 (2): 129–138.



229

12

Reaction Electronic Flux
Luis Rincon1 and F. Javier Torres1,2

1Universidad San Francisco de Quito, USFQ, Instituto de Simulación Computacional, Grupo de Química
Computacional y Teórica, Departmento de Ingeniería Química, Diego de Robles y Via Interoceanica, Quito
17-1200-841, Ecuador
2Grupode Química Computacional y Teórica (QCT-UR), Facultad de Ciencias Naturales, Universidad del
Rosario, Ak. 24 #63C-69, Bogotá, Colombia, 111221

12.1 Introduction

The use of modern computational chemistry methodologies in the prediction of
molecular properties has become increasingly popular, mainly due to significant
improvements in the algorithms, the accuracy of the methods, and the advent of
powerful computational resources. This is particularly true in the area of thermo-
chemistry where researchers in industry and academia perform quantum chemistry
calculations on a routinely basis. Due to the impressive success, there has been an
increased interest in the application of state-of-the-art quantum chemistry method-
ologies in the study of physical and chemical phenomena in a wide variety of techno-
logical areas including biomedicine, chemical catalysis, environmental chemistry,
combustion and alternative sources of energy, climate assessment, nanoelectron-
ics, and the rational design of materials at the nano-scale. The field has reached
such state of maturity that modern quantum chemistry methods are currently used
not only for the interpretation of experimental measurements but also to guide the
experimental design for measurements of novel physical and chemical properties of
a wide variety of chemical system and advanced materials.

One of the areas, where major advances in quantum chemistry methodologies
have made a significant impact, is the quantitative description of mechanisms,
energetics, and dynamics governing chemical reactions. Today, scientists routinely
employ ab initio quantum chemical methodologies to map potential energy surfaces
(PESs) of reactive systems in the vicinity of the minimum energy path (MEP) in
order to study the transformation of reactants into products. One of the most
efficient ways to accomplish this entails is the use of the intrinsic reaction coordi-
nate (IRC) concept originally developed by Fukui [1–5]. Due to the availability of
analytical gradient methods [6–8], the implementation of reaction path following
algorithms in the realm of ab initio quantum mechanical calculations has allowed

Conceptual Density Functional Theory: Towards a New Chemical Reactivity Theory, First Edition.
Edited by Shubin Liu.
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scientists to study the energetics, mechanisms, and electronic structure properties
of reacting systems involving relatively large polyatomic systems [9–15].

One of the most active areas of research in density functional theory (DFT) has
been the so-called “conceptual DFT” [16], which provides with a strong theoreti-
cal background, important chemical concepts, such as electronegativity, chemical
hardness, and chemical softness, as well as their relations to chemical principles,
such as Hard–Soft Acid–Base (HSAB), Electronegative Equalization, and Maximum
Hardness. The origins of conceptual DFT can be traced back to the pivotal work
of Parr who developed the theoretical formalism that establishes the direct rela-
tion between the chemical potential and the fundamental equations of DFT [17,
18]. Due to the development of computationally efficient DFT algorithms imple-
mented in a variety of popular commercial and noncommercial quantum chemistry
software packages, the literature has seen an explosion of applications employing
conceptual DFT. This is particularly true in the case of chemical reactivity theory
(CRT) that allows the connection between DFT concepts and the study of prop-
erties such as chemical bonding, reactivity, and dynamics. The scientific literature
also abounds with applications of conceptual DFT in the study of changes of chemi-
cal reactivity indices (as well as other electronic structure properties) along reaction
paths [16].

Along with a reaction path, a redistribution of the electron density among the
atoms within the molecules is observed. Conceptual density functional theory
is quite well suited to describe this electronic reorganization in a chemical path
throughout descriptors like electronic chemical potential (𝜇) and molecular hard-
ness (𝜂). Furthermore, the study of the profiles 𝜇 and 𝜂 along a reaction coordinate
has been shown to be useful to rationalize different aspects of the progress of
chemical reactions.

This article introduces the variation of the first derivative of the electronic energy,
the reaction force (RF), and the first derivative of the chemical potential, the reac-
tion electronic flux (REF), along the reaction coordinate. The contents of the present
chapter are organized as follows: Section 12.2 introduces the RF and its interpre-
tation. Section 12.3 introduces the REF and its decomposition. Furthermore, the
application of the REF concept is briefly illustrated with the analysis of a pyrolysis
reaction. Finally, Section 12.5 contains some final remarks.

12.2 Reaction Force

12.2.1 Definition

A typical potential energy profile for a reaction, denoted in the follow as E(𝜉), is
depicted in Figure 12.1a for a single step reaction in which the energy of the reac-
tant and the product is the same, ΔE = 0. In Figure 12.1, 𝜉 represents the IRC, or
some alternative definition of the reaction coordinate. For convenience, in the rest
of this manuscript, 𝜉 is always scaled between 𝜉 = 𝜉R = 0 (Reactant) and 𝜉 = 𝜉P = 1
(Product). The scaled coordinate can therefore be viewed as a measure of the reac-
tion progress going from reactants (𝜉 = 0) to products (𝜉 = 1), passing through a
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Figure 12.1 (a) Potential energy profile, E(𝜉), for a single step reaction along the reaction
coordinate, 𝜉. (b) Reaction force profile, F(𝜉). (c) Reaction force constant profile, 𝜅(𝜉).
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transition state, where E(𝜉) takes its maximum at 𝜉 = 𝜉TS. The energy difference
between the transition state maximum and the reactant minimum is the activation
barrier for the forward reaction (ΔE‡F). On the other hand, the difference between
the transition state and the product minimum is the activation barrier for the reverse
reaction (ΔE‡R). Obviously, forward and reverse barriers are related through the reac-
tion energy: ΔE = ΔE‡F − ΔE‡R. Additional information to E(𝝃) can be obtained tak-
ing their derivatives with respect 𝜉. In an analogy with the classical definition of
mechanical force, the negative of the first-order derivative of the potential energy
respect the reaction coordinate is defined as the RF [19–25]:

F(𝜉) = −dE(𝜉)
d𝜉

(12.1)

while the second-order derivative is referred as the reaction force constant
(RFC) [26–29]:

𝜅(𝜉) = d2E(𝜉)
d𝜉2 = −dF(𝜉)

d𝜉
(12.2)

The RF and RFC for the energy profile of Figure 12.1a is depicted in Figure 12.1b,c,
respectively. A typical RF profile has a minimum value for 𝜉 between the reactant
minimum (𝜉R) and the transition state maximum (𝜉TS), this value is denoted as 𝜉

𝛼
; in

addition, a maximum is located between the transition state maximum (𝜉TS) and the
product minimum (𝜉P), 𝜉

𝛾
. Occasionally, other extremes of the RF can be found [30];

however, for the sake of simplicity, we assume that only one minimum, 𝜉
𝛼
, and one

maximum, 𝜉
𝛾
, are present in the RF. The extremes of the RF, along with the critical

points of E(𝜉), define a partition of 𝜉 into four regions: (i) 𝜉R → 𝜉
𝛼
, (ii) 𝜉

𝛼
→ 𝜉TS,

(iii) 𝜉TS → 𝜉
𝛾
, and (iv) 𝜉

𝛾
→ 𝜉P. These four regions are identified by different colors

in Figure 12.1: yellow, red, green, and blue, respectively. The RF in regions (i) and
(ii) is negative, while in regions (iii) and (iv) is positive. By integrating the RF along
the reaction coordinate, the negative of the energy between the two 𝜉 limits can be
obtained [20–25]. In this way, the activation barrier for the forward reaction can be
decomposed in two contributions corresponding to regions (i) and (ii):

ΔE‡F = E(𝜉TS) − E(𝜉R)

= −∫
𝜉
𝛼

𝜉R

F(𝜉)d𝜉 − ∫
𝜉TS

𝜉
𝛼

F(𝜉)d𝜉

= w(i) + w(ii) (12.3)

in an equivalent way, the activation barrier for the reverse reaction is defined in terms
of the contributions of regions (iii) and (iv):

ΔE‡R = E(𝜉TS) − E(𝜉P)

= ∫
𝜉
𝛾

𝜉TS

F(𝜉)d𝜉 + ∫
𝜉P

𝜉
𝛾

F(𝜉)d𝜉,

= w(iii) + w(iv) (12.4)

Naturally, the reaction energy results from the contributions of the four regions:

ΔE = w(i) + w(ii) − w(iii) − w(iv) (12.5)
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The RFC, Figure 12.1c, is positive in the regions (i) and (iv), while negative in the
regions region of influence of the transition state, regions (ii) and (iii). The fact that
the RFC is negative in the entire region between 𝜉

𝛼
and 𝜉

𝛾
suggests that this is in

fact the transition region (associated with an imaginary frequency) [22]. The idea
of employing a transition region along the reaction coordinate, and not just a sin-
gle transition state point, is in full agreement with the concept of a transient state
between reactant and product observed from transition state spectroscopy exper-
iments by Polanyi and Zewail [31]. From the study of 12 double proton transfer
reactions, it has been clear that the number of minima of RFC in regions (ii) and
(iii) indicates the degree of synchronization of concerted reactions [27]. For most
synchronous mechanisms, the profile of 𝜅(𝜉) has a single minimum in the transi-
tion region; in contrast, for nonsynchronous mechanisms, two minima are observed.
Such assessment of the synchronicity is not easily detected by the analysis of E(𝜉) or
F(𝜉) (Figure 12.1a,b).

12.2.2 Interpretation

This partition in four regions has been extensively studied for some prototypical
reactions, such as SN 2 mechanisms [32–34], olefin addition [35, 36], proton transfer
[37–41], molecular rearrangements [42], tautomerizations [43], deamination [44],
chemisorption [45], the activation of H–H and C–H bonds by frustrated Lewis pairs
[46], and the C–F bond cleavage mediated by cob[I]alamin-based structures [30].
The previous list is far from exhaustive, so the reader can be referred to some reviews
on this field for a more comprehensive list [25]. From the study of these reactions,
some general trends have emerged [20–25]. The process observed in region (i) is
typically associated with the geometric reorganization of the reactant, but a small
(or negligible) bond breaking or bond formation. The regions (ii) and (iii) involve
a major electronic reorganization, region (ii) represents energy uptake (negatives
forces), while region (iii) represent energy release (positives forces); at the end of this
region, most of the bonds are broken in the reactant and formed into the product. The
region (iv) involves the geometric relaxation of the product in their path to the equi-
librium structure, where the main bonding changes take place. Therefore, regions
(i) and (iv) are considered the structural zones and the combination of (ii) and (iii),
that include the transition state, are considered the transition region. It is important
to point out that, by no means, these trends are exclusive, and small degrees of elec-
tronic reorganization are observed usually at regions (i) and (iv), conversely, region
(ii) and (iii) involve small geometric changes.

12.3 Reaction Electronic Flux

12.3.1 The Chemical Potential

The electronic chemical potential (𝜇) is the central concept in understanding the
changes along a reaction path [16–18]. For an N-electron system, the electronic
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chemical potential is defined as the partial derivative of the energy respect to the
number of electron embedded within an external nuclear potential:

𝜇 =
(
𝜕E
𝜕N

)
v

(12.6)

This descriptor accounts for the tendency of electrons to escape from an equi-
librium distribution. Moreover, the electronic chemical potential is introduced
as a Lagrange multiplier in the search for an electron density that minimizes the
energy for account that the density always integrate to the number of electrons.
One important property of 𝜇 is its link with the negative of the electronegativ-
ity (𝜇 = −𝜒) and the Sanderson’s electronegativity equalization principle that
state [47, 48]

When two or more atoms, initially different in electronegativity, combine
chemically, their electronegativities become equalized in the molecule.
The equalization of electronegativity occurs through the adjustment of the
polarities of the bonds which is pictured as resulting in a partial charge on
each atom. That is, electron loss causes increase, and electron gain decrease
in electronegativity.

Due to the derivative discontinuity of the energy with respect to N, the usual
approach is to compute the electronegativity by taking the average of the left- (𝜇l)
and right-hand-side (𝜇r) derivatives:

𝜇l = E(N = N0) − E(N = N0 − 1) = −I (12.7)

𝜇r = E(N = N0 + 1) − E(N = N0) = −A (12.8)

𝜇 = 1
2
(𝜇l + 𝜇r) = −

1
2
(I + A) (12.9)

where I and A are, respectively, the ionization energy and electron affinity of the
N0 electron system. It must be noted that this approach is equivalent to the use
of the Mulliken definition of electronegativity. As an approximation to Eq. (12.9),
and based on Koopmans’ theorem, the ionization energy and electron affinity
can be replaced by the highest occupied molecular orbital (HOMO) and lowest
unoccupied molecular orbital (LUMO) energy (𝜖HOMO and 𝜖LUMO), respectively,
yielding

𝜇 = 1
2
(𝜖HOMO + 𝜖LUMO) (12.10)

This last approximation is useful since the direct calculation of I and A is in
many cases plagued on technical problems (in particular, the calculation of anionic
systems). Equation (12.10) offers an useful interpretation of 𝜇 in terms of the
frozen orbitals approach. Alternatively to the finite difference approach, analytical
methods have been developed to calculate energy derivatives with respect to N,
leading to coupled perturbed Hartree–Fock equations. Extreme care must be exerted
when comparing values obtained with different methodologies: finite difference
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Koopmans-type approximation, analytical derivatives, sometimes combined with
experimental data. A careful comparison of the 𝜇 values calculated using Eqs. (12.9)
and (12.10) by Komorowski and coworkers [49, 50] shows a good correlation in
atomic and molecular systems.

12.3.2 The Reaction Electronic Flux Concept

The REF along a reaction path (𝜉) was introduced by Toro-Labbé and coworkers in
the form [51–53]:

J
𝜇
(𝜉) = Q d𝜇

d𝜉
(12.11)

What does it mean? Briefly, REF is introduced by making an analogy with
the general form of the laws for macroscopic transport phenomena, for example
Newton’s law of viscosity, Fick’s law of diffusion, or Fourier’s law for heat. In one
dimension, the transport law equation is JX = −Q dX

d𝜉
, where JX is the flux (flow rate

per unit area) of property X , Q is a transport coefficient that measures how rapidly
a perturbed system returns to equilibrium, and dX

d𝜉
is the gradient force on property

X . Based on this interpretation, J
𝜇
(𝜉) accounts for the flow rate of the chemical

potential along a reaction path. For convenience, we assume in Eq. (12.11) that
Q = 1; however, this will deserve further analysis in the next sections.

The evolution of the chemical potential along the reaction path is indicative of
the electron reorganization that occurs in the system during a chemical reaction.
In a further analogy with classic thermodynamics, J

𝜇
(𝜉) profile can be used to

describe the spontaneity of the electronic activity during the reaction. Positive
values of the flux are associated with negative chemical potential, therefore account
for spontaneous changes in the electronic density which are related with bond
strengthening or forming processes, whereas negative values are indicative of
nonspontaneous electronic reordering that can be associated with bond weakening
or breaking processes.

It is expected that, along the reaction path, an electron density transfer between
reactant occurs in order to stabilize the system and to equalize the chemical potential
at equilibrium. This electron transfer can be scrutinized through an ad hoc decom-
position of the REF into intra- and intermolecular electronic contributions which
account for the polarization effects (Jp) and charge transfer effects (Jt), respectively:

J
𝜇
(𝜉) = Jp(𝜉) + Jt(𝜉) (12.12)

The intramolecular polarization can be estimated from a convenient partition of
the reactants in a number of reactive chemical fragments. If this is the case, we can
write Jp(𝜉) as:

Jp(𝜉) =
n∑

i=1
Ji

p(𝜉) (12.13)

where n is the number of reactive fragments. The Ji
p(𝜉) can be obtained from a coun-

terpoise calculation of the chemical potential of each reactive fragments along the



236 12 Reaction Electronic Flux

reaction path, and the derivation of this internal chemical potential lead to the polar-
ization contribution to the flux in the form:

Ji
p(𝜉) =

Ni

N
d𝜇i

d𝜉
(12.14)

where Ni is the number of electrons of fragment i and N is the total number of
electrons. The prefactor Ni

N
ensures that each fragment contribution is proportional

to their own number of electrons. The flux associated with the electronic transfer (Jt)
is taken as the difference between global J

𝜇
(𝜒) and Jp(𝜉) calculated from the isolated

fragments using the counterpoise method.
It is possible to estimate the fragment contribution to J

𝜇
(𝜒) and Jp(𝜉) by appealing

to the principle of equalization of the chemical potential [51–53]. According to this
principle, the chemical potential of all fragments is the same, the global chemical
potential (𝜇 = 𝜇i for all i). In this case, a convenient normalization of the contribu-
tion of each fragment to the total flux is

Ji(𝜉) =
Ni

N
d𝜇
d𝜉

(12.15)

and the contribution of each fragment associated with electron transfer result as:

Ji
t (𝜉) =

Ni

N

(
d𝜇
d𝜉

−
d𝜇i

d𝜉

)
(12.16)

12.3.3 REF Application

The REF concept has been extensively employed in the description of the elec-
tronic activity involved in different types of chemical reactions. Some examples
are the Diels–Alder reaction [54], inter- and intramolecular Proton transfer
[55, 56], hydrogenation and dihydrogenation of CO2 [57, 58], decomposition,
formation, and rearrangement reactions [59–61], among others. In the present
section, the REF concept is illustrated by considering the theoretical description
of the furfuryl acetate pyrolysis previously reported in Ref. [62]. In this study,
the high-temperature decomposition of furfuryl acetate was observed to yield
the uncommon methylenecyclobutenone compound and acetic acid as products,
through a multistep mechanism involving two [3+3] rearrangements and a subse-
quent hydrogen 𝛼-elimination step (Figure 12.2). It is important to point out that a
detailed description of the latter reaction is not among the purposes of the present
section; thus, the interested reader is referred to the main publication.

Since the 𝛼-elimination was determined to be the rate-limiting step [62], the RF
and REF analyses were employed to thoroughly describe this particular reaction
step. Figure 12.3 depicts the results of the IRC calculation and the corresponding
RF, where it is observed that, although an 𝛼-elimination is customarily treated as a
single concerted process, it consists of two discriminable stages in the present case.
The first stage (𝜉R − 𝜉SR

3 ) is solely characterized by a gradual decrease of the O–H
bond of the five-membered transition state (Figure 12.4), which goes from 2.2 to
1.8 Å. This proton transfer increases its change rate in the second stage (𝜉SR

3 − 𝜉SP
1 ),

where it reaches a final value of about ∼1.0 Å, whereas significant changes in the
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Figure 12.2 Multistep reaction pathway of furfuryl acetate pyrolysis as reported in [62].
R represents the acetate group. Source: Mora et al. [62].

associated C–H and C–O bonds are also observed. It is important to point out that,
although the RF allows the description of the 𝛼-elimination in a very detailed man-
ner, information on the electronic activity requires a further analysis by means of
the REF concept.

Figure 12.5 depicts the REF profile of the 𝛼-elimination process. As shown in
the graphic, the first stage of the 𝛼-elimination is characterized by a spontaneous
electronic reorganization, which agrees with the negligible geometrical changes
observed in this region of the reaction coordinate. In contrast, the second stage of
the process presents a sharp nonspontaneous REF, suggesting a rapid and important
electronic reorganization associated mainly with the C–O bond cleavage. The latter
observation suggests that the formation of the five-membered transition state can
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Figure 12.4 Graphical representation of the five-membered transition state involved in
the 𝛼-elimination of the furfuryl acetate pyrolysis. Source: Mora et al. [62].

be significantly favored by stabilizing the partial negative charge of oxygen atom in
the C𝛿

+ · · · O𝛿
− bond. The latter idea was confirmed in Ref. [62] by considering the

–C6 H5 phenyl group as the R substituent (Figure 12.4), which was expected to
actively contribute with the polarization of the C–O bond. Accordingly, the pyrol-
ysis of the furfuryl benzoate was observed to possess a five-membered transition
state that is about ∼5 kJ mol−1 more stable than its furfuryl acetate counterpart,
confirming the conclusion made on the basis of the REF analysis.
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12.4 Conclusions

We have presented the RF and REF approaches as useful descriptors to character-
ize the electronic activity taking place during a chemical reaction, which is of great
utility in conjunction with other methodologies of analysis. In this vein, it provides
crucial and valuable information to characterize reaction mechanisms. The power
of the REF as a descriptor to characterize the mechanism of chemical reactions has
been illustrated with the analysis of a pyrolysis reaction.

The susceptibility of a molecule to various types of reactions is assessed through
its response functions. Evaluating these response functions along the reaction path
can provide important additional information. Specifically, studying how global and
local reactivity indicators change along a reaction path can help locate transition
states, reveal mechanistic insights, and connect reactivity, bonding, and kinetics.
The methodologies presented in this chapter, in conjunction to others that allow
the dissection of chemical reactions, have an enormous potential of future applica-
tion for a number of reasons, which in our opinion are: (i) they can be envisaged
as interpretative tools capable of providing a detailed picture of chemical processes,
(ii) these methods do not require extreme computational costs, and (iii) their appli-
cation to realistic models can be attained by considering the nowadays progress in
computational architectures.
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Mechanical Force
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Belgium

13.1 Introduction

Every process that results in the interconversion of chemical entities, i.e. chemical
reactions [1], can typically be classified as either a thermochemical, electrochem-
ical, or photochemical one. The associated subdisciplines of chemistry concern
the effect of temperature, electrical current, or light on matter. In the shadow of
these famed fields of study – unrightfully so – a fourth way for initiating a chemical
process exists, and mankind has been aware of the unique and fascinating reaction
outcomes in this field for a very long time [2]. In the fourth century before the
common era, a Greek scientist by the name of Theophrastus described the formation
of the liquid metal mercury by grinding cinnabar, a mineral of mercuric sulfide, in
vinegar with a copper pestle and mortar [3, 4]. To date, this is the oldest preserved
text on a mechanochemical reaction, i.e. a chemical process that is initiated by the
direct absorption of mechanical energy by a chemical system.

Today, these primitive, manual grinding techniques have been replaced by
motorized experimental equipment and mechanochemical research has been
revolutionized from a slow and tedious science to an automated one with controlled
procedures, the hallmark of modern mechanochemistry being ball milling [5].
Furthermore, the realization that mechanochemistry is a dry way of carrying out
chemical reactions with unique reaction outcomes is the recurring theme that
makes it a well-established research area today [6–9].

But mechanochemistry is still surrounded by a veil of mystery. The exact mech-
anism behind the fascinating chemical transformations achieved by mechanical
activation is often poorly understood, owing largely to the bulk aspect of these
classical techniques. A radical paradigmatic shift was initiated when atomic force
microscopy (AFM) techniques were designed to study individual molecules when
subjected to an external – usually pulling – force. In an AFM experiment, a scanning
probe or tip, attached to a microcantilever, is brought in close proximity with a
substrate surface. By sliding the tip over a two-dimensional XY area, one can
measure the force on the cantilever and gain insight into the topology of the
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Figure 13.1 (a) Schematic illustration of an amylose polysaccharide covalently attached to
an AFM tip and substrate surface; (b) The force–extension curve shows multiple bond
ruptures before the covalent link between the tip and surface is broken around 2100 nm of
extension. Reproduced with permission from Ref. Grandbois et al. [11].

substrate surface with sub-nanometer precision [10]. Now imagine anchoring the
tip to the substrate surface with a target molecule and scanning in the Z-direction,
i.e. increasing the distance between the AFM tip and the surface. This is the exact
experiment conducted by Grandbois et al. for measuring the mechanical strength
of a covalent bond in an amylose backbone anchored between a silicon oxide tip
and surface (Figure 13.1) [11]. In the force–extension curve, multiple irreversible
bond ruptures leading to small elongations and maintaining the covalent link
between tip and surface are found, before the backbone ruptures at an extension
of 2100 nanometer. These single-molecule force spectroscopy (SMFS) experiments
were the onset of covalent or molecular mechanochemistry and set off a train
of experiments studying molecules and molecular reactions when mechanical
force is applied to the molecular system [12]. In stark contrast to classical bulk
mechanochemistry, properties can be investigated and chemical reactions can be
initiated, in a very controlled spirit, by a pure mechanical effect on an individual
molecule.

By the time of the SMFS experiment (Figure 13.1), accurate ab initio calculations
were already a mainstream procedure in quantum and computational chemistry.
Molecular mechanochemistry, therefore, witnessed a simultaneous development of
experimental and theoretical techniques, which is very unique in chemistry [12–14].
Naturally, single-molecule mechanochemical reactions are usually supported by
theoretical investigations. Some notable examples are the thermally forbidden ring
opening of cyclobutene [15, 16], the synthesis of polyacetylene [17, 18], and the
spiropyran-merocyanine isomerization [19]. These three examples demonstrate the
unusual reactivity that a mechanical force can induce, the synthesis of a polymer
that is enormously facilitated by single-molecule activation and a molecular force
probe, i.e. a single molecule or mechanophore that allows for the detection and
quantification of mechanical strain, respectively. The reaction mechanics of these
processes are known; in no small part thanks to quantum chemical techniques.



13.2 Quantum Mechanochemistry 247

Quantum mechanochemistry has thus played a prominent role in the evolution
of molecular mechanochemistry in recent years, particularly for gaining insight into
the mechanism of mechanically triggered reactions, but essential guiding principles
are missing. In other words, a true understanding of how a mechanical force can
influence the reactivity of a single molecule is lacking. This chapter focuses on recent
efforts to understand chemical reactivity, induced by mechanical force in the context
of conceptual density functional theory (DFT).

13.2 Quantum Mechanochemistry

Mechanical forces at the molecular level, very much like macroscopic applications,
change the structure of molecules. In other words, the potential energy surface of a
molecule is modified – or tilted – owing to the external perturbation [13, 14]. In the
last two decades, which are characterized by a remarkable spike in the interest of
single-molecule mechanochemistry, several theoretical approaches have been devel-
oped to simulate the structure and other properties of molecules when subjected to
an external force. There are two important aspects of mechanochemical calculations.
First, the force vector is applied to two atoms that define a vector R = Rj − Ri, where
Ri and Rj are the atomic positions of the two atoms and, second, the magnitude of
the force vector is constant.

In a simulation, one either controls the bond distance R or the external force
Fext. The former is an indirect approach modeling the external force through the
effect on the molecular structure and was the chronologically first method in quan-
tum mechanochemistry. It is generally known by the acronym CoGEF (Constrained
Geometries simulate External Force) and is still a popular method today [20]. In the
CoGEF approach, a molecule is constrained by a fixed distance R and an otherwise
relaxed geometry optimization is performed. When an external force with magni-
tude Fext is applied, the molecule is elongated from its original equilibrium distance
Re by an amount ΔR given by the condition:

Fext =
𝜕V
𝜕R

(13.1)

at the new equilibrium, meaning that the internal restoring force and the external
force cancel one another. The CoGEF potential is then

VCoGEF(x,Fext) = VBO(x) − Fext(ΔR)R (13.2)

with VBO the Born–Oppenheimer potential energy surface and x the set of atomic
positions. The vector character in the second term was excluded assuming the two
vectors to be parallel. One can then calculate the constant force corresponding to an
elongation ΔR either numerically through Eq. (13.1) or by fitting a suitable analytic
potential to the computed V(ΔR) data points. One potential that is often used to
describe bond elongations is the Morse potential (Eq. (13.3)): [21].

VMorse(ΔR) = De(1 − exp(−𝛼ΔR))2 (13.3)
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Figure 13.2 Generic potential energy curves showing the influence of an external force in
case of a diatomic molecule. Morse potential (black); a small pulling force shifts the
equilibrium bond distance and lowers the bond dissociation barrier (blue); barrierless
dissociation when Fext = Fmax (red). Reproduced from Ref. Bettens et al. [22] with
permission from the PCCP Owner Societies.

with De the dissociation energy and 𝛼 a parameter that controls the width of the
dissociation curve. Figure 13.2 shows a generic potential energy curve of a diatomic
molecule that is modified or tilted by an external pulling force. In the absence of an
external force, the bond stretching is modeled by a Morse potential. When a small
external force is applied, the equilibrium distance is shifted by an amount ΔR and,
importantly, the bond dissociation energy decreases. An important consequence of
applying an external force to a molecule is the susceptibility to thermal dissociation;
Section 13.3.1 treats this aspect of mechanochemistry in more detail. When the exter-
nal force is too large, no more equilibrium exists and the bond/molecule dissociates
without energy barrier [22, 23].

An alternative approach for simulating the structure of molecules when an exter-
nal force is applied is by controlling Fext, in contrast to the CoGEF approach in which
this parameter is obtained indirectly through a structural constraint. Ribas-Arino
et al. proposed a self-consistent approach by applying the external force directly to
the respective atoms: [15].

VEFEI(x,Fext) = VBO(x) − FextR(x) (13.4)

The acronym EFEI in Eq. (13.4) means that the External Force is Explicitly
Included in the electronic structure calculation. Similar isotensional approaches
have been proposed simultaneously [16, 24]; however, the EFEI method is the most
commonly used and has been implemented in the ORCA (version 4.0 and later)
and Q-Chem (version 4.3 and later) software packages.

The isometric CoGEF and isotensional EFEI (and other) methods are very com-
plimentary and have played a prominent role into understanding the mechanical
strength and mechanically induced reaction pathways during the mechanochemical
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boom in recent years. However, one does not gain a fundamental insight into the
chemical reactivity of a molecule when an external mechanical force is applied to it.
Surely, force analysis tools for investigating the distribution of mechanical energy
and the mechanical strength of bonds in molecules have been developed (external
force does not activate one region in a molecule but the system as a whole) [25, 26].
The directional character of a force, prescribed by the pair of atoms to which it
is applied, can deform – or with a chemical term activate – different regions in a
molecule and certainly influence the molecular reactivity in different ways. But
very little is known about the changes of the intrinsic reactivity of molecule when
an external force is applied to it, and conceptual DFT can offer new insight into
mechanochemical reactivity.

13.3 Mechanical Force and Conceptual DFT

13.3.1 Importance of a Small Force

Central in conceptual DFT is the perturbational approach to quantify changes in
the energy through response functions, with particular interest for lower-order
perturbations which best describe the system around its equilibrium, i.e. for small
perturbations [27]. In this section, the peculiar mechanical stability of a chemical
bond/system is briefly addressed, a system is as strong as its weakest bond when an
external pulling force is applied. A perturbational approach thus seems naturally
relevant for quantifying mechanical activation. The well-known JEDI analysis tool,
for example, quantifies the strain in bonds, angles and dihedral angles based on the
harmonic approximation [25].

In the CoGEF approach, a suitable analytic potential such as the Morse potential
(Eq. (13.3)) can be used to simulate the elongation or compression molecule by a
mechanical force. The first derivative of this potential (or the negative) is the internal
restoring force the molecule experiences at a distance R:

𝜕VMorse

𝜕R
= 2De𝛼e−𝛼(R−Re)

(
1 − e−𝛼(R−Re)

)
(13.5)

According to the CoGEF formalism, the system has an equilibrium distance R
when the external force is equal in magnitude to the internal restoring force but
oppositely oriented. For a compressive force, meaning R < Re, the first derivative of
the Morse potential in Eq. (13.5) increases in absolute value and a larger compres-
sive force is needed to shorten the bond length. For R > Re on the other hand, the
first derivative reaches a maximum, meaning that there exists a maximum constant
pulling force Fmax that a bond (or molecule) can sustain. The analytic expression of
Fmax can be obtained by setting the second derivative to 0 and solving this equation
for R, yielding Rmax :

𝜕
2VMorse

𝜕R2 = −2De𝛼
2e−𝛼(R−Re)

(
1 − 2e−𝛼(R−Re)

)
= 0 (13.6)

Rmax = Re +
1
𝛼

ln (2) (13.7)
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At Rmax , the Morse potential has an inflection point. Substituting this distance in
Eq. (13.5) yields

Fmax =
𝛼De

2
(13.8)

Figure 13.3a graphically illustrates Eq. (13.5) for H2 with numerical values of
1.0318, 1.404, and 0.1724 (all in a.u.) for 𝛼, Re, and De, respectively. The curve
reaches a maximum of 0.0889 a.u. or 7.327 nN (nano-Newton) at Rmax = 2.076.

While in theory any distance up to Rmax can be realized by a applying a constant
external force, the thermal stability of the chemical bond has to be considered. In
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Figure 13.3 (a) The internal restoring force of the H2 molecule. A black dot indicates
the point where the internal restoring force is maximum; (b) bond dissociation barrier of H2
as a function of an external pulling force. At 50% of Fmax , the bond dissociation barrier
decreases to 0.266De. Reproduced from Ref. Bettens et al. [22] with permission from the
PCCP Owner Societies.
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particular, pulling forces destabilize chemical bonds by lowering the dissociation
energy (cf. Figure 13.2). For Fext > 0, one can calculate the two stationary points of
the blue curve in Figure 13.2 analytically and write the dissociation barrier D (i.e.
the energy difference between the two stationary points) as a function of Fext:

D(Fext) = De

√
1 −

Fext

Fmax
+

Fext

𝛼

ln
⎛⎜⎜⎜⎝

1 −
√

1 − Fext
Fmax

1 +
√

1 − Fext
Fmax

⎞⎟⎟⎟⎠ (13.9)

This equation is plotted for the H2 molecule in Figure 13.3b. For Fext = 0, the
barrier goes to De, corresponding to the dissociation energy in the normal Morse
potential. For Fext = Fmax , the barrier converges to zero, which corresponds to the
barrierless dissociation process in Figure 13.2. Strikingly, a rapid decrease of the
dissociation energy is found, meaning that the application of an external force along
a chemical bond is an effective stimulus to trigger thermal dissociation. However,
when the force is applied to trigger a specific chemical reaction, (homolytic) bond
dissociation owing the application of an external force is usually not desirable;
instead, mechanochemical activation provokes a specific trajectory on a potential
energy surface through a small perturbation of the molecular geometry. A pertur-
bational approach for quantifying changes in the reactivity of a molecular system
thus seems naturally adequate.

13.3.2 Mechanochemical Response Functions

Central in conceptual DFT is the energy functional E[N, v(r)] and the quantification
of chemical reactivity through reactivity indices with a robust mathematical defini-
tion. More precisely, a perturbational approach of the molecular electronic energy,
E, with respect to the number of electrons, N, and/or the external potential, v(r), is
used. The following question can then be asked: can this approach be extended for
different external stimuli, such as an external mechanical force, and obtain response
functions of the following type

𝜕X
𝜕Fext

(13.10)

where X is a reactivity index? [28] This straightforward question does not have a
simple answer for a mechanochemical extension because an external force is applied
to the nuclei and does not directly influence the electronic energy of a molecule.

Conceptual DFT response functions are always evaluated at a constant molecular
geometry to simulate the perturbation with respect to N and/or v(r) at the onset of a
chemical reaction. Consider, for example, the electronic potential𝜇 and the chemical
hardness 𝜂 being the respective first and second order derivative of the molecular
energy with respect to N. The basic ingredients to calculate these response functions
are the vertical ionization energy and vertical electron affinity. When calculating 𝜇
and 𝜂 at a constant molecular geometry, the response with respect to Fext will always
be 0, regardless of the orientation or magnitude of the force vector: the same energy
(more correct is to say work) FextR (cf. Eqs. (13.2) and (13.4)) will be transferred to
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the N, N + 1, and N − 1 electron system. These terms will cancel each other when
subtracting energies. Analogously, Fext does not influence the electron density 𝜌(r),
which is the basic ingredient for the evaluation of responses owing to a perturbation
of v(r), for a constant molecular geometry. Additionally, one is always confronted
with the inevitable connection between v(r) and an external force: the effect of an
external force, being a change in the nuclear constellation of a molecule, will always
affect the potential felt by the electrons due to the nuclei.

A simple approach to circumvent the issues above is to determine force-modified
geometries and evaluating the response functions at different geometries. The
response of a reactivity index of the form in Eq. (13.10) can then be obtained
through either a finite difference approach or by fitting a function X(Fext). De
Proft and coworkers adopted this method for evaluating the local effect of an
external force on individual bonds (when the force is aligned with the bond axis)
and bond angles (when the force is oriented perpendicular to a bond). Below, two
illustrative examples are given demonstrating the changes in chemical reactivity
when a mechanical force is applied to bonds (probed by the global hardness and
electrophilicity) and angles (local softness) [22, 29].

13.3.3 Chemical Bonds Stressed by Mechanical Force

When a mechanical force is applied to two atoms in a molecule, the geometry of the
entire molecule is generally affected, meaning that every chemical bond, but also
angles and dihedral angles, are stressed to some degree. The effect will be largest
for bonds located in the chain connecting the two pulling positions. Bettens et al.
rationalized changes of the chemical hardness and the electrophilicity index, among
others, for a set of 21 diatomic molecules when the bond distance is altered by an
external force aligned with the bond [22]. Considering the strong decrease in the dis-
sociation barrier with pulling forces, demonstrated in Section 13.3.1, the maximum
force of the hypothetical experiments was arbitrarily set to 0.5Fmax . The authors
determined the molecular geometry corresponding to 11 equidistant values of Fext
between −0.5Fmax and 0.5Fmax by first fitting the Morse parameters and using the
relation between Fext and R, according to the CoGEF approach in Section 13.2. For
each system, polynomials of second order were fit to computed X(Fext) values, where
X represents the reactivity index, by minimizing the root-mean-square deviation
(RMSD), yielding the mechanochemical response functions. The force-independent
terms in these polynomials, X(0), were calculated at Re and were kept constant.
Thus, the second-order polynomial has two parameters, a and b,

X (2)(Fext) = aF2
ext + bFext + X(0) (13.11)

The linear parameters in Fext of the second-order polynomial are listed in
Table 13.1 for the chemical hardness 𝜂, the global softness S (which is the inverse
of 𝜂) and the electrophilicity index 𝜔. These parameters represent the first-order
change in chemical properties around the equilibrium, i.e. 𝜕X (2)

𝜕Fext

|||Fext=0
. For clarity, the

subscript Fext = 0 will be omitted hereafter. The discussion of mechanical response
functions will primarily be based on this table, because the first-order term has
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Table 13.1 Firstorder response (in a.u.) of 𝜂, S and 𝜔 with respect to an external force
oriented along the bond axis, according to a second-order polynomial fit.

𝝏𝜼
(2)

𝝏Fext

𝝏S(2)

𝝏Fext

𝝏𝝎
(2)

𝝏Fext

H2 −0.4313 1.0196 −0.0410
HF −0.1672 0.4436 −0.0058
HCl −0.1222 0.5214 0.0084
HBr −0.1312 0.6586 0.0169
F2 −0.6695 1.9945 0.3621
Cl2 −0.5374 3.4234 0.3655
Br2 −0.3992 3.3898 0.3069
FCl −0.4124 2.0071 0.2647
FBr −0.3597 2.1888 0.2547
ClBr −0.4981 3.7181 0.3741
N2 −0.1457 0.3343 0.0252
P2 −0.2937 2.2166 0.0437
PN −0.0792 0.4265 0.0373
BN −0.1307 1.4116 −0.0030
O2 −0.0289 0.1319 0.0975
S2 −0.0459 0.5217 0.1306
SO −0.0168 0.1346 0.0834
CO −0.0259 0.0797 0.0196
LiF −0.5312 3.3022 −0.0186
NaCl −0.6475 7.0596 0.0344
MgO −0.1902 4.3190 0.0512

Data adapted from Ref. [22].

largest contribution to the total perturbation for small forces (the importance of
applying a small external force was stressed in Section 13.3.1).

The derivatives in Table 13.1 provide quantitative information on the change of a
chemical property when the bond length in a diatomic molecule is altered by a small
external force. In particular, the sign of these first-order response functions was ratio-
nalized in terms of the ground state geometry and electronic structure. Importantly,
negative electron affinities, indicative for unstable anions, were found for H2, HF,
HCl, HBr, N2, and CO; however, these were not set to 0 – as is commonly done for
unstable anions [30] – because then also the derivative of the vertical electron affin-
ity A with respect to Fext would be 0 in most of these cases which nevertheless shows
an intrinsically different behavior for this group of diatomics.

The response of 𝜂 is smaller than 0 for all molecules, meaning that the chemical
hardness of a diatomic molecule decreases when it is stretched by an external
pulling force. Evidently, the response of S is positive for all molecules. This
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observation is in agreement with the principle of maximum hardness (the two
atoms arrange themselves into a configuration with maximum hardness) for pulling
forces [31, 32]. However, in the case of a compressing force (Fext < 0), an increase
in chemical hardness is expected by virtue of the negative response.

In order to understand the sign of this derivative, consider a frozen orbital approx-
imation. The chemical hardness is then equal to the highest occupied molecular
orbital (HOMO)–lowest unoccupied molecular orbital (LUMO) gap. For the deriva-
tive with respect to Fext, one can write

𝜕𝜂

𝜕Fext
≈
𝜕ELUMO

𝜕Fext
−
𝜕EHOMO

𝜕Fext
(13.12)

The effect of an external pulling force increases the internuclear distance of a
diatomic molecule. For a diatomic system with a bonding HOMO and an antibond-
ing LUMO, such as H2, the decreasing orbital overlap will cause an increase in the
HOMO energy and a decrease in the LUMO energy, also making the chemical bond
more reactive. The approximation in Eq. (13.12) is then indeed smaller than 0. This
simple proof is very straightforward and arguably trivial for a system like H2 but,
nevertheless, it is important to retrieve these results. Additionally, not every chem-
ical bond is characterized by a bonding HOMO and antibonding LUMO. Examples
of such systems from Table 13.1 are the dihalogens having antibonding HOMO and
LUMO as well as the ionic systems (LiF, NaCl, and MgO) with nonbonding frontier
orbitals. Nevertheless, the response of 𝜂 for these systems follows the same trend as
the other chemical bonds.

Importantly, the same results were obtained for the response of 𝜂 along vibrational
modes of simple polyatomic molecules, such as H2O, NH3, and C2H6 [33]. Although
a distorted geometry through molecular vibration is not identical to a force-induced
equilibrium structure in a nonlinear polyatomic molecule and does not strictly fall
under the proposed mechanochemical rules, modes dominated by simultaneous
elongations of equivalent bonds along the normal mode of vibration can be rational-
ized in the same philosophy. In this work, the symmetric stretching modes in H2O,
NH3, and C2H6 are dominated by simultaneous bond elongations of O–H, N–H, and
C–H bonds, respectively. In the case of the ethane, all C–H bonds are significantly
elongated, while there is a slight compression (five times smaller than the C–H
elongation along the vibrational mode) of the C–C bond. Interestingly, all of these
vibrational modes decrease the chemical hardness of the molecule, in analogy with
the bond length elongations owing to an external force for diatomic molecules.

The response of the electrophilicity on the other hand is positive for all systems,
except for H2, HF, BN, and LiF which have a low negative first-order response in
Table 13.1. The authors rationalized this sign by using the definition of the elec-
trophilicity index and rewriting the derivative of 𝜔:

𝜔 = 𝜇
2

2𝜂
(13.13)

𝜕𝜔

𝜕Fext
= 𝜕I
𝜕Fext

(
𝛾

2
− 𝛾

2

2

)
+ 𝜕A
𝜕Fext

(
𝛾

2
+ 𝛾

2

2

)
(13.14)
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where, for A > 0, 𝛾 is a positive number:

𝛾 =
𝜒

𝜂

= (I + A)
2(I − A)

(13.15)

Because A is typically small compared to I and assuming a factor of 10 difference,
𝛾 ≈ 0.6. The response of 𝜔 is then more influenced by the second term (contain-
ing the derivative with respect to A). Using again a frozen core approximation
(A ≈ ELUMO), 𝜕A

𝜕Fext
is typically smaller than 0, if the LUMO is an antibonding orbital.

Similar to the chemical hardness, the electrophilicity was also found to increase
upon geometric distortions along vibrational modes of H2O, NH3, and C2H6 [33].
Moreover, a positive correlation exists between the electrophilicity index and redox
potentials [34, 35]. Therefore, the redox potential of molecules subjected to an
external pulling force is expected to increase. Baldus and Gräter computed redox
potentials of a cysteine dimer and indeed concluded that the redox potential of the
dimer increases, in line with the positive response of 𝜔 for S2 in Table 13.1 [36]. De
Proft and coworkers stated that, in the case of the dicysteine system, the reduction
reaction breaks the S–S bond and a pulling force increases the S–S bond distance,
bringing the geometry closer to the one in the reduced form and therefore triggering
the reduction. An external force should thus be oriented in a certain direction to
steer a specific chemical reaction. In other words, the external force should be
oriented along the reaction coordinate of the desired chemical transformation.

13.3.4 Bond Angles Stressed by Mechanical Force

Bond length alternations through the application of an external pulling force were
shown to trigger reduction reactions, because the molecular geometry becomes
distorted in the same way as a reduction process. In the same philosophy, the
angular constraint on the C≡C bond in cyclic alkynes was translated to angular
forces and the concurrent influence on its reactivity was scrutinized through
conceptual DFT descriptors [29]. Alkynes can undergo 1,3-dipolar cycloaddition
reactions with azides leading to the formation of 1,2,3-triazoles [37]. However,
linear alkynes require a catalyst (for example Cu-based; cf. the acronym CuAAC or
Copper-catalyzed Alkyne Azide Cycloaddition) or elevated reaction temperatures to
trigger the cycloaddition [38, 39]. Cyclic alkynes (cyclooctynes and cycloheptynes)
do not require a catalyst and can undergo strain-promoted alkyne azide cycloaddi-
tion (SPAAC) reactions under physiological reaction conditions, enabling in vivo
biomolecule targeting and imaging [40–44].

Using the same CoGEF-based approach, Bettens et al. probed the reactivity of the
C≡C bond through conceptual DFT indices when an alkyne is bent [29]. The authors
revealed a linear relation between the force needed to bend one bond angle, Fext,⟂,
and the angular deviation with respect to the equilibrium structure, 𝜙, by rewriting
the force-dependent term in Eqs. (13.2) and (13.4):

−∫ Fext ⋅ R = −∫ Fext,⟂ ⋅ (d𝝓 × r) = −∫ (r × Fext,⟂) ⋅ d𝜙 (13.16)

|Fext,⟂| = 2a𝜙
r

(13.17)
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In Eq. (13.17), a and r are the harmonic force constant of the bending and the
length of the bond adjacent to the C≡C bond.

When both angles around the C≡C bond are bent away from linearity (in syn
fashion), the molecule resembles a fragment of a cyclic alkyne, with smaller cyclic
systems leading to smaller bond angles. Substituted 2-butyne fragments were
used to evaluate the reactivity of cyclic alkynes. Upon bending, the C2s and C2p
atomic orbitals start mixing with the 𝜋 and 𝜋∗ orbitals in the plane of the bending,
while the orbitals perpendicular to the plane of bending are unaffected, lifting the
degeneracy of the 𝜋-system [45]. As a result, the energy of the HOMO is increased,
whereas the energy of the LUMO decreased. Accordingly, the global softness S of
the acetylene fragment increases upon bending, i.e. perturbation to the molecular
geometry away from the equilibrium, in analogy to stretching diatomic molecules
(Figure 13.4).

In an alkyne-azide electrocyclization, the alkyne is typically electron-poor and
interacts with the electron-rich azide [46]. Therefore, the electrophilic Fukui func-
tion, probing the difference in electron density when an electron is added to a chem-
ical system, is more relevant than the nucleophilic analog.

f +(r) = 𝜌N+1(r) − 𝜌N (r) (13.18)

In Eq. (13.18), one electron is added to the system. By condensing f +(r) to the
individual atoms by means of a population analysis, it is possible to quantify the
density allocated to a specific atom when an electron is used as a model nucleophile.
The Fukui function in Figure 13.5 also suggests that the reactivity of the triple bond
increases upon bending. The substitution of a fluorine atom at one side of the triple
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Figure 13.4 The global softness of a 2-butyne fragment starts to increase when the triple
bond is bent to an angle of 15∘ due to an increase in the in-plane 𝜋-HOMO energy and a
decrease in the in-plane 𝜋-LUMO energy. Reproduced from Ref. Bettens et al. [29] with
permission from the Royal Society of Chemistry.
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bond also increases the Fukui function on the functional group, in accordance with
the higher reaction rates of fluorinated cyclooctynes compared to the unsubstituted
analog.

Interestingly, the global softness and the Fukui function do not increase rapidly
for small perturbations up to 15∘. Instead, a parabolic and sigmoid shape are
retrieved, respectively. The local softness, s+(r), being the product of the softness
and electrophilic Fukui function, shows the same behavior for small perturbations.
Figure 13.5 conveniently illustrates the deviation from linearity around the C≡C
bond typically found in cyclononynes, cyclooctynes, and cycloheptynes. The larger
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Figure 13.5 (a) The electrophilic Fukui function of the two C-atoms in the alkyne group
increases as the 2-butyne fragment is bent, indicating that smaller cyclic alkynes become
more electrophilic; (b) the local softness also increases when the triple bond is bent,
revealing clear trends in the reactivity of cyclic alkynes. Reproduced from Ref. Bettens et al.
[29] with permission from the Royal Society of Chemistry.
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cyclononynes, bearing nine atoms in the cyclic structure, are in the flat part of
the curve. These larger structures do not significantly increase the reaction rate of
cycloaddition reactions compared to linear alkynes, in accordance with the s+(r)
plot. Cyclooctynes, on the other hand, are the workhorse in SPAAC reactions and
are located in the steeper part of the plot [41]. In particular, fluorinated cyclooctynes
are used in SPAAC reactions for targeting biomolecules in organisms because they
react faster than the parent cyclooctyne, which is also apparent from Figure 13.5.
Most cycloheptynes are unstable and this family of cyclic alkynes is expected to be
more reactive in cycloadditions than the cyclooctynes [47–49]. Interestingly, the
difference between the curves diminishes for larger distortions because the Fukui
function seems to converge at 60∘, which corresponds to the geometry of an alkene.

Similar to the dissociation of bonds, in particular the S–S bond, in Section 13.3.3,
one can interpret the increase of the Fukui function in terms of a reduction
process: a disulfide can be reduced to two sulfides with two electrons and two
protons; an alkyne can be reduced to an alkene with two electrons and two
protons. The electrophilic Fukui function, being a measure for the electrophilic
character of the alkyne, thus logically increases when the geometry of the alkyne
is perturbed/bent toward the geometry of the reduced species, i.e. the alkene. The
convergence of the Fukui function at 60∘ might suggest an interesting relation
between mechanochemistry and redox chemistry; however, specific studies have
not been conducted on this topic.

13.4 Conclusions and Outlook

The mechanochemistry of individual molecules which can nowadays be achieved
with ingeniously setup experiments has triggered the interest in exploring the
unusual reactivity of molecules induced by a slight geometric distortion owing
to the application of an external mechanical force. While an array of new
mechanochemical reactions with unique outcomes has been documented in recent
years, demonstrating the relevance of this somewhat obscure chemical stimulus, a
true understanding of the influence of mechanical activation on chemical reactivity
is still lacking. The directional character of a mechanical force increases the com-
plexity of the technique: as the system size grows, the combinations of attachment
points (atoms) to which the force can be applied also increases tremendously.
In view of the thermal stability of molecules subjected to an external force, the
magnitude of the force vector should be small, rendering perturbational approaches
appropriate for evaluating mechanochemical reactivity. Conceptual DFT, with all
its successes in describing and quantifying reactivity, has been applied to some
examples of unique reactions documented in literature. The evaluation of reactivity
indices at distorted geometries correctly reproduce the chemical behavior to trigger
specific reactions. Early work has also demonstrated the influence of a mechanical
force on individual bonds and angles.

Bulk mechanochemistry, such as ball milling, has been an active field of research
for many decades; however, it remains shrouded in a veil of mystery because the
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size of the chemical system and the different types of interactions prevent high-level
quantum chemical models. Single-molecule mechanochemistry, on the other hand,
is a unique subdiscipline in chemistry as it witnessed a simultaneous development
of theoretical and experimental techniques. With the emphasis on individual
molecules, it is more feasible to establish a thorough theoretical framework and
provide guidelines for designing new experiments.

Bibliography

1 Muller, P. (1994). Glossary of terms used in physical organic chemistry (IUPAC
recommendations 1994). Pure Appl. Chem. 66 (5): 1077–1184. https://doi.org/doi:
10.1351/pac199466051077.

2 Takacs, L. (2013). The historical development of mechanochemistry. Chem.
Soc. Rev. 42 (18): 7649–7659. ISSN 1460-4744 (Electronic) 0306-0012 (Linking).
https://doi.org/10.1039/c2cs35442j.

3 Caley, E.R. and Richards, J.F.C. (1956). Theophrastus on stones: Introduc-
tion, Greek Text, English Translation, and Commentary. Columbus: Ohio State
University.

4 Takacs, L. (2000). Quicksilver from cinnabar: the first documented
mechanochemical reaction? JOM 52 (1): 12–13. https://doi.org/10.1007/s11837-
000-0106-0.

5 Friscic, T., Mottillo, C., and Titi, H.M. (2020). Mechanochemistry for synthesis.
Angew. Chem. Int. Ed. 59 (3): 1018–1029. ISSN 1521-3773 (Electronic) 1433-7851
(Linking). https://doi.org/10.1002/anie.201906755.
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14.1 Introduction

Nucleophilic and electrophilic substitution reactions are among the most important
reactions in organic synthesis. Analogous reactions are of comparable importance
in inorganic chemistry, where substitutions of Lewis acidic (electrophilic) groups
and Lewis basic (nucleophilic) groups are called acid and base exchange reactions,
respectively. Similar processes occur in analytical chemistry, in processes with mul-
tiple oxidizing (acidic) and reducing (basic) reagents.

The three most fundamental exchange/substitution reactions are as follows:

Acid exchange reaction:

AB + Ã−−⇀↽−− ÃB + A (14.1)

Base exchange reaction:

AB + B̃−−⇀↽−−AB̃ + B (14.2)

Double exchange reaction:

ÃB + AB̃−−⇀↽−− ÃB̃ + AB (14.3)

Here, and in the following, the acidic and basic reagents are denoted with A and
B, respectively. Determining whether the products or the reactants are favored in
these equilibria is among the most fundamental questions in acid/base chemistry.
While quantitative experimental and theoretical treatments of these reactions are
nowadays available, it is nonetheless useful to have a unifying set of chemical con-
cepts and associated reactivity rules for qualitatively predicting the products of these
acid/base exchange reactions.

Conceptual Density Functional Theory: Towards a New Chemical Reactivity Theory, First Edition.
Edited by Shubin Liu.
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The most fundamental concept related to acid/base reactivity is the acid/base
strength, and the associated reactivity rule is that strong Lewis acids and strong
Lewis bases prefer to bind to each other [1]. More formally:

Strong/weak acid/base (SWAB) Rule: All other things being equal, a base will
prefer to bind to a strong acid over a weak acid, and an acid will prefer to bind to
a strong base over a weak base.

AweakB + Astrong −−⇀↽−−AstrongB + Aweak (14.4)

ABweak + Bstrong −−⇀↽−−ABstrong + Bweak (14.5)

Drago and Pearson realized that acid/base strength was insufficient to fully
describe acid/base reactivity preferences and that at least one additional factor was
needed [2–6]. This factor was dubbed the hardness [7, 8], since it distinguishes
between the reactivity preferences of smaller, highly charged, and less polarizable
(i.e. hard) and larger, less charged, and more polarizable (i.e. soft) reagents [9–11].
The associated hard/soft acid/base (HSAB) reactivity rule is that hard reagents
prefer each other and soft reagents prefer each other [7, 8]. More formally:

Hard/soft acid/base (HSAB) rule: All other things being equal, a hard acid will
prefer to bind to a hard base over a soft base, and a soft acid will prefer to bind to
a soft base over a hard base. Therefore:

AhardBsoft + Asoft −−⇀↽−−AsoftBsoft + Ahard (14.6)

AsoftBhard + Ahard −−⇀↽−−AhardBhard + Asoft (14.7)

AhardBsoft + Bhard −−⇀↽−−AhardBhard + Bsoft (14.8)

AsoftBhard + Bsoft −−⇀↽−−AsoftBsoft + Bhard (14.9)

There is a strong link to Klopman’s classification of reactions as being either
charge-controlled and frontier-controlled [12–15]. In particular, charge-controlled
reactions tend to be electrostatically dominant and lead to bonds with significant
ionic character; charge-controlled reagents tend to be surrounded by sizable
electrostatic potentials, as occurs for small highly charged (i.e. hard) species.
Frontier-controlled reactions tend to be driven by orbital overlap and lead to
bonds with significant covalent character; frontier-controlled reagents tend to
be larger, and because they have high-energy occupied orbitals and low-energy
unoccupied orbitals, the reagents in frontier-controlled reactions also tend to be
more polarizable (i.e. soft).

The SWAB and HSAB rules lead to additional questions:

Question: How should the strength of an acid/base be defined?
Question: How should the hardness/softness of an acid/base be quantified?
Question: How should the “all other things being equal” assumption be

interpreted?
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We will return to the first two questions in Section 14.2. The third question,
however, is more philosophical: in practical chemical processes, all other things are
never equal, so forcing them to be equal restricts the scope of the SWAB and HSAB
rules so severely that they become trivially true (and practically useless). To account
for all the factors that are sometimes decisive in chemical reactivity – frontier orbital
symmetry, low-lying nonbonding orbitals (e.g. for pi-backbonding), steric hin-
drance, solvation effects, geometric relaxation/rearrangement, and the like – adds
so much complication and nuance that formulating simple rules-of-thumb becomes
impossible. It seems appropriate to view the SWAB and HSAB rules as occupying a
middle ground between meticulous analysis and vague generality: these rules are
oversimplified guides-to-the-mind that neglect orbital-specific, geometry-specific,
solvent-specific, relaxation/rearrangement, and other reaction-partner-specific
effects [16–21]. Nonetheless, some of these effects can be treated. For example, it
is commonly observed that reagents that are hard (soft) in solution are soft (hard)
in the gas phase; in those cases the HSAB can not only be applied, but used to
understand why the equilibrium in some reactions shifts between (polar) solvents
and gas phase [9].

Much of the experimental and theoretical analysis of the SWAB and HSAB rules
has featured the double-exchange reactions [9–11]:

AstrongBweak + AweakBstrong −−⇀↽−−AstrongBstrong + AweakBweak (14.10)

AhardBsoft + AsoftBhard −−⇀↽−−AsoftBsoft + AhardBhard (14.11)

In these double-exchange reactions, some (but not all) of the complicating
reagent-specific factors (partially) cancel out, and the SWAB and HSAB rules can
be studied more directly.

The purpose of this chapter is to provide a brief and personalized perspective on
the HSAB rule from the viewpoint of conceptual density functional theory (DFT)
[22–28]. In Section 14.2, the conceptual DFT approach to acidity/basicity and hard-
ness/softness will be discussed. We then conclude by summarizing the current status
of the HSAB rule and proposing some directions for future research.

14.2 Acid/Base Strength, Hardness, and Reactivity from
Conceptual DFT

Acid/base reactions are defined by the approach between an electron acceptor (acid,
electrophile, oxidizing agent) and an electron donor (base, nucleophile, reducing
agent). If we are to assume that the “all other things being equal” caveat in the
SWAB and HSAB rules indicates that reagent-specific regioselective, steric, and
orbital-overlap effects are negligible, then it seems reasonable to reduce acid/base
reactions to their essential electron-transfer character.

Within the framework of conceptual DFT, electron transfer to/from a reagent
is modeled by expressing the reagent’s energy as a Taylor series in the number
of electrons:

E
(

N(0)
A + ΔNA

)
= E

(
N(0)

A

)
+ 𝜇(0)A ΔNA +

1
2
𝜂
(0)
A ΔN2

A + · · · (14.12)
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where the electronic chemical potential is defined as [22, 29–31]

𝜇
(0)
A =

[
𝜕E(NA)
𝜕NA

]
v(0)A (r);NA=N(0)

A

≈ − I + A
2

(14.13)

and the chemical hardness is defined as [32]

𝜂
(0)
A =

[
𝜕E2(NA)
𝜕N2

A

]
v(0)A (r);NA=N(0)

A

≈ I − A (14.14)

The notation indicates that the derivatives are evaluated at fixed geome-
try/external potential. It is not entirely unreasonable to assume that since
number of terms in the Hamiltonian depends only linearly (kinetic energy and
electron-nuclear attraction) and quadratically (electron-electron repulsion) on the
number of electrons, cubic and higher-order terms in the Taylor series may be
neglected [33–37]. This leads to the above approximations in terms of the reagent’s
vertical ionization potential, I, and electron affinity, A [29, 30, 38, 39]. A table of
reference values of the chemical potential and hardness for atoms and atomic ions
can be found in Ref. [40].

The identification of the electronic chemical potential as the quantification of
(minus) the electronegativity initiated the field of conceptual DFT [29]. The idea
that the second-order term might be the chemical hardness was at first speculative,
but then Parr and Pearson noted that the properties of 𝜂(0)A largely mimicked the
trends that had been imparted to hard (small, favoring ionic bonds, unpolarizable)
and soft (large, favoring covalent bonds, polarizable) reagents [32]. That observa-
tion has been further validated both numerically and mathematically [41–65]. The
identification of 𝜂(0)A as a mathematical reification of the chemical hardness was per-
haps the first time conceptual DFT was used to explain a phenomenon that had been
resistant to more traditional approaches, though it certainly was not the last [66–73].

If we assume that the Taylor series for the energy as a function of the number of
electrons is an adequate model for electron transfer [22, 34, 74], then we can build
an energy model for the fundamental acid+ base reaction [32].

Acid+Base Reaction:

A + B −−−−→ AB (14.15)

Specifically, because electrons are transferred from the base to the acid, we know
that 𝜇(0)A < 𝜇

(0)
B and ΔN ∶= ΔNA = −ΔNB > 0. The energy of the simple acid+ base

reaction is

ΔrxnE = EA

(
N(0)

A + ΔN
)
− EA

(
N(0)

A

)
+ EB

(
N(0)

B − ΔN
)
− EB

(
N(0)

B

)
(14.16)

If we assume that the Taylor series can be truncated at second order, this becomes
a quadratic expression for ΔN, which can be minimized to determine the optimal
amount of electron transfer from the base to the acid

ΔN =
𝜇
(0)
B − 𝜇(0)A

𝜂
(0)
A + 𝜂(0)B

(14.17)
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and the associated electron-transfer energy [32]

ΔrxnE = −1
2

(
𝜇
(0)
B − 𝜇(0)A

)2

𝜂
(0)
A + 𝜂(0)B

(14.18)

Notice that the direction of electron transfer is determined by the chemical poten-
tial and the extent of electron transfer/sharing between acid and the base is less for
hard reagents (for which ionic bonds are favored) than it is for soft reagents (for
which polar-covalent bonds are favored) [32]. Based on these pictures, the chemical
potential can be identified as a measure of the intrinsic Lewis acidity/basicity [75].
Similarly, the chemical hardness quantifies the chemical concept of hardness [32].
The softness was subsequently defined as the reciprocal of the hardness [76]:

S = 1
𝜂

(14.19)

Using the reaction energy of the fundamental electron-transfer acid+ base
reaction, one can directly construct a model for the electron-transfer energy asso-
ciated with the acid-exchange, base-exchange, and double-exchange reactions (cf.
reactions 14.1–14.3) [75, 77]. Because the SWAB and HSAB rules can favor different
products, they cannot always be valid. Indeed, because 𝜇 and 𝜂 both tend to increase
when the ionization potential of a molecule increases, hard acids tend to be strong,
but hard bases are often weak. (For example, the Chloride ion is rather hard, but it
is also a weak base.) For example, using the definitions for the chemical potential
and the hardness in Eqs. (14.13) and (14.14) and choosing to set negative electron
affinities to zero [78], the Lithium cation is a stronger, harder Lewis acid than the
Cesium cation, and the Iodide anion is a stronger, softer base than the Fluoride
anion. Therefore the left-hand side of the following exchange reaction is favored by
the SWAB, and the right-hand side is favored by the HSAB:

CsF + LiI−−⇀↽−−LiF + CsI (14.20)

In this case, the HSAB rule actually overrules the SWAB rule (the reaction is
exothermic by 33 kcal mol−1) [9]. This is unusual, because typically the SWAB rule
is more decisive. However, the strengths of the acids and bases in this reaction are
rather closely matched, while their hardnesses are quite distinct. Computational
tests reveal that where the SWAB and HSAB rules are in competition with each
other, the SWAB products are favored in about 75% of the cases. In cases where the
SWAB-preferred and HSAB-preferred products are the same, the rules are quite
reliable, but not perfectly so [79].

Alternatively, we can use a simple electrostatic model to compute the energy of
the fundamental acid+ base reaction [50, 75]. Typical hard acids are small and have
large positive charge QA ≫ 0. Similarly, typical hard bases are small and have large
(in magnitude) negative charge QB ≪ 0. Denoting the radius of the acid as rA and
the radius of the base as rB, we can then write an expression for the energy of the
fundamental acid+ base reaction if the product is a purely ionic compound:

ΔrxnE =
QAQB

rA + rB
(14.21)
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The HSAB rule immediately follows in this purely electrostatic picture [50, 75]. We
will not discuss this approach further, as it lies somewhat outside the mainstream
of conceptual DFT, but it is important to note that both electrostatic/charge-driven
reactions and electron-transfer/orbital-driven reactions favor the HSAB rule. With
electron-transfer effects, the driving force for the HSAB product is the exceptional
energetic stability of the soft acid/soft base compound. With electrostatic effects, the
driving force for the HSAB product is the exceptional stability of the hard acid/hard
base compound. Together, electron transfer and electrostatic interaction reinforce
each other, helping the HSAB rule hold for most reactions where the “all other things
being equal” caveat is not egregiously violated [50, 75].

By using either electron-transfer or electrostatic energies to estimate the energy of
the double-exchange reaction, one can deduce specific and quantitative versions of
the SWAB and HSAB rules.

Quantitative Strong/Weak Acid/Base Rule: If electron-transfer effects dominate
the reaction energy of the double-exchange reaction, and the hard acid and hard
base have the same hardness, and similarly the soft acid and soft base have the
same hardness, then the strong acid will bond to the strong base, and the weak
acid will bond to the weak base, in accord with the SWAB rule. The thermo-
dynamic driving force for the reaction is the exceptional stability of the strong
acid/strong base product [75].

Quantitative Hard/Soft Acid/Base Rule: If electron-transfer effects dominate the
reaction energy of the double-exchange reaction, and the hard acid and soft acid
have the same intrinsic strength/chemical potential, and similarly the hard base
and the soft base have the same intrinsic strength/chemical potential, then the
hard acid will bond to the hard base, and the soft acid will bond to the soft base,
in accord with the HSAB rule. The driving force for the reaction is the excep-
tional stability of the soft acid/soft base product. A similar statement can be made
for reactions where electrostatic effects dominate if the hard reagents are smaller
and more highly charged than the soft reagents. In that case the thermodynamic
driving force for the reaction is the exceptional stability of the hard acid/hard base
product [75, 77, 80].

Combined SWAB and HSAB Rules: If electron-transfer effects dominate the reac-
tion energy of the double-exchange reaction, the soft acid is stronger than the hard
acid, and the soft base is stronger than the hard base, then the strong/soft acid
prefers binding to the strong/soft base, and the weak/hard acid prefers binding to
the weak/hard base, in accord with both the SWAB and HSAB rules. The thermo-
dynamic driving force for the reaction is the exceptional stability of the strong-soft
acid with the strong-soft base [81].

These and other refinements of the HSAB and SWAB provide very specific quan-
tifications of the all-other-things-being-equal caveat. Certain non-reaction-partner-
specific effects can be incorporated in this framework [49, 57, 78, 82–88]. For
example, the adiabatic ionization potential and electron affinity can be used to
approximately account for geometry relaxation effects, the oxidation/reduction
potentials in solution can be used to approximately account for solvation effects, and
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finite-temperature effects can be included. Effects that are reaction-partner specific,
however, seem beyond the scope of the SWAB and HSAB rules. Nonetheless, one
can incorporate some of these additional effects using more sophisticated versions
of the two-reagent model.

It should be mentioned that while the SWAB rule is quite reliable for
single-exchange reactions, the HSAB rule for single-exchange reactions is less
robust because of the following [50, 75]:

Case I: For electron-transfer-driven reactions, given two reagents (either two acids
or two bases) with equal strength but different hardness, the softer reagent tends
to be more reactive.

Case II: For electrostatically driven reactions, given two reagents (either two acids
or two bases) with equal strength but different hardness, the harder reagent tends
to be more reactive.

Obviously, while electrostatic and electron-transfer effects reinforce each other
for the double-exchange reaction, in these single-exchange reactions, that is not
the case. Nonetheless, these rules are not directly in opposition to the canonical
HSAB principle because reactions with soft reagents tend to be electron-transfer
driven (Case I) while reactions with hard reagents tend to be electrostatically driven
(Case II).

14.3 Summary and Future Directions

Assuming the energy of electron transfer dominates the reaction energy in acid/base
reactions, and furthermore assuming that the quadratic model frequently used in
conceptual DFT is valid, one identifies acid/base strength with the first derivative of
the energy with respect to electron number (the electronic chemical potential) and
the chemical hardness with the second derivative of the energy with respect to elec-
tron number. Within this mathematical framework, one can then deduce situations
where the HSAB and SWAB rules hold. Section 14.2 summarized a few of the key
results from the literature.

Nonetheless, we deliberately excluded one of the most frequently employed appli-
cations of the HSAB rule, namely, the local HSAB rule for ambident acids and bases
[89–93]:

AsoftAhardBsoft + −−⇀↽−−BsoftAsoftAhard (14.22)

BsoftBhardAsoft + −−⇀↽−−AsoftBsoftBhard (14.23)

AhardAsoftBhard + −−⇀↽−−BhardAhardAsoft (14.24)

BhardBsoftAhard + −−⇀↽−−AhardBhardBsoft (14.25)

The mathematical framework for describing these reactions is much less developed,
perhaps because of the difficulty of unambiguously defining a local hardness
[34, 58, 94–116]. In the limit where the linker between the hard and soft reactive
sites is sufficiently large, the nearsightedness principle means that these reactions
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behave like the corresponding acid/base single-exchange reactions [117–120].
Developing a robust and quantitative approach to the local HSAB rule is, nonethe-
less, an important open problem. Experimental studies do seem to indicate that the
local HSAB rule is significantly less robust than the global HSAB rule [121, 122].

At the computational level, there have been no large and no systematic tests of the
global and local HSAB rules, though there are recent-developed software tools that
would make such studies feasible [123, 124]. Such tests would contribute significant
value, because the extent to which the all-other-things-being-equal caveat can be
relaxed could be more clarified.

At the theoretical level, there are extremely suggestive links between the maxi-
mum hardness principle (MHP) [11, 125–127], the dμ big is good rule (DMB) [128,
129], and the HSAB rule. Indeed, the first mathematical treatment of the HSAB rule
included the MHP perspective [80], and subsequent work on the HSAB rule has
often followed, or been followed by, analogous work on MHP and DMB [128–135].
Reactions that follow the HSAB rule tend to products that are harder than the reac-
tants (MHP), and the shift in chemical potential when forming the products seems to
be larger than it was for the reactants (DMB). The concurrence of these rules is highly
suggestive, but explicit mathematical links suggesting that the rules are equivalent
(or clarifying when they are equivalent) are lacking.

More provocatively, we wish to suggest that alternative definitions for the intrin-
sic strength and hardness of acids/bases should be considered. Is it possible to find
an alternative definition of intrinsic Lewis acidity/basicity so that key observations
(the flow of electrons from base to acid; the SWAB rule) are more universally satis-
fied? Is it possible to find an alternative definition of chemical hardness so that the
HSAB rule is more universally satisfied? Can one define a local hardness measure
that ensures the reliability of the local HSAB rule? It seems that investigations like
these would be fruitful even if they fail, because the failure of such attempts would
reinforce the wise choices that Parr and his colleagues made in the formative years
of conceptual DFT.
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15.1 Introduction

To establish a chemical reactivity theory in density functional theory (DFT)
(density-based) language, aside from conceptual density functional theory (CDFT)
[1, 2], which is the main theme of this book, there is a recent effort in the literature
undertaking a vastly different approach [3–7]. In this case, instead of employing
first- and second-order derivatives introduced in Part I, simple electron density
functionals themselves are directly employed to quantify stability and reactivity
properties for molecules, such as steric effect, electrophilicity, nucleophilicity,
stereoselectivity, and aromaticity [6, 7]. This idea of employing density functionals
to quantify molecular reactivity is indeed akin to and consistent with the original
spirit of basic DFT theorems [1, 8]. This is because the electron density alone suffices
in determining all properties in the ground state, so any molecular property related
to stability and reactivity could similarly be expressed as a functional of the electron
density, same as what noninteracting kinetic, Coulombic, and exchange-correlation
energies have been done [1].

Among many different possible forms of density functionals one could think
of, the simplest forms are the ones from the information theory. Originating from
Claude Shannon’s 1948 paper entitled “The mathematical theory of communica-
tion” [9], and still entertaining widespread applications in mathematics, statistics,
computer science, physics, neurobiology, and many other disciplines, information
theory studies the quantification and communication of information, which is often
characterized by a probability distribution function. The electron density can be
regarded as such a distribution function. Because of this reason, ever since the early
days of DFT development, there have been tremendous interests in the literature to
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apply information theory to DFT [10–15]. This effort is usually categorized as the
information-theoretic approach (ITA) in DFT [6, 7].

There have been a few reviews [6, 7] and books [3–5] on ITA in DFT in the liter-
ature. In this chapter, we briefly overview our current understanding of the subject
by highlighting three points of its theoretical framework and five topic applications.
Readers with interest to know more details are referred to the recent reviews on the
subject [6, 7].

15.2 Theoretical Framework

15.2.1 Three Representations

Using the electron density 𝜌(r) as the probability function in information theory, one
obtains the first representation of ITA. Shannon entropy is the first such uncertainty
measure widely used in the literature [9],

SS = −∫ 𝜌(r) ln 𝜌(r)dr = ∫ sS(r)dr (15.1)

where sS(r) is the Shannon entropy density and the total electron density 𝜌(r) sat-
isfies the following normalization condition in relation to the total number of elec-
trons, N, of the system,

∫ 𝜌(r)dr = N (15.2)

Shannon entropy measures the spatial delocalization of the electronic density. The
more delocalized the electron density is, the larger the measurement uncertainty
and thus the Shannon entropy. It reaches the maximal value when 𝜌(r) is uniformly
distributed.

The second quantity in ITA is the Fisher information [16], IF,

IF ≡ ∫ iF(r)dr = ∫
|∇𝜌(r)|2
𝜌(r)

dr (15.3)

where iF(r) is the Fisher information density and∇𝜌(r) is the density gradient. Fisher
information measures the sharpness or concentration of the electron density distri-
bution. For systems like the homogenous electron gas with |∇𝜌(r)| = 0, IF vanishes.
The larger the density heterogeneity, the larger the Fisher information. Fisher infor-
mation and Shannon entropy are quantities measuring two opposite trends of a
distribution function, homogeneity and heterogeneity, so, in principle, they should
be independent. However, for the electron density, as will be shown below, they are
intrinsically correlated [17]. This is, again, due to the basic theorems of DFT. Since
the electron density contains all the information necessary to quantify any property
of a molecule, its functionals become redundant and thus dependent on one another.

Also, we have earlier proved [17] that there is an equivalent expression for the
Fisher information in terms of the Laplacian of the electron density ∇2

𝜌

I′F ≡∫ i′F(r) dr = −∫ ∇2
𝜌(r) ln 𝜌(r) dr (15.4)

Equations (15.3) and (15.4) are equivalent in the sense that they can be derived by
partial integration from one to the other, and that the two integrals have the same
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value. As have been shown, however, local behaviors of the two integrants, iF(r) and
i′F(r), are markedly different [17].

The third quantity in ITA is the Ghosh–Berkowitz–Parr (GBP) entropy [11]

SGBP = ∫
3
2

k𝜌(r)
[

c + ln t(r; 𝜌)
tTF(r; 𝜌)

]
dr (15.5)

where t(r, 𝜌) is the kinetic energy density, satisfying

∫ t(r; ρ)dr = TS (15.6)

with TS as the total kinetic energy and tTF(r; 𝜌) the Thomas–Fermi kinetic energy
density, tTF(r; 𝜌) = cK𝜌

5/3(r), where k is the Boltzmann constant (set to be unity), c =
5
3
+ ln 4𝜋cK

3
, and cK =

3
10
(3𝜋2)2∕3. The GBP entropy originates from the effort to tran-

scribe the ground-state DFT into local thermodynamics through a phase-space dis-
tribution function. The specific form of the local kinetic energy t(r; 𝜌) used is t(r; 𝜌) =∑

i
1
8
∇𝜌i•∇𝜌i
𝜌i

− 1
8
∇2
𝜌. Other quantities in ITA include the Rényi entropy [18] of order

n, where n≥ 0 and n≠ 1, defined as

Rn =
1

1 − n
ln

[
∫ 𝜌(r)n dr

]
(15.7)

where when n approaches to 1, it is reduced to Shannon entropy and Tsallis entropy
[19] of order n defined by

Tn =
1

n − 1

[
1 −∫ 𝜌(r)n dr

]
(15.8)

which is a generalization of the standard Boltzmann–Gibbs entropy. The common
term in Eqs. (15.7) and (15.8) is the integral of the n-th power of the electron density,
which is called the Onicescu information energy [20] of order n:

En =
1

n − 1 ∫ 𝜌(r)n dr (15.9)

Onicescu introduced this quantity to define a finer measure of dispersion distri-
bution than that of Shannon entropy. These ITA quantities are all simple density
functionals.

The other set of important quantities in ITA is the relative entropy or information,
which is defined through a reference density. The first one is the relative Shannon
entropy, also called information gain, Kullback–Leibler divergence [21], or informa-
tion divergence,

Sr ≡ IG ≡ ∫ iG(r)dr = ∫ 𝜌(r) ln 𝜌(r)
𝜌0(r)

dr (15.10)

where iG(r) is the information gain density and 𝜌0(r) is the reference density satis-
fying the same normalization condition as 𝜌(r). This reference density can be from
neutral atoms in the isolated state, from the same molecule with a different confor-
mation, or the reactant of a chemical reaction when the transition state is investi-
gated. Another relative entropy is the relative Rényi entropy [22] of order n,

Rr
n =

1
n − 1

ln

[
∫

𝜌
n(r)

𝜌
n−1
0 (r)

dr

]
(15.11)
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The relative Fisher information in Eq. (15.3) is [23, 24]

r
FI ≡ ∫ r

Fi(r′)Fr dr = ∫ 𝜌(r)
[
∇ln 𝜌(r)

𝜌0(r)

]2

dr (15.12)

and the relative quantity for the alternative Fisher information in Eq. (15.4) is [25]

r
FI′ ≡ ∫ r

Fi′(r′)dr = ∫ ∇2
𝜌(r) ln 𝜌(r)

𝜌0(r)
dr (15.13)

with r
Fi(r) and r

Fi′(r) as the local density of the two forms of Fisher information.
Equations (15.1)–(15.13) make use of the total electron density as the local distri-

bution function. They are all based on the first representation in ITA. There are two
other representations in ITA. One is through the shape function 𝜎(r) [26], which
is related to the electron density 𝜎(r) and the total number of electrons N through
the following relationship, 𝜌(r) = N 𝜎(r) with the normalization condition to unit
∫ σ(r)dr= 1. The above formulas for the two sets of ITA quantities can be rewritten
accordingly in terms of the shape function. For example, for Shannon entropy and
Fisher information, one has

Sσ = −∫ 𝜎(r) ln 𝜎(r)dr (15.14)

and

Iσ = ∫
|∇𝜎(r)|2
𝜎(r)

dr (15.15)

respectively. The third representation of ITA formulation is through the partition of
atoms in molecules (AIM), where the total electron population N of the system is
the summation of electron density in each atomic contribution, NA,

N =
∑

A
NA =

∑
A
∫ΩA

𝜌A(r)dr (15.16)

Three schemes to partition AIM are available in the literature, Becke’s fuzzy atom
approach [27], Bader’s zero-flux AIM approach [28], and Hirshfeld’s stockholder
approach [29]. Within this representation, for instance, Shannon entropy and infor-
mation gain can be, respectively, rewritten as

SS = −
∑

A
∫ΩA

𝜌A(r) ln 𝜌A(r)dr (15.17)

Sr ≡ IG =
∑

A
∫ΩA

𝜌A(r)
𝜌A(r)
𝜌

0
A(r)

dr (15.18)

It is important to keep in mind that (i) unlike the universal functional in DFT [1],
whose exact expression is still unknown, these ITA quantities are all simple density
functionals with their dependence on the electron density and its associated quan-
tities explicitly given, and (ii) these three representations are related to each other
and one can derive exact relationships among them [30]. Also, they can be separately
utilized for different purposes. We will highlight some examples below.
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15.2.2 Three Principles in ITA

The first principle in ITA, called the “Principle of Extreme Physical Information”,
was proposed by Nagy [31]. The Euler equation of DFT for a real interacting system
𝜇 = 𝛿E/𝛿𝜌 can be recast in the model noninteracting system and becomes

𝜇 =
𝛿TS

𝛿𝜌(r)
+ 𝜐KS(r) (15.19)

where TS, 𝜐KS, and 𝜇 are the noninteracting kinetic energy, Kohn–Sham potential,
and chemical potential, respectively, arising from the constraint that the total num-
ber of electrons must be fixed to N. Furthermore, the noninteracting kinetic energy
can be divided into two pieces,

TS = TW + TP (15.20)

where TW is the Weizsäcker kinetic energy

Tw =
1
8 ∫

|∇𝜌(r)|2
𝜌(r)

dr (15.21)

and TP is the Pauli energy due to the Pauli exclusion principle. So, the Euler equation
becomes

𝜇 =
𝛿TW

𝛿𝜌(r)
+ 𝜐P(r) + 𝜐KS(r) (15.22)

where 𝜐P is the Pauli potential defined as the functional of derivative of TP with
respect to the electron density. With the help that

𝛿TW

𝛿𝜌(r)
= 1

8

(
∇𝜌(r)
𝜌(r)

)2

− 1
4
∇2
𝜌(r)
𝜌(r)

= 𝜌−1∕2(r)
(
−1

2
∇2

)
𝜌
−1∕2(r) (15.23)

Eq. (15.22) becomes(
−1

2
∇2 + 𝜐P(r) + 𝜐KS(r)

)
𝜌

1∕2(r) = 𝜇𝜌1∕2(r) (15.24)

Equation (15.24) is like the Kohn–Sham equation, but it does not require the intro-
duction of any orbitals. It is the working formula for the orbital-free DFT (OF-DFT)
approach in DFT.

As shown by Nagy [31], this OF-DFT equation can, however, be rederived from
the Principle of Extreme Physical Information, which states that the “physical infor-
mation” K of a system should be extreme:

K = IF − J = extreme (15.25)

where IF is the Fisher information, J is the set of constraints that are to be imposed,
and K is the difference between IF and J, called the “physical information”. Accord-
ing to Nagy [31], these constraints are threefold. (i) The total wave function of the
system is antisymmetric. As shown by Nagy [14] and Flores and Keller [32], this con-
dition generates the Pauli potential υp(r). (ii) The total density of the noninteracting
system should be the same as that of the interacting system. Same as the Kohn–Sham
equation, this constraint yields the Kohn–Sham potential υKS(r). (iii) Lastly, the total
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electron density is normalized to N, Eq. (15.2), which results in a Lagrange multi-
plier 𝜇, the chemical potential of the system. In other words, minimizing the Fisher
information subject to the above three constraints should give us the same Euler
equation in OF-DFT. What the Principle of Extreme Physical Information tells us is
that one does not have to use electronic energy when deriving the Euler equation in
DFT. It could be substituted by information. Information alone is adequate in deter-
mining all properties of the system. We recently demonstrated the validity of this
argument within the context of so-called Information Functional Theory [33].

The second principle in ITA is due to Nalewajski and Parr [34], called Minimum
Information Gain Principle. In their original work, they minimized the relative Shan-
non entropy in the AIM representation, Eq. (15.18), subject to the condition that
atomic densities are always normalized to the total electron N

∫ 𝜌 dr =
∑

A
∫ 𝜌Adr =

∑
A

∫ 𝜌
0
A dr = N (15.26)

which leads to

𝛿

{
IG − 𝜆

[∑
A

∫ 𝜌A(r)dr − N

]}
= 0 (15.27)

where 𝜆 is the Lagrange multiplier. Functional differentiation of Eq. (15.27) with
respect to all 𝜌A, after some algebraic manipulations, yields that for all atoms A, we
have

𝜌A =
𝜌

0
A∑

A𝜌
0
A
𝜌 (15.28)

Equation (15.28) is the well-known “stockholder partition” of the electron den-
sity for AIM first proposed by Hirshfeld [29]. This result shows that if one employs
the Hirshfeld scheme to partition atoms in a molecule, the information gain due to
the formation of the molecule from the composing pieces will be minimal. In other
words, AIM partitioned in this manner will preserve their identity (e.g. electrophilic
and nucleophilic properties) of the reference state as much as possible. This nature
of minimal information deficiency is called the Minimum Information Gain Princi-
ple. Since atomic charges are not associated with any physical observable, they have
no unique definition. Indeed, there are many ways to quantify charge in the litera-
ture [35]. This work provides the first example to derive the definition of an atomic
charge from a physiochemical principle.

The third principle in ITA is called Information Conservation Principle proposed by
us [36]. According to the Minimum Information Gain Principle, atoms in molecules
tend to keep their identity of their reference state as much as possible, indicating
that 𝜌A and 𝜌0

Ashould be similar and the difference between the two densities could
be simulated by a perturbation expansion using the Taylor series. We can define a
new variable, x = (𝜌A − 𝜌0

A)∕𝜌A so the information gain becomes

IG =
∑

A
∫ 𝜌A ln 1

1 − x
dr (15.29)
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Since x is expected to be small, using ln 1
1−x

≈ x as the first-order approximation,
we have

IG ≈
∑

A
∫

(
𝜌A − 𝜌0

A
)

dr = −
∑

A
qA (15.30)

where qA is the Hirshfeld charge on Atom (or Group) A. This result shows that under
the first-order approximation, the information gain simply gives rise to the Hirsh-
feld charge distribution. Meanwhile, since 𝜌A and 𝜌

0
A satisfy the same normalization

condition, Eq. (15.26), the total information gain in Eq. (15.30) must vanish,

IG ≈ −
∑

A
qA ≡ 0 (15.31)

suggesting that under the first-order approximation, the information before and
after a system is formed should be conserved. We call this result the Information
Conservation Principle [36]. This principle, which stemmed from the above
first-order approximation, is a special case of the Minimum Information Gain
Principle. The actual value of information gain in Eq. (15.30) should come from the
second and other higher-order terms in the Taylor expansion in Eq. (15.44), with
ln 1

1−x
≈ x + x2

2
+ x3

3
+….

15.2.3 Relationships Among ITA Quantities

ITA quantities introduced above each have their own explicit formulas well-defined
in terms of the electron density and its associated quantities (gradient, Laplacian,
etc.). Plus, in the context of information theory, each of them has its distinct physi-
cal meaning. In this regard, it seems that they should be independent of one another.
Nevertheless, due to the existence of the basic theorems in DFT and henceforth
the redundancy of information included in the density functionals, they are closely
related. In 2007, we proved that for the density of Shannon entropy, sS(r), and two
forms of Fisher information, iF(r) and i′F(r), the following identity for atoms and
molecules must be valid [17],

sS(r) = −𝜌(r) +
1

4𝜋 ∫
iF(r′)|r − r′|dr′ − 1

4𝜋 ∫
i′F(r

′)|r − r′|dr′ (15.32)

Integrating both sides leads to

SS = −N + 1
4𝜋 ∫ ∫

iF(r′)|r − r′|drdr′ − 1
4𝜋 ∫ ∫

i′F(r
′)|r − r′|drdr′ (15.33)

More recently, for the density of information gain iG(r), we proved [25] the exis-
tence of the following identity with the local density of two forms of the relative
Fisher information, r

Fi(r) and r
Fi′(r),

iG(r) = −
1

4𝜋 ∫
r
Fi(r′)|r − r′|dr′ − 1

4𝜋 ∫
r
Fi′(r′)|r − r′|dr′ − 1

4𝜋 ∫
g2(r′)|r − r′|dr′ (15.34)

with

g2(r′) = 𝜌(r′)
[
∇2
𝜌(r′)
𝜌(r′)

−
∇2
𝜌0(r′)
𝜌0(r′)

]
(15.35)
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Integrating both sides of Eq. (15.34), one arrives at

IG = −
1

4𝜋 ∫ ∫
r
Fi(r′)|r − r′|drdr′ − 1

4𝜋 ∫ ∫
g2(r′)|r − r′|drdr′ − 1

4𝜋 ∫ ∫
r
Fi′(r′)|r − r′|drdr′.

(15.36)

These relationships show that, different from other disciplines where information
theory is applied, ITA quantities in DFT are intrinsically correlated. This is due to the
uniqueness of the electron density in describing molecular properties in the ground
state. Numerical evidence demonstrated the validity of these identities for atoms and
molecules alike [15, 25, 30].

15.3 Applications

In what follows, we highlight five topics where ITA quantities have been recently
applied to enhance our understanding about chemical reactivity, including (i) steric
effect and stereoselectivity, (ii) electrophilicity and nucleophilicity, (iii) strong cova-
lent interactions (SCIs), (iv) cooperativity in weakly interacting systems, and (v)
aromaticity and antiaromaticity.

15.3.1 Steric Effect and Stereoselectivity

As one of the most widely used chemical concepts, the steric effect is associated with
the impact of the space-occupied atoms in molecules on chemical reactivity. Since it
has no physical observable associated with it, its definition is not unique. In 2007, we
proposed a quantification approach from the DFT perspective [37] using Weizsäcker
kinetic energy [38],

TW ≡ 1
8 ∫

|∇𝜌(r)|2
𝜌(r)

dr (15.37)

which is simply one-eighth of Fisher information [16]. Our proposal is as follows.
We assume the total electronic energy E of a molecular system comes from the con-
tribution of three independent physiochemical effects, steric ES, electrostatic Ee, and
Fermionic quantum Eq

E ≡ Es + Ee + Eq (15.38)

In DFT, we have [1]

E = TS + Vne + J + Exc + Vnn = TS + Ee + Exc (15.39)

where TS, V ne, J, V nn, and Exc are the noninteracting kinetic energy, nuclear–electron
attraction, classical electron–electron Coulomb repulsion, nuclear–nuclear repul-
sion, and exchange-correlation energy density functionals, respectively, and V ne,
V nn, and J are of the electrostatic nature, so Ee = V ne + J + V nn. For the quantum
part due to the exchange-correlation effect, we know [39, 40]

Eq = Exc + EPauli = Exc + TS − TW (15.40)
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where the Pauli energy is [39, 40]

EPauli ≡ TS − TW (15.41)

which stands for the portion of the kinetic energy due to the antisymmetric
requirement of the total wave function by the Pauli exclusion principle. Putting
them together yields [37]

ES = E − Ee − Eq = TW = 1∕8 IF (15.42)

This result suggests that (i) if the assumption in Eq. (15.38) is valid, so is the result
in Eq. (15.42); (ii) the steric effect can be quantified in DFT by Weizsäcker kinetic
energy, TW; and (iii) since Fisher information differs from the Weizsäcker form by
only a factor of 1/8, the steric effect can be described within the ITA framework
by Fisher information. To rationalize the last point, Fisher information gauges the
heterogeneity of the electron density distribution, which should maximize near the
nuclei. These are where most densities reside, space is occupied by AIM, and thus
Fisher information can be utilized to represent the impact of the occupied space on
reactivity.

One of the applications with the two schemes of total energy partition, Eqs. (15.38)
and (15.39), is to provide a unified understanding about the rotation barrier height
for six simple compounds, ethane C2H6, methylamine CH3NH2, methanol CH3OH,
hydrazine N2H4, hydroxylamine NH2OH, and hydrogen peroxide H2O2, each of
which has only one rotatable bond [41–43]. Figure 15.1 shows all the data points
from the flexible rotation of the rotatable bond for these six molecules. The y-axis
is the rotation barrier height, and the x-axis is the energy component. When
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Figure 15.1 Least-square fittings with one and two energy components for all six
molecules. Source: Reprinted with permission from Liu [43], American Chemical Society.
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the electrostatic component is plotted against the barrier height, as shown in
Figure 15.1a, a reasonably strong linear correlation can be obtained, suggesting that
the electrostatic interaction plays the dominant role. However, when it fits together
with the contribution from either steric (Figure 15.1b) or exchange-correlation
(Figure 15.1c) effect, much stronger correlations become possible. These results
indicate that steric and quantum effects play minor but indispensable roles in
determining the rotation barrier height.

Stereoselectivity is a chemical reactivity concept closely related to the steric effect.
It is a tendency of a chemical reaction in which a single reactant forms an unequal
mixture of stereoisomers. This selectivity difference arises from the fact that when
an incoming agent attacks the reaction center, it prefers one direction over the other,
due to the hindrance of the steric effect. One prominent example is the nucleophilic
addition by an electrophile on the carbonyl group with different substituting groups
in α-carbon, where Cram’s rule [44] plays important role. Using the above quantifi-
cation approach of the steric effect, we can predict the stereoselectivity propensity for
these reactions. This is done through the steric potential defined by the functional
derivative with respect to the electron density [37, 45],

𝜐s(r) =
𝛿Es[𝜚]
𝛿𝜚(r)

= 1
8
|∇𝜚(r)|2
𝜚(r)

− 1
4
∇2
𝜚(r)
𝜚(r)

(15.43)

Taking the partial derivative of Eq. (15.43) with respect to the spatial variable r,
we have the steric force [45]

Fs(r) = −∇r 𝜐s(r) (15.44)

With Eq. (15.43), we can also define the steric charge qs(r) using the Poisson
equation [46],

qs(r) = −
1

4𝜋
∇2

𝜐s(r) = −
1

4𝜋
∇2

(
𝛿Es[𝜚]
𝛿𝜚(r)

)
(15.45)

It can rigorously be proven that the total steric charge of a molecular system should
vanish,

∫ qs(r)dr =
∑

A ∫ΩA

qs(r)dr =
∑

A
QA

s = 0 (15.46)

where the summation is over all atoms in the molecule, the integration is over the
atomic basin ΩA, and QA

s is the condensed steric charge on Atom A.
As two illustrative examples, Figure 15.2 exhibits the effectiveness of applying

steric force to predict stereoselectivity. The incoming electrophile prefers the side
with a smaller group in the α-carbon, which is unambiguously seen by the magni-
tude of the steric force in Figure 15.2b. Their stereoselectivity propensity is featured
by smaller steric forces on the preferred attacking side (more red area coverage and
larger green arrow) of the carbonyl carbon atom. Figure 15.3 visualizes the strong
linear correlation between the steric charge of the central carbon atom and the bar-
rier height of the self-exchange SN2 reaction with the substituent groups from H to
tert-butyl. It is well known from the experimental finding that bulky groups on the
central carbon substantially increase the reaction barrier height. Our results from
the steric charge clearly endorse that finding.
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Bulky side

Bulky side

Carbonyl Preferred Side of Attack Unfavorable Side Side View(a) (b) (c) (d)

Figure 15.2 The magnitude of the steric force mapped onto the van der Waals surface for
PhMeHC–CHO and ClMeHC–CHO molecules. Source: Reprinted with permission from Liu
et al. [45], Royal Society of Chemistry.
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Figure 15.3 The strong linear correlation between the steric charge of the central carbon
atom and the barrier height of the self-exchange SN2 reaction. Source: Reprinted with
permission from Liu et al. [46], Royal Society of Chemistry.

15.3.2 Electrophilicity and Nucleophilicity

Recall that there is no unique definition for the atomic charge, but the Hirshfeld
charge is the first atomic charge derived from the first principles [33]. Moreover,
we demonstrated that it can be employed to determine regioselectivity and simulta-
neously quantify electrophilicity and nucleophilicity [36]. The reason behind this is
the following. According to the Information Conservation Principle [36], when a new
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Figure 15.4 Comparison of the experimental electrophilicity scale of Mayr et al. [47–50]
with (a) information gain and (b) Hirshfeld charge for 21 systems listed in Scheme 15.1.
Source: Reprinted with permission from Liu et al. [36], American Chemical Society.

system is formed, the identity of its components will be preserved. If a component is
electrophilic in nature before the new system is formed, it will still be so afterward. To
preserve the identity as much as possible, the newly formed system adjusts its com-
ponents in such a way that each component becomes charged according to the stock-
holder partition scheme. Therefore, the amount of the Hirshfeld charge becomes the
identity indicator of each component in the new system. To be more specific, if the
Hirshfeld charge is negative, it can donate electrons, so it is nucleophilic; if the Hir-
shfeld charge is positive, it is able to accept electrons, so it is electrophilic. Our results
are compared with experimental scales by Mayr and coworkers [47–50].

The validity and effectiveness of applying information gain and Hirshfeld charge
to quantify electrophilicity and nucleophilicity have been examined [35, 36, 51–55].
Figure 15.4 shows our results compared with the experimental scale for 21 elec-
trophilic systems in Scheme 15.1. Figure 15.5 visualizes the comparison for 22
nucleophilic molecules in Scheme 15.2. A remarkable agreement between Mayr’s
experimental scales and our theoretical measures has been achieved. Both informa-
tion gain and the Hirshfeld charge yielded similar results. Recently, we compared
our results with the Fukui function with better results from the Hirshfeld charge
observed [35].

15.3.3 Strong Covalent Interactions

The idea of using density-based quantities to appreciate chemical bonding is not
new. Electron localization function (ELF) [56] is one example and the density Lapla-
cian is another one [28]. Recently, we unveiled that the Pauli energy, Eq. (15.41), can
be applied to identify the strong covalent bonds [57–59]. This is because in regions
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Scheme 15.1 Twenty-one electrophilic molecules studied.
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with (a) information gain and (b) Hirshfeld charge for 22 systems listed in Scheme 15.2.
Source: Reprinted with permission from Liu et al. [36], American Chemical Society.
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Scheme 15.2 Twenty-two nucleophilic molecules studied.

where multiple covalent bonding occurs involving multiple pairs of electrons in
limited space, strong electron repulsion originating from the Pauli repulsion princi-
ple should be present. This strong repulsion can be quantified by the Pauli energy.
With the Pauli energy, we proposed a dimensional index called SCI (strong covalent
interaction) index. We discovered that a signature isosurface shape of a dumbbell,
donut, and four beans in the center of covalent bonding, as shown in Figure 15.6,
is an indication of double, triple, and quadruple bonds, respectively. This SCI index
has been applied to various organic and inorganic systems, and the above signature
isosurface for systems with different covalent bond orders is always preserved,
indicating the reliability and robustness of applying the Pauli energy to describe
SCIs. Furthermore, with this same idea, we were able to identify quintuple and even
sextet bonds. This quantity can also be applied to assess the quality of approximate
kinetic energy density functionals when approximate kinetic energy functionals
are employed instead of the accurate one to compute the Pauli energy [59].

15.3.4 Cooperativity in Noncovalent Systems

For systems with noncovalent interactions, they are often characterized by the coop-
erativity effect due to the competition and compromise among two or more interac-
tions. We recently quantified the cooperativity effect using the interaction energy
for systems composed of multiple copies of the same building block, and then ana-
lyzed the nature and origin of the cooperativity effect with ITA quantities [60–62].
Using simple atomic and molecular clusters as examples in Scheme 15.3, we showed
that both positive and negative cooperativity is possible. Cooperativity in homoge-
neous molecular systems is positive, but cooperativity in charged molecular systems
is negative (Figure 15.7) [62]. We unveiled that positive cooperativity is dominated
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Ethylene C2H4, ELF, 0.8

Acetylene C2H4, ELF, 0.8

Chromium dimer Cr2
2+, ELF, 0.28 Chromium dimer Cr2

2+, SCI, 0.63

Acetylene C2H4, SCI, 2.0

Ethylene C2H4, SCI, 2.0(a) (b)

(c) (d)

(e) (f)

Figure 15.6 Identification of strong covalent interactions with ELF and SCI distributions:
(a, b) double, (c, d) triple, and (e, f) quadruple bonds, whose isosurface shape in the center of
the strong covalent bonds is like a dumbbell, donut, and four beans, respectively. The
isovalue employed to plot contour surfaces of ELF and SCI is shown for each system as well.
Source: Reprinted with permission from Liu et al. [57], American Chemical Society.

by the exchange-correlation interaction and steric effect, but the negative coopera-
tivity is dictated by the electrostatic interaction. From the ITA perspective, these two
categories of systems also demonstrated vastly different yet self-consistent behaviors.

15.3.5 Aromaticity and Antiaromaticity

Aromaticity and antiaromaticity are another set of extremely fundamental
concepts in chemistry, yet much is needed to understand their origin and
nature. Many types of aromaticity have emerged, such as Hückel aromaticity,
Möbius aromaticity, excited-state aromaticity, homoaromaticity, heteroaromaticity,
three-dimensional aromaticity, spherical aromaticity, σ-aromaticity, δ-aromaticity,
and metalloaromaticity. Many kinds of aromaticity and antiaromaticity descriptors
have been proposed (ASE, Harmonic Oscillator Model of Aromaticity [HOMA],
para-delocalization index [PDI], FLU, NICS, and MCI) as well. However, none
of them can identify all aromaticity types. Recently, we applied ITA quantities to
appreciate aromaticity and antiaromaticity [63–68]. In Figure 15.8, using fulvene
derivatives as illustrative examples [63], often called the chameleon of aromaticity
because of their capability to switch between aromaticity and antiaromaticity by
changing the substituting group, we demonstrate the usefulness of ITA quantities
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(HF)20

NH3(H2O)20 F– (H2O)20 Li+ (H2O)20

(CO2)20 Cl2 Ar20

Scheme 15.3 The optimized structure for six cluster models with n = 20 studied in this
work. Source: Reprinted with permission from Rong et al. [62], American Chemical Society.
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Figure 15.7 Cooperativity profiles of the six cluster models studied in Scheme 15.3.
Source: Reprinted with permission from Rong et al. [62], American Chemical Society.



15.4 Concluding Remarks 297

0.5

–0.1

–0.7

7

–3

–13

H
a

rm
o

n
ic

 o
s
c
ill

a
to

r 
m

o
d

e
l 
o

f 
a

ro
m

a
ti
c
it
y

N
u

c
le

u
s
-i
n

d
e

p
e

n
d

e
n

t 
c
h

e
m

ic
a

l 
s
h

if
ts

50

0

–50

A
ro

m
a

ti
c
 s

ta
b

ili
z
a

ti
o

n
 e

n
e

rg
ie

s
 (

k
J
/m

o
l)

38.8 39.3 39.8

GBP entropy (a.u.)

38.8 39.3 39.8

GBP entropy (a.u.)

38.8 39.3 39.8

GBP entropy (a.u.)

6π

4π

R

R

R2 = 0.88

R2 = 0.94

4π

R

4π

R
R2 = 0.94 R2 = 0.97

6π

R
6π

R
R2 = 0.92 R2 = 0.96

R = –BOHOH, –CC–, –CCH, –CF3, –CH2
–, –CH3, –CMe3, –CN, –COCH3, –CONH2, –COO–, –F,

–H, –NH–, –NH2, –NH3
+, –NMe2, –NN+, –NO, –NO2, –O–, –OCH3, –OH, –SiMe3.

(a) (b) (c)

Figure 15.8 Comparison of the GBP entropy with three aromaticity descriptors.
(a) Structural index, Harmonic Oscillator Model of Aromaticity (HOMA); (b) magnetic index,
nucleus-independent chemical shifts; and (c) energetic index, aromatic stabilization
energies for fulvene derivatives with a total of 4 and 6 π electrons. Source: Reprinted with
permission from Ref. [63]. Copyright 2018, Royal Society of Chemistry.

in distinguishing aromaticity from antiaromaticity. We utilized the GBP entropy
in this case and compared it with three aromaticity (structural, magnetic, and
energetic) descriptors for two series of fulvene compounds with 4 and 6 π electrons,
respectively. As can be unambiguously seen from the figure, the ITA quantity
displays opposite correlation trends for aromatic and antiaromatic systems with all
three aromaticity criteria. These opposite trends of correlations can be utilized to
identify aromaticity and antiaromaticity. This behavior has been observed in other
systems as well [64–68].

15.4 Concluding Remarks

This chapter introduces the ITA and highlights a few of its recent developments
as a new front of CDFT, where simple electron density functionals are directly
employed to quantify chemical reactivity. Because of the space limit, we only
overviewed its three theory developments and five topic applications. In retrospect,
searching for accurate approximations for energetic components such as exchange
and correlation energy density functionals has been the focus of DFT developments
in the past few decades. Can density functionals do the same for chemical reactivity
such as regioselectivity, stereoselectivity, or chemoselectivity? From what we have
presented in this chapter, the answer should definitely be yes. As an extension part
of this CDFT textbook, we hope that more efforts will be invested in the future along
this direction toward our common goal of crafting a chemical reactivity theory in
density-based language.
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The Linear Response Function
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Bioengineering Science, Pleinlaan 2, Brussels 1050, Belgium

16.1 Introduction

Response functions [1] play a fundamental role in conceptual density functional
theory (CDFT) [2–9]. As outlined in the Chapter 1 and in Chapter 2, they appear
in a natural way when discussing the effect of perturbations in the number of elec-
trons N or the external potential v(r) on the energy E of an atom, molecule… upon
a chemical reaction. A series expansion then indeed reveals the importance of par-
tial, functional, or mixed derivatives of the type 𝜕nE[N, v]/𝜕Nm

𝛿v(r1)𝛿v(r2)· · ·𝛿v(rm′ )
with (n =m+m′) indicating the sensitivity, or response, of a system toward pertur-
bations in N and/or v. Multiplied by the perturbation itself, they quantify the mag-
nitude of the effect of the perturbation on the system. Hence their name: response
functions. It should be stressed again (see Chapter 2) that these quantities are intrin-
sic properties of the system, i.e. only a function of the nature of the system, not a
function of the (magnitude) of the perturbation.

In Chapter 2, the “response function tree” [3, 4, 10] was introduced, showing
how, adopting the usual sequence, “pure” N derivatives are at the extreme left,
“pure” v derivatives at the extreme right at a given order of perturbation n, and that
when going from left to right one passes from global (i.e. r-independent), to local
(i.e. r-dependent) to nonlocal (depending on r, r′, r′′…) descriptors. In the previous
chapters of the foundations part, most attention went to both n = 1 derivatives
(electronic chemical potential and electron density, being global and local in
nature, respectively) and to two of the three n = 2 derivatives (chemical hardness,
electronic Fukui function, again being global and local in nature respectively).
Although present in the response function tree, the utmost right n = 2 derivative
in Scheme 2.3 received much less attention. This second functional derivative of E

Conceptual Density Functional Theory: Towards a New Chemical Reactivity Theory, First Edition.
Edited by Shubin Liu.
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with respect to the external potential at a constant number of electrons, a kernel,
is commonly referred to as the linear response function (LRF) [2] for reasons that
will become clear below (for reviews see Refs [11, 12]). Usually, it is written as 𝜒
(r, r′). The reasons why its importance in CDFT was limited in the early years of
CDFT (cf. Chapter 1) are clear: it is a complicated descriptor, the function of six
variables, hard to evaluate, and after evaluation, hard to represent, let it be to give
chemical significance to it. In the past 10–15 years, it, however became possible
to calculate, at different levels of approximation and to represent this descriptor
and show that it contains important chemical information. As an afterthought, its
chemical significance is not unexpected because, in the response tree, it can be
placed on equal footing as the chemical hardness, the second pure N derivative. A
word of caution should be placed here. The reader may well be aware of the use of
the frequency-dependent form of the LRF, 𝜒(r, r′; 𝜔), which has a long-standing
tradition in time-dependent DFT [13]. Thanks to pioneering work by Gross and
coworkers [14, 15] and the elegant matrix formulation by Casida [16], it offers a
routinely available road to compute the electronic transition energies/frequencies as
its poles and on the fly its intensities and assignments; nowadays, it is implemented
in many standard Quantum Chemical packages. This remarkable computational
evolution, however, was not accompanied by parallel investigations on different
ways of the evaluation, representation, and especially the chemical interpretation
of its frequency-independent, or static congener, 𝜒(r, r′).

It should be clear that in this chapter we describe the basics of and the evolution
in research and use of the time-independent LRF, which to a certain extent, has pro-
ceeded independent of its time-dependent version and, up to now, has certainly had
a different finality. These things said, the chapter is structured as follows. Section
16.2 will start from the exact expression for the LRF originating from a wave func-
tional perturbational ansatz and the different approximations in use to cope with
the computational intractability of the basic expression. In Section 16.3, a selec-
tion will be made of applications varying from atoms to molecules illustrating how
and which chemical information can be retrieved from the LRF, whereas its rep-
resentation will also be scrutinized. In a separate subsection, we will highlight the
connection between the LRF and the alchemical derivatives involving a new type of
response function (𝜕E/𝜕Zα), where Zα is the charge of nucleus α. Introduced by von
Lilienfeld, these derivatives have shown to offer promising possibilities in explor-
ing the chemical space. In view of (i) their response function character and (ii) their
direct link with the LRF theoretical and applied aspects of the alchemical derivatives
are included in this chapter.

A final introductory word: although we will try to adopt as much as possible a
pedagogical style in view of the aim of this book, it is absolutely impossible to give
and comment on all derivations in detail. The essentials will be given, and the reader
will be referred to other reviews or the original papers for further details. Note that
not all basic references to CDFT are included again, as they can be found in the
four chapters in Part I. On the other hand, the references to the LRF literature are
comprehensive.
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16.2 Theory and Computational Aspects

The at first awkward expression for 𝜒

𝜒(r, r′) = (𝛿2E∕𝛿v(r) 𝛿v(r′))N (16.1)

becomes more transparent when realizing that the response function tree [3, 4, 10]
in Chapter 3 reveals that

(𝛿E∕𝛿v(r))N = 𝜌 (r) (16.2)

turning Eq. (16.1) into

𝜒(r, r′) = (𝛿𝜌 (r)∕𝛿v(r′))N = (𝛿𝜌(r′)∕𝛿v(r))N = 𝜒(r′, r) (16.3)

where the second expression results from the independence of the sequence of the
two functional derivatives in Eq. (16.1). The physical interpretation of the LRF now
becomes obvious: it represents the sensitivity of the density at position r to a change
in the external potential at position r′ or vice versa. The first-order change in the
density Δ𝜌(r) upon a perturbation Δv(r′) can then be written as

Δ𝜌 (r) = ∫ (𝛿𝜌 (r)∕𝛿v(r′))NΔv(r′) dr′ = ∫ 𝜒(r, r′) Δv(r′) dr′ (16.4)

The terminology “linear” now becomes clear: 𝜒(r,r′) is the proportionality “con-
stant” between the change in density at position r and the change (perturbation) of
the potential at position r′. This simple relationship between both quantities only
holds when the strength of the perturbation is small, and higher-order terms can be
neglected: then the response 𝛿𝜌 is linearly related to the perturbation 𝛿v, and one
can work in the context of linear response theory with as fundamental and intrinsic
property of the system 𝜒(r,r′) characterizing, as stated above, the sensitivity of the
density of a system at position r to a change or perturbation is the external potential
at position r′. The reader will notice that the term “linear” is at first sight contra-
dictory with the position of the LRF in the CDF tree introduced in Chapter 2 of the
fundamentals, the reason, of course, being that this tree is based on energy deriva-
tives and that in this context, the density itself already appears as the first derivative
of the energy.

As a final remark before proceeding to the evaluation of the LRF, the reader should
realize that, in analogy to macroscopic thermodynamics and using its wording, the
perturbation in the external potential may bring the atomic or molecular system
“out of equilibrium,” leading to the question of criteria for intrinsic equilibrium and
stability of molecular systems. These criteria have been formulated by Nalewajski
and Capitani and interpreted in terms of the Le Châtelier and the Le Châtelier Braun
principle, further extending analogies between the Density Functional Theory and
Thermodynamics [17a], put forward by Nalewajski and Parr [17b].

Passing now to the evaluation of 𝜒(r,r′), its most general expression can be
obtained from standard first-order perturbation theory in a wave function theory
context [2]. One starts from the density expression for a N electron system described
by a (time-independent) wave function 𝜓

𝜓 = 𝜓 (x1, x2 · · · xN ) (16.5)
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where xi is a four-vector containing three spatial coordinates gathered in ri and a
spin variable si. Throughout this text all wave functions will be considered as real,
the extension to complex wave functions being evident. The density at position r,
𝜌(r), is then given by

𝜌(r) = N ∫ Ψ(x1, x2 · · · xN )Ψ(x1, x2 · · · xN ) ds1dx𝟐 · · · dxN (16.6)

Consider now a one-electron perturbation in the potential

ΔV = ΣiΔvi(r) (16.7)

First-order perturbation theory (not considering here the case of degeneracy) then
straightforwardly yields

Δ𝜌(r𝟏) = N ∫ · · ·∫
(
ΨΨ–Ψ0

(0)Ψ0
(0)) ds1dx𝟐 · · · dxN

= 2NΣj>0
(

E0
(0) − Ej

(0))−1
< Ψj

(0) |ΔV |Ψ0
(0)
>

∫ · · ·∫ Ψ0
(0)Ψj

(0)ds1dx𝟐 · · · dxN (16.8)

where the summation over j runs over all excited states ψj, ψ0 denoting the ground
state, with associated energy levels Ej and E0 and the superscript(0) denotes the
unperturbed system. Evaluating the ΔV matrix elements and comparing Eq. (16.8)
with Eq. (16.4) then yields

𝜒(r𝟏, r2) = 2N2Σj>0
(

E0
(0) − Ej

(0))−1
(
∫ Ψj

(0)Ψ0
(0)dx𝟏ds2dx𝟑 · · · dxN

)
×
(
∫ Ψ0

(0)Ψj
(0)ds1dx𝟐dx𝟑 · · · dxN

)
(16.9)

Introducing the density operator 𝜌op(r) = Σi𝛿(r− ri) allows to simplify expression
(16.6) as

𝜌(r) = ∫ Ψ(x1, x2 · · · xN ) 𝜌op(r) Ψ(x1, x2 · · · xN ) dxN (16.10)

Extending this density expression to “off-diagonal cases” involving two different
wave functions, say, ψj

(0) and ψ0
(0), one arrives at a compact expression (changing

r1 and r2 into r and r′)

𝜒(r, r′) = 2Σj>0
(

E0
(0) − Ej

(0))−1
< j |||𝜌op(r)

||| 0 >< 0 |||𝜌op(r′)
||| j > (16.11)

This type of expression is encountered in the context of time-dependent DFT
for the frequency-dependent counterpart 𝜒(r,r′; 𝜔) of the LRF, usually termed the
spectral density representation of the density-density response function. In the
zero-frequency limit [13]. In the case of real functions, Eq. (16.11) is retrieved. The
complications arising when attempting to evaluate 𝜒 in this way are obvious, as
in the infinite summation, the energies and wave functions of all excited states are
needed.

Most work in this field has been done using a coupled perturbed Hartree–Fock
(HF) or Kohn–Sham (KS) ansatz [11, 18], where the basic idea is that a single Slater
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determinant is used for the unperturbed system involving orbitals 𝜑i , solutions of
the unperturbed HF, or KS equations, whose change under perturbation is evaluated
at different orders. Taking for the sake of simplicity a closed shell system and real
orbitals, the density can then be written as

𝜌
(0)(r) = 2Σi𝜑i

(0)2(r) (16.12)

and its first-order correction as

𝜌
(1)(r) = 4Σi𝜑i

(0)(r)𝜑i
(1)(r) (16.13)

where the first-order correction to orbital 𝜑i, 𝜑i
(1), can be expanded in terms of the

zero-order functions

𝜑i
(1)(r) = Σacai𝜑a

(0)(r) (16.14)

Introducing this expansion into the perturbed HF or KS equations (for a complete
derivation see [11, 18]), one obtains

𝜒(r, r′) = (𝛿𝜌(r)∕𝛿v(r′))N = −4 ΣibΣjc(M−1)ib,jc𝜑i
(0)(r)𝜑b

(0)(r)𝜑j
(0)(r′)𝜑c

(0)(r′)
(16.15)

where the M matrix elements are given by

in HF Mib,jc = (𝜀c − 𝜀j)𝛿ij𝛿bc + 4 (ib|jc)–2 (ic|jb) (16.16a)

in KS Mib,jc = (𝜀c − 𝜀j)𝛿ij𝛿bc + 4 (ib|jc) + 4 (ib|fxc(r, r′)|jc) (16.16b)

The 𝜀k stands for the orbital energies, indices i and j refer to occupied orbitals,
b and c to unoccupied ones, and the integrals between curly brackets are the
two-electron interaction integrals. In the KS expression, the exchange-correlation
term is defined in terms of the operator f xc(r, r′) = 𝛿

2Exc/𝛿𝜌(r)𝛿𝜌(r′), where Exc
is the exchange-correlation energy. Note the similarity of both expressions: the
first, orbital energy-dependent term, is identical and is the only term in HF if the
influence of the external potential perturbation on the first-order correction to the
Fock operator (through the perturbed orbitals) is neglected; in KS, it is the only
remaining term if the influence of the potential perturbation on the Hartree or
exchange-correlation potentials is dropped. When the influence of this perturbation
is maintained in the Coulomb terms, HF and KS again display the same second
term, whereas when exchange (HF) or exchange-correlation effects (KS) are
included, the third, now different terms in Eqs. (16.16a) and (16.16b) appear. It is
easily seen that in the simplest approximation, the Independent Particle Model,
𝜒(r, r′), reduces to (dropping the superscripts to simplify the notation)

𝜒(r, r′) = −4 ΣiΣa(𝜀a − 𝜀i)−1
𝜑i(r) 𝜑a(r)𝜑a(r′) 𝜑i(r′) (16.17)

which boils down to 𝜒KS(r, r′) (=𝛿𝜌 (r)/𝛿vKS(r′)) the functional derivative of 𝜌 w.r.t.
the KS potential vKS, as discussed by Ayers [19, 20]. Finally, note that the “Master”
Eq. (16.11) reduces to (16.17) if one starts from a single Slater-determinant wave
function and exploits (i) Slater’s rules for the 1-electron matrix elements and (ii) a
Koopman’s type approach for the denominator.
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The independent particle approximation is straightforward to evaluate after
a standard HF or KS calculation, as present in nearly all quantum chemistry
packages. The so-called random phase approximation to the LRF [18], including the
Coulombic correction and the complete expressions involve the manipulation of
two-electron interaction integrals, the evaluation of the exchange-correlation term
in the KS approach starting from a well-chosen exchange-correlation potential,
and the inversion of the M matrix. In Section 16.3.3, we will have, for a particular
example, a glance at the relative performance of the three levels in a KS context.

As an afterthought and preparing one of the applications in Section 16.3, the
resemblance of the IPM expression (16.17) and Coulson’s atom–atom polarizability
𝜋r,s (16.18) [21] should be mentioned. 𝜋r,s given by

𝜋r,s = (𝜕qr∕𝜕𝛼s) (16.18)

can be seen as an atom-condensed version of the LRF Eq. (16.2) with qr, the 𝜋
electron density on atom r in Hückel’s 𝜋 electron theory and 𝛼s, the Coulomb param-
eter/integral for atom s [22]. Its variation can be seen as a special, atom-condensed,
case of the variation of the external potential 𝛿v(r) in Eq. (16.2). Again, using
first-order perturbation theory, the resulting expression for 𝜋r,s is given by

𝜋r,s = −4 ΣjΣk(𝜀k − 𝜀j)−1crjcsjcrkcsk (16.19)

The summations over j and k run over all occupied and unoccupied orbitals,
respectively, with energies 𝜀j and 𝜀k and the orbital coefficients cr,j . . . . are extracting
the term relevant for atom r from orbital j, . . . . The analogy with expression (16.17)
is striking and will be further commented on in Section 16.3.3.

To end this section, it should be noticed that a descriptor analogous to the LRF has
also been addressed in the other ensemble (cf. Chapter 2 in the Foundations), where
v(r) is one of the two variables, namely the grand canonical ensemble Ω = Ω [𝜇, v].
Here, the second functional derivative ofΩwith respect to v(r) at constant𝜇 emerges
as an analogue of the LRF [3, 4]. One of the most interesting properties of this kernel,
written as s(r,r′) and termed the softness kernel [23, 24], is that upon integration,
it yields the local softness s(r), which in its turn via the expression s (r) = S f (r)
(Chapter 2), yields the global softness S. An analogous integration sequence is not
recognized in the canonical ensemble for the LRF. We finally mention, without proof
(see [23]), that a relationship between the two kernels has been established in the
famous Berkowitz–Parr relation

s(r, r′) = −𝜒(r, r′) + 𝜂—1f (r) f (r′) = −𝜒(r, r′) + S f (r)f (r′) (16.20)

where f (r) is the Fukui function and 𝜂, the hardness. Recently it was shown that,
based on the convexity of Ω(v) [24] as opposed to the concavity of E(v) [24b, 25, 26],
the following inequality stands

s(r, r) ≥ s(r)2∕S ≥ 0 (16.21)

linking the three softness descriptors in another way and pointing out that the diag-
onal elements of the softness kernel should be positive or zero as opposed to those
of the LRF (see Section 16.3.1).
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In the context of the analogy between thermodynamics and DFT mentioned above
[17], it can be shown [12, 24a], starting from the concavity property of the Gibbs
Free energy G(T, p) and its analogueΩ = Ω [𝜇, v], that this inequality, involving the
three second-order derivatives of Ω with respect to 𝜇 and v, bears complete analogy
with the one related to the isothermal compressibility 𝜅T, the heat capacity at con-
stant pressure Cp, and the coefficient of thermal expansion 𝛼, involving the three
second-order derivatives of G with respect to p and T [27].

𝜅T∕V ≥ 𝛼
2T∕Cp (16.22)

16.3 Applications

16.3.1 Atoms: Shell Structure

The study of the non-integrated form of 𝜒(r, r′) as such is, as stated above, hampered
by the six-dimensional nature of this kernel but is important from a fundamental
point of view before passing to atom-integrated forms (vide infra). Atoms are a
way out to introduce some mathematical properties of the LRF and to connect
these with the physical/chemical significance of this kernel. When considering a
spherical potential perturbation, the 6D information of the LRF can be compacted,
after integrating out any angular dependencies to a 2D contour-plot adopting a
“radial distribution” representation r2

𝜒(r, r′)r′2, where r and r′ denote the distance
to the nucleus, situated at the origin of the points r and r′ at which the LRF is
evaluated [28].

In Figure 16.1, we show, as an example, this plot for the first three noble gases
He, Ne, and Ar. In all cases (and this also turns to be the case for all atoms up to
Ar as reported in Ref. [28]), negative regions are observed along the diagonal, sym-
metrically surrounded by positive ones, and in the case of Ne and Ar, also secondary
negative regions. In the simplest case, He, only two distinct regions appear, which are
multiplicated when passing from one row of the periodic table to the next one, indi-
cating already a relationship with the shell structure of atoms. To further simplify,
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Figure 16.1 Contour-plots of the radial distribution function r2
𝜒 (r, r′)r′2 for the noble

gases He, Ne, Ar (PBE with aug-cc-pVTZ). Source: Reproduced from Boisdenghien et al. [28],
with permission from the PCCP Owner Society.
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one can turn to one-dimensional versions of these plots by keeping r or r′ fixed. In
Figure 16.2, we show the function r2

𝜒(r, r′) for r′ = 0, i.e. the origin. One then gener-
ates a cross section of the full contour plot along the r-axis. There it is seen that close
to r = 0, r2

𝜒(r, 0) is negative. If a positive perturbation is supposed to be active, i.e.
less attractive for the electrons, as compared to (−Z/r), essentially, the region close to
the nucleus becomes less attractive, resulting in a depletion of electrons in the vicin-
ity of the nucleus. This is an emanation of the overall negative value of the diagonal
elements 𝜒(r,r′) of the LRF. This behavior is intimately related to the concavity of
the E = E [N, v] functional with respect to v [24–26].

E [N, 𝜆v1 + (1 − 𝜆)v2] ≥ 𝜆 E[N, v1] + (1 − 𝜆) E[N, v2] ∀𝜆 𝜀 [0,1] (16.23)

leading to the conclusion that the LRF is negative semidefinite

∫ ∫ 𝜒(r, r′) 𝜃(r) 𝜃(r′) dr dr′ ≤ 0 (16.24)

where 𝜃(r) is any continuous function. If now the second-order variation in the
energy 𝛿E(2) upon variation of the potential 𝛿v (r) is considered, one gets

𝛿E(2) = 1∕2∫ ∫ 𝜒(r, r′) 𝛿v (r) 𝛿v (r′) dr dr′ (16.25)

Adopting a delta function expression for 𝛿v (r′), V 0𝛿 (r′−r′), where V 0 is a con-
stant, one gets

𝛿E(2) = 1/2 V0
2
𝜒(r′′, r′′) ≤ 0 (16.26)

showing that the diagonal elements of the LRF should be negative or zero. Its physi-
cal significance is straightforward: when at a given point r, the potential is increased
(less negative), this unfavorable situation for the electrons will result in an electron
depletion at that point with concomitant negative (𝛿𝜌(r)/𝛿v(r))N value, i.e. a negative
or zero diagonal 𝜒 value 𝜒(r, r).

Returning now to the plots in Figures 16.1 and 16.2 and continuing with a point
charge perturbation of the external potential located at the origin, 𝛿v (r) =A 𝛿(r−0),
where we assume A to be a positive real constant, we obtain

Δ𝜌(r) = ∫ 𝜒(r, r′) 𝛿v (r′) dr′ = A∫ 𝜒(r, r′) 𝛿(r′ − 𝟎) dr′ = A𝜒(r, 𝟎) (16.27)

implying (cf. the Figure for r2
𝜒(r,0)) a drop in the electron density close to the

nucleus (r small) accompanied at a large distance by a positive region, as it should
in view of the conservation of the number of electrons. For the LRF, this demand
results in the following property

∫ 𝜒(r, r′) dr′ = 0 (16.28)

indeed

∫ 𝜒(r, r′)dr′ = ∫ (𝛿𝜌(r)∕𝛿v(r′))N = 𝛿∕𝛿v (r′)∫ 𝜌(r)dr = 𝛿N∕𝛿v (r′) = 0

(16.29)
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Figure 16.2 One-dimensional plots for r2
𝜒 (r, 0) for the noble gases He, Ne, Ar, Kr (PBE

with aug-cc-pVTZ). Source: Reprinted with permission of Boisdenghien et al. [28], American
Chemical Society.

in line with the alternating positive and negative regions for constant r or r′ in
Figure 16.1. In Figure 16.2, we finally compare the plots for the radial distribution
functions r2

𝜒(r, 0) between the different noble gases: it is seen that upon multiplica-
tion of regions in the contour-plots of Figure 16.1 when going down in the periodic
table, an increasing number of alternating positive and negative regions show up
in the radial distribution function when passing from He, via Ne, and Ar to Kr.
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The increasing number of nodes with a concomitant shift of the highly oscillatory
regions to small r values is reminiscent of the well-known increasing number of
peaks in the radial distribution function of the density offered as a visualization
of the “shell structure of atoms” [29]. In other words, disentangling the complex
nature of the six-dimensional LRF reveals a fundamental property of atoms: their
shell structure.

16.3.2 Molecules: Inductive and Mesomeric Effects, Electron
Delocalization, and Aromaticity

Concepts such as inductive and mesomeric effects, electron delocalization aromatic-
ity, and anti-aromaticity are for decades at the heart of the interpretation of the
structure, stability, charge distribution, and reactivity of both organic and inorganic
molecules [30]. It is tempting to see if this basic chemistry, in which often the influ-
ence of a substituent on given position on another position of a chain or ring is at
stake, can be retrieved from the LRF in which precisely these two ingredients, pertur-
bation at one point and response (of the density) at another point [31], are involved.
In Figure 16.3, we depict the condensed LRF for the different atoms of a few sim-
ple organic molecules: linear chains, saturated and unsaturated, with at position 1 a
substituent, in casu an alcohol or amino group. The reader will notice that here we
pass to another representation of the LRF in view of the complexity of the systems,
an atom-integrated LRF, where an atom-condensed LRF matrix is introduced with
elements

𝜒AB =∫VA∫VB
𝜒 (r, r′) dr dr′ (16.30)

The LRF is integrated into atomic basins in regions VA and VB associated to atoms
A and B.

The figure shows a monotonous decrease along the saturated chain for the
response of a given atom to the perturbation of the substituent at position 1,
with a value vanishing after two or three bonds. This is highly reminiscent of
the inductive effect, which is known to decay monotonously along a chain and
dies off after two or three bonds. In the unsaturated case, different behavior is
noticed with alternating maxima (at C2, C4, and C6) and minima (at C1, C3, and
C5), corresponding to mesomeric active and passive atoms, respectively, changing
their charge when one passes from one canonical form to another. The mesomeric
effect (Figure 16.4) is thereby retrieved, suggesting that the LRF could be used as a
measure of delocalization in, e.g. cyclic systems, and so it is natural, as a next step,
to scrutinize the information content of the LRF on aromaticity [32, 33].

In Figure 16.5, we depict the LRF matrix-elements 𝜒C1,Ci (i = 2,3, …, 6) for
cyclohexane, benzene, cyclohexanol, and phenol. Again, in the saturated systems,
a monotonous decrease along the ring is observed until reaching the 4-position,
typical for the inductive effect, whereas for the aromatic systems, a “zigzag” curve
is obtained with maxima at the mesomerically active ortho and para positions. This
result is reminiscent of the 1,4 para-delocalization index (PDI) proposed by Sola
and coworkers [34]. as a measure for aromaticity, suggesting that the LRF, in its
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Figure 16.4 The mesomeric effect at work in hexa-1,3,5-trien-ol. Source: Reprinted with
permission from Sablon et al. [31], American Chemical Society.

turn, may be used as a measure of aromaticity. Figure 16.6 shows the behavior of the
LRF in a number of aromatic, nonequivalent six-rings in a large series of polycyclic
aromatic systems, where all rings are seen to display an outspoken zigzag pattern,
the most prominent behavior being benzene itself. The LRF and PDI were shown to
be linearly correlated, and within certain approximations, an analytical expression
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justifying this behavior can be presented. Remarkably, for anti-aromatic molecules,
an inverted zigzag pattern is revealed.

The results for benzene, originally obtained in the IPA version of the coupled per-
turbed KS ansatz, were later on compared with the two superior levels described in
Section 16.2 to test the reliability of the IPA (C. Van Alsenoy et al., unpublished). In
Table 16.1, the comparison is given for the matrix elements 𝜒C1,Ci (i = 2, 3,…, 6) for
benzene at the three levels.

Although the IPA values significantly differ from the two other levels, which
among each other are quite close, the overall pattern at the three levels is identical;
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Table 16.1 Comparison of the condensed LRF matrix elements 𝜒C1,Ci (i = 2, 3, …, 6) for
benzene obtained via coupled perturbed KS and the three levels of approximation
described in Section 16.2.

Method/element 1,1 1,2 1,3 1,4 1,5 1,6

IPA −2.663 0.535 0.281 0.503 0.281 0.535
RPA −0.971 0.203 0.088 0.124 0.088 0.203
Full expression −1.010 0.218 0.085 0.127 0.085 0.219

Use of the B3-LYP functional with a 6-311++G** basis-set and Iterative Hirschfeld condensation;
all values in a.u.) (C. Van Alsenoy et al., unpublished).

the zigzag structure prevails at all levels of theory suggesting that, despite its over-
estimation of the matrix-elements, the IPA may be used in a qualitative approach
when looking for trends and comparisons within the same system or between
systems.

As an eye-opener and in view of the success of the LRF to retrieve inductive and
mesomeric effects, at the heart of the concept of transferability of functional groups,
we briefly refer here to the results of a recent in-depth study on the relationship
between Kohn’s nearsightedness of electronic matter principle (NEM) [35, 36] and
the transferability of functional groups [37] (for more details, see [38]). The for-
mer is a very deep theorem on the behavior of electronic matter under perturbation
with the upshot that electronic matter is nearsighted (i.e. turns out to be under cer-
tain conditions “blind” for perturbations beyond a certain distance). The latter is a
long-standing chemist’s paradigm that the behavior of functional groups is trans-
ferable and, to a certain extent, independent of its environment (e.g. the chain it
is attached to) and vice versa. This concept has been at the basis of an impressive
systematic and structural approach to organic chemistry in the previous chemistry,
as witnessed by Patai’s unsurpassed book series on the “Chemistry of Functional
Groups” [39]. The analytical calculations of the softness kernel s(r, r′), in use as
Kohn’s principle, is formulated at conditions of constant 𝜇, for a series of linear
chains, confirmed its nearsightedness, providing a physical basis for the transfer-
ability concept. The physicist’s NEM principle and the chemist’s transferability of
functional groups paradigm could thereby be reconciled.

16.3.3 The Link Between the Linear Response Function and Molecular
Conductivity

In view of the fundamental property of the LRF of relating two positions in space, it
turned out worthwhile to investigate the link between the LRF and molecular con-
ductivity. Molecular electronics has been a vibrant area of research in recent years,
and an ever-growing number of studies [40] have been devoted to the transport
properties of, typically, organic molecules containing π-conjugated systems with the
ultimate aim to incorporate them in molecular electronic devices [41]. The funda-
mental quantity in this type of investigations is the transmission probability at the
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Fermi level TAB(0) between two contacts attached to two atoms A and B. Within
several approximations, e.g. only considering the π electron system and cutting the
resonance effects between the contacts and the molecule after the molecules’ first
neighbor in the contact (see, e.g. [42, 43] for a detailed analysis), the following simple
expression can be written down

TAB(0) = 4 𝛽2ΔAB
2∕Δ2 (16.31)

A and B are the atoms at which the contacts are placed, Δ is the Hückel deter-
minant for the 𝜋 system of the isolated molecule, and ΔAB is the determinant from
which row A and column B are eliminated, and 𝛽 is a measure of the interaction
between the contact atom and its neighbor, the (first atom of) the molecule consid-
ered. The link between this expression and the LRF emerges when going back to the
forerunner of the LRF, Coulson’s atom–atom polarizability, mentioned in Section
16.2. Using complex analysis, circumventing, e.g. the diagonalization of theΔmatrix
to obtain the system’s energy, Coulson and Longuet Higgins showed [21] that the
atom–atom polarizability (cf. Eq. (16.19)) could be written as

𝜋A,B = (𝜕qA∕𝜕𝛼B) = 𝜋−1 ∫ (ΔAB(iy)∕Δ(iy))2dy (16.32)

This remarkable result shows that the integrand of 𝜋AB is directly related to the
transmission probability TAB(0): an intimate relation between numerical results
for 𝜋AB and TAB(0) may therefore be foreshadowed [44]. In Figure 16.7a, we
depict these two quantities for the early members of the linear acenes (benzene,
naphthalene, anthracene, and tetracene), where one atom, say, A, is taken as
reference atom, at which in the conductivity setup, the first contact is attached. For
𝜋AB, the reference atom is indicated by a green circle, with a radius proportional
to the self-polarizability 𝜋AA of the atom, which (cf. the discussion of the diagonal
elements of the LRF in Section 16.3.1) is always negative, as is also easily seen from
Eq. (16.19) when putting there r = s. The black and red circles on the other atoms
denote the atom–atom polarizability quantifying the response of the charge on a
given atom B, qB, when a perturbation in v, in casu the Coulomb integral 𝛼, is exerted
on atom A (𝜋AB > 0 : black; 𝜋AB < 0 : red). A similar pictorial representation is
followed for TAB(0), with an empty green circle at the position of the “first” contact
at reference atom A and the black circle at an atom B, whose area is proportional
to the magnitude of the transmission when the “second” contact is positioned at
that atom (note that no negative values occur here as TAB(0) lies between 0 and 1).
Figure 16.7a clearly displays the analogy in the pattern between 𝜋AB and TAB(0): a
positive atom–atom polarizability between two centers turns out to be a necessary
condition for non-zero transmission (a simple selection rule) with overall a larger
conductivity associated with larger polarizability.

The results in the case of pentacene in Figure 16.7b strengthen this view: when
varying the position of the first contact, a highly similar pattern for the response of
a different atom in 𝜋AB and the concomitant transmission probability emerges.

The final conclusion is that the “two-point” structure of the LRF (i.e. its kernel
character), here used in its atom-condensed forerunner 𝜋AB, enables a predictive
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(a) (b)

Figure 16.7 (a) The atom–atom polarizability (left) and the transmission probability at the
Fermi level (right) for a single reference atom for benzene, anthracene, and tetracene. (b)
The atom–atom polarizability (left) and the transmission probability at the Fermi-level
(right) for pentacene with variable reference atom. Source: Reprinted with permission of the
Stuyver et al. [44], AIP Publishing.

use in discussing molecular conductivity [44, 45]. At first sight, these two quantities
are somewhat distant; upon closer look, they bear important similarity when keep-
ing in mind the analogy between the kernel structure of the LRF and the two-point
connecting event in molecular conductivity.

16.3.4 Alchemical Derivatives and Their Relationship with the Linear
Response Function

Alchemical derivatives were introduced by von Lilienfeld and coworkers [46–50]
in an early attempt to efficiently explore chemical compound space [51, 52], the
space populated by all imaginable chemicals with natural nuclear charges and
realistic internuclear distances for which chemical interactions exist. Navigating
through this space is costly, obviously for experimental chemists and theoretical
chemists can and should be guiding their experimental colleagues in this endeavor
by developing efficient algorithms in prospective work, e.g. by quantum-chemical
calculations at a much lower cost. In this context, a very promising ansatz was
launched by von Lilienfeld. In his alchemical coupling approach, two iso-electronic
molecules are “coupled alchemically” through the interpolation of their external
potentials [46–50]. In this approach, a key role is played by the so-called alchemical
derivatives, the simplest one being (𝜕E/𝜕ZA)N, ZB≠ZA [46, 53], i.e. the derivative
of the molecular energy with respect to a nuclear charge at a constant number of
electrons. These derivatives and their higher-order congeners in principle allow
obtaining the energy of a “transmuted” molecule, in which a given nuclear charge
has been changed, starting from the energy of the “parent” molecule through the
use of a Taylor expansion [53]

E
(

ZA
′
,ZB,…N

)
= E( ZA,ZB,…N) + (𝜕E∕𝜕ZA)N,ZB≠ZAΔZA

+ 1/2
(
𝜕

2E∕𝜕ZA
2)

N,ZB≠ZAΔZA
2 + · · ·withΔZA = ZA

′ − ZA (16.33)
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The alchemical derivatives, termed the alchemical potential 𝜇al
A ((𝜕E/𝜕ZA)N, ZB≠ZA)

and alchemical hardness 𝜂
al

A((𝜕2E/𝜕ZA
2)N, ZB≠ZA), including also mixed terms

(derivative with respect to ZA and ZB), are a particular type of response functions,
bearing an analogy the electronic N derivatives 𝜇 and 𝜂. In fact, they originate from
a particular choice of the derivatives with respect to the external potential v(r) if the
change in v is concretized in a change in Z value(s). The direct link with other CDFT
descriptors, such as the density and the LRF, becomes apparent starting from the
explicit expression for the external potential, (cf. Chapter 2) (−Σ ZA/|r − RA|). The
first-order alchemical derivative (𝜕E/𝜕ZA)N, ZB≠ZA can then indeed be written as

(𝜕E∕𝜕ZA)N,ZB≠ZA = ∫ (𝛿E∕𝛿v(r)N ) (𝜕v(r)∕𝜕ZA)dr = −∫ 𝜌(r)(∣ r–RA ∣)−1dr

(16.34)

implying the electron density (in what follows, only the electronic part of the
derivatives will be displayed, the nuclear part being simple derivatives of the
nuclear–nuclear repulsion energy, vanishing from the third-order derivative on).
For atoms, putting the nucleus at the origin, it reduces to

(𝜕E∕𝜕Z)N = −∫ 𝜌 (r) r−1dr (16.35)

which is the electrostatic potential at the nucleus. The second-order derivative
(𝜕2E/𝜕ZA

2)N is easily seen to reduce to(
𝜕

2E∕𝜕ZA
2)

N = ∫ ∫ 𝜒(r, r′) (|r − RA|)−1(|r′ − RB|)−1dr dr′ (16.36)

and in the atomic case to ∫ ∫ 𝜒(r, r′) r–1r′–1drdr′ where now the LRF makes its
entrance [54, 55]. It should be remarked that this expression bears strong analogy
with the expression of the elements of the electric polarizability tensor 𝛼, the
second-order derivative of the energy with respect to the components of an external
field 𝛆 which can be written, say, in the case of 𝛼xy as

𝛼xy = 𝜕2E∕𝜕𝜀x𝜕𝜀y = ∫ ∫ 𝜒(r, r′) x y′dr dr′ (16.37)

They both show a doubly integrated and distance-weighted LRF, the precise form
of the weight function being dictated by the form of the perturbation in the Hamil-
tonian. This type of analogy shows up in a natural way when extending the num-
ber of variables in the Energy functional E = E[N, v] in CDFT to cope with the
ever-increasing variability of reaction conditions [9], such as electric and magnetic
fields, mechanical forces, pressure, and temperature [56] (see also Chapter 13). A
perturbation in Z can in this context is considered to be completely analogous to a
perturbation via 𝛆, both being special cases of changing the external potential.

Returning to the alchemical case, the alchemical hardness can be obtained by
integrating the LRF weighted by functions of the 1/r and 1/r′ type. Recently, mixed
derivatives involving both Z and N were presented, leading in the simple case of an
atom to expressions of the type.

(𝜕2E∕𝜕Z𝜕N) = ∫ f (r)r−1dr (16.38)
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Figure 16.8 Transmutations of (a) molecules (iso-electronic) and (b) atoms (preserving
neutrality).

i.e. a 1/r weighted integral of the Fukui function [57], or the Fukui potential [58, 59].
Various applications of alchemical derivatives have been presented, mainly by von

Lilienfeld on the one hand and Balawender and Geerlings on the other hand, and
they would need a separate chapter to be covered. The reader is referred to the orig-
inal papers and reviews by these two (groups of) contributors [12, 50]. We present
here, as a selection, two proof-of-concept applications by the latter group and one
more direct application in the field of Catalysis by von Lilienfeld.

The two simple proof-of-concept applications are the iso-electronic transmutation
of N2 [54] and a recent study on the transmutation of one neutral atom in another,
where the number of electrons is also changed so that neutrality is preserved [57]. In
the case of the transmutation of N2, Figure 16.8a shows that changing the nuclear
charge of the two N atoms by + or −1, at a constant number of electrons, gener-
ates 5 transmuted molecules (CO, NO+, CN−, O2

2+, C2
2−). At B3LYP level with a

cc-pCVTZ level, the mean absolute error (MAE) between the alchemical transmu-
tation energy (obtained with the Taylor expansion (16.33) up to second order, so
including alchemical hardness) and the exact energy difference was 0.034 a.u. An
exceptionally good performance for the N2 to CO transmutation of 0.004 a.u., i.e.
2.5 kcal mol−1, the only neutral to neutral transformation, was noticed and ascribed
to the cancellation of the odd terms in the Taylor expansion. A crucial performance
issue was, not unexpected, the inclusion of tight functions, the C acronym in the
basis-set for accurately representing the core region. Similar positive results when
transmuting two nuclei, one upward in charge, one downward, resulting in a neu-
tral daughter molecule, was obtained in detailed investigations on transformations
of CC units to their iso-electronic BN units [54, 55], which have been shown to
induce important and interesting changes in electronic, photophysical end chemical
properties of the parent molecule [60]. Both planar systems, starting from benzene
and leading to azoborines and 3D systems, starting from a fullerene (in casu C60)
and leading to its BN-doped congeners, were considered. In nearly all the cases, the
correct stability sequence of the isomers, its number dramatically increasing when
passing from 2D to 3D and in case of multi-substitution, was successfully retrieved.
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The latter finding is of practical importance in graphene chemistry, where the (CC)n
to (BN)n substitution is a topic that received great interest in recent years [61]. At
an even more fundamental level is the investigation of the transmutation of a given
neutral atom into its neutral neighbor in the periodic table, where now a simulta-
neous increase/decrease of Z and N by +1 or −1 is involved. In principle, the Taylor
expansion now involves also the mixed Z, N derivatives. Upon inspection, it turns
out that the most successful transformation energies can be obtained by first ioniz-
ing the parent atom and then alchemically transforming it into its neutral neighbor,
rather than following the “diagonal” way (Z =N) in Figure 16.8b (blue arrow) or the
route via the anion. To obtain the energy of Nitrogen starting from that of oxygen,
one then first ionizes oxygen leading to O+ (ΔN =−1, ΔZ = 0) (red arrow) and then
alchemically transforms, at a constant number of electrons, O+ into N(ΔZ =−1;
ΔN = 0) (green arrow). This procedure was applied to the complete series of first-
and second-row atoms (H→Cl) and led at a similar though higher level of theory
as mentioned above (CAMB3LYP and aug-cc-pCVQZ basis-set with extension of the
perturbation expansion up to third order) to a mean average deviation of 1.6 10−3

a.u., about 1 kcal mol−1, i.e. chemical accuracy. (Ne and Na were left out of consid-
eration due to a basis set deficiency arising when at the beginning or end of a row a
sharp difference of basis-set composition arises as compared to the neighbor atom).
This difference should be put in perspective with the order of magnitude of trans-
formation energy, e.g. for N to O of 20.47 a.u. [57].

As a direct application of the alchemical approach in a broad chemical context,
we take a recent study by von Lilienfeld on “Alchemical Predictions for Computa-
tional Catalysis” [62]. The case study presented there addresses the binding energy
prediction of oxygen reduction reaction intermediates (OOH*,O*,OH*) on alloys of
Pt, Pd, and Ni. Binding energy calculations use a fcc (111) surface model consisting
of four layers, in which transmutations are considered. In one of the cases stud-
ied, the chemical nature of the surface alloy is changed by transmuting atoms of
the top layer of a metal (Pt, Pd, or Ni) surface by ΔZ =+/−1, i.e. moving to one of
its neighbors, compensated by a transmutation on the bottom layer ΔZ =−/+1 to
cope with the demand of a constant number of electrons. A large series of different
hypothetical alloys can thereby be formed. The corresponding difference in bind-
ing energies between on the one hand those obtained alchemically starting from
the reference system and the alchemical coupling with the transmuted system and
on the other hand, those generated by an explicit DFT calculation, shows a MAE
between 0.06 and 0.24 eV for the nine combinations arising from the three reference
slabs (Pt(1,1,1), Pd(1,1,1), and Ni(1,1,1)) in combination with the three intermediates
mentioned above. Note that all alchemical predictions of BEs for a given adsorbate
and reference slab merely require three quantum-mechanical optimizations for the
adsorbate, the substrate, and the molecular adsorbate alone and that the computa-
tional overhead for even a large number of alchemical transformations turns out, as
expected, negligible (a similar situation emerges in the aforementioned BN-doped
fullerene investigations).

Figure 16.9 shows the plots of the obtained differences in binding energy,
alchemical vs. explicit DFT for the surface model that was discussed above (surf),
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Figure 16.9 Alchemical (Alc) vs. explicit DFT (QM) calculated differences in binding energies (ΔBE) between the reference and the hypothetical alloy of
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Saravanan et al. [62], American Chemical Society.
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and (in insert) another model (skin) that was left out for the sake of brevity. The
results, as can be judged from the MAE for each combination, are amazing and
extremely promising for computationally screening catalysts thousands of times
more efficiently than with conventional DFT methods.

16.4 Conclusions

Since the launching of CDFT, the LRF has received relatively little attention in its
time-independent form for reasons of the complexity of its evaluation and represen-
tation and the non-evident extraction of chemical information from it. In the past ten
to fifteen years, it gained increasing interest in the CDFT literature as a full-fledged
second-order response function. Various approximation methods to the exact and
complex expression have been proposed, offering a way to explore, at least qualita-
tively, at the simplest level, its physical and chemical properties. Thereby, the link
between mathematical and physical properties has also been explored. The chemi-
cal content has been scrutinized for atoms and molecules, and basic concepts of the
chemist’s interpretational toolbox, such as inductive and mesomeric effects, elec-
tron delocalization, and aromaticity, have been retrieved. The two-point nature of
the LRF kernel is at the basis of the link, established via its forerunner, Coulson’s
atom–atom polarizability, between the LRF and transmission probability in molec-
ular conductivity. The linear and higher-order response functions are seen to be
the key ingredients in (evaluating) second- and higher-order alchemical derivatives
whose use has been intensified in recent years when looking for efficient algorithms
when navigating through chemical compound space in search of molecules with
optimal properties and which already yielded spectacular results, e.g. in the compu-
tational screening of catalysts.

In summary, the LRF now has the status of a full-fledged second-order deriva-
tive in the response function tree with well-established mathematical and physical
properties and a clear and diverse chemical content. The awkward second-order
functional derivative has gone a long way.
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17.1 Introduction

The evolution of the active research on valence states (VS) starts well before that
of conceptual DFT (CDFT). While the development of CDFT is dealt with in the
chapter “Historic Overview,” we give a short introduction to two distinct VS con-
cepts and emphasize their importance for CDFT. The picture of atoms interacting in
a molecule while retaining some of their identity as atoms-in-molecules (AiMs) is
a common denominator of CDFT and VS concepts. AiMs and groups-in-molecules
show characteristics, which are retained in different molecular environments.
Important properties of molecules are determined by valencies, hybridization,
and electronegativities of their constituent AiMs. The AiM is as old as atomistic
chemistry, but it is cumbersome to develop rigorous quantum chemical bases
for it. Different formulations of AiMs are given by Mulliken [1, 2], Moffitt [3],
Ruedenberg [4], Parr and co-workers [5, 6], and Weinhold and Landis [7], to name a
few of importance for this chapter. The need to assign several valence states to atoms
arose from the concept of different valencies, especially for carbon. Valency, valence
states, and electronegativity are not directly measurable but are derived theoreti-
cally from the results of measurements. Interpretations are needed to characterize
them and assign quantitative values to them. Following the attribution of valence
states to a hybridized carbon atom by Van Vleck [8], Mulliken closely linked his
absolute scale of electroaffinity, or electronegativity (EN), to promote VS energies
[2]. Mulliken pointed out in his abstract of [2] that “the absolute electronegativity
scale is equal to the average of ionization potential and electron affinity. These
quantities must, however, in general, be calculated not an the ordinary way but for
suitable ‘valence states’ of the positive and negative ion. Also, the electroaffinity of
an atom has different values for different values of its valence” (p. 782). Mulliken’s
valence-state ionization energy, IVS(X) = EVS(X+)−EVS(X), and electron affinity,
AVS(X) = EVS(X)−EVS(X−), are calculated from spectroscopic data, including the
directly measurable ground-state (GS) ionization energy, I0(X) = EGS(X+)−EGS(X),

Conceptual Density Functional Theory: Towards a New Chemical Reactivity Theory, First Edition.
Edited by Shubin Liu.
© 2022 WILEY-VCH GmbH. Published 2022 by WILEY-VCH GmbH.
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and ground-state electron affinity, A0(X)= EGS(X)−EGS(X−). Mulliken emphasized
that “for meaningful results, valence-state quantities, first used by Van Vleck, are
necessary” [1] (p. 14). Parr et al. [5] agreed that for DFT “the limitation to ground
states is unfortunate, and efforts to remove this limitation should be intensified”
(p. 3807). Our contributions to remove limitations of CDFT in combination of
improving the VS concepts started more than 30 years ago [9, 10]. They are not
limited to electronegativity, chemical potential, hardness, and electrophilicity but
include the development of universal potential energy curves in connection to
valence states. For the bond dissociation energy, D, we quote Mulliken: “While the
empirical D is good practical measure of bond energy, in general, a theoretically
more significant D, the intrinsic D, can be obtained, if the dissociation energy is
measured from an asymptote, in which the atoms are in suitable valence states”
[11] (p. 233). The concept of intrinsic D has been also very helpful in finding a
universal potential energy curve for covalent and ionic bonds [9, 12]. In this chapter,
however, we focus on the discussion of electronegativity because of its central role
in CDFT.

17.2 Ground-State vs. Valence-State Energies

The differences between GS and VS energies in atoms, ions, and molecules are
important in discussing bonding because the reference electron configuration of
the atom-in-the-molecule is not the same as that of the free atom in its ground state.
The AiMs reference energy differs from the GS energy by positive promotion energy,
P0
> 0, [2–14]. First, for hybridized AiM, a hybridization energy, Ehybr > 0, is present

[2, 3, 8–14]. Second, the spin–orbit splitting in the free atom is largely quenched
in AiMs due to the lower symmetry of the molecule [2, 3, 13]. Third, a molecule
is composed of various ionic or neutral valence structures. These structures
must fulfill the strict Wigner–Witmer correlation rules [15, 16], which establish
symmetry constraints for atoms and molecules with respect to bond forming and
breaking. Other state combinations are excluded by the symmetry constraints. The
bond energy, D(X −Y ), of a singly bonded diatomic molecule is partitioned with
contributions from ionic and neutral structures of weights c2

j ( j = 1,2, 3), as shown
by (17.1), where

∑
c2

j = 1 [2].

D (X − Y ) = c2
1D

(
X+ ∶ Y−) + c2

2D
(

X− ∶ Y+) + c2
3D (X ∶ Y ) (17.1)

The total energy may be minimized at different levels of theory, but all bonding
models and structural principles must be made consistent with the Wigner–Witmer
rules. For example, the structure combining the ground-state ions, Cl+and F:−,
does not contribute to the Cl – F bond. This is because the Cl+ triplet cation,
3P2, and the F:− singlet anion, 1S0, do not combine to the ClF molecule in its
singlet GS, 1∑+. Instead of the 3P2 state, the Wigner–Witmer rules require either
the 1D2, the 1S0, or their averaged valence state, symbolized as, Cl+VS, to form
the Cl+F:− valence structure [2, 13–16]. The VS promotion energies, P0, P+,
and P− needed to excite an atom or its positive or negative ion, respectively,
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from the GS to specific VSs were originally derived from atomic spectroscopic
term values according to the Slater–Condon theory of atomic structure [17].
The energy of an atom in its Van Vleck–Mulliken VS [2, 3, 8], is the averaged
energy of the individual spectroscopic states belonging to a valence configu-
ration. Mulliken’s electronegativity scale, 𝜒VS, was a priori conceived to fulfill
all symmetry requirements for characterizing bonds [13–16], by interplaying
covalent and ionic valence-structures [1, 2, 8, 11, 13]. Extended discussions and
tables of promotion energies in connection with electronegativity are given by
Mulliken [2], Pritchard and Skinner [13], Hinze and Jaffé [18], and Bratsch [19].
The divalent carbon atom may serve as an example. The divalent configurational
average of carbon is s2p1p1, with integer occupation numbers, n = {0, 1, 2 } in
superscript. The relevant spectroscopic states are 3P0, 3P2, and 1D2. Those of the
monovalent cation C+ in configuration s2p1 are 2P 1∕2 and 2P 3∕2. The excited 2DJ
and 2PJ states contribute to the s2p2p1 valence configuration of the monovalent
anion C− in its VS. Thus, the valence-state electron affinity of the divalent C in
𝜋-bonded C = C is AVS = 0.40 eV [20], while the GS value of the free atom is
A0 = 1.263 eV [18].

The number of half-filled orbitals of the AiM, that is, its valency with respect to
covalent bonding, V , is important for Mulliken’s atomic electronegativity [2, 12–14,
18–20], and also for its generalization, the valence-pair affinity, 𝛼VP, [21–26], which
will be discussed in Sections 17.3–17.5 below. In valence states, the valency of the
ions X+

VS and X−
VS, is always reduced by 1, as given by (17.2).

V
(

X+
VS
)
= V

(
X−

VS
)
= V

(
XVS

)
− 1 (17.2)

This condition is independent of the different definitions of the VS energy. For the
half-filled atomic orbital, i1, of the AiM, X , the VS energies of the cation, neutral,
and anion species are promoted above their GS by respective promotion energies,
P(X+, i0), P(X , i1), and P(X−, i2). Equation (17.3) defines the VS ionization energy
for AiM, X , while (17.4) does the same for the VS electron affinity [2, 12–14, 18–26].

IVS (X , i) = I0 (X) + P
(

X+
, i0) − P

(
X , i1) (17.3)

AVS (X , i) = A0 (X) + P
(

X , i1) − P
(

X−
, i2) (17.4)

The VS ionization energy, IVS(X , i), is the energy needed to detach the electron
from the half-filled atomic orbital, i, while the VS electron affinity, AVS(X , i), is the
energy gained by attaching a second electron to the same orbital. For the AiM, X ,
Mulliken’s absolute orbital electronegativity, first called “electroaffinity,” 𝜒VS(X , i),
[2, 13, 18–26] is defined by (17.5).

𝜒VS (X , i) =
1
2
[
IVS (X , i) + AVS (X , i)

]
= 𝜒0 (X) +

1
2

P
(

X+
, i0) − 1

2
P
(

X−
, i2)

(17.5)

Where 𝜒0 (X) =
1
2

[
I0 (X) + A0 (X)

]
is the ground-state electronegativity (GS-EN).

The negative of GS-EN, −𝜒0(X) = 𝜇0, is best known in CDFT as the operational
chemical potential [5, 6, 27]. Equation (17.5) quantifies that the VS electronegativity
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of the AiM, 𝜒VS(X , i), differs from the GS electronegativity of the free atom, 𝜒0(X),
by the promotion energies of the cation and anion species of the AiM. It is impor-
tant that P(X , i1) does not occur in (17.5). It is canceled by averaging (17.3) and
(17.4). However, Mulliken defined 𝜒VS for atoms only. Therefore, the meaning of
the 𝜒VS in bonds needs to be specified, in due consideration of the Wigner–Witmer
rules. The molecular generalization of 𝜒VS, the valence-pair affinity, 𝛼VP, [21–26],
will be of focus in Sections 17.3–17.5. In the finite difference approximation of CDFT
[6, 27], the chemical hardness is expressed as 𝜂0(X)= I0(X)−A0(X), which is a global
descriptor in CDFT. The VS orbital hardness, 𝜂VS(X , i), of the AiM is analogously
defined by the difference between (17.3) and (17.4). It differs from the GS global
hardness of the free atom:

𝜂VS (X , i) = I0 (X) − A0 (X) + {P
(

X+
, i0) − 2P

(
X , i1) + P

(
X−
, i2)} (17.6)

A closer examination of the neutral promotion energy, P(X , i1), is needed to
show the differences between the Mulliken- and Ruedenberg-type VS energies.
For the Mulliken VS energy, the promotion, P(X , i1), accounts for averaging
the configuration energy, including spin–orbit splitting, plus the hybridization
energy, Ehybr, where appropriate [1, 2, 11, 13, 14, 18–20]. Hinze and Jaffé [18]
and Bratsch [19] published lists of promotion energies for Mulliken VS ener-
gies, hereafter denoted, PHJB(X , i1). Thereby “zero-sharing penetration,” namely,
c2

1 = c2
2 = 0, in (17.1) is assumed for homonuclear molecules, X2. However, typ-

ical homonuclear diatomic molecules cannot be correctly described without
including their ionic structures of weights, c2

1 = c2
2 > 0, as indicated in (17.1)

[2, 4, 9, 10, 12, 21–26, 28, 29]. As highlighted by Ruedenberg [4] and modern
Valence Bond (VB) theory [29], the positive Mulliken-type VS promotion energy
is further increased by accounting for the ionic valence structures in AiMs. Paul-
ing [28] and Mulliken [2] did not specify the best amount of “ionic terms,” but
Ruedenberg [4] discussed the whole spectrum of contributing structures, for the
case of the homonuclear diatomic molecule, X2, up to the Molecular Orbital (MO)
limit, where c2

1 = c2
2 =

1
4

. Ruedenberg’s [4] bond theory includes the MO and VB
levels of theory as special cases and concentrates on the role of electron density,
𝜌(r), and electron pair-density, 𝜋(r1, r2). An atom is in its Ruedenberg valence state
when all other atoms bonded to it are removed to infinity under the constraint
that all interference-free 𝜌(r) and 𝜋(r1, r2) remain frozen at their molecular
values [4, 9, 10, 12, 21–26]. The presence of intra-atomic electron-pair-repulsion in
homonuclear bonds increases the atomic promotion energy of the Ruedenberg VS,
shown in (17.7).

PRVS
(

X , i1) = PHJB
(

X , i1) + (intra-atomic electron pair repulsion) (17.7)

Influenced by Ruedenberg [4], Klopman [30], and Ferreira [31], we [9, 10, 12,
21–26], model the intra-atomic pair-repulsion energy by c2

1 J (X , i) per atom and
bond, where J(X , i) = IVS(X , i)−AVS(X , i) is the semiempirical expression for the
electron-pair repulsion energy of the doubly occupied orbital, i, of the AiM, X .
Note that P(X+, i0) and P(X−, i2) contain the correct intra-atomic pair-repulsion
energy, because of c2

1 = 0 and c2
2 = 1, respectively. The neutral atom, X , in X2 is
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modeled by setting c2
1 = c2

2 =
1
4

, as at the Restricted Hartree–Fock MO level of theory
[4, 9, 12, 21–26, 30, 31]. Although the ionic structures strongly influence the charge
dependence of the VS electronegativity, [10, 12, 21–26, 31] its value for the neutral
AiM, (17.5), is unaffected by their admixture. However, the VS orbital hardness,
(17.6), is significantly lower than the GS value. By combining (17.6) and (17.7), and
modeling c2

1 J (X , i) = 1
4

[
IVS (X , i) − AVS (X , i)

]
, we obtain

𝜂VS (X , i) = I0 (X) − A0 (X) +
{

P
(

X+
, i0) − 2PHJB

(
X , i1)

−1
2
[
IVS (X , i) − AVS (X , i)

]
+ P

(
X−
, i2)} (17.8)

which simplifies to (17.9),

𝜂VS (X , i) =
1
2
[
IVS (X , i) − AVS (X , i)

]
(17.9)

Another essential difference between the GS and VS approaches to EN and
hardness is the absence of hybridization in CDFT, as opposed to its pivotal role
for VS energies [2, 3, 8–14]. Hybridization was introduced into theoretical chem-
istry in connection to the concept of localized bonds formed by electron pairs
[1–3, 7, 28, 32–36]. Mulliken differentiated between isovalent hybridization, a par-
tial hybridization without an increase of the valency, e.g. Li in LiH (see Table 17.1),
and pluvalent hybridization, with an increased valency, e.g. C in CH4. Discussing
his electronegativity scale, Mulliken [33] pointed out that the electronegativity
of an AiM should “vary greatly with the type of bonding AO it was using, and in
the case of a hybrid AO, should depend strongly on the degree of hybridization”
(p. 309). His conclusion was that isovalent hybridization is often very important
for molecular stability, dipole moment, quadrupole moment, and intensities of
molecular electronic spectra [33]. This option does not seem to fit CDFT, which
almost exclusively refers to GS atoms and molecules [6, 27, 37, 38].

Table 17.1 lists GS and VS electronegativity and hardness values for first- and
second-row atoms. Note that the rankings of several atomic GS values, 𝜒0(X), are at
variance with chemical experience at the bench [24, 39]. For example, the 𝜒0 values
in [37] are:𝜒0(N)=𝜒0(H)= 7.18 eV. Some striking consequences of counterintuitive
𝜒0 rankings are discussed in [24] and shown in Section 17.3.

When more than one type of orbital is available, the bonding orbital is
underlined.

17.3 Valence-Pair-Affinity, its Equilibration, and Partial
Charges

Partitioning of the molecular charge density, 𝜌(x, y, z), into atom- and/or
bond-centered point charges forges a bridge to classical physico-chemical intuition.
There is, however, no unique definition of atomic charge. There are several schemes
designed to partition the electronic charge of a molecule among its atoms, resulting
in various quantum mechanical approaches that generate different, if not contra-
dictory charge distributions [6, 7, 10, 12, 20, 24, 32, 40–44]. The quality of an atomic
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Table 17.1 Hybridizations, electronegativity, and hardness.

Atom Bond p character 𝝌VS/eV 𝝌0 = −𝝁0/eV 𝜼VS/eV 𝜼0/eV

H Single, s 0.00 7.18 7.18 6.42 12.84
Li Single, s 0.00 3.01 3.01 2.39 4.77

s2p [7] 0.33 2.62 2.15
B GS 4.29 8.02

Single, p [19] 1.00 3.84 4.46
C GS 6.26 10.00

Single, sp3 [19] 0.75 8.15 5.70
Double, sp2,𝜋 0.67 8.91 5.74
Triple, sp,𝜋,𝜋 0.50 10.42 5.85

N GS [37] 7.18 14.71
Single, sp3 [19] 0.75 10.66 6.58
Triple, 𝜎,𝜋,𝜋 1.00 7.32 6.50

O GS 7.54 12.16
Double, 𝜎,𝜋 [19] 1.00 9.63 7.66
Single, sp4 0.80 13.14 7.75

F GS 1.00 10.41 14.02
Single, p [19] 12.20 8.78
Single, sp11 [7] 0.917 14.00 8.86

charge definition is not an inherent property but strongly depends on its use. For
example, seeking the best charges to assess the charge transfer (CT) between AiMs
does not necessarily lead to the best molecular electrostatic potentials [43]. We
describe the charge distribution in a molecule by assigning a non-integer number
of electrons, N, to atoms or groups in the molecule, and fractional occupation
numbers, nj, to atomic orbitals, AOs, or group orbitals, GOs. The problems arising
from the assumption of non-integer, continuous N and nj have been discussed from
various angles, and equations have been developed for defining the energies E(N)
and E(nj) for continuous variables [3, 4, 6, 9, 10, 12, 18–26, 37, 38, 40].

The exact DFT energy, EDFT(N), consists of straight-line segments connecting
the exact GS energies, E(N0 − 1), E(N0), and E(N0 − 1), with slope discontinuities
at integer values of N [5, 6, 45]. When applied to a single atom with N0 electrons,
𝜕EDFT(N)∕𝜕N = −I, for N0 − 1<N <N0, and −A, for N0 <N <N0 + 1 [45]. However,
the assumption of a differentiable function E(N) is essential for the “modern”
definition of electronegativity, [6, 9–12, 14]. Nonlinear, at least quadratic E(N) and
E(nj) functions are needed in the chemical context, where the system transfers
or exchanges electrons [6, 10–14, 18–27, 37, 39–41, 46]. Two basically different
second-order polynomials, E(N), have been proposed: the “ground-state-parabola”
(GSP) energy, EGS(N), [6, 27, 37, 38, 40], and the valence-pair-energy, EVP(nj) of
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the “valence-state-parabola” (VSP) model [9, 10, 12, 38, 40]. In CDFT, the GSP,
is obtained by fitting a second-order polynomial, EGS(N), to the experimental GS
energies of the cationic, neutral, and anionic species, at constant external potential,
𝜐(r) expressed by (17.10).

EGS (N) = EGS
(

N0
)
− 1

2
[
I0 + A0

] (
N − N0

)
+ 1

2
[
I0 − A0

] (
N − N0

)2 (17.10)

The first and second partial derivatives of EGS(N) at N0 and constant 𝜐(r) are oper-
ationally defined as (i) the chemical potential,

𝜇

(
N0

)
= 𝜕EGS(N)∕𝜕N = −𝜒0

(
N0

)
= −1

2
[
I0 + A0

]
(17.11)

which is the negative GS-EN and (ii) the global chemical hardness [27],

𝜂0 (N) = 𝜕
2EGS(N)∕𝜕N2 =

[
I0 − A0

]
(17.12)

As pointed out by Ferreira [31] and by Ghosh and Parr [46], the “bond-electro-
negativity” in the molecule is to be perceived as “pair-electronegativity” because
electron pair-density, 𝜋(r1, r2), is accumulated, and there is a significant probability
for finding a pair of “bonding electrons” shared on an AiM. Therefore, the energy of
a shared electron pair on the AiM, its “valence-pair-energy,” EVP(X , ni), and a new
scale for pair-sharing, the “valence-pair-affinity” (VPA), represented as 𝛼VP(X , ni),
had to be introduced [21, 22, 24, 25]. We define the valence-pair-energy, EVP(X , ni),
of the VSP model as the differentiable function, which connects the VS energies of
X+ and X−by a second-order polynomial, such that the orbital occupancy, 0≤ni ≤ 2
is continuous [9, 10, 12, 21–26, 38, 40], as shown in (17.13).

EVP
(

X ,ni
)
= −niIVS (X , i) +

(ni

2

)2 [
IVS (X , i) − AVS (X , i)

]
(17.13)

The VPA of an AiM is defined quasi as a potential. It is the negative partial deriva-
tive of the EVP(X , ni) with respect to continuous atomic orbital occupation numbers,
0≤ni ≤ 2, while the total number of electrons in the molecule is kept constant at N0,
as given in (17.14).

𝛼VP
(

X ,ni
)
=
[
−𝜕EVP(X ,ni)∕𝜕ni

]
N0

= 1
2
[
IVS (X , i) + AVS (X , i)

]
+ 1/2

(
1 − ni

) [
IVS (X , i) − AVS (X , i)

]
(17.14)

The VPA is the measure for the potential of an atom-in-the-molecule (or func-
tional group) to attract an electron pair in a sharing competition with another
atom (or group) in the molecule [21, 22, 24, 25]. Note that for ni = 1 the
𝛼VP

(
X ,ni = 1

)
= 1

2

[
IVS (X , i) + AVS (X , i)

]
, is identical to Mulliken’s EN, 𝜒VS(X , i),

of (17.5). This identity follows from connecting the limiting values IVS(X , i) and
AVS(X , i) by any second-order polynomial, not just by the VS parabola. However,
only the EVP(ni) fulfills Janak’s theorem [45] at the boundaries X+ and X−. To give
an example comparing GSP and VSP, we consider a hydrogen atom, shown in
Figure 17.1. The energy of hydrogen plotted against the number of electrons shows
(i) the valence-pair-energy, EVP(H, ni), for the VSP model; (ii) the EGS(N) of the
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Figure 17.1 Energy of hydrogen atom,
E(H, N), vs. electron number, N = n1s.
Blue represents the Valence-
State-Parabola (VSP), Eq. (17.13). Red
represents the exact DFT energy of the
free atom [6, 45, 47]. Black represents
the GSP of conceptual DFT, Eq. (17.10).
Energies are in units of eV.

GSP model, which in (17.13) replaces
(

ni
2

)2
by 1/2ni(ni − 1), and (iii) the exact DFT

result, EDFT(N), for a free H atom. The slope discontinuity [6, 40, 45, 47] of the exact
EDFT(N) at n1s = 1 is due to the onset of pair repulsion between the already present
“spin-up electron” with n1s↑ = 1 and the gradually added “spin-down” charge, n1s↓,
[40, 47]. In the VSP model, we have n1s↑ = n1s↓ = n1s/2, and the spin population
vanishes in the bond of the closed shell H2,

∑
n1s↑ −

∑
n1s↓ = 0. The intra-atomic

pair-repulsion energy due to sharing-penetration is (n1s/2)2[IVS(H, 1s)−AVS(H,
1s)]. The valence-pair-energy, EVP(H, ni), starts as required by Janak’s theorem [45]
at EVP(H, ni = 0) = 0 with the gradient −𝛼VP(H+) = − IVS(H) = − 13.60 eV. The
anion, H−, is reached at EVP(H, ni = 2) = – I(H) – A (H) = – 14.35 eV with the slope
−𝛼VP(H−) = −AVS(H) = – 0.754 eV. The valence-pair-energy parabola, EVP(ni) ful-
fills Janak’s theorem at both boundaries H+ and H−. Due to the sharing penetration,(

ni
2

)2 [
IVS (X , i) − AVS (X , i)

]
, the VS energy parabola, EVP(H, ni) , remains above the

exact DFT energy. In contrast, the EGS(N) of the GS-parabola is more negative than
the exact EDFT(N) except for integer N. In the GSP model, an electron self-interaction
error is present by an unphysical electron–electron attraction, because 1/2ni(ni − 1)
is negative for ni < 1, as pointed out in [9, 10, 12, 24, 31, 40]. Two maxima of this
erroneous electron–electron attraction are reached at ni = 0.5 and 1.5, where it
amounts to −J(X , i)/8 = – (I(X) – A(X))/8, compared to the exact DFT values for
free atoms. The GSP model also violates Janak’s theorem, because its initial gradient
amounts to −𝜒0

(
H+) = − 3

2
I (H) + 1

2
A (H) = −20.20 eV, instead of –I(H) only, and

its gradient at H− is positive with −𝜒0 (H−) = − 3
2

A (H) + 1
2

I (H) = +5.57 eV. The
EGS(N) parabola reaches its minimum already at N = 1.56 electrons, accordingly
the anion H− should be unstable (Figure 17.1).



17.3 Valence-Pair-Affinity, its Equilibration, and Partial Charges 333

0 0.25 1.25 1.75 20.750.5 1.51

–14.35–14.59

–18

–20

–16

–14

–12

–8

–6

–4

–2

0

n(H) = 2 – n(Li)

E – Eo/eV

0

–10.39

0

–6.01

–4.20

–10

Li and H
VS-parabola

Figure 17.2 The Valence-Pair-Energy, EVP(S, n)− EVP(S, 0), for S = {Li, H and LiH} vs. the
occupation number, n(H), according to the VSP model. Blue for H atom, orange for Li, and
black for the energy sum, EVP(Li)+ EVP(H). The sum of the exact DFT energies for the
separated atoms is shown in red for comparison. Energies are in eV.

One of the aims of valence pair equilibration (VPEq) is to find charges, qVPEq, con-
sistent with those obtained by state-of-the-art population analyses [7, 30, 32, 43], and
those derived from spectroscopic observations [42, 44]. An example of the distribu-
tion of an electron pair between two atoms of different electronegativity within the
VSP model is shown in Figure 17.2.

For the diatomic molecule lithium hydride, LiH, Figure 17.2. provides insight into
the interaction energy and charge equilibration between Li and H. For the single
bond, Li – H, with partial net charges, 1–n(Li) = q(Li) = − q(H) = 1 – n(H), the sum
of valence-pair-energies, given by (17.15), is minimized by charge transfer at dis-
tances beyond the onset of a covalent-type wave interference.

EVP (Li, i) + EVP (H, j) = EVS (Li, q = 0) + 𝜒VS (Li, i) q (Li) + 𝜂VS (Li, i) q(Li)2

+EVS (H, q = 0) + 𝜒VS (H, j) q (Li) − 𝜂VS (H, j) q(Li)2

(17.15)

It is essential that the atomic valence-pair-energy parabolas, EVP, and their sum
remain above the energies of the neutral GS atoms. According to the Ruedenberg
bond theory, the total molecular energy is further minimized by wave interference
in the next bonding step [4, 22, 24, 40]. However, by charge equilibration alone,
the separated atoms with fractional charges, qVPEq ≠ 0, are higher in energy than
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the neutral atoms; thus, the variational principle is not violated. This eliminates
the “dissociation catastrophe” found in CDFT and most DFT exchange-correlation
approximations, [6, 48–50], for which well-separated atoms retain q≠ 0 with ener-
gies below that of neutral atoms. With the notable exceptions of a fluctuating charge
model by Chen and Martínez [41] and our work [21–26], the available electronega-
tivity equalization models suffer from electron self-interaction errors and manifest
delocalization errors [6, 49]. These models may result in incorrect dissociation prod-
ucts (“dissociation catastrophe”) [41, 48–50].

The maximum CT energy lowering, ECT, VPEq, by equilibration between orbital, i,
of Li and orbital, j, of H occurs at 𝜕{EVP(Li)+EVP(H)}∕𝜕q(Li) = 0, which corresponds to the
VPEq in the bond. The VPEq is equivalent to the maximization of ECT, VPEq the CT
contribution to the bond energy, [10, 21–26], defined by (17.16).

ECT,VPEq =
[
𝜒VS (H, j) − 𝜒VS (Li, i)

]2

2
[
𝜂VS (H, j) + 𝜂VS (Li, i)

] (17.16)

The equilibrated VPA value, ⟨𝛼VP(at)⟩, is given by (17.17).

⟨𝛼VP (at)⟩ = [
𝜒VS(H,j)∕𝜂VS(H,j) + 𝜒VS(Li,i)∕𝜂VS(Li,i)

][
1∕𝜂VS(H,j) + 1∕𝜂VS(Li,i)

] (17.17)

The net atomic charge, q, or the bond polarity, is the value maximizing ECT, VPEq.
In the case of a single bond, the charge transferred between orbital i, and orbital j,
is such that q(Li, i) = 𝛿i, j and q(H, j) = − 𝛿i, j, where the solution of 𝛿i, j is given by
(17.18).

q(Li)VPEq = 𝛿i,j =
𝜒VS (H, j) − 𝜒VS (Li, i)
𝜂VS (H, j) + 𝜂VS (Li, i)

(17.18)

The partial charge is proportional to the electronegativity difference between
the bonding orbitals and inversely proportional to the sum of their VS hardness.
Equation (17.18) is equivalent to (17.19).

q(Li)VPEq =
[⟨𝛼VP (at)⟩ − 𝜒VS (Li, i)

]
𝜂VS (Li, i)

= 0.48 (17.19)

The partial charge, q(Li)VPEq= +0.48, is also seen in Figure 17.2. at the minimum
of the energy sum, EVP(Li)+EVP(H). Partial charges of other diatomic molecules are
tabulated in Table 17.2.

Equations (17.17) and (17.19) may be extended into a rough first approximation
of the VPEq for polyatomic molecules by assuming an overall (“globally”) equal-
ized VPA of the molecule. We refer to the work of Ray et al. [51], Reed [52], and
Bratsch [53], who calculated the “globally” equalized electronegativity of polyatomic
molecules, ⟨𝜒0(at)⟩ or ⟨𝜒VS(at)⟩, by solving linear equations. This approach has been
refined by Bergmann and Hinze [20]. The result is globally equalized ⟨𝜒0(at)⟩ of the
molecule, defined by (17.20), which sums over all atoms.

⟨𝜒0 (at)⟩ = ∑
𝜒0 (X)∕𝜂0(X)∑ 1∕𝜂0(X)

(17.20)
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Table 17.2 Comparison of partial charges, q, on atom X (underlined) obtained by methods
mentioned in the text.

XY qVPEq (17.23) qIR [42, 44] qelstat [43, 44] qRHF [30] qNBO [7, 32, 44] q0 (17.21)

LiH 0.48 (s)Li n. a. n. a. 0.589 0.24
0.53 (s2p)Li 0.529(s2p)Li [7]

LiF 0.82 (s)Li (p)F 0.84 0.84 [43] 0.882 0.39
0.96(s)Li (sp11)F 0.96 (sp11)F [7]

NaF 0.84(s)Na (p)F 0.87 0.86 [43] 0.881 n. a. 0.41
NaCl 0.82(s)Na (p)Cl 0.78 0.82 [43] 0.857 0.93 0.39
KCl 0.91(s)K (p)Cl 0.90 n. a. 0.888 n. a. 0.45
HF 0.40 (sp19)F 0.41 0.44 [43] 0.12

0.53 (sp6)F

0.60 (sp4)F 0.595 0.553(sp4)F [7]
ClF 0.20 (p)Cl and F n. a. 0.16 0.285 0.332 [7] 0.09

0.30 (sp6)Cl and F

OH 0.38(sp5)O [19] 0.36 0.39 [44] 0.323 n. a. 0.02
H2O 0.29 (sp4)O 0.33 0.37 [44] 0.318 0.458 0.01

0.28 [43]
NH3 –0.40(sp3)N –0.81 –0.717 [43] n. a. –1.05 0.00

Data from Weinhold and Landis [7]; von Szentpály [10]; Bratsch [19].
n. a. means: no data available.

The partial charge q0(X) calculated by this ground-state electronegativity equal-
ization (GS-ENE) method is shown in (17.21)

q0 (X) =
[⟨𝜒0 (at)⟩ − 𝜒0 (X)

]
𝜂0 (X)

(17.21)

Reed [52] emphasizes a decisive warning by Evans and Huheey [54] that the
averaged electronegativities and partial charges are not satisfactory because elec-
tronegativity equalization fails to minimize the energy of the system. This caveat
is supported by a large-scale assessment of GS-ENE on 210 molecules [55]. The
root-mean-square deviation of the geometric mean of the atomic values, ⟨𝜒0(at)⟩GM,
from the molecular 𝜒0(mol) = 1/2 [I0 (mol) + A0 (mol)] amounts to 71% for a broad
set of 210 molecules [55]. Thus, the 𝜒0(mol) of a large majority of investigated
molecules cannot be obtained by any equalization scheme [55].

A similar set of linear equations is solved, yielding a globally equalized, thus
approximate VPA of the molecule, defined by (17.22), such that the summation is
over all the AiMs.

⟨𝛼VP (at)⟩ ≈ ∑
𝜒VS (X ,i)∕𝜂VS(X ,i)∑ 1∕𝜂VS(X ,i)

(17.22)
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The partial charges on the AiMs or groups-in-a molecule of polyatomic molecules
are to the first approximation, given by (17.23).

q(X , i)VPEq ≈
[⟨𝛼VP,at⟩ − 𝜒VS (X , i)

]
𝜂VS (X , i)

(17.23)

The partial charges obtained from VPEq for diatomic molecules, H2O, and NH3
are compared to partial charges given by population analyses and those derived
from infrared (IR) spectroscopic observations in Table 17.2. Note that the charges by
the natural bond orbital (NBO) population analysis [7, 32] require the total energy
minimization by a sophisticated method, whereas the VPEq and the GS-ENE are
based on atomic data only. Without requiring ad hoc calibrations, the VPEq bond
polarities agree very well with the results of state-of-the-art population analyses and
charges derived from vibrational spectra. The last column of Table 17.2 also displays
the corresponding q0(XY ) results from GS-ENE. Compared to qNBO (Li) = 0.529
obtained as the NBO charge of the metal hydride, LiH, GS-ENE gives the very
low partial charge of q0(Li) = 0.24 only. It is exactly half of the qVPEq(Li) = 0.48,
because the hardness in (17.21) is 𝜂0 (Li) = 2𝜂VS (Li) according to (17.23). For the
ionic molecule, LiF, Table 17.2 reports consistent partial charges on Li ranging
from of 0.82 to 0.93 for all methods except GS-ENE, which again gives a much
too low value of 0.39. A similar trend is observed for other metal halides such
as NaF, NaCl, and KCl, with the metal having partial charges of 0.39 to 0.45 for
values obtained from GS-ENE. The influence of hybridization on the VPEq bond
polarity is notable on qVPEq (HF), with the values shifted up to 50%. Here again, q0
(HF) = 0.12 is far too small. To make it worse, the GS-ENE of Eq. (17.21) predicts
the partial charge on the N atom in ammonia q0(NH3) = 0, because of 𝜒0 (N) = 𝜒0
(H), according to [37]. Similarly, q0 (H2O) = 0.01 is almost zero for H of water.
The GS-ENE, according to (17.21) completely fails to assess the polarity for these
hydrides. In addition, the limits of Eqs. (17.22) and (17.23) as a simplistic extension
of VPEqt o polyatomic molecules are documented by the too small partial charges
qVPEq for H2O and NH3. We need to improve the VPEq ansatz for polyatomic
molecules.

17.4 Valence-Pair-Equilibration and Thermodynamic
Cycles

So far, we presented support for the valence-pair-equilibration by comparing the
partial charges qVPEq with those given by population analyses and spectroscopic
observations in Table 17.2. However, the method of choice is the direct comparison
of molecular VPA values, 𝛼VP (mol), with equilibrated VPA values, ⟨𝛼VP(at)⟩, defined
either in (17.22), or by an improved model. We have to define the VPA for bonds in
molecules.

We start by extending the VPA scale from AiMs to molecules, XY, with
electron-pair bonds, b [21, 22, 24, 25]. The relevant states of XY , XY+, and XY−

are determined by the Wigner–Witmer rules in symmetry correlations to the
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constituent VS atoms and their ions. Photoelectron spectra are often assigned to
electron removal from a particular bond. The observed vertical ionization energy
is denoted as Iv (XY , b). The bond may be specified in complex molecules as σ-,
π-, δ-bond, according to the local symmetry behavior with respect to the particular
bond. The molecular Av (XY ) values are also determined in agreement with the
Wigner–Witmer constraints [21, 22, 24]. The VPA, 𝛼VP(XY , b), of bond b, formed by
the orbitals i of X and j of Y , is defined as

𝛼VP (XY, b) = 1/2
[
Iv (XY, b) + Av (XY)

]
(17.24)

The companion parameter of 𝛼VP(XY , b) is the VS hardness of the bond b,

𝜂VS (XY, b) = 1/2
[
Iv (XY, b) − Av (XY)

]
(17.25)

The factor 1/2 is due to the difference between the second partial derivatives of the
VS and GS energy parabolas.

We specify the conditions for VPEq in association reactions, X +Y →XY , using
thermochemical cycles based on the first law of thermodynamics. Consider atoms or
groups as reactants, R= {X , Y }, and their products, P= {X2, XY }, with corresponding
cations, P+, and anions, P−. Figure 17.3. illustrates the bond formation between X
and Y , and displays the “ingredients” needed to discuss both the VPEq and GS-ENE
rules. Thermochemical cycles connect the bond dissociation energies, D(P), D(P+),
and D(P−) to the ionization energies, I and electron affinities, A, of the reactants
and their product [25].We use I(X)≤ I(Y ) and A(X)≤A(Y ), thus 𝜒(Y )−𝜒(X)≥ 0
and focus on two cycles given by (17.26) and (17.27).

Ia (P) + D
(

P+
)
− I (X) − D (P) = 0 (17.26)

Aa (P) + D (P) − A (Y ) − D (P−) = 0 (17.27)

The average of (17.26) and (17.27) is,

𝛼VP,a (P) + 1/2
[
D
(

P+
)
− I (X) − A (Y ) − D (P−)

]
= 0 (17.28)

The adiabatic VPA,𝛼VP,a (P) =
1
2

[
Ia (P) + Aa (P)

]
, is normally close to the vertical

VPA, 𝛼VP,v(P)≈ 𝛼VP,a(P), since Ia(P)≤ Iv(P), but Aa(P)≥Av(P). Written in terms of
the bond dissociation energy, the product’s adiabatic VPA is expressed as,

𝛼VP,a (P) =
1
2
[
D (P−) − D

(
P+

)
+ 𝜒 (X) + 𝜂 (X) + 𝜒 (Y ) − 𝜂 (Y )

]
(17.29)

that simplifies to,

𝛼VP,a (P) =
1
2
[
D (P−) − D

(
P+

)]
+ ⟨𝜒 (R)⟩AM −

1
2
Δ𝜂 (R) (17.30)

in terms of the arithmetic mean ⟨𝜒(R)⟩AM, which differs from the product’s adiabatic
VPA by (17.31).

⟨𝜒 (R)⟩AM − 𝛼VP,a (P) =
1
2
[
D
(

P+
)
− D (P−)

]
− 1

2
Δ𝜂 (R) ≥ 1

2
[
D
(

P+
)
− D (P−)

]
(17.31)
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XY+

XY–

X + Y–

XY

X + Y

X+ + Y

D (XY+)

D (XY)

D (XY–)

A (Y)

I (X)Ia (XY)

Aa (XY)

Figure 17.3 Thermochemical cycles illustrate the bond formation between the chemical
species X and Y . Adiabatic ionization energy, Ia(XY ), and electron affinity, Aa(XY ), of the
product, and the I(X) and A(Y ) values of reactants. Bond dissociation energies, D(XY ),
D(XY+), and (XY−). Source: From von Szentpály [25]. Licensed under CC BY 4.0.

We have a positiveΔ𝜂(R)= 𝜂(Y )− 𝜂(X)≥ 0, due toΔ𝜒(R)≥ 0, and the high-quality
linear relationship between 𝜒(at) and 𝜂(at), found by Bratsch for the main group
elements [53].

𝜂 (at) = (0.60 ± 0.11) 𝜒 (at) (17.32)

The thermochemical cycles provide essential support for the new Rule: VPA is
equalized (individual deviations: <10%) by association reactions, X +Y →XY , if the
ionic dissociation energies are equal, D(XY+)−D(XY –)≈ 0. Changes in the external
potential, v (r), during the reaction are absorbed in the thermochemical cycles and
do not interfere with the ENE rule. Therefore, a restriction to vertical ionization ener-
gies and electron affinities in the context of this rule is not mandatory. The examples
in Table 17.3 evidence the main result of this chapter, that in case of 𝛼VP ≠𝜒0, the
accuracy of VPEq is up to orders of magnitude better than that of GS-ENE. With the
exception of LiH, small differences 1

2

[
D
(

P+
)
− D (P−)

]
are required for the equilibra-

tion of both VS and GS electronegativities by bonding.
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Table 17.3 Bond dissociation energies, D(XY+), D(XY−), and difference,
1
2

[
D
(
XY+

)
− D (XY−)

]
. Differences Δ𝛼VP and Δ𝜒0 given as Δ𝜒 = ⟨𝜒 (at)⟩CT −𝜒 (XY ) and

𝛿 = 100 [(Δ𝜒/(χ(XY ))]%.

XY D(XY+) D(XY−) 1
2

[
D
(
XY+)− D (XY−)

]
𝚫𝜶VP and 𝚫𝝌0 [25] 𝜹(%) [25]

H2 2.65 n. a. n. a. 7.18− 6.99 = 0.19 3
Li2 1.44 ≈0.90 0.27 3.01− 2.80 = 0.21 7
Na2 0.96 0.614 0.17 2.84− 2.77 = 0.07 3
LiNa 0.99 ≈0.69 0.15 2.92− 2.80 = 0.12 4
LiH 0.114 2.003 −0.944 4.14− 4.08 = 0.06 1.4
N2 VS:7.61 ≈7.53 VS: ≈ 0.04 𝛼VP: 7.32− 7.31 = 0.01 0.1

GS:8.71 ’’ GS: ≈ 0.63 𝜒0: 7.18− 6.62 = 0.56 8.5
NO VS:4.44 5.05 VS:−0.30 𝛼VP: 8.38− 8.52 = −0.14 −1.6

GS: 10.85 ’’ GS:2.90 𝜒0: 7.36− 4.50 = 2.86 64
O2 VS:4.03 4.09 VS:−0.03 𝛼VP:9.63− 9.64 = −0.01 −0.1

GS:6.66 ’’ GS:1.28 𝜒0: 7.54− 6.35 = 1.19 19
S2 VS:3.52 3.95 VS:−0.21 𝛼VP: 7.39− 7.32 = 0.07 1

GS:5.37 ’’ GS:0.71 𝜒0: 6.22− 5.43 = 0.79 15
F2 VS:1.37 1.28 VS:0.05 𝛼VP: 12.20− 11.36 = 0.84 7

GS:3.34 ’’ GS:1.03 𝜒0: 10.41− 8.71 = 1.70 19
Cl2 VS:1.50 1.26 VS:0.12 𝛼VP: 9.35− 8.64 = 0.71 8

GS:3.95 ’’ GS:1.35 𝜒0: 8.29− 6.38 = 1.91 30
IBr VS:1.08 1.10 VS:−0.01 𝛼VP: 8.30− 7.66 = 0.64 8.4

GS:2.42 ’’ GS:0.65 𝜒0: 7.16− 5.74 = 1.42 25

Energies, VPAs, and electronegativities in electron Volt units (eV). The valence-state (VS, Δ𝛼VP)
and ground-state (GS, Δ𝜒0) data are assigned, unless they are identical.

The performances of the VPEq and CDFT’s GS-ENE have been compared for 89
molecules with very diverse bond characters, including the “exotic” dimers Be2, Mg2,
B2, C2, and Mn2 [24]. The mean unsigned deviations (MUDs) are MUD (𝛼VP)= 2.55%
and MUD (𝜒0)= 21.95% for 89 molecules. The accuracy of VPEq is about nine times
better than that of GS-ENE [24]. The conclusion is that GS-ENE between atoms gives
good results, only if 𝜒0 ≈ 𝛼VP, for the atoms involved. This is the case for, e.g. H2, Li2,
LiH, Cu2, and P2, but is more the exception than the rule. The large changes of the
external potential, 𝜐(r), during bond formation do not affect the accuracy of VPEq;
thus, the constancy of 𝜐(r) is not required. If the changes of the external potential
were the primary reason for the many exceptions to GS-ENE, it would be very hard
to explain why ENE is almost perfectly realized, as long as 𝜒0 = 𝛼VP, as, e.g. in H2,
Li2, and LiH (Table 17.3).
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17.5 Partial Charges from Valence-Pair-Equilibration
in Polyatomics

In most molecules, an AiM usually forms more than one bond, and all bonds are
coupled in principle. Polar bonds affect each other’s polar character. A charge shift
in a bond affects not only the VPA of the bond of interest but, to a lesser degree, also
that of the geminal bonds on the same atom [24, 26, 40]. The VPA functions mutually
influence each other by a kind of hardness matrix [18, 19, 24, 26, 40]. Therefore, the
expression for the orbital electronegativity of the active orbital, i, involved in the
bond under consideration must include the effects of the geminal orbitals, I; that is,
of the other valence orbitals not participating in the bond of interest. This coupling
cannot be of long range. Otherwise, such charge equilibration models would result
in the same net charges on all the AiMs of the same element, independent of the
neighboring atoms, which is contrary to accepted chemical wisdom.

The geminal charge coefficient, 𝜂VS/𝜅, is introduced into (17.33) to give a gener-
alized expression for the VPA,𝛼VP, i, in terms of the charge shifts within the valence
orbitals,

𝛼VP,i
(
𝛿i
)
= 𝜒VS (X , i) +

1
𝜅

∑
I≠i
𝜂VS (X , I) 𝛿I + 𝜂VS (X , i) 𝛿i (17.33)

The geminal hardness, 𝜂VS(I), is not expected to contribute fully to the active
orbital. The inverse 𝜅 term, 1/𝜅, is a correction factor that reduces the contributions
of the VS hardness of the geminal orbitals to the active orbital. Therefore, for integer
values, 𝜅 > 1, the larger the value of 𝜅, the smaller the influence of the geminal
orbitals. Here, we opt for 𝜅 = 2. The terms, 𝜒VS(X , i), 𝜂VS(X , I), and 𝜂VS(X , i) are
abbreviated to simpler notations, 𝜒VS

X ,i , 𝜂X , I , and 𝜂X , i, respectively. The VPA of the
bonded orbitals equalizes to an equilibrium value by bond formation. Applying the
VPEq method to each bond in the molecule results in a charge shift within each
two-center two-electron bond, from which the partial charges at the atomic centers
in the molecule can be determined. For instance, the charge shift, 𝛿i, j, within the
bond formed between overlapping orbitals, i, on atomic center, X , and orbital, j,
on atomic center, Y , is determined by first equating the orbital electronegativity
expressions, as shown in (17.34).

𝜒
VS
X ,i +

1
𝜅

∑
I≠i
𝜂X ,I𝛿X ,I + 𝜂X ,i𝛿X ,i = 𝜒VS

Y ,j +
1
𝜅

∑
J≠j
𝜂Y ,J𝛿Y ,J + 𝜂Y ,j𝛿Y ,j (17.34)

The active bond between overlapping orbitals i and j is labeled, k, such that
𝛿X , i = 𝛿i, j = 𝛿k and 𝛿Y , j = − 𝛿i, j = − 𝛿k. Likewise, the geminal bonds between
overlapping orbitals represented by I and J are labeled l such that 𝛿X , I = 𝛿I, J = 𝛿l
and 𝛿Y , J = − 𝛿I, J = − 𝛿l. Omitting the labels for the atoms but including the labels
for the bonds (17.34) simplifies to (17.35)(

𝜂
k
i + 𝜂

k
j

)
𝛿k +

1
𝜅

∑
I≠i

∑
J≠j

(
𝜂

l
I + 𝜂

l
J
)
𝛿l =

(
𝜒

VS
j − 𝜒VS

i

)
k
, k ≠ l (17.35)
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For each bond in the molecule, one such linear equation is derived. In general, if
𝛿i, j = 𝛿k denotes the charge shift between the bonded active orbitals on the respective
atomic centers in the molecule, then there are n linear equations for n bonds in the
molecule. A set of simultaneous linear equations is generated for the charge shifts,
𝛿k, for k = 1, 2, 3, …, n, as the variables to be solved [56].

In matrix form, the simultaneous equations are represented by (17.36) through
(17.41), such that k≠ l and k, l = 1, 2, 3,…, n. Matrix, A, has dimensions, n×n, and
is defined by (17.36).

Ax = b (17.36)

The diagonal elements, Akk, for the active bonds are characterized by (17.37).

Akk = 𝜂k
i + 𝜂

k
j (17.37)

The off-diagonal elements, Akl, are given by (17.38),

Akl =
1
𝜅

∑
I≠i

∑
J≠j

(
𝜂

l
I + 𝜂

l
J
)

(17.38)

such that for bonds not formed by the AiM, Akl = 0. Note, x and b are column matri-
ces for which the elements of b, shown in (17.39), are the electronegativity difference
for the bonded orbitals.

bk = 𝜒VS
j − 𝜒VS

i (17.39)

The elements of x are the charge shifts within each bond defined by (17.40).

xk = 𝛿k (17.40)

The matrix A is non-singular with solutions found using standard matrix inversion
methods given by (17.41).

x = A−𝟏b (17.41)

Appropriate row and column operations may be performed to reduce the dimen-
sion of the problem for equivalent bonds of a given AiM [56].

In the VPEq method, the partial charge, q, at each atomic center in the molecule is
calculated by summing all the charge shifts within the bonded orbitals of the AiM.
For instance, the partial charge on atom, X , in the molecule is given by (17.42),

qX =
∑

i
𝛿X ,i (17.42)

where i represents all the bonded orbitals of atom, X . The molecule is electroneutral,
since

∑N
k=1qk = 0 for the N atoms in the molecule. One of the main advantages of

the VPEq method is that the charge distributions in molecules are determined with-
out extensive quantum mechanical calculations while retaining the intuitive idea of
atomic centers within the molecule. This makes the VPEq method very appealing
since consistent atomic charges for a wide range of molecules can be reliably deter-
mined without almost any knowledge of the molecular wave function. Table 17.4
lists the partial charges qVPEq obtained from VPEq for polyatomic molecules, where
the influences of the geminal bonds are included. We would like to thank Dr. Geneive
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Table 17.4 Partial charges, qVPEq, and primary electric dipole moments, 𝜇p.

Molecule Atom
Partial
charges

Calculated primary
dipole moment
/D

Experimental
dipole moment [57]
/D

Lithium fluoride Li 0.82 6.18 6.32
LiF F −0.82
Ammonia N −0.534 0.946 1.471± 0.01
NH3 H 0.178
Water O −0.661 1.811 1.854± 0.01
H2O H 0.331
Propane C a −0.159 0.045 0.084± 0.001

H H
H

H
C

C
C

H H
H

H

b

b

a

a a

a

C b −0.141
H a 0.056
H b 0.062

Propene C a −0.223 0.313 0.366± 0.003

H

H

H H
H

H
C

C
C

b

b

c

c
a

a

C b −0.213
C c −0.120
H a 0.116
H b 0.120
H c 0.068

Propyne 1.109 0.784± 0.008

H H

H

H
C C C

a a b c
c

C a −0.267
C b −0.268
C c −0.023
H a 0.265
H c 0.098

Methylamine C −0.078 1.277 1.31± 0.02

H N

H H
H

H

C
a b

N −0.525
H a 0.081
H b 0.181

Henry (Susquehanna University) for her help in drawing the structures included in
Table 17.4.

17.6 Electric Dipole Moments

In a diatomic molecule, XY , with a single bond, where Y is more electronegative
than X , there is a negative partial charge, qY , centered at Y and an equivalent positive
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partial charge, qX , centered at X .The primary dipole moment of the XY molecule is
given by (17.43),

𝜇p = qX r⃗X + qY r⃗Y (17.43)

Where r⃗X and r⃗Y are position vectors of atoms X and Y , with respect to an arbitrary
origin. The bond dipole moment is a consequence of the electronic charge transfer
within the orbitals of the AiMs upon bond formation [56, 58, 59]. It is important
to note that the primary moment represents one component of the total or resul-
tant dipole moment of the molecule, which is the sum of the primary moment,
induced moment, and the hybridization moment for molecules [56, 58–61]. How-
ever, the induced moment and the hybridization moment tend to cancel each other.
We, therefore, focus on the primary dipole moment. For polyatomic molecules, the
primary moment is given by (17.44),

𝜇p =
∑

j
qjr⃗j (17.44)

such that qj is the charge at the jth atomic center in the molecule and r⃗j is its
position vector with respect to an arbitrary assigned molecular origin. 𝜇p is inde-
pendent of the position of the origin in the molecule since

∑
jqj = 0. According

to VB theory, the resultant dipole moment is a vector sum of all the bond dipole
moments.

Table 17.4 lists our calculated primary dipole moments along with the experi-
mental moments [57]. Taken from Table 17.2, the |qVPEq (LiF)| = 0.82 produces ∣
𝜇p ∣ = 6.18 D just 2% off the reported experimental value. As expected, the O atom
of water with a charge of −0.661 is more negative than N of ammonia with a charge
of −0.534. This is a direct consequence of referencing to 𝛼VP and 𝜂VS for the AiM,
which results in a primary dipole moment of 1.811 D in excellent agreement with
the experimental value of 1.854± 0.01 D for water. The VPEq method differentiates
between the orbitals on the C atom based on its environment. The charge shifts
between H and the primary vs. secondary C atoms of propane yield a primary H
atom with a slightly greater charge of 0.062 compared to 0.056 for the secondary
H. Conversely, the primary and secondary C atoms are different with charges of
−0.159 and −0.141, respectively. This is significant because the VPEq method gives
a non-zero primary moment of 0.045 D for propane, which is in reasonable agree-
ment with the experimental value of 0.084± 0.001 D. The partial charges of the C
and H atoms of the methyl group are similar for propane, propene, propyne, and
methylamine with their differences rationalized by increased polarity due to multi-
ple neighboring bonds, or the more electronegative primary amine group in the case
of methylamine. This is convincing evidence that the 𝛼VP and 𝜂VS of the AiM are
needed, but the global 𝜒0 and 𝜂0 of CDFT are insufficient to assess dipole moments.

The errors in the primary electric dipole moment determined from the uncertainty
in the partial charge and bond length are ±0.005 D, when 𝜇p ≤ 0.1D; ±0.05 D, when
0.1 < 𝜇p ≤ 1D; and ±0.10 D, when 𝜇p > 1D.
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17.7 Summary and Conclusions

Conceptual DFT not only profoundly influences our perceptions of chemical
concepts, principles, and rules but also faces challenges in its applications. We
here concentrate on the implications of VS concepts on CDFT. The focus is on
EN and its equalization (ENE) by bonding as a central topic of CDFT. For this
purpose, Mulliken’s exclusively atomic VS orbital electronegativity definition
is extended to bonds in molecules. This generalized VPA, symbolized 𝛼VP, is
defined as a charge-dependent pair-sharing power. It is derived in accordance
with Ruedenberg’s bond theory, which defines the valence-state energy by keeping
the ionic valence structures of the molecule intact and frozen up to the separated
atoms.

In contrast to the GS-EN, 𝜒0, the 𝛼VP fulfils all Wigner–Witmer symmetry
requirements for characterizing bonds by the interplay of covalent and ionic
valence structures. Another essential difference between the GS and VS approaches
to EN, especially, VPA is the absence of hybridization in CDFT, as opposed to its
important role for VS energies. An order of magnitude improvement of the accuracy
of ENE is achieved by replacing the 𝜒0 by the VPA, 𝛼VP, which is equilibrated in
bonds (VPEq). Without requiring ad hoc calibrations, the VPEq bond polarities
agree very well with the results of state-of-the-art population analyses, and charges
derived from vibrational spectra. A conclusion is that ground-state ENE between
atoms gives reasonable results, as long as 𝜒0 ≈ 𝛼VP for the atoms are involved. The
large changes of the external potential, 𝜐(r), during bond formation do not affect the
accuracy of VPEq; thus, the constancy of 𝜐(r) is not required. The VPEq calculated
primary dipole moments of medium-sized organic molecules reasonably reproduce
the observed dipole moments. In summary, the concepts of valence states should be
more emphasized in their consequences for CDFT.
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18.1 Introduction

Chemistry is the science devoted to the study of the properties, structure, and
composition of substances, as well as the processes they undergo. This means that
extracting chemical information from the concepts seen until now is naturally
focused on the changes induced by the external potential: what happens when we
change a given atom by another, or when it changes place., is all summarized in the
variable 𝜈(r) (coordinates and nuclear charges).

This is the phenomenological approach taken for the last decades in Chemistry:
the properties and reactivities of families of related compounds are predicted in
terms of simple models or experimental correlations: acid and base activity and elec-
trophilic substitutions are two textbooks examples which, from the very history of
chemistry, we know to work quite well. It should be noted that this approach has
recently re-seen a boost with machine learning [1, 2]. Molecular representations
aimed at machine learning applications often rely in implicitly mimicking the exter-
nal potential. As seen in Chemistry for decades, the external potential on its own
may have a signature that is genuinely unique and can be nonlinearly mapped to
the desired property (e.g. the expectation value of a given operator).

Nevertheless, this approach has limitations, which are easily seen if we go back
to the energy derivatives seen in Chapter 2. We have seen that both the external
potential, 𝜈, and the particle number, N, are enough to completely characterize the
system, determining both the exact Hamiltonian and the exact ground state energy,
E. Hence, dE can be written as:

dE =
(
𝜕E
𝜕N

)
𝜈(r)

dN + ∫
(

𝛿E
𝛿𝜈(r)

)
N
𝛿𝜈(r)dr (18.1)

The first derivative of the right-hand side is the chemical potential, 𝜇:

𝜇 =
(
𝜕E
𝜕N

)
𝜈(r)

(18.2)

which is one of the pillars of conceptual density functional theory (DFT).

Conceptual Density Functional Theory: Towards a New Chemical Reactivity Theory, First Edition.
Edited by Shubin Liu.
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350 18 Chemical Information

Going back to our focus, chemical information, we now turn to the second part
of Equation 18.1: the changes in the energy with respect to the external potential at
constant N.

Resorting to perturbation theory, the first-order correction to the ground-state
energy dE(1) due to a change in the external potential. V =

∑
i𝜕𝜈(ri), is given by:

dE(1) = ∫ 𝜙
(0)V𝜙(0)dr = ∫ 𝜌(r)𝜕𝜈(r)dr (18.3)

where 𝜙(0) is the unperturbed wavefunction. We see that the second derivative in
Eq. 18.1 is thus the electron density:

𝜌(r) =
(

𝜕E
𝜕𝜈(r)

)
N

(18.4)

While the chemical potential is a scalar, in this case, we have to handle a 3D scalar
field, 𝜌(r), which is significantly more intricate. Within given families of compounds,
where the 3D distributions are transferable and the particle number (charge, spin
multiplicity) remains constant, the external potential might be enough to develop
phenomenological models. In other cases, the analysis of the electron density is
needed to interpret structure and reactivity.

In what follows, we will first review how to analyze the electron density, which
provides access to thermodynamic properties by virtue of being directly connected
to the energy. Then we will show how this information can be enriched by other
density-derived quantities, also present in DFT. Finally, we will briefly explain how
this information can be even exploited to understand errors in routine electronic
structure calculations.

18.2 The Electron Density

18.2.1 General Shape

A beautiful example of the connection between the electron density and the energy
can be constructed on the basis of very simple arguments. It is known that the wave-
function must have a derivative discontinuity on top of the nuclear positions Ri for
all nuclei Mi with nuclear charge Zi (we refer the reader to Ref. [3] for details on the
electron–electron coalescence cusp). Thus, the electron density must present this
cusp as well. In this sense, Kato’s cusp condition states that when r = Ri:

d𝜌(r)
dr

= −2𝜌(r)Zi (18.5)

where 𝜌 is the electron density spherically averaged around Ri. Equation (18.5) is
valid for Coulomb systems assuming the Born–Oppenheimer approximation and
point-like nuclei.

It is thus possible to deduce the positions of all nuclei strictly from the electron
density as cusps in 𝜌(r), the nuclear charges through derivatives as in Eq. (18.5), and
the number of electrons N by integration N = ∫ 𝜌(r)dr. In this sense, note that the
Hamiltonian of the system is completely determined just from the exact electron
density 𝜌 [4].
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This is generalized to other potentials as per the Hohenberg–Kohn theorems, but
the argument above, as given originally by Bright-Wilson, is a very good example on
how relevant information of the system can be extracted directly from the electron
density.

Beyond the maxima, the general shape of the electron density can be understood
from the analysis of atomic behavior and its superposition [5]. For an atom, A, the
value of the density at the nucleus can be related to its nuclear charge, ZA, as seen
before:

lim
r→RA

[
𝛿

𝛿r
+ 2ZA

]
𝜌(r) = 0, (18.6)

where 𝜌(r) is once again the spherical average of 𝜌(r). When going away from
the nucleus of A, 𝜌 experiences an exponential decay that is related with the first
ionization potential of the system, I:

𝜌(r) ∝ e−2
√

2I|r| (18.7)

Further away, the electron density tends asymptotically to 0:

𝜌(r →∞) = 0 (18.8)

In a molecular system, the overall shape of the electron density is dictated by the
position of the nuclei (external potential), so that the final density presents cusps at
all nuclear positions (related to their respective Z). In this sense, in Figure 18.1, it can
be seen how all the main features of the electron density are dictated by the position
of the constituent atoms for the LiH molecule. Note the two nearly perfect expo-
nentially decaying cusps in the inset, with the cusps located at the atomic positions.
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Figure 18.1 Electron density in a.u. along the line connecting Li and H in the
LiH molecule. The inset has a logarithmic y-axis to convey the exponential nature of the
atomic cusps.
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This illustrates what we saw above: the electron density enables identifying the
position, RA, and nature of the atoms in the system, ZA.

Notice that optimizing the wavefunction with an self consistent field (SCF) proce-
dure leads to a relatively minor perturbation of the atomic densities. This feature is
commonly used in crystallographic studies, where the initial atomic density is used
as a first approximation to fit structure factors. Hence, these simple rules enable
us to have a general picture of the electron density in a system. However, we need
a finer analysis in order to retrieve general rules that we can relate to Chemistry.
A simple framework to achieve this is proposed by the so-called quantum theory of
atoms in molecules (QTAIM), as introduced by Bader and coworkers [6, 7].

18.2.2 Extracting Chemical Information: QTAIM

𝜌(r) is not a truly differentiable field, since there are cusps, not maxima, on top of
nuclear positions. We can nevertheless build a topologically equivalent field (known
as homeomorphic field) that is equal to 𝜌(r) at all points save small neighborhoods
around the nuclei. In these small regions, we substitute the true non-differentiable
density by an approximation showing a true local maximum. Note that this home-
omorphic field is also naturally found when we introduce finite gaussian basis sets
for computation (see for instance Figure 18.2).

Under these conditions, we can analyze the shape of 𝜌(r) with simple mathemat-
ical function analysis tools from the field of topology. This allows to retrieve valu-
able information about both atomic and bonding properties, stability, and chemical
reactivity. This notion lies at the heart of the QTAIM framework that we will sum-
marize in this section.

From Figure 18.1, we had identified the cusps which are now assumed as maxima
as associated with a nuclei. For this reason, these maxima are called nuclear critical
points (NCPs). If we now look closer into Figure 18.3, we can see that the density
gradient is able to detect the fact that there is an interaction between atoms. Indeed,
the existence of bonding interactions can also be derived directly from the electron
density as well. First-order saddle points of the electron density, also known as bond

(a) (b) (c)

Figure 18.2 Shape of the approximate homeomorphic 𝜌(r) cusp surrounding a nucleus, as
given by a basis set composed of (a) Slater-type functions, (b) Gaussian-type functions, and
(c) contracted Gaussian-type functions, where the individual Gaussian functions are shown
colored.
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Figure 18.3 Norm of the gradient of the electron density in a.u. along the line connecting
Li and H in the LiH molecule. The inset has a logarithmic y-axis to convey the relative scale.

critical points (BCPs), appear in between bonded atoms. At the BCPs, the electron
density is minimal along the bonding line and maximal across the perpendicular
plane. This can be seen in Figures 18.1 and 18.4 for the simple LiH molecule, and by
the existence of a point at which the gradient is 0 in Figure 18.3. In simple mathe-
matical terms, a BCP represents the point in which the two exponentially decaying
atomic densities intersect along the line that connects both nuclei.

In general, starting from the atomic densities, it is easy to showcase that the points
in which the distinct atomic cusps intersect lead to saddle points of different order.
The points of space in which the gradient of the density is 0, that is, the critical points
(CPs) of 𝜌(r), including NCPs and BCPs, are particularly interesting. The relation-
ship between NCPs and the Bright-Wilson argument is evident at this point. As we
will see, other CPs may require further consideration. We will analyze the different
possibilities in Section 18.2.3.

18.2.2.1 Critical Points of the Electron Density
In order to characterize CPs of different nature (beyond NCPs and BCPs), we can
analyze the components of the Hessian matrix of 𝜌(r) with respect to r = (x, y, z) at
the CP (Eq. (18.9)):

H(𝜌, r) =
⎡⎢⎢⎣
𝜕

2
𝜌∕𝜕x2

𝜕
2
𝜌∕𝜕x𝜕y 𝜕

2
𝜌∕𝜕x𝜕z

𝜕
2
𝜌∕𝜕y𝜕x 𝜕

2
𝜌∕𝜕y2

𝜕
2
𝜌∕𝜕y𝜕z

𝜕
2
𝜌∕𝜕z𝜕x 𝜕

2
𝜌∕𝜕z𝜕y 𝜕

2
𝜌∕𝜕z2

⎤⎥⎥⎦ (18.9)

In turn, H(𝜌, r) can be diagonalized to produce three eigenvalues 𝜆1, 𝜆2, and 𝜆3.
The Laplacian of the electron density ∇2

𝜌(r) is the sum of the diagonal elements of
the Hessian. The standard notation for a CP is (r, g), where the rank r is the number
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Figure 18.4 Electron density in a.u. in the xz plane containing the LiH molecule. Note that
the density is truncated to 0.14 a.u. in order to better showcase the relative magnitudes. For
a complete scale, see Figure 18.1.

of nonzero eigenvalues 𝜆i, and the signature g is defined as
∑
𝜆i∕|𝜆i|. Four kinds of

CPs of rank 3 (the most common ones) can be found in molecules, here listed by the
aforementioned convention:

● (3,−3) points correspond to local maxima of 𝜌(r), generally found in nuclear posi-
tions (recalling that nuclear cusps are assimilated to maxima). As previously indi-
cated, they are often called nuclear critical points (NCPs).

● (3,−1) points correspond to a saddle point that is a maximum in two directions of
space, and a minimum along the other orthogonal direction. They are associated
with bonds, and hence called bond critical points (BCPs).

● (3,+1) points correspond to a saddle point that is a minimum in two directions of
space, and a maximum in the other orthogonal direction. They are associated with
the center of rings of covalent bonds and thus called ring critical points (RCPs).

● (3,+3) points correspond to local minima of 𝜌(r), generally found in the center of
cages of bonds. They are known as cage critical points (CCPs).

Note that representative examples of each kind of CP are provided in Figure 18.5.
Assuming that the atomic cusp of the electron density and its exponentially

decaying tails are transferable, that is, an atom behaves similarly independently of
the environment, the density and position of CPs uniquely determine the position
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(a) (b) (c)

(d) (e) (f)

Figure 18.5 CPs of 𝜌(r) for different molecules calculated at the HF/6-31G∗ level:
(a) ethane, (b) benzene, (c) cyclohexane, (d) cubane, (e) adamantane, and (f) naphthalene.
CPs are shown as spheres. NCPs, BCPs, RCPs, and CCPs are colored red, green, blue, and
violet respectively.

of the interacting atoms. While this is rigorously true if the density is strictly a
superposition of atomic densities, the inference of molecular geometry from the CPs
of the electron density is generally possible. Note that this is greatly advantageous,
since this is a much reduced object than the 𝜌(r) scalar field.

The bundle of CPs of a molecular system, including the gradient paths that
connect them, is often called a molecular graph. Indeed, it faithfully mimics the
molecule by explicitly locating nuclei (NCPs) and interactions between them are
represented by BCPs, RCPs, and CCPs. The particle number is implicitly included if
the value of 𝜌(r) is given for each CP, as in a weighted graph. Molecular graphs thus
allow to connect the electron density with one of the pillars of Chemistry: chemical
structure.

Some molecular graphs are presented as an example in Figure 18.5. Most often, the
gradient paths that connect NCPs and BCPs are almost strictly straight and match
the least-distance connection between two bonded nuclei. Notable exceptions are
strained bonds, in which the gradient path that connects BCPs and NCPs is slightly
longer than the geometrical distance between nuclei. The difference between the
two distances can be used as an indicator of strain for such contexts.

18.3 Electron Density-Derived Functions

The electron density has a direct connection with the energetics of the system
through the Hohenberg–Kohn theorem. The Kohn–Sham (KS)-DFT formulation
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sets F[𝜌] as an implicit functional of the density (Eq. (18.10)):

F[𝜌] = Ts[𝜌] + EH[𝜌] + Exc[𝜌] (18.10)

where EH[𝜌] is the Hartree functional and Ts[𝜌] is the kinetic energy of the
noninteracting KS system. This scheme simplifies the problem by setting the
exchange–correlation functional Exc[𝜌] as the remaining piece to the exact F[𝜌].
This means that the form encoded in Exc[𝜌] attempts to connect the density with
the energy differences from the noninteracting system. This is the main goal of the
vast number of approaches to new, and hopefully more accurate, density functional
approximations (DFAs).

Generally speaking, DFAs are classified using Jacob’s ladder, which ranks them in
terms of their degree of non-locality. The bottom three rungs are occupied by semilo-
cal approximations of the form

Exc[𝜌] = ∫ 𝜌(r)𝜖xc[𝜌(r)]dr, (18.11)

where 𝜖xc is the exchange–correlation energy density per volume. According to the
rung, this value is a function of the following functions [8]:

● First rung: The electron density, 𝜌, in the local density approximation (LDA),
● Second rung: 𝜌 and its gradient, ∇𝜌, in the generalized gradient approximation

(GGA), and
● Third rung: 𝜌, ∇𝜌 and the kinetic energy density and/or ∇2

𝜌 in the meta-GGA
approximation.

The reader will realize that the chemical information we have extracted up to now
is related to the density and its gradient (first and second rungs above). Neverthe-
less, since the energetic description usually improves along the ladder, one could
expect that the density-derived scalars used in third rung enables to extract more
and richer information about the system. This is indeed the case. Many other scalar
fields relevant for chemical interpretation are derived from semilocal DFAs. Among
them, we can highlight the electron localization function (ELF) [9–11], the localized
orbital locator (LOL) [12, 13], and the non-covalent interactions (NCI) index (i.e.
the analysis of the reduced density gradient) [14] as some representative examples.
We will review the chemical information of some of these functions in the coming
Sections (18.3.1–18.3.3).

18.3.1 The Reduced Density Gradient

We have seen that the density gradient enables to extract structural information
straight from the electron density (e.g. nuclear positions, chemical bonds). In DFT,
the gradient is usually used in its reduced form, s(r), in second rung functionals due
to a second-order gradient expansion (GEA):

s(r) = 1
Cs

|∇𝜌(r)|
𝜌(r)4∕3 , (18.12)

EGEA
xc = ELDA

x +
∑

∫ F(s)𝜌4∕3(r)dr (18.13)
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where Cs = 2(3𝜋2)1∕3 and F(s) is a function of the reduced density gradient for a
given spin. The 4∕3 exponent of the density in the definition of s(r) ensures that it is
a dimensionless quantity.

The electron density gradient is at the heart of the atoms in molecules (AIM)
approach, since it becomes 0 at points where interactions are expected, such as BCPs.
In fact, at any CP of 𝜌(r), from Eq. (18.12) we see that s(r) = 0 by definition. Since
by definition s ≥0, CPs of 𝜌(r) are CPs of s(r). However, this does not go both ways.
Indeed, the reduced density gradient has a richer topology, and hence it contains
more information than the gradient of the electron density.

CPs of s(r) that are not CPs of the electron density (i.e.∇𝜌(r) ≠ 0) occur whenever
the following equality holds (Eq. (18.14)):

∇2
𝜌(r)
𝜌(r)

= 4
3
(∇𝜌(r))2

𝜌2(r)
, (18.14)

which requires a positive value for the Laplacian of 𝜌(r). This is very convenient
for DFAs in this rung, as information about the Laplacian can be derived purely
from s(r).

The inclusion of s(r) in DFAs can be interpreted chemically: it is a function that
can detect interactions between atoms (i.e. deviations from exponential decay).
The properties of s(r) have been investigated in depth in the process of developing
increasingly accurate DFAs due to its deep relationship with the chemical region of
the molecule (shells, bonds) [15–19].

Indeed, the reduced density gradient can be related to local density inhomo-
geneities:

● It takes large values in the exponentially decaying density tails far from the nuclei,
where the density denominator approaches 0 more rapidly than the gradient
numerator.

● Small values of s(r) occur throughout for the homogeneous electron gas (HEG),
close to bonding regions, due to the presence of CPs, and in Lewis pairs, due to its
relationship with the one-electron potential [20].

The effect of these inhomogeneities on the reduced density gradient is especially
easy to visualize by plotting s(r) as a function of the density (Figure 18.6). Assum-
ing a Slater-type behavior, it can be shown that graphs of s(r) vs. 𝜌(r) assume the
form s(r) = a𝜌(r)−1∕3, where a is the Slater exponent. When there is overlap between
atomic orbitals, s(r) goes to 0 and a characteristic spike appears in the s(𝜌) diagram
(see Figure 18.6 for an example, noticing the spike that appears for the dimer).

The reduced density gradient is related to the ratio between the Weizäcker kinetic
energy density and the kinetic energy density of the HEG. As the first is the kinetic
energy density of a single-orbital system and the latter is appropriate for independent
particles, the ratio estimates the local relevance of electron pairing, bearing the name
of tbose [20], defined as:

tbose(r) =
tw

tHEG
= 5

6
s(r)2 (18.15)
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Figure 18.6 2D plot of s(r) against 𝜌(r) for (a) single water molecule and (b) water dimer.
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where tw is the von Weizsäcker kinetic energy density and tHEG is the HEG value:

tw =
1
8
(∇𝜌(r))2𝜌(r) (18.16)

tHEG = 3
10
(3𝜋2)2∕3

𝜌(r)5∕3 (18.17)

Accordingly, the bosonic kinetic energy density tbose reveals chemical features in
situations when electrons behave like bosons: (i) paired electrons and (ii) where
the density is very low. This can be visualized from the points forming s(𝜌) iso-
surfaces with very low values of the function. Such 3D representations are able to
reveal (i) Lewis features (covalent bonds, shells, and lone pairs) [21] and (ii) non-
covalent bonds [14], including weak intramolecular non-covalent interactions [22].
Figure 18.7 shows the chemical features highlighted by the reduced density gradi-
ent in N2. Core, lone pairs, and interatomic bonding regions may all be identified as
minima of s(r).

Nonetheless, the reduced density gradient is most commonly used to reveal
non-covalent interactions, which are otherwise difficult to unravel. Consequently,
the 3D analysis of s(r) is generally known as NCI [14]. Furthermore, these interac-
tions are also very hard to identify from the geometry alone. Whereas covalent radii
are very well defined for covalent bonds, non-covalent interactions cover a much
wider range of radii and angles. In many cases, they are markedly non-pairwise,
which further hampers identification (e.g. 𝜋-stacking interactions). The reduced
density gradient is a very intuitive way to reveal them.

As an example, the reduced density gradient is able to provide intuitive insight
into localized vs. delocalized interactions in a benzene crystal, as highlighted in
Figure 18.8. Whereas localized CH−C interactions appear as a small atom-to-atom
surfaces (C1–H3), delocalized CH–𝜋 interactions, appearing as large flat surfaces,
highlight the interaction of the hydrogen atom (H2) with the whole neighboring 𝜋
system.

As previously discussed, DFAs in the first rung include mostly information about
atoms, the second rung adds information about inhomogeneities and, to some
degree, interactions between ideal atomic cusps. However, as we have also seen, by
looking at the gradient we are not able to tell BCPs and RCPs from each other, for
instance. That is, we are not able to characterize the CPs of 𝜌(r). For instance, the

Figure 18.7 Chemical features (bond and lone pairs) of N2 as revealed by s(r) = 0.33 with
the isosurface colored orange. Critical points in nuclear positions are not shown.
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Figure 18.8 (a) Bond paths (QTAIM); (b) s(r) for the intermolecular interactions in benzene
crystal: localized CH–C interaction (small isosurface between C1–H3) and delocalized
CH–𝜋 interaction (bigger surface between H2 and the benzene ring of C3); and (c) lateral
view of the T-shape CH–𝜋 interaction. Reprinted with permission from Ref. [23].

local environment of a BCP between two heavy atoms and the NCP of a H atom
might have the same values of density and gradient, which is a typical issue for the
crystallographic determination of hydrogen atoms.

If we want to go further, we can look at higher rungs of Jacob’s ladder. DFAs in the
third rung, known as meta-GGAs, include information on the Laplacian of the elec-
tron density and/or the kinetic energy density of the calculated Kohn–Sham orbitals.
The first is an explicit functional of the density, while the latter is only an implicit
functional of the density and requires Kohn–Sham orbitals to be computed.

18.3.2 The Laplacian of the Electron Density

As previously discussed, the position of nuclei and bonds are associated with CPs
of the density. In a similar fashion, atomic shells, lone pairs, and other features are
recovered from the Laplacian, ∇2

𝜌(r).
The main limiting behaviors for the Laplacian are the following:

● It tends to −∞ for r → RA. The behavior at the nuclei is given by:

∇2
𝜌(r) = Ne−Zr

(
Z2 − 2 Z

r

)
(18.18)

where Z is the nuclear charge.
● Since the electron density falls exponentially to 0 at long distances, so does the

Laplacian.
● In between these two asymptotes, the Laplacian in isolated atoms shows maxima

and minima with spherical symmetry, which recover the number of shells. This
chemical description in atomic shells is also maintained in ionic compounds.

The meaning of the Laplacian can also be understood from its relationship
with the electron density gradient through the divergence theorem. According to
the divergence theorem, the sign of the Laplacian of a scalar function indicates
whether a net flux of the gradient of the scalar is entering (negative sign) or leaving
(positive sign) an infinitesimal volume centered on a given point. Hence, the
sign of the Laplacian of the density informs us on whether the electron density
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is concentrating/compressing or diluting/expanding at a given point. From this,
it is possible to infer a degree of charge depletion (accumulation) for a positive
(negative) Laplacian [24].

Let us start from the local expression of the virial theorem,
1
4
∇2
𝜌(r) = 2t(r) + V(r), (18.19)

where t(r) is the positive definite kinetic energy density and V(r) is the potential
energy density. Since t(r) is positive everywhere and V(r) is negative everywhere,
the theorem states that the sign of ∇2

𝜌(r) determines which energy contribution,
potential or kinetic, is in local excess relative to their average virial ratio of minus
two. Thus, a negative Laplacian reveals that the potential energy is in local excess
(electron sharing interactions), while a positive Laplacian denotes that the kinetic
energy is locally prevailing (closed-shell interactions). Recall now that CPs of s(r)
that are not CPs of 𝜌(r) mandate positive Laplacian values, and thus closed-shell
interactions. This is in perfect agreement with the interpretation given before for
non-covalent interactions, which we expect to involve little to no electron sharing.

Figure 18.9a highlights the ability of the Laplacian to reveal the shells in MgO:
two for Mg2+ (K and L) and another two for O2−. In covalent compounds, the valence
becomes united (see C2 in Figure 18.9b). This different picture enables to distinguish
bonding types in terms of the sign of the Laplacian [24]. It can be seen that in the
first case (MgO) this leads to∇2

𝜌 > 0 in the interatomic region, whereas∇2
𝜌 < 0 for

C2, as expected from their respective bonding regimes.

18.3.3 Kinetic Energy Densities

Due to the ability of the first-order density matrix to reveal nonlocal effects, kinetic
energy densities are a good option to convey extra bonding information and nonlocal
information. Since the kinetic energy density is not uniquely defined, the positive
definite option, t, is preferred for bonding analysis, since it is easier to interpret:

t(r) = 1
2
(∇ ⋅ ∇′)Γ1(r; r′)|r′=r

D
= 1

2
∑

i
(∇𝜓i(r) ⋅ ∇𝜓∗i (r)) (18.20)

where Γ1(r; r′) is the first-order density matrix and “D” refers to monodeterminantal
wavefunctions. As we have seen before when discussing the gradient, we can expect
the kinetic energy density to be maximal near nuclei. This is quite uninteresting per
se. It is often more insightful to calculate the ratio between the kinetic energy density
and a reference, to see whether the electrons have more or less kinetic energy density
than this reference.

18.3.3.1 LOL
The LOL, vLOL [12], introduced by Schmider and Becke, is defined as:

vLOL =
tHEG

t
, (18.21)

where the HEG value is used as a reference. This eliminates the 𝜌5∕3 dependence of
the kinetic energy density which would otherwise hide valence characteristics due
to the greater core densities [25, 26].
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Since v
𝜎

is bounded by 0 from below, but has no upper boundary, a Lorentzian
mapping is usually used, so that the index, 𝜂LOL runs from 0 to 1:

𝜂LOL(r) =
vLOL

1 + vLOL
= 1

1 + vLOL
(18.22)

The name LOL owes to the ability of such a function, which identifies whether a
point in space r can be described by a localized orbital:

● At the positions of the stationary points of localized orbitals, vLOL is driven to small
values (𝜂LOL → 0).

● In regions dominated by the overlap of localized orbitals, vLOL attains large values
(𝜂LOL → 1).

This leads to a distribution of maxima and minima that reveals atomic shell structure
and bonding patterns in 3D [12, 13]. Moreover, given its connection with localiza-
tion, it is also able to reveal multicenter delocalization when averaged over atomic
basins [27].

Figure 18.10 shows the evolution of 𝜂LOL along the internuclear plane of the
CO2 molecule. As it can be seen, the function identifies the position of the cores,
the bond in between them and the lone pairs at each side.

18.3.3.2 ELF
The two previously introduced kinetic energy density measures (LOL and s)
constitute the chemical information used to construct another very well-known
topological index, the ELF [9]. Its kernel, 𝜒ELF, according to Savin’s interpretation
is given by [11]:

𝜒ELF =
t − tw

tHEG
= v−1

LOL − tbose (18.23)

The numerator in Eq. (18.23) is sometimes called Pauli kinetic energy density
tP(r) = t(r) − tw(r). Indeed, the difference between the Kohn–Sham kinetic energy
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Figure 18.10 Scaled bosonic kinetic energy density 𝜂B = (1 + tbose)−1 (purple, Eq. (18.15)),
𝜂ELF (green, Eq. (18.24)), and 𝜂LOL (red, Eq. (18.22)) along the internuclear axis of the
CO2 molecule.
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density and the Weiszäcker one can be likened to the influence of Pauli’s exclu-
sion principle. Note here that tbose = 5∕6s2. Due to the Pauli principle, electrons
(fermions) are faster in average than if they were bosons. Hence, tw is a lower limit
for t, and tbose is a lower limit for v−1

LOL.
In other words, ELF is a very helpful tool to reveal Pauli behavior and its local

effects on the kinetic energy. Just like in the case of LOL, the kernel of ELF is
re-scaled to provide a bound function:

ηELF(r) =
1

1 + 𝜒ELF(r)2
(18.24)

Since Pauli repulsion leads to electron pairing and localization, the following fea-
tures can be observed in 3D representations of 𝜂ELF:

● The upper limit, 𝜂ELF(r)= 1, corresponds to perfect localization. In general, max-
ima of 𝜂ELF (although not necessarily 𝜂ELF(r)= 1) are identified with regions of
high electron localization, such as cores, lone pairs, and covalent bonds.

● The value 𝜂ELF(r)= 1/2 corresponds to HEG-like behavior.
● When 𝜂ELF tends to 0, we are in a boundary region between localization domains.
𝜂ELF values at the saddle points have been shown [28, 29] to be related to the delo-
calization between fragments via the overlap of the relevant orbitals involved in
the interaction.

This has been highlighted in Figure 18.10, where tbose (purple line) has been
plotted along with LOL (red line). In order to follow the same mapping, tbose has
also been scaled: 𝜂B = 1∕(1 + tbose). Note that 𝜂LOL ≥ 𝜂B at all points. In spite of some
differences in the slopes, the different kinetic energy density-based functions are
topologically equivalent in most cases and thus they reveal similar chemical features.

However, the pictures from Pauli’s kinetic energy density are clearer. As a
representative example, Figure 18.11 highlights ELF’s ability to discern localization
domains in N2, simply by representing its isosurfaces (compare to Figure 18.7).
Small, nearly spherical surface appear at the N cores, and larger basins bound the
N−N triple bond and the lone pairs. It looks very similar to the LOL (and even to
the s picture).

Figure 18.11 Chemical features (cores, bond, and lone pairs) of N2 as revealed by
𝜂ELF(r) = 0.8 with the isosurface colored orange.
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The biggest advantage of ELF vs. other scaled kinetic energy densities is that it is
soundly rooted on the Pauli principle. Hence, the topology of ELF renders a quan-
titative Lewis picture of chemical systems. It is also well behaved and smooth. But
what is most important, it has been shown to recover the Aufbau principle for shell
filling along the periodic table [30]. This is not possible with LOL nor with s.

More explicitly, we can expand the expression for 𝜒(r), so that the 𝜂ELF reads as:

𝜂ELF(r) =
1

1 + v−2
LOL(r) + t2

bose(r) + 2v−1
LOL(r)tbose(r)

(18.25)

from which we can easily see that 𝜂ELF(r) = 1 only whenever v−1
LOL(r) = tbose(r) or

𝜂bose(r) = 𝜂LOL(r). This will only happen in one-orbital regions. Localization, as given
by vLOL(r), might be arbitrarily large or small in this sense.

However, if vLOL(r) is very large, that is, the kinetic energy density of the system
is very small compared to that of the HEG, then v−1

LOL(r) will be very small. As we
saw in Figure 18.10, tbose(r) is a lower bound of the latter, and therefore 𝜂ELF(r) ≈ 1
forcefully. In this sense, the ELF measures localization due to fermionic character
but also localization that has to do strictly with the kinetic energy density itself.

On the other hand, 𝜒(r) will be large whenever the system has a character that is
significantly different from the single-orbital model in a way that is significant com-
pared to the homogeneous kinetic energy density for that region. Then, 𝜂ELF(r)→ 0.
Hence, 𝜂ELF(r) is often said to be maximal (i.e. nearly 1) for spin-paired regions, min-
imal (nearly 0) for spin-unpaired regions, and takes the value 1∕2 when the system
resembles the localization of the HEG model.

This must be kept in mind. For instance, in isolated atoms, several local maxima
of 𝜂ELF(r) arise, describing electronic shells. For reference, the 𝜂ELF(r) profiles of the
C and O atoms (in two multiplicities each) are collected in Figure 18.12.

Note how the trend on the 𝜂ELF(r) values of the second shell invert when passing
from C to O: in the O atom it could be suggested that the higher values of 𝜂ELF(r) for
the second shell for the S = 1 situation are due to an increased electron pairing. This

1.00

0.75

0.50

0.25

0.00
0.0

η E
LF

1.00

0.75

0.50

0.25

0.00

η E
LF

0.5

(a) (b)

1.51.0 2.0 3.02.5 3.5

r (Å)

0.0 0.5 1.51.0 2.0 3.02.5 3.5

r (Å)

S = 1
S = 3

S = 1
S = 3
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and (b) oxygen atom. Data calculated at the CCSD/cc-PVTZ level.
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is shown to be inconsistent in the case of C, and hence not true. Let this example
showcase how the interpretation of the ELF solely in terms of electron pairs, if used
acritically, might lead to important errors.

18.4 Assessing the Quality of Chemical Information

It is clear from Section 18.3 that increasing the sources of information enhances
the flexibility, and thus the performance, of the various DFAs, allowing them
to reproduce features that are beyond simpler approaches. However, extensive
parametrization can also translate into an artificially good performance, at the
expense of the underlying physical meaning of the DFA. It is worth wondering how
do these parametrizations translate in the electron density and the other derived
functions we have seen, and the chemical information they convey.

As previously explained, DFT typically proceeds in two steps. First, one obtains a
well-behaved system wavefunction that satisfies the Kohn–Sham equations under
the chosen exchange–correlation potential, and then the energy is evaluated from
the electron density derived from the aforementioned wavefunction. Unfortunately,
only the exact functional would provide the exact ground state energy for the exact
ground state density 𝜌, and for approximate DFAs, there is not any guarantee
that this process leads to a proper density or wavefunction. As a consequence,
a wrong parametrization might lead to good energy results at the expense of
accuracy in 𝜌(r) – and its derived scalar fields. Recall that 𝜌(r) can be expressed
as the derivative of the total energy with respect to the external potential with a
constant number of electrons N. This way, it is straightforward to understand that
a DFA fitted to reproduce the absolute energy may be inaccurate for the derivatives
of the energy, and thus provide inaccurate densities. In the coming Sections
(18.4.1 and 18.4.2), we will provide some general (local and global) descriptors
to understand the errors introduced by various DFAs in the chemical description
of a system, so that the reader is aware of the deviations expected depending on
the functional used in the calculation. We note beforehand that we will focus in
covalently bound molecular systems, first and foremost, due to the impossibility
of tackling the myriad of situations that might arise in computational modeling
endeavors.

18.4.1 Electron Density Errors

In general, 𝜌(r) has been shown to be very robust with respect to the calculation
level [31], as different methodologies translate into relatively small differences in
the density [32]. This is in line with the fact (see above) that most properties of the
electron density are determined directly from the atomic constituents.

There are many ways of identifying and quantifying the density error of a
given DFA, such as the analysis of the radial distribution function of 𝜌 [33] and
the decomposition of the total error into hypothetical functional and a density
contributions [34].
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Another way of evaluating the quality of the density of a given molecular geometry
would be the density difference function. Since the CCSD(T) methodology provides
a good reference density and energy, as well as dipole moments, we may take it
as the reference method, which avoids the use of the much more expensive full
configuration interaction (FCI). This way, near the basis set limit, we can define
𝜌diff(r) as:

𝜌diff(r) = 𝜌CCSD(T)(r) − 𝜌(r) (18.26)

In order to avoid error compensation between positive and negative regions, the
following global descriptor might be useful:

Λdiff = ∫ ∣ 𝜌diff(r) ∣ dr (18.27)

This scheme based on the use of 𝜌diff(r) is robust from the integration point of view,
and advantageous from the sampling perspective, as it captures the points in which
the density error is effectively 0 without including new artificial ones.

Let us take the CO molecule calculated using HF and the PBE DFA at a fixed geom-
etry as an example. The robustness of 𝜌(r), in conjunction with its prevalence near
nuclei, implies that distributions do not change much qualitatively. Note that 𝜌diff(r)
is maximal near nuclear positions, as presented in Figure 18.13, which is somehow
expected, as most of the density is surrounding the nuclei.

Nonetheless, the error in relative terms is in general more important for bonding
regions than for core regions, as chemical features (bonds and lone pairs) are dictated
by very small density values that spread over large regions of space. This is shown in
Figure 18.14 for the CO molecule. Namely, the relative error near the nuclei is less
than 0.5%, while it can be more than 10% in certain chemically meaningful regions.
This highlights the necessity of focusing in the valence region and the descriptors
of localized electrons we have previously introduced if we want to understand
(preferably in advance) the density errors we can expect from a calculation.
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Figure 18.13 𝜌CCSD(T)(z) − 𝜌(z) along the internuclear axis of CO. Calculated with different
methods and the cc-PVDZ basis set. Dashed lines indicate the position of nuclei.
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CO. Calculated with different methods and the cc-PVDZ basis set. Dashed lines indicate the
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18.4.2 Electron Localization Errors

We have seen that the density errors are larger (in relative terms) in valence regions
than in core regions, and we know that valence regions are more chemically
interesting. This puts forward the necessity of evaluating the quality of 𝜌(r) in
localized regions of space, rather than globally. For that, we can resort to some of
the previously introduced topological descriptors, given their ability to identify and
characterize the various chemical regions of space. Namely, we will focus on the
ELF and LOL as defined in Section 18.3.3.

As previously explained, when the kinetic energy density of the system is equiva-
lent to that of an HEG of the same density 𝜂LOL(r) = 1∕2. In this regard, 𝜌diff(r) over
the xz plane together with 𝜂LOL(r) = 1∕2 contours for the N2 molecules are provided
in Figure 18.15. First of all, it should be noticed that the LOL isosurfaces reveal a
distinct excess or defect of electron density depending on the method (with respect
to CCSD(T), i.e. they match a 𝜌diff(r) = 0 isosurface), providing very good guides on
the expected errors in terms of chemical information.

The results highlight the differences observed in 𝜌diff depending on the model
Hamiltonian. HF accumulates more density than it should in the bonding region,
while local bonds in local semilocal DFAs have a deficit of electron density in cova-
lent bonds. Moreover, the LDA, GGA, and hybrid representatives (SVWN3, PBE,
and TPSSh) exhibit increasing quality while following the same trend, according
to which 𝜌(r) is higher than the reference one in the core region and spreads in a
relatively smooth way compared to HF. Notice that hybrid DFAs are in general in
between HF and local DFAs, thus providing a better density, which is expected, as
HF and LDAs show clear opposite trends and represent opposite extreme Hamilto-
nians, so they should somehow compensate each other.

Interestingly, M06-2X shows a different error distribution over the plane, further
away from just being in between HF and GGA. This result indicates that M06-2X
parametrization allows for a high flexibility with respect to a simpler DFA, but it also
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Table 18.1 Descriptors for the respective equilibrium geometries of CO.

Method Pop. 𝛀b Vol. 𝛀b Req 𝝎h

PBEPBE 3.0110 59.09 1.1353 2162.47
BLYP 2.9835 54.84 1.1355 2161.34
B3LYP 3.0874 62.45 1.1237 2251.95
mPW1LYP 3.1014 63.45 1.1218 2266.82
HF 3.3040 74.56 1.1019 2426.46
SVWN3 3.0607 59.65 1.1255 2237.59
CCSD(T) 3.0741 71.51 1.1294 2168.92

Source: Population of Ωb in electrons, volume of Ωb in a.u.−3, equilibrium
distances (Req) in Å, harmonic frequencies (𝜔h) in cm−1, and atomization
energies (ΔEatom) in kcal mol−1.

implies a less predictable behavior. Overall, and especially if one analyzes a larger
dataset, we can suggested that some DFAs localize errors in an intuitive way, while
others do not [35]. Hence, for chemical information analyses, the use of functionals
with a small number of parameters, and higher upon Jacob’s ladder, are expected to
provide more accurate and reproducible results. In the case of non-hybrid function-
als, underestimating the bonding density in covalent bonds is to be expected.

In order to quantify this effect, we can calculate the ELF population of a given
covalent bond as given by integral of the electron density over the bonding basinΩb.
This is a powerful tool to reveal the effect of the DFA choice in chemical bonds. To
better illustrate the discussion, we show the bond populations for the CO molecule
calculated with HF and a set of DFAs in Table 18.1. As expected, HF provides the
most populated bonds, while those derived from PBE and SVWN3 are less popu-
lated than the CCSD(T) reference, due to the delocalization error; and higher rungs
DFAs yield bonding densities in between. We can expect the exact FCI result to be
in between as well.

Another interesting point is that local errors in some regions are not directly
related with the global performance of a given DFA, at least to those given by
Λdiff. In order to illustrate it, Figures 18.16 and 18.17 show analogous calculations
for the CO and C2H6 molecules. It can be seen at first glance that some DFAs
bearing quite similar Λdiff values have significantly different error localization
patterns (e.g. BHandH and M05-2X in CO). Moreover, Λdiff increases significantly
on average when moving from CO and N2 (two atoms, and thus two cusps in 𝜌)
to C2H6 (eight cusps in 𝜌), in spite of the whole set having the same number of
electrons, as more cusps (on which the error is maximal) implies higher Λdiff. This
clearly showcases that global descriptors are pretty weak in terms of transferability
and recalls once again the need to stay in 3D, not only for chemical interpretation,
but also for predicting the errors we should expect in their calculation.

Note that there are many DFAs close to the CCSD(T) result, which thus provide
very accurate results at a significantly lower cost, while some hybrids (especially
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those with a high percentage of exact exchange) exhibit an expected tendency to
approach the HF result.

18.5 Summary and Conclusions

Along this chapter, we have highlighted the need to resort to 3D scalar fields in order
to gather chemical information from a system. The electron density, through its con-
nection with the energy (both in DFAs themselves and linked to conceptual DFT)
provides very valuable information to understand both structure and reactivity.

After a brief overview of its fundamentals, we have also shown the potential of
other scalar functions, also present in DFT development, to reveal the Chemistry of
molecular species. Functions such as the reduced density gradient, the ELF, or the
LOL provide nonlocal information to various DFA formulations and can be used to
gain intuitive insight about bonding and chemical structure – or vice versa. Finally,
given the recent attention paid to the lackluster description of the electron density
given by certain DFAs, we have put forward a detailed analysis of the errors the
reader might encounter when resorting to these functions from the DFT framework.
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General guides of the expected errors and their localization have been given, albeit
we duly note that different bonding regimes interact with the self-interaction error
differently as well.

Overall, the information in the electron density and DFT-derived functions can
provide very rich and subtle information on systems. Just now, its relevance for
functional development is also seeing the light. Hopefully the knowledge accumu-
lated on their analysis from the 3D point of view will also help to improve the DFT
approaches from which they stem, thus completing a scientific feedback loop.
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19.1 Introduction

Shape and size are the basic concepts that govern our understanding of nature. They
play a crucial role in natural phenomena. When studying a macro- or micro-object,
we often consider its shape, size, and position first. Therefore, shape and size are
widely studied in various fields [1].

Shape and size are the parameters that define the external form of a molecule.
Additionally, these parameters are the concrete manifestation of the interaction
and movement of electrons and nuclei within a molecule. The molecular shapes
and the physical quantities that are derived from them are often used to determine
the properties of the molecules. Further, to some extent, they may also be used
to determine the interactions and reactions between molecules. The molecular
shape and size are determined from the external molecular surface boundary. For
studying molecular surfaces, numerous models and methods have been proposed
based on both experimental facts and theoretical studies. A molecular shape is
commonly idealized by a set of overlapping hard spheres with the corresponding
van der Waals (vdW) radii [2]. There are mainly three kinds of surfaces based on
this idea: the vdW surface (vdWS) [3–5], the solvent-accessible surface (SAS) [6],
and solvent-excluded surface (SES [5]) or molecular surface (MS [7]) by rolling a
probe sphere (representing the solvent, generally with a radius of 1.4 Å for water)
around the vdWS of the solute. Grant and Pickup [8, 9] proposed the Gaussian shape
method, in which hard vdW spheres are replaced by “soft” Gaussian spheres. Weiser
et al. [10–12] presented the neighbor-list reduction optimization to accelerate the
computation of hard-sphere MSs. This electron isodensity-based quantum chemical
approach to decipher the molecular shape has been the subject of several studies
[1, 13–22]. Bader et al. [14, 15] proposed a surface with a constant electron density
(ED) (typical density values of 0.001 a.u. or 0.002 a.u.) to describe the shape and
size of the diatomic molecules. Mezey et al. [1, 13, 16] established a method for the
topological analysis of contour surfaces represented by electron isodensity-fused
spheres.

Conceptual Density Functional Theory: Towards a New Chemical Reactivity Theory, First Edition.
Edited by Shubin Liu.
© 2022 WILEY-VCH GmbH. Published 2022 by WILEY-VCH GmbH.
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One may wonder that what is the molecular boundary surface and how to
determine it theoretically. This is a story of defining the molecular face (MF) and
its applications.

In this chapter, before formulating the MF theory, we first provide a preliminary
discussion on the atomic and ionic radii because atoms are the building blocks of
molecules. Next to this, a description has been provided on how to define the MF,
which is a molecular intrinsic characteristic contour (MICC) on that maps the ED.
This MF or molecular frontier electron density (MFED) gives rise to the interaction
and reactivity indicators. Additionally, some intuitive examples have been provided
as well.

19.2 Atomic and Ionic Radii

Atomic radii, which are the fundamental parameters in chemistry and physics, have
been investigated rigorously. Several atomic radii [23–36] have been defined and
derived experimentally or theoretically, corresponding to different bonding condi-
tions. Generally, three types of atomic radii exist, which have been well defined and
widely used: covalent, metallic, and vdW radii. Quantum chemistry provides a pow-
erful tool for evaluating atomic radii and exploring their types. For example, Slater
[24] identified a close correlation between the atomic radii and radii corresponding
to the maximum charge density in the outermost atomic shell via self-consistent field
wave function calculations [37]. In discussing the chemical potential, Politzer et al.
[26] found that the radial distance at which an atom’s electrostatic potential equals
its chemical potential is fairly close to its covalent radius. Chattaraj et al. [27] defined
the atomic characteristic radius as the point where the electrostatic potential due to
the Fukui function is equal to the hardness. The atomic radii values agreed excel-
lently with experimental and covalent radii values. By expressing the atomic elec-
tronegativity as a formulation of several atomic parameters (i.e. the atomic radius,
total number of valence electrons, nuclear effective charge, and orbital exponent),
Putz et al. [28] derived a set of atomic radii by fixing all parameters involved in the
formulation, except the atomic radius. In quantum chemistry, the main approach for
defining an atomic radius is to utilize the particular contour of its total ED, which has
also been widely used to describe the molecular surfaces [1, 38]. Using this method,
Boyd explored the relative sizes of atoms and calculated scaled atomic radii, from
hydrogen to xenon, by simulating the Pauling univalent radii of the noble gas atoms
[29]. To define the radii of atoms and ions on the same basis, Deb et al. [30] adopted
a universal criterion of ED, that is 0.008714 a.u., which is obtained from the ratio
of Dirac’s exchange constant and the Thomas–Fermi kinetic energy constant, and
they found that the resulting radii correlated well with a number of atomic and
ionic properties (e.g. ionization potential, electronegativity, and softness). Unfortu-
nately, atomic radii that are obtained by this approach depend considerably upon
the particular selection of the threshold value of ED. Yang et al. [31–36] proposed an
approach, in which a unique radius is assigned to a certain atom, according to the
classical turning point of the electronic motion. The atomic radii of the elements,
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from hydrogen to xenon, are calculated via an ab initio method to determine the
Configuration Interaction with all Single and Double substitution (SDCI) levels by
using near Hartree–Fock (HF) limit basis sets.

19.2.1 Turning Radius of a Hydrogen Atom

One may wonder what and where is the boundary surface and how to determine
it for an isolated hydrogen atom. For an isolated hydrogen atom, the ground-state
electronic wave function is defined as 𝜓(r⃗) = 1∕

√
𝜋e−r, which is the wave function

for the 1s atomic orbital with the orbital energy −0.5 a.u. (−13.6 eV). The 𝜓2(r⃗) is
equal to 1/𝜋e−2r . This implies that the probability of finding an electron is not equal
to zero, even when the electron appears very far away from the nucleus. If an elec-
tron belongs to an atom, then the atomic radius of this atom should be infinite. Oh!
The electron of one hydrogen atom might fill the whole universe! However, we prac-
tically consider the hydrogen atomic radius, such as the vdW radius, to describe its
spatial size. How to define an intrinsic atomic radius has been posed.

Let us consider a hydrogen atom. It contains a nucleus of positive charge 1 and one
electron e of negative charge −1. Suppose the nucleus is at the origin of a spherical
polar coordinate system, and the electron coordinate is r⃗. The electrostatic potential
acting on an electron from the nucleus is stated as follows: V(r) =−1/r, which has
spherical symmetry depending only on the radial distance r. The potential energy
is equal to the total energy (=−0.5 a.u.), V(rb) = −1/rb = −0.5, thus, Rb = 2.0 a.u.
This indicates that, at this point, the local kinetic energy of the electron is equal
to zero; therefore, this point is termed as the classical turning point, which is
significant for the quantum chemical analysis of the MFs. When the electron radial
distance, r, is less than Rb = 2.0 a.u. = 1.06 Å, the corresponding region is called the
classically permitted region because the electron kinetic energy remains positive.
Contrarily, when the electron radial distance, r, is greater than Rb = 2.0 a.u., the
corresponding region is called a classically forbidden region because the electron
kinetic energy becomes negative in this region. Therefore, it is proposed that the
turning point Rb = 2.0 a.u., called the classical turning radius, turning radius,
or boundary radius represents the intrinsic radius of an isolated hydrogen atom
[31, 36]. In other words, in a hydrogen atom, the classical turning surface is
represented by a spherical surface of radius Rb = 2.0 a.u., whose inner area is the
permitted region and the outer area is the forbidden region for the motion of the
electron.

In the same way, the turning radius of the H atom in an excited state with the quan-
tum number n is defined as 2n2 a.u., i.e. if n= 2, it is 8 a.u. and so on. Therefore, when
the H atom is excited to an excite state, its size greatly expands. According to the same
idea, for the hydrogen-like ions containing only one electron in a state denoted by n,
l, and m that are principal, angular, and magnetic quantum numbers, their turning
radii are defined as 2n2/Z a.u., where Z is their corresponding nuclear charge, that
is all spherical without depending on the angular and magnetic quantum number.

This idea may be extended to other atoms and molecules via required elaborate
approaches.
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19.2.2 Atomic Turning Radii for Many-Electron Atoms

In this section, we extend the idea of the hydrogen atom, discussed in the previous
section, to other atoms to define their atomic turning radii. Intuitively and directly,
in a many-electron atom, one electron at a local position r⃗ interacts with the nucleus
and the remaining electrons. The associated interaction potential can be expressed
as follows:

V(r⃗) = −Z
r
+ 1
𝜌(r⃗) ∫

𝜌2(r⃗, r⃗2)|r⃗ − r⃗2| dr⃗2 (19.1)

where Z denotes the nuclear charge, r⃗ is the position of the considered interacting
electron, r is the distance from the electron to the nucleus, 𝜌(r⃗) is the total ED at
position r⃗, and 𝜌2(r⃗, r⃗2) represents the two-ED function, which is the probability
of one electron appearing at position r⃗, and another at position r⃗2, simultaneously.
This function describes the exchange interaction with the remaining electrons of
the atom. Thus, the potential that acts on one electron in an atom (PAEA) consists
of two parts. The first term in Eq. (19.1) is the attractive potential that acts on the
considered electron due to its nucleus, and the second term is the potential created
by its interaction with the remaining electrons. This second potential term includes
both the Coulomb and exchange potentials.

As long as the PAEA has been calculated, the classical turning point of electronic
motion r⃗ is defined as follows [31, 33]: V(r⃗) = −I, where V(r⃗) is the potential acting
on one electron at r⃗ in an atom or ion, and−I represents the negative value of the first
ionization potential of the atom or ion. We use Rb, which is simply called the atomic
turning radius, to denote the distance from the classical turning point to the nucleus
of the atom or ion. Similar to the hydrogen atom case, this atomic turning radius is
an intrinsic mark for an atom or ion.

Using the ab initio method, the atomic turning radii for the elements from hydro-
gen to xenon have been calculated [31, 36, 39]. For the atoms in the same group,
the turning radii and atomic characteristic radii [31, 36, 39] show a close correlation
with the commonly used atomic radii, especially the vdW atomic radii. Further, the
surface derived from this turning radius is considered as the accurate classical turn-
ing point surface to resemble the results reported by Ayers [40]. These characteristic
ionic radii [32, 35] also correlate well with the Pauling ionic radii [23] as well as the
Shannon and Prewitt ionic radii [41].

Figure 19.1 illustrates the distinction between ionic and covalent AB-type crystals.
Based on the concept of this type of atomic and ionic radii and an ab initio study, a
criterion for defining the ionic or covalent character of AB-type crystals has been
demonstrated. Lexp denotes the internuclear separation between positive and neg-
ative ions of the crystals measured by an X-ray diffraction experiment. Lbr denotes
the sum of the turning radii of positive and negative ions. If theΔL= Lexp −Lbr > 0.0,
the AB-type crystal is ionic, otherwise is covalent. For LiF crystal, Lexp = 2.01 Å and
Lbr = 1.73 Å, then ΔL> 0.0. Distance between Li cation and F anion in LiF crystal
is larger than the sum of the Li cationic turning radius and the F anionic turning
radius, i.e. there is a separation region between these two spheres (two ions). Thus it
is an ionic crystal [39]. The criterion states that an AB-type crystal is designated as a
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Cu+(1.49 Å) Cl–(1.69 Å)F–(1.34 Å)Li+(0.39 Å)

2.34 Å2.01 Å

Ionic crystal LiF Covalent crystal CuCl

Figure 19.1 The distinction between ionic and covalent AB-type crystals.

primarily ionic crystal if there exists a separation region, which is the classically for-
bidden region for the electronic motion between the pair of adjacent cation A+ and
anion B−. Further, if no such separation region exists for a pair of adjacent cation
A+ and anion B−, then the corresponding AB-type crystal is sorted as a primarily
covalent one, such as CuCl crystal. This provides a platform to gain a fundamental
understanding of the nature of ionic and covalent crystals. A comparison has been
given between the results obtained from the application of this criterion and those
obtained from the widely accepted Pauling’s electronegativity criterion. This com-
parison demonstrates that in most cases both criteria yield the same results for the
ionic or covalent characters. When there are discrepancies between the results of
the two criteria, this type of criterion provides suitable estimations for the affected
cases.

Soon after the above-mentioned study, Perdew and his coworkers [42] defined
the sizes and shapes of atoms, molecules, and solids by using the Kohn–Sham (KS)
potential, stating that their contribution is an extension of the pioneering work of
Yang et al. [31, 39] They pointed out that a nonarbitrary method, along with the
quantum chemical calculations, can be used to generate a pictorial representation
of the MFs, which are indispensable in chemistry and condensed matter physics.

The information provided above indicates that the definition of atomic and ionic
turning radii (characteristic boundary contour) is significant and widely accepted.
According to DeKock et al. [43], there are five acceptable atomic radii: covalent
radii, HF radii, polarizability radii, vdW radii, and turning point radii (i.e. turning
radii).

19.3 Molecular Face Formalism

To extend the above-described model to define an MICC, i.e. the electron turning
boundary surface, first, we need to study and discuss the potential acting on an elec-
tron in a molecule (PAEM). The MF is defined by mapping the ED on the MICC,
showing both the molecular shape and frontier ED. For a molecule, its MF is unique,
just like a person’s face or fingerprint, which contains vital information that will be
described.
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19.3.1 Potential Acting on One Electron in a Molecule

As one electron of a molecule appears at a local point, r⃗, the potential acting on
this electron is defined via the interaction energy of this local electron with respect
to the remaining particles, i.e. all the nuclei and the remaining electrons [44–46].
Assuming that a molecule is in its electronic ground state, the potential acting on
one electron at position r⃗ (PAEM) can be expressed as follows:

V(r⃗) = −
∑

A

ZA|r⃗ − R⃗A| + 1
𝜌(r⃗) ∫

𝜌2(r⃗, r⃗2)|r⃗ − r⃗2| dr⃗2 (19.2)

where ZA and R⃗A are the nuclear charge and position of nucleus A, respectively. The
electron at position r⃗ belongs to the molecular system and has an exchange interac-
tion, which is a quantum effect, with the remaining electrons. Therefore, the PAEM
considers one internal electron, whereas the molecular electrostatic potential (MEP)
considers one external test positive charge. This is the essential difference between
the PAEM and MEP [46]. Notably, the PAEM potential is also different from the HF
potential. For ease of explanation, the closed-shell situation is taken as an example.
The canonical molecular orbital (CMO), in the HF self-consistent field molecular
orbital (HFSCF-MO) theory, satisfies the HF equation; thus, the HF potential for one
electron is equivalent to its interaction energy, when the said electron is located in a
given CMO [47]. Although they have different forms, both PAEM and HF potentials
include the quantum mechanical exchange effect.

The topological characteristics of PAEM are provided by the analysis of its associ-
ated gradient field (its minus is the FAEM) [45]. Although the topological analysis
of the PAEM is very similar to that of the ED as in Bader’s AIM theory, the former
is distinct from the latter. Herein, a PAEM critical point (pcp) is a point where the
gradient of the scalar field V(r⃗) vanishes, as expressed in ∇V(r⃗)||r⃗pcp

= 0. Thus, a pcp
is a point where the corresponding scalar field has an extremum. To characterize the
critical points of the PAEM, as usual, we assume that, for a sufficiently well-behaved
scalar field, the Hessian matrix of the field, exists at a pcp point. Consequently, at any
given pcp point, the Hessian matrix is able to be diagonalized and then yields three
real eigenvalues, i (i= 1, 2, 3). The corresponding eigenvectors are the principal axes.
The characterization of a pcp depends on its rank and signature. The rank, R, of a
pcp is the number of eigenvalues that are different from zero, and the signature, S, is
the algebraic sum of the signs of the three eigenvalues: S =

∑3
i=1 sign(𝜆i). Thus, a pcp

is classified by the ordered pair (R, S). A (3, +3) is a local minimum, a (3, +1), bond
critical point (bcp), is a minimum in two directions and a maximum in the other
direction, a (3, −1), circle critical point (ccp), is maximum in two directions and a
minimum in the other direction.

The characteristic features of the PAEM for furan molecules are shown in
Figure 19.2. A three-dimensional (3D) representation of the PAEM, reduced from
a full 4D representation of the PAEM, including a 3D one-electron coordinate
r⃗(x, y, z) and the value of V(r⃗), is shown in Figure 19.2a with z fixed at 0.0 a.u. As the
position of one electron, r⃗, varies on the xy plane (r⃗(x, y, z = 0.0)), the corresponding
calculated values of V(r⃗) are seen on the ordinate. In case of the PAEM of furan,
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Figure 19.2 (a) 3D graph representation of the PAEM and curves of the PAEM along (green
curve) and perpendicular to (blue curve) C—O bond, electron running on the furan
molecular plane. (b) Display of the iso-PAEM of the furan molecule.

nine deep potential wells originate from their corresponding nuclear positions.
A significant feature of the PAEM surface is that there is a potential saddle point
(psp) between the two bonded atoms, as shown in Figure 19.2a. Here, only one
is clearly marked by a red solid star, where the PAEM value is a local maximum
along the C—O chemical bond (green bold line) and a local minimum in the
direction perpendicular to the C—O bond (blue bold line). The psp corresponds to
the electronic coordinate that is marked by a yellow solid ball on the C—O bond
and is called the bcp. As shown in Figure 19.2a,b, each bond has a bcp, marked
by a yellow solid ball. Moreover, there is a ccp, which is located around the center
of the furan cycle. In the remaining vast region, the potential gradually increases
with increasing distance between the electron and nuclei and then approaches zero
at infinity, which is the expected asymptotic behavior. As shown in Figure 19.2b,
each contour represents an iso-value line of the PAEM. The potential wells
around the oxygen and carbon atoms are wider than those around the hydrogen
atoms.
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19.3.2 Kohn–Sham One-Electron Potential

Following the description of PAEM, we briefly state the Kohn–Sham effective
one-electron potential. The KSpot, vKS(r⃗), is an effective electronic potential:

vKS(r⃗) = −
∑

A

ZA|r⃗ − R⃗A| + ∫
𝜌(r⃗′)|r⃗ − r⃗′|dr⃗′ + vXC(r⃗) (19.3)

where the first term denotes the interaction from all the nuclei of a molecule, the
second term denotes the interaction from the remaining electrons, and the last term
vXC(r⃗) is the KS exchange-correlation potential.

Both the PAEM and Kohn–Sham effective one-electron potential (KSpot), as
one-electron potential, can be used to define the MICC with similar results.

19.3.3 Molecular Intrinsic Characteristic Contour – A Classical Turning
Surface

As a common understanding, the boundary of an object should confine the move-
ment of all the component particles within it. Therefore, the concept of “boundary”
or “surface” is classical in nature, and it is natural to define a molecular model
in terms of the classical turning point of the movement of the electron within
a molecule. The MICC model can be understood as follows: When an electron
moves in a molecule, its kinetic energy varies with its position, relative to the other
particles of the molecule. If at some point, its energy equals the PAEM (an average
potential), that means, the average kinetic energy of this electron at this position is
zero. Then, the position r⃗ is called the classical turning point of movement for the
considered electron. Therefore, the one-electron energy is equal to the one-electron
average potential energy in this case. Moreover, if we assume that the one-electron
energy at r⃗ is equal to the negative value of the first ionization potential (−I) of the
molecule, then we can state the turning point equation for this electron as follows:

V(r⃗) = −I (19.4)

where r is called the turning point. The set of all such points defines the classical
turning surface, which can be expressed as follows: G(−I) = {r⃗ ∶ V(r⃗) = −I}, where
G denotes the classical turning surface. The surface has a clear physical meaning
as it is composed of all the classical turning points of the movement of an electron
within a molecule. It is an iso-potential contour, where the potential equals the
negative value of the first ionization potential (Eq. (19.4)). Thus, the inside of this
contour is the classically permitted region, whereas the outside of this contour is
the classically forbidden region for the electron movement.

19.4 Frontier Electron Density on the Molecular Face,
Revealing the Reaction and Interaction Between
the Molecules

The MFs not only describe the shape and size of a molecule in space, but also the
MFED, which shows the physical and chemical characteristics of a molecule. Non-
covalent interactions, including hydrogen, halogen, and pnicogen bonds, are widely
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known because of their significant roles in both chemical reactions and biological
phenomena.

19.4.1 Molecular Face Indicating the Hydrogen, Halogen,
and Pnicogen Bonds Between the Molecules

We applied the MF theory (MFT), based on the PAEM, to the systems undergoing
noncovalent interactions, such as noncovalent bond complexes [48], to visualize the
reactive sites for the monomers, as shown in Figure 19.3. The MFED extremes on the
MF that are considered as the local reactivity descriptors are applied to extract the
regioselectivity and preferred direction for the monomers in hydrogen-, halogen-,
and pnicogen-binding complexes. The corresponding results are found to be in good
agreement with those of the chemical conventions and ab initio calculations. MFT
provides a new way to demonstrate the regioselectivity and can be applied to other
types of molecules in the future.

For the systems of interest, we obtained the PAEM-based ED mapping on the MF,
which is equal to the negative value of the first ionization energy. Figure 19.3 dis-
plays the geometries and MFs of hydrogen (Urea–H2O), halogen (ClBr–NH3), and
pnicogen (ClPH2NH3) dimers from upper to lower. As shown in Figure 19.3a, for
the urea molecule in hydrogen (Urea–H2O) dimer, the MFED shows that the dark
blue region corresponds to the two lone pair (lp) regions of the oxygen atom and
the single lone pair regions of the two nitrogen atoms (orange circle), and the four
red areas correspond to the four hydrogen atoms. The urea molecule, specifically
its lone pair of an oxygen atom, is an acceptor of the hydrogen bond to approach
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Figure 19.3 MFs of the monomers and dimers, including the monomers in hydrogen bond
(urea–H2O dimer), halogen bond (ClBr—NH3), and pnicogen bond (ClPH2—NH3). The orange
spheres denote the maxima of MFED and the green ones denote the minima. All
dimensions are in a.u.
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a donor of H-bond. The donor interacts with the urea molecule along the direc-
tion of an oxygen atom and its lone pair. The angle of the C—O – lp is 120.36∘, as
obtained by the MFED. In the ab initio optimized urea–H2O dimer, the C—O⋅⋅⋅H
angle, between C—O and H—O (H2O), is 109.05∘. As shown in Figure 19.3b, for the
ClBr monomer in the ClBr⋅⋅⋅NH3 dimer, MF exhibits σ-holes in the Cl and Br atomic
sides along the Cl—Br chemical bond axis, in which the minima of the MFED are on
the right of the σ-hole whose definition is similar to that of the Politzer [49]. The site
with the minimum MFED can easily form a halogen bond with the lone pair of the
NH3 molecule. We searched the sites of σ-holes on the various MFs in the Cl and Br
atomic sides and calculate the angles of Cl—Br-extreme and found that theseσ-holes
tend to approach a donor of the halogen bond. The angle of the Cl—Br-extreme is
180.0∘, as obtained by the MFED. In the ab initio optimized ClBr—NH3 dimer, the
Cl—Br⋅⋅⋅N angle is 179.8∘. At this time, the halogen bond angle predicted by the MF
is almost the same as that estimated by the ab initio calculations. In contrast to the
hydrogen bond, however, similar to the halogen bond, a pnicogen bond is formed via
interaction between the Lewis base nitrogen atom and the Lewis acid phosphorous
atom, which shows a high degree of anisotropy, as displayed in Figure 19.3c. The
lone pair on the nitrogen atom in NH3 directly interacts with the site with the min-
imum MFED in MF around the phosphorous atomic region. The Cl–P-minimum
MFED angle that is predicted from the MF is 158.90∘, which is close to the Cl–P⋅⋅⋅N
angle in the ClPH2–NH3. Thus, the MFED is a good local reactivity descriptor for
characterizing the sites between molecular interactions and can be considered for
the prediction of the regioselectivity of large molecular systems.

Further, we demonstrated the various types of MFs that originate during the for-
mation and fracture of chemical bonds. These MFs aided us in visualizing the molec-
ular shape change process, thereby providing new insights into the chemical change
processes.

19.4.2 Molecular Face Picture Indicating the Interactions and
Reactions Between Atoms and Molecules

Based on the MICC model, the concept of MF is proposed as the MICC with ED
mapped on it. This ED is the MFED. MF based on the PAEM has been successfully
developed and applied to demonstrate the bond formation and/or breaking of H2
[50], the polarization effect of hydrogen and fluorine atoms in the process of forming
an HF molecule [51], the reaction mechanism of adding fluorine radical to ethylene
(F+C2H4) [52], the proton transfer reaction in Be2+(H2O)n and the formation of
hydroxide [53], and the front-side attack identity SN2(C) and SN2(Si) reactions in
the gas phase [54, 55]. The PAEM-based MF model provides vivid and interesting
details on the spatial changes and electron transfer mechanisms in the system.

For example, the reactivity of Markovnikov (M) addition of alkenes [56] was inves-
tigated in terms of the ED encoded on the MF. The effect of the density distribution
in the initial state of the alkenes on their regioselectivity and reactivity has been dis-
cussed, as shown in Figure 19.4. We calculated and sketched the features of the MFs
for the considered molecules. For HCl and CH2=CHCH3, the results are shown in
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Figure 19.4. The magnitude of MFED is proportional to the surface using a color
gradient, with dark blue areas denoting higher electron densities and dark red areas
representing lower densities. When molecules approach each other, they first “see”
their respective MFs, followed by subsequent recognition and interaction. The fea-
tures of the MFs for HCl and CH2=CHCH3 show that the hydrogen region of HCl
is brighter than that of the other regions, indicating that the MFED of the hydrogen
region of HCl is smaller than that of the other regions. However, the π-region for the
CH2=CHCH3 molecule is darker than those of the other regions, indicating higher
MFEDs. Furthermore, when a substituent group binds to one of two carbons of the
C=C double bond, the electron densities of the two carbon atom regions become
nonidentical, such as for CH2=CHCH3 in Figure 19.4; therefore, a preference for the
M or anti-Markovnikov (AM) carbon atom, that is, regioselectivity, appears during
the electrophilic addition reactions. Consequently, when HCl approaches an alkene,
it attacks the π-region, especially one of the M and AM carbon atom regions with a
higher MFED.

The chemistry of alkenes depends mainly on the characteristic double bond
between the two carbon atoms, which can be characterized by the MFED encoded
on the MF. As expected, there is a certain correlation between the regioselectivity
and the MFEDs in the initial state of the alkenes. In fact, the MF is obtained by
carrying out large numbers of calculations in a 3D space. However, here we have
selected two characteristic points whose MFEDs are defined as follows: a straight
line originating at the M (or AM) carbon atom nucleus and perpendicular to the
π-bond plane has an intersection point with the part of the MF that faces the attack-
ing HCl. The MFED at this point is defined as EDM (or EDAM). In CH2=CHCH3
molecule, the MFEDs of the C atoms of double bond perpendicular to the π-bond
plane are 7.097× 10−3 and 5.839× 10−3; thus, the EDM and EDAM are 7.097× 10−3

and 5.839× 10−3.
The dynamically changing spatial features of the MFs are described in detail

for the electrophilic additions to the alkenes along the intrinsic reaction coor-
dinate routes, as shown in Figure 19.5. We selected five states to investigate the
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Figure 19.5 Dynamically changing spatial features of the MFs for the electrophilic
addition of HCl to CH2=CHCH3 during the reaction.

dynamically changing spatial features of the MFs during the reaction. The Ra state
represents the reactants in the initial stage. Its geometry was fully optimized with
the same symmetry as that of the Rp-C state by constraining the distance between
the attacking hydrogen atom and the π-region. The Rb state is the critical point,
where the attacking hydrogen atom and π-region are in contact with each other. The
visualized MF faces from the reactant to product states are shown in Figure 19.5 for
the electrophilic addition of HCl to propene.

Considering the CH2=CHCH3+HCl reaction, the substituent CH3 binds to one
of the carbon atoms of the C=C double bond; thus, the two carbon atoms are not
identical. As the ED of the CM carbon is much larger than that of CAM, HCl
attacks the M carbon (see Figure 19.5) during the reaction. Before the reactant
state, the hydrogen region of HCl approaches CM, and the distance between the
hydrogen atom and CM is smaller than that between hydrogen and CAM. The
intermolecular polarization effect between the former pair was stronger than that
between the latter pair. Consequently, the representative ED of CM decreases
relative to that of the CAM. Therefore, up to the first state (reactant), the EDM
of the M carbon atom is smaller than that of the EDAM. From the first to the
second state, the ED of HCl gradually increases, whereas that of the π-region of
CH2=CHCH3 gradually decreases (Figure 19.5). This clearly indicates that elec-
trons are transferred from CH2=CHCH3 to HCl. In the Rp-C state, EDCl increases;
however, the EDH decreases slightly, indicating that the electron is further trans-
ferred from CH2=CHCH3 region to the Cl region via the hydrogen region. In the
transition state, EDCl becomes much larger than that of the other regions of the
[CH2=CHCH3⋅⋅⋅HCl]# system for both M (first line of Figure 19.5) and AM (second
line of Figure 19.5) addition routes. This further indicates that electrons gradually
transfer to HCl. In the product state, the products CH3CHClCH3, for the M addition
route (first line of Figure 19.5) and CH2ClCH2CH3 for the AM addition route, are
formed (second line of Figure 19.5). The electrons are completely transferred from
CH2=CHCH3 to HCl.
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19.4.3 Showing Reactivity Ability by the Frontier Electron Density
and Steric Force on the Molecular Face

In DFT [57, 58], the ED, 𝜌(r), is a fundamental property of the atoms, molecules, and
condensed phases of matter. The steric potential can be stated as:

vs(r⃗) =
𝛿Es[𝜌]
𝛿𝜌

= 1
8
|∇𝜌(r⃗)|2
𝜌(r⃗)

− 1
4
∇2
𝜌(r⃗)
𝜌(r⃗)

(19.5)

where∇𝜌(r⃗) is the gradient of ED and∇2
𝜌(r⃗) is the Laplace function of ED. The steric

energy, Es[𝜌], is a universal density functional, which is always a lower bound to the
true kinetic energy and always nonnegative. The steric force [59, 60] is equal to the
negative gradient of the steric potential and can be expressed as follows:

F⃗s(r⃗) = −∇vs(r⃗) (19.6)

The steric force is a vector quantity. We only consider the magnitude of the steric
force, i.e. |F⃗s(r⃗)|, irrespective of its direction. A higher steric force results in an
equally higher spatial resistance. By defining the position resistance on the MF,
the position of the molecular steric force can be extracted, which may reflect the
stereoselectivity ability of the molecule.

With MFED and steric force at hand, the reactivity ability for the activity of ketones
should be validated, as shown in Figure 19.6, which are classical cases to eluci-
date the addition activity of the carbonyl group. As can be seen from Figure 19.6a,
the oxygen atom possesses a nucleophilic region, and MFED values of the oxygen
atoms in acetone, cyclopentanone, and benzophenone molecules in order increase
rapidly, indicating that the activity of the oxygen atom in order becomes weaker due
to the increase in steric hindrance. Thus, it is intriguing that the MF is an unbiased
way to exhibit steric hindrance, where these molecules have clearly demonstrated
the decreasing tendency for the activity of carbonyl groups in view of the steric
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Figure 19.6 The KSpot-based MF of acetone, cyclopentanone, and benzophenone. ED
denotes electron density and FS denotes the absolute value of the steric force.
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effect. The above results are in agreement with the experimental findings, that is,
decreasing the nucleophilic addition order of the carbonyl group follow the decreas-
ing order: acetone, cyclopentanone, and benzophenone [61]. To visualize the steric
hindrance and verify the conclusion drawn from the MF, we drew the steric force
map. To characterize the previously studied stereoselectivity, the profiles of the steric
force mapping on the defined molecular surface are plotted in Figure 19.6b. The
steric effect becomes increasingly strong in order of acetone, cyclopentanone to ben-
zophenone around the region of an oxygen atom, where we can see that the steric
force increases gradually. This means that the steric hindrance becomes evident and
affects the stereoselectivity when the volume of the bonded group is large. Thus,
the steric hindrance can explain the order of the reactivity ability. However, instead
of assigning an intuitive meaning to this term, it is more useful to visualize steric
hindrance in the form of computer-generated illustrations on the MF.

This observation has been concluded from the above illustrations, KSpot-based
MF-ED and MF-Fs maps. Generally, the best illustrations are based on general prin-
ciples of good physical representation and graphic design; however, the link between
scientific concepts and visual representation is often difficult to achieve, particularly
in the educational context. We believe that the KSpot-based MF-ED and MF-Fs can
construct the above-mentioned link, which bridges the connection between regios-
electivity, stereoselectivity, and visualization.

19.5 Summary

The atomic turning radii and ionic radii are the basic parameters. It is shown that
they may provide a pictorial criterion for distinguishing the ionic crystals from the
covalent ones. The MF of a molecule is uniquely defined by the MICC, which maps
the ED on it. The MICC is a classical turning boundary surface, whose inside area
is a classically permitted region, whereas the outside area is a classically forbidden
region for the electron motion. We assume a turning point on the MICC, such that
the local potential acting on one electron is equal to the negative value of the first ion-
ization potential of the molecule. The local potential can be of two types: the PAEM
that is calculated by an ab initio method or a Kohn–Sham effective one-electron
potential, which is calculated using the DFT theory. These two potentials exhibit
similar behaviors and result in similar MFs and characteristics. The molecular fron-
tier ED and the steric force on an MF are the indicators of interaction and reactivities
between molecules; they even guide the reaction pathways. One could potentially
add more significant quantities to the contour of an MF.
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Bridging Conceptual Density Functional and Valence Bond
Theories
Thijs Stuyver and Sason Shaik

The Hebrew University, Institute of Chemistry, Edmond J. Safra Campus at Givat Ram, Jerusalem 9190401,
Israel

20.1 Introduction

Kohn–Sham density functional theory (KS-DFT), as well as regular molecular
orbital (MO) theory, uses delocalized electronic wave functions, i.e. each electron
is considered to be “smeared out” over the system as a whole [1, 2]. In practical
terms, both of these theories involve – in one way or the other – the construc-
tion of molecular/delocalized orbitals (usually by taking linear combinations of
atomic orbitals), of which the shape is modulated/optimized to obtain an accurate
description of the electronic structure of the chemical system under consideration.

Valence bond (VB) theory on the other hand takes an entirely different approach
[3]. Here, one starts by defining localized configurations where individual atomic
orbitals are populated directly by the electrons present in the chemical system. Many
configurations (also called VB structures or diabatic states) can be defined in this
manner, and usually these are not orthogonal, i.e. they interact significantly among
themselves. By taking linear combinations and optimizing the weights of the indi-
vidual configurations/structures, one ends up with the (correlated) ground- (and
excited) states – also called adiabatic states – of the chemical system.

To focus our thoughts, let us consider the VB description of the wave function for
the simplest possible molecule, H2, in the case of a minimal basis set, i.e. one s-orbital
on each H-moiety (Figure 20.1). For this simplistic molecule, one can distinguish a
singlet-paired covalent structure H•–•H, also known as the Heitler–London (HL)
structure, two ionic structures, H+…H− and H−…H+, and a set of equivalent triplet
structures (Figure 20.1a). Taking linear combinations of these structures, one ends
up with the full, adiabatic states of H2. As can be inferred from Figure 20.1b, the
lowest state for H2, i.e. the ground state, consists mainly of the HL structure, with
a minor contribution of the ionic structures. Above the ground state, two excited
singlet states can be distinguished, corresponding almost exclusively to linear combi-
nations of the ionic structures. Finally, an additional (covalent) state can be defined,
which stems exclusively from the triplet structure(s).

Conceptual Density Functional Theory: Towards a New Chemical Reactivity Theory, First Edition.
Edited by Shubin Liu.
© 2022 WILEY-VCH GmbH. Published 2022 by WILEY-VCH GmbH.
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Figure 20.1 (a) The individual VB structures which can be defined for H2, i.e. the HL
structure (ΦHL), the ionic structures (Φion,1 and Φion,2), and the three equivalent triplet
structures (ΦT). Note that the arched lines in ΦHL connecting the electrons signify favorable
singlet pairing. (b) The adiabatic states which can be constructed through linear
combinations of these localized structures: the ground-state wave function (ΨGS), two
(mainly) ionic wave functions (Ψion,1 and Ψion,2), and the triplet wave function (ΨT).
Source: From Stuyver and Shaik [4]. American Chemical Society.

The final ground-state wave function emerging from a VB treatment is perfectly
equivalent to the wave function obtained through a corresponding correlated MO
treatment, cf. MO-CI (with CI corresponding to configuration interaction), and thus
also agrees with the corresponding KS-DFT description – when an adequate func-
tional is used. As such, the choice of perspective (localized vs. delocalized) is in fact
the only real difference between these theories.

The fact that KS-DFT and VB descriptions are in principle equivalent, does not
necessarily imply that they lead to equivalent insights as well. It has been argued
and demonstrated at various instances throughout the literature that some chemical
phenomena can actually be described more straightforwardly from a delocalized per-
spective, whereas others benefit from a localized treatment [1, 3, 5–7]. Furthermore,
going back and forth between the two perspectives can in many cases be extremely
productive and lead to enhanced insights in the chemical problems at hand.

In this chapter, we aim to build explicit bridges between conceptual density func-
tional theory (CDFT) [8, 9] and qualitative VB theory, and thereby demonstrate that
important synergies and new insights arise by combining both. More specifically,
we will provide a concise overview of our recent work on local reactivity descriptors,
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as well as of our work on the hard–soft acid–base (HSAB) principle from a VB
perspective. Detailed treatment can be found in Refs. [10, 11], respectively.

20.2 Qualitative VB Reactivity Theory

Let us start by introducing how chemical reactions can be described from a VB
perspective with the help of VB state correlation diagrams [3, 12, 13]. We focus
on a simple model reaction: the hydrogen abstraction reaction between H3C• and
H–SiH3 (cf. Figure 20.2) [10].

The first step toward the construction of a VB diagram for the considered
transformation involves the plotting of the diabatic energy curves, corresponding to
the electronic structure of the reactants and products, as a function of the reaction
coordinate. In first order, the H—SiH3 bond in the reactant (R) and the H—CH3
bond in the product (P) can be approximated by their main HL structures 1R
and 2P, respectively. By definition, the optimal reactant geometry is the geometry
that stabilizes structure 1R the most, whereas the optimal product geometry is
the one that stabilizes structure 2P the most. These two limiting geometries are
connected through the reaction coordinate. Proceeding from the optimal reactant
geometry toward the optimal product geometry, one can logically expect 1R to
rise in energy (due to Si—H bond dissociation and the concomitant emergence
of C—H Pauli repulsion). In the optimal product geometry, 1R can be considered
as an approximation to the promoted – or excited – state of the product P, and – as
such – is denoted by P*. Equivalently, 2P can also be expected to rise in energy as
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Figure 20.2 The set of VB structures contributing to the complete wave function
throughout the H-abstraction reaction between H3C• and H–SiH3. 1R and 2P are the HL
structures describing the H—SiH3 bond in the reactant (R) and the H—CH3 bond in the
product (P), respectively. The remaining structures (3–8) are ionic and charge-transfer
(CT)structures, which mix into the wave function to a variable extent along the reaction
path. Source: From Stuyver et al. [10]. American Chemical Society.



394 20 Bridging Conceptual Density Functional and Valence Bond Theories

E E E

Reaction coordinate Reaction coordinate Reaction coordinate

R*
R* P* R* P*

P P
R R

GR GR

ΨTS

B
GP GP

P*

R
1R 2P

P

(a) (b) (c)

Figure 20.3 VB reactivity diagrams, depicting the diabatic and adiabatic energy curves
along the reaction coordinate connecting the reactants (R), i.e. H3C• and H–SiH3, to the
products (P), i.e. H3C–H and •SiH3. (a) The HL structures (i.e. 1R and 2P) are first-order
approximations of the electronic structure of R and P, respectively. (b) The same VB diagram
but now with the ionic structures mixed into the diabatic reactant and product states
(resulting in a slight stabilization with respect to the curves for 1R and 2P in isolation).
GR and GP denote the promotion energy gaps on the reactant- and product side,
respectively. (c) The same VB diagram but now with the adiabatic curve, which arises from
the mixing of the individual diabatic curves, included in bold. ΨTS corresponds to the
transition state. B denotes the resonance interaction between the two curves in the TS
geometry. Source: From Stuyver et al. [10]. American Chemical Society.

one moves away from the optimal product geometry and, at the optimal reactant
geometry, this VB structure can be regarded as a first-order approximation of the
promoted state of the reactant R, denoted by R*. This way, the rudimentary shape
of two crossing diabatic curves is obtained, cf. Figure 20.3a.

So far, we have focused exclusively on the main HL structures. As mentioned in
the introduction, secondary structures, e.g. ionic configurations, interact with the
HL ones. More specifically for our model reaction, structures 3 and 4 in Figure 20.2
can be expected to contribute to the H–SiH3 Lewis bond in 1R, while 5 and 6 will con-
tribute to the full bond in 2P. Often, these ionic structures are directly combined with
the HL structures to form the so-called diabatic reactant and product Lewis states,
offering a more accurate description of R, R*, P, and P* (Figure 20.3b). With the ionic
structures included, it can be demonstrated that the promotion energies required to
excite R to R* and P to P* (GR and GP), can be expressed as the singlet–triplet exci-
tation energies of the active reactant and product bonds (H–SiH3/H–CH3). These
quantities correspond approximately to twice the respective bond energies [12, 14].

Next to the ionic structures, one can also distinguish charge-transfer (CT) struc-
tures, i.e. structures which involve an odd number of electrons in both the right-hand
and left-hand bonds, cf. structures 7 and 8 in Figure 20.2. In the optimal reactant or
product geometries, 7 and 8 generally do not interact with the main structures 1R
and 2P. Consequently, they do not contribute to either the reactant or product dia-
batic states. However, their mixing does become allowed in the transition-state (TS)
geometry region (cf. Figure 20.3b). As a result, the full, i.e. adiabatic, wave func-
tion, which results from the intermixing of all the diabatic states (vide supra), will be
pushed significantly below the crossing point of the reactant and product curves. The
resulting energy hill obtained (cf. Figure 20.3c) corresponds to the reaction barrier
for the considered chemical reaction. The total amount of resonance stabilization of
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the adiabatic state with respect to the crossing point between reactant and product
state in the TS geometry is usually denoted by B.

Based on this rudimentary VB model of chemical reactivity, the following expres-
sion for the barrier height or activation energy associated with a generic chemical
reaction can be derived [14]

ΔE≠ = f0G0 + 0.5 ΔErp − B (20.1)

where ΔErp stands for the thermodynamic driving force and f 0G0 corresponds to a
fraction (f 0) of the average of the promotion gaps on the reactant and product side,

G0 = 0.5 (GR + GP) (20.2)

Let us now apply this equation to estimate quantitatively the activation energy
associated with the model reaction considered, i.e. the H-abstraction from H–SiH3
by H3C•. In previous studies on the properties of the diabatic curves for hydrogen
abstraction reactions, f 0 was determined to amount to approximately 0.348, and B
to 50 kcal mol−1. For H–SiH3, the experimental bond dissociation enthalpy (BDE)
amounts to 87 kcal mol−1 and for H–CH3, this quantity amounts to 105 kcal mol−1.
As such, the averaged promotion gap G0 can be crudely estimated to amount to
192 kcal mol−1. Furthermore, given that the overall effect of the hydrogen exchange
reaction under consideration is the breaking of a Si—H bond and the formation of
a C—H bond, ΔErp can be approximated as the energy difference between the two
corresponding BDE values, i.e. ΔErp ≈ −18 kcal mol−1. Inserting all these quantities
into Eq. (20.1) leads to an estimated activation energy for the reaction of approxi-
mately 7.8 kcal mol−1. These estimates agree nicely with the corresponding values
calculated at UB3LYP/cc-pVTZ level-of-theory [15–17] (ΔE≠ = 6.9 kcal mol−1 and
ΔErp =−13.4 kcal mol−1, respectively).

20.3 How Does Delocalization Affect the Shape of the
Curves in the VB Diagram?

The model system in the previous section, H3C• +H–SiH3, involved a perfectly
localized radical electron, so that both the reactant and product states could be
approximated initially by a single (HL) structure. The localization of the wave
function of the chemical system in such a situation is reflected among others in the
spin density distribution: in the reactants, C carries a spin density of approximately
unity, in the products, it is Si, which carries unity spin.

Let us now consider what happens to the shape of the potential energy surface
(PES) when extensive electronic delocalization enters the picture [10]. Again, we
focus on a model reaction: the hydrogen exchange between allyl• and SiH4. It
should be clear that the reaction between these two reagents can result in several
reaction products. For the sake of the argument that follows, let us focus specifically
on the main products expected, i.e. P1 and P2 in Figure 20.4a. Evidently, these two
products are chemically equivalent, but mathematically (when one assigns labels
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Figure 20.4 (a) The main products formed from the reaction between allyl• and SiH4. The
“+” signs denote that the species on opposing sides of this sign are perfectly separated.
(b) The resonance mixing of the two localized structures and the resulting delocalized
allyl•. The displayed resonance energy was calculated at VBSCF/6-311++G**//
UB3LYP/cc-pVTZ level-of-theory [18, 19]. (c) The major VB structures associated with the
products P1 and P2 in panel (a), respectively. Source: From Stuyver et al. [10]. American
Chemical Society.

to the individual C-atoms), or if one of the ethylenic carbons is 14C, their electronic
structure is described distinctively.

In contrast to the localized (radical) system discussed in the previous section,
it is now impossible to define a single VB structure that adequately represents
the reactant state: the wave function associated with allyl• inherently consists
of a linear combination of two equivalent Lewis VB structures (Figure 20.4b).
The extent of mixing of these two equivalent, localized structures taking
part in the full wave function is significant; quantitative VB calculations at
VBSCF/6-311++G**//UB3LYP/cc-pVTZ level-of-theory [18, 19] point to an overall
resonance stabilization of approximately 22 kcal mol−1 for the adiabatic wave
function of allyl• compared to its localized constituents. As a consequence of this
delocalization, the atom-condensed spin densities on neither of the extremal carbon
centers of allyl• approach unity; instead, they both amount to approximately 0.63e
(the central carbon center carries a negative spin of−0.26e). The individual products
on the other hand can perfectly be described by a single (Lewis) VB structure each
(Figure 20.4c). As a consequence, the radical centers for these species become
perfectly localized once more: the natural population analysis (NPA) spin density
on the product Si approaches unity (𝜌(Si) = 0.97e).

As such, one can conclude that the resonance energy associated with the delocali-
zation of the radical electron, which is present in the reactant, is lost once either of
the possible products is reached.

Note that the impact of the loss of delocalization is reflected not only in the evolu-
tion of the spin density distribution throughout the reaction, but also in the geometry
of the system. Whereas in the reactant allyl•, the two C—C bonds are equal in length
due to the resonance between the two individual localized VB structures, the product



20.3 How Does Delocalization Affect the Shape of the Curves in the VB Diagram? 397

E

+
+

H

H

+
+

H
H

R TS P

0.0

5.7

16.5

ΔΔE≠ = 9.6

ΔΔErp = 19.1

Allyl
SiH3

SiH3
+ SiH4

+ SiH4

SiH3

SiH3

GR GP

ΨTS

B

Reaction coordinate

–13.4

H3C

6.9

(a) (b)

Figure 20.5 (a) The VB reactivity diagram for the H-abstraction reaction between allyl•
and H–SiH3. (b) The calculated potential energy profile for the hydrogen abstraction
reaction of allyl• and H3C• with SiH4. Calculations were performed at UB3LYP/cc-pVTZ
level-of-theory [15–17]. Energy values are presented in kcal mol−1 (with ZPE included).
Source: From Stuyver et al. [10]. American Chemical Society.

propene has two unequal C—C bonds: a short one corresponding to the double bond,
and a long one corresponding to the single bond in in the dominant product VB
structure (cf. 3P1 in Figure 20.4c).

Let us consider now how this loss of resonance energy impacts the PES exactly
by constructing the VB diagram associated with the reaction under consideration
(Figure 20.5a).

In the reactant geometry, the reactant state R is resonance stabilized due to the
interaction between the localized 1R and 2R states; vide supra (Figure 20.5a). The
excited reactant state (R*) can be expected to be equally delocalized in this geome-
try: 3P1 and 4P2 are degenerate in the reactant geometry, and hence they will each
contribute to the wave function equally. On the product side, the product state P
is – as discussed – localized. Since P* corresponds to the vertical excitation of P, this
state shares the same (localized) geometry of the product, and hence, it will also be
mainly localized.

As such, for a delocalized species undergoing a (localization) reaction, the
product states are both destabilized with respect to the reactant states in the VB
diagram. The extent of destabilization is connected to the resonance energy present
in the reactant state but usually does not correspond quantitatively to this quantity:
geometric relaxation of the system as the reaction proceeds can be expected to
increasingly accommodate – and thus stabilize – the emerging dominant product
VB structure. Consequently, the resonance energy loss is partially compensated.
For our model H-abstraction reaction involving the delocalized allyl•, we com-
putationally obtain a thermodynamic driving force ΔErp of +5.7 kcal mol−1. Since
ΔErp for the corresponding reaction involving the localized H3C• amounted to
−13.4 kcal mol−1 (cf. the previous section), the actual relative destabilization of the
product state for this specific localized product can be estimated at 19.1 kcal mol−1.
Hence, the total amount of resonance energy present in the reactant state should
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be considered as an upper limit and a guide value for the actual relative product
destabilization.

According to the barrier height equation introduced in the previous section (cf.
Eq. (20.1)), a decrease in ΔErp should induce an increase in the activation energy
associated with the reaction. More specifically, given that ΔΔErp amounted to
19.1 kcal mol−1 when comparing the H-abstraction reaction involving H3C• with
the one involving allyl•, one can estimate ΔΔE≠ to amount to approximately
9.5 kcal mol−1 in our case, assuming that the other factors in the expression remain
more or less constant. This is exactly what emerges from our UB3LYP/cc-pVTZ
calculations: ΔE≠ amounts to 6.9 kcal mol−1 for H3C•, while for allyl•, ΔE≠ is
calculated to be 16.5 kcal mol−1 (Figure 20.5b). Note that the same qualitative trend
could also have been inferred from the Bell–Evans–Polanyi principle [20, 21].

20.4 The Spin Density Distribution as a Probe for the
Regioselective Preference in Radical Reactions

So far, we have discussed how changes in spin delocalization affect the PES asso-
ciated with a radical reaction through modification of the thermodynamic driving
force. In this section, we will concisely discuss how, building on this knowledge,
the spin density distribution can be cast as a natural reactivity indicator for radi-
cal molecules containing multiple reactive sites, able to infer the “most favorable”
reaction pathway, i.e. the regioselectivity. Once more, we focus our attention on a
simplistic model system, vinyloxy radical (H2C–CH–O•), shown in Figure 20.6a.
A simple electronic structure calculation reveals that the radical electron in this
compound is mainly localized on the extremal C-center: the NPA spin density on
this site amounts to 0.79e, the O-moiety on the other end of the molecule carries a
spin density of 0.36e.

In agreement with these calculated spin densities, we find that the localized
VB structure in which the unpaired electron resides on the C-site is significantly

O
O

O

Oρ = –0.11e

ρ = 0.79e ρ = 0.36e

RE = 11 kcal mol−1

RE = 47
kcal mol−1

(a) (b)

Figure 20.6 (a) The NPA spin density distribution for vinyloxy•, calculated at
UB3LYP/cc-pVTZ level of theory. (b) The interaction between the localized resonance
structure giving rise to the delocalized ground state of vinyloxy•. Resonance energies were
calculated at VBSCF/6-311++G**//UB3LYP/cc-pVTZ level-of-theory. Source: From Stuyver
et al. [10]. American Chemical Society.
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Table 20.1 Comparison of the barrier heights (ΔE≠), and reaction energies (ΔErp) of
H-abstraction from SiH4 for both attack sites of vinyloxy• and their corresponding localized
analogs (H3C• and HO•), calculated at UB3LYP/cc-pVTZ level-of-theory.

H-abstraction from SiH4 (C-attack) H-abstraction from SiH4 (O-attack)

𝚫E≠ (kcal mol−1) 𝚫Erp (kcal mol−1) 𝚫E≠ (kcal mol−1) 𝚫Erp (kcal mol−1)

Vinyloxy• 9.8 −2.3 Vinyloxy• 18.3 9.5
H3C• 6.9 −13.4 HO• 0.0 −24.9

Energy values are presented in kcal mol−1 (with ZPE included). Note that the changes in ΔErp
agree qualitatively with the calculated delocalization energies (11 and 47 kcal mol−1, respectively).

more stable than the one in which the radical resides on the O-site: for the former
structure, the resonance energy separating it from the delocalized resonance hybrid
amounts to merely 11 kcal mol−1, whereas for the latter structure, the resonance
energy amounts to almost 47 kcal mol−1 (Figure 20.6b).

As such, given the analysis in the previous section, one can reasonably expect that
this delocalized radical compound will preferentially engage in radical reactivity
through the terminal C-center: reacting from this side of the molecule causes a
much smaller loss of delocalization energy throughout the reaction. Our com-
putations confirm this behavior: for the H-abstraction reaction from SiH4, the
decrease in thermodynamic driving forces for the two attack positions with respect
to their corresponding localized analogs (HO• and H3C•, respectively) is in line
with the magnitude of the “delocalization penalty” associated with each site (cf.
Table 20.1). Since the barrier heights increase more or less proportionally with
the change in ΔErp, reaction from the C-site is indeed unequivocally favored, both
thermodynamically and kinetically.

20.5 Extending the VB Delocalization Perspective
to Other Local Reactivity Descriptors: The Case of the
Fukui Function

So far, only a single local reactivity descriptor has been considered: the spin den-
sity distribution. The goal of the present section is to demonstrate that the presented
viewpoint can straightforwardly be extended to other (CDFT) reactivity descriptors
as well. In particular, we will focus on the Fukui function [2, 8, 22], a local reac-
tivity descriptor associated with nucleophilic/electrophilic reactivity. Again, let us
turn to a simple model reaction: the methylation of (ambident) vinyloxy anion (cf.
Figure 20.7).

Analogous to the case of vinyloxy• discussed before, vinyloxy anion can react in
two different ways: either through the C-site or through the O-site. Within a con-
ceptual DFT approach, the most nucleophilic site of this compound is traditionally
inferred through consideration of the spatial distribution of the Fukui function for
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Figure 20.7 The possible outcomes for the methylation reaction between vinyloxy anion
and CH3X (X = F, Cl, Br, I, etc.). Source: From Stuyver et al. [10]. American Chemical Society.

electrophilic attack, f −(r) [8, 22, 23],

f −(r) = ( 𝜕𝜌(r)∕𝜕N)− = 𝜌N (r) − 𝜌N−1(r) ≈
|||Ψ2

HOMO
||| (20.3)

where 𝜌(r) corresponds to the electron density and N corresponds to the number of
electrons in the compound.

Let us now explore how the Fukui function can be recovered within our qualita-
tive VB framework by constructing the VB diagram associated with this reaction. For
nucleophilic/electrophilic reactions, the product-state curve, i.e. the curve connect-
ing the promoted reactant state (R*) to the product state (P; vide supra), corresponds
to a charge-transfer state. In the case of the reaction considered here, the relevant CT
state is the one in which an electron is transferred from the vinyloxy anion to H3C–X,
as shown in Figure 20.8a. As such, R* corresponds to mutually isolated vinyloxy• and
radical anion H3C–X−•. The vinyloxy radical species in R* will obviously be delocal-
ized: it is a hybrid of a localized structure in which the unpaired electron resides on
the C-atom, in combination with another one in which this radical electron resides
on the O-atom (vide supra; cf. Figure 20.6b).

As the reaction proceeds, i.e. as one advances from R to P, the resonance energy
between these two localized structures in the vinyloxy• in the diabatic product
curve will once again be lost; the methylation occurs either on the C- or O-side. As
such, one can expect that the most stable product will be the one associated with the

O X X
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+ CH3
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O
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X+
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+
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CH3

(a)

(b)
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CH3
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Figure 20.8 (a) The CT state (R* in b) in the reactant geometry corresponding to the
product-state curve in the VB diagram for the methylation of vinyloxy anion. (b) The specific
diabatic product curves associated with the two competing reaction pathways. (c) The
HOMO-orbital of vinyloxy anion calculated at B3LYP/cc-pVTZ level-of-theory. Source: From
Stuyver et al. [10]. American Chemical Society.
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localized VB structure having the highest weight in the promoted product state R*,
since the corresponding mode of attack will involve the lowest “resonance penalty”
to be paid. Hence, based on Figure 20.6b, one can infer that the C-attack will be
the most thermodynamically favorable reaction pathway. Figure 20.8b enables one
to visualize the specific product-state curves associated with the two competing
reaction pathways.

Calculations performed by Mayr and coworkers confirm the analysis above:
even though the computed absolute ΔErp values in their study were observed to be
highly dependent on the nature of the halogen in H3C–X, the relative difference in
thermodynamic driving force between the C- and O-attack, i.e. ΔΔErp, consistently
amounted to approximately 20 kcal mol−1 in favor of the C-attack [24].

Let us now review what we have discussed in this section so far. We have demon-
strated that for nucleophilic attack involving an ambident reactant, the thermo-
dynamic stability of the individual products is determined by the corresponding
“resonance/delocalization penalty,” in a similar way as it was demonstrated to be
the case for radical reactions. Contrary to our analysis in the previous sections, the
resonance penalty here cannot be inferred simply from consideration of the spin
density distributions. Instead, what needs to be analyzed is the delocalization of the
radical electron in the ambident reactant – after one electron has been removed from
this species (cf. R* in Figure 20.8b). In practice, this delocalization can be probed
by considering the distribution of the highest occupied molecular orbital (HOMO)
of the nucleophile, since from an MO perspective, the radical electron resulting
from the oxidation of this species will reside in this orbital. Turning back now to
Eq. (20.3), one can straightforwardly see that we have effectively recovered the
idea of a Fukui function as a local reactivity descriptor from a pure VB perspective!
Indeed, one finds that the HOMO of vinyloxy anion is disproportionally localized
on the extremal C-atom (Figure 20.8c) and accordingly, the atom-condensed Fukui
function (calculated at (U)B3LYP/cc-pVTZ level-of-theory through NPA analysis
in the finite difference approximation) has a significantly higher amplitude on this
site as well, i.e. 𝜌(C) = 0.53e and 𝜌(O) = 0.34e.

Note that in Figure 20.8b, only the product curve is drawn. As discussed, knowl-
edge about the evolution of this diabatic curve for different attack positions enables
one to infer overall thermodynamic preferences. The kinetic preferences however
cannot be inferred from information about this diabatic curve alone, since the latter
preference depends on the location of the crossing point of the reactant and prod-
uct states (and the amount of resonance energy B; cf. Eq. (20.2)). Our analysis above
clearly indicates that inspection of the Fukui function does not tell us anything about
the evolution of the reactant curve for different attack positions, and consequently,
the impact on the barrier height of an increased thermodynamic driving force may
very well be canceled out by an enhanced increase of the reactant curve, resulting
in a diverging thermodynamic and kinetic preference.

For the vinyloxy anion, this is exactly what one observes: even though C-attack
is preferred thermodynamically (in line with the relative magnitudes of the Fukui
function), the barrier for O-attack turns out to be slightly lower than for C-attack
(ΔE≠ = 0.4 kcal mol−1 at B3LYP/cc-pVTZ level-of-theory), i.e. the kinetic preference
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is reversed and thus does not follow the trend suggested by the Fukui function [24].
As will be discussed at the end of this chapter, this “anomalous” kinetic preference
can be attributed to differential electrostatic interactions in the respective TS geome-
tries, as well as a preferential localization of the negative charge on the O-site in
vinyloxy anion (i.e. the reactant curve for O-attack rises more slowly than the one
for C-attack; vide infra).

20.6 Hardness and Softness from a VB Perspective

All of the local reactivity descriptors we have treated/recovered from a VB per-
spective up to this point (i.e. spin density and Fukui function distributions)
described so-called (frontier) orbital or “soft–soft” interactions: they dealt with the
pairing/re-pairing of electron pairs in the constructed VB diagram. Conceptual DFT
however tells us that there is another interaction type which can drive reactivity as
well: electrostatic interactions. Indeed, according to the HSAB principle [25–27],
reactions ought to be dominated by either one of these two interaction types.
Whichever type dominates in the reaction under consideration is then expected
to determine the corresponding regioselectivity: the preferential association site
for soft compounds is generally assumed to be dictated by the Fukui function
distribution [22], whereas the preferential association site for hard compounds
is assumed to be dictated by atom-condensed charges or molecular electrostatic
potential (MEP) maps [28, 29].

Taking a delocalized perspective on electronic structure (vide supra), the individ-
ual magnitudes of (frontier) orbital and electrostatic interactions cannot be probed
explicitly in a straightforward fashion. Consequently, there has been a heated
debate and some confusion in the CDFT literature about the relative magnitude
and importance of the respective electrostatic/(frontier) orbital contributions for
specific reaction types [30–32]. As we will demonstrate below, VB theory enables a
straightforward resolution of the respective contributions and thus enables a more
profound study of the role played by the individual local descriptors in shaping
the PES [11]. The key to achieve this feat is to consider ionic and HL structures
separately, i.e. to refrain from mixing them together into Lewis structures as we
have done in the previous sections (vide supra).

Let us focus here on protonation reactions (in the gas phase), since this ubiquitous
reaction type in particular has been the subject of controversy in recent years. H+

is generally considered as a prototypical hard electrophile, so one could naively
expect that the association of this species with a reaction partner would generally be
dominated by electrostatic, i.e. hard–hard, interactions. Indeed, several researchers
have reported that electrostatic descriptors, e.g. partial charges and MEP maps,
are suitable guides to identify preferential/likely protonation sites in a variety of
systems [33–35]. At the same time, it should be noted that the bond formed between
a proton and its reaction partner is generally assumed to be covalent in nature. As
such, an electron re-pairing unequivocally occurs throughout the reaction, which
suggests that spin-pairing (or soft–soft) interactions most certainly are not negligible
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either. Indeed, Bettens et al. recently reported that in protonation reactions of a
variety of alkaline earth and transition metal complexes, e.g. Ca(N2)8 and Cr(N2)8,
the H+ species prefer those sites which carry the highest HOMO amplitude, i.e.
they prefer to associate with the softest sites of the complex [36].

To shed some more light on this seemingly contradictory situation, let us consider
a generic protonation reaction, i.e. the mutual approach of an H+ and an (organic/
inorganic) molecule R, from a VB perspective [3, 11]. Just as in the case of H2 (cf.
Section 20.1), three main (singlet) VB structures can associated with the [R…H]+

system: a HL/covalent one (R+•–•H), as well as two ionic ones (R: H+ and R2+ :H−,
respectively). In the HL structure, a neutral H• approaches R+• so that the only
significant stabilizing interaction that can emerge stems from spin pairing. In the
ionic structures, a charged species (H+ and :H−, respectively) approaches the R/R2+

system, so that – depending on the polarity of the region of R/R2+ to which the
charged species associates – either an electrostatic stabilization or destabilization
will emerge. One can logically expect that the spacing at infinite separation between
the HL and the ionic structures in [R…H]+ will determine to a significant extent
the nature of the bond being formed.

The energetic separation between the main ionic structure, Φion, 1 (R…H+), and
the HL structure,ΦHL (R+⋅–⋅H), in the dissociated geometry can be approximated as,

E(Φion,1) − E(ΦHL) = AH+ − IR = IH − IR (20.4)

with IR the vertical ionization potential (IP) of R and AH+ the electron affinity of the
proton (which is identical to the IP of H, IH).

The spacing between the HL structure and the second ionic structure,Φion, 2 (R2+

:H−), can be approximated as,

E(Φion,2) − E(ΦHL) = AH − IR+ (20.5)

According to Eq. (20.4), Φion, 1 will be lower than ΦHL in the dissociation limit
in the case that the (vertical) IP of R is larger than 313.6 kcal mol−1, which is
the IP of H. For most common molecules this will not be the case. To provide
some perspective, the vertical IP of H2O amounts to approximately 295 kcal mol−1,
for NH3, this quantity amounts to 251 kcal mol−1 and for ethylene and pyri-
dine, it amounts respectively to 243 and 217 kcal mol−1 (values calculated at
B3LYP/6-31++G***//B3LYP/def2-TZVP level-of-theory).

As such, at infinite separation, the HL structure associated with the protonated
system will generally be the lowest diabatic state. However, it should be clear that the
energetic spacing between this structure and Φion, 1 will be on the lower side: it will
range from close to a 100 kcal mol−1 in case of pyridine+H+ to a mere 20 kcal mol−1

in case of H2O+H+. This relatively small spacing is already an indication that the
formed bond between R and H+ will most likely correspond to neither a purely cova-
lent nor a purely ionic bond (vide infra).

In Figure 20.9, a concise VB analysis of the R—H bond formation process
is presented for some simple single-site model systems, i.e. H3O+, NH4

+, and
H3S+ (calculations were performed at DFVB(LYP)/6-31++G**//B3LYP/def2-TZVP
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Figure 20.9 Schematic representation of the bonding interaction and the evolution of the
energy of the individual diabatic structures and the global adiabatic ground state associated
with a protonation reaction for (a) [H3N–H]+ , (b) [H2S–H]+ , and (c) [H2O–H]+. Note that the
curves associated with Φion,2 are not depicted in this figure due to the significant distance
between this curve and the ones associated with Φion,1 and ΦHL, respectively. The
spin-pairing stabilization energies associated with ΦHL upon bond formation are depicted
in blue italics; the resonance energies are denoted in magenta. At the bottom of each panel,
we show the weights of the individual structures in the adiabatic wave function at the
optimal bonding distance. Source: From Stuyver and Shaik [11]. American Chemical Society.

level-of-theory [37] with the XMVB code [18, 19], where R and H were selected as
the local fragments from which the wave function is constructed).

A first conclusion that can be drawn from this figure is that for each of the
considered bonds, the HL structure remains the main contributor to the wave
function throughout the entire bond formation process (hence, there are no diabatic
crossovers and protonation reactions are generally barrierless in the gas phase).
Furthermore, the nature of the formed bond is indeed a reflection of the relative
spacing of the VB structures at infinite separation, i.e. the relative magnitude of the
IP of NH3, H2S, and H2O. It follows that the [H2S—H]+ bond is the most covalent,
followed by the [H3N—H]+ one, and finally the [H2O—H]+ bond (the weights of
the HL structures in the wave functions exceed 68%, 61%, and 55%, respectively).

Even though our analysis indicates that the R—H bond for each of these model
systems is formally covalent in nature at the optimal bonding distance, Figure 20.9
clearly demonstrates that the bulk of the protonation/bonding energy cannot be
attributed exclusively to either the electrostatic or the spin-pairing interaction:
the resonance contribution caused by the mixing between the individual VB
structures is significant. For H3S+, the contribution to the full protonation energy,
i.e. E(Φion, 1[dissociated])−E(Ψadiabatic[bonded]), by the resonance energy is still
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relatively limited; it is responsible for 22 kcal mol−1 out of a total of 169 kcal mol−1.
For NH4

+, the contribution by the resonance energy increases slightly to
35 kcal mol−1 out of a total of 201 kcal mol−1; for H3O+, the resonance energy
accounts already for close to 40% of the protonation energy: the resonance with the
(electrostatics-governed) ionic structure contributes 64 out of 167 kcal mol−1.

Note that the latter resonance energy value (64 kcal mol−1) approaches 50% of the
total adiabatic bonding energy (147 kcal mol−1), i.e. the energy lowering of the black
curve in Figure 20.9c. As some of us have discussed before, whenever resonance
becomes significant and/or starts to take over from either pure electrostatics or spin
pairing as the main driver of the bonding interaction, it is arguably more appropriate
to categorize the considered bond distinctively as a so-called “charge-shift” bond
instead of a covalent or ionic one [38, 39].

20.7 Regioselectivity in Protonation Reactions:
Sometimes Consideration of a Single Spin-pairing/Orbital
Interaction Descriptor Is Not Enough!

From the results for the selected model systems in the previous paragraphs, one
could already deduce that the R—H bond in protonated molecules can range from
mainly covalent to predominantly charge shift in nature. Let us now proceed from
the considered single-site model systems, toward a couple of multi-site (combined)
analogs, H2NOH and H2NSH, and probe their respective regioselectivity for proto-
nation. Experimental data indicate that proton association will preferentially occur
at the N-site for both of these species [40]. Note that these model systems were
also considered previously by Chattaraj and coworkers to establish the proposed
hardness-dominated regioselectivity of a protonation reaction [33].

In Figure 20.10, concise VB analyses are presented for the competing protonated
products for both considered species, i.e. H3N+OH vs. H2NOH2

+ and H3N+SH vs.
H2NSH2

+. Figure 20.11 contains an overview of some local reactivity descriptors
describing hard–hard and soft–soft interactions, i.e. on one hand the electrostatic
potential (ESP) partial charges together with MEP maps for the unprotonated
species, and on the other hand the NPA spin densities for the (unprotonated)
oxidized species (our VB-inspired analog of the Fukui function [43, 44]; vide supra),
respectively [10].

From a first inspection of Figure 20.10, it should already be clear that the com-
position of the considered bonds barely differs from their corresponding single-site
analogs in Figure 20.9: the weights of the individual VB structures are equivalent,
and the magnitude of resonance energy between the ionic and HL structures is also
not affected. Protonation energies are also barely modified; for the respective N—H
bonds formed, the protonation energies have decreased by 5–10 kcal mol−1, for the
corresponding O—H and S—H bonds, they have increased by a similar magnitude.
These observations should not come as a big surprise: H2NOH and H2NSH are gen-
erally considered as chemically localized species, so that the individual sites can be
expected to behave more or less independently.
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Figure 20.10 Schematic representation of the bonding interaction and the energy
evolution of the individual diabatic states and the global adiabatic state associated with
the protonation of (a) H2NOH and (b) H2NSH. The actual protonation site is indicated by the
respective products at the bottom of each energy profile. Note that the curves associated
with Φion,2 are not depicted in this figure due to the significant distance between this curve
and the ones associated with Φion,1 and ΦHL, respectively. The spin-pairing stabilization
energies upon bond formation are depicted in blue italics; the resonance energies are
denoted in magenta. The weights of the individual structures in the adiabatic wave
function at the optimal bonding distance are shown at the bottom of each panel. Source:
From Stuyver and Shaik [11]. American Chemical Society.

Nevertheless, one can pose the question: how do the local reactivity descriptors
presented in Figure 20.11 fare in “predicting” the regioselectivity, i.e. do they
enable the correct identification of the preferential protonation site in the multi-site
systems?

From Figure 20.11a, one can conclude that for both of the unprotonated molecules
considered, the N moiety carries the highest partial charge. This is also reflected in
the MEP maps (cf. Figure 20.11b): the region of the isosurface associated with the
lone pair of N colors bright red (indicating strong Coulombic attraction of a positive
test-charge), the region associated with the O lone pairs has a similar – though
slightly less bright – hue, but the regions corresponding to the lone pairs of sulfur
clearly correspond to a much less negative electrostatic potential. Correspondingly,
proton association at the N-site leads to the largest electrostatic stabilization in both
systems (cf. the stabilization of the red curves in Figure 20.10).

The total protonation energy follows an identical pattern, i.e. association at the
N-site is preferred for both model compounds, so that one can phenomenologically
conclude that they both adhere to the hard–hard/charge-controlled paradigm,
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Figure 20.11 (a) ESP charges (Q) on the N and O/S sites of the neutral, unprotonated
species; (b) corresponding MEP maps (with the scale ranges from −25 kcal mol−1 (red) to
25 kcal mol−1 (blue)); (c) NPA spin densities (𝜌) on the N and O/S sites of the oxidized, i.e.
radical cation, species. Calculations were performed at (U)B3LYP/def2-TZVP level-of-theory
[15–17, 41, 42]. Source: From Stuyver and Shaik [11]. American Chemical Society.

which is in line with the previous findings by Chattaraj and coworkers [33]. What
is clearly revealed by our analysis however is that this regioselective preference is
not the result of the electrostatic interactions dominating in absolute terms over the
spin-pairing ones: in fact, the charge interaction is not even the main driver of the
bonding in either of the four regio-isomers probed!

Turning to the spin densities presented in Figure 20.11c, one can observe that for
H2NOH, this descriptor correctly probes the relative magnitudes of the spin-pairing
stabilization during bond formation. The role played by the resonance penalty (vide
supra) clearly comes to the forefront in this system. For the N-site, which carries
the bulk of the spin density in [H2NOH]+•, the spin-pairing/(frontier) orbital sta-
bilization is only slightly lower than the corresponding intrinsic value, which – as
mentioned before – corresponds to the spin-pairing stabilization exhibited by the
localized analog, i.e. NH4

+ in Figure 20.9b (88.0 vs. 103.8 kcal mol−1). For the O-site,
carrying a spin density of only 0.2e, the spin-pairing stabilization upon protonation
is dramatically reduced compared to the corresponding value obtained from H3O+

(34.1 vs. 83.0 kcal mol−1).
In [H2NSH]+•, the spin density is more or less perfectly localized on the S-site

(𝜌 = 0.99e). As such, one could expect that almost no resonance penalty would be
associated with this moiety. Indeed, the spin-pairing stabilization for this site agrees
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almost perfectly with the corresponding intrinsic value (77.1 vs. 73.7 kcal mol−1;
cf. Figure 20.9b). Consequently, one could also expect at the same time a huge
resonance penalty to be associated with the N-site for this compound. However,
this is clearly not the case: the spin-pairing stabilization for the latter site deviates
by only a moderate 20 kcal mol−1 from the corresponding intrinsic value (84.3 vs.
103.8 kcal mol−1).

Complementary reactivity modes: Does this seemingly anomalous resonance
penalty associated with the N-site constitute a failure of our reactivity descriptor?
Not quite; performing a time-dependent density functional theory (TD-DFT)
calculation on the oxidized radical species [H2NSH]+• straightforwardly reveals the
existence of an excited radical cation state a mere 0.18 eV (∼4 kcal mol−1) above the
ground state. Whereas the spin density in the ground state is localized on the (lone
pairs of the) S-moiety, the spin density in this – almost degenerate – excited state is
primarily localized on the lone pair of the N-moiety (𝜌N = 0.92e; cf. the spin density
distributions associated to both states in Figure 20.12a).

The appearance of two close-lying states for the radical cation could in fact have
been readily predicted/anticipated from a VB analysis. In the wave function of
[H2NSH]+•, one can expect two main VB structures to emerge: one in which the
positive charge is located on the N-moiety and another one in which the charge
is located on the S-moiety. From the spacing between E(Φion, 1) and E(ΦHL) in
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the dissociated geometry for NH3 and H2S (i.e. AH+ – IR:; cf. Figure 20.9), one
can deduce that the IP for the S-moiety is very similar to that for the N-moiety
(though slightly lower; 240 vs. 251 kcal mol−1). Consequently, these two localized
VB structures are expected to be almost degenerate. Whether these structures
interact then depends on the overlap between the local orbitals on the individual
moieties. From an inspection of the geometry of H2NSH, one can readily deduce
that the orbitals containing the lone pairs on sulfur and nitrogen lie in almost
orthogonal planes (cf. Figure 20.11). Consequently, one expects very limited to
no mixing between these two structures: our calculations show that [H2NSH]+•
indeed gives rise to two close-lying adiabatic states, one in which the spin density
is localized on the S-site, and another one in which the spin density is localized on
the N-site (cf. Figure 20.12c).

According to the argumentation in the previous sections, if the two localized struc-
tures lie closely, the amount of delocalization energy lost during protonation of the
respective sites is more or less equal. As a consequence, the resonance penalty asso-
ciated with protonation of the N-moiety is less pronounced than exclusive consid-
eration of the spin density distribution in the adiabatic ground state of [H2NSH]+•
would suggest.

In the case of [H2NOH]+•, the two most stable VB structures, i.e. the one in which
the positive charge is located on the N-moiety and the other in which the charge is
located on the O-moiety, are not close to degeneracy at all; the IP for the N-moiety is
significantly lower than the IP for the O-moiety, cf. the IP for NH3 (251 kcal mol−1)
vs. the IP for H2O (293 kcal mol−1). Consequently, we do not end up with two almost
degenerate states for [H2NOH]+• now (cf. Figure 20.12d); for this system, there is one
state that is clearly lower in energy than the other (according to our calculations, the
difference amounts to 0.8 eV, i.e. 19 kcal mol−1).

In summary, the analysis above indicates that indiscriminate, exclusive con-
sideration of the ground-state spin density distribution of the oxidized species
of a molecule, corresponding to the “ground-state” (nucleophilic) Fukui func-
tion in CDFT language, is not always sufficient to infer relative protonation site
propensities (or more generally speaking, electrophilic attack). The appearance
of low-lying excited states for this species is generally an indication of hampered
mixing between (almost) equally favorable localized states. In such a case, the
spin distribution in all of the low-lying states needs to be considered; failing to
do so will lead to a misinterpretation of the relative soft–soft preference toward
protonation/electrophilic attack within the molecule (cf. Ref. [33]).

20.8 Revisiting the Reactivity of the Ambident Vinyloxy
Anion

Now that we have established how hardness and softness emerge from a VB perspec-
tive, it is timely to reconsider the reactivity of the ambident vinyloxy anion, which
we used as a model system to discuss Fukui functions (vide supra). Recall that the
Fukui function correctly pointed to the thermodynamically preferred attack position
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for this system, i.e. the C-moiety, but that kinetically, an opposite preference was
observed, i.e. the barrier for O-attack was found to be slightly lower than for C-attack.

This observation of diverging thermodynamic and kinetic preferences is driven
to a significant extent by electrostatic interactions in the TS region: the stabilizing
alternation of local charges in the TS geometry for the O-attack is significantly
more pronounced than for the C-attack (Figure 20.13a). This finding suggests
an enhanced weight of one of the ionic states in the diabatic reactant state
(Figure 20.13b), pushing the associated curve – and thus also the crossing point
with the product curve – to a lower energy (Figure 20.13c). In other words, the
relative stabilization of the TS for O-attack is mainly driven by enhanced hard–hard
interactions. Another factor stabilizing the reactant curve can be identified as well,
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namely that the negative charge on the vinyloxy anion will preferentially localize on
the O-site (cf. Ref. [10]), but this effect can be expected to be minor in comparison
to the differential electrostatic interactions.

One can expect the enhancement of ionic contributions to the wave function
in the TS region (resulting – in extreme cases – in a divergent kinetic preference
with respect to the trends expected from exclusive consideration of spin-pairing
interactions), to be a ubiquitous phenomenon in regular electrophilic/nucleophilic
reactions.

20.9 Conclusions

This chapter constructs bridges between two seemingly detached and irreconcilable
realms within the field of theoretical chemistry: CDFT and VB theory. Focusing on
various simple model systems, we have shown that a more profound understanding
and enhanced insights can be achieved by combining both viewpoints.

In the first part of the chapter, we have discussed how many common (orbital-
based) local reactivity descriptors, i.e. the spin density distribution for radical
reactions and the Fukui function for electrophilic/nucleophilic reactions, can
essentially be regarded – in one way or another – as indirect measures of delocaliza-
tion, i.e. resonance stabilization, present within the reactants, from a (qualitative)
VB perspective. The inherent connection between (spatial) delocalization and
(energetic) resonance stabilization embedded in VB theory provides a natural and
elegant framework through which the impact of these individual local reactivity
descriptors on the global PES can be analyzed and understood.

In the second part of this chapter, we have expanded our analysis toward
“hard–hard” reactivity descriptors as well, thus recovering the principal idea
behind the HSAB principle. We demonstrated that both hard–hard and soft–soft
interactions can be probed by considering appropriate local reactivity descriptors:
electrostatic potential maps and/or partial charges provide information about
electrostatic interactions, whereas spin density/Fukui function distributions do the
same for spin-pairing interactions.

As model reactions for our analysis of the competition between spin-pairing
and electrostatic interactions, we considered a set of protonation reactions, which
involve H+ as a prototypical hard electrophile, in the gas phase. In contrast to
previous reports, we find that most of these reactions cannot be classified as
exclusively charge- (or orbital-) controlled; the two bonding contributions interact
in more subtle patterns instead, only giving the impression of a clear-cut dichotomy.
As such, a hybrid approach in which descriptors of both interactions types are
combined is required to accurately and conclusively gauge the reactivity patterns
for this reaction type [45, 46].

Finally, we also demonstrated that important complementary covalent, i.e. spin
pairing, reactivity modes can remain concealed when only a single spin-pairing
descriptor is considered. Including spin density distributions of low-lying excited
states in the analysis alleviates this problem.
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21.1 Introduction

This chapter attempts to provide a physical picture of chemical binding within
the theoretical framework of density functional theory (DFT) [1–3], or to be more
specific, what is popularly known as conceptual density functional theory (CDFT)
[4]. Molecules and materials are essentially a collection of atoms/nuclei, arranged
in a particular geometrical configuration, and bonded together by the electron
glue. Different systems correspond to different sets of atoms and their different
spatial arrangements, and different phenomena correspond to their different types
of changes from one spatial configuration to another. When two or more atoms
approach each other, their electrons get partially delocalized and redistributed in
space as a consequence of interatomic perturbation, thereby forming molecules,
through what is known as chemical binding, an important aspect in the description
of many of the systems and phenomena involved in chemical, physical, biological,
and other sciences, as well.

Chemical binding is at the root of molecule (or solid) formation through elec-
tron density reorganization, manifested often through interatomic charge and spin
transfer, and intra-atomic rearrangement leading to creation of atomic dipoles due
to polarization from electronic responses. In this chapter, the emphasis has been
on the conceptual aspects and model building through a physical picture and not so
much on the accuracy of numerical prediction through a rather involved and sophis-
ticated solution of the Schrodinger equation or its approximate variants, which are
well established as computational tool.

Desire to have a deeper understanding of chemical binding leading to formation
of molecules or solids is however quite old, and many attempts toward fulfilling
this goal have been made in the past and the search is still on with equal vigor. This
is inspired or triggered by the discovery and introduction of many new chemical
concepts or providing foundation to the existing concepts. Many of these concepts
have however crept in with a view to explain and rationalize experimental facts, and
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are often empirical. Providing physical foundation to these chemical concepts has
thus been a field of research by itself. This has been fueled, often by the availability
of a new theoretical machinery within the quantum mechanical framework, since
chemical binding is a quantum effect, an apt example being the availability of DFT
as a theory with single-particle electron density as the basic variable. Density-based
approach is most suitable for the purpose, since chemical binding is essentially
an outcome of electron density reorganization, which takes place when the atoms
approach each other. Although many researchers had attempted to visualize the
binding process through the plots of electron density and other associated property
density changes on molecule formation, a real breakthrough entered the scene
when a more formal approach with sound theoretical basis was started [5] by
Prof Robert G Parr in the mid-seventies, leading to the development of DFT-based
approach to chemical concepts, aiming at providing a true physical picture of the
chemical binding as well as chemical reactivity. The rest is history and the seed has
now led to the growth of a big tree representing the field of CDFT [4], which deals
with diverse conceptual aspects within the framework of DFT.

For a quantitative description of chemical binding, the energetics associated
with molecule formation is to be considered and a simple model follows through
consideration of the interatomic perturbation of the electron cloud, when the atoms
approach closer. Since the associated energy changes are much smaller in compar-
ison to the energies of the individual atoms, a simple perturbation-theory-based
approach is quite appropriate, in view of its simplicity and general applicability. The
electron density reorganization, besides intra-atomic rearrangement, might also lead
to inter-atomic transfer of electrons, leading to a charge separation and hence dipole
moment of the molecule. In a coarse-grained picture, the individual atoms acquire
partial atomic charges and also atomic dipoles are created at each atomic site.

The direction and extent of inter-atomic charge flow have been understood by
introducing the concepts of electronegativity [5] and chemical hardness [6] of the
atoms, respectively. The electronegativity has been identified with the chemical
potential of the electron cloud (with a negative sign). The chemical potential dictates
the direction of charge flow in the same spirit as the temperature does for the direc-
tion of heat flow (from hot body to cold body), or, the electric potential determines
the direction of electricity flow. Analogously, the chemical hardness parameter con-
trols the extent of interatomic electron transfer, analogous to heat capacity determin-
ing the extent of heat flow or capacitance determining the amount of electricity flow.

There are, however, two important issues associated with the coarse-grained
models that need to be addressed. Firstly, the aspects of prediction of binding
energies in these models are mostly valid for the equilibrium geometry of the
molecules concerned. An unphysical charge transfer will be wrongly predicted
even at large interatomic separation, due to the existence of the electronegativity
or chemical potential difference, the driving force for the charge transfer. The
concept of a chemical contact may need to be invoked to prevent the spurious
charge transfer at large separation, the objective being the prediction of the correct
dissociation limit of the molecule.
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The other issue stems from the fact that the electronegativity (and hardness)-based
models are suitable only for ionic binding, leaving apparently the territory of cova-
lent binding away from their invasion. An extreme case is that of the homonuclear
molecules where there is no electronegativity difference, but there is chemical
binding through covalent contribution. Two important aspects about covalent bond
formation come to the rescue again, the first being a charge build up in the bond
midpoint/region, the other being the role of unpaired electrons in the atoms for
the formation of electron pair, which is synonymous with the formation of the
covalent bond. While for the former, the concept of bond electronegativity and bond
hardness [7–10] has been useful, for the latter, generalized concepts of up-spin and
down-spin electronegativity using spin-polarized DFT [11–12] have been found to
be quite successful.

This may predict an up-spin electron transfer from one atom to the other, and
down-spin electron transfer in the opposite direction, leading to a net spin transfer
responsible for covalent binding, although there may or may not be any resultant
charge transfer. In these models, the partial atomic charges [13], or even atomic
dipoles, can be useful for predicting the reactivity of reactive sites in molecules. Out
of the many available reactivity indices [14], the charge-related ones are useful for
the study of chemical binding [11, 15, 16]. It is worthwhile to mention some of the
widely used reactivity parameters, viz. electrophilicity [17, 18], nucleophilicity, fron-
tier orbitals [3, 19], response kernels [20, 21], and local and global hardness and
softness [22–24].

The objective of this work is to present a brief overview of the developments in
the field of chemical binding within the framework of CDFT. Only glimpses of the
main features are discussed here, in lieu of an exhaustive account of all aspects of
the whole field, which is rather vast and also fast growing. Thus, in what follows, we
first introduce some of the basic chemical concepts and reactivity parameters (for
spin-polarized situations), which are most widely used to provide a physical picture
of chemical binding, and then demonstrate their utility and role in describing the
formulation of ionic as well as covalent binding in molecular systems. A general-
ized picture within the basic DFT framework extended to spin and bond spaces is
one of the major highlights of the presentation. The problems associated with these
approaches for describing the limiting case of molecular dissociation are also briefly
addressed.

21.2 Physical Foundation of Chemical Concepts: A View
Through Conceptual DFT Window

In chemistry, many concepts have been introduced from time to time to explain,
interpret, or rationalize the experimental observations, which ultimately help also
in predicting novel molecules and materials with tailormade properties. However,
since many of these concepts have been born empirically, there has always been a
quest to place them in a more sound theoretical footing. The CDFT, a version of DFT,
has come to the rescue and extended a helping hand to deal with these interpretive
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aspects. To start with, we first discuss the most basic and relevant aspects of CDFT,
in the present context.

As is well known, DFT is a simpler alternative to wavefunction-based quan-
tum mechanical framework, where the role of basic variable is played by the
single-particle electron density 𝜌(r), defined in terms of the many particle
wavefunction Ψ (r1, r2, …rN ) for an N-electron system, as

𝜌(r1) = N ∫ ∫ …∫ Ψ∗(r1, r2,… rN )Ψ(r1, r2,… rN ) dr2,… drN (21.1)

which can alternatively be expressed in terms of the expectation value of the density
operator as

𝜌(r) = ⟨Ψ(r1, r2,… rN ) ∣ Σi𝛿(r − ri) ∣ Ψ(r1, r2,… rN ) ⟩ (21.2)

where the summation runs from i = 1 to N. In DFT, the ground-state electronic
energy of an N-particle system characterized by an external potential v(r) is
expressed as a functional Ev[𝜌] of the density 𝜌(r) given by

Ev[𝜌] = ∫ v(r)𝜌(r)dr + F[𝜌] (21.3)

where F[𝜌] represents a universal functional of density consisting of contributions
from the kinetic and electron repulsion energies. For fixed v(r), the energy functional
Ev[𝜌] obeys the variational principle 𝛿[Ev[𝜌] – 𝜇{∫ 𝜌(r)dr – N}] = 0, corresponding
to energy minimization with respect to the density variation 𝛿𝜌(r), subject to the
normalization condition ∫ 𝜌(r)dr = N, and leads to the result

𝜇 = (𝛿Ev[𝜌]∕𝛿𝜌(r)) = v(r) + (𝛿F[𝜌]∕𝛿𝜌(r)) (21.4)

Here 𝜇, the Lagrange multiplier corresponding to the density normalization
constraint, represents the chemical potential of the electron cloud and plays a major
role in the framework of CDFT. For example, 𝜇 has been intimately linked with
the concepts of electronegativity and hardness, which have been highly successful
for the rationalization and prediction of many aspects of chemical binding and
chemical reactivity.

The electronegativity parameter 𝜒 is defined in terms of the first derivative of the
energy E with respect to the number of electrons N, as

𝜒 = −(𝜕E∕𝜕N)v(r) (21.5)

while the hardness parameter 𝜂 is defined in terms of the second derivative as

𝜂 = (1∕2)(𝜕2E∕𝜕N2)v(r) = (1∕2)(𝜕𝜒∕𝜕N)v(r) (21.6)

with the external potential v(r) kept fixed. The two derivatives can be approximated,
within a finite difference approximation, in terms of the ionization potential (I) and
electron affinity (A), as 𝜒 = (I +A)/2 and 𝜂 = (I −A)/2. DFT permits one to express
𝜒 as

𝜒 = −(𝜕Ev∕𝜕N)v(r) = −∫ (𝛿Ev[𝜌]∕𝛿𝜌(r)) (𝜕𝜌(r)∕𝜕N) dr

= −𝜇 ∫ (𝜕𝜌(r)∕𝜕N) dr = −𝜇 (21.7)
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and thus identifies 𝜒 as the negative of the chemical potential 𝜇. An interesting
fact about the expression 𝜇 = v(r)+ (𝛿F[𝜌]/𝛿𝜌(r)) is that although the right side is
expressed as a sum of position-dependent terms, the left side, which represents 𝜇,
is the same at every point. This aspect has implications toward the equalization of
electronegativity of atoms during molecule formation, used widely as a principle in
chemistry.

While the above definitions of the chemical potential and hardness are based on
the single variable N, most of the atoms are open-shell systems, and spin-polarized
DFT is the right tool for their investigation. For an N-electron system with N

𝛼
and

N
𝛽

as the numbers of spin-up and spin-down electrons, where N = N
𝛼
+N

𝛽
, the

up-spin and down-spin electronegativity and hardness parameters can be defined as
a generalization, viz.

𝜒
𝛼
= −(𝜕E∕𝜕N

𝛼
)v(r), N𝛽 ; 𝜒

𝛽
= −(𝜕E∕𝜕N

𝛽
)v(r), N𝛼 (21.8)

and

𝜂
𝛼𝛼
= (1∕2)

(
𝜕

2E∕𝜕N
𝛼

2)
v(r), N𝛽 = (1∕2)(𝜕𝜒

𝛼
∕𝜕N

𝛼
)v(r), N𝛽 (21.9a)

𝜂
𝛽𝛽
= (1∕2)

(
𝜕

2E∕𝜕N
𝛽

𝟐)
v(r), N𝛼 = (1∕2)(𝜕𝜒

𝛽
∕𝜕N

𝛽
)v(r), N𝛼 (21.9b)

𝜂
𝛼𝛽
= 𝜂

𝛽𝛼
=
(
𝜕

2E∕𝜕N
𝛼
𝜕N

𝛽

)
v(r) = (𝜕𝜒𝛼∕𝜕N

𝛽
)v(r) = (𝜕𝜒𝛽∕𝜕N

𝛼
)v(r) (21.9c)

where v(r) in the subscript does refer to {v
𝛼
(r),v

𝛽
(r)}, if the external potential is spin-

dependent.
The DFT analogue of the two electronegativities is straightforward and can be

equated to the two respective chemical potentials, 𝜇
𝛼

and 𝜇
𝛽
, viz.

𝜒
𝛼
= −(𝜕Ev∕𝜕N

𝛼
)v(r), N𝛽 = −∫ (𝛿Ev[𝜌𝛼, 𝜌𝛽]∕𝛿𝜌𝛼(r)) (𝜕𝜌𝛼(r)∕𝜕N

𝛼
) dr

= −𝜇
𝛼 ∫ (𝜕𝜌

𝛼
(r)∕𝜕N

𝛼
) dr = −𝜇

𝛼
(21.10a)

𝜒
𝛽
= −(𝜕Ev∕𝜕N

𝛽
)v(r), N𝛼 = −∫ (𝛿Ev[𝜌𝛼, 𝜌𝛽]∕𝛿𝜌𝛽(r)) (𝜕𝜌𝛽(r)∕𝜕N

𝛽
) dr

= −𝜇
𝛽 ∫ (𝜕𝜌

𝛽
(r)∕𝜕N

𝛽
) dr = −𝜇

𝛽
(21.10b)

where the up-spin and down-spin densities 𝜌
𝛼
(r) and 𝜌

𝛽
(r) sum up to the net over-

all density as 𝜌(r) = 𝜌
𝛼
(r)+ 𝜌

𝛽
(r) and also enable one to define a spin density as

s(r) = 𝜌
𝛼
(r)− 𝜌

𝛽
(r). Respective integrated results also follow ∫ 𝜌

𝛼
(r) dr = N

𝛼
and

∫ 𝜌
𝛽
(r) dr = N

𝛽
, clearly satisfying N = N

𝛼
+N

𝛽
, and Ns = ∫ s(r) dr = N

𝛼
−N

𝛽
,

with Ns denoting the number of unpaired electrons. The spin-dependent chemical
potentials 𝜇

𝛼
and 𝜇

𝛽
represent the respective functional derivatives of energy, viz.

𝜇
𝛼
= (𝛿Ev[𝜌

𝛼
, 𝜌

𝛽
]/𝛿𝜌

𝛼
(r)) and 𝜇

𝛽
= (𝛿Ev[𝜌

𝛼
, 𝜌

𝛽
]/𝛿𝜌

𝛽
(r)), with respect to the density

components.
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Since the variables N and Ns are related to N
𝛼

and N
𝛽

by the simple linear trans-
formations, written in matrix form as(

N
Ns

)
=
(

1 1
1 −1

)(
N
𝛼

N
𝛽

)
;

(
N
𝛼

N
𝛽

)
= 1

2

(
1 1
1 −1

)(
N
Ns

)
(21.11a)

the corresponding derivatives can also be related by a similar transformation
given by(

(𝜕∕𝜕N)
(𝜕∕𝜕Ns)

)
= 1

2

(
1 1
1 −1

)(
(𝜕∕𝜕N

𝛼
)

(𝜕∕𝜕N
𝛽
)

)
;

(
(𝜕∕𝜕N

𝛼
)

(𝜕∕𝜕N
𝛽
)

)
=
(

1 1
1 −1

)(
(𝜕∕𝜕N)
(𝜕∕𝜕Ns)

)
(21.11b)

Using this, the energy derivatives (𝜕Ev/𝜕N)v(r) and (𝜕Ev/𝜕Ns)v(r) representing the
chemical potentials 𝜇N and 𝜇s, respectively, can easily be evaluated and found to
be related to 𝜇

𝛼
and 𝜇

𝛽
by the linear transformation(

𝜇N
𝜇s

)
= 1

2

(
1 1
1 −1

)(
𝜇
𝛼

𝜇
𝛽

)
;

(
𝜇
𝛼

𝜇
𝛽

)
=
(

1 1
1 −1

)(
𝜇N
𝜇s

)
(21.12)

Analogously, the hardness parameters defined by using N and Ns variables as

𝜂NN = (1∕2)(𝜕2E∕𝜕N2)v(r) = (1∕2)(𝜕𝜇N∕𝜕N)v(r) (21.13a)

𝜂SS = (1∕2)
(
𝜕

2E∕𝜕NS
𝟐)

v(r) = (1∕2)(𝜕𝜇S∕𝜕NS)v(r) (21.13b)

𝜂NS = 𝜂SN = (𝜕2E∕𝜕N 𝜕NS)v(r) = (𝜕𝜇N∕𝜕NS)v(r) = (𝜕𝜇S∕𝜕N)v(r) (21.13c)

can easily be related to 𝜂
𝛼𝛼

, 𝜂
𝛽𝛽

, and 𝜂
𝛼𝛽

by repeated application of the above
derivative relations, through the simple linear transformation given, in matrix
notation, by

⎛⎜⎜⎝
𝜂NN
𝜂SS
𝜂NS

⎞⎟⎟⎠ =
1
4

⎛⎜⎜⎝
1 1 2
1 1 −2
1 −1 0

⎞⎟⎟⎠
⎛⎜⎜⎝
𝜂
𝛼𝛼

𝜂
𝛽𝛽

𝜂
𝛼𝛽

⎞⎟⎟⎠ ;
⎛⎜⎜⎝
𝜂
𝛼𝛼

𝜂
𝛽𝛽

𝜂
𝛼𝛽

⎞⎟⎟⎠ =
⎛⎜⎜⎝
1 1 2
1 1 −2
1 −1 0

⎞⎟⎟⎠
⎛⎜⎜⎝
𝜂NN
𝜂SS
𝜂NS

⎞⎟⎟⎠ (21.14)

In view of these simple interrelations [21], one can consider either of the two
schemes (N

𝛼
, N

𝛽
) or (N, Ns) and can easily switch over between the two. However,

in this work we prefer to use the (N
𝛼
, N

𝛽
) representation, for convenience and also

due to the symmetry of the equations with respect to the two spins [22].

21.3 Energy Change of Spin-Polarized Many-Electron
Systems: A Perturbation Theoretic Approach

As we know, the Hamiltonian of a many-electron system is uniquely defined by the
number of electrons, N, and the external potential, v(r), which characterizes the sys-
tem. Thus, the total energy of the system becomes a function/functional of N and
v(r), i.e. E [N, v(r)]. The corresponding quantities for a spin-polarized system become
(N

𝛼
, N

𝛽
), (v

𝛼
(r), v

𝛽
(r)) and one has the energy functional E[N

𝛼
, N

𝛽
, v

𝛼
(r), v

𝛽
(r)],
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in standard notation, assuming the external potentials to depend on the electron
spin. Although one can alternatively consider (N, NS), (vN (r), vS(r)) and E[N, NS,
vN (r), vS(r)], the two schemes are related, and the advantages of the former scheme
have been pointed out earlier, and hence we discuss here only the former one, for
convenience.

The energy change ΔE of a system due to change in these quantities, viz. 𝛿N
𝛼
,

𝛿N
𝛽
, 𝛿v

𝛼
(r), and 𝛿v

𝛽
(r), can be expressed by a perturbation expansion in terms of

them and one has, by retaining terms up to second order, the expression

ΔE = Ev𝛼+𝛿v𝛼, v𝛽+𝛿v𝛽[N𝛼
+ ΔN

𝛼
,N

𝛽
+ ΔN

𝛽
] − Ev𝛼, v𝛽[N𝛼

,N
𝛽
]

= 𝜇
𝛼
ΔN

𝛼
+ 𝜇

𝛽
ΔN

𝛽
+ (1∕2)𝜂

𝛼𝛼
(ΔN

𝛼
)2 + (1∕2)𝜂

𝛽𝛽
(ΔN

𝛽
)2

+ 𝜂
𝛼𝛽
(ΔN

𝛼
)(ΔN

𝛽
) + ∫ dr𝛿v

𝛼
(r)𝜌

𝛼
(r) + ∫ dr 𝛿v

𝛽
(r)𝜌

𝛽
(r)

+ (1∕2)∫ dr∫ dr′𝛿v
𝛼
(r) 𝛿v

𝛼
(r′)𝜒

𝛼𝛼
(r, r′)

+ (1∕2)∫ dr∫ dr′𝛿v
𝛽
(r)𝛿v

𝛽
(r′)𝜒

𝛽𝛽
(r, r′)

+ ∫ dr∫ dr′𝛿v
𝛼
(r) 𝛿v

𝛽
(r′)𝜒

𝛼𝛽
(r, r′)

+ ΔN
𝛼 ∫ dr𝛿v

𝛼
(r) f

𝛼𝛼
(r) + ΔN

𝛼 ∫ dr𝛿v
𝛽
(r) f

𝛽𝛼
(r)

+ ΔN
𝛽 ∫ dr𝛿v

𝛼
(r) f

𝛼𝛽
(r) + ΔN

𝛽 ∫ dr𝛿v
𝛽
(r) f

𝛽𝛽
(r) (21.15)

where, in writing the first-order terms with respect to the variations 𝛿v
𝛼
(r) and

𝛿v
𝛽
(r), we have replaced the terms [(𝛿E/𝛿v

𝛼
(r))N𝛼, N𝛽, v𝛽] and [(𝛿E/𝛿v

𝛽
(r))N𝛼, N𝛽, v𝛼]

with 𝜌
𝛼

(r) and 𝜌
𝛽

(r) respectively, by making use of the identities

𝜌
𝛼
(r) = [(𝛿E∕𝛿v

𝛼
(r))N𝛼, N𝛽, v𝛽] (21.16a)

and

𝜌
𝛽
(r) = [(𝛿E∕𝛿v

𝛽
(r))N𝛼, N𝛽, v𝛼] (21.16b)

Similarly in writing the second-order corrections with respect to the variations
𝛿v

𝛼
(r) and 𝛿v

𝛽
(r), we introduce the response kernels, 𝜒

𝛼𝛼
(r,r′), 𝜒

𝛽𝛽
(r,r′), and

𝜒
𝛼𝛽

(r,r′), defined as

𝜒
𝛼𝛼
(r,r′) = [(𝛿2E∕𝛿v

𝛼
(r) 𝛿v

𝛼
(r′))N𝛼, N𝛽, v𝛽] = (𝛿𝜌𝛼(r′)∕𝛿v

𝛼
(r))N𝛼, N𝛽, v𝛽

= (𝛿𝜌
𝛼
(r)∕𝛿v

𝛼
(r′))N𝛼, N𝛽, v𝛽 = 𝜒𝛼𝛼(r′, r) (21.17a)

𝜒
𝛽𝛽
(r, r′) = [(𝛿2E∕𝛿v

𝛽
(r)𝛿v

𝛽
(r′))N𝛼, N𝛽, v𝛼] = (𝛿𝜌𝛽(r′)∕𝛿v

𝛽
(r))N𝛼, N𝛽, v𝛼

= (𝛿𝜌
𝛽
(r)∕𝛿v

𝛽
(r′))N𝛼, N𝛽, v𝛼 = 𝜒𝛽𝛽(r′, r) (21.17b)

and

𝜒
𝛼𝛽
(r, r′) = [(𝛿2E∕𝛿v

𝛼
(r) 𝛿v

𝛽
(r′))N𝛼, N𝛽] = (𝛿𝜌𝛽(r′)∕𝛿v

𝛼
(r))N𝛼, N𝛽

= (𝛿𝜌
𝛼
(r)∕𝛿v

𝛽
(r′))N𝛼, N𝛽 = 𝜒𝛽𝛼(r′, r) (21.17c)
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which are known to play important role as widely useful nonlocal reactivity
descriptors [23]. In the last four terms, representing the mixed second-order correc-
tions, arising from the variations of {𝛿v

𝛼
(r), 𝛿v

𝛽
(r)} as well as {ΔN

𝛼
, ΔN

𝛽
}, the four

quantities f
𝛼𝛼

(r) [=(𝜕𝜌
𝛼
(r)/𝜕N

𝛼
)N𝛽, v𝛽], f

𝛼𝛽
(r) [=(𝜕𝜌

𝛽
(r)/𝜕N

𝛼
)N𝛽, v𝛼], f

𝛽𝛼
(r) [=(𝜕𝜌

𝛽
(r)/

𝜕N
𝛼
)N𝛽, v𝛼], and f

𝛽𝛽
(r) [=(𝜕𝜌

𝛽
(r)/𝜕N

𝛽
)N𝛼, v𝛼], which are known as Fukui functions,

have been used to replace the four coefficients appearing in the original expansion,
viz. the response functions [((𝛿/𝛿v

𝛼
(r))(𝜕E/𝜕N

𝛼
))N𝛽, v𝛽], [((𝛿/𝛿v

𝛽
(r))(𝜕E/𝜕N

𝛼
))N𝛽, v𝛼],

[((𝛿/𝛿v
𝛼
(r))(𝜕E/𝜕N

𝛽
))N𝛼, v𝛽], and [((𝛿/𝛿v

𝛽
(r))(𝜕E/𝜕N

𝛽
))N𝛼, v𝛼] in view of the identities

[3, 19], as shown below, viz.

[((𝛿∕𝛿v
𝛼
(r))(𝜕E∕𝜕N

𝛼
))N𝛽, v𝛽] = [(𝛿𝜇𝛼∕𝛿v

𝛼
(r))N𝛽, v𝛽] = (𝜕𝜌𝛼(r)∕𝜕N

𝛼
)N𝛽, v𝛽 = f

𝛼𝛼
(r)

(21.18a)

[((𝛿∕𝛿v
𝛼
(r))(𝜕E∕𝜕N

𝛽
))N𝛼, v𝛽] = [(𝛿𝜇𝛽∕𝛿v

𝛼
(r))N𝛼, v𝛽] = (𝜕𝜌𝛼(r)∕𝜕N

𝛽
)N𝛼, v𝛽 = f

𝛼𝛽
(r)

(21.18b)

[((𝛿∕𝛿v
𝛽
(r))(𝜕E∕𝜕N

𝛼
))N𝛽, v𝛼] = [(𝛿𝜇𝛼∕𝛿v

𝛽
(r))N𝛽, v𝛼] = (𝜕𝜌𝛽(r)∕𝜕N

𝛼
)N𝛽, v𝛼 = f

𝛽𝛼
(r)

(21.18c)

[((𝛿∕𝛿v
𝛽
(r))(𝜕E∕𝜕N

𝛽
))N𝛼, v𝛼] = [(𝛿𝜇𝛽∕𝛿v

𝛽
(r))N𝛼, v𝛼] = (𝜕𝜌𝛽(r)∕𝜕N

𝛽
)N𝛼, v𝛼 = f

𝛽𝛽
(r)

(21.18d)
The expression forΔE given by Eq. (21.15) can also be written in an alternative com-
pact form as

ΔE =
[
𝜇
𝛼
+ (1∕2)𝜂

𝛼𝛼
(ΔN

𝛼
) + (1∕2)𝜂

𝛼𝛽
(ΔN

𝛽
) + ∫ dr𝛿v

𝛼
(r) f

𝛼𝛼
(r) + ∫ dr𝛿v

𝛽
(r) f

𝛽𝛼
(r)

]
ΔN

𝛼

+ ∫ dr𝛿v
𝛼
(r)

[
𝜌
𝛼
(r) + (1∕2)∫ dr′𝛿v

𝛼
(r′)𝜒

𝛼𝛼
(r, r′) + (1∕2)∫ dr′𝛿v

𝛽
(r′)𝜒

𝛼𝛽
(r, r′)

]
+
[
𝜇
𝛽
+ (1∕2)𝜂

𝛽𝛽
(ΔN

𝛽
) + (1∕2)𝜂

𝛼𝛽
(ΔN

𝛼
) + ∫ dr𝛿v

𝛼
(r) f

𝛼𝛽
(r) + ∫ dr𝛿v

𝛽
(r) f

𝛽𝛽
(r)

]
ΔN

𝛽

+ ∫ dr𝛿v
𝛽
(r)

[
𝜌
𝛽
(r) + (1∕2)∫ dr′𝛿v

𝛽
(r′)𝜒

𝛽𝛽
(r, r′) + (1∕2)∫ dr′𝛿v

𝛽
(r′)𝜒

𝛼𝛽
(r, r′)

]
(21.19)

The energy change ΔE, as given by the above expressions (21.15) and (21.19), cor-
responds to a perturbation due to the potential change {𝛿v

𝛼
(r), 𝛿v

𝛽
(r)} and also the

electron number change {ΔN
𝛼
,ΔN

𝛽
}. It will be now worthwhile to find out what will

be the chemical potential in the perturbed state. This can be accomplished by taking
the derivative of the energy expression with respect to the number of electrons, viz.

𝜇
𝛼
= (𝜕Ev∕𝜕N

𝛼
)v𝛼(r),v𝛽(r),N𝛽

= 𝜇0
𝛼
+ 𝜂

𝛼𝛼
(ΔN

𝛼
) + 𝜂

𝛼𝛽
(ΔN

𝛽
) + ∫ dr𝛿v

𝛼
(r) f

𝛼𝛼
(r) + ∫ dr𝛿v

𝛽
(r) f

𝛽𝛼
(r)

(21.20a)
𝜇
𝛽
= (𝜕Ev∕𝜕N

𝛽
)v𝛼(r),v𝛽(r),N𝛼

= 𝜇0
𝛽
+ 𝜂

𝛽𝛽
(ΔN

𝛽
) + 𝜂

𝛼𝛽
(ΔN

𝛼
) + ∫ dr𝛿v

𝛼
(r) f

𝛼𝛽
(r) + ∫ dr𝛿v

𝛽
(r) f

𝛽𝛽
(r)

(21.20b)

where 𝜇0
𝛼

and 𝜇0
𝛽

refer to the unperturbed system.
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The energy change ΔE can also be estimated through a more detailed picture by
considering the perturbation in terms of the electron density change {𝛿𝜌

𝛼
(r), 𝛿𝜌

𝛽
(r)}

(which may include the electron number changes {ΔN
𝛼
,ΔN

𝛽
} as well as the density

shape changes), and of course the potential change {𝛿v
𝛼
(r), 𝛿v

𝛽
(r)}. Thus, one has,

in the density and potential representation, the expression

ΔE = Ev𝛼+𝛿v𝛼, v𝛽+𝛿v𝛽[𝜌𝛼(r) + 𝛿𝜌𝛼(r), 𝜌𝛽(r) + 𝛿𝜌𝛽(r)] − Ev𝛼,v𝛽[𝜌𝛼(r), 𝜌𝛽(r)] (21.21)

which can be evaluated easily by considering the energy expression

Ev𝛼,v𝛽[𝜌𝛼, 𝜌𝛽] = ∫ drv
𝛼
(r)𝜌

𝛼
(r) + ∫ drv

𝛽
(r)𝜌

𝛽
(r) + F[𝜌

𝛼
, 𝜌
𝛽
] (21.22)

with F[𝜌
𝛼
, 𝜌

𝛽
] representing a universal functional of the spin-component densi-

ties, consisting of contributions from the kinetic energy, classical Coulomb, and
exchange-correlation energy, the last two representing components of electron
repulsion energy density functionals.

Thus, ΔE can be expressed by considering the Taylor series expansion and retain-
ing terms up to second order, viz.

ΔE = 𝜇
𝛼 ∫ dr𝛿𝜌

𝛼
(r) + 𝜇

𝛽 ∫ dr𝛿𝜌
𝛽
(r) + ∫ dr𝛿v

𝛼
(r)𝜌

𝛼
(r) + ∫ dr𝛿v

𝛽
(r)𝜌

𝛽
(r)

+ (1∕2)∫ dr∫ dr′𝜂
𝛼𝛼
(r, r′)𝛿𝜌

𝛼
(r)𝛿𝜌

𝛼
(r′) + (1∕2)∫ dr

× ∫ dr′𝜂
𝛽𝛽
(r, r′) 𝛿𝜌

𝛽
(r)𝛿𝜌

𝛽
(r′)

+ ∫ dr∫ dr′𝜂
𝛼𝛽
(r, r′)𝛿𝜌

𝛼
(r)𝛿𝜌

𝛽
(r′) + (1∕2)∫ dr

× ∫ dr′𝛿v
𝛼
(r)𝛿v

𝛼
(r′)𝜒

𝛼𝛼
(r, r′)

+ (1∕2)∫ dr∫ dr′𝛿v
𝛽
(r)𝛿v

𝛽
(r′)𝜒

𝛽𝛽
(r, r′) + ∫ dr

× ∫ dr′𝛿v
𝛼
(r)𝛿v

𝛽
(r′)𝜒

𝛼𝛽
(r, r′)

+ ∫ dr∫ dr′𝛿v
𝛼
(r)𝛿𝜌

𝛼
(r′)𝜉

𝛼𝛼
(r, r′) + ∫ dr∫ dr′𝛿v

𝛽
(r)𝛿𝜌

𝛽
(r′)𝜉

𝛽𝛽
(r, r′)

+ ∫ dr∫ dr′𝛿v
𝛼
(r)𝛿𝜌

𝛽
(r′)𝜉

𝛼𝛽
(r, r′) + ∫ dr∫ dr′𝛿v

𝛽
(r)𝛿𝜌

𝛼
(r′)𝜉

𝛽𝛼
(r, r′)

(21.23)
In writing the first-order term, use has been made of the definitions of μ

𝛼
and μ

𝛽

as 𝜇
𝛼
= v

𝛼
(r)+ [𝛿F/𝛿𝜌

𝛼
(r)] and 𝜇

𝛽
= v

𝛽
(r)+ [𝛿F/𝛿𝜌

𝛽
(r)]. One can of course replace

the integrals ∫ dr𝛿𝜌
𝛼
(r) and ∫ dr𝛿𝜌

𝛽
(r) by ΔN

𝛼
and ΔN

𝛽
, respectively, which will

be done later. Similarly in writing the second-order contributions, where we have
introduced the hardness kernel [24–26]

𝜂
𝛼𝛼
(r, r′) = [(𝛿2E∕𝛿𝜌

𝛼
(r)𝛿𝜌

𝛼
(r′))]v𝛼,v𝛽 = [(𝛿2F∕𝛿𝜌

𝛼
(r)𝛿𝜌

𝛼
(r′))] (21.24a)

𝜂
𝛽𝛽
(r, r′) = [(𝛿2E∕𝛿𝜌

𝛽
(r)𝛿𝜌

𝛽
(r′))]v𝛼,v𝛽 = [(𝛿2F∕𝛿𝜌

𝛽
(r)𝛿𝜌

𝛽
(r′))] (21.24b)

𝜂
𝛼𝛽
(r, r′) = [(𝛿2E∕𝛿𝜌

𝛼
(r)𝛿𝜌

𝛽
(r′))]v𝛼,v𝛽 = [(𝛿2F∕𝛿𝜌

𝛼
(r)𝛿𝜌

𝛽
(r′))] = 𝜂

𝛽𝛼
(r, r′)

(21.24c)
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and another cross coefficient, the density–potential response function

𝜉
𝛼𝛼
(r, r′) = [(𝛿2E∕𝛿v

𝛼
(r)𝛿𝜌

𝛼
(r′))]v𝛽,𝜌𝛽 (21.25a)

𝜉
𝛽𝛽
(r, r′) = [(𝛿2E∕𝛿v

𝛽
(r)𝛿𝜌

𝛽
(r′))]v𝛼,𝜌𝛼 (21.25b)

𝜉
𝛼𝛽
(r, r′) = [(𝛿2E∕𝛿v

𝛼
(r)𝛿𝜌

𝛽
(r′))]v𝛽,𝜌𝛼 (21.25c)

𝜉
𝛽𝛼
(r, r′) = [(𝛿2E∕𝛿v

𝛽
(r)𝛿𝜌

𝛼
(r′))]v𝛼,𝜌𝛽 (21.25d)

The response functions 𝜒
𝛼𝛽

(r, r′) are defined as follows (analogous to Eq. (21.17) but
defined at constant density 𝜌).

𝜒
𝛼𝛼
(r, r′) = [(𝛿2E∕𝛿v

𝛼
(r)𝛿v

𝛼
(r′))]

𝜌𝛼,𝜌𝛽,v𝛽 = 𝜒𝛼𝛼(r′, r) (21.26a)

𝜒
𝛽𝛽
(r, r′) = [(𝛿2E∕𝛿v

𝛽
(r)𝛿v

𝛽
(r′))]

𝜌𝛼,𝜌𝛽,v𝛼 = 𝜒𝛽𝛽(r′, r) (21.26b)

𝜒
𝛼𝛽
(r, r′) = [(𝛿2E∕𝛿v

𝛼
(r)𝛿v

𝛽
(r′))]

𝜌𝛼,𝜌𝛽
= 𝜒

𝛽𝛼
(r′, r) (21.26c)

On comparison of this energy expression (21.23) with that of Eqs (21.15) and
(21.19), it is clear that the first-order terms are the same, while the second-order
terms involving density changes and the corresponding derivatives with respect
to density are different. This difference arises from the fact that in Eq. (21.15),
the variable changes are {𝛿N

𝛼
, 𝛿N

𝛽
}, whereas here these variable changes are

{𝛿𝜌
𝛼
(r), 𝛿𝜌

𝛽
(r)}. Also the response functions for the former correspond to constancy

of N
𝛼

or N
𝛽
, whereas here the variables kept constant are 𝜌

𝛼
(r) or 𝜌

𝛽
(r). Thus,

for example, the terms with hardness parameters 𝜂
𝛼𝛽

(r,r′), etc. are different, and
it is clear that for specific cases such as for the forms of the hardness kernel as
constants, these terms in Eq. (21.23) become same as the corresponding terms
in Eq. (21.15). Analogously, the terms involving the potential–density response
parameters are also apparently different. However, for cases of 𝜉

𝛼𝛽
(r,r′) being

equal to the Fukui function f
𝛼𝛽

(r), which can be rationalized by considering
𝜉
𝛼𝛽

(r,r′) = [(𝛿/𝛿v
𝛼
(r))(𝛿E/𝛿𝜌

𝛽
(r′))]=[(𝛿𝜇

𝛽
/𝛿v

𝛼
(r))] = (𝜕𝜌

𝛼
(r)/𝜕N

𝛽
)) = f

𝛼𝛽
(r), the

above-mentioned terms of Eq. (21.23) become same as the corresponding terms in
Eq. (21.15). However, here we treat these response functions as parameters and can
be suitably modeled.

The expressions for the chemical potentials can be obtained by taking the func-
tional derivatives of Eq. (21.23) with respect to density, viz.

𝜇
𝛼
= (𝛿E∕𝛿𝜌

𝛼
(r))v𝛼(r),v𝛽(r),𝜌𝛽

= 𝜇
𝛼

0 + ∫ dr′𝜂
𝛼𝛼
(r, r′)𝛿𝜌

𝛼
(r′) + ∫ dr′𝜂

𝛼𝛽
(r, r′)𝛿𝜌

𝛽
(r′)

+ ∫ dr′𝛿v
𝛼
(r′)𝜉

𝛼𝛼
(r′, r) + ∫ dr′𝛿v

𝛽
(r′)𝜉

𝛽𝛼
(r′, r) (21.27a)

𝜇
𝛽
= (𝛿E∕𝛿𝜌

𝛽
(r))v𝛼(r),v𝛽(r),𝜌𝛼

= 𝜇
𝛽

0 + ∫ dr′𝜂
𝛽𝛽
(r, r′)𝛿𝜌

𝛽
(r′) + ∫ dr′𝜂

𝛼𝛽
(r, r′)𝛿𝜌

𝛼
(r′)

+ ∫ dr′𝛿v
𝛽
(r′)𝜉

𝛽𝛽
(r′, r) + ∫ dr′𝛿v

𝛼
(r′)𝜉

𝛼𝛽
(r′, r) (21.27b)

where again 𝜇0
𝛼

and 𝜇0
𝛽

refer to the unperturbed system.
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21.4 Density Functional Perturbation Approach to
Energy Changes in Molecule Formation: A Coarse-Grained
Procedure

We have so far considered the number of electrons or electron density along with
the characterizing potentials for spin-polarized situations as the variables for
a many-electron system and considered changes in them as perturbation, thus
determining the changes in energy and chemical potential of the system. More
specifically, we have derived the expressions for the energy change ΔE and also
the chemical potential changes Δ𝜇

𝛼
and Δ𝜇

𝛽
, corresponding to up (𝛼)- and down

(𝛽)-spin electrons, by considering the perturbation in terms of the electron density
change {𝛿𝜌

𝛼
(r), 𝛿𝜌

𝛽
(r)} (or the electron number change {ΔN

𝛼
, ΔN

𝛽
}) and the

potential change {𝛿v
𝛼
(r), 𝛿v

𝛽
(r)}. While these expressions are of general validity

and these perturbations might correspond to different physical situations, we now
specialize to the case of molecule formation from the constituent atoms, where a
situation of this type arises, and the participating atoms experience changes in these
quantities due to mutual interatomic interaction. The unperturbed densities of the
individual atoms undergo changes due to mutual interatomic interaction, with
consequent changes in the potential experienced by the electrons of the individual
atoms.

Thus, considering the formation of an N-electron molecular system from Natom
number of atoms (which are now considered as subsystems of the whole molecular
system), the unperturbed system corresponds to the isolated atoms placed in a
certain geometrical arrangement {Ri}, (for i = 1,… Natom, and Ri denoting the
position of the ith atom), with no interatomic interaction (as happens when they
are infinite distance apart), and consequently the total energy of the molecular
system is just a sum of the energies of the individual atoms. This can be a suitable
reference (unperturbed) state for developing the perturbation approach to molecule
formation. Now if the interatomic interaction is switched on, clearly this becomes
a nonequilibrium situation and the electrons will feel the effect of the new changed
external potential, and the system will experience density reorganization and a new
equilibrium will be established, which is a stable state of the molecule formed with
new energy. The energy change associated with this process is an estimate of the
binding energy of the molecule and can be evaluated by considering the expression
derived earlier (Eq. (21.23)).

For simplification, we consider the total density change in the molecule as sum
of the density changes at each atom, i.e. 𝛿𝜌

𝛼
(r) = Σi𝛿𝜌𝛼

(i)(ri); 𝛿𝜌𝛽(r) = Σi𝛿𝜌𝛽
(i)(ri),

and similarly the total potential change as sum over the atomic sites, i.e.
𝛿v

𝛼
(r) = Σi𝛿v

𝛼

(i)(ri); 𝛿v
𝛽
(r) = Σi𝛿v

𝛽

(i)(ri), where ri = (r−Ri) denotes the ith
atom centered coordinate for the electron, i.e. with the origin located at the ith
atomic site and the superscript (i) denotes that the quantity corresponds to the
ith atomic region. It may be noted that the quantities 𝛿𝜌

𝛼

(i)(ri) and 𝛿𝜌
𝛽

(i)(ri), denot-
ing the density changes over the ith atomic region, may have contributions from
the shape factor (𝜎

𝛼

(i)(r), for 𝜌
𝛼

(i)(r) = N
𝛼

(i)
𝜎
𝛼

(i)(r) and similarly for spin 𝛽) change
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within the atomic region as well as the interatomic electron transfer mainly from/to
the atoms bonded to the ith atom. Making these substitutions into Eq. (21.23), one
can have the energy change expressed as

ΔE = Σi𝜇𝛼
(i) ∫ dri𝛿𝜌𝛼

(i)(ri) + Σi𝜇𝛽
(i) ∫ dri𝛿𝜌𝛽

(i)(ri)

+ ΣiΣj ∫ dri𝛿v
𝛼

(j)(ri)𝜌𝛼 (i)(ri) + ΣiΣj ∫ dri𝛿v
𝛽

(j)(ri)𝜌𝛽 (i)(ri)

+ (1∕2)ΣiΣj ∫ dri ∫ drj
′
𝜂
𝛼𝛼

(ij)(ri, rj
′)𝛿𝜌

𝛼

(i)(ri)𝛿𝜌𝛼 (j)(rj
′)

+ (1∕2)ΣiΣj ∫ dri ∫ drj
′
𝜂
𝛽𝛽

(ij)(ri, rj
′)𝛿𝜌

𝛽

(i)(ri)𝛿𝜌𝛽 (j)(rj
′)

+ ΣiΣj ∫ dri ∫ drj
′
𝜂
𝛼𝛽

(ij)(ri, rj
′)𝛿𝜌

𝛼

(i)(ri)𝛿𝜌𝛽 (j)(rj
′)

+ (1∕2)ΣiΣj ∫ dri ∫ drj
′
𝛿v

𝛼

(i)(ri)𝛿v
𝛼

(j)(rj
′)𝜒

𝛼𝛼

(ij)(ri, rj
′)

+ (1∕2)ΣiΣj ∫ dri ∫ drj
′
𝛿v

𝛽

(i)(ri)𝛿v
𝛽

(j)(rj
′)𝜒

𝛽𝛽

(ij)(ri, rj
′)

+ ΣiΣj ∫ dri ∫ drj
′
𝛿v

𝛼

(i)(ri)𝛿v
𝛽

(j)(rj
′)𝜒

𝛼𝛽

(ij)(ri, rj
′)

+ ΣiΣj ∫ dri ∫ drj
′
𝛿v

𝛼

(i)(ri)𝛿𝜌𝛼 (j)(rj
′)𝜉

𝛼𝛼

(ij)(ri, rj
′)

+ ΣiΣj ∫ dri ∫ drj
′
𝛿v

𝛽

(i)(ri)𝛿𝜌𝛽 (j)(rj
′)𝜉

𝛽𝛽

(ij)(ri, rj
′)

+ ΣiΣj ∫ dri ∫ drj
′
𝛿v

𝛼

(i)(ri)𝛿𝜌𝛽 (j)(rj
′)𝜉

𝛼𝛽

(ij)(ri, rj
′)

+ ΣiΣj ∫ dri ∫ drj
′
𝛿v

𝛽

(i)(ri)𝛿𝜌𝛼 (j)(rj
′)𝜉

𝛽𝛼

(ij)(ri, rj
′) (21.28)

Within this approach, the expressions for the chemical potentials given by
Eq. (21.27) simplify to

𝜇
𝛼

(i) = 𝜇
𝛼

0(i) + Σj ∫ drj
′
𝜂
𝛼𝛼

(ij)(ri, rj
′)𝛿𝜌

𝛼

(j)(rj
′) + Σj ∫ drj

′
𝜂
𝛼𝛽

(ij)(ri, rj
′)𝛿𝜌

𝛽

(j)(rj
′)

+ Σj ∫ drj
′
𝛿v

𝛼

(j)(rj
′)𝜉

𝛼𝛼

(ji)(rj
′
, ri) + Σj ∫ drj

′
𝛿v

𝛽

(j)(rj
′)𝜉

𝛽𝛼

(ji)(rj
′
, ri) (21.29a)

𝜇
𝛽

(i) = 𝜇
𝛽

0(i) + Σj ∫ drj
′
𝜂
𝛽𝛽

(ij)(ri, rj
′)𝛿𝜌

𝛽

(j)(rj
′) + Σj ∫ drj

′
𝜂
𝛼𝛽

(ij)(ri, rj
′)𝛿𝜌

𝛼

(j)(rj
′)

+ Σj ∫ drj
′
𝛿v

𝛽

(j)(rj
′)𝜉

𝛽𝛽

(ji)(rj
′
, ri) + Σj ∫ drj

′
𝛿v

𝛼

(j)(rj
′)𝜉

𝛼𝛽

(ji)(rj
′
, ri) (21.29b)

where again 𝜇
𝛼

0(i) and 𝜇
𝛽

0(i) refer to the unperturbed ith atomic system.

21.5 A Coarse-Graining Procedure: Lattice Model
for Molecular Systems

Equations (21.28) and (21.29) form the basis for developing a lattice model for
molecules. However, the expressions for the energy and chemical potential changes,
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for spin-polarized situations, as a consequence of molecule formation, depend on
density and potential variables, which are functions of the coordinate r, which
although provide a more detailed and significant information, are more cumber-
some as well. To provide simplifications, we adopt what is known as coarse-graining
approach.

For this purpose, let us first consider the susceptibility or response parameters
that enter the perturbation theory expressions. These quantities are: spin-dependent
chemical potentials (𝜇

𝛼

(i), 𝜇
𝛽

(i)), which are atomic parameters for the ith atom,
and the rest are interatomic parameters, for ith and jth atoms, viz. the hardness
kernels or density–density response functions (𝜂

𝛼𝛼

(ij)(ri, rj
′), 𝜂

𝛽𝛽

(ij)(ri, rj
′), 𝜂

𝛼𝛽

(ij)(ri,
rj
′)), potential–potential response functions (𝜒

𝛼𝛼

(ij)(ri, rj
′), 𝜒

𝛽𝛽

(ij)(ri, rj
′), 𝜒

𝛼𝛽

(ij)(ri,
rj
′)), density–potential response functions (𝜉

𝛼𝛼

(ij)(ri, rj
′), 𝜉

𝛽𝛽

(ij)(ri, rj
′), 𝜉

𝛼𝛽

(ij)

(ri, rj
′), 𝜉

𝛽𝛼

(ij)(ri, rj
′)), and the atom–atom Fukui functions f

𝛼𝛽

(ij)(ri, rj). The atomic
chemical potentials can easily be obtained through DFT calculation or using the
expression (I +A)/2, within the finite difference approximation. Similarly the Fukui
function can also be obtained through direct calculation or within finite difference
approximation.

The spin-dependent response properties, viz. (𝜂
𝛾𝛿

(ij)(ri, rj
′), (𝜒

𝛾𝛿

(ij)(ri, rj
′), and

(𝜉
𝛾𝛿

(ij)(ri, rj
′), where 𝛾 and 𝛿 can denote the spins 𝛼 or 𝛽, can be suitably modeled

within a coarse-grained prescription so that the lattice model is recovered, which
provides a rather simpler scheme to implement practical applications to large
molecular systems or to generate force fields in classical molecular dynamics
simulations.

For this purpose, the r-dependence (or (r, r′)-dependence) of various quantities is
to be modeled, for which we make use of Taylor series expansion around the atomic
sites. Thus, the perturbing potentials 𝛿v

𝛼

(i)(ri) and 𝛿v
𝛽

(i)(ri), which are one-particle
functions, can be written as

𝛿v
𝛼

(i)(ri) = 𝛿v
𝛼

(i)(ri = 0) + ri ⋅ ∇i𝛿v
𝛼

(i)(ri)
|||ri=0 + (1∕2)ri

2∇i
2
𝛿v

𝛼

(i)(ri)
|||ri=0

+…

= 𝛿v
𝛼

(i)(i) + ri ⋅ ∇i𝛿v
𝛼

(i)(i) + (1∕2)ri
2∇i

2
𝛿v

𝛼

(i)(i) +… (21.30a)

𝛿v
𝛽

(i)(ri) = 𝛿v
𝛽

(i)(ri = 0) + ri ⋅ ∇i𝛿v
𝛽

(i)(ri)
|||ri=0 + (1∕2)ri

2∇i
2
𝛿v

𝛽

(i)(ri)
|||ri=0

+…

= 𝛿v
𝛽

(i)(i) + ri ⋅ ∇i𝛿v
𝛽

(i)(i) + (1∕2)ri
2∇i

2
𝛿v

𝛽

(i)(i) +… (21.30b)

by retaining terms up to second order. Similarly the two-particle response kernels 𝜂,
𝜒 , and 𝜉, can be written, by retaining terms up to second order, as

𝜂
𝛾𝛿

(ij)(ri, rj
′) = 𝜂

𝛾𝛿

(ij)(i, j) + ri ⋅ ∇i𝜂𝛾𝛿
(ij)(i, j) + rj

′ ⋅ ∇j𝜂𝛾𝛿
(ij)(i, j) + (1∕2)ri

2 ⋅ ∇i
2
𝜂
𝛾𝛿

(ij)(i, j)

+ (1∕2)rj
′2 ⋅ ∇j

2
𝜂
𝛾𝛿

(ij)(i, j) + rirj
′ ⋅ ∇i∇j𝜂𝛾𝛿

(ij)(i, j) +… (21.31a)
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𝜒
𝛾𝛿

(ij)(ri, rj
′) = 𝜒

𝛾𝛿

(ij)(i, j) + ri ⋅ ∇i𝜒𝛾𝛿
(ij)(i, j)

+ rj
′ ⋅ ∇j𝜒𝛾𝛿

(ij)(i, j) + (1∕2)ri
2 ⋅ ∇i

2
𝜒
𝛾𝛿

(ij)(i, j)

+ (1∕2)rj
′2 ⋅ ∇j

2
𝜒
𝛾𝛿

(ij)(i, j) + rirj
′ ⋅ ∇i∇j𝜒𝛾𝛿

(ij)(i, j) +… (21.31b)

𝜉
𝛾𝛿

(ij)(ri, rj
′) = 𝜉

𝛾𝛿

(ij)(i, j) + ri ⋅ ∇i𝜉𝛾𝛿
(ij)(i, j) + rj

′ ⋅ ∇j𝜉𝛾𝛿
(ij)(i, j) + (1∕2)ri

2 ⋅ ∇i
2
𝜉
𝛾𝛿

(ij)(i, j)

+ (1∕2)rj
′2 ⋅ ∇j

2
𝜉
𝛾𝛿

(ij)(i, j) + rirj
′ ⋅ ∇i∇j𝜉𝛾𝛿

(ij)(i, j) +… (21.31c)

where the arguments (i) and (i,j) indicate that the relevant functions are evaluated
at the atomic sites (ri = 0) and (ri = 0, rj

′ = 0), i.e. (r =Ri) and (r =Ri, r′ = Rj),
respectively. Here, again 𝛾 and 𝛿 each denote one of the two spins 𝛼 or 𝛽.

Substituting these expressions into Eqs (21.28) and (21.29), and retaining terms
up to desired (first) order, the expressions for ΔE and (𝜇

𝛼

(i), 𝜇
𝛽

(i)) simplify to

ΔE = Σi𝜇𝛼
(i) ∫ dri𝛿𝜌𝛼

(i)(ri) + Σi𝜇𝛽
(i) ∫ dri𝛿𝜌𝛽

(i)(ri)

+ ΣiΣj ∫ dri𝛿v
𝛼

(j)(i)𝜌
𝛼

(i)(ri) + ΣiΣj ∫ dri𝛿v
𝛽

(j)(i)𝜌
𝛽

(i)(ri)

+ ΣiΣj ∫ driri ⋅ ∇i𝛿v
𝛼

(j)(i)𝜌
𝛼

(i)(ri) + ΣiΣj ∫ driri ⋅ ∇i𝛿v
𝛽

(j)(i)𝜌
𝛽

(i)(ri)

+ (1∕2)ΣiΣj ∫ dri ∫ drj
′
𝜂
𝛼𝛼

(ij)(i, j)𝛿𝜌
𝛼

(i)(ri)𝛿𝜌𝛼 (j)(rj
′)

+ (1∕2)ΣiΣj ∫ dri ∫ drj
′ri ⋅ ∇i𝜂𝛼𝛼

(ij)(i, j)𝛿𝜌
𝛼

(i)(ri)𝛿𝜌𝛼 (j)(rj
′)

+ (1∕2)ΣiΣj ∫ dri ∫ drj
′rj

′ ⋅ ∇j𝜂𝛼𝛼
(ij)(i, j)𝛿𝜌

𝛼

(i)(ri)𝛿𝜌𝛼 (j)(rj
′)

+ (1∕2)ΣiΣj ∫ dri ∫ drj
′rirj

′ ⋅ ∇i∇j𝜂𝛼𝛼
(ij)(i, j)𝛿𝜌

𝛼

(i)(ri)𝛿𝜌𝛼 (j)(rj
′)

+ (1∕2)ΣiΣj ∫ dri ∫ drj
′
𝜂
𝛽𝛽

(ij)(i, j)𝛿𝜌
𝛽

(i)(ri)𝛿𝜌𝛽 (j)(rj
′)

+ (1∕2)ΣiΣj ∫ dri ∫ drj
′ri ⋅ ∇i𝜂𝛽𝛽

(ij)(i, j)𝛿𝜌
𝛽

(i)(ri)𝛿𝜌𝛽 (j)(rj
′)

+ (1∕2)ΣiΣj ∫ dri ∫ drj
′rj

′ ⋅ ∇j𝜂𝛽𝛽
(ij)(i, j)𝛿𝜌

𝛽

(i)(ri)𝛿𝜌𝛽 (j)(rj
′)

+ (1∕2)ΣiΣj ∫ dri ∫ drj
′rirj

′ ⋅ ∇i∇j𝜂𝛽𝛽
(ij)(i, j)𝛿𝜌

𝛽

(i)(ri)𝛿𝜌𝛽 (j)(rj
′)

+ ΣiΣj ∫ dri ∫ drj
′
𝜂
𝛼𝛽

(ij)(i, j)𝛿𝜌
𝛼

(i)(ri)𝛿𝜌𝛽 (j)(rj
′)

+ ΣiΣj ∫ dri ∫ drj
′ri ⋅ ∇i𝜂𝛼𝛽

(ij)(i, j)𝛿𝜌
𝛼

(i)(ri)𝛿𝜌𝛽 (j)(rj
′)

+ ΣiΣj ∫ dri ∫ drj
′rj

′ ⋅ ∇j𝜂𝛼𝛽
(ij)(i, j)𝛿𝜌

𝛼

(i)(ri)𝛿𝜌𝛽 (j)(rj
′)

+ (1∕2)ΣiΣj ∫ dri ∫ drj
′rirj

′ ⋅ ∇i∇j𝜂𝛼𝛽
(ij)(i, j)𝛿𝜌

𝛼

(i)(ri)𝛿𝜌𝛽 (j)(rj
′)

+ (1∕2)ΣiΣj ∫ dri ∫ drj
′
𝛿v

𝛼

(i)(ri)𝛿v
𝛼

(j)(rj
′)𝜒

𝛼𝛼

(ij)(i, j)



21.5 A Coarse-Graining Procedure: Lattice Model for Molecular Systems 433

+ (1∕2)ΣiΣj ∫ dri ∫ drj
′
𝛿v

𝛼

(i)(ri)𝛿v
𝛼

(j)(rj
′)ri ⋅ ∇i𝜒𝛼𝛼

(ij)(i, j)

+ (1∕2)ΣiΣj ∫ dri ∫ drj
′
𝛿v

𝛼

(i)(ri)𝛿v
𝛼

(j)(rj
′)rj ⋅ ∇j

′
𝜒
𝛼𝛼

(ij)(i, j)

+ (1∕2)ΣiΣj ∫ dri ∫ drj
′
𝛿v

𝛽

(i)(ri)𝛿v
𝛽

(j)(rj
′)𝜒

𝛽𝛽

(ij)(i, j)

+ (1∕2)ΣiΣj ∫ dri ∫ drj
′
𝛿v

𝛽

(i)(ri)𝛿v
𝛽

(j)(rj
′)ri ⋅ ∇i𝜒𝛽𝛽

(ij)(i, j)

+ (1∕2)ΣiΣj ∫ dri ∫ drj
′
𝛿v

𝛽

(i)(ri)𝛿v
𝛽

(j)(rj
′)rj

′ ⋅ ∇j𝜒𝛽𝛽
(ij)(i, j)

+ ΣiΣj ∫ dri ∫ drj
′
𝛿v

𝛼

(i)(ri)𝛿v
𝛽

(j)(rj
′)𝜒

𝛼𝛽

(ij)(i, j)

+ ΣiΣj ∫ dri ∫ drj
′
𝛿v

𝛼

(i)(ri)𝛿v
𝛽

(j)(rj
′)ri ⋅ ∇i𝜒𝛼𝛽

(ij)(i, j)

+ ΣiΣj ∫ dri ∫ drj
′
𝛿v

𝛼

(i)(ri)𝛿v
𝛽

(j)(rj
′)rj

′ ⋅ ∇j𝜒𝛼𝛽
(ij)(i, j)

+ ΣiΣj ∫ dri ∫ drj
′
𝛿v

𝛼

(i)(ri)𝛿𝜌𝛼 (j)(rj
′)𝜉

𝛼𝛼

(ij)(i, j)

+ ΣiΣj ∫ dri ∫ drj
′
𝛿v

𝛼

(i)(ri)𝛿𝜌𝛼 (j)(rj
′)ri ⋅ ∇i𝜉𝛼𝛼

(ij)(i, j)

+ ΣiΣj ∫ dri ∫ drj
′
𝛿v

𝛼

(i)(ri)𝛿𝜌𝛼 (j)(rj
′)rj

′ ⋅ ∇j𝜉𝛼𝛼
(ij)(i, j)

+ ΣiΣj ∫ dri ∫ drj
′
𝛿v

𝛼

(i)(ri)𝛿𝜌𝛼 (j)(rj
′)rirj

′ ⋅ ∇i∇j𝜉𝛼𝛼
(ij)(i, j)

+ ΣiΣj ∫ dri ∫ drj
′
𝛿v

𝛽

(i)(ri)𝛿𝜌𝛽 (j)(rj
′)𝜉

𝛽𝛽

(ij)( i, j)

+ ΣiΣj ∫ dri ∫ drj
′
𝛿v

𝛽

(i)(ri)𝛿𝜌𝛽 (j)(rj
′)ri ⋅ ∇i𝜉𝛽𝛽

(ij)( i, j)

+ ΣiΣj ∫ dri ∫ drj
′
𝛿v

𝛽

(i)(ri)𝛿𝜌𝛽 (j)(rj
′)rj

′ ⋅ ∇j𝜉𝛽𝛽
(ij)( i, j)

+ ΣiΣj ∫ dri ∫ drj
′
𝛿v

𝛽

(i)(ri)𝛿𝜌𝛽 (j)(rj
′)rirj

′ ⋅ ∇i∇j𝜉𝛽𝛽
(ij)(i, j)

+ ΣiΣj ∫ dri ∫ drj
′
𝛿v

𝛼

(i)(ri)𝛿𝜌𝛽 (j)(rj
′)𝜉

𝛼𝛽

(ij)( i, j)

+ ΣiΣj ∫ dri ∫ drj
′
𝛿v

𝛼

(i)(ri)𝛿𝜌𝛽 (j)(rj
′)ri ⋅ ∇i𝜉𝛼𝛽

(ij)( i, j)

+ ΣiΣj ∫ dri ∫ drj
′
𝛿v

𝛼

(i)(ri)𝛿𝜌𝛽 (j)(rj
′)rj

′ ⋅ ∇j𝜉𝛼𝛽
(ij)( i, j)

+ ΣiΣj ∫ dri ∫ drj
′
𝛿v

𝛼

(i)(ri)𝛿𝜌𝛽 (j)(rj
′)rirj

′ ⋅ ∇i∇j𝜉𝛼𝛽
(ij)(i, j)

+ ΣiΣj ∫ dri ∫ drj
′
𝛿v

𝛽

(i)(ri)𝛿𝜌𝛼 (j)(rj
′)𝜉

𝛽𝛼

(ij)( i, j)

+ ΣiΣj ∫ dri ∫ drj
′
𝛿v

𝛽

(i)(ri)𝛿𝜌𝛼 (j)(rj
′)ri ⋅ ∇i𝜉𝛽𝛼

(ij)( i, j)
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+ ΣiΣj ∫ dri ∫ drj
′
𝛿v

𝛽

(i)(ri)𝛿𝜌𝛼 (j)(rj
′)rj

′ ⋅ ∇j𝜉𝛽𝛼
(ij)( i, j)

+ ΣiΣj ∫ dri ∫ drj
′
𝛿v

𝛽

(i)(ri)𝛿𝜌𝛽 (j)(rj
′)rirj

′ ⋅ ∇i∇j𝜉𝛽𝛽
(ij)(i, j) (21.32)

Similarly, the expressions for the chemical potentials given by Eq. (21.29)
simplify to

𝜇
𝛼

(i) = 𝜇
𝛼

0(i) + 𝛿v
𝛼

(j)(i) + ri ⋅ ∇i𝛿v
𝛼

(j)(i) + Σj ∫ drj
′
𝜂
𝛼𝛼

(ij)(i, j)𝛿𝜌
𝛼
(rj
′)

+ Σj ∫ drj
′
𝜂
𝛼𝛽

(ij)(i, j)𝛿𝜌
𝛽
(rj
′) + Σj ∫ drj

′ri ⋅ ∇i𝜂𝛼𝛼
(ij)(i, j)𝛿𝜌

𝛼
(rj
′)

+ Σj ∫ drj
′ri ⋅ ∇i𝜂𝛼𝛽

(ij)( i, j)𝛿𝜌
𝛽
(rj
′) + Σj ∫ drj

′rj
′ ⋅ ∇j𝜂𝛼𝛼

(ij)(i, j)𝛿𝜌
𝛼
(rj
′)

+ Σj ∫ drj
′rj

′ ⋅ ∇j𝜂𝛼𝛽
(ij)( i, j)𝛿𝜌

𝛽
(rj
′)

+ Σj ∫ drj
′rirj

′ ⋅ ∇i∇j𝜂𝛼𝛼
(ij)(i, j)𝛿𝜌

𝛼

(j)(rj
′)

+ Σj ∫ drj
′rirj

′ ⋅ ∇i∇j𝜂𝛼𝛽
(ij)(i, j)𝛿𝜌

𝛽

(j)(rj
′) + Σj ∫ drj

′
𝛿v

𝛼
(rj
′)𝜉

𝛼𝛼

(ji)(j, i)

+ Σj ∫ drj
′
𝛿v

𝛽
(rj
′)𝜉

𝛽𝛼

(ji)(j, i) + Σj ∫ drj
′
𝛿v

𝛼
(rj
′)ri ⋅ ∇i𝜉𝛼𝛼

(ji)(j, i)

+ Σj ∫ drj
′
𝛿v

𝛽
(rj
′)ri ⋅ ∇i𝜉𝛽𝛼

(ji)(j, i) + Σj ∫ drj
′
𝛿v

𝛼
(rj
′)rj

′ ⋅ ∇j𝜉𝛼𝛼
(ji)(j, i)

+ Σj ∫ drj
′
𝛿v

𝛽
(rj
′)rj

′ ⋅ ∇j𝜉𝛽𝛼
(ji)(j, i) (21.33a)

𝜇
𝛽

(i) =𝜇
𝛽

0(i) + 𝛿v
𝛽

(j)(i) + ri ⋅ ∇i𝛿v
𝛽

(j)(i) + Σj ∫ drj
′
𝜂
𝛽𝛽

(ij)(i, j)𝛿𝜌
𝛽
(rj
′)

+ Σj ∫ drj
′
𝜂
𝛼𝛽

(ij)(i, j)𝛿𝜌
𝛼
(rj
′) + Σj ∫ drj

′ri ⋅ ∇i𝜂𝛽𝛽
(ij)(i, j)𝛿𝜌

𝛽
(rj
′)

+ Σj ∫ drj
′ri ⋅ ∇i𝜂𝛼𝛽

(ij)(i, j)𝛿𝜌
𝛼
(rj
′) + Σj ∫ drj

′rj
′ ⋅ ∇j𝜂𝛽𝛽

(ij)(i, j)𝛿𝜌
𝛽
(rj
′)

+ Σj ∫ drj
′rj

′ ⋅ ∇j𝜂𝛼𝛽
(ij)(i, j)𝛿𝜌

𝛼
(rj
′) + Σj ∫ drj

′rirj
′ ⋅ ∇i∇j𝜂𝛽𝛼

(ij)(i, j)𝛿𝜌
𝛼

(j)(rj
′)

+ Σj ∫ drj
′rirj

′ ⋅ ∇i∇j𝜂𝛽𝛽
(ij)(i, j)𝛿𝜌

𝛽

(j)(rj
′) + Σj ∫ drj

′
𝛿v

𝛽
(rj
′)𝜉

𝛽𝛽

(ji)(j, i)

+ Σj ∫ drj
′
𝛿v

𝛼
(rj
′)𝜉

𝛼𝛽

(ji)(j, i) + Σj ∫ drj
′
𝛿v

𝛽
(rj
′)ri ⋅ ∇i𝜉𝛽𝛽

(ji)(j, i)

+ Σj ∫ drj
′
𝛿v

𝛼
(rj
′)ri ⋅ ∇i𝜉𝛼𝛽

(ji)(j, i) + Σj ∫ drj
′
𝛿v

𝛽
(rj
′)rj

′ ⋅ ∇j𝜉𝛽𝛽
(ji)(j, i)

+ Σj ∫ drj
′
𝛿v

𝛼
(rj
′)rj

′ ⋅ ∇j𝜉𝛼𝛽
(ji)(j, i) (21.33b)

The higher-order terms, which will contribute to the final result, are only written
here. Others are omitted for simplicity. These expressions can be further simplified
in terms of coarse-grained variables. Thus the energy expression simplifies to
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ΔE = Σi𝜇𝛼
(i)ΔN

𝛼
(i) + Σi𝜇𝛽

(i)ΔN
𝛽
(i)

+ ΣiΣj𝛿v
𝛼

(j)(i)N
𝛼

(i)(i) + ΣiΣj𝛿v
𝛽

(j)(i)N
𝛽

(i)(i)

+ ΣiΣjp𝛼 (i)(i) ⋅ ∇i𝛿v
𝛼

(j)(i) + ΣiΣjp𝛽 (i)(i) ⋅ ∇i𝛿v
𝛽

(j)(i)

+ (1∕2)ΣiΣj𝜂𝛼𝛼
(ij)(i, j)ΔN

𝛼

(i)(i)ΔN
𝛼

(j)(j)

+ (1∕2)ΣiΣjp𝛼(i) ⋅ ∇i𝜂𝛼𝛼
(ij)(i, j)ΔN

𝛼

(j)(j)

+ (1∕2)ΣiΣjp𝛼(j) ⋅ ∇j𝜂𝛼𝛼
(ij)(i, j)ΔN

𝛼

(i)(i)

+ (1∕2)ΣiΣj𝜂𝛽𝛽
(ij)(i, j)ΔN

𝛽

(i)(i)ΔN
𝛽

(j)(j)

+ (1∕2)ΣiΣjp𝛽(i) ⋅ ∇i𝜂𝛽𝛽
(ij)(i, j)ΔN

𝛽

(j)(j)

+ (1∕2)ΣiΣjp𝛽(j) ⋅ ∇j𝜂𝛼𝛼
(ij)(i, j)ΔN

𝛽

(i)(i)

+ ΣiΣj𝜂𝛼𝛽
(ij)(i, j)ΔN

𝛼

(i)(i)ΔN
𝛽

(j)(j)

+ (1∕2)ΣiΣjp𝛼(i) ⋅ ∇i𝜂𝛼𝛽
(ij)(i, j)ΔN

𝛽

(j)(j)

+ (1∕2)ΣiΣjp𝛼(j) ⋅ ∇j𝜂𝛼𝛼
(ij)(i, j)ΔN

𝛽

(i)(i)

+ (1∕2)ΣiΣjp𝛼(i)p𝛼(j) ⋅ ∇i∇j𝜂𝛼𝛼
(ij)(i, j)

+ (1∕2)ΣiΣjp𝛽(i)p𝛽(j) ⋅ ∇i∇j𝜂𝛽𝛽
(ij)(i, j)

+ ΣiΣjp𝛼(i)p𝛽(j) ⋅ ∇i∇j𝜂𝛼𝛽
(ij)(i, j)

+ (1∕2)ΣiΣjΔv
𝛼
(i)Δv

𝛼
(j)𝜒

𝛼𝛼

(ij)(i, j)

+ (1∕2)ΣiΣjΠ𝛼(i) ⋅ ∇i𝜒𝛼𝛼
(ij)(i, j)Δv

𝛼
(j) + (1∕2)ΣiΣjΠ𝛼(j) ⋅ ∇j𝜒𝛼𝛼

(ij)(i, j)Δv
𝛼
(i)

+ (1∕2)ΣiΣjΔv
𝛽
(i)Δv

𝛽
(j)𝜒

𝛽𝛽

(ij)(i, j)

+ (1∕2)ΣiΣjΠ𝛽(i) ⋅ ∇i𝜒𝛽𝛽
(ij)(i, j)Δv

𝛽
(j) + (1∕2)ΣiΣjΠ𝛽(j) ⋅ ∇i𝜒𝛽𝛽

(ij)(i, j)Δv
𝛽
(i)

+ ΣiΣjΔv
𝛼
(i)Δv

𝛽
(j)𝜒

𝛼𝛽

(ij)(i, j)

+ ΣiΣjΠ𝛼(i) ⋅ ∇i𝜒𝛼𝛽
(ij)(i, j)Δv

𝛽
(j) + ΣiΣjΠ𝛽(j) ⋅ ∇j𝜒𝛼𝛽

(ij)(i, j)Δv
𝛼
(i)

+ ΣiΣjΔv
𝛼
(i)𝜉

𝛼𝛼

(ji)(j, i)ΔN
𝛼
(j) + ΣiΣjΔv

𝛽
(i)𝜉

𝛽𝛽

(ji)(j, i)ΔN
𝛽
(j)

+ ΣiΣjΔv
𝛼
(i)𝜉

𝛼𝛽

(ji)(j, i)ΔN
𝛽
(j) + ΣiΣjΔv

𝛽
(i)𝜉

𝛽𝛼

(ji)(j, i)ΔN
𝛼
(j)

+ ΣiΣjΠ𝛼(i) ⋅ ∇i𝜉𝛼𝛼
(ij)(i, j)ΔN

𝛼
(j) + ΣiΣjΔv

𝛼
(i)p

𝛼
(j) ⋅ ∇j𝜉𝛼𝛼

(ij)(i, j)

+ ΣiΣjΠ𝛽(i) ⋅ ∇i𝜉𝛽𝛽
(ij)(i, j)ΔN

𝛽
(j) + ΣiΣjΔv

𝛽
(i)p

𝛽
(j) ⋅ ∇j𝜉𝛽𝛽

(ij)(i, j)

+ ΣiΣjΠ𝛼(i) ⋅ ∇i𝜉𝛼𝛽
(ij)(i, j)ΔN

𝛽
(j) + ΣiΣjΔv

𝛼
(i)p

𝛽
(j) ⋅ ∇j𝜉𝛼𝛽

(ij)(i, j)

+ ΣiΣjΠ𝛽(i) ⋅ ∇i𝜉𝛽𝛼
(ij)(i, j)ΔN

𝛼
(j) + ΣiΣjΔv

𝛽
(i)p

𝛼
(j) ⋅ ∇j𝜉𝛽𝛼

(ij)(i, j) (21.34)

where we define for 𝛼-spin, the change in the number of electrons, ΔN
𝛼
(j) =

∫ drj
′
𝛿𝜌

𝛼
(rj

′) and the atomic dipole moment p
𝛼
(j) = ∫ drj

′ rj
′
𝛿𝜌

𝛼

(j)(rj
′), and the

quantities Δv
𝛼

(j)(j) = ∫ drj
′
𝛿v

𝛼

(j)(rj
′), Π

𝛼
(j) = ∫ drj

′
𝛿v

𝛼

(j)(rj
′)rj

′, all located at the
jth site.

Similar expressions for 𝛽-spin are:ΔN
𝛽
(j)= ∫ drj

′
𝛿𝜌

𝛽

(j)(rj
′) and the atomic dipole

moment p
𝛽
(j) = ∫ drj

′ rj
′
𝛿𝜌

𝛽

(j)(rj
′), and the quantities Δv

𝛽

(j)(j) = ∫ drj
′
𝛿v

𝛽

(j)(rj
′),

Π
𝛽
(j) = ∫ drj

′
𝛿v

𝛽

(j)(rj
′)rj

′, again all located at the jth site.
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Similarly, the chemical potential expressions become

𝜇
𝛼

(i) = 𝜇
𝛼

0(i) + 𝛿v
𝛼

(j)(i) + ri ⋅ ∇i𝛿v
𝛼

(j)(i)

+ Σj𝜂𝛼𝛼
(ij)(i, j)ΔN

𝛼
(j) + Σj𝜂𝛼𝛽

(ij)(i, j)ΔN
𝛽
(j)

+ ri ⋅ Σj∇i𝜂𝛼𝛼
(ij)(i, j)ΔN

𝛼
(j) + ri ⋅ Σj∇i𝜂𝛼𝛽

(ij)( i, j)ΔN
𝛽
(j)

+ Σjp𝛼(j) ⋅ ∇j𝜂𝛼𝛼
(ij)(i, j) + Σjp𝛽(j) ⋅ ∇j𝜂𝛼𝛽

(ij)(i, j)

+ ri ⋅
[
Σjp𝛼(j) ⋅ ∇i∇j𝜂𝛼𝛼

(ij)(i, j) + Σjp𝛽(j) ⋅ ∇i∇j𝜂𝛼𝛽
(ij)(i, j)

]
+ ΣjΔv

𝛼
(j)𝜉

𝛼𝛼

(ji)(j, i) + ΣjΔv
𝛽
(j)𝜉

𝛽𝛼

(ji)(j, i)

+ ri ⋅ ΣjΔv
𝛼
(j)∇i𝜉𝛼𝛼

(ji)(j, i) + ri ⋅ ΣjΔv
𝛽
(j)∇i𝜉𝛽𝛼

(ji)(j, i)

+ ΣjΠ𝛼(j) ⋅ ∇j𝜉𝛼𝛼
(ji)(j, i) + ΣjΠ𝛽(j) ⋅ ∇j𝜉𝛽𝛼

(ji)(j, i) (21.35a)

𝜇
𝛽

(i) = 𝜇
𝛽

0(i) + 𝛿v
𝛽

(j)(i) + ri ⋅ ∇i𝛿v
𝛽

(j)(i)

+ Σj𝜂𝛽𝛽
(ij)(i, j)ΔN

𝛽
(j) + Σj𝜂𝛼𝛽

(ij)(i, j)ΔN
𝛼
(j)

+ ri ⋅ Σj∇i𝜂𝛽𝛽
(ij)(i, j)ΔN

𝛽
(j) + ri ⋅ Σj∇i𝜂𝛼𝛽

(ij)( i, j)ΔN
𝛼
(j)

+ Σjp𝛽(j) ⋅ ∇j𝜂𝛽𝛽
(ij)(i, j) + Σjp𝛼(j) ⋅ ∇j𝜂𝛼𝛽

(ij)(i, j)

+ ri ⋅
[
Σjp𝛽(j) ⋅ ∇i∇j𝜂𝛽𝛽

(ij)(i, j) + Σjp𝛼(j) ⋅ ∇i∇j𝜂𝛽𝛼
(ij)(i, j)

]
+ ΣjΔv

𝛽
(j)𝜉

𝛽𝛽

(ji)(j, i) + ΣjΔv
𝛼
(j)𝜉

𝛼𝛽

(ji)(j, i)

+ ri ⋅ ΣjΔv
𝛽
(j)∇i𝜉𝛽𝛽

(ji)(j, i) + ri ⋅ ΣjΔv
𝛼
(j)∇i𝜉𝛼𝛽

(ji)(j, i)

+ ΣjΠ𝛽(j) ⋅ ∇j𝜉𝛽𝛽
(ji)(j, i) + ΣjΠ𝛼(j) ⋅ ∇j𝜉𝛼𝛽

(ji)(j, i) (21.35b)

One can also obtain the expressions for the chemical potentials by directly differen-
tiating the energy expression of Eq. (21.34) with respect to ΔN

𝛼
(i) or ΔN

𝛽
(i), which

will yield the chemical potential of ith atom.
From the expressions of the chemical potentials as given by Eq. (21.35), it is clear

that since left side is position-independent, right side can be evaluated at any value
of the position and evaluate the left side, which is the chemical potential. Thus, by
evaluating at ri = 0, one has the result

𝜇
𝛼

(i) = 𝜇
𝛼

0(i) + 𝛿v
𝛼

(j)(i) + Σj𝜂𝛼𝛼
(ij)(i, j)ΔN

𝛼
(j) + Σj𝜂𝛼𝛽

(ij)(i, j)ΔN
𝛽
(j)

+ Σjp𝛼(j) ⋅ ∇j𝜂𝛼𝛼
(ij)(i, j) + Σjp𝛽(j) ⋅ ∇j𝜂𝛼𝛽

(ij)(i, j)

+ ΣjΔv
𝛼
(j)𝜉

𝛼𝛼

(ji)(j, i) + ΣjΔv
𝛽
(j)𝜉

𝛽𝛼

(ji)(j, i)

+ ΣjΠ𝛼(j) ⋅ ∇j𝜉𝛼𝛼
(ji)(j, i) + ΣjΠ𝛽(j) ⋅ ∇j𝜉𝛽𝛼

(ji)(j, i) (21.36a)

𝜇
𝛽

(i) = 𝜇
𝛽

0(i) + 𝛿v
𝛽

(j)(i) + Σj𝜂𝛽𝛽
(ij)(i, j)ΔN

𝛽
(j) + Σj𝜂𝛼𝛽

(ij)(i, j)ΔN
𝛼
(j)

+ Σjp𝛽(j) ⋅ ∇j𝜂𝛽𝛽
(ij)(i, j) + Σjp𝛼(j) ⋅ ∇j𝜂𝛼𝛽

(ij)(i, j)

+ ΣjΔv
𝛽
(j)𝜉

𝛽𝛽

(ji)(j, i) + ΣjΔv
𝛼
(j)𝜉

𝛼𝛽

(ji)(j, i)

+ ΣjΠ𝛽(j) ⋅ ∇j𝜉𝛽𝛽
(ji)(j, i) + ΣjΠ𝛼(j) ⋅ ∇j𝜉𝛼𝛽

(ji)(j, i) (21.36b)
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By comparing Eqs (21.35) and (21.36), one also obtains the relations

∇i𝛿v
𝛼

(j)(i) +
(
Σj∇i𝜂𝛼𝛼

(ij)(i, j)ΔN
𝛼
(j) + Σj∇i𝜂𝛼𝛽

(ij)( i, j)ΔN
𝛽
(j) + ΣjΔv

𝛼
(j)∇i𝜉𝛼𝛼

(ji)(j, i)

+ ΣjΔv
𝛽
(j)∇i𝜉𝛽𝛼

(ji)(j, i)
)
+
[
Σjp𝛼(j) ⋅ ∇i∇j𝜂𝛼𝛼

(ij)(i, j) + Σjp𝛽(j) ⋅ ∇i∇j𝜂𝛼𝛽
(ij)(i, j)

]
= 0

(21.37a)

and

∇i𝛿v
𝛽

(j)(i) +
(
Σj∇i𝜂𝛽𝛽

(ij)(i, j)ΔN
𝛽
(j) + Σj∇i𝜂𝛼𝛽

(ij)( i, j)ΔN
𝛼
(j) + ΣjΔv

𝛽
(j)∇i𝜉𝛽𝛽

(ji)(j, i)

+ ΣjΔv
𝛼
(j)∇i𝜉𝛼𝛽

(ji)(j, i)
)
+
[
Σjp𝛼(j) ⋅ ∇i∇j𝜂𝛼𝛼

(ij)(i, j) + Σjp𝛽(j) ⋅ ∇i∇j𝜂𝛼𝛽
(ij)(i, j)

]
= 0

(21.37b)

Here, the quantities∇i𝛿v
𝛼

(j)(i) and∇i𝛿v
𝛽

(j)(i) represent the electric field arising from
the change in external potential. It may include any external applied electric field.

Now, separating out the self terms and cross terms from the summations in
Eq. (21.36), one can write

𝜇
𝛼

(i) = 𝜇
𝛼

0(i) + 𝛿v
𝛼

(j)(i) + 𝜂
𝛼𝛼

(ii)(i, i)ΔN
𝛼
(i) + 𝜂

𝛼𝛽

(ii)(i, i)ΔN
𝛽
(i)

+ Σj≠i𝜂𝛼𝛼
(ij)(i, j)ΔN

𝛼
(j) + Σj≠i𝜂𝛼𝛽

(ij)(i, j)ΔN
𝛽
(j)

+ p
𝛼
(i) ⋅ ∇j𝜂𝛼𝛼

(ij)(i, j)|||j=i + p
𝛽
(i) ⋅ ∇j𝜂𝛼𝛽

(ij)(i, j)|||j=i

+ Σj≠ip𝛼(j) ⋅ ∇j𝜂𝛼𝛼
(ij)(i, j) + Σj≠ip𝛽(j) ⋅ ∇j𝜂𝛼𝛽

(ij)(i, j)

+ ΣjΔv
𝛼
(j)𝜉

𝛼𝛼

(ji)(j, i) + ΣjΔv
𝛽
(j)𝜉

𝛽𝛼

(ji)(j, i)

+ ΣjΠ𝛼(j) ⋅ ∇j𝜉𝛼𝛼
(ji)(j, i) + ΣjΠ𝛽(j) ⋅ ∇j𝜉𝛽𝛼

(ji)(j, i) (21.38a)

𝜇
𝛽

(i) = 𝜇
𝛽

0(i) + 𝛿v
𝛽

(j)(i) + 𝜂
𝛽𝛽

(ii)(i, i)ΔN
𝛽
(i) + 𝜂

𝛼𝛽

(ii)(i, i)ΔN
𝛼
(i)

+ Σj≠i𝜂𝛽𝛽
(ij)(i, j)ΔN

𝛽
(j) + Σj≠i𝜂𝛼𝛽

(ij)(i, j)ΔN
𝛼
(j)

+ p
𝛽
(i) ⋅ ∇j𝜂𝛽𝛽

(ij)(i, j)|||j=i + p
𝛼
(i) ⋅ ∇j𝜂𝛼𝛽

(ij)(i, j)|||j=i

+ Σj≠ip𝛽(j) ⋅ ∇j𝜂𝛽𝛽
(ij)(i, j) + Σj≠ip𝛼(j) ⋅ ∇j𝜂𝛼𝛽

(ij)(i, j)

+ ΣjΔv
𝛽
(j)𝜉

𝛽𝛽

(ji)(j, i) + ΣjΔv
𝛼
(j)𝜉

𝛼𝛽

(ji)(j, i)

+ ΣjΠ𝛽(j) ⋅ ∇j𝜉𝛽𝛽
(ji)(j, i) + ΣjΠ𝛼(j) ⋅ ∇j𝜉𝛼𝛽

(ji)(j, i) (21.38b)

Let us now interpret the various response parameters. The quantities 𝜂
𝛼𝛼

(ii)(i, i)
and 𝜂

𝛽𝛽

(ii)(i, i) are the diagonal elements with respect to atom indices as well as
spin indices, and are analogous to the conventional hardness parameter, while
the parameter 𝜂

𝛼𝛽

(ii)(i, i) is diagonal in atom index but off-diagonal in spin index,
which is again similar but refers to one derivative with up-spin and the other with
down-spin electron. These three parameters can be evaluated, within a finite differ-
ence approximation, using the ionization potential and electron affinity parameters
I
𝛼, A

𝛼, I
𝛽
, and A

𝛽
for both the spins. Thus, one can have 𝜂

𝛼𝛼

(ii)(i, i) = (I
𝛼
−A

𝛼
)/2,

𝜂
𝛽𝛽

(ii)(i, i) = (I
𝛽
−A

𝛽
)/2, and 𝜂

𝛼𝛽

(ii)(i, i) = [(I
𝛼
−A

𝛽
)+ (I

𝛽
−A

𝛼
)]/4.

The atom–atom cross parameters 𝜂
𝛼𝛼

(ij)(i, j), 𝜂
𝛽𝛽

(ij)(i, j), and 𝜂
𝛼𝛽

(ij)(i, j) can either
be evaluated by using the simple model of averaging the atomic softnesses (inverse
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of hardness) of the ith and jth atoms, thus writing as 1/𝜂
𝛾𝛿

(ij)(i, j) = (1/2)[1/𝜂
𝛾𝛾

(ii)

(i, i)+ 1/𝜂
𝛿𝛿

(jj)(j, j)], for 𝛾 , 𝛿 = 𝛼 or 𝛽. These quantities however denote essentially
the multiplicative factor for the charge on the jth atom, for generating the poten-
tial at the ith atom. Thus, in one level of approximation, it can be just a Coulombic
term, 1/Rij, which is true only for point charges. However, better approximations
can be made by taking clue from semiempirical quantum chemistry, e.g. by using
Mataga–Nishimoto-type empirical formula [11] given by 𝜂

𝛾𝛿

(ij)(i, j) = (aij
𝛾𝛿 +Rij)−1,

where aij
𝛾𝛿 is a constant and can be related to the hardness parameters of the ith and

jth atoms. The coefficients of the atomic dipole moments are related to the atomic
polarizabilities and dipolar (or charge-dipole) hardnesses for the self terms and some
kind of Coulomb-like terms for the cross coefficients.

Equation (21.38) represents essentially the spin-dependent chemical poten-
tials of an atom (say, ith atom) in the molecular species of interest, within the
approximations of superposed atomic site densities and consideration of only the
first two moments (zeroth and first), viz. the up- and down-spin atomic charges
q
𝛼
(i) (=−ΔN

𝛼
(i)), q

𝛽
(i) (=−ΔN

𝛽
(i)) and the atomic dipole moments p

𝛼
(i), p

𝛽
(i),

respectively. Thus, in this lattice model, a molecule represents a collection of atom
centers with point charges and dipoles, determined through the chemical potential
equalization, by equating each of the two spin chemical potentials 𝜇

𝛼

(i) and 𝜇
𝛽

(i) (as
expressed by Eq. (21.38)) for all the atom centers. For each spin, two sets of equation
pairs will result, one by equating on both sides the constant terms and the other
from terms linear in p

𝛼
(i) or p

𝛽
(i), respectively. For a molecule with Natom number

of atoms, one obtains a set of Natom − 1 equations from equating the scalar chemical
potentials for up-spin for all the atoms and another set of Natom − 1 equations for
down-spin. The additional two equations are given by the charge conservation for
each spin (neutrality for a neutral molecule) ΣiΔN

𝛼
(i) = 0, ΣiΔN

𝛽
(i) = 0. Besides

this set of 2Natom scalar equations, one has 2Natom vector equations, corresponding
to atomic dipole moment vectors for the two spins (see Eq. (21.37)). These equations,
which are essentially 8Natom number of scalar equations, being linear in nature,
can easily be solved by matrix methods to obtain the atomic charges (scalars), and
the atomic dipoles (vectors) corresponding to both the spins at each of the atomic
sites.

21.6 Miscellaneous Aspects: Inclusion of Bond Space,
Covalent Binding, and Correct Asymptotics

It may be noted that the charge transfer due to chemical potential difference between
atoms leads to binding, which is essentially ionic binding. For describing the cova-
lent binding within an electronegativity or chemical potential–based picture, several
other considerations are in fact needed. The first one is inspired by the presence of
unpaired electrons, which can be quantified by assuming spin-dependent chemical
potential for each atom, within the spin-polarized DFT, which has already been dis-
cussed in the earlier section. Another approach makes use of the fact that there is
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charge accumulation at the bond region in covalent binding, which can be investi-
gated by considering the bond sites as additional sites in the lattice model, in addition
to the atomic sites. These additional bond sites can be located in between (say middle
of the bond) the two atoms in each bonded atom pair. This is the so-called intro-
duction or inclusion of the bond space, in which chemical potential and hardness
parameters (𝜇bond and 𝜂bond) are assigned for the bond region. This is quite appro-
priate in view of the fact that in DFT the chemical potential is defined at all points
in space. Spin-polarized DFT can be used for this purpose as well. The formalism
is analogous to that discussed in the previous section. But a direct coarse-grained
picture in terms of the atomic and bond charges can be a simple one.

As far as the parametrizations of the different quantities are concerned, the bond
chemical potential can be thought of as approximately the electrostatic potential
at the atomic radius sites and hence a simple prescription can be in terms of the
sum of the two associated atoms, viz. 𝜇ij

bond = K(𝜇i
0 +𝜇j

0), with K as an empirical
constant. There will be several types of bond hardness parameters, associated with
different bonds, in the same spirit as that of the different mutual hardness parame-
ters, defined for the atom–atom cases. Thus, one can define the mutual atom-bond
hardness 𝜂i,kl

atom/bond corresponding to ith atom and bond between the k-th and l-th
atoms. Similarly for the mutual bond–bond hardness 𝜂ij,kl

bond/bond two bonds are
involved, one between the ith atom and jth atom while the other is between the
k-th atom and l-th atom. The diagonal element of the quantity 𝜂ij,kl

bond/bond is essen-
tially the self bond hardness and can be denoted as 𝜂ij,ij

bond. The resulting charges
on the atoms and the bond regions are independent quantities and can easily be cal-
culated using the formalism similar to the case of atomic sites alone. For diatomic
molecules, there are less number of parameters, the equations as well as the calcu-
lation are simple [7–10, 27]. A combined approach with spin-dependent chemical
potential and hardness parameters along with the inclusion of the bond space can
be more successful to predict the binding energy.

Another limitation of these types of approaches is the lack of models with cor-
rect dissociation limits. To prevent the spurious charge transfer at large separation,
the concept of a chemical contact for the charge transfer to take place may need
to be introduced. There have been many attempts to address this important issue.
For example, the atom–atom mutual hardness parameter can be assumed [28] to
be dependent on the distance, with strong inverse dependence, with the implica-
tion that charge transfer will not take place when the distance is large. The works
of Mathieu [29] and Valone and Atlas [30] in this direction have led to interesting
conclusions in this context. But much more studies are needed to arrive at a bet-
ter model with proper dissociation behavior. This will also help in application to
the generation of “on the fly” atomic charges and dipoles leading to a better force
field in molecular dynamics simulation [31]. Many other conceptual aspects, such
as near sightedness [32], linear response functions [33], and mutual polarizabili-
ties [34], might also throw light into these descriptions. Time-dependent extensions
of DFT [35] and its conceptual counterpart [36] also have much in store for future
directions.



440 21 A Conceptual Density Functional Theoretic View of Chemical Binding

21.7 Concluding Remarks

This work has presented some of the aspects of description of chemical binding
through CDFT-based view of how coarse-grained atom (or bond)-centered variables
can lead to estimation of charge transfer, spin transfer, atomic dipole moment, and
binding energy of simple molecular systems. It is gratifying to note that the seed
planted through the introduction of the concept of chemical potential of the electron
cloud in DFT, and its identification with the electronegativity parameter in chem-
istry 45 years ago in the laboratory of Professor Robert Parr, has now grown into a
big tree. A whole new field of research, the so-called CDFT has in fact been born.
The present discussion has, however, been limited to a small subset of this vast area,
enriched by so many novel ideas, even within the domain of chemical binding. Much
broader aspects lie outside what has been covered.
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22.1 Introduction

Conceptual density functional theory (CDFT) [1, 2], sometimes also called density
functional reactivity theory or chemical density functional theory (DFT), employs
concepts and formalisms from DFT to obtain both qualitative and quantitative
insights into chemical reactivity. It started in the 1980s with the renaissance of
the chemical potential function, equivalent to electronegativity, and has since
developed into a suite of useful reactivity indexes such as hardness, softness, Fukui
function, electrophilicity, and many others. Recent developments also include the
dual descriptor [3–8], quantification of steric effect [9], etc. In this chapter, we
mainly stay focused on three applications of CDFT, molecular acidity for organic
and inorganic compounds [7, 8], proton-coupled electron transfer (PCET) reactions
for biologically relevant complexes [10, 11], and metal specificity for porphyrin
systems [12, 13] to elucidate the usefulness and robustness of CDFT in real-world
applications.

22.2 Molecular Acidity

The acid–base dissociation constant, represented by the pKa value, is the measure
of the strength of an acid or a base and plays the key role in understanding and
quantifying the acid–base processes in solution, closely related to chemical synthe-
sis, pharmacokinetics, drug design and metabolism, toxicology, and environmental
protection. In the literature, lots of efforts have been devoted to developing accurate
and efficient computational protocols to predict or estimate the pKa value.

In quantum chemistry, however, to accurately compute pKa values for large sys-
tems such as proteins using standard ab initio and DFT methods is a formidable
challenge. Since the experimental pKa values are obtained in solution, in practice
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Scheme 22.1 The thermodynamic cycle.

one has to resort to the thermodynamic cycle (Scheme 22.1) where a series of free
energy changes must be simulated [14, 15]:

2.303 RT ⋅ pKa = ΔGp
aq = ΔGdp

sol + ΔGH+

sol − ΔGp
sol + ΔGp

gas (22.1)

where R is the Rydberg gas constant and T is the absolute temperature. ΔGp
aq is

the sum of the free energy of deprotonation of the gas-phase species ΔGp
gas, the free

energies of desolvation of the protonated form −ΔGp
sol, and solvation of the depro-

tonated form ΔGdp
sol, and the free energy of solvation for the proton ΔGH+

sol . Suffice to
note that for large systems, ab initio simulations are extremely difficult or frequently
intractable, even equipped with the most advanced software and hardware.

An alternative to avoid computation of free energies is to seek linear cor-
relations of pKa values and quantum descriptors, among which are highest
occupied molecular orbital (HOMO) energies [16], localized reactive orbital,
frontier effective-for-reaction molecular orbitals (FERMO) [17], electrophilicity or
group-philicity [18, 19], just to name a few. The core idea behind these relationships
is that proton or electron donor–acceptor reactions are driven by frontier molecular
orbitals. Yet, the relations were often only observed for compounds like phenols in
the same family.

Recently, we have proposed to employ two interdependent quantum descriptors to
accurately and efficiently estimate molecular pKa values. The two quantum descrip-
tors are molecular electrostatic potential (MEP) on an acidic atom (such as N, O,
or S nucleus) and the sum of the valence natural atomic orbital energies, NAO, of
the same acidic atom. The philosophy behind is that molecular acidity is a local prop-
erty at a particular acidic atom and that the impact of the environment is reflected
through the changes to that atom.

To numerically verify the rationale, we selected a series of molecular systems
(228 in total), including 154 primary, secondary, and tertiary amines and anilines,
59 carboxylic acids and alcohols, and 15 sulfonic acids and thiols. Calculations were
carried out at the DFT B3LYP/6-311+G(2d,2p) level for both structure optimization
and harmonic vibrational analysis. Molecular properties, such as MEP values on
each nucleus and NAO energies resulted from a full NBO (natural bond orbital) [20]
analysis, were obtained on top of a fully optimized structure.

Shown in Figure 22.1 are strong correlations between experimental pKa values
and each of these two quantities for each of the three categories. Moreover, if the
MEP is subtracted by the isolated atomic MEP for each category of compounds, in
Figure 22.2, we observe a single unique linear relationship between the resultant
MEP difference and experimental pKa data. These results can generally be utilized
to simultaneously estimate pKa values at multiple sites with a single calculation
for either relatively small molecules in drug design or amino acids in proteins and
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Figure 22.1 Linear relationships between molecular electrostatic potential on acidic
nucleus and experimental pKa values for amines (N), carboxylic acids and alcohols (O), and
sulfonic acids and thiols (S) (a); and linear relationships between the sum of three valence
NAO 2p/3p orbitals and pKa values (b). Source: Reprinted with permission from Liu and
Pedersen [7], American Chemical Society.
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Figure 22.2 Linear relationship between the MEP difference and experimental pKa values
for all 228 data points. The MEP reference values for N, O, and S compounds are −18.28,
−22.20, and −59.12 au, respectively. Symbols: N, blue ○; O, red ◾; S, green ▴. Source:
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macromolecules. Additionally, similar results have been observed by Cao et al. [21]
for singly and doubly substituted benzoic acids, singly substituted benzenesulfinic
acids, benzeneseleninic acids, phenols, and alkylcarboxylic acids, and by Zhao
et al. [22] for 20 natural α-amino acids and 5 DNA/RNA bases, together with a
few other biologically relevant species. These results collectively show the great
potential of MEP and NAO in appreciating molecular acidity/basicity.

VRA
=
∑
i≠A

Zi

∣ Ri − RA ∣
− ∫

𝜌(r)
∣ r − RA ∣

d𝜏 (22.2)

In CDFT, the total energy change ΔE is related to changes in the number of elec-
trons ΔN and the external potential Δv(r), which reads:

ΔE = E[𝜐(r) + Δ𝜐(r);N + ΔN] − E[𝜐(r);N]

=
{(

𝜕E
𝜕N

)
𝜐(r)
ΔN + ∫

(
𝛿E
𝛿𝜐(r)

)
N
Δ𝜐(r)dr

}
+ 1

2

[(
𝜕

2E
𝜕N2

)
(ΔN)2 + 2ΔN ∫

𝛿𝜕E
𝛿𝜐(r)𝜕N

Δ𝜐(r)dr

+ ∫ ∫
(

𝛿
2E

𝛿𝜐(r′)𝛿𝜐(r)

)
N
Δ𝜐(r)Δ𝜐(r′)drdr′

]
+ (third and higher order terms) (22.3)

The terms in braces {} and brackets [] are the first- and second-order terms,
respectively.

The process of proton dissociation from an acid can be approximated by the above
expansion. It involves one proton dissociation; thus, the total number of electrons in
the acid system remains a constant and only the external potentialΔv(r) varies. With
ΔN = 0, in the simplest case when only the first-order term is considered, Eq. (22.3)
becomes

ΔE[Δ𝜐(r)] = ∫ 𝜌(r)Δ𝜐(r)dr (22.4)

Now, for the special case of Eq. (22.2), the change in the external potential,
Δv(r,RH), resulted from the dissociation of a proton, can explicitly be obtained,
giving

Δ𝜐(r,RH) =
∑
i≠H

Zi

∣ Ri − RH ∣
− 1
∣ r − RH ∣

(22.5)

The first term in Eq. (22.5) signifies the repulsive potential between the leaving
proton RH and the other nuclei Ri, and the second term means the attractive inter-
action between an electron at position r and the leaving proton at RH .

With Eqs. (22.5) and (22.4), one can have

ΔE[Δ𝜐(r,RH)] =
∑
i≠H

ZiZH

∣ Ri − RH ∣
− ∫

𝜌(r)
∣ r − RH ∣

d𝜏 (22.6)
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where ZH = 1. The meaning of Eq. (22.6) is that the total electronic energy change
resulted from dissociation of a proton in an acid is nothing but the electrostatic
potential on the same proton. Implication of Eq. (22.6) is straightforward that the
MEP of the leaving proton can serve as a linear predictor of the pKa of the acid.

pKa ∝
∑
i≠H

Zi

∣ Ri − RH ∣
− ∫

𝜌(r)
∣ r − RH ∣

d𝜏 (22.7)

It is worthwhile to mention that to obtain Eq. (22.7), we have assumed that (i) ther-
modynamic contributions from solvent and temperature effects are negligible and
the entropic effect is trivial; thus, we employed the total electronic energy difference
in Eq. (22.6) to approximate the Gibbs free energy change in Eq. (22.1). (ii) The first
order of the Taylor expansion in Eq. (22.3) suffices. (iii) Before and after a proton
dissociation, the structural relaxation in the conjugate base A− has little effect on
the external potential, so that the external potential change is only related to the
removal of a proton from the acid. Notice that Eqs. (22.5) and (22.6) have the same
format, but Eq. (22.5) describes a potential variation and is used for the acidic atom
in an acid such as O in carboxyl acid and alcohols, N in amines and anilines, and S
in sulfonic acids and thiols, whereas Eq. (22.6) represents an energy variation and is
used for the nuclear MEP of the leaving proton. Our studies show that MEP of acidic
atoms and the leaving proton are strongly correlated. This is the reason why they can
both be employed to predict pKa values. Also, these MEP values are majorly resulted
from the electron density in the valence orbitals. That is the reason why NAO could
be equivalently applied for the same purpose.

In another application [8], we employed a total of 27 metal–water complexes,
M(H2O)n

m+ (M = Al, Ba, Be, Ca, Co, Cr, Fe, Ga, Hf, In, K, Li, Mg, Mn, Na, Ni, Sc, Sr,
Ti, Tl, Zn, and Zr; m = 1, 2, 3, 4; n = 4, 6), whose charge on the metal cation ranges
from +1 (Li, K, Na, and Tl) to +4 (Hf, Sn, Ti, and Zr). Each metal cation is coor-
dinated by six water molecules with two exceptions Be(H2O)4

2+ and Tl(H2O)4
3+.

Experimental pKa values of these species span ∼19 orders of magnitude, ranging
from −4.0 in Ti(H2O)6

4+ to +14.7 in Na(H2O)6
+. Plotted in Figure 22.3a are strong

linear relationships between MEP at the oxygen nucleus, the sum of valence NAO
energies of oxygen, experimental pKa values, and chemical potential (arithmetic
mean value of HOMO and lowest unoccupied molecular orbital [LUMO] energies)
for the 27 M(H2O)n

m+ complexes. Furthermore, we have revealed similar results for
the leaving protons in Figure 22.3b. With these linear correlations, we can readily
reproduce the experimental pKa results. These computational results corroborate
that the accuracy of our approach is statistically similar to that of the conventional
method through the thermodynamic cycle, while maintaining great advantage of
simplicity and efficiency.

Taken together, we have unraveled that molecular acidity can be well appreci-
ated and quantified in CDFT only by employing two equivalent quantum descriptors
MEP and NAO at the acidic atom or leaving proton, which can have wide potential
applications in biological systems.
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m+ complexes. Source:
Reprinted with permission from Liu et al. [8], American Institute of Physics.
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22.3 Proton-coupled Electron Transfer

Electron transfer accompanied by a proton transfer is a ubiquitous phenomenon
for reactants with dissociable protons. Two possible mechanisms have been pro-
posed in the literature. One is the so-called PCET mechanism [23–26], where the
proton and the electron can be transferred to different orbitals or sites of a molec-
ular system and these transfers are simultaneous (Scheme 22.2). The other is the
hydrogen atom transfer (HAT) mechanism [27, 28] where the proton and the elec-
tron are transferred to the same location in a radical pathway. PCET is implicated
in many biological and solar energy conversion processes, among which are photo-
synthesis in the oxygen-evolving complex of photosystem II and cytochrome P450,
etc. PCET has attracted great interest in the literature since its role in the redox
chemistry of ruthenium bipyridine complexes was first unveiled. These biological
and organometallic PCET mechanisms share a common feature that an electron is
often transferred to a site often far away from the proton acceptor site.

Scheme 22.2 Proton-coupled electron transfer (PCET).

We employed density-based reactivity descriptors, such as dual descriptor in
CDFT, to characterize changes in the electron density. Dual descriptor is defined
as [3–6]

f (2)(r) =
(
𝜕f (r)
𝜕N

)
𝜐(r)

(22.8)

where N is the total number of electrons in the system, 𝜈(r) is the external potential
from the atomic nuclei, and f (r) is the Fukui function, which relates the change
in electron density, 𝜌(r), with change in electron number, N, f (r) = (𝛿𝜌(r)/𝛿N)

𝜈(r).
To feature the electrophilic capability of a system, one uses

f +(r) = 𝜌N+1(r) − 𝜌N (r) ≈ 𝜌LUMO(r) (22.9)

and to measure its nucleophilic power, one employs

f −(r) = 𝜌N (r) − 𝜌N−1(r) ≈ 𝜌HOMO(r) (22.10)

where 𝜌N+1(r), 𝜌N (r), and 𝜌N−1(r) denote the electron density for the N + 1, N, and
N − 1 systems, respectively, with the molecular structure held fixed and 𝜌LUMO(r)
and 𝜌HOMO(r) are the LUMO and HOMO densities, respectively. The first equality
in Eqs. (22.9) and (22.10) is resulted from the finite difference approximation,
and the second approximate equality uses the frozen orbital approximation.
The f +(r)/f −(r) function measures the response of the electron density change
following an addition/removal of an electron, and thus it is a reactivity descriptor
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to quantify electrophilicity/nucleophilicity. Under the above two approximations,
dual descriptor becomes

f (2)(r) = f +(r) − f −(r) ≈ 𝜌LUMO(r) − 𝜌HOMO(r) (22.11)

In addition, the condensed-to-atoms version of the Fukui functions and dual
descriptor is also available [29] where the electron densities in Eqs. (22.9)–(22.11)
are replaced by atomic charges resulted from population analysis.

The dual descriptor f (2)(r) can be used to identify electrophilic and nucleophilic
domains in a donor–acceptor complex. If these electrophilic and nucleophilic
regions are sufficiently separated in space, there will be a propensity for charge
separation. When f (2)(r) is plotted over a supramolecular complex consisting of the
reactants, an electrophilic region is indicated by a positive f (2)(r) function value
(red region) and a nucleophilic region is indicated by a negative f (2)(r) function
value (green region). The complex is aligned with an assumption of the direction
of proton transfer. The location of the electron transfer might be determined by
the electrophilic region from the dual descriptor or electrophilic Fukui function
quantities. If the electrophilic region does not include the proton acceptor site,
then spatial separation between the proton and electron transfer may occur in a
PCET mechanism. Notice that the current approach is thermodynamic in nature,
so it is not kinetic. It cannot predict whether concerted or stepwise electron–proton
transfer will occur.

Experimental evidence suggests that the electron and proton transfer between
phenol and ArO• radical proceeds through a PCET mechanism [30]. Figure 22.4a
shows the dual descriptor plot for the reactant complex of phenol with ArO• rad-
ical. The electron-donating region (green) is located on the phenol 𝜋-system and
the electron-accepting region (red) is on the 𝜋-system of the ArO• radical. The key
point from this analysis is that no red surface is situated at the oxygen atom of ArO•,
showing that this site is not the electrophilic site of the complex. This suggests that
an electron may be transferred to the aryl 𝜋-system rather than the oxygen atom,
leading to charge separation in a PCET mechanism. The electron and proton transfer
between phenol and the CH3OO• radical occurs via a HAT mechanism. Figure 22.4b

e–

e–

H+

H+

(a) (b)

Figure 22.4 Plot of dual descriptor contour surfaces (value of 0.0004 au) for reactant
complexes of (a) ArOH+ArO•; and (b) ArOH+CH3OO• reactions. Surfaces in red are the
electrophilic regions and those in green are nucleophilic regions. A proton/charge transfer
separation is seen in (a) but not in (b). Source: Reprinted with permission from
Liu et al. [10], American Chemical Society.
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Figure 22.5 (a) Proposed PCET mechanistic route for MCM enzyme. (b) Dual descriptor
contour surface of the minimal structural model of MCM enzyme. Source: Reprinted with
permission from Kumar et al. [11], American Chemical Society.

shows the dual descriptor plot for the reactant complex of phenol with the CH3OO•

radical. In contrast to the phenol case, the proton is transferred to an oxygen atom
that has significant electrophilic character, suggesting that charge separation is less
likely for the latter reaction.

Shown in Figure 22.5 is a minimal structural model to mimic of the MCM
(methylmalonyl-CoA mutase) enzyme in which all the side chains of the cofactor
were replaced by hydrogen atoms and axial ligands were simplified. Based on the
model, we aim to employ the dual descriptor in CDFT to characterize the charge
separation propensity of AdoCbl−Tyr−Sub complex. The dual descriptor plot of
the reactant complex reveals that the electron-donating region (green surface) is
located on the Y89 residue, while the electron-accepting region (red surface) is on
the 𝜋-system of the corrin ring of the AdoCbl cofactor. Because the two regions
are separated, it indicates that there would exist a propensity of charge separation
if one assumes that the system is aligned in the direction of a proton transfer.
This strongly supports that the substrate is not implicated in charge separation;
rather, it is exclusively susceptible for the proton shift. Importantly, a minimal
structural model suggests that an electron can be transferred from aryl system of
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tyrosine to coenzyme B12, that is, leading to charge separation through the PCET
mechanism. Moreover, we computed the condensed-to-atoms dual descriptor
values of the nucleophilic and electrophilic sites. The total value of the Y89 residue
is −0.508, which shows that this site is the most nucleophilic, whereas the total
value of AdoCbl is +0.735, indicating that AdoCbl is the most electrophilic site in
the model system.

In a nutshell, we have shown that PCET can be well appreciated in terms of the
dual descriptor. It is anticipated that more complex phenomena such as double
PCET should witness some success in the future.

22.4 Metal Specificity

As the core cofactor of hemoproteins, heme is a metal-binding porphyrin consisting
of a heterocyclic organic ring made from four pyrrole subunits linked via methine
bridges. Hemoglobin is most commonly found in its oxygen-binding state where the
bonded metal cation is a divalent iron. Other porphyrin-binding divalent metal ions
have also been found such as Mn, Mg, Zn, Cr, Cu, etc. When in its resting or func-
tional state, up to two axial ligands are required to bond with the metal cation to
carry out the catalytic process. Here, we will try to figure out the metal specificity of
Fe metal-porphyrin complex using CDFT and its spin-polarized variant, SP-CDFT.

In CDFT, several global and local reactivity descriptors have been introduced and
applied to lots of problems. These reactivity indices include chemical potential 𝜇,
electronegativity 𝜒 , hardness 𝜂, softness S, Fukui function f (r), and electrophilic-
ity 𝜔. For a closed-shell system with N-electrons and external potential 𝜈 and total
energy E, these indices can be defined as follows:

𝜇 =
(
𝜕E
𝜕N

)
𝜐

= −𝜒 ≈ I + A
2

(22.12)

𝜂 =
(
𝜕

2E
𝜕N2

)
𝜐

=
(
𝜕𝜇

𝜕N

)
𝜐

= I − A = 1
S

(22.13)

𝜔 = 𝜇
2

2𝜂
(22.14)

with I and A as the vertical ionization potential and electron affinity, respectively,
which can be obtained via I ≈−𝜀HOMO and A ≈−𝜀LUMO.

The SP-CDFT approach, which provides a general treatment for processes
involving both electron transfer and spin polarization, has both the charge density,
𝜌N = 𝜌α + 𝜌β, and spin density, 𝜌S = 𝜌α − 𝜌β, as the basic variables. The changes in
the total energy can be proceeded in the standard Euler equation manner, giving
two Lagrange multipliers, 𝜇N and 𝜇S,

𝜇N =
(
𝜕E
𝜕N

)
NS,𝜐(r),B(r)

(22.15)

and

𝜇S =
(
𝜕E
𝜕NS

)
N,𝜐(r),B(r)

(22.16)
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where 𝜐(r) is the external potential and B(r) is the external magnetic field. 𝜇N is
equivalent to the chemical potential 𝜇 in the spin-restricted case, and 𝜇S mea-
sures the tendency to undergo spin transfer, at constant N, which can further be
obtained by

𝜇
+
N ≈

𝜀
α
LUMO − 𝜀

β
HOMO

2
(22.17)

and

𝜇
+
S ≈

𝜀
α
HOMO − 𝜀

β
LUMO

2
(22.18)

Equations (22.17) and (22.18) correspond to the two possible ways of spin transfer,
one from β spin to α spin and the other from α spin to β spin. A larger value of
𝜇
+
S means that the system is less likely to increase the spin number because of the

bigger HOMO/LUMO gap. Similarly, we can define the spin-hardness, viewed as the
response of the spin potential relative to changes in the spin number,

𝜂
+
SS =

(
𝜕

2E
𝜕N2

S

)
N,𝜐(r),B(r)

=
(
𝜕𝜇S

𝜕NS

)
N,𝜐(r),B(r)

≈
𝜇
∗−
S − 𝜇+S

2
(22.19)

where 𝜇+S is the spin potential of the ground state and 𝜇∗−S stands for the spin poten-
tial for the NS + 2 state. For example, if the ground state NS is singlet, NS + 2 will
be triplet. Note that unlike the spin-restricted counterpart, where 𝜂 is always posi-
tive, this is no longer the case for 𝜂+SS; indeed, it is always negative because the spin
potential of the NS + 2 state is smaller than that of the ground state.

Under the condition of a fixed external potential and total number of electrons,
we can investigate the total energy change as a function of the spin number change
through the following Taylor series:

ΔEN,𝜐(r) = 𝜇SΔNS +
1
2
𝜂SSΔN2

S (22.20)

With the maximum increase or decrease in spin multiplicity,ΔN±
S = −𝜇

±
S ∕𝜂SS, the

maximum energy change, ΔE±max , is given by

ΔE±max = −
(
𝜇
±
S
)2

2𝜂SS
= 𝜔±S > 0 (22.21)

where 𝜔+S and 𝜔−S denote the spin-philicity and spin-donicity, respectively, serving
as the estimation of system’s capability to change its spin multiplicity. Since values
of ΔE are always positive, the 𝜔±S descriptor will always be positive. Therefore, the
lower the𝜔±S value, the easier the system changes spin multiplicity. Notice that these
descriptors do not involve electron transfer because the total number of electrons is
held fixed in Eq. (22.20).

In SP-CDFT, two kinds of spin Fukui functions can also be introduced and they
are defined as

fNS(r) =
(
𝜕𝜌(r)
𝜕NS

)
N,𝜐(r),B(r)

=
(
𝛿𝜇S

𝛿𝜐(r)

)
N,NS,B(r)

(22.22)
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and

fSS(r) =
(
𝜕𝜌S(r)
𝜕NS

)
N,𝜐(r),B(r)

= − 1
𝜇B

(
𝛿𝜇S

𝛿B(r)

)
N,NS,𝜐(r)

(22.23)

respectively. These local functions are discontinuous with respect to NS and can also
be condensed to an atom k. Using the frozen core approximation, f +SS,k(r) and f −SS,k(r)
can be obtained as follows [31, 32]:

f +SS,k(r) ≈
1
2
[|ΦLUMO,α,k(r)|2 + |ΦHOMO,β,k(r)|2] (22.24)

f −SS,k(r) ≈
1
2
[|ΦHOMO,α,k(r)|2 + |ΦLUMO,β,k(r)|2] (22.25)

whereas f +NS,k and f −NS,k can be approximated by

f +NS,k(r) ≈
1
2
[|ΦLUMO,α,k(r)|2 − |ΦHOMO,β,k(r)|2] (22.26)

f −NS,k(r) ≈
1
2
[|ΦHOMO,α,k(r)|2 − |ΦLUMO,β,k(r)|2] (22.27)

where ΦHOMO,α,k(r), ΦHOMO,β,k(r), ΦLUMO,α,k(r), and ΦLUMO,β,k(r) are HOMO and
LUMO orbitals for α and β electrons, respectively. A larger value f ±SS,k for a region
k implies that the region is more likely to change its spin density. If f ±NS,k > 0,
the region k gains electrons as the total spin number changes, and if f ±NS,k < 0,
the region is more likely to lose electrons. These local descriptors can be termed as
“spin reactivity indices” describing the tendency of molecular areas to gain or lose
electrons or spin electrons when the total spin number of the system is changed.

Charge distributions from the natural population analyses (NPA) and the
donor–acceptor back-bonding interactions, etc. are collected in Table 22.1 for a
selected list of atoms. One can see that Fe, Co, Ni, and Ru ions, especially Ru, and
their corresponding N(Ppy) atoms have relatively smaller NPA charges, meaning
that these M–N(Pph) bonds are more characteristic of covalent bonds. We observed
that for most of the complexes the charges on the metal ion changed little from
p1 to p2, with all <0.1. Yet, for Fe and Ru, the charge decreased by about 0.4
and 0.2, respectively, from p1 to p2. Since p2 is the functional state for porphyrin
complexes in proteins, this large reduction of charge may well be a prerequisite
of the catalyst, thus providing clues to why the Fe ion is favored over others for
porphyrin metalation in hemoproteins.

Also shown in Table 22.1 are the donor–acceptor back-bonding interactions
between porphyrin (donor) and the metal ion (Pph→M and M→Pph) and
between pyridine and the metal ion (Py→M and M→Py). Overall, these interac-
tion energies are large. Large back-bonding energies from the Ru complex account
for the fact that it has a smaller charge distribution and larger covalent contribu-
tions. Looking at the M→Py and Py→M energies of the first-row transition metal
ions for p2, we find that Fe has the largest sum of these back-bonding interactions.
This strong interaction between the Fe ion and axial ligands elucidates why there
is a substantial decrease of the NPA charge on Fe from p1 to p2. This substantial
enhancement of interactions in p2 may also be an indication of the uniqueness of
this metal ion in forming complexes with porphyrin. However, the CDFT indices



Table 22.1 NPA charge distribution and second-order perturbation theory analyses of the three systems in Scheme 22.3.

py No. Type Cr Mn Fe Co Ni Cu Ru

0 M 1.268 1.518 1.075 1.079 1.018 1.304 0.898
N (Pph) −0.626 −0.680 −0.588 −0.588 −0.558 −0.626 −0.539
Pph→M 517.0 320.8 434.7 404.5 392.2 289.8 709.2
M→Pph 147.7 153.4 268.6 131.3 229.4 71.4 2056.7

1 M 1.245 1.463 1.126 1.082 1.439 1.333 0.713
N (Py) −0.490 −0.537 −0.488 −0.478 −0.501 −0.486 −0.323
N (Pph) −0.612 −0.655 −0.571 −0.557 −0.623 −0.618 −0.490
Pph→M 596.8 384.2 533.7 214.8 359.3 293.2 956.6
M→Pph 401.2 475.0 456.4 260.0 339.3 224.4 5284.9
Py→M 7.2 57.0 12.1 14.6 18.4 17.9 15.5
M→Py 42.9 91.7 30.1 25.3 25.2 18.0 609.2

2 M 1.273 1.391 0.747 1.043 1.320 1.352 0.549
N (Py) −0.456 −0.488 −0.400 −0.459 −0.475 −0.462 −0.374
N (Pph) −0.600 −0.643 −0.506 −0.544 −0.610 −0.616 −0.467
Pph→M 1035.2 480.9 901.8 538.6 389.1 274.3 1467.7
M→Pph 1369.8 505.0 1340.0 600.4 554.5 317.1 7251.2
Py→M 156.8 18.6 265.2 27.6 81.2 13.9 379.4
M→Py 301.5 90.7 502.3 88.7 162.1 35.5 811.7

Units are in kcal mol−1. Charges listed are those on the metal ion, M, and nitrogen atoms of porphyrin, N(Pph), and pyridine, N(Py). L→M stands for the
donor–acceptor interaction between L (porphyrin and pyridine) and M (metal).
Source: Reprinted with permission from Feng et al. [12], American Chemical Society.
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are similar (results not shown) for all the species considered indicating that spin
polarization should come into play.

The spin potential 𝜇+S of the ground state, the spin potential 𝜇∗−S of the
NS + 2 excited state, the spin hardness 𝜂

+
SS, and the spin-philicity 𝜔

+
S for the

(pyridine)n–metal–porphyrin complexes (Scheme 22.3) are collected in Table 22.2.
It is clear that the values of spin potentials 𝜇+S and 𝜇∗−S , spin hardnesses 𝜂+SS, and
spin-philicities 𝜔+S decrease as the number of axial pyridine groups increases from 0
to 2. This indicates that after the coordination of the metal–porphyrin complex with
pyridine, its capability of increasing its spin multiplicity in general also increases, a
distinct feature commonly seen in hemoproteins when undergoing redox reactions
in the active site. In comparison with other metal complexes with the same number
of pyridine groups, the Fe–porphyrin complex stands up and often possesses the
smallest value for each of the SP-CDFT quantities in most cases, indicating that
the Fe system is most likely to increase the total spin number. For example, in the
p0 case, 𝜔+S of the Fe–porphyrin complex is 0.81 eV, the smallest among the eleven
complexes; 𝜂+SS is −1.34 eV, also the smallest among the series. For p1 and p2 series,
the small values of 𝜇+S and 𝜂

+
SS of the Fe–porphyrin complex also result in small

values for the spin-philicity. Also in these cases, it is consistently the smallest except
for two cases, the p1-Co-porphyrin and the p2-Cr-porphyrin, suggesting that these
species can take up spin more easily than others within the series. When looking
at 𝜇+S for n = 0, we observe that the Ru–porphyrin complex possesses the highest
tendency to raise NS (smallest 𝜇+S value). This is not necessarily in contradiction
with its spin-philicity, because the spin potential probes the maximum tendency of
energy change with respect to the optimal spin number change. The latter descriptor
also includes the contribution from the spin hardness, 𝜂+SS, which can be seen as the
response of the spin potential to the change in the spin number NS. These results

Scheme 22.3 (Pyridine)n–metal(M)–porphyrin systems with divalent metal ions M = Mg,
Ca, Cr, Mn, Co, Ni, Cu, Zn, Ru, and Cd and n = 0, 1, and 2.
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Table 22.2 Global reactivity descriptors from spin-polarized conceptual DFT, including
spin potentials of ground state and NS + 2 state (𝜇+S and 𝜇∗−S ), spin hardness (𝜂+SS), and
spin-philicity (𝜔+S ) for pyridine–metal(ll)–porphyrin complexes.

py No. Metal ion 2S +1 𝝁
+
S 𝝁

∗−
S 𝜼

+
SS 𝝎

+
S

0 Mg 1 1.45 0.74 −0.53 2.01
Ca 1 1.43 0.68 −0.54 1.90
Cr 5 1.50 0.53 −0.48 2.32
Mn 6 1.47 0.75 −0.53 2.03
Fe 3 1.47 −0.27 −1.34 0.81
Co 2 1.48 0.87 −0.49 2.23
Ni 1 1.49 0.87 −0.50 2.24
Cu 2 1.47 0.80 −0.51 2.12
Zn 1 1.47 0.84 −0.49 2.18
Ru 3 1.30 0.34 −0.46 1.83
Cd 1 1.46 0.73 −0.54 2.00
Average 1.45 0.66 −0.58 1.97

1 Mg 1 1.43 0.68 −0.54 1.90
Ca 1 1.42 0.84 −0.47 2.15
Cr 5 1.49 0.81 −0.52 2.14
Mn 6 1.46 0.72 −0.54 1.97
Fe 3 1.24 0.35 −0.59 1.29
Co 2 1.49 −0.27 −1.36 0.82
Ni 3 1.47 0.76 −0.53 2.04
Cu 2 1.46 0.73 −0.53 2.00
Zn 1 1.44 0.85 −0.48 2.18
Ru 1 1.42 0.72 −0.51 1.96
Cd 1 1.41 0.85 −0.46 2.16
Average 1.43 0.64 −0.59 1.87

2 Mg 1 1.38 0.61 −0.54 1.77
Cr 3 0.63 −0.11 −0.57 0.35
Mn 6 1.43 0.65 −0.55 1.85
Fe 1 1.45 −0.13 −1.17 0.90
Co 2 1.48 0.78 −0.53 2.08
Ni 3 1.40 0.63 −0.54 1.80
Cu 2 1.45 0.71 −0.54 1.95
Zn 1 1.42 0.86 −0.46 2.17
Ru 1 1.38 0.63 −0.53 1.80
Average 1.34 0.51 −0.60 1.63

Units in eV.
Source: Reprinted with permission from Feng et al. [13], American Chemical Society.



458 22 Molecular Acidity, PCET, and Metal Specificity

from SP-CDFT differ much from those obtained from the spin-restricted CDFT
results, where we found that global CDFT indices behaved similarly for both Fe–
and Ru–porphyrin complexes. Put together, these results show that to answer the
question of why Nature selects Fe over Ru, besides their abundance difference: in
metalation with porphyrin in hemoproteins one has to resort to the SP-CDFT, since
spin states play an important in catalytic reactions of the enzymes.

The peculiarity of the Fe–porphyrin system is further verified in other properties.
For example, the spin potential 𝜇∗−S of the p0-Fe system, that is, 𝜇−S of its NS + 2
state (i.e. quintet), is −0.27 eV, the only case of a negative value for the p0 series
(Table 22.2), indicating that the NS + 2 state of the p0-Fe system is more stable than
other metal species of the same nature. Its counterpart for the multiplicity increasing
process, 𝜇∗+S of the p0-Fe system, that is, 𝜇+S of its NS + 2 state is found to be+1.45 eV
(not shown). Combining its negative 𝜇−S and positive 𝜇+S for the NS + 2 state, we find
that the p0-Fe system is unique in relative stability, compared to other systems in p0
series, which have both positive 𝜇−S and 𝜇+S values. This large difference between the
two states indicates that the higher spin state of the p0-Fe system could be a stable or
intermediate state, accessible during the catalytic reactions in physiological condi-
tions. To confirm this, we also computed the dual descriptor of p0-Fe* and found that
it is considerably larger than that of the triplet ground state, with f ∗(2)M = 0.693 and
f (2)M = 0.052, meaning that the higher spin state of p0-Fe is much more electrophilic
than the ground state. Note that 𝜇∗−S of p1-Co, p2-Cr, and p2-Fe are also negative, and
that their 𝜇∗+S (not shown in Table 22.2) are positive. Their dual descriptor values,
however, behave differently, with f ∗(2)p1−Co = 0.457, f ∗(2)p2−Cr = 0.153, f ∗(2)p2−Fe = 0.236 (all
positive) for the NS + 2 state and f (2)p1−Co = −0.146, f (2)p2−Cr = −0.022, f (2)p2−Fe = −0.289
(all negative), for the NS ground state, respectively. Compared to p0-Fe, these three
systems exhibit a tendency to be electrophilic in the excited state with the NS + 2
multiplicity, but the former shows unique reactivity: both NS and NS + 2 states are
electrophilic.

We further investigate the behavior of local descriptors from SP-CDFT, given in
Table 22.3, where the condensed spin polarized Fukui functions, f +SS and f +NS are given
for three atoms, the metal cation M in the porphyrin inner cavity, the nitrogen atom,
N–Pph, bonded with the metal ion, and the carbon atom, C–Pph, at the meso position
of the porphyrin ring. The spin uptake process mainly takes place at the site having
the largest value of f +SS. We find that in the p0 cases, both the Fe and Ru systems have
the markedly larger values for this quantity than both the other metal ions as well
as the N and C atoms, suggesting that the metal cation of these two complexes is the
center of electron oxidation and the most involved in the spin uptake, in agreement
with the experiment. For the p1 and p2 systems, however, the f +SS value of Fe and
Ru is very different, showing that Fe is much more preferred than other metal ions
as the metal oxidation site among the series. This uniqueness of regioselectivity in
metal oxidation distinguishes the Fe complex from others in this study, exhibiting
the preferred metal-binding specificity of porphyrin with the Fe cation. Also shown
in Table 22.3 are the results for the other condensed spin-polarized Fukui function
f +NS for the same atoms of the three systems. This quantity provides the information
for the response of the total electron density condensed on atom k with respect to
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Table 22.3 Selected local descriptors from SP-CDFT such as spin-polarized Fukui function
f +SS,k and f +NS,k for p0–, p1–, and p2–Metal(ll)–Porphyrin complexes, where k is M (metal
cation), N–Pph (nitrogen atom on the porphyrin ring), and C–Pph (bridging/meso carbon
atoms on the porphyrin ring).

py No. Metal ion
f +
SS,k

f +
NS,k

M N–Pph C–Pph M N–Pph C–Pph

0 Mg 0.001 0.042 0.063 0.000 0.029 0.006
Ca 0.021 0.088 0.057 −0.006 −0.023 0.011
Cr 0.048 0.043 0.063 0.048 0.041 0.003
Mn 0.013 0.044 0.063 0.012 0.033 0.005
Fe 0.224 0.042 0.057 −0.185 0.039 0.011
Co 0.019 0.040 0.062 0.017 0.039 0.002
Ni 0.021 0.041 0.064 0.020 0.039 0.004
Cu 0.007 0.040 0.064 0.006 0.036 0.005
Zn 0.004 0.039 0.064 0.002 0.036 0.005
Ru 0.264 0.082 0.046 −0.057 0.028 0.015
Cd 0.010 0.059 0.060 −0.004 0.007 0.009
Average 0.057 0.051 0.060 −0.013 0.028 0.007

1 Mg 0.361 0.142 0.056 −0.329 −0.066 0.013
Ca 0.051 0.104 0.050 −0.046 −0.047 0.006
Cr 0.081 0.046 0.062 0.064 0.041 0.003
Mn 0.202 0.095 0.060 −0.089 0.002 0.009
Fe 0.765 0.052 0.040 −0.690 0.035 0.024
Co 0.089 0.047 0.064 −0.003 0.035 0.004
Ni 0.264 0.071 0.062 −0.150 0.020 0.006
Cu 0.226 0.108 0.058 −0.184 −0.027 0.011
Zn 0.397 0.143 0.054 −0.275 −0.037 0.011
Ru 0.263 0.060 0.038 −0.214 0.029 0.020
Cd 0.055 0.116 0.056 0.029 −0.025 0.013
Average 0.250 0.089 0.054 −0.171 −0.004 0.011

2 Mg 0.180 0.158 0.054 −0.162 −0.089 0.014
Cr 0.180 0.053 0.057 −0.112 0.029 0.007
Mn 0.308 0.165 0.054 −0.252 −0.084 0.013
Fe 0.764 0.052 0.039 −0.620 0.027 0.027
Co 0.585 0.175 0.055 −0.489 −0.092 0.013
Ni 0.594 0.181 0.054 −0.503 −0.103 0.014
Cu 0.251 0.141 0.055 −0.189 −0.056 0.013
Zn 0.358 0.154 0.054 −0.275 −0.060 0.014
Ru 0.425 0.071 0.040 −0.119 0.041 0.022
Average 0.405 0.128 0.051 −0.302 −0.043 0.015

Source: Reprinted with permission from Feng et al. [13], American Chemical Society.
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the increase of the total spin number. A negative f +NS,k indicates that the atom is more
likely to be oxidized once excited as a better electron donor has a larger HOMO spin
density and thus a more negative f +NS,k. From Table 22.3, we found out on average
that the f +NS,k value of metal cations is−0.013 for p0,−0.171 for p1, and−0.302 for p2.
This finding verifies that as more pyridine groups are coordinated to the metal ion in
the complex, the metal ion itself becomes a better electron donor, in line with other
results from the CDFT. Another prominent feature of the f +NS,k results in Table 22.3 is
that in all three cases the Fe cation has the smallest f +NS,k value, indicating that the Fe
center possesses the largest electron donation capability. Recall that in our earlier
work Ru and Fe were found to have similar reactivities in CDFT. From both f +SS,k
and f +NS,k results in Table 22.3, in addition to the global indices in Table 22.2, we can
see that in the spin polarization these two metal complexes differ much in reactivity
properties.

22.5 Concluding Remarks

We have applied CDFT and its spin-polarized variant, SP-CDFT, to understand
molecular acidity, PCET, and metal specificity for a number of systems. We have
unraveled that for acidic atoms, electrostatic molecular potential and the sum of
natural valence orbital energies are two reliable descriptors to predict experimental
pKa values. They are originated from the first-order approximation in CDFT.
Using the dual descriptor in CDFT, PCET reaction mechanism can be qualitatively
appreciated and predicted through direct visual inspections. We also made use
of a series of reactivity indices both in CDFT and SP-CDFT to dissect the origin
and nature of metal specificity for metal–porphyrin complexes. In a nutshell, as
illustrated by three examples in this chapter, CDFT can be a robust and effective
tool with predictive power in explaining complex physicochemical phenomena.
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23.1 Introduction

One can picture a chemical reaction as a sequence of chemical events that are
structural and electronic changes taking place along a reaction coordinate to pro-
duce a chemical transformation. These chemical events are basically bond-forming
and bond-breaking processes that are main actions, although not the only ones,
necessary to produce the structural and electronic changes that achieve a chemical
reaction. For example, a simple substitution reaction as

A + BX → AB + X

involves a weak initial attractive interaction that allows the approach of the
reactants A and BX to initiate the reaction. This is followed by the breaking of the
B–X bond and the formation of the A–B bond; depending on the reaction, these
two events may, or may not, take place simultaneously. The reaction is achieved
when the products AB and X are formed and interacting through non-covalent
interactions. It is possible to define a hierarchy of chemical events that can be
distinguished empirically, but also in terms of the amount of energy they involve
and, in most cases, for the position along the reaction coordinate in which they
take place. Bond-breaking and bond-forming processes are primary events, bond
weakening and strengthening are secondary events, and non-covalent interactions
can be considered as tertiary events. These chemical events shows up at different
degrees of progress of the reaction, as shown in Figure 23.1. Discovering how
and where, along the reaction coordinate, chemical events shows up unveils the
very whole reaction mechanism, the processes by which chemical substances are
transformed into other substances are then at hand.

The first key quantity involved in a chemical process is the reaction energy
(ΔE∘), which is the net energy change between reactants and products; it defines
the chemical equilibrium and characterizes the thermodynamics of the reaction.

Conceptual Density Functional Theory: Towards a New Chemical Reactivity Theory, First Edition.
Edited by Shubin Liu.
© 2022 WILEY-VCH GmbH. Published 2022 by WILEY-VCH GmbH.
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Reactant
region

TS region Product
region

ΔE≠

ΔE°

ξPξR

Figure 23.1 The partition of the
reaction coordinate provided by the
reaction force analysis and projected
on a schematic energy profile of an
elementary step along the reaction
coordinate 𝜉. The pair {ΔE∘,ΔE≠} are
the reaction and activation energies.
The bars on each reaction region
indicate qualitatively the expected
intensity of primary (blue), secondary
(pink), and tertiary (black) chemical
events along the reaction coordinate.

Frequently, there are many ways a chemical reaction may take place. Among all
possible mechanisms, the most probable is the one that follows the minimum
energy path (MEP) connecting the reactants with the products and passing by a
transition state [1–3]. The MEP corresponds to the path with the lower activation
energy, which is the energy necessary to reach the transition state, and to do so,
chemical events have to be put at play. An energy profile represented in Figure 23.1
has three key points, two minima at the reactants (𝜉R) and products (𝜉P) and one
maximum at the transition state. The activation energy (ΔE≠) reveals, through the
transition state theory (TST) [4–6], the kinetic aspects of an elementary step or how
much time it takes for the whole process. Reaction thermodynamics, kinetics, and
mechanism are the three most relevant dimensions of a chemical reaction, and
they are intimately related. Therefore, a complete characterization of a chemical
reaction necessarily requires the knowledge of these three aspects.

Reaction rate and the activation energy are connected through the Arrhenius
equation

k = Ae−ΔE≠∕RT (23.1)

where k is the rate constant, A is the pre-exponential coefficient often referred to as
the frequency factor, R is the universal gas constant, and T is the temperature. More
sophisticated theories have been developed later being the most important one
the Eyring, Polanyi, and Evans TST [4, 5] based on the assumption that activated
complexes are in quasi-equilibrium with the reactants. This leads to the Eyring
equation[6, 7]

k =
(

kBT
h𝜈

)
e−ΔG≠∕RT (23.2)

where kB is the Boltzmann constant, h is the Planck constant, 𝜈 is the frequency
of an specific vibrational mode (chemical event) responsible for converting the
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activated complex to the product, and ΔG≠ is the activation Gibb’s free energy.
Therefore, the knowledge of the activation energy of a chemical reaction produces
fundamental kinetic information such as the time needed to produce the chemical
transformation.

In the past, due to the impossibility to get reliable estimation of activation ener-
gies, empirical relationships between kinetic and thermodynamic data have been
suggested. A linear relationship between the activation energy and the reaction
energy of an elementary reaction is known as Brönsted–Evans–Polanyi (BEP)
principle [8, 9]:

ΔE≠ = E0 + 𝛽ΔE∘ (23.3)

where E0 is a reference energy and 𝛽 is the Brönsted coefficient that measures the
resemblance between the transition state and the product. Following the Leffler
postulate [10], 𝛽 is formally defined as

𝛽 =
(

dΔE≠
dΔE∘

)
(23.4)

This simple equation may provide interesting insights on kinetic and thermo-
dynamic patterns of similar reactions. The Marcus equation (ME) for predicting
activation energies results from the interpolation of two local potentials, ER(𝜉)
and EP(𝜉), describing the reactants and the products. These potentials are linked
through a reaction coordinate 𝜉 and intersect in the transition state. Marcus
equation is conceived at the intersection of the two wells, which correspond to the
actual transition state (TS) of the reaction; see Figure 23.2 [11, 12]:

ΔE≠ = ΔE≠
∘ +

1
2
ΔE∘ + (ΔE∘)2

16ΔE≠
∘

(23.5)

It is interesting to note that in the ME, the linear relationship between activation
and reaction energies already found in the BEP model is recovered, although the
constant slope of 𝛽 = 0.5 is slightly different from the 𝛽 coefficient obtained in the
BEP model, in the Marcus equation, a corrected Brönsted coefficient emerges:

𝛽 =
(

dΔE≠
dΔE∘

)
= 1

2
+ ΔE∘

8ΔE≠ (23.6)

Figure 23.2 The Marcus equation is
obtained from interpolation of two
potentials localized at the reactants and
products. The intercepting point defines
the location of the transition state with
the associated activation energy ΔE≠. The
intrinsic activation energy is the energy
involved in distorting the reactants to
reach the position of the products.

Activation
energy

Intrinsic
activation

energy
Reaction
energy

ΔE≠

ΔE≠ += +ΔE≠ ΔE°
(ΔE°)2

16ΔE≠
1

2°
°
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As observed, the correction to the one half factor of Eq. (23.6) is due to a balance
between reaction and intrinsic activation energies, and it is normally small since
in most cases ΔE≠

∘ ≫ ΔE∘. The Brönsted coefficient, as defined in Eq. (23.6),
measures the compliance of the Hammond postulate [13] stating that for exergonic
reactions (ΔE∘ < 0) the transition state is located closer to the reactants (𝛽 < 0.5),
whereas for endergonic reactions (ΔE∘ > 0) the TS is located closer to the products
(𝛽 > 0.5). This is the basis of the Marcus theory of electron transfer reactions that
was originally formulated to link the rate of the reactions with the thermodynamics
of the process [7, 11, 12]. As indicated in Figure 23.2, a key quantity in the Marcus
theory is the reorganization energy or Marcus’ intrinsic activation energy, ΔE≠

0 ,
which corresponds to the energy associated to the reorganization of the reactant at
the equilibrium configuration of the product.

Although not intended to describe chemical reactions, the Marcus equation
became a keystone in the characterization of the kinetics and thermodynamics of
any kind chemical process [14, 15]. The three stationary points on the energy profile
along a reaction coordinate were enough to get this information, and the profiles of
energy became crucial to get kinetic and thermodynamic data of a chemical process
although it never gave a clue on the reaction mechanisms. An important leap
further on the direction of elucidating reaction mechanisms was the introduction
of the reaction force since it provided a rational partition of the reaction coordi-
nate into the so-called reaction regions in which specific mechanisms might be
operating [16–22].

In this chapter, we are going to review all three aspects of a chemical reaction
on the basis of the Marcus’ equation that relates activation and reaction ener-
gies. Reaction mechanisms will be rationalized within the frame of the reaction
force analysis (RFA) that allows a partition of the reaction coordinate in reac-
tion regions in which different mechanisms might be operating. On the other
hand, chemical events explaining the reaction mechanism will be characterized
through the reaction electronic flux (REF) that is a density functional theory
(DFT)-based descriptor of the electronic activity taking place during a chemical
reaction.

23.2 Theory of the Mechanism of Chemical Reactions

23.2.1 The Reaction Force Analysis

As already mentioned, a major leap on the characterization of reaction mechanism
was the introduction of the reaction force, defined as [16]

F(𝜉) = −
(

dE(𝜉)
d𝜉

)
(23.7)

So, to any energy profile it corresponds a reaction force profile that is obtained
through numerical or analytic differentiation of E(𝜉), as illustrated in Figure 23.3.
The five key points on the reaction force profile are the same as for the energy
profile, reactant, transition state, and product to which the reaction force minimum
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Figure 23.3 Correspondence between energy and reaction force profiles. The energy
profile has three key points, whereas the reaction force profile exhibits five points of
interest.

Figure 23.4 Reaction regions defined for
an elementary step. The force minimum
and the force maximum define the borders
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and maximum have to be added. These five points are used to define reaction
regions along 𝜉 as indicated in Figure 23.4, in which different mechanisms might
be operating, as indicated in Figure 23.4.

The reactant and product regions are structurally intensive. In the reactant
region, structural rearrangements prepare the reaction, whereas in the product
region the structural relaxation leads to the products [23–27]. These two regions are
characterized mainly by secondary and tertiary chemical events. In contrast to this,
the transition state region is mostly electronically intensive. Here, most electronic
activity takes place through primary chemical events; see Figure 23.1 [20, 28]. In
fact the transition state region hosts activated reactants and products, which are
unstable species that appear and disappear, promoting the reaction in one sense or
the other. Significantly, the numerical value of the definite integral of reaction force
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(RF) in given intervals along 𝜉 gathers information about the energy associated with
specific chemical events that might be driving the reaction within those intervals,
defining reaction works as [17]

Wi = −∫
𝜉i+𝛿𝜉

𝜉i

F(𝜉)d𝜉 (23.8)

In this way, it is possible to quantify the energetic expenditure of specific chemical
events taking place anywhere along the reaction coordinate. In particular, and with
the aim of providing a natural partition of activation and reaction energies, reaction
works W1,W2,W3, and W4, consistent with the already defined reaction region, are
given by

W1 = −∫
𝜉1

𝜉R

F(𝜉)d𝜉 > 0; W2 = −∫
𝜉0

𝜉1

F(𝜉)d𝜉 > 0 (23.9)

W3 = −∫
𝜉2

𝜉0

F(𝜉)d𝜉 < 0; W4 = −∫
𝜉P

𝜉2

F(𝜉)d𝜉 < 0 (23.10)

where 𝜉0 is the position of the transition state. The above-defined reaction works
introduce a new perspective into activation and reaction energies, which can be
expressed as

ΔE∘ =
(

W1 +W2 +W3 +W4
)

(23.11)

and

ΔE≠ =
(

W1 +W2
)

(23.12)

Note that since the reaction works are defined within regions in which structural or
electronic effects prevails over the other, the physical nature of these key energies
is then revealed in terms of the relative weight of structural and electronic effects.
In this context a new perspective on activation processes is obtained, illustrated in
Figure 23.5.

In summary, the RFA provides a reliable framework to analyze the different reac-
tion mechanisms that might be operating within the different reaction regions. It
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Figure 23.5 The activation process from the perspective of the reaction force.
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is important to note that for multistep reactions, more reaction regions have to be
defined and a n-step reaction will have (2n + 1) reaction regions with n transition
state and (n − 1) intermediate regions, besides the reactant and product regions [19,
23, 29–33]. The energy involved in activation and relaxation can be easily quantified
through the reaction works evaluated within the different regions, thus allowing to
identify their physical nature.

23.2.2 The Marcus Potential Function

Recently a potential function consistent with the Marcus equation has been
proposed [34], which is given by

E(m)(𝜉) = −1
4
ΔE≠
∘ 𝜉

4 + ΔE≠
∘ 𝜉

2 + 1
4
ΔE∘𝜉2 (23.13)

As it can be seen, the Marcus potential (E(m)(𝜉)) is a two-parameter polynomial func-
tion. Both parameters have known physical meaning, the intrinsic activation energy
ΔE≠
∘ accounting for structural distortion and the reaction energy (ΔE∘) accounting

for the thermodynamic driving force of the chemical process. Therefore, the Marcus
potential can be defined by having the energy of the reactants, products, and the TS.
This potential naturally spans in an interval {0,2} yielding an energy profile over
𝜉 that recovers the activation energy and the reaction energy. The position of the
transition state for E(m)(𝜉) is given by(

dE(m)(𝜉)
d𝜉

)
𝜉0

= 0 → 𝜉0 =

[
2 + 1

2

(
ΔE∘

ΔE≠
∘

)]
(23.14)

When Eq. (23.13) is evaluated at 𝜉0, the Marcus equation is recovered. Therefore, the
classical ME is a particular case of the Marcus potential.

23.2.3 The Reaction Force Analysis of E(m)(𝝃)

It is possible to perform the RFA using the analytic Marcus’ potential function
given in Eq. (23.11). The reaction force in the context of the Marcus potential is
given by [34]

F(m)(𝜉) = −
(

dE(m)
d𝜉

)
= ΔE≠

∘ 𝜉
3 − 2ΔE≠

∘ 𝜉 −
1
2
ΔE∘𝜉 (23.15)

The reaction force F(m)(𝜉) vanished at the reactant and transition state. After the
TS, it continues to increase so that it can only be used for activation processes
although relaxation can be treated as a reverse activation. Another important
result is that the minimum of the Marcus’ reaction force (𝜉1) can be derived
analytically:

𝜉
2
1 =

1
3
𝜉

2
0 =

1
3

[
2 + 1

2

(
ΔE∘

ΔE≠
∘

)]
(23.16)
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and therefore, integrating F(m)(𝜉)within the right intervals will lead to analytic forms
for reaction works W (m)

1 and W (m)
2 :

W (m)
1 = ∫

𝜉1

𝜉R

F(m)(𝜉)d𝜉

= −1
4
ΔE≠
∘
(1

9
𝜉

4
0

)
+ ΔE≠

∘
(1

3
𝜉

2
0

)
+ 1

4
ΔE∘

(1
3
𝜉

2
0

)
= 5

9
ΔE≠
∘ +

5
18
ΔE∘ + 5

144

[
(ΔE∘)2

ΔE≠
∘

]
(23.17)

and

W (m)
2 = ∫

𝜉0

𝜉1

F(m)(𝜉)d𝜉

= −1
4
ΔE≠
∘
(8

9
𝜉

4
0

)
+ ΔE≠

∘
(2

3
𝜉

2
0

)
+ 1

4
ΔE∘

(2
3
𝜉

2
0

)
= 4

9
ΔE≠
∘ +

4
18
ΔE∘ + 4

144

[
(ΔE∘)2

ΔE≠
∘

]
(23.18)

with

W (m)
1 +W (m)

2 = ΔE≠
m (23.19)

whereΔE≠
m is the same expression for the activation energy given in Eq. (23.4), and a

subindex (m) has been added to ΔE≠ to stress its analytic origin. A relevant result is
that within the framework of the Marcus’ potential function, the reaction work W (m)

1
represents 56% of the activation energy, confirming the preponderance of structural
reorganizations over electronic reordering, a fact that has been empirically observed
in many reactions.

23.3 The Reaction Electronic Flux

The REF measures the electronic activity taking place along the reaction coordinate,
which is defined as [35–37]

J(𝜉) = −d𝜇
d𝜉

(23.20)

where 𝜇 is the electronic chemical potential accounting for the escaping tendency
of electrons from equilibrium [38–40], defined as

𝜇 =
(

dE
dN

)
v(r⃗)
≈ −1

2
(IP + EA) ≈ 1

2
(𝜖H + 𝜖L) (23.21)

where N is the total number of electron of the system, v(r⃗) is the external potential,
and the pairs {IP,EA} and {𝜖H, 𝜖L} are the ionization potential and electron
affinity; and the frontier molecular orbital energies, highest occupied molecular
orbital (HOMO) and lowest unoccupied molecular orbital (LUMO), respectively.
To obtain the working formulae given in the above equation from the differential
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definition of 𝜇, it is necessary to invoke the finite difference approximation [41]
and the Koopmans theorem [42]. In this context, the simple knowledge of frontier
molecular orbital energies along 𝜉 is enough to get a profile for the chemical
potential, 𝜇(𝜉), which produces crucial information about the electronic activity
that drives a chemical reaction [25, 29, 43]. It has been established that positive
values of J(𝜉) are associated with spontaneous electronic activity driven by bond
strengthening/forming processes, whereas negative values are associated with
non-spontaneous electronic activity that is conducted by bond weakening/cleavage
processes [28, 43].

23.3.1 Physical Partition of the REF

To better rationalize results from REF, a physical partition of J(𝜉) was proposed [30,
37, 44] in terms of electronic polarization and transfer effects (Figure 23.6):

J(𝜉) =
(

Jp(𝜉) + Jt(𝜉)
)

(23.22)

where Jp(𝜉) and Jt(𝜉) are polarization and transfer fluxes, respectively. In this way, it
is possible to characterize the nature of the electronic activity that drives the reaction
along 𝜉.

23.3.2 Chemical Partition of the REF

A chemical partition of the REF is also available [45], which is derived from the
electrophilicity index 𝜔:

𝜔 = 𝜇
2

2𝜂
(23.23)

where 𝜂 is the hardness expressed in the frame of conceptual DFT as the derivative
of 𝜇 with respect to the total number of electrons. Therefore,

J(𝜉) = 1
2
ΔNmax (𝜉)

(
d𝜂
d𝜉

)
+ 1
ΔNmax (𝜉)

(
d𝜔
d𝜉

)
(23.24)

=
(

J
𝜂
(𝜉) + J

𝜔
(𝜉)

)
(23.25)

withΔNmax = −𝜇∕𝜂 being the maximum number of electrons the system can accept.
Therefore, the following component of the reaction flux emerges

J
𝜂
(𝜉) = 1

2
ΔNmax (𝜉)

(
d𝜂
d𝜉

)
(23.26)

Figure 23.6 Conceptual
interpretation of the
reaction electronic flux.
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and

J
𝜔
(𝜉) = 1

ΔNmax (𝜉)

(
d𝜔
d𝜉

)
(23.27)

The pair {J
𝜂
, J
𝜔
} can be used to rationalize results of REF in terms of well-known

reactivity descriptors such as hardness and electrophilicity index.

23.3.3 REF, Electronic Populations, and Bond Orders

To complement the REF results, it is possible to link the REF with local electronic
properties such as bond orders, atomic charges, and electronic populations. The link
comes from the very definition of the chemical potential in DFT [38, 39]:

𝜇 = ∫ f (r⃗)𝛿v(r⃗)dr⃗ → 𝜇 ≈
∑

k
vkfk (23.28)

and therefore, the REF can be written in terms of condensed to atoms quantities:

J(𝜉) ≈ − 1
N
∑

k

(dvk

d𝜉

)
⋅ 𝜌k −

1
N
∑

k

(d𝜌k

d𝜉

)
⋅ vk (23.29)

where, since the condensed external potential vk remains constant all along the reac-
tion coordinate, the first term of the right-hand side can be overlooked. In this con-
text the REF becomes proportional to the derivative of electronic population on atom
k weighted by the constant external potential. Following the above equation, it is pos-
sible to use bond orders to identify specific bond processes (forming/cleavage) that
might be prime responsible for the electronic activity evidenced by the REF.

23.4 Selected Applications

23.4.1 Reaction Force Analysis and REF

Carbocation rearrangements are involved in many enzyme-catalyzed biochemical
reactions; in particular, the carbocation triple shift (CCTS) reaction is one of the
most unusual types of rearrangements discovered. The CCTS consists in concerted
processes that are characterized by three main events, which are [1] 1,2-methyl
shift, [2] 1,3-hydride shift, and [3] 1,2-alkyl shift [46]. In this study, the reactant,
product, and transition state geometries were optimized at the B3LYP/6-31+G(d,p)
level using the Gaussian 09 package, which has proven to be a good methodology for
the description of this mechanism. Results are summarized in Figure 23.7. It can be
observed that the reaction force profile suggests the existence of intermediates, thus
leading to four reaction regions, as indicated by the different colors on the figures.
The table indicate that all chemical events that drive a portion of the progress of the
reaction have associated a value of energy adsorbed or released indicating that
the RFA provides a very detailed scrutiny of the energy involved in the chemical
transformation. On the other hand, it can be observed on the right-bottom panel
that the REF is basically constructed from the contributions, at different stages of
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the reaction, of the specific chemical event, the REFs to which are determined by
fragmentation of the supermolecule into relevant topologic fragment containing
the chemical event under study.

23.4.2 Physical and Chemical Partition of REF

To illustrate the chemical and physical partition of the REF, we will analyze the
two-step mechanism of the formation of aminoacetonitrile (NH2CH2CN) from
methanimine (NHCH2) and hydrogen isocyanide (CNH). The interest of this
reaction comes from the fact that aminoacetonitrile is a direct precursor of glycine
and the reaction may take place in the interstellar medium, where both reactants
have been observed [45]. The reaction takes place following two steps as indicated
in Figure 23.8. It can be observed in the Figure 23.8 that in step 1 physical and
chemical components of the partition match each other very closely and in step 2
the situation consistency is more qualitative.

The physical and chemical representations of the REF for R1 and R2 are given in
left and right bottom panels, where each one includes four plots. (a) Red and blue
curves correspond to Jp(𝜉) and Jt(𝜉), respectively; black curve is the total REF: J(𝜉) =
Jp(𝜉) + Jt(𝜉). (b) Red and blue curves correspond to J

𝜂
(𝜉) and J

𝜔
(𝜉), respectively;

black curve is the total REF: J(𝜉) = J
𝜂
(𝜉) + J

𝜔
(𝜉). The inset on the Figure 23.8 shows

the variation of ΔNmax (𝜉). (c) Comparison between Jt(𝜉) and J
𝜂
(𝜉). (d) Comparison

between Jp(𝜉) and J
𝜔
(𝜉). Consistency between the two approaches was reached for

the case of the formation reaction of aminoacetonitrile. A very good correspondence
between the pairs {Jp, J𝜔} and {Jt, J𝜂} was obtained, thus giving new conceptual
insights on the physical interpretation of the REF and its components.

23.5 Conclusions

In this chapter, we have given an overview of a protocol based on the RFA to charac-
terize the most frequently elusive mechanism of chemical reactions. The bunch of
tools we reviewed starts with the characterization of transition states and the activa-
tion energy. This can be achieved using simple empirical models such as the BEP or
the Marcus’ equation. The usefulness of energy profiles to track specific events that
drive the reaction has been put in value; numerical and analytic profiles can be used
to rationalize them. In this context, an analytic potential was formulated to extend
the validity of the ME and to characterize energies associated to specific stages as
the reaction progress, energies that are crucial in the unfolding of the mechanism.
It has been proven that the RFA is a very powerful tool to define a framework based
on the reaction coordinate to zoom-in into the specific effects that drive a chemical
reaction.

REF emerged as a very useful tool to characterize the electronic activity that
takes place at every step of the reaction; the coupling between conceptual DFT
and the classical physical chemistry of reactions is then achieved. Physical and
chemical partitions of the REF provide different ways to rationalize the electronic
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Figure 23.8 Composition of results concerning the comparison of physical and chemical partition of REF. Source: Gutiérrez-Oliva et al. [45].
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activity: the first one uses polarization and transfer effects, and the second one
involves well-known DFT descriptors of chemical reactivity. In this context, the
link between both approaches provides new interpretative resources to analyze any
chemical process.

Integration of different tools, global and local properties of a chemical reaction,
produces a very powerful protocol to analyze chemical events and to assign them the
relevance they have in a given step of the reaction. Like a musical piece made of musi-
cal notes that are going on and off along the whole artwork, a chemical reaction is
made of chemical events that show up and disappear sequentially or synchronously
as part of a vast ensemble of events that remain active until completion of the desired
chemical change, where equilibrium is reached.
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24.1 Introduction

After the establishment of the mechanism of polar Diels–Alder (P-DA) reactions in
2009, the use of conceptual density functional theory (CDFT)-based electrophilicity
𝜔 index and Domingo’s empirical nucleophilicity N index has become a powerful
tool in organic chemistry for the study of polar organic reactions. On the other hand,
the proposal of the Parr functions in 2013 as an estimation of the Fukui functions
in CDFT permitted the study of the regio- and chemoselectivity in polar reactions.
Despite the nucleophilicity N index is not a CDFT index per se, the analysis of
these CDFT-based reactivity indices, easily accessible for experimentalists, are
today a valuable tool in organic chemistry to study the reactivity. In this chapter, the
application of these reactivity indices in the study of experimental P-DA reactions
is presented.

24.2 The Diels–Alder Reaction. The Polar Mechanism

The Diels–Alder (DA) reaction between a conjugated diene and an ethylene deriva-
tive to yield a cyclohexene, reported for the first time by Diels and Alder in 1928 [1],
is one of the most studied organic reactions from a synthetic as well as a theoretical
viewpoint (see Scheme 24.1) [2, 3].

The DA reaction between butadiene 3 and ethylene 4, inadequately classified by
Woodward and Hoffmann as a “pericyclic” reaction in 1969 [4], was chosen as the
paradigm of DA reactions (see Scheme 24.2) [5]. However, while the experimental
DA reaction between cyclopentadiene (Cp, 1) and maleic anhydride 2 takes place
easily at room temperature (see Scheme 24.1) [1], the DA reaction between butadi-
ene 3 and ethylene 4 does not take place easily in the laboratory (see Scheme 24.2);
it must be forced to take place: after 17 hours at 165 ∘C and 900 atmospheres, it gives
a 78% yield [6].

Conceptual Density Functional Theory: Towards a New Chemical Reactivity Theory, First Edition.
Edited by Shubin Liu.
© 2022 WILEY-VCH GmbH. Published 2022 by WILEY-VCH GmbH.
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Scheme 24.1 DA reaction between cyclopentadiene (Cp) 1 and maleic anhydride 2
reported in 1928 by O. Diels and K. Alder.
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Scheme 24.2 Proposed pericyclic mechanism for the DA reaction between butadiene 3
and ethylene 4.

Recently, a molecular electron density theory (MEDT) [7] study of the five reac-
tions classified by Woodward and Hoffmann as “pericyclic” in 1969 proved that the
bonding changes along these hydrocarbon reactions are non-concerted [8].

After studying numerous experimental DA reactions during 1995–2009, the
very good correlation found between the activation energy and the global electron
density transfer (GEDT) [9] for a series of DA reactions between Cp 1 and 12
ethylenes of increased electrophilicity, R2 = 0.89, made it possible to establish the
P-DA mechanism, followed by most experimental reactions [10, 11]. That study
allowed establishing a very good correlation between the increase of the elec-
trophilicity 𝜔 index [12] of the ethylenes and the reduction of the activation barrier
associated with these DA reactions (R2 = 0.92) (see Figure 24.1) [10]. Thus, while
non-polar Diels–Alder (N-DA) reactions do not take place easily in the laboratory,
the feasibility of P-DA reactions increases with the nucleophilic character of the
diene and the electrophilic character of the ethylene, or vice versa [10]. Afterward,
the analysis of the electrophilicity [12] 𝜔 and nucleophilicity [13] N indices became
an effective tool for the study of reactivity in cycloaddition reactions [14–16].

24.3 The Electrophilicity 𝝎 and Nucleophilicity N
Indices in the Study of P-DA Reactions

The electrophilicity 𝜔 index [12], proposed in 1999 by Parr, gives a measure of the
energy stabilization of a molecule when it acquires an additional amount of electron
density from the environment. It is given by the simple expression:

𝜔 = 𝜇
2

2𝜂
(24.1)
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Figure 24.1 Plot of the
activation barriers (ΔEact in
kcal mol−1) vs. the electrophilicity
𝜔 index of the ethylenes, in eV,
R2 = 0.92, for the DA reactions
between Cp 1 and the substituted
ethylene series of increased
electrophilic character.
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where μ is the electronic chemical potential [17] and 𝜂 is the chemical hardness [18].
Thus, a good electrophile is a species characterized by a high |𝜇| value and a low 𝜂

value. The electronic chemical potential𝜇 and the chemical hardness 𝜂 are expressed
as 𝜇 = (EHOMO + ELUMO)/2 and as 𝜂 = (ELUMO−EHOMO). Note that these energies are
considered only as an approach to the molecular ionization potential and electron
affinity.

A comprehensive study carried out in 2002 on the electrophilicity 𝜔 of a series of
reagents participating in DA reactions allowed establishing a single electrophilic-
ity 𝜔 scale, which allowed the classification of organic molecules as strong elec-
trophiles with𝜔≥ 1.5 eV, moderate electrophiles with 0.8≤𝜔< 1.5 eV and marginal
electrophiles with𝜔< 0.8 eV (see Table 24.1) [19]. Note that only strong electrophiles
work experimentally.

For the short series of marginal electrophiles 4, 14–16 given in Table 24.1, a good
correlation between the inverse of the electrophilicity 𝜔 index and the expected
nucleophilicity was found; i.e. for these marginal electrophilic species, the less elec-
trophilic they are, the more nucleophilic. Thus, for the series of simple molecules
given in Table 24.1, a good correlation between the difference of electrophilicity Δ𝜔
between the reagents and the feasibility of the DA reaction was established; i.e. the
higher the Δ𝜔, the faster the DA reaction [19]. Hence, the high Δ𝜔 value found for
the reaction between Cp 1 and maleic anhydride 2, experimentally reported by Diels
and Alder in 1928 (see Scheme 24.1) [1], Δ𝜔 = 2.51 eV, accounts for the feasibility
of this DA reaction, which contrasts with the DA reaction between butadiene 3 and
ethylene 4,Δ𝜔= 0.32 eV, chosen by Woodward and Hoffmann as the reaction model
of DA reactions (see Scheme 24.2) [4].

While Δ𝜔 allowed explaining the reactivity in DA reactions involving simple
molecules, it fails in the study of DA reactions involving complex molecules having
several functional groups of different electronic nature. This is the case of the
captodative ethylenes 17 given in Scheme 24.3, amphiphilic species concurrently
displaying both electrophilic and nucleophilic behaviors [13].

In 2008, Domingo proposed an empirical (relative) nucleophilicity N index for
closed-shell organic molecules based on the HOMO energies, EHOMO, obtained
within the Kohn–Sham scheme [20], defined as [13]:

N = EHOMO(Nu) − EHOMO(TCE) (24.2)



484 24 Application of Reactivity Indices in the Study of Polar Diels–Alder Reactions

Table 24.1 B3LYP/6-31G(d) electrophilicity 𝜔 index, in eV,
of some common reagents involved in DA reactions.

Molecules 𝝎

Strong electrophiles
(CN)2C=C(CN)2 5 5.96
Maleic anhydride 2 3.24
CH2=CHCHO—BH3 6 3.20
CH2=C(CN)2 7 2.82
CH3O2C≡CCO2CH3 8 2.27
CH2=CHNO2 9 2.61
CH2=CHCHO 10 1.84
CH2=CHCN 11 1.74
CH2=CHCO2CH3 12 1.51

Moderate electrophiles
CH2=CH—CH=CH2 3 1.05
CH2=CH—C(OSi(CH3)3)=CH2 13 0.88
Cyclopentadiene 1 0.83

Marginal electrophiles (nucleophiles)
CH2=CH2 4 0.73
CH≡CH 14 0.54
CH2=CHOCH3 15 0.42
CH2=CHN(CH3)2 16 0.27

H2C C

ER

EW
17

Captodative ethylenes

ER groups = –N(CH3)2, –OCOPh, –OCOCH3
EW groups = –NO, –COCH3, –COOCH3, CN

Scheme 24.3 Captodative ethylenes 17 having both electrophilic and nucleophilic
behaviors.

The nucleophilicity N index was referred to tetracyanoethylene (TCE) 5, which is
the most electrophilic neutral species in Table 24.1.

Analysis of a series of common nucleophilic species participating in polar
organic reactions allowed a further classification of organic molecules as strong
nucleophiles, N ≥ 3.0 eV, moderate nucleophiles, 2.0≤ N < 3.0 eV, and marginal
nucleophiles, N < 2.0 eV (see Table 24.2) [21]. As can be seen, butadiene 3, with an
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Table 24.2 B3LYP/6-31G(d) nucleophilicity N index, in eV, of
some common nucleophilic reagents involved in DA reactions.

Molecule N

Strong nucleophiles
CH2=CHN(CH3)2 16 4.28
CH2=C(OCH3)2 18 3.51
Cyclopentadiene 1 3.37
CH2=CHOCH3 15 3.18
(CH3)2C=C(CH3)2 19 3.35

Moderate nucleophiles
CH2=CH—CH=CH2 3 2.93
CH2=C(CH3)2 20 2.60
CH3C≡CCH3 21 2.57
CH2=CHCH3 22 2.32

Marginal nucleophiles
CH2=CH2 4 1.86
CH≡CH 14 1.45

N = 2.93 eV, is found on the borderline of moderate nucleophiles, while Cp 1, with
an N = 3.37 eV, is classified as a strong nucleophile participating in P-DA reactions
toward strong electrophilic ethylenes. On the other hand, ethylene 4, 𝜔 = 0.73 eV,
and acetylene 14, 𝜔 = 0.54 eV, are classified both as marginal electrophiles (see
Table 24.1) and as marginal nucleophiles, N = 1.86 and 1.45 eV, respectively (see
Table 24.2). Consequently, neither ethylene 4 nor acetylene 14 can participate in
P-DA reactions.

Captodative ethylene 17, having one of the most electron-withdrawing (EW)
groups, i.e. the nitroso NO, and one of the most electron-releasing (ER) groups, the
amino –N(CH3)2 (see Scheme 24.3), presents a high electrophilicity𝜔 index, 2.52 eV,
being classified as a strong electrophile, and a high nucleophilicity N index, 3.29 eV,
being also classified as a strong nucleophile, in clear agreement with its expected
amphiphilic reactivity [13].

24.4 P-DA Reactions of Forward (FEDF) and Reverse
(REDF) Electron Density Flux

Based on the frontier molecular orbital (FMO) theory [22], in 1972, Sustmann
and coworker classified cycloaddition reactions into three types [23]: (i) in type-I
(generally referred to as “normal electron demand [NED]”), the dominant FMO
interaction is that between HOMOTAC and LUMOethylene; (ii) in type-II, FMO
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energies of the TAC and the ethylene derivative are similar, so that both have to be
considered; and finally, (iii) type-III cycloadditions (generally referred to as “inverse
electron demand [IED]”) are dominated by interactions between LUMOTAC and
HOMOethylene. Although this classification was widely accepted [24], many authors
have emphasized that it is sometimes confusing, leading to interpretations contrary
to the experimental observations [25–28].

At the zwitterionic transition state structures (TSs) of P-DA reactions, the electron
density always fluxes from the nucleophilic species to the electrophilic one. Analysis
of the GEDT [9] at the TSs unambiguously determines the direction of the electron
density flux in a P-DA reaction. On the other hand, CDFT reactivity indices such as
the electronic chemical potential 𝜇, [17] the electrophilicity 𝜔, [12] and the nucle-
ophilicity N [13] indices also permit to predict the direction of the electron density
flux in polar reactions.

Due to the significance of the characterization of the direction of the electron
density flux in P-DA reactions, they were recently classified as reactions of forward
electron density flux (FEDF), when the electron density fluxes from a nucleophilic
diene toward an electrophilic ethylene, and reactions of reverse electron density flux
(REDF), when the electron density fluxes from a nucleophilic ethylene toward an
electrophilic diene [29, 30]. In [m + n] cycloadditions, FEDF reactions are those in
which the more unsaturated molecule is the nucleophile; i.e. the diene in P-DA reac-
tions, a [4+ 2] cycloaddition reaction. As many [3+ 2] cycloaddition (32CA) reac-
tions have a low polar character, cycloaddition reactions having GEDT values lower
than 0.05 e have been classified as null electron density flux (NEDF) reactions [30].

Thus, the N-DA reaction between butadiene 3 and ethylene 4, which had been
classified as a NED DA reaction, should be classified as an NEDF DA reaction as it
presents a GEDT = 0.0 e [9].

24.5 Lewis Acid–Catalyzed P-DA Reactions of FEDF

Lewis acid (LA) catalysts play an important role in cycloaddition reactions since, in
addition to the expected acceleration of the reactions, they notably increase selec-
tivities, yielding in most cases only one cycloadduct. Analysis of the electrophilicity
𝜔 index at the corresponding LA complexes allows explaining the role of the LA
catalyst in P-DA reactions [10, 31, 32]. The LA-catalyzed P-DA reaction between Cp
1 and acrolein 10 is shown in Scheme 24.4, while the electrophilicity 𝜔 and nucle-
ophilicity N indices of the reagents are given in Table 24.3.

+

1

O

LA

H

CHO LA

LA = BH3, BF3, AlCl3

Scheme 24.4 LA-catalyzed P-DA reactions between Cp 1 and acrolein 10.
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Table 24.3 B3LYP/6-31G(d) electrophilicity 𝜔 and nucleophilicity
N indices, in eV, for the reagents involved in the LA-catalyzed P-DA
reactions between Cp 1 and acrolein 10 given in Scheme 24.4.

Molecule 𝝎 N

Acrolein–AlCl3 23 4.61 1.24
Acrolein–BF3 24 3.29 0.00
Acrolein–BH3 25 3.20 1.92
Acrolein 10 1.84 2.13
Cyclopentadiene 1 0.83 3.37

As commented on earlier, P-DA reactions require the participation of strong
electrophiles and strong nucleophiles. The strong nucleophilic character of Cp
1, N = 3.37 eV, allows its participation in many P-DA reactions toward strong
electrophiles without any electronic activation [10]. The electrophilicity 𝜔 index of
acrolein 10, 1.84 eV, allows its classification as a strong electrophile, favoring the
corresponding P-DA reaction of FEDF. Coordination of BH3 LA to the carbonyl
oxygen atom of acrolein 10 notably increases the electrophilicity 𝜔 index of the
corresponding acrolein–BH3 complex 25, 3.20 eV [10, 31]. As the acidic character
of the LA increases, the electrophilicity 𝜔 index of the corresponding complex
increases, accelerating the P-DA reaction (see Table 24.3). Thus, while the DA
reaction between Cp 1 and acrolein 10 must be heated, the LA-catalyzed P-DA
reactions take place at room temperature, even at −78 ∘C.

A recent MEDT study on LA-catalyzed DA reactions has emphasized that while
the coordination of the LA to the electrophilic ethylene does not substantially modify
the electronic structure of the corresponding complex, its electrophilicity 𝜔 index
accounts for its reactivity in polar reactions [31].

24.6 P-DA Reactions of REDF. The H-DA Reactions

The synthetic usefulness of DA reactions, besides the substitution in both the diene
and the ethylene, also arises from the exchange of one or more carbon atoms of the
unsaturated compounds by a heteroatom such as O, N, S, and P, thus enabling the
synthesis of heterocyclic compounds through the well-known hetero Diels–Alder
(H-DA) reactions.

Thus, for instance, the aza Diels–Alder (A-DA) reactions of 1-aza-1,3-butadienes
(1ABD) are a valuable methodology for the synthesis of six-membered nitrogen het-
erocycles (see Scheme 24.5). Unfortunately, A-DA reactions of the simplest 1ABD
26 are rarely observed due to its moderate nucleophilic and electrophilic character,
N = 2.17 eV and 𝜔 = 1.47 eV (see Table 24.4). However, this problem can be avoided
by introducing either EW or ER groups into the nitrogen atom [33].



488 24 Application of Reactivity Indices in the Study of Polar Diels–Alder Reactions

R

N(Me)2 N(Me)2
N

R

N

R = H
= OAc
= OAc BH3

26 16
27
28

Scheme 24.5 A-DA reactions of 1ABDs 26–28 with dimetilvinilamine 16.

Table 24.4 B3LYP/6-31G(d) electronic chemical potential 𝜇, chemical hardness 𝜂,
global electrophilicity 𝜔 and global nucleophilicity N indices, in eV, for the reagents
involved in the A-DA of 1ABD derivatives.

Molecule 𝝁 𝜼 𝝎 N

CH2=CH—CH=NOAc BH3 28 −5.05 3.93 3.24 2.11
CH2=CH—CH=NOAc 27 −4.42 4.57 2.14 2.42
CH2=CH—CH=NH 26 −4.09 5.72 1.47 2.17
CH2=CH—CH=CH2 4 −3.42 5.62 1.05 2.89
CH2=CHN(CH3)2 16 −1.87 6.50 0.27 4.00

Thus, while the A-DA reaction of the simplest 1ABD 26 with N,N-dimethylvinyl-
amine 16, one of the most nucleophilic ethylenes, N = 4.00 eV, (see Table 24.2),
presents a high activation energy, 19.5 kcal mol−1, that of acetyl derivative 27
presents an activation energy of 10.2 kcal mol−1. As expected, when acetyl deriva-
tive 27 was coordinated to the BH3 LA, the activation energy associated to the
corresponding LA-catalyzed A-DA reaction involving complex 28 was found to be
only 2.1 kcal mol−1 [34]. Note that these A-DA reactions are classified as REDF
reactions in which the diene acts as the electrophilic species.

A good correlation between the electrophilicity𝜔 index of these 1ABD derivatives
and the activation energies of the corresponding A-DA reactions can be established
(see Figure 24.2). An appealing conclusion can be drawn from this short series of
A-DA reactions: despite the supernucleophilic character [35] of dimetilvinilamine
16, N ≥ 4.0 eV, the H-DA reaction with the moderate electrophile 1ABD 26, 𝜔 = 1.47
eV, presents a high activation energy, 19.5 kcal mol−1. This behavior supports the
aforementioned proposal that at least one of the two reagents participating in a polar
reaction should be a strong electrophile.

In 2002, Huang and Rawal reported the oxa Diels–Alder (O-DA) reactions
of carbonyl compounds promoted by formation of hydrogen bonds (HBs) (see
Scheme 24.6) [36]. These authors found that these O-DA reactions in chloroform,
HCCl3, were 10 times faster than those in the more polar solvent acetonitrile,
CH3CN.
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Figure 24.2 Plot of the
activation energies, ΔEact in
kcal mol−1, of the A-DA
reactions between 1ABD
derivatives 26–28 and
dimetilvinilamine 16, vs. the
electrophilicity 𝜔 index, in eV, of
1ABDs.
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Scheme 24.6 O-DA reactions of cyclohexanone 30 promoted by formation of hydrogen
bonds.

A further theoretical study of the O-DA reaction between diene 29 (R=Me), a
strong nucleophile, and acetone emphasized that the formation of one or two
non-classical HBs between the hydrogen of chloroform and the carbonyl oxygen of
acetone reduced the activation energy by 5.1 (one HB) and 9.0 (two HBs) kcal mol−1,
in complete agreement with the experimental outcomes [37].

Analysis of the nucleophilicity N and electrophilicity 𝜔 indices of the regents
allows explaining the experimental enhanced reactivity of cyclohexanone 30 by HB
formation. While diene 29 is a strong nucleophile, N = 4.35 eV, cyclohexanone 30
is classified as a moderate electrophile, 𝜔 = 0.95 eV. Despite the supernucleophilic
character of diene 29, cyclohexanone 30 is not electrophilic enough to favor this
O-DA reaction. However, when one or two molecules of chloroform are bound by
HBs to the carbonyl oxygen of cyclohexanone 30, a noticeable increase of the elec-
trophilicity of the corresponding hetero ethylenes is observed, 𝜔 = 1.27 eV (one HB)
and 1.53 eV (two HBs) (see Table 24.5), respectively. This behavior accounts for the
enhanced reactivity experimentally found by Huang and Rawal [36].

Unlike butadiene 3, benzene 33 is a poor diene participating in DA reactions due
to its inherent aromatic character [38, 39]. However, substitution of carbon atoms on
benzene by nitrogen ones favors the corresponding A-DA reaction, in such a manner
that tetrazine 34 easily participates in P-DA reactions of REDF [39].
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Table 24.5 B3LYP/6-31G(d) electronic chemical potential 𝜇, chemical hardness 𝜂,
global electrophilicity 𝜔 and global nucleophilicity N indices, in eV, for cyclohexanone
30 and cyclohexanone bound to one and two discrete molecules of chloroform by HBs.

Molecule 𝝁 𝜼 𝝎 N

Cyclohexanone–2 HCCl3 32 −4.34 6.14 1.53 1.71
Cyclohexanone–1 HCCl3 31 −3.93 6.07 1.27 2.16
Cyclohexanone 30 −3.35 6.05 0.93 2.74
TBSO 29 −2.28 5.00 0.52 4.35

The reactions of seven disubstituted tetrazines 35–41 of increased electrophilic
character with nucleophilic tetramethyl ethylene 19 was recently studied within the
MEDT [39]. These reactions are domino processes comprising an A-DA reaction fol-
lowed by an extrusion of molecular nitrogen, yielding a dihydropyridazine. Analysis
of the CDFT indices showed the increase of the electrophilicity 𝜔 and the decrease
of the nucleophilicity N of tetrazines with the increase of the EW character of the
substituent R (see Table 24.7). A very good correlation between the GEDT at the
TSs and the activation enthalpies for these A-DA reactions of REDF was found [39]
(Scheme 24.7; Table 24.6).
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Scheme 24.7 Domino reactions of disubstituted tetrazines 34–41 with tetramethyl
ethylene 19.

A good correlation between the electrophilicity 𝜔 indices of tetrazines 34–41 and
the activation energies could also be established, R= 0.91 (see Figure 24.3), in such a
manner that the increase of the electrophilicity𝜔 index of tetrazines 34–41 is accom-
panied by a decrease of the activation energy. Thus, while the reactions of tetrazines
40 (R =OMe) and 41 (R =Me), substituted by two ER groups, present high activa-
tion energies, ca. 20 kcal mol−1, that involving tetrazine 35, containing two strong
EW NO2 groups, presents an unappreciable barrier of 1.1 kcal mol−1.

24.7 P-DA Reactions Between Electrophilic Species. A
Challenge for the FMO Theory

In 2004, Spino et al. reported an experimental study of the DA reactions of elec-
trophilic diene 42 with a wide variety of nucleophilic ethylenes, such as 43, as well
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Table 24.6 B3LYP/6-31G(d) electronic chemical potential 𝜇, chemical hardness 𝜂, global
electrophilicity 𝜔 and global nucleophilicity N indices, in eV, for disubstituted tetrazines
34–41 and tetramethyl ethylene 19.

Molecule R 𝝁 𝜼 𝝎 N

35 NO2 −6.59 3.63 5.99 0.72
36 COCF3 −6.09 3.26 5.69 1.40
37 CF3 −5.85 3.66 4.68 1.44
38 CHO −5.71 3.44 4.74 1.70
39 COMe −5.26 3.53 3.91 2.10
34 H −4.98 3.67 3.38 2.30
40 OMe −4.63 3.65 2.93 2.67
41 Me −4.50 3.58 2.83 2.83
(CH3)2C=C(CH3)2 19 −2.46 6.94 0.43 3.20

Figure 24.3 Plot of the
activation enthalpies, ΔHact in
kcal mol−1, of the A-DA reactions
between disubstituted tetrazines
34–41 and tetramethyl ethylene
19 vs. the electrophilicity 𝜔
index, in eV, of tetrazines.
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as electrophilic ethylenes, such as 44, finding that the reactivity of electrophilic
ethylene 44 with electrophilic diene 42 was similar to that of nucleophilic ethylene
43 (see Scheme 24.8) [27].

FMO theory [22] was used to predict the reactivity of these reagents in a DA reac-
tion. Spino et al. concluded that, in the NED DA reaction, FMO theory could predict
the relative reactivity, while in the case of the IED one, it could not [27].

A theoretical study of the experimental Spino’s P-DA reactions showed that the
activation energy associated with the DA reaction of diene 42 with nucleophilic
ethylene 43, 15.3 kcal mol−1, was found only 1.0 kcal mol−1 below that involving elec-
trophilic ethylene 44, 16.3 kcal mol−1 [28]. Analysis of the electrophilicity 𝜔 and
nucleophilicity N indices allowed explaining the behaviors of these P-DA reactions.
The reactivity indices of 42, 43, and 44 are given in Table 24.7.
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Scheme 24.8 P-DA reactions of electrophilic diene 42 with nucleophilic 43 and
electrophilic 44 ethylenes.

Table 24.7 B3LYP/6-31G(d) electronic chemical potential 𝜇, chemical
hardness 𝜂, global electrophilicity 𝜔 and global nucleophilicity N indices,
in eV, of diene 42 and ethylenes 43 and 44.

Molecule 𝝁 𝜼 𝝎 N

44 −4.58 5.81 1.81 1.64
42 −4.27 5.68 1.60 2.01
42′ −3.92 5.52 1.39 2.45
Butadiene 3 −3.42 5.62 1.04 2.89
Ethylene 4 −3.37 7.77 0.73 1.87
43 −1.97 7.28 0.27 3.52

Analysis of the reactivity indices of diene 42 indicates that it is a strong electro-
phile, 𝜔 = 1.60 eV, and, as expected, a moderate nucleophile, N = 2.01 eV. As can
been seen, disubstituted ethylene 44 is the most electrophilic species in Table 24.7,
𝜔 = 1.81 eV, being classified as a strong electrophile. On the other hand, disubsti-
tuted ethylene 43 is the most nucleophilic species of this series, N = 3.52 eV, being
classified as a strong nucleophile.

The DA reaction between electrophilic diene 42 and nucleophilic ethylene 43 has
polar character, presenting an activation energy of ca. 9 kcal mol−1 less than that
associated to the N-DA of butadiene 3 with ethylene 4, 24.8 kcal mol−1 [9]. Analysis
of the corresponding electronic chemical potentials 𝜇 clearly indicates that the elec-
tron density will flux from nucleophilic ethylene 43 toward electrophilic diene 42;
the P-DA reaction being classified as an REDF reaction.

What happens in the DA reaction between the two electrophilic species? The
1,1-disubstituted ethylene 44, 𝜔 = 1.81 eV, is more electrophilic than diene 42,
𝜔 = 1.60 eV. On the other hand, diene 42, N = 2.10 eV, is less nucleophilic than
butadiene 4, N = 2.89 eV, a nucleophilic species participating in P-DA reactions.
The electrophilic behavior of diene 42 is a consequence of the presence of the two
EW CO2Me groups in the diene system, which efficiently delocalizes the electron
density transferred in polar processes of REDF. To realize this phenomenon
efficiently, the CO2Me groups should be coplanar to the unsaturated molecules.
Thus, when the two EW CO2Me groups are in a perpendicular conformation, the
electrophilicity 𝜔 index of diene 42′ decreases to 1.39 eV, and the nucleophilicity
N index increases to 2.45 eV (see 42′ in Table 24.7). Consequently, the DA reaction
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between diene 42′ and ethylene 44 will have polar character, in which ethylene 44
acts as a strong electrophile and diene 42′ acts as a moderate nucleophile. Thus,
while the P-DA reaction of diene 42 with nucleophilic ethylene 43 is classified as an
REDF reaction, that with strong electrophilic ethylene 44 is classified as FEDF.

24.8 Regioselectivity and Chemoselectivity in P-DA
Reactions. The Parr Functions

The participation of non-symmetric reagents in P-DA reactions allows the for-
mation of two regioisomeric cycloadducts (see Scheme 24.9). Generally, P-DA
reactions of 1- or 2-substituted 1,3-butadienes are highly regioselective, yielding
the formation of only of ortho or meta regioisomeric cycloadduct, respectively (see
Scheme 24.9) [40].
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Scheme 24.9 Regioisomeric cycloadducts formed in P-DA reactions.

In addition, the presence of several unsaturated centers in an organic molecule
makes the formation of structural isomeric cycloadducts possible. Frequently, P-DA
reactions are also highly chemoselective, yielding the formation of only one struc-
tural isomeric cycloadduct.

24.8.1 The Parr Functions

A great number of bonding evolution theory (BET) [41] studies of cycloaddition reac-
tions allowed Domingo to propose, in 2014, that along both non-polar and polar
cycloaddition reactions the formation of new C—C single bonds takes place within
the short range of 2.0–1.9 Å by the C-to-C coupling of two pseudoradical centers
[42, 43] generated along the reaction path (see Figure 24.4) [9]. In polar reactions,
the formation of these pseudoradical centers, which come from the depopulation of
the C–C double bonds, is favored by the GEDT taking place from the nucleophilic
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Figure 24.4 Pseudoradical species involved in the C—C bond formation in N-DA and P-DA
reactions. The blue arrows indicate the direction of the GEDT.

to the electrophilic species. In non-symmetric molecules, a non-symmetric distribu-
tion of the transferred electron density takes place at the two interacting frameworks.
Thus, while at the nucleophile some atoms lose less electron density, in the elec-
trophile some of them gather more electron density. These atoms correspond to the
most nucleophilic and most electrophilic centers of the reactant molecules [9].

In case that an amount of electron density equivalent to one electron is transferred,
the nucleophile becomes a radical cation, while the electrophile becomes a radical
anion. Interestingly, analysis of the atomic spin density (ASD) distribution at the
radical cation of the nucleophile and the radical anion of the electrophile provides a
picture of the electron density distribution in both regents when they approach each
other along the reaction progress.

Based on these findings, in 2013, Domingo proposed the Parr functions P(r), which
are given by the following equations [44]:

P−(r) = 𝜌s
rc(r) for electrophilic attacks (24.3)

and

P+(r) = 𝜌s
ra(r) for nucleophilic attacks (24.4)

where, 𝜌s
rc(r) is the ASD at the r atom of the radical cation of a considered frozen

molecule and 𝜌s
ra(r) is the ASD at the r atom of the radical anion. Each ASD gath-

ered at the different atoms of the radical cation and the radical anion of a molecule
provides the nucleophilic Pk

− and electrophilic Pk
+ Parr functions of the neutral

molecule.
The Parr functions can be understood as an estimation to the Fukui functions

proposed in 1984 within CDFT [45]. The Fukui function f (r) represents the changes
in electron density at a point r with respect to the variation of the number of electrons
N at a fixed external potential 𝜈(r):

f (r) =
(
𝜕𝜌(r)
𝜕N

)
v(r)

(24.5)

Although, in principle, the electron density of a neutral or N0± 1electron molecule
contains all information needed for the evaluation of the Fukui function, many
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studies have been carried out by using the so-called finite difference method,
proposed in 1986 by Yang and Mortier (YM) [46], in which the Fukui functions are
approximated as:

f +(r) ≈ 𝜌NO+1
(r) − 𝜌NO

(r) for nucleophilic attacks (24.6)

and

f +(r) ≈ 𝜌No
(r) − 𝜌No−1

(r) for electrophilic attacks (24.7)

where 𝜌No, 𝜌No+ 1, and 𝜌No− 1 are the atomic charges in the neutral, anionic, and
cationic species.

A comparative analysis of the electrophilic Pk
+ Parr functions and the YM elec-

trophilic f k
+ Fukui functions of common reagents participating in P-DA reactions,

such as nitroethylene 9 and acrolein 10 (see Scheme 24.10), have shown that YM
Fukui functions do not account for the local reactivity of these species in P-DA reac-
tions [14, 44]. Note that the conjugated ethylenic position is the most electrophilic
center of these species, the corresponding P-DA reactions being completely chemo-
and regioselective.
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Scheme 24.10 Electrophilic Pk
+ Parr functions, in blue, and YM electrophilic f k

+ Fukui
functions, in red, of nitroethylene 9 and acrolein 10.

With the electrophilic Pk
+ and nucleophilic Pk

− Parr functions at hand, the local
electrophilicity [40]𝜔k and the local nucleophilicity [47] Nk indices can be expressed
as follows [14]:

𝜔k = 𝜔 Pk
+ (24.8)

and

Nk = N Pk
− (24.9)

Therefore, analysis of the Parr functions permits to characterize the most elec-
trophilic and the most nucleophilic centers in a molecule. These centers are those
with the highest electron density developed during the GEDT involved in polar
processes.
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24.8.2 Regioselectivity in P-DA Reactions

In polar reactions, the more favorable regioisomeric reaction path is that involving
the two-center interaction between the most nucleophilic and electrophilic centers
of the two interacting molecules [48]. Analysis of the Parr functions at the reagents
allows characterizing these relevant centers. The electrophilic Pk

+ and nucleophilic
Pk

− Parr functions of four ethylene derivatives participating in polar cycloaddition
reactions are shown in Figure 24.5. As can be seen, both the electrophilic, 10, 9, and
6, and the nucleophilic, 15, ethylenes have the most electrophilic and nucleophilic
centers at the non-substituted carbon atoms.

In Figure 24.6, the nucleophilic Pk
− Parr functions of 1-methoxy-butadiene 45

and 2-methoxy-butadiene 46 are shown. As can be seen, 1-methoxy-butadiene
45 presents the most nucleophilic activation at the diene C4 carbon, while at
2-methoxy-butadiene 46 the most nucleophilic activation is at the diene C1 carbon.
Consequently, the most favorable two-center nucleophilic/electrophilic interaction
along a P-DA reaction involving 1-methoxy-butadiene 45 will take place between the
C4 carbon of this diene and the non-substituted carbon of the electrophilic ethylene
(see Figures 24.5 and 24.6), yielding the ortho cycloadduct, while in a P-DA reaction
involving 2-methoxy-butadiene 46, this two-center interaction will take place with
the C1 carbon of this diene, yielding the para cycloadduct (see Scheme 24.9).
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0.23
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0.27
0.24

6 10

9 15

Figure 24.5 3D representations of the Mulliken ASD of the radical anions 6⋅− , 9⋅−, and
10⋅− , and the radical cation 15•+ , together with the electrophilic P+k Parr functions of 6, 9,
and 10, and the nucleophilic P−k Parr functions of 15.



24.8 Regioselectivity and Chemoselectivity in P-DA Reactions. The Parr Functions 497

Figure 24.6 3D
representations of the
Mulliken ASD of the radical
cations 45⋅− and 46⋅− ,
together with the
nucleophilic P−k Parr
functions of 1-methoxy-
butadiene 45 and a
2-methoxy-butadiene 46.
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0.28
0.40

0.45

45 46

24.8.3 Chemoselectivity in P-DA Reactions

In 1997, Terrier reported the P-DA reaction of 4,6-dinitrobenzofuroxan (DNBF, 47)
with ethyl vinyl ether 48. The reaction of DNBF 47 with ethyl vinyl ether 48 (2 equiv)
produced 49 exclusively (see Scheme 24.11) [49]. Using a large excess of the vinyl
ether 48 afforded the adduct 50.
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Scheme 24.11 Chemoselective P-DA reactions of DNBF 47 with vinyl ether 48.

Analysis of the CDFT indices allows explaining the experimental outcomes.
DNBF 47, 𝜔 = 5.46 eV [50], is classified as a superelectrophile [51, 52], while vinyl
ether 48, N = 3.23 eV, is a strong nucleophile. Consequently, the corresponding
DA reaction will have a high polar character. Analysis of the electrophilic P+k
Parr functions at DNBF 47 indicates that the C7 carbon, 0.40, is four times as
electrophilically activated as the C5 one, 0.01, indicating that the most favorable
two-center interaction will take place between the most nucleophilic center of
vinyl ether 48, the non-substituted carbon of the ethylene (see the nucleophilic
P−k Parr functions of vinyl ether 15 in Figure 24.5) and the most electrophilic
center of DNBF 47, the C7 carbon, in complete agreement with the total regio-
and chemoselectivity experimentally observed. Note that the most electrophilic
center of DNBF 47 determines both the regio- and the chemoselectivity of this P-DA
reaction (Figure 24.7; Table 24.8).
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Figure 24.7 3D representations of the Mulliken ASD of the radical anion 47⋅− , together
with the electrophilic P+k Parr functions of DNBF 47.

Table 24.8 B3LYP/6-31G(d) electronic chemical potential 𝜇, chemical
hardness 𝜂, global electrophilicity 𝜔 and global nucleophilicity N indices, in
eV, of the reagents involved in the P-DA reactions between DNBF 47 and
ANBF 54.

Molecule 𝝁 𝜼 𝝎 N

DNBF 47 −5.93 3.21 5.46 1.59
ANBF 54 −5.67 3.34 4.81 1.78
Vinyl methyl ether 15 −2.45 6.99 0.43 3.18
Vinyl ethyl ether 48 −2.40 6.99 0.41 3.23

24.9 Conclusions

After the proposal of the P-DA mechanism in 2009 [10], which is followed by most
of the experimental DA reactions, with the use CDFT-based reactivity indices, the
feasibility of a DA reaction can be easily established analyzing the electrophilic and
nucleophilic behaviors of the reagents participating in the reaction; i.e. the more
electrophilic one of the reagents and more the nucleophilic other one, the more
polar and faster the DA reaction. Many P-DA reactions involve non-symmetric elec-
trophilic ethylenes; these reactions, which take place through highly asynchronous
TSs associated to a two-center interaction between the most electrophilic center of
the electrophile and the most nucleophilic center of the nucleophile, are completely
regioselective, being successfully characterized by the analysis of the Parr functions.

In this context, CDFT-based reactivity indices, such as electrophilicity [12] 𝜔 and
nucleophilicity [13] N indices, as well as Parr functions [44], have become powerful
tools for experimentalists to understand, even predict, DA reactions [14]. Thus, while
analysis of the electrophilicity 𝜔 and the nucleophilicity N indices allows predicting
the feasibility of a DA reaction, analysis of the Parr functions accounts for the regio-
and chemoselectivity in P-DA reactions.
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25.1 Introduction

Viewing a three-dimensional crystal structure on the computer, we often become
mesmerized by the symmetric tessellation of molecules. The strength and direction-
ality of intermolecular interactions, governed by structural diversity and conforma-
tional flexibility of the molecule, dictate its crystal formation. Subtle variation in
molecular interactions often results in the polymorphism of crystal packing, largely
realized by changes in crystallization conditions. Understanding the supramolecu-
lar chemistry of crystallization not only satisfies our curiosity but also enables us to
create new structures and materials of novel properties.

For any given organic molecule, we will always get the same crystal structures
faithfully back, over and over again through crystallization. Occasionally, a few
more distinct crystals may be identified under different experimental conditions. A
molecule clearly “knows” which parts of its structure will interact with a counter-
part, resulting in unique intermolecular interacting patterns or synthons [1], such
as hydrogen bonding and π–π stacking. There have been some efforts reported in the
literature to characterize the locality of intermolecular interaction. Quantum theory
of atoms in molecules (QTAIM) [2] analyzes the gradient field of the electron density
(ED), knowing that electrons are the “glue” that sticks atoms and then molecules
together. Interatomic surface (IAS) shared by two bonded atoms characterizes the
physical nature of the atomic bonding by analyzing electron density at the bond
critical point (BCP) [3] – a point on IAS where the gradient of ED is zero. In a
study to differentiate hydrogen bonds from van der Waals interactions, Koch and
Popelier identified a correlation between the energy of hydrogen bond and potential
energy and interpreted it as the energetic response of the hydrogen bond to the
force exerted on the electrons around BCPs [4]. For strong intermolecular hydrogen
bonds, such correlation resembles that of an intramolecular bond. The importance
of intermolecular interactions can also be evaluated through the analysis of
atomic polarizabilities, in particular, their deformation concerning noninteracting
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molecules. One approach is the electron localization function (ELF), which enables
visualization of covalent bonds, electron lone pairs, and atomic shell structures
by partitioning the ED and evaluating distributed atomic polarizabilities [5]. Bui
et al. attempted to rationalize halogen bonding based on deformation density and
visualization of σ-hole (which was first anticipated by Politzer [6, 7]) and examined
major contributions to the electrostatic interaction [8]. Stone demonstrated that
some stereochemical features of the halogen-bonded packing originate from the
necessity to minimize the inter-atomic repulsion, rather than forming a stabilizing,
though weak, electrostatic interaction [9]. A noteworthy study of charge density
analysis is to utilize a reduced electron density gradient (RDG), which is conceived
by Yang and coworkers [10–12]. RDG is calculated from the ED and its first
derivative; plotting RDG vs. ED is utilized to explore the regions with reduced
gradients. The concept is indicative of noncovalent interactions (NCIs).

While these studies explore molecular interactions through analyzing local
electron densities, most of them rely on examining molecular pairs that are already
packed or interacted. Such a posteriori practice cannot satisfy the need to seek the
governing properties of a molecule that determine its locality of interaction pref-
erence or strength. Because a molecule always forms the same packing motif – or
a few when the polymorphism arises – in the crystalline state, we posit that the
chemical information determining the interaction locality is embedded in the
molecule and can be directly obtained from the molecule. There is no need to
subject it to explicit interactions with another molecule. For this purpose, we have
resorted to conceptual density functional theory (CDFT) to unveil the root cause of
intermolecular interactions.

Over the last several decades, DFT has evolved into two branches, one for energy
calculations [13–15], and the other, generally referred to as CDFT, for theoretically
exploring the fundamental linkage between electron density and molecular prop-
erties [16–19]. Among various concepts derived by CDFT, the Fukui function is
particularly appealing [20–28]. It is a local, spatial function; it exhibits the intrinsic
characteristics of local polarizability and electronic softness, thus utilized to charac-
terize intermolecular interactions [29–34]. Other efforts also explore local hardness
for characterizing molecular interactions, including π–π stacking in biomolecules
[35–37]. Nonetheless, the application of CDFT to study intermolecular interactions
in organic crystals is not extensively investigated by others. Since the early 2000s, our
group has explored this aspect of CDFT, especially the concept of the Fukui function
for characterizing the locality of intermolecular interactions [23, 38, 39]. We explored
CDFT quantities to examine several properties of organic crystals, including surface
energy [23], reactivity [40–42], crystal packing [43, 44], thermal liberation [45, 46],
hydrogen bonding [47], electron and charge philicity [48–50], intermolecular
interaction [38, 51], nucleation mechanism [52, 53], and crystal engineering
[54, 55]. We developed several CDFT concepts as well, including face-integrated
Fukui function [23], crystallization force [38], and natural orbital Fukui function
[56], to facilitate our understanding of molecular interactions. All these efforts
demonstrate great potentials for using CDFT in analyzing electronic structures of
organic molecules and gaining fundamental insights into crystal packing.
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In essence, our efforts of analyzing intermolecular interactions in organic crystals
stem from Pearson’s HSAB (hard and soft acids and bases) principle, which states
that hard acids prefer hard bases and soft acids prefer soft bases, both thermody-
namically and kinetically [57–61]. The principle may be extended to characterizing
the locality/regioselectivity of intermolecular interactions [62–64]. Intuitively, a soft
region or functional group of a molecule prefers interacting with a soft region of
another molecule; vice versa for the matching of local hardness. This remains as our
foundation and motivation for studying molecular interactions. We have attempted
to seek local electronic properties to characterize local softness and hardness. In light
of HSAB, proper matching between local softness or hardness governs the locality of
intermolecular interactions that a molecule can form. In this chapter, we illustrate
some of our studies of using CDFT quantities to uncover the locality of interactions
in crystal and its manifestation in solid-state reactivity, surface energy, and thermal
stability.

25.2 Characterizing Solid-state Reaction of Organic
Crystals

The crystalline state constitutes the most significant and the most widely employed
form of solid active pharmaceutical ingredients (APIs) [65]. Solid-state reactions
are frequently observed in organic crystalline materials, which play a crucial role
in handling and processing pharmaceutical materials and ensuring product qual-
ity. The long-range order of crystals introduces a different type of complexity when
compared with liquid-phase reactions, making crystals highly anisotropic and het-
erogeneous as reaction originates on the surface. The kinetics of these reactions is
greatly influenced by polymorphism and growth morphology [66–68].

DFT-based concepts, including nuclear Fukui functions, have been employed to
identify the impact of crystal packing on solid-state reactions of organic crystals at
the electronic level. This section explores several systems, ranging from the poly-
morphs of flufenamic acid and indomethacin to the energetic materials such as RDX
(1,3,5-trinitro-1,3,5-triazine ), triacetone triperoxide (TATP), and diacetone diperox-
ide (DADP), showcasing our efforts of using nuclear Fukui functions in probing the
influence by crystal packing on the reactivity of organic crystals.

The nuclear Fukui function essentially depicts the energetic response of an atom
(in a molecule) to electronic perturbation. The quantity is thus intuitive to charac-
terize the solid-state reactivity of organic crystals in light of the anisotropy in crystal
packing at the electronic level [16, 18, 40, 41, 69]. The concept of nuclear Fukui func-
tion stems from the Hellmann–Feynman force, which is defined as the force upon
nucleus 𝛼 within a molecular system, given as [70, 71]:

Fα = Zα

[
∫ 𝜌(r)

rα
r3
α

dr −
∑
β≠α

Zβ
R
𝛼𝛽

R3
𝛼𝛽

]
(25.1)

where the electron density at point r is denoted by 𝜌(r); rα is defined as the displace-
ment vector between the position of nucleus 𝛼 and point r; the displacement vector
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between the nucleus αwith charge Zα and nucleus βwith charge Zβ is given by Rαβ.
The nuclear Fukui function (Fα) is thus derived by the following equation, which
describes the response of the force (Fα) to electronic perturbation [72]:

𝚽𝛂 =
(
𝝏Fα
𝜕N

)
𝜈

(25.2)

where, N refers to the number of electrons in the system and 𝜈 is the external poten-
tial.

Because of the discontinuity in N, nuclear Fukui function can be further
defined for describing a nucleophilic or electrophilic attack, given by the following
equations [72]:

𝚽+
α = F+α − F0

α (25.3)

𝚽−
α = F0

α − F−α (25.4)

where, 𝚽+
α and 𝚽−

α correspond to the nucleophilic and electrophilic nuclear Fukui
function, respectively; F+α , F−α , and F0

α refer to the forces acting on the same nucleus
𝛼 of anionic, cationic, and neutral systems, respectively.

Additionally, the chemical reactivity of a given system has been described as
nuclear stiffness, shown below [73, 74]:

Gi =
(
𝜕𝜂

𝜕Qi

)
N

(25.5)

where 𝜂 is the hardness and Qi is the displacement vector of atom i from its equi-
librium position Ri,0 (Ri-Ri,0). As nuclear reactivity index can also be expressed as a
derivative of electronic chemical potential, 𝜇, with respect to atomic displacement
[72]:

𝚽i = −
(
𝜕𝜇

𝜕Qi

)
N

(25.6)

Thus, Gi and 𝚽i describe a chemical reaction by characterizing individual atoms in
terms of bond shortening or stretching and electron-accepting/donating ability of
a molecule [74]. And because they are local quantities, reactivity variations due to
crystal packing may be better revealed.

25.2.1 Reactivity of Pharmaceutical Crystals

We have studied the chemical reactivities of two polymorphs of flufenamic
acid (2-[[3-(trifluoromethyl)phenyl]amino]benzoic acid) [40] and indomethacin
(1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1H-indole-3-acetic acid) [41]. The influ-
ence of crystal packing was elucidated through the use of electron-density-based
concepts, including nuclear Fukui functions.

Out of the six possible polymorphs of flufenamic acid, two polymorphs (forms
I and III), are routinely crystallized and hence studied. Experimental studies on
the chemical reactivity of these polymorphs with ammonia gas indicated their reac-
tion rates to be quite different [75]. The electronic structures, nuclear Fukui func-
tions along with the surface energies of the two polymorphs were computed by
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Figure 25.1 Respective (100A)
crystallographic faces of flufenamic acid of
forms I (top) and III (bottom). Nuclear Fukui
functions are shown as color-coded arrows
whose lengths are commensurate with their
magnitudes. Source: Adapted from Feng and Li
[40], with permission granted.

CRYSTAL03, a periodic Gaussian wave-based ab initio program [76]. Flufenamic
acid undergoes deprotonation on its reaction with ammonia and thus, the nucle-
ophilic nuclear Fukui function (𝚽+

α , Equation (25.3)) was calculated for the analysis.
The nuclear Fukui functions for the (100A) face of the two polymorphs (Figure 25.1)
revealed that the carboxylic group exposed on (100A) in both forms show the highest
value as compared with all other atoms and is; therefore, the most affected moiety
during the nucleophilic attack by ammonia. The position of the carboxylic group
affects the values of the nuclear Fukui function. In the (100 A) slab, where the group
is exposed, the value is significantly higher than that in (100B), where it is embedded
in the middle. Between the two forms, nuclear Fukui functions of form I’s carboxylic
group are higher than those in form III, indicating that form I is more reactive than
form III (Figure 25.2). Possible effects of mechanical strength on the chemical reac-
tivity were also described by the surface energy of (100A) being greater than (100B),
attributed to the hydrogen bonding between COOH groups in (100A). The (100B)
exposure of each form is expected to be dominant for the (100) face, owing to smaller
surface energies, while the more reactive (100A) is likely to be exposed as defects and
initiators of the chemical reaction.

Similar to flufenamic acid, nucleophilic nuclear Fukui functions were computed
for analyzing the reactivity difference between two polymorphs of indomethacin
(α and γ) to account for the deprotonation on its reaction with ammonia. These
polymorphs are known to exhibit different reactive kinetics with ammonia gas [68].
The α-form consists of three symmetrically different conformers (labeled as #1, #2,
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and #3). As shown in Figure 25.3, the carboxylic moiety of molecule #3 was found
to exhibit greater values of nuclear Fukui functions in comparison to the respec-
tive atoms in #1 and #2, as well as to those in the γ-form. This difference in the
values of nuclear Fukui functions was interpreted to be the primary reason behind
the reactivity difference between the two polymorphs. A large nuclear Fukui func-
tion implies large physical stress on an atom due to perturbation in electron density.
Deprotonation of the carboxylic group in #3 of the α-form is the most active under
a nucleophilic attack. Moreover, the carbonyl group between the indole and phenyl
rings and the neighboring atoms displays higher values of nuclear Fukui functions,
attributed to the steric tension between the two aromatic rings. The two aromatic
rings incline to realign themselves and maximize the overlapping of their p orbitals.
Molecular orbitals of a single indomethacin molecule corroborate this argument,
wherein, the highest occupied molecular orbital (HOMO) is primarily delocalized
on the indole ring without extending to phenyl, and lowest unoccupied molecular
orbital (LUMO), on the other hand, spreads over to chlorobenzoyl of the molecule.

25.2.2 Reactivity of Energetic Materials

Electronic calculations and nuclear Fukui functions were employed to study the ini-
tiation mechanism of decomposition of energetic materials, including RDX, TATP,
and DADP [42, 77]. RDX is regularly studied as a model system of explosive materials
[73]. Various reaction pathways have been proposed for its decomposition mecha-
nisms, but few succeeded in providing tangible answers [78–80]. Our electronic stud-
ies were hoped to provide an insight into the initial mechanism of decomposition in
both the vapor and crystal phases. The reactivity of the peroxide-based explosives,
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TATP and DADP, was also investigated by computing nuclear Fukui functions [77].
Despite close structural similarities between TATP and DADP, these reactivity differ-
ences of the solid-state warrant a detailed study of their decomposition mechanism.
There are reports accounting for isolated molecules without considering the molec-
ular environment in crystal lattice [81–83]. In our studies, DFT-based concepts were
calculated from respective crystal structures and examined.

The vapor-phase studies on RDX revealed the possibility of interconversion
between the AAA, AAE, and AEE conformers, while EEE, being the least stable
conformer, is the least probable [78, 84–86]. Contrary to previous experimental
studies, which suggest the concerted fission mechanism as the initial decomposition
step in RDX vapor, our studies indicate that breaking of the N—N bond initiates the
decomposition of the more stable AAA and AAE conformers [42]. This is supported
by higher nucleophilic responses of the nitro group nuclei and strong electrophilic
responses of the bonded N atoms. This fact was strengthened by the magnitudes
and directions of their respective nuclear Fukui functions (Figure 25.4a–h).

Calculations of RDX crystal unveiled higher magnitudes of nucleophilic nuclear
Fukui function of the atoms in axial N–NO2 groups. Along with strong electrophilic
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N–N responses, the N–N homolysis mechanism is plausible in the crystal. More-
over, the large electrophilic responses on the C1 and H2 nuclei coupled with the
proximity of H2 to O4 of a reactive axial nitro group also hints at the possibility of
HONO elimination. Nuclear Fukui functions of crystal RDX (Figure 25.4i, j) further
indicated that symmetrically similar atoms bear rather different values (magnitudes
and directions), which are contrary to the vapor phase. The response to electronic
perturbation is conformation-dependent in the crystal.

TATP and DADP exhibit highly distinct chemical reactivities, rooted in the elec-
tronic properties of their crystal structures [77]. The decomposition sensitivity of
crystalline TATP is higher than that of crystalline DADP [82]. From both gas phase
and crystal structure studies, the homolytic breaking of the peroxide bond is known
to be the initiating and the rate-determining step [81–83]. The nuclear Fukui func-
tions of TATP’s peroxide bonds in the crystal phase are greater; and therefore, more
stressed in comparison with DADP (Figure 25.5), indicating that the former is more
prone to bond breakage. While the DADP crystal seems to retain the same elec-
tronic symmetry as displayed by a single molecule in the gas phase, the TATP crystal,
according to its nuclear Fukui function values, shows no symmetry of the molecu-
lar skeleton (Figure 25.5). Frontier orbitals of the single TATP and DADP molecules
retain their geometric symmetry upon electronic perturbation, evidenced by the
shapes of HOMO and LUMO. HOMO spreads out uniformly across symmetrically
similar regions in both TATP and DADP. Similarly, LUMO, upon the addition of an
electron, becomes symmetrically extended.

To summarize, these studies demonstrated the feasibility of using nuclear Fukui
functions in exploring the solid-state reactivity of organic crystal systems. The role of
symmetry in the crystal was illustrated by both the magnitudes and directions of the
nuclear Fukui functions. Electronic calculation and DFT-based concepts enabled
the probing of mechanistic details of the unimolecular decomposition of RDX and
the peroxide-based explosives such as TATP and DADP.

25.3 Crystal–Solvent Interaction and Wettability
Anisotropy

Our computational studies of the wettability of organic crystals centered around
exploring electronic Fukui functions. The wettability of a crystal is anisotropic; the
individual faces of a crystal differ in their respective wettability or surface energy
values, also implying that a crystal may have a very different overall wettability if
its growth morphology and/or structure changes. Understanding and controlling
this property is particularly crucial in drug development [87]. Contact angle mea-
surement of a solid surface enables a good estimate of the surface’s wettability. A
stronger solid–liquid interaction typically leads to a smaller contact angle. As the
Fukui function is regarded as a descriptor of the local softness of a molecular system
[88], we attempted to use face-integrated Fukui functions to characterize the relative
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(d)

Figure 25.5 Nucleophilic nuclear Fukui function (a, b) and electrophilic Fukui function
(c, d) of DADP (a, c) and TATP (b, d) crystals, respectively. Values of the nuclear Fukui
functions are indicated by the length and color-coding of the arrows. Source: Reproduced
from Swadley et al. [77], with permission granted.

softness of various faces of a crystal [23]. This concept is illustrated by the following
equation:

F(p) = ∫p
f (r)dr∕A(p) (25.7)

where, f (r) is Fukui function at position r; a specific crystallographic face with its
relative position in the unit cell is denoted by p; the surface area of the integrated
face is A(p), to normalize to the integrated quantity allowing the comparison among
individual crystallographic faces.

Face-integrated Fukui functions were computed to characterize the wettability
of major faces of two crystal systems, aspirin, and n,n-octyl-D-gluconamide (OGA)
[23]. The Fukui functions were evaluated from the electron density differences
between the neutral and the anionic forms of the crystals. It was found that in
aspirin, the Fukui functions were greater in the hydrogen-bonding regions. The
(100) face of aspirin has two distinct ways of surface exposure. One possibility
goes through the hydrogen bonds between carboxylic groups, denoted as (100b),
and the other is between methyl groups without exposing any hydrogen-bonded
dimers, (100a). On the other hand, the (001) face has only one way of exposure.
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Figure 25.6 (010) slab of OGA crystal with three highlighted slices that are mapped with
Fukui functions (left panel) and corresponding face-integrated values along various
positions of the slab (right panel). The orientation of the terminal −OH group influences
the Fukui function values, illustrated by two curves (red and blue). Source: Adapted from
Li et al. [23], with permission granted.

The face-integrated Fukui functions were found to be higher on the (100b) slab of
the crystal, due to the exposed carboxylic groups, indicating that this surface is softer
than the other two. Overall, this face results in stronger solid–liquid interactions,
and subsequently, a smaller contact angle, as corroborated by experiments.

Due to the non-centrosymmetric structure of OGA crystal, the octyl group points
toward the (010) side and the gluconamide points toward the (010) (Figure 25.6). In
addition, OGA, being a polar crystal, forms stronger hydrogen-bonding interactions
with water on (010), indicated by the contact angle of 76∘, while the angle is 43∘ on
(010) [89, 90]. The calculated face-integrated Fukui functions support the contact
angle data and show the polar side of the crystal being softer (Figure 25.6). Hence,
the face-integrated Fukui function is a useful tool to elucidate the relative softness
of individual faces of a crystal, especially the interaction anisotropy of the surface.
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25.4 Atomic Libration in Organic Crystals

CDFT concepts were explored in our studies to understand the large librational
motion experienced by the terminal methyl group in aspirin and acetaminophen
crystals [45, 46]. The mechanistic correlation was identified between the thermal
motion of the methyl groups mainly by nuclear Fukui functions. Further quan-
titative correlations were derived between force constants of the nuclear thermal
librations in crystals and respective nuclear Fukui functions.

Neutron diffraction studies of aspirin and acetaminophen crystals discovered large
librational motions by the terminal methyl groups, compared with the other atoms in
the crystals (Figure 25.7) [91, 92]. Anisotropic displacement parameters (ADP) [93],
along with anisotropic and equivalent isotropic temperature factors, were found to
be significantly higher for the hydrogen atoms of the terminal methyl than other
atoms.

The librational motion of an atom may be characterized by a harmonic oscillator
model using the so-called mean square displacement amplitude (MSDA), which is
related with the force constant or energy barrier, k, of the oscillator [94, 95]:

< 𝜒2 >= RT
k

(25.8)

where 𝜒2 is the MSDA in a 1-D harmonic potential, the universal gas constant is
denoted by R, and the absolute temperature by T. As such, from the reported neutron
diffraction studies, k could be obtained for each atom in the crystals and further
compared with nuclear Fukui functions calculated for these systems.

CDFT calculations revealed that nuclear Fukui functions of the C atom of the
methyl group in either aspirin or acetaminophen are considerably smaller than
those of other non-hydrogen atoms [45]. To account for the divergence, molecular
orbitals of aspirin and acetaminophen were calculated. It is interesting to note
that the methyl group is excluded from both HOMO and LUMO, leading to the
smallest response of nuclear force on C9 to electronic perturbation. A similar trend
was observed in the case of acetaminophen crystal wherein the methyl group is
again isolated from any of the frontier orbitals, leaving C8 unaffected by electronic
perturbation and hence accounting for its lowest value of nuclear Fukui function
in comparison to other non-hydrogen atoms. The smaller values of nuclear Fukui
functions on the methyl groups indicate lesser physical stress on these atoms,
compared with other atoms. It is thus likely that these nuclei bear larger degrees of
freedom in motion without causing significant variations in the overall electronic
structure.

The relationship could be further illustrated by quantitatively correlating the
energy barrier of libration, k (Equation (25.8)), and the nuclear Fukui function. By
plotting the equivalent isotropic displacement parameter, Ueq, against the absolute
temperatures, force constants of all atoms in aspirin and acetaminophen crystals
could be derived from the slopes of linearly fitted lines. A linear correlation was
then identified between the derived k and calculated F

𝛼

+ or F
𝛼

− for all the atoms in
aspirin and acetaminophen single crystals (Figure 25.8). It is known that the force
constant is directly related to the energy barrier that defines the thermal motion



25.4 Atomic Libration in Organic Crystals 515

O2

O2

O1

C7

C7

C1

C1

C5

C2

C2

O1

O4

C8

C8

C9

C6

C6

C5

C4

C4

C3

C3

O3

H8

H9

H8

H6

H6

H5

H7

H7

H2

H2

H4

H4

H3H5

H3 H1

N1

H1

(a)

(b)

Figure 25.7 Aspirin (a) and acetaminophen (b) molecule in their respective crystal
structures. Atoms are numbered and displayed with thermal ellipsoids determined by
neutron diffraction at 20 K. Source: Adapted from Li [45], with permission granted.

of an atom [94]. Thus, the relationship demonstrates that nuclear Fukui functions
are also capable of unveiling local interatomic interactions, which are manifested
by thermal motions of atoms in a crystal. Given that a nuclear Fukui function may
be regarded as a condensed index of electronic Fukui function around a nucleus,
the connection identified between thermal motions and nuclear Fukui functions
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points to the importance of local softness defining intermolecular interactions in an
organic crystal.

25.5 Hydrogen-bonding Strength

Hydrogen bonding plays a critical role in the formation and packing of organic crys-
tals [96, 97]. Various synthons or hydrogen-bonding motifs have been studied in
crystals and are widely utilized in crystal engineering [98, 99]. In our studies of using
CDFT concepts in understanding crystal packing, we particularly focused on the role
of hydrogen bonding in the interplay between intramolecular interactions, mani-
fested by conformational flexibility of the molecule, and intermolecular interactions.
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Figure 25.9 Tolfenamic acid with major torsion
angles marked, 𝜏1 and 𝜏2 (a) and overlay of TFA
molecules in forms I and II (b).
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(a)

(b)

Such interplay exists ubiquitously in organic crystals, leading to the conformational
polymorphism of the same molecule [100, 101]. We have examined the role of hydro-
gen bonding on the polymorphic formation of tolfenamic acid (TFA) [44, 102] and
2-(phenylamino)nicotinic acid (2-PNA) [47].

TFA displays conformational polymorphism wherein the molecules in its two
commonly occurring crystal structures form similar hydrogen-bonded dimers but
bear distinct conformations (Figure 25.9). The conformation in the two forms
differs primarily in the torsional angle 𝜏1 linking the amino and chlorinated phenyl
ring. The bonding–antibonding interaction between the lone pair of the amino
and carboxylated aromatic ring is much higher than that between the lone pair
and the chlorinated aromatic ring, indicating a higher tendency of the nitrogen
atom to share electrons with the carboxylated aromatic ring. In addition to the
π-conjugation, there is also steric repulsion occurring when the two rings rotate
against each other, collectively resulting in the distribution of 𝜏1. Condensed
Fukui functions were evaluated, both in the gas phase and in implicit solvent
models (ethanol and tetrachloromethane), to study how conformation affects
hydrogen-bonding strength. The dual descriptor values of the carbonyl oxygen
indicate that the hydrogen-bonding acceptor can form stronger hydrogen bonding
at an unfavorable conformation (Figure 25.10). This is significant as the CDFT
concept can truly quantify the physical nature of hydrogen bonding – while it
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Figure 25.10 Condensed dual descriptors of carbonyl oxygen (a) and hydroxyl oxygen (b)
of TFA single-molecule calculated as a function of 𝜏1 in gas phase, tetrachloromethane, and
ethanol implicit solvent media. Source: Reproduced from Mattei and Li [44], with
permission granted.

behaves as a hydrogen-bonding acceptor, the carbonyl oxygen is an unwilling
one and still electrophilic. It can form stronger hydrogen bonding only when its
electrophilicity decreases, as indicated by the dual descriptor. The analysis also
suggests that, without explicitly invoking molecular pairs, the intermolecular
hydrogen-bonding strength as a relation of conformation can be estimated, at least
relatively, by examining the single molecule.

The interplay between molecular conformation and intermolecular interaction
is also revealed by the study of crystal forms of 2-PNA, which consists of both
carboxyl and pyridinyl moieties (Figure 25.11). Four polymorphs of 2-PNA have
been identified with two packed by acid–acid hydrogen-bonded dimers and the
other two by acid–pyridine hydrogen-bonded chains [103]. Molecules in the dimer
form bear planar conformations, whereas molecules in the chain adopt twisted or
warped conformations, indicated by the torsional angles, 𝜏1 and 𝜏2 (Figure 25.11).
The primary questions addressed in our study are (i) the effect of the difference in
strength between the homo- and hetero-synthons on the molecular conformation
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Figure 25.11 2-PNA. OH

O

NH

τ1

τ2

N

and crystal packing and (ii) the reason behind pyridine N acting as a better hydro-
gen bond acceptor. Toward this direction, the crystal structures were studied with
CRYSTAL06 [104] and electronic structures of single molecules were evaluated with
GAUSSIAN09 [105] at the B3LYP/6-21G(d,p) and MP2/6-31G+(d,p) levels. These
calculations showed that acid–pyridine hydrogen bonding is stronger than that of
acid–acid homosynthon. Furthermore, Fukui functions and dual descriptors were
calculated for the pyridine N, amino N, and carbonyl O in 2-PNA single-molecule
(Figure 25.12) [47]. Carbonyl O is electrophilic with the highest positive value
of dual descriptor and amino N is nucleophilic with the lowest negative value.
The pyridine N lies in the middle (with a value of −0.001 e), indicating it to be
nucleophilic and a better hydrogen-bonding acceptor than carbonyl O. From
electronic calculations, it was further revealed that pyridinyl N is sterically blocked
for hydrogen-bonding access at a planar conformation. Calculation results of
the twisted conformers in the δ form showed that the pyridine N becomes more
nucleophilic by an order of magnitude and thus a better hydrogen-bonding acceptor.

Through the studies of TFA and 2-PNA, the interplay between molecular con-
formation and intermolecular interaction is elucidated. Aided by CDFT concepts
including Fukui functions, the hydrogen-bonding strength and overall intermolec-
ular interactions in the polymorphic systems reflect the compromise between con-
formational stability and lattice energy. The plot of dual descriptor as a function of
conformation (e.g. against a major torsion angle) is particularly powerful in unveil-
ing the interplay in light of conformational polymorphism.

25.6 Locality of Intermolecular Interactions in Organic
Crystals

Intermolecular interactions, including hydrogen bonding and van der Waals forces,
dominate in organic crystals, determining crystallization outcome and kinetics [38,
106]. The locality of intermolecular interactions underlines the essence of crystal
formation and has been explored in our studies with CDFT concepts [38, 39, 51, 107].

Intending to study intermolecular interactions in organic crystals, we developed a
concept called crystallization force [38]. This CDFT concept elucidates the local vari-
ation in the electronic structure of a molecular system through the self-assembly pro-
cess of crystallization. The concept is a normalized nuclear Fukui function, where
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(d) (e) (f)

Figure 25.12 Electronic isosurfaces of the most stable conformation of 2-PNA: electron
density (a), HOMO (b), LUMO (c), nucleophilic Fukui function (d), electrophilic Fukui function
(e), and dual descriptor (f). The iso-values are 0.02 (a–c) and 0.002 a.u. (d–f), respectively.
Positive or negative dual descriptors are shown in pink or brown. Source: Reproduced from
Li et al. [47], with permission granted.

the normalization reflects the electronic perturbation connected with crystalliza-
tion. The total crystallization force of a crystal can be written as the sum of the
magnitudes of the individual crystallization forces and characterizes the binding
strength to form a crystal [38]:

G =
𝛼∑

dq
𝛼
> 0

f +
𝛼
> 0

∣ 𝚽+
𝛼
∣

dq
𝛼

f +
𝛼

−
𝛼∑

dq
𝛼
< 0

f −
𝛼
> 0

∣ 𝚽−
𝜶
∣

dq
𝛼

f −
𝛼

(25.9)

where, G is the total crystallization force of the crystal; 𝚽+
𝛼

and 𝚽−
𝛼

are the
nucleophilic and electrophilic nuclear Fukui functions, respectively; dq

𝛼
=

q
𝛼
(gas)−q

𝛼
(crystal).

An interesting example to illustrate the concept of crystallization force is a
system commonly referred to as ROY (5-methyl-2-[(2-nitrophenyl)amino]-3-
thiophenecarbonitrile), which has the highest number of solved polymorphs
reported to date [108–111]. Its rich polymorphism was found to be a collective result
of the various functional groups (nitro, nitrile, amino, and aromatic rings) contribut-
ing to a wide range of intermolecular interactions. The molecular structure of ROY
along with the computed crystallization forces for its seven polymorphs is shown
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Figure 25.13 Molecular structure of ROY and molecules in respective polymorphs with
crystallization forces represented by magnitude-scaled arrows. Source: Adapted from Li
et al. [38], with permission granted.

in Figure 25.13. The nitro group exhibits a larger crystallization force, involving
10 out of the 20 close contacts identified in the polymorphs. The nitrile group is
involved in five close contacts; stacking of phenyl and thiophene rings accounts for
the rest of the five contacts. The correlation demonstrates using crystallization force
in describing the locality of intermolecular interactions in crystals. This was further
corroborated by computing the lattice energy of the polymorphs with an empirically
augmented DFT method [112] and plotting against the total crystallization forces
[38]. It was found that linear correlations exist between the total crystallization
force and lattice energy, further suggesting the underlying connection between
crystallization force and intermolecular interaction (Figure 25.14).
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energies for augmenting the lattice energy calculations by DFT. Source: Modified from
Figure 6 in Li et al. [38], with permission granted.

To further explore the locality with CDFT concepts, Hirshfeld surface was
employed in our studies to sample and visualize electronic properties, such as
the Fukui function, in a crystal structure [39, 107]. A Hirshfeld surface is defined
by partitioning the electron density around a molecule according to whether the
contribution comes from the enclosed molecule or its neighboring molecules
[113–115].

wA(r) = 𝜌pro−molecule(r)∕ 𝜌pro−crystal (r) (25.10)

where 𝜌pro-molecule(r) refers to the electron density contributed by the molecule under
consideration (A) and 𝜌pro-crystal(r) is the electron density contributed by neighboring
molecules in the crystal. The surface when wA = 0.5 is typically used. By mapping
the Hirshfeld surface in a crystal with local electronic properties such as Fukui func-
tions and ESP, it is possible to assess the locality of intermolecular interactions. It is
also possible to integrate these electronic properties over the contact area on the
Hirshfeld surface between two neighboring molecules to quantify the strength of
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Figure 25.15 Hirshfeld surfaces mapped with dual descriptors calculated based on the
crystal (top) or single-molecule (bottom) of eight interacting pairs of benzoic acid.
Intermolecular interaction energies are shown under each pair, computed at the MP2 and
DFT-D (in parentheses) levels of theory. Source: Reproduced from Zhang and Li [39], with
permission granted.

the interaction. This was done in our studies of intermolecular interactions in two
diverse systems, viz. benzoic acid [39] and ROY [107].

In the study of benzoic acid, eight unique pairs of intermolecular contacts were
identified in the crystal, and Fukui functions and ESP calculated from a single
molecule or the crystal were mapped on the Hirshfeld surface. Figure 25.15 shows
the Hirshfeld surface of the eight packing motifs of benzoic acid mapped with the
crystal and molecule-based dual descriptor (f 2). It is clear that the intermolec-
ular packing motifs couple with hot spots containing larger Fukui functions.
The hydrogen bonding between COOH groups is the dominant interaction and
involves larger electrophilic Fukui functions (f −) on =O against larger nucleophilic
Fukui functions (f +) on –OH. Moreover, the π–π stacking between neighboring
carboxyl groups matches against regions of larger nucleophilic Fukui functions.
The weakest interactions associate with smaller, albeit noticeable f + and f − spots.
The matching of the electronic properties defines the strength of the intermolecular
interactions, thus displaying the importance of Fukui functions in quantifying the
intermolecular interactions directly from analyzing the electronic properties of the
single-molecule. Quantitative relationships were explored by integrating the local
electronic properties over the contacting area of Hirshfeld surfaces and plotting
against values of the intermolecular interactions (Figure 25.16). It is clear that even
without including the hydrogen bonding in the plots, other weaker interactions still
demonstrate convincing connections with the Fukui functions. It is important to
note that the molecule-based electronic properties show much better correlations
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with the strengths of intermolecular interactions than the properties evaluated
directly from the crystal. This suggests that the information of intermolecular
interaction is already embedded in the molecule itself, regarding both the strength
and locality. Similar observations were obtained by studying ROY [107].

25.7 Conclusion

We have studied intermolecular interactions of organic crystals based on the
inherent electronic properties of a molecule within the framework of CDFT. We
have utilized Fukui function, electrostatic potential, and other local electronic
concepts to exploit Pearson’s HSAB principle (i.e. hard acids prefer hard bases and
soft acids prefer soft bases) for understanding the locality or regioselectivity and
strength of intermolecular interactions with respect to crystal packing. Our findings
unveiled quantitative relationships between the local electronic properties and
molecular interaction energies in a crystal, shedding light on the thermodynamics
and kinetics of crystallization.
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26.1 Introduction

Energy is the primal requirement of the entire living race on earth. Living organ-
isms, including the human race, require energy for their existence, growth, and
progress. And in this process, the human race has thrived on the usage of energy in
the conventional form, which was easily available as buried fossil fuels. An uncon-
trolled usage of the fossil fuels in our daily lives, especially in the industrial sectors
and automobiles, has created panic regarding its availability in future. Dearth
of fossil fuel reserves is alarming, as these underground resources are the prime
stored energy reserves of this planet. According to the Intergovernmental Panel on
Climate Change (IPCC), it is almost certain that an awfully fast growth in global
warming is a direct result of such human activities [1]. The resulting climate change
owing to the emission of greenhouse gases is linked to significant environmental
impacts that are connected to the disappearance of animal species [2, 3], decreased
agricultural yield [4–6], increasingly frequent extreme weather events [7, 8], human
migration [9–11], and conflicts [12–14]. With an aim to arrest such a negative
impact on the global climate, there is an increasing momentum to reduce the
global emissions of greenhouse gases. For example, France approved the law no.
2015-992, which requires a 40% reduction of greenhouse gases by 2030 compared
to 1990 [15]. Usage of fossil fuels undoubtedly accounts for the major source of
greenhouse gases and, in this regard, reports from the United States Environmental
Protection Agency show that fossil fuels account for 76% of all US emissions due
to human activities [16]. In 2017, more than 85% of the energy produced globally
came from fossil fuels [17]. Thus, it has become quite clear that a significant
reduction of greenhouse gas emissions implies the reduction in the usage of fossil
fuels. But an immediate abolition of the usage of fossil fuels would result in an
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acute energy crisis [18–20]. This aspect represents a significant problem to find
suitable energy sources. And, in this regard, the usage and utilities of alternative
non-conventional and renewable energy resources creep in. Such resources should
function as energy reservoirs and energy carriers as well. Hydrogen, due to its
abundance [21]and diverse production sources, is becoming a viable, clean, and
green option for energy transportation and storage. Hydrogen demonstrates itself
as one of the simplest chemical systems and upon combustion produces water as
a harmless by-product. NOx, SOx, CO2, and other harmful particulates have no
truly positive impact on decarbonization. Hydrogen has thus been conceived as
a clean fuel source unlike the oil and natural gas resources and therefore seldom
pollutes the environment. Moreover, hydrogen has the highest energy density
per kilogram as compared to other combustible fuels, particularly natural gas.
However, the use of hydrogen as a fuel source depends on its effective and safe
means of storage. Hydrogen is extremely reactive in nature and therefore is not
easy to control. It readily participates in combustion process and is also highly
flammable, which may be a concern for its steady usage in passenger vehicles
plying on ordinary terrain roads. The hydrogen tank, unlike the common fuel
tanks, requires to be mounted beneath the vehicle in a more protected manner
to avoid any friction/collision with road debris. Again, hydrogen in its gaseous
state and at normal atmospheric pressure occupies a large volume. It requires very
high pressure and cryogenic conditions to be liquefied and stored in manageable
quantities. Maintenance of such extreme temperature and pressure conditions
seems practically quite improbable for daily purposes. The main hurdle behind the
use of hydrogen as an effective fuel appears to be the lack of proper storage materials
that can be produced at large scale, easily handled under normal conditions, and
which can also efficiently bind and store hydrogen in manageable gravimetric and
volumetric amounts in a reversible fashion. The storage solution requires some
breakthroughs in producing materials having better performance abilities thereby
meeting the standard criteria set up by the US Department of Energy (DOE). In
this regard, during the last two decades, scientists have been quite successful in the
modeling and development of novel molecular networks that can efficiently bind
and store hydrogen under ambient conditions. Numerous reviews on hydrogen
storage have been published [22–27]. A few recent articles portraying the plausible
usages of several materials as trapping agents [28–31] and renewable energy
storage media [32–36] for hydrogen are worth mentioning. Moradi and Groth
[37], in their recent article, have made a detailed review of the state-of-the-art
techniques in hydrogen storage and delivery and the associated risk and reliability
issues.

Several attempts have been made to find suitable molecular materials and frame-
works that can serve as potential templates for hydrogen storage. The high reactivity
of hydrogen has motivated the scientists to design several kinds of molecular tem-
plates containing both metal and non-metal as their active sites. There are so many
active sites for hydrogen storage as sheet like graphene, nanomaterials containing
the tubular nanostructures/nanoribbons, [38–45] fullerene-type cages and clathrate
compounds, [46–66] metal hydrides and metal cluster assemblies, [67–77] or the
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metal organic frameworks (MOFs)/covalent organic framework [78–98]. In this
chapter, we have made an attempt to briefly describe the major forms of molecular
materials and frameworks that can serve as potential templates for hydrogen storage
by using a conceptual density functional theory (CDFT) based approach.

26.2 Conceptual DFT Approach for Hydrogen Storage
Materials

CDFT, over the last few decades, has established itself as a powerful mathemati-
cal algorithm toward elucidating the ground-state properties of molecules [99–103].
The given theory is the brainchild of Chattaraj [104], who is credited as the founder of
a vast DFT community that has eventually introduced some important mathemati-
cal response functions better known as the conceptual DFT-based reactivity descrip-
tors. The variations of these molecular descriptors correspond very well with the
changes in the structure, bonding, and reactivity of chemical systems. The important
reactivity descriptors include the parameters like electronegativity (𝜒) [105, 106],
hardness (𝜂) [107, 108], and electrophilicity (𝜔) [109–112], which have already been
established quantitatively to understand molecular reactivity. An in-depth analy-
sis of the reactivity of a specific atomic site in a molecule can be rationalized by a
scrutiny of the various local reactivity descriptors like atomic charges (Qk) [113] and
Fukui functions ( f k) [114], which indeed play a key role toward determining the
site selectivity of a chemical species. For an N-electron system, the electronegativity
(𝜒) [105] and hardness (𝜂) [107] can be defined as follows:

𝜒 = −
(
𝜕E
𝜕N

)
v(r)
= −𝜇 (26.1)

𝜂 =
(
𝜕

2E
𝜕N2

)
v(r)

(26.2)

and

𝜔 =
(
𝜒

2

2𝜂

)
=
(
𝜇

2

2𝜂

)
(26.3)

with v(r) and 𝜇 as the external and chemical potentials, respectively.
Using finite difference method, electronegativity and hardness can be expressed

as follows:

𝜒 = (I + A)
2

and 𝜂 = (I − A) (26.4)

where I and A represent the ionization potential and electron affinity of the sys-
tem, respectively, and are computed in terms of the energies of N and N ± 1 electron
systems. For an N-electron system with energy E(N), these may be expressed as
follows:

I ≈ E(N + 1) − E(N) (26.5)

A ≈ E(N) − E(N − 1) (26.6)
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If EHOMO and ELUMO are the energies of the highest occupied and lowest unoccu-
pied molecular orbitals, then Eq. (26.4) can be written using Koopmans’ theorem as:

𝜒 = −
(EHOMO + ELUMO)

2
and 𝜂 = (ELUMO − EHOMO) (26.7)

The local reactivity descriptor, Fukui function (FF) [114], measures the change in
electron density at a given point when an electron is added to or removed from a
system at constant v(r). It may be written as Eq. (26.8):

f (r) =
(
𝜕𝜌(r)
𝜕N

)
v(r)

=
(

𝛿𝜇

𝛿v(r)

)
N

(26.8)

Condensation of this Fukui function f (r) [115] to an individual atomic site k in a
molecule gives rise to the following expressions in terms of electron population Pk

f +k = Pk(N + 1) − Pk(N)

For nucleophilic attack (26.9a)

f −k = Pk(N) − Pk(N − 1)

For electrophilic attack (26.9b)

f 0
k = [Pk(N + 1) − Pk(N − 1)]∕2

For radial attack (26.9c)

The site selectivity for a particular atomic site in a molecule can be obtained from
their local philicity (𝜔𝛼k ) also. The condensed-to-atom local philicity (𝜔𝛼k ; 𝛼 = +, –,
and 0 representing nucleophilic, electrophilic, and radical attacks, respectively) vari-
ants for the kth atomic site in a molecule is expressed as:

𝜔
𝛼

k = 𝜔 ⋅ f 𝛼k (26.10)

A variation of the above reactivity parameters along the reaction path of a
favorable chemical process also obeys some allied molecular electronic structure
principles, viz. the maximum hardness principle (MHP) [116, 117], minimum polar-
izability principle (MPP) [118, 119], and minimum electrophilicity principle (MEP)
[120, 121]. These molecular electronic structure principles in conjunction with
the thermodynamic parameters like interaction energy (IE), gain in energy (GE),
reaction enthalpy (ΔH), and dissociative chemisorption energy (ΔECE) help deter-
mine the mode of hydrogen binding on to the various molecular clusters that have
been modeled theoretically. The IE, GE, and ΔECE are expressed as:

IE = EnH2X − [EX + nEH2
]; n = no. of molecular H2 (26.11)

GE = E(n−1)H2X + EH2
− EnH2X (26.12)

ΔECE =
2
n

[
EX +

n
2

EH2
− EXH2

]
; n = no. of H atoms (26.13)

where EX denotes the energy of the parent moiety.
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Additional insights into the stability of these structural motifs can be gained by
the criterion of “all-metal aromaticity” [122–124], which can be mathematically
assessed from an evaluation of various aromaticity indices like nuclear-independent
chemical shift [125] (NICS). NICS(0) for a planar ring molecule signifies the amount
of absolute magnetic shielding computed at ring center. Subsequently NICS(1)
defines the same computed at a distance of 1 Å perpendicular to the ring plane.
The NICS rate at a given distance (r) from the ring center is calculated with the
following mathematical formula given as [126–129] Eq. (26.14):

NICSrate (r) =
dNICS

dr
= LimΔr→0

NICS(r + Δr) −NICS(r)
Δr

(26.14)

26.3 Computational Details

All the geometries presented here have been optimized at several levels of the-
ory (B3LYP, MP2, MPW1K, MO52X) using various basis sets (cc-pvdz, 6-31G,
6-31+G(d), 6-311+G(d), 6-311+G(d,p)). All the computations have been performed
using GAUSSIAN 03 [130] program package. The choice of the level of theory
and basis set varies with the systems under study. All the structures reported
were fully optimized without any symmetry constraint. Zero numbers of imag-
inary frequencies (NIMAG) for all optimized molecular structures confirm that
they correspond to minima (global or local) on their respective potential energy
surfaces (PESs). The ionization potential (I) and electron affinity (A) values were
either calculated with the aid of Koopmans’ theorem [131] or by using a ΔSCF
technique. The atomic charges (Qk) and Fukui functions (f (r)) were computed
using the Mulliken population analysis (MPA) or the natural population analysis
(NPA) scheme.

26.4 Designing of Hydrogen-Binding Building Blocks

It has been observed [132] that the trigonal aromatic all-metal Li3 as well as
non-metallic H3

+ species can bind a number of noble gases (He–Kr). Extending
this idea, Giri et al. [133] have investigated the possibility of trapping hydrogen
molecules by all-metal aromatic clusters Li3

+ and Na3
+. The use of Mgn and Can

(n = 8–10) cages as a trap for hydrogen is also studied. The endohedrally trapped
single H2 molecule retains its molecular form inside the cages except for the Ca10H2
complex. Here it is stabilized in its atomic form. For the aromatic Li3

+ and Na3
+

systems, hydrogen remains in molecular form upon binding with Li/Na atoms.
After binding with H2, the Li3

+ and Na3
+ retain their planarity. Figure 26.1 presents

the optimized molecular geometries of the H2-trapped Mgn and Can (n = 8–10)
cages along with hydrogen-loaded Li3

+ and Na3
+.

A detailed study of various H2-bound Li3
+ and Na3

+ systems shows that the
total energy (E) of the system gradually decreases upon increasing the number
of hydrogens. Further understanding from the changes in hardness (𝜂) and
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H2Mg8

H2Ca8 H2Ca9 H2Ca10

H2Mg9 H2Mg10

H6Li3
+

H6Na3
+ H6Na3

+

H6Li3
+

Figure 26.1 Optimized geometries of hydrogen-absorbed Mg/Ca and Li3
+/Na3

+ clusters.
Source: Reproduced from Ref. [133] with permission from Springer-Verlag, Berlin, Germany.

electrophilicity (𝜔) shows that with increasing cluster size the 𝜔 values exhibit
a uniform decline indicating molecular reactivity. To see the aromatic nature of
these systems, NICS (0,1) values for the upper and lower rings of the H2-trapped
Mgn and Can (n = 8–10) cages were calculated. The negative NICS value reveals
that the metallic cage clusters possess aromatic stability. Analogous NICSzz trends
for the Li3

+ and Na3
+ clusters and their various H2-loaded complexes establish

the existence of a favorable aromaticity criterion for gradual hydrogen adsorption.
The negative reaction energy (ΔE) values for gradual H2 adsorption on the Li3

+

and Na3
+ molecules lend thermodynamic support behind the spontaneity of the

given reactions and the usage of the all-metal trigonal motifs as plausible hydrogen
storage materials. Not only these alkali systems, but also the efficiency of the
transition metal–ethylene complexes as an effective media for hydrogen binding
has been further studied [134] from a conceptual DFT viewpoint. Transition
metals like Sc, Ti, Fe, and Ni coupled with the C2H4 molecule comprise the base
moiety, Mn – (C2H4) (M = Sc, Ti, Fe, Ni; n = 1, 2), where the metal atom acts
as the hydrogen-binding site via Kubas interaction. Figure 26.2 illustrates some
representative hydrogen-bonded molecular structures.

The total energy (E) of the H2-trapped complexes decreases as usual upon grad-
ual loading. However, the trends in the associated 𝜂 and 𝜔 values do not follow any
particular pattern for the Sc- and Ti-bound ethylene complexes. However, the 𝜂 and
𝜔 values of the associated H2-bound complexes corroborate with each other for the
Fe- and Ni-bound ethylene molecules at the B3LYP level.

Here, the 𝜂 values uniformly increase with increasing number of H2. The associ-
ated 𝜔 values follow exactly opposite trend. The principles of maximum hardness
and minimum electrophilicity are obeyed well in these cases. Important parameters
like the IE, reaction electrophilicity (Δ𝜔), and the associated reaction enthalpy (ΔH)
are negative in most of the cases, which justify the spontaneity of the H2 adsorption
on metal–ethylene complexes. The dissociative chemisorption energy (ΔECE) values
for the given reactions are all positive, which gradually decrease with increasing
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C2H4-Sc-4H2

C2H4-Sc-6H2 C2H4-Ti-8H2
C2H4-Fe-4H2 C2H4-Ni-4H2

C2H4-Ti-5H2 C2H4-Fe-2H2

C2H4-Ni-2H2

Figure 26.2 M-ethylene (M=Sc, Ti, Fe, Ni) complex and its corresponding H2-trapped
analogues. Source: Reproduced from Ref. [134] with permission from Springer-Verlag,
Berlin, Germany.

hydrogen coverage. A positive ΔECE value triggers favorable hydrogen binding with
the metal center, while a decline in the same reveals that upon gradual hydrogen
loading the driving force for hydrogen dissociation decreases further [135]. Thus the
potency of metal–ethylene complexes for the H2 trapping can be analyzed by using
conceptual DFT descriptors.

Apart from that, Chattaraj and coworkers [136, 137] have investigated the use
of cage-like clathrate hydrate molecules as well as the (BN)12 clusters as possible
hydrogen storage materials. The number of H2 molecules encapsulated within the
clathrate hydrate clusters depends on the cage size. It is observed that for the 512

and 51262 cages, encapsulation of two H2 molecules is energetically favorable, while
the 51268 moiety allows up to six H2 molecules to bind endohedrally. Some model
conformations involving the encapsulation of as many as five H2 molecules in
the 512 and 51262 cages and six hydrogens in the 51268 system are illustrated in
Figure 26.3.

A variation in the conceptual DFT-based reactivity descriptors in conjunction
with the favorable IE values builds a strong rationale toward justifying the stability
of the H2-encapsulated clathrate complexes. An increase in the hardness values
is well complemented by a decrease in the allied electrophilicities. The stability
of the H2-trapped clathrate complexes increases with an increase in the number
of H2 molecules bound in an endohedral fashion. However, in spite of some
dependence on the level of computations invoked, the clathrate molecules are
found to be quite useful for the purpose of hydrogen storage. Srivastava et al. in a
recent communication have further analyzed the efficacy of the 51268-clathrate cage
toward incorporating more hydrogens. This study reports that the encapsulation of
up to eight H2 molecules in the 51268 cage is favorable with gradually decreasing
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Figure 26.3 Schematic representation for encapsulation of hydrogen trapping within
different clathrate cages at B3LYP/6-31G(d) level of theory. Source: Reproduced from
Ref. [136] with permission from American Chemical Society, Washington DC, USA.

IE values. However, for further H2 incorporation, the IE values increase but still
remain negative up to 15 H2 molecules. An attempt to bind another molecule
remains unsuccessful at the given level of theory [B3LYP/6-31G(d)]. In further
efforts, Chattaraj and coworkers [138] reported doped hydrate cages via the
replacement of one water molecule in the clathrate assembly by one HF molecule.
Moreover, they mentioned that by means of HF doping stability of water cages
increases substantially without any significant change in the skeleton and shape.
Thermochemical data and conceptual DFT results reveal that HF doping in 512,
51262, 51268, 51264, and 435663, as well as in CH4@512, CH4@51268, CH4@51264, and
CH4@435663 systems is feasible. Maximum six numbers of H2 molecules can be
encapsulated by the 51268 clathrate, whereas HF512, HF51262 can encapsulate up to
two hydrogen molecules (see Figure 26.4). Inference conceived by the thermochem-
ical data and CDFT results is further supported by the ab initio molecular dynamics
(AIMD) simulations on the doped systems up to 500 fs at different temperatures.
It was noted that HF-doped 512 and 51268 systems remain stable up to 500 fs at
200 K. On the other hand, development of water trimer and tetramer was noted
from 125 fs in the HF-doped 51262. Excluding the case of 51262, AIMD studies help
in inferring the fact that HF doping facilitates the H2 uptake by clathrate hydrates.
In addition to this, AIMD results reveal the more kinetic stability of the studied
HF-doped hydrates in comparison to their undoped analogues.
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2H2@HF512 2H2@HF51262 6H2@HF51268

Figure 26.4 Hydrogen-encapsulated forms of HF512, HF51262, and HF51268 at DFT-
D-B3LYP/6-311+G(d,p) level of theory. Source: This figure is reproduced from the work of
Chattaraj et al. [136] with permission from American Chemical Society.

The research group of Chattaraj et al. further studied the noble gas hydrates
and their HF-doped analogues in view of He, Ne, and Ar as the guest entities.
In accordance with the cavity size of the gas hydrates and size of the considered
noble gas atoms, it was found and reported that the dodecahedron hydrate cavity
and the HF-doped counterpart can encage up to five He atoms, three Ne atoms,
and two Ar atoms. But, according to the thermodynamical data, encapsulation
of only one noble gas (He, Ne, and Ar) atom is feasible. The bigger hosts, 51268

and its HF-doped analogue, can encapsulate up to 9 He/6 Ne/6 Ar atoms and
10 He/6 Ne/6 Ar atoms, respectively. In a nutshell, HF doping improves the noble
gas encapsulation capacity. Moreover, it is disclosed that bigger size of the Ng
atom as well as smaller cavity size of the host water cage favors the encapsulation
most significantly. On the other hand, it is understood that HF doping makes
the encapsulation of one Ng atom thermodynamically most favorable. Interac-
tion between the noble gas atoms and the host water cage, particularly, Ng–O,
Ng–F, and Ng–Ng contacts, is found to be noncovalent in nature. AIMD study
disclosed the fact that at 298 K the dodecahedron hydrate cage and the HF-doped
analogue can keep one He/Ne/Ar guest up to 500 fs. Contrastingly, the icosa-
hedron hydrate and the HF-doped analogue can keep up to 8 and 10 He atoms
at 225 and 298 K, respectively, up to 500 fs [109]. It is important to mention
here that the HF-doped moiety developed minor distortion in the cage wall.
In the same time scale at 225 and 150 K temperatures, the 51268 and HF51268

hydrates, respectively, can encage up to 6 Ne atoms. In case of Ar gas encap-
sulation, it was noted that the icosahedron and HF-doped analogue hosts can
retain maximum six atoms up to 500 fs, but at 298 K temperature the hydrate
skeleton collapses in to the formation of water trimer and tetramer rings within the
host wall.

The B12N12 cage templates as opposed to the clathrate hydrates, however, prefer
not to encapsulate the hydrogen molecules inside the cage framework. It prefers to
form stable H2-bound complexes through an exohedral arrangement of the incom-
ing H2 molecules around the B12N12 core as envisaged in Figure 26.5.
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nH2@B12N12 structures and their corresponding interaction energy with hydrogen atoms
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An in-depth analysis of the nH2@B12N12 (n = 1–12) clusters under the paradigm
of conceptual DFT approach displays some unique trends in terms of their sta-
bility and reactivity patterns. The electronegativity (𝜒) values of the nH2@B12N12
(n = 1–12) clusters decline upon increasing hydrogen coverage, a trend that clearly
depicts the unwillingness of the cluster complexes toward attracting electrons upon
cluster growth. The larger nH2@B12N12 (n = 1–12) complexes thus tend to evade
interactions. The variation of the chemical hardness (𝜂) and electrophilicity (𝜔)
values of the hydrogen-bound nH2@B12N12 (n = 1–12) complexes show a reverse
trend upon gradual hydrogen loading, where the 𝜂 values rise and 𝜔 values fall
upon increasing complexation. This trend does signify the veracity of the molecular
electronic structure principles like maximum hardness principle (MHP) and
MEP toward justifying molecular stability. For a set of some plausible H2-binding
reactions with the B12N12 cage, the associated parameters depict favorable and
spontaneous processes. The GE values in spite of showing some unusual patterns
however increase with gradual hydrogen loading. This eventually establishes
the stability of the nH2-trapped (n = 1–12) B12N12 clusters as compared to the
bare B12N12 cage system. The cage aromaticity of the bare as well as nH2-trapped
(n = 1–12) B12N12 complexes computed in terms of the NICS(0) values specifies that
the cage moiety is aromatic and hence stable. Yet, the aromaticity criterion may
not always be considered as the sole determinant toward determining molecular
stability. For the nH2@B12N12 (n = 1–12) complexes, the conceptual DFT-based
reactivity descriptors (Δ𝜔, governing reaction spontaneity) along with the vital
energy parameters like IE per H2 molecule, GE, reaction enthalpy (ΔH) play a
pivotal role toward determining the stability of the H2-loaded clusters. A favor-
able aromaticity criterion in terms of a negative NICS value for the B12N12 cage
thus justifies the usage of the given cage cluster as an effective hydrogen storage
material.
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Figure 26.6 BxLiy (x = 3–6; y = 1,2) and its hydrogen-trapped analogues at MP2/
6-311_G(d) level of theory. Source: Reproduced from Ref. [139] with permission from John
Wiley & Sons, Inc., New York.

Now, considering the ability of metal atoms/ions as good hydrogen-trapping sites,
metal-doped non-metallic clusters can be designed as suitable hydrogen-binding
templates. A glimpse of this idea is the simple metal–ethylene complexes where
a metal atom upon binding with the ethylene moiety acts as an active site for
trapping H2 molecules. Studies by Bandaru et al. [139]on some uniquely designed
small-to-medium Li-doped boron-lithium (BxLiy, x = 2–6; y = 1, 2) neutral and
charged cluster molecules (Figure 26.6) reflect the potential of such metal-doped
non-metallic clusters as hydrogen storage materials. Further studies under the
paradigm of CDFT-based descriptor approach reveal that the clusters carrying a
formal charge are more keen toward trapping hydrogen, which is evident from
the higher 𝜔 values of the H2-loaded charged complexes as compared to the
corresponding neutral templates. A clear distinction in the orientation of the B and
Li atoms of the parent BxLiy moiety (x = 2–6; y = 1, 2) is observed among some of
the associated neutral and charged analogues. Moreover, the molecular geometry
of the parent BxLiy cluster undergoes a noticeable change upon gradual hydrogen
loading.

The atomic charges (qM) on the Li-sites fall with gradual hydrogen loading.
This is a sure indication of a metal–ligand interaction between the central metal
core and the approaching dihydrogen ligands thus imitating the Kubas model of
hydrogen binding. The IE, reaction enthalpy (ΔH), and reaction electrophilicity
(Δ𝜔) of all the stepwise hydrogen-binding reactions are negative, which warrants
a steady hydrogen upload on the given neutral and cationic boron-lithium BxLiy
(x = 2–6; y = 1, 2) cluster motifs. The reaction electrophilicity values of all the
probable trapping reactions of the neutral and charged systems are negative, which
is at par with the MEP, an essential criterion toward explaining molecular stability.
A steady decline in the chemisorption energy (ΔECE) values of the stepwise
hydrogen-binding reactions with the neutral and charged B-Li clusters lends
additional support for a spontaneous H2 coverage and establishes the plausible
usage of the above metal-doped non-metallic clusters as effective templates for
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hydrogen binding. Further studies [140] show that under suitable gravimetric
conditions, the aromatic B3H3

2− unit along with its various Li/Li+-doped variants
are capable of trapping hydrogen molecules. The computed energy parameters
and NICS values favor a spontaneous hydrogen binding. A graphical investigation
of the variation of the Gibbs’ free energy (ΔG) of the reaction process with its
temperature (T) and pressure (P) (T–P phase diagram) clearly indicates the T–P
zone where the ΔG values are negative (Figure 26.7). Thus, in these regions the
hydrogen adsorption process at the given temperatures and pressures turns out
to be a thermodynamically favorable one. The T–P regions having positive ΔG
values, unlike the preceding process, favor a dissociative reaction mechanism that
involves desorption of hydrogen from the B-Li-loaded clusters. The region depicting
a ΔG = 0 value corresponds to an equilibrium state. Such T–P phase diagrams,
therefore, become an extremely helpful probe for the experimentalists regarding
their choice of an optimal temperature–pressure condition to be exercised for a
favorable reversible hydrogen storage process.

Aromatic/antiaromatic annular ring systems upon complexation with suitable
counterions can be utilized as plausible hydrogen-trapping templates. A study by
Duley et al. [141] elaborated the ability of planar N4

2− and N6
4− rings to adsorb

hydrogen molecules upon binding with suitable counterions. A marked increase
in the aromaticity of the planar N6

4− ring is observed upon binding with the two
Ca2+ counter cations (through cation–π interactions), which is evident from the
highly negative NICS(0) values. Further negative values of the allied NICS(0.5)
and NICS(1) for the N6

4− ring do manifest the existence of a favorable π-ring
current above and below the hexagonal plane. The N4

2− ring is antiaromatic with
a positive NICS(0) value and continues to remain the same upon binding with two
Li+ counterions. However, the NICS(0.5) and NICS(1) values of the N4Li2 system
become increasingly more negative, which favors the existence of a π-aromaticity
above and below the ring plane. It may be mentioned that the N4

2− ring in analogy
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Figure 26.8 Optimized geometry, HOMO, LUMO of N6Ca2 and N4Li2 and their
hydrogen-trapped complexes. Source: Reproduced from Ref. [141] with permission from
Elsevier, Amsterdam, The Netherlands.

with the Al4
4− system exhibits a conflicting aromaticity in the sense that both

𝜎-antiaromaticity and π-aromaticity are equally discernible [142]. The optimized
structures of N6Ca2 and N4Li2 and the corresponding hydrogen-trapped complexes
are depicted in Figure 26.8.

The adsorption energies (ΔEads) of the N6Ca2 and N4Li2 molecules show a
favorable trend upon gradual hydrogen loading. So, the counterion-bound aromatic
N6Ca2 and N4Li2 molecules become suitable stuffs for an effective hydrogen
storage. The efficacy of this strategy to dope counter-ions in an all-metal aromatic
framework and its further usage as hydrogen storage templates are well illustrated
by Srinivasu et al. [143]. In their study, planar all-metal aromatic anionic systems
like Be3

2−, Mg3
2−, and Al4

2− are bonded with alkali metal counter-cations to
produce Be3M2, Mg3M2, and Al4M2 (M = Li, Na, and K) clusters. Among the two
different metal sites in each of these clusters, the alkali metal sites owing to their
higher charge/radius ratio seem to be more prone toward capturing hydrogen
molecules. Thus, the alkali metal atom becomes the active binding site in these
clusters. The overall efficiency of hydrogen adsorption in these all-metal clusters
can also be figured out from the favorable ΔH and Δ𝜔 values of the associated
hydrogen-binding reactions.

In another study by Giri et al. [144], the H atoms of some well-known planar
aromatic/antiaromatic hydrocarbon systems like C4H4, C5H5

−, and C6H6 are
substituted by the alkali metal Li to design some novel star-shaped molecular
moieties formulated as C4Li4, C5Li5

−, and C6Li6. These unique star-like clusters
are then further investigated to see their potential as hydrogen-binding tem-
plates where the Li center owing to its higher charge density is supposed to
serve as the active binding site as portrayed in Figure 26.9. In addition to that,
mononuclear aromatic/antiaromatic systems starting from the smallest C3-ring to
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Figure 26.9 Optimized molecular geometries of the Li-decorated “star-like” molecules and
their associated hydrogen-bound complexes. Source: Reproduced from Ref. [144] with
permission from Royal Society of Chemistry, London, UK.

the C7-analogue (tropylium cation) as well as some polyaromatic hydrocarbons
(PAHs) like naphthalene, anthracene, and phenanthrene are also doped with
suitable Li+/F− counterions. A conceptual DFT approach is adopted to investigate
the capability of these counterion-bound annular complexes toward effective
hydrogen adsorption. Figure 26.10 represents some model conformations of the
hydrogen-loaded mononuclear and polynuclear ring systems. An in-depth study
of the effect of the aromaticity/antiaromaticity criterion of the central ring on
the hydrogen-loading potential of these complexes, accompanied by some drastic
changes if any (conversion from aromatic to antiaromatic or vice versa), is also
carefully done. The results show that the aromaticity/antiaromaticity phenomenon
of these planar rings, assessed in terms of the NICS criterion, hardly shows any
radical change upon gradual hydrogen loading. The formal charge developed on the
active binding site (the counterion) of the complexes therefore has a direct bearing
on the potential of hydrogen uptake on these clusters. Additional insights into the
efficacy of hydrogen loading in these complexes can be understood from a scrutiny
of the associated energy parameters. The designing of these molecular clusters as
potential hydrogen-binding templates therefore rests upon the conjoint effects of
the changes in atomic charges on the counterion upon gradual increasing cover-
age followed by a favorable energy criterion. The sustenance of an aromaticity/
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Figure 26.10 Optimized geometries of the Li+/F− – doped aromatic/antiaromatic
hydrocarbons and polyaromatic hydrocarbons (PAHs) and their associated hydrogen-bound
complexes. Source: Reproduced from Ref. [144] with permission from Royal Society of
Chemistry, London, UK.

antiaromaticity criterion in the resulting complexes adds a further dimension
toward establishing their stability. The “star-like” complexes are quite unique and
upon binding with suitable “linkers” can be envisaged as the building blocks for
designing larger macromolecular cluster motifs suitable for storing hydrogen in
bulk gravimetric amounts under ambient temperature and pressure conditions
(Figure 26.10).

26.5 Concluding Remarks

An array of various benchmark experimental techniques along with some sophis-
ticated theoretical algorithms have been implemented to design some novel
molecular assemblies that can be used as potential templates for hydrogen storage.
The powerful theoretical techniques of conceptual DFT in association with the
various global and local reactivity descriptors are adopted as a yardstick to ratio-
nalize the stability of these molecular clusters and their efficacy toward hydrogen
binding. The stability and reactivity of these molecular assemblies toward an
efficient hydrogen binding have been explained from the dual perspectives of the
important molecular electronic structure principles on one hand and a favorable
energy criterion governing the reaction spontaneity on the other. The existence of an
aromaticity/antiaromaticity criterion in some of the molecular clusters does add fur-
ther insights into justifying the stability of the given complexes upon increasing the
hydrogen coverage. The atomic charges on the respective local hydrogen-binding
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sites of the clusters have a direct bearing on their gross hydrogen-loading aptitude.
In summary, this chapter has made an attempt to employ modern methodologies
within a conceptual DFT framework, in designing novel molecular assemblies
that can serve as a potential and profitable media for the storage of hydrogen, an
alternative future fuel for automobile and industrial applications.
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68 Schüth, F., Bogdanović, B., and Felderhoff, M. (2004). Chem. Commun.

20: 2249.
69 Sakintuna, B., L-Darkrimb, F., and Hirscherc, M. (2007). Int. J. Hydrog. Energy

32: 1121.
70 Hagström, M.T., Lund, P.D., and Vanhanen, J.P. (1995). Int. J. Hydrog. Energy

20: 897.
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27.1 Introduction

Chemical reactivity can be thought of, in an abstract way, as the response of a
molecular system to disturbances induced by attacking agents. Since the electronic
Hamiltonian explicitly depends on the number of electrons, N, and the external
potential due to the electrostatic attraction of the nuclei, v(r), one can measure, in
principle, the chemical response (reactivity) as variations of the energy with respect
to the number of electrons, ΔN, and the external potential, 𝛿v(r). Note that this is
consistent with the common classification of chemical reactions as controlled by
electron transfer or by electrostatic effects. This classification corresponds to limit
cases in which the reactions are governed only by one of the two effects. In actual
reactions, both effects are always present. Klopman and Salem were the first to point
this out from a formal point of view [1, 2]. Despite this, reactions mostly controlled by
electron transfer are of outermost importance to chemistry because this corresponds
to the case of most reactions in which covalent bonds are broken and created. It was
Fukui who first realized that the reactivity of a molecule participating in an electron
transfer reaction is dictated by the density of the frontier molecular orbitals (FMOs)
[3]. That is, the density of the highest occupied molecular orbital (HOMO) dictates
the reactivity of molecules prone to donate electrons (here electrophiles), while the
density of the lowest unoccupied molecular orbital (LUMO) does it for molecules
prone to accept electrons (here nucleophiles). That simple idea is the basis of the
FMO theory. Salem and Klopman provided theoretical basis for the FMO theory
by using molecular orbital perturbation theory with wavefunctions corresponding
to single determinant, such as in the Hartree–Fock method. That is, FMO theory
was linked to an approximation and not to the exact wavefunction. In this regard,
Mulliken’s words are already famous: “[…]the more accurate the calculations

Conceptual Density Functional Theory: Towards a New Chemical Reactivity Theory, First Edition.
Edited by Shubin Liu.
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became the more the concepts tended to vanish into thin air”. However, a strict
generalization of Fukui’s ideas is possible within the mathematical framework of
the density functional theory (DFT). In 1978, Robert Parr et al. [4] realized that the
Lagrange multiplier of the Euler–Lagrange equations of the DFT is the electronic
chemical potential, 𝜇, of the molecule and that its negative provides a non-empirical
scale of electronegativity. This pioneering work was the first step to construct a
unified corpus of chemical reactivity using DFT, or what is know today as chemical
DFT or conceptual DFT [5–10]. The chemical potential of a molecule is a constant,
being the same for all parts of the molecule. Hence, the chemical potential has to
change in the course of a chemical reaction due to either a flow of electrons or a
change in the external potential. If a molecule is perturbed in its number of electrons
and its external potential, the change to the first order of the chemical potential is

d𝜇 =
(
𝜕𝜇

𝜕N

)
v(r)

dN + ∫
(

𝛿𝜇

𝛿v(r)

)
N
𝛿v(r)dr (27.1)

Consequently, the most reactive a molecule is the easier it is to change its chemical
potential. Parr called this the “d𝜇 big is good” rule, for which a recent proof is avail-
able [11–13]. Therefore, for a nondegenerate ground state [14–17], a disturbance
will be more effective in changing the chemical potential if such disturbance (a
reactant) occurs in places where

(
𝛿𝜇

𝛿v(r)

)
N

is large. It is straightforward to show,
using a Maxwell’s relationship, that this functional derivative is also equal to the
response of the electron density to changes in the number of electrons,

f (r) ≡
(
𝛿𝜇

±

𝛿v(r)

)
N
=
(
𝜕𝜌(r)
𝜕N±

)
v(r)

(27.2)

f (r) is called the Fukui function because it generalizes the FMO theory. That is
better seen when the Fukui functions are written in terms of the Kohn–Sham (KS)
orbitals:

f ±(r) ≡ |||𝜙HOMO∕LUMO(r)
|||2 + N∑

i=1

(
𝜕|𝜙i(r)|
𝜕N

)
(27.3)

The Fukui function comprises two terms, the density of the HOMO (or LUMO)
and a relaxation term. Note that there are two Fukui functions, one for donation
of electrons (−, oxidation) and one for accepting electrons (+, reduction). That is
so because of the discontinuity of the density as a function of the number of elec-
trons [18]. In molecules, the relaxation term is usually small because of the discrete
nature of the spectra of the KS orbitals [19]. This, however, is not the case in an
extended system, such as a nanostructure, surface, or solid. Let us look at the differ-
ence between a solid and a molecule. As a bound quantum system – one in which
the energy spectrum is discrete – increases in size, the energy eigenvalues become
closer to each other. In the case of the solid, each eigenvalue of energy, 𝜀, associ-
ated with the atoms that make it up unfolds into a continuous band of energy. In
the case of medium molecules, the HOMO and the internal HOMO-n orbitals are
clearly separated in energy. The further apart they are, the smaller the participa-
tion of the internal orbitals. For example, the orbital perturbation theory interaction
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energy of the occupied orbitals of a nucleophile A with the LUMO of an electrophile
B is approximately given by:

∑
i occupied ∈A

|||⟨𝜙A
i
||| ĥAB

|||𝜙B
LUMO⟩|||2

𝜀
A
i − 𝜀

B
LUMO

(27.4)

where ĥAB is the total monoelectronic Hamiltonian of the system. Note that the abso-
lute value of the denominator is largest for the term of the sum associated with
the inner orbitals of the nucleophile. In a medium molecule, the term associated
with HOMO is the one that contributes the most to the sum. In the case of a solid,
there will be a band with infinite states associated with HOMO; therefore, the states
close to it will contribute significantly to the sum. In summary, in extended systems,
the relaxation contribution of the orbitals around the Fermi level (frontier states) is
important and it must be taken into account.

Imagine a solid that is metallic. The distinction between the occupied and unoc-
cupied frontier states is impossible since the system lacks a fundamental energy gap.
In such a case, it seems difficult to define the Fukui function from Eq. (27.3). How-
ever, it is still possible to define the Fukui function from its analogous function for
open systems, the local softness, s(r):

s(r) =
(
𝜕𝜌(r)
𝜕𝜇

)
v(r)

=
(
𝜕𝜌 (r)
𝜕N

)
v(r)

(
𝜕N
𝜕𝜇

)
v(r)

= f (r) S (27.5)

where S is the global softness (S = ∫ s(r) dr). For any system, finite or not, the
density can be written in terms of the local density of states g(r;E) (LDOS):

g(r;E) = 1
𝜋

Im G(rs, rs;E−) (27.6)

and the electron density is

𝜌(r) = ∫
𝜇 1
𝜋

Im G(r, r;E−)dE = ∫
𝜇

g(r;E)dE (27.7)

where G(rs, rs;E−) is the retarded Green’s function and 𝜇 is the chemical poten-
tial which at 0 K equals the Fermi level. E− = lim

𝛿→0+
E − i𝛿 avoids divergence at the

poles of G.
The local softness is obtained directly from deriving Eq. (27.7) with respect to 𝜇:

s(r) =
(
𝜕𝜌(r)
𝜕𝜇

)
v(r)

= g(r;𝜇) + ∫
𝜇
(
𝜕g(r;E)
𝜕𝜇

)
dE (27.8)

and the Fukui function is recovered after normalization of s(r) with the global soft-
ness. Note that this expression, originally deduced by Cohen et al. [20], for the local
softness has the same structure as the Fukui function of the Eq. (27.3). That is, it is
composed of the density of states at the Fermi level (boundary states) and an integral
that takes into account the contribution of the states around the Fermi level (relax-
ation term). The latter accounts for the change of g (r,E) due to the fact that changing
the Fermi level will change the density of occupied states. In a infinite (solid) or
semi-infinite (surface) system, the continuous nature of the KS states implies that
the contribution to the chemical response of states below and above the Fermi level



558 27 The Fukui Function in Extended Systems: Theory and Applications

cannot be neglected. This is easily seen from Eq. (27.3) by changing the sum by an
integral: the contribution to it of states infinitesimally close to the Fermi level decays
with the difference of energy of these states and the Fermi level but it remains finite.

Cohen et al. showed that both the Fukui function (for a system with a gap) and
the local softness can be expressed as the density of the frontier state modulated by
a nonlocal potential [20]:

f ±(r) = ∫ |𝜙LUMO∕HOMO(r2)|2 K−1(r, r2) dr2 (27.9)

and

s(r) = ∫ g(r2;𝜇) K−1(r, r2) dr2 (27.10)

where K(r, r2),

K(r, r2) = 𝛿(r, r2) − ∫
𝜇 1
𝜋

Im
(
∫ G(r, r3;E−)

(
𝛿vKS(r3)
𝛿𝜌(r2)

)
G(r3, r;E−)

)
dr3

(27.11)

is a kernel related to the dielectric function of electrons.
Although from a quantum mechanical calculation one could construct Green’s

functions and with them construct K, this strategy leads to a more complex problem
than the computation of the system itself. Therefore, it escapes the very spirit of
the construction of reactivity indices, which includes providing simple elements for
the interpretation of the chemical response. This explains the need to build simple
models of reactivity in extended systems that allow the calculation of the chemical
response to be as routine as it is in the case of molecules [21].

27.2 Models of Local Softness: The Case of Metallic
Carbon Nanotubes

As far as we know, there are only a handful of models that try to approximate the
relaxation contribution to the local softness of extended systems. Santos et al. [22, 23]
proposed to weight the local density of states with the product of the global soft-
ness and number of electrons (∫ 𝜇

𝜇−Δ g(E)dE) within an arbitrary energy window, Δ,
around the Fermi level. For simplicity, we will focus on the response to oxidation of
the systems, that is, the regions prone to donate electrons:

sS(r) =

(∫ 𝜇

𝜇−Δ g(r,E)dE

∫ 𝜇

𝜇−Δ g(E)dE

)
S (27.12)

This expression is not exactly the local softness but its chemical interpretation is
similar, as they demonstrated in applications to zeolites [22, 23]. Brommer et al. [24],
Geerlings and coworkers [25], and Cardenas et al. [26] proposed a similar integration
around the Fermi level to calculate the local softness:

sI(r) = lim
𝛿𝜇→0

1
𝛿𝜇 ∫

𝜇

𝜇−𝛿𝜇
g(r,E)dE (27.13)
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This equation is inspired in the fact that the derivative in Eq. (27.5) can be written
as a limit:(

𝜕𝜌(r)
𝜕𝜇

)
v(r)

= lim
𝛿𝜇→0

𝜌(r;𝜇 + 𝛿𝜇) − 𝜌(r;𝜇)
𝛿𝜇

(27.14)

Despite Eqs. (27.12) and (27.13) look similar, their implementations are different
because in the sI(r)model the value of 𝛿𝜇 is taken as the smallest possible for which
the local softness converges rather than an arbitrary large window of energy below
the Fermi level. The KS states within a band are either degenerate or pseudodegener-
ate, which implies that 𝛿𝜇 should be of the order of the coupling between the external
perturbation and the system (typically a fraction of an eV). Nevertheless, both mod-
els use the same strategy to include contributions from states below the Fermi level
and, depending on the way the local density of states is computed, they correspond
to a population analysis in a portion of the valence band. Both models weight all the
states in the considered energy range equally. But, from perturbation theory, one can
conclude that the contribution of inner states decreases with the energetic distance
to the Fermi level: the deeper the state, the smaller its contribution (see Eq. (27.4)).
sI(r) has been applied to describe the reactivity of Si(111)-(7 × 7) reconstructed sur-
face, single-wall carbon nanotubes, and alkaline earth oxides’ surfaces [26].

Recently, we proposed a new method which uses the exact long-range behavior of
the local softness to weight the contribution of states around the Fermi level [27]:

sII(r) = 1
𝛿𝜇 ∫

𝜇+𝛿𝜇

𝜇−𝛿𝜇

g(r,E)√|E − 𝜇|dE (27.15)

27.2.1 Carbon Nanotube

C(5,5) single-walled-capped carbon nanotubes (SWCCNTs) obey a series with chem-
ical formula C10n+60 with alternating symmetry between D5h (n odd) and D5d (n even)
[28]. The length at which a C(N,N) SWCCNT can be considered metallic depends on
the method of calculation. Geerlings and coworkers [25] showed that a tight bind-
ing model (Hückel) captures well enough the electronic structure needed to describe
the chemical reactivity of these nanotubes. In tight binding, the molecular orbital
energies are just 𝜖 = 𝛼 + 𝜆i𝛽, where 𝜆i are the eigenvalues of the adjacency matrix
of the structure [29]. Instead of using specific values of site energies (𝛼) and hop-
ping strength (𝛽) for carbon, we simplified equations by working in units of 𝛽. For
evaluating the LDOS and density of states (DOS), each molecular orbital energy has
been broadened as a Gaussian function with standard deviation of 0.076 (0.15 eV for
carbon) and the smallest 𝛿𝜇 used is equal to 0.3 𝛽. Also, to avoid the use of a atomic
orbital basis set, we found more illustrative to use condensed-to-atoms values of the
local softness, sk [30]. More details on the methodology and implementation of mod-
els of local softness are available elsewhere [27].

In Figure 27.1, the condensed local softness of the C360(5,5) SWCCNT is plotted
as a function of the belt number to which the C atom belongs. Due to the D5d
symmetry, all atoms in a belt are equivalent. Two models of softness are shown,
sI and sII. We focus first in the sidewall of the nanotube (belts 5–35). Both models
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Figure 27.1 Condensed-to-atoms local softness of capped single-wall carbon nanotube
C360(5,5) evaluated with a model, sI(r), that equally weights the contribution of all states
(a) and, a model, sII(r), that weights the contribution of inner states according to how deep
below the Fermi they lay (b).

predict an oscillatory character with a period of three belts, with the average softness
decreasing toward the center of the nanotube. However, for model sI this decrease is
quite slow, while in model sII the softness is almost constant after 10 belts measured
from the cap.

As the softness kernel is nearsighted [31], the local softness in the center of
a metallic capped nanotube should be smaller and almost independent of the
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position. Hence, the quality of the model for the local softness can be assessed
through its inherit nearsightedness. In that sense, model sII performs much better
than model sI. That is, weighting correctly the contribution to the local softness
of the occupied states below the Fermi level is essential for describing the right
trend of reactivity far from the ends of the nanotube. Note that the slow decaying
oscillations in model sI could be, however, caused by the finite size of the C360(5,5)
nanotube.

Let us now see how both models describe the reactivity at the ends of the nanotube.
Model sI predicts that the most reactive sites of the nanotube are those corresponding
to the union of the caps to the cylinder shell. This is an expected behavior because
those atoms have a large deviation of the ideal sp2 hybridization of the graphene
sheet. However, notice that this model totally fails in predicting that the other atoms
in the caps also have enhanced reactivity. In indeed, sI wrongly predicts that the
outermost pentagonal belt of the nanotube is the least reactive. On the contrary,
model sII correctly predicts that atoms in the caps are the most reactive and that
the outermost pentagonal belt along with the belt where the sidewall and the cap
merge are the most reactive sites. These results suggest that, in metallic systems,
models of softness should be such that the contribution of inner states to the chem-
ical response depends explicitly on how deep below the Fermi level these state lay
(Figure 27.1b). More ways to weight the contribution of inner states have been dis-
cussed elsewhere [27, 32, 33].

27.3 Models of Fukui Function: The Case of Alkaline
Metal Oxides Bulks and (100) Surfaces

It is clear from Eq. (27.5) that given an approximation for the local softness, a cor-
responding approximation for the Fukui function is given by normalizing the local
softness by its integral over the whole space. This is true for a system which has a
gap between the valence band and the conduction bad. As it was already mentioned,
in a gapless system, the global softness defined as the inverse of the gap diverges and
the Fukui function is ill defined by Eq. (27.5). Fortunately, this is not the case of
systems with a gap, such as insulators and semiconductors at low temperature. In
such a case, the Fukui function can be evaluated from models that use the density
of states or from the actual variation of the density due to changes in the number of
electrons. In the first case, the Fukui function corresponding to the model sI(r) will
be given by:

f −,I(r) = lim
𝛿𝜇→0

∫ 𝜇

𝜇−𝛿𝜇 g(r,E)dE

∫ 𝜇

𝜇−𝛿𝜇 g(r,E)drdE
(27.16)

Before discussing how the Fukui function of an extended system could be
computed from Eq. (27.2), let us see how this performed for a finite system, e.g. a
molecule. Perdew et al. [18] proved that density of an open system with N0 ± ΔN
electrons, with N0 an integer, is a linear combination of the densities of the systems
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with the closest integer number of electrons. Therefore, the derivatives of the density
with respect to the number of electrons takes the form of a “finite difference” [34, 35]:

f −,FD(r) = 𝜌N (r) − 𝜌N−1(r) (27.17)

where N stands for the system of interest and N − 1 for its vertical cation. A similar
expression exists for f +. It is important to highlight that Eq. (27.17) is not an approx-
imation to the derivative of Eq. (27.2), but it is, in principle, exact. Any departure
from exactness from Eq. (27.17) comes from the approximations used to compute
the density. In the special case of DFT, approximations to the exchange–correlation
functional are designed to give good densities for integer number of electrons, but
not for non-integer numbers [36].

A natural extension of Eq. (27.17) to extended systems suggests to compute the
Fukui function by removing/adding electrons from/to the neutral system. However,
this procedure entails a technical problem in solids and surfaces when they are mod-
eled using periodic boundary conditions (PBCs), which is that it leaves a charged
cell or supercell, the images of which will interact electrostatically. Consequently,
adding or removing a whole electron could add a non-negligible nonphysical exter-
nal potential to the unit cell.

Because the Coulomb interaction is long-ranged, it does not matter how large
the unit cell is, it never converges to 0. Therefore, one cannot take for granted that
increasing the size of the unitary cell will fix this problem. The magnitude of the
effect of this electrostatic disturbance is not easy to determine a priori, but it is
expected to be more significant in soft systems where the polarizability is large.
Although approximations for canceling the electrostatic fields of charged images
on the total energy are available, these methods are usually limited to cubic unit
cells. Despite this, Eq. (27.17) has been satisfactorily used to identify the regions that
maximize the Fukui function in V2O5 systems, allowing a qualitative visual inspec-
tion of the different oxygen surface sites [37], as well as a comparison of different
vanadium-based systems.

An advantage of computing the Fukui function from calculations with different
number of electrons is that it easily allows to incorporate relaxation effects, but
it has the trouble of creating a fictitious electric field when PBCs are used. The
approach based on the LDOS (Eq. (27.16)) fixes that problem, but relaxation effects
are not strictly incorporated. An alternative is using finite differences with fractional
number of electrons. Importantly, reducing the step in the number of electrons in
Eq. (27.17) does not fix the problem of the electric field of charged images unless
ΔN is taken at the zero limit. A computational way to take that limit is to com-
pute the density of the neutral system, 𝜌(r,N0), and several slightly charged systems,
𝜌(r,N0 + 𝛿), 𝜌(r,N0 + 2𝛿) . . . . Then, for every point in the space, a linear interpola-
tion of the density as a function of the number of electrons can be made. The slope
of such interpolation is the Fukui function because

𝜌(r,N) = 𝜌(r,N0) +
𝜕𝜌(r,N)
𝜕N

(N − N0) + · · · (27.18)

Of course, this approximation will be valid only if the charge of the charged systems
is small enough to fall within the linear regime of 𝜌 vs. N.
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This interpolation approach fixes the charged images problem and takes into
account the relaxation of inner states. However, it introduces a new difficulty,
which is the lack of accuracy of approximate functionals to describe the electron
density of systems with fractional number of electrons. It is well known that LDA,
all GGAs and most hybrids and long-range corrected functionals fail to predict the
piecewise structure of E vs. N [36]. All those functionals follow the same trend,
which is a convex underestimation of E vs. N. This underestimation results in a
delocalization error in the density. That is, the density of systems with fractional
number of electrons computed with approximated functionals is less compact than
the exact one.

In what follows we will use Eqs. (27.16)–(27.18) to compute the Fukui function in
the bulk and most stable surface ((100)) of the family of alkaline earth metal oxides
rocksalt MgO, CaO, SrO, and BaO solids. Full details of the calculations can be found
elsewhere [38]. Briefly, all DFT calculations with PBCs were done with the Vienna
ab initio package (VASP) [39–41] using the GGA PBE exchange and correlation func-
tional proposed by Perdew et al. [42]. Bulk was computed using a conventional unit
cell with four formula units. Surfaces were cut from the optimized bulk structure,
6 oxide layers thick, and each supercell contain 12 formula units. Before compari-
son was done, we condensed f − to atoms using the partition of the space induced
by Voronoi polyhedral. To do this, we used the “Bader” program of Henkelman’s
group [43]. Because f − is mostly localized in the oxygen atoms, only those values
are reported. As the Fukui function integrates to 1 independently of the size of the
system, we decided to report the Fukui function times the number of formula units.
This is especially important if one is to compare values of f for systems where the
cell/supercell has different number of formula units.

Each of the models for the Fukui function depends on different parameters.
f I(r) depends on what value of 𝛿𝜇 is considered small enough to be representative
of the 𝛿𝜇 → 0 limit. As it can be seen in Table 27.1, for |𝛿𝜇| ≤ 0.15 eV the values

Table 27.1 f −,I obtained with the DOS for the four bulk systems of the alkaline
earth metal oxide series.

𝜹𝝁 MgO CaO SrO BaO

−0.05 0.947 0.964 0.956 0.876
−0.10 0.947 0.960 0.956 0.876
−0.15 0.947 0.956 0.944 0.880
−0.20 0.947 0.952 0.936 0.884
−0.25 0.936 0.944 0.928 0.888
−0.30 0.936 0.944 0.928 0.888
−1.00 0.912 0.900 0.896 0.888

ΔN MgO CaO SrO BaO
−1.00 0.672 0.676 0.684 0.640

The last row corresponds to f −,FD obtained with finite differences (Eq. (27.17)).
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of the Fukui function are almost constant within each series: MgO (0.947), CaO
(0.956–0.964), SrO (0.944–0.956), and BaO (0.880–0.876).

Despite values of the Fukui function from the model f −,FD follow the same trend
as those computed from the density of states, f −,FD values are always smaller than
those from f −,I(r) (see last row in Table 27.1). We attribute part of this to fact that
f −,I(r) misses a part of the relaxation term of the exact expression of the softness
(Eq. (27.13)). For both models, the oxygen in BaO has the smallest f −. For instance,
f −,FD in BaO is 0.64, compared with MgO, CaO, and SrO that oscillate around 0.676.
The slightly lower value of f − in BaO can be understood as a consequence of its larger
softness and the condensation scheme. As Ba is the softest metal in the series, the
frontier density is expected to be less localized around the oxygen atom. Hence, the
Voronoi polyhedrons may not be an accurate representation of the space belonging
to atoms. Summarizing, the method based on the density of states overestimates the
Fukui function when compared to the finite difference approach. Nevertheless, we
cannot say what method does better because f −,FD suffers from the fictitious electric
field induced by charged cells.

The most robust method to compute the Fukui function is the interpolation
method, f −,int, introduced in Eq. (27.18). This method includes relaxation because
it comes from self-consistent calculations with different number of electrons. It
also reduces the nonphysical electric field of charged cells because it takes the limit
when ΔN = 0. So, the error in f −,int comes form the delocalization error in the
exchange–correlation functional. Computed f −,int of the bulk is shown in Table 27.2.
Different interpolation schemes were used by choosing different charged states
(ΔN) from which the interpolation of 𝜕𝜌∕𝜕N is constructed (ΔN ranging between
−0.30 and 0.0e). These values of ΔN are small enough to fall within the linear
response of the electron density. To be sure of this, we check that the correlation
coefficient of the linear regression is at least R2 = 0.99 for every point of the grid
used to compute f −,int. We used the same grid used by VASP to integrate the density
in real space. Condensation scheme is the same that the one used for the previous
models. The results show that the values of condensed f −,int on the oxygen sites
are robust and do not exhibit significant deviations for a given composition: f −,int

is always 0.672 for MgO, and it oscillates between 0.680 and 0.692 for CaO and
SrO, and between 0.628 and 0.632 for BaO. No significant change is observed by
including the neutral density in the interpolation. Note that the values of f −,int

Table 27.2 f − condensed to O atoms obtained with the interpolation
method for the four bulk systems of the alkaline earth metal oxide series.

Interpolation scheme MgO CaO SrO BaO

ΔN = −0.15/−0.10/−0.05/0.00 0.672 0.680 0.688 0.628
ΔN = −0.30/−0.20/−0.10/0.00 0.672 0.688 0.684 0.628
ΔN = −0.15/−0.10/−0.05 0.672 0.688 0.688 0.628
ΔN = −0.30/−0.20/−0.10 0.672 0.692 0.684 0.632
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are closer to those obtained with finite differences than with the density of states
(Table 27.1). If we take f −,int as the reference values, all indicates that using the local
density of states tends to overestimate the Fukui function. This is consistent with
the observation that the model for f −,I weights equally the contribution of the Fermi
level and the states below it. That is, Eq. (27.16) overestimates the relaxation term.

27.3.1 Application to Surfaces

Now, we move to the description of reactivity of the most stable surfaces of same
oxide for which the bulk was analyzed. That surface corresponds to the (100). For
this, we have used slab models to represent the surfaces and a portion of the bulk. We
discuss two models of slabs commonly used in the literature (see Figure 27.2) [26,
44, 45]. One of them allows relaxation of atoms in both layers of the slab (symmetric
slab), which avoids the emergence of a finite dipole in the supercell. In the other one,
(asymmetric slab) only atoms on one side of the slab are relaxed. As we will see, the
local reactivity is affected by the selection of the model.

It is expected that surface sites are more reactive than bulk sites due to the low
coordination of the former that raises electronic levels. We analyze if such behavior
is captured by the Fukui function f − of oxygen atoms located at the surface and in
bulk positions. We have chosen to compare the interpolation method (Eq. (27.18))
with DOS one (Eq. (27.16)).

The f − of the oxygen atoms on the surface of the asymmetric slab is always larger
than of the atoms inner layers 2–4 independently of the method and the interpo-
lation scheme used (see Tables 27.3 and 27.4). Adding or not the neutral system
(ΔN = 0) in the interpolation has a marginal effect on f −,int. The Fukui function
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Frozen Frozen

Frozen Frozen

Frozen Frozen

Frozen Relaxed
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2
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Figure 27.2 Slab models of the alkaline earth oxides (100) surfaces. Layers are labeled
with numbers 1–6.
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Table 27.3 f − condensed to O atoms obtained with the interpolation method for the
asymmetric slabs.

Layer MgO CaO SrO BaO

ΔN = −0.3/−0.2/−0.1/0.0
1 0.792 0.928 1.024 0.896
2 0.304 0.216 0.184 0.200
3 0.28 0.288 0.368 0.184
4 0.288 0.176 0.136 0.128
5 0.368 0.200 0.096 0.064
6 0.672 0.920 1.120 1.032
ΔN = −0.3/−0.2/−0.1
1 0.808 0.896 0.976 0.864
2 0.304 0.216 0.224 0.240
3 0.272 0.184 0.192 0.216
4 0.288 0.176 0.160 0.144
5 0.368 0.200 0.104 0.064
6 0.680 0.880 1.072 0.976

Table 27.4 Comparison of f − obtained by integration of the DOS
(𝛿𝜇 = −0.20 eV) and the interpolation of 𝛿N − 0.30∕ − 0.20∕ − 0.10∕0.0 for
asymmetric and symmetric slabs of MgO and BaO.

Asymmetric Symmetric

Layer DOS Interpolation DOS Interpolation

MgO
1 0.808 0.808 0.904 0.824
2 0.552 0.304 0.520 0.288
3 0.568 0.272 0.448 0.248
4 0.632 0.288 0.448 0.256
5 0.672 0.368 0.52 0.360
6 0.536 0.680 0.928 0.720
BaO
1 1.288 0.896 1.464 0.904
2 0.096 0.2 0.208 0.184
3 0.064 0.184 0.136 0.16
4 0.024 0.128 0.136 0.16
5 0.016 0.064 0.2 0.176
6 2.136 1.032 1.456 0.904
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of the surface oxygen sites ranges from 0.672–0.792 for MgO to 1.12–1.024 for SrO
in the first interpolation scheme (considering the neutral system in the interpola-
tion leads to similar results). Meanwhile, the Fukui of the oxygen atoms in the inner
layers takes values from 0.064 for BaO to 0.368 for MgO and SrO. This is a clear
indication of exaltation of the reactivity of surface sites compared to inner positions.
Note that the condensed f − values are extensive in a calculations with PBCs, i.e. f −
always integrates to 1 independently of the number of atoms. This can be fixed by
multiplying every value of f − by the volume of the supercell. This, however, intro-
duces the difficulty that the volume of the supercell containing the slab will depend
on the vacuum left between images of the slab. For this reason, we multiply the orig-
inally normalized f − with the number of formula units in the supercell. Therefore,
condensed values of f − larger than 1 are possible.

It is interesting to note that structural relaxation of the surfaces leads to a variation
in the value of f − for all the oxides but for CaO, oxygen in layer 1 and in layer 6
seem to react in a different manner to the removal of electrons, which is reasonable
considering that the electronic states around the Fermi level are localized mostly
on the surfaces. There is not a clear trend within in the oxides, since in MgO the
O on relaxed surface layer 1 is grater than those in the unrelaxed layer 6 (0.792
relaxed vs. 0.672 unrelaxed, respectively). Those values are similar in CaO (0.928
vs. 0.920), larger for the unrelaxed O in SrO (1.024 relaxed vs. 1.120 unrelaxed) and
BaO (0.896 relaxed vs. 1.032 unrelaxed). What is clear from these data is that in
assessing the reactivity of surfaces, an accurate relaxation of them is of uttermost
importance. Small changes in geometry may not change the energy significantly,
but they change the position (relative to the Fermi Level) of surface states.

We also used the method based on the DOS to compute f −,I . Table 27.4 shows
the data obtained for MgO and BaO with asymmetric and symmetric slabs, with
selected values for 𝛿𝜇 and a given interpolation scheme. It can be observed that
the two approaches account for the increase in reactivity of the surface sites com-
pared to inner positions. Also, the symmetric slabs reflect the same value for layers
1 and 6 as expected from the relaxation, whereas the unrelaxed sites of layer 6 show
lower values than layer 1 in MgO and higher in BaO, following the trend discussed
above. However, the calculation of f −,I is found to be very sensitive to the value of
𝛿𝜇 used for the integration in Eq. (27.16). From extensive data not shown here, we
can conclude that in the case of the f −,I the values are less dependent on 𝛿𝜇 for sym-
metric slabs than for the asymmetric. It seems that small integration ranges lead
to large variations in condensed values that maybe due to numerical instabilities of
the integration. Values of 𝛿𝜇 of −0.20 and −0.30 lead to results close to those of the
interpolation approach with ΔN = −0.30∕ − 0.20∕ − 0.10∕0.0.

The Fukui function f − condensed to oxygen atoms appears to be a good descriptor
for the surface reactivity within a given material. The different approaches tested
give the same qualitative results: the surface O atoms are more reactive (the f − is
larger) than the inner layers atoms. The interpolation of Eq. (27.18) is a robust way
to obtain f − in non-charged systems and is found to be sensitive enough to capture
effects of relaxation of the surface. Attention must be paid to the parameters used
to obtain f −, i.e. the partial charges, ΔN, in the charged systems and the 𝛿𝜇 range
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to integrate the DOS, which should not be too small. Comparison between surfaces
and bulk, or between MgO–CaO–SrO–BaO is not straightforward, because the com-
puted f − always normalizes to one independently of the nature of the system and
the number of atoms in the simulation cell. Comparison of reactivity between sys-
tems of the same size could be achieved by using the local softness instead of the
Fukui function. As for the matter of extensivity of the condensed Fukui function,
we propose to standardize its values multiplying by the number of unit formulas in
the cell.

27.4 Conclusions

In this chapter, we have reviewed different methods to calculate the Fukui func-
tion of extended systems with and without a fundamental gap. The case of metallic
carbon nanotubes serve to illustrate the importance of correctly weighing the con-
tributions of internal states. In these gapped systems, using density-of-state-based
softness models seems to be the best alternative. In the case of systems with a gap
and with PBCs, we have shown that a strategy similar to that used in molecules is
possible. This consists of calculating slightly charged systems and interpolating the
density in function of the number of electrons for each point in space. A program
written in Python is available upon request.
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28.1 Introduction

Since the very early days of theoretical chemical research, people have been
enthusiastic in understanding how structure, be it geometrical or electronic, trans-
lates into the behavior of a chemical species, being either inherent property of the
species per se or its interaction strength with the other incoming species. Of partic-
ular interest is the latter problem concerning the interaction between two reactive
species, which also constitutes part of the grand challenge in modern pursuit of
conceptual understanding of the mysterious nature of chemical bonds [1–9].

Admittedly, it would be very complicated (and likely demanding) problem to accu-
rately examine the interaction process in detail, which typically relies on expensive
quantum chemical calculations (or machine learning techniques [10]), or through
sophisticated experimental setups. A vast swathe of studies have been conducted in
this direction, and a lot of insights have been obtained thereafter.

Yet, a different approach is to distill the most vital information from a single (or
very few) static calculation(s) of the stand-alone species involved in interaction,
or some simple experimental quantities (e.g. ionization potential). In the second
approach, we are most interested about the general trend of interaction strengths
and some derived simple physical quantity across different systems (even better if
the established reactivity model offers quantitatively correct predictions), with only
one constitute varying (e.g. A interacts with a series of B’s, where B’s are not very
different but share some common feature in geometrical/electronic structure).

As can be seen, the second approach emphasizes the conceptual aspect of chemical
interaction and offers insight into chemistry in spite of the fact that its application
is limited (cf. the first ab initio approach) and may only make qualitatively correct
predictions.

Early such practices comprise almost exclusively simple linear (or low-
dimensional) correlations, with the underlying physics largely unknown, and
one of the most notable of which being the so-called free energy relationships,
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e.g. Bell–Evans–Polanyi (BEP) principle [11, 13]. With the advent of quantum
theory, in particular density functional theory, relevant stories have been com-
pletely rewritten: most of the previous empirically proposed chemical concepts
such as electronegativity [14], hardness/softness [15–17], etc., could be rationalized.
This specific subject, dubbed “conceptual density functional theory” (CDFT for
short), pioneered by Parr and Yang [18], has been extensively developed ever since
and championed by many, including Geerlings et al. [19–21].

Within the first-principle view, the distillation can be viewed as an irreversible
process of abstracting essential information from the system wavefunction Ψ
(obtained through solving Schrodinger equation of stand-alone entities before
interaction). The distilled quantity is often termed “descriptor” and in principle
to obtain which it should not be too involved. Note that how the distillation is
carried out depends on the nature of the problem at hand, and hardly there exists
a universal descriptor that controls every behavior of a system interacting with
the other.

For molecules, profuse knowledge has been accumulated through decades of
theoretical research. For a comprehensive review, the reader is referred to Greeling’s
several review papers [20, 21]. When it comes to solid and solid surface, however,
well-established reactivity descriptors for molecule cease to work within their native
form. And often, extension of the same quantity to solid/surface is highly non-
trivial or not feasible at all primarily due to the significant difference between the
electronic structure of molecule and solid/surface. More specifically, solid/surface
possess much more complicated electronic structure compared to that of molecule,
i.e. continuous band structure for the former vs. discrete energy levels for the
latter. Another unfavorable consequence is the new emerging interaction patterns
between empty states of adsorbate and that of surface, further plagues the problem.
For a comprehensive review on these conceptual understanding, the reader is
referred to the pioneering work done by Hoffman [22, 23]. Therefore, discovery of
new working descriptors for surface is usually not a smooth process, and it is not
trivial to derive such descriptor purely from fundamental theories. Nevertheless,
a multitude of descriptors regarding solid surface have been proposed, including
early experimental discovery of the correlation between the catalytic reaction rate
and the work function for some solid surface by Vayenas et al. [24], and the more
concerned theoretical works, among which, notable ones consist of Yang and Parr’s
work of extending the concept of softness/hardness from molecule to metallic
surface [16], Wilke et al.’s local isoelectronic reactivity of solid surfaces [25], and
recently Calle-Vallejo et al.s’ generalized coordination number [26–28], Ma and
Xin’s orbital-wise coordination number for predicting adsorption properties of metal
nanocatalysts [29], etc.

Generally speaking, reactivity theory mainly deals with early stages of chemical
reaction. This is especially true for interactions involving two (or more) molecules,
as atoms would rearrange themselves to an extent, such that information about
the reactant would be lost at the final stage of reaction. Put it another way, reac-
tivity theory is likely to fail for such “complicated” interactions. In contrast, solid
surfaces or nanoparticles (NPs) are relatively open, and its interaction with simple
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molecular species (e.g. a free O atom or a small radical OH) would barely cause
any significant rearrangement of the constituting atoms. Therefore, the knowledge
obtained (through quantum chemical calculation or experiment) for reactants, e.g.
relative magnitude of some reactivity index, may be preserved for products and may
translate well into the trend of interaction strength among different systems. This
openness may be responsible for the success of a wide range of surface reactivity
indices, and we will come back to this point later.

Hereafter, unless otherwise stated, the systems we deal with throughout this text
are all metallic (i.e. no gap in band structure), as this type of system is most studied
and represents the most common catalyst in practice.

28.1.1 Fermi Softness

28.1.1.1 Basic Idea
As has already been widely acknowledged [23, 30], both occupied and unoccupied
states of solid surface are active when interacting with the adsorbate, though each
state (be it occupied or not) may interact differently with the highest occupied
molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) of
the adsorbate, and accordingly, each results in different contribution to the surface
bonding.

Here, we analyze in detail the energetic consequences for overall 15 types of orbital
interactions, being combinations of 3 different types of adsorbate electronic states
(half-occupied HOMO, fully occupied HOMO and empty LUMO) with five represen-
tative electronic states of surface band with varied position relative to Fermi level,
as depicted in Figure 28.1.

Let the active state of the adsorbate be half-occupied HOMO. Consider its
interaction with the half-filled Fermi level of the surface, there will be energy gain
upon bonding for both of the two involved electrons, as they both descend into a
lower-energy bonding state. By shifting the surface electronic state to a state slightly
below Fermi level, which is now doubly occupied, the outcome would be slightly
different due to the occurrence of a net “transfer” of one surface electron from
below Fermi level to Fermi level, causing a small magnitude of energy penalty (i.e.
raising of orbital energy of single-electron state). As the energy penalty is small, the
total single-electron energy (that is, the sum of red bars minus the sum of green
bars (if any) in Figure 28.1) decreases, i.e. the whole system is stabilized. As the
surface electronic state moves further away from Fermi level, its interaction with
the HOMO of the adsortate becomes weaker, resulting from the larger magnitude
of energy penalty, as indicated by the longer green bar in the third column of
Figure 28.1a. Similar weakening happens when we shift the surface electronic state
upward from Fermi level (which is now empty), as illustrated in the fourth column
of Figure 28.1a. The major differences (cf. column 2 and 3 in Figure 28.1a) are
twofold: (i) no energy penalty happens and (ii) the internal transfer of electrons of
surface persists, but with reversed direction, i.e. there is a net transfer of electron
from higher energy levels to lower ones within the surface band, further stabilizing
the system.
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Figure 28.1 Orbital interactions of surface band and three types of adsorbate orbital:
half-occupied HOMO (a), doubly occupied HOMO (b), and empty LUMO (c). The five columns,
respectively, correspond to five different states of surface band, being at Fermi level,
slightly below 𝜀F , well below 𝜀F , slightly above 𝜀F , and well above 𝜀F. Red bar: magnitude of
energy gain after orbital interaction; green bar: magnitude of energy penalty upon orbital
interaction; solid upward (downward) pointing arrow: electron with spin up (down)
occupying some electronic state; gray arrow: electron occupying some “intermediate”
electronic state that is about to fill the unoccupied state at the Fermi level of surface band.
Reprinted from ref. Huang et al. [31] with permission from Wiley.

When the HOMO of the adsorbate is fully occupied, similar statements could be
made as in the case of singly occupied HOMO. While notable differences would be
expected when the active orbital of the adsorbate is the empty LUMO. As displayed
in Figure 28.1c, all five types of interaction tend to stabilize the system, free of energy
penalty, differing primarily in the magnitude of energy gain. Of particular interest
are the last two types of interaction in Figure 28.1c, where the interaction is between
non-occupied state, yet there is still energy gain. This is unique to surface interaction,
as was proposed decades ago by Hoffman [22].

Based on the analysis above, we could draw one revealing conclusion: the closer
the state is to the Fermi level, the greater its contribution to bonding. Hence, to qual-
itatively correct describe the reactivity of a surface, one may propose a quantity as a
function of the density of states (g(𝜀)) and some weight function (w(𝜀)) peaking at
the Fermi level. The sum of the weighted contribution (∫ g(𝜀)w(𝜀)d𝜀) is conceived
to act as a reactivity descriptor of a surface.

Now the problem boils down to what form of weight function w(𝜀) should one
choose. Among the many options, herein, we assign w(𝜀) to the derivative of the
Fermi–Dirac distribution (dFDD for short, see Figure 28.2 for graphical illustration)
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Figure 28.2 Plot of (a) Fermi–Dirac distribution (FDD for short) function and (b) its
derivative (dFDD for short) at three representative electronic temperatures: 0.01, 0.4, and
1 eV. The dashed vertical lines indicate the Fermi level at different kTel values, to maintain
constant electron number.

function at a nonzero electronic temperature 𝜎 = kTel, i.e.

w(𝜀) = −f ′(𝜀) = −
df (𝜀)

d𝜀
=

exp
(
𝜀−𝜇
𝜎

)
[
exp

(
𝜀−𝜇
𝜎

)
+ 1

]2 (28.1)

where the Fermi–Dirac distribution (FDD) is written as f (𝜀) = f (𝜀 − 𝜇) =
1∕
(
1 + e(𝜀−𝜇)∕𝜎

)
and the negative sign before f ′(𝜀) ensures that the weight function

is positive everywhere. As displayed in Figure 28.2, dFDD peaks at EF as required
and diminishes to zero as the eigenvalue of single electron state moves away from
the Fermi level. The resulting weighted sum of the reactivity contribution is dubbed
Fermi softness (labeled as SF) and expressed as:

SF = ∫
∞

−∞
w(𝜀)g(𝜀)d𝜀 = −∫

∞

−∞
f ′(𝜀)g(𝜀)d𝜀 (28.2)

where the spreading of f ′(𝜀) can be changed by adjusting the parameter electronic
temperature 𝜎 = kTel.

Much the same as there exists a spatially resolved version of the density of state
(being a function of both energy and space), i.e. the local density of state g(𝜀, r), there
is also a local version of SF, the local Fermi softness sF(r), i.e.

sF(r) = ∫
∞

−∞
w(𝜀)g(𝜀, r)d𝜀 = −∫

∞

−∞
f ′(𝜀)g(𝜀, r)d𝜀 (28.3)

And similar to how we obtain the electron number N through integrating 𝜌(r)within
the whole space, the global softness SF and its local version sF(r) have the following
relationship:

SF = ∫
∞

−∞
sF(r)dr (28.4)
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It turns out that SF and sF(r) are not just some random quantities that happen to
serve well as reactivity indices (as will be shown shortly), rather, they naturally arise
from CDFT. It can be easily shown that at finite electronic temperature, the global
softness of the system S

𝜎
under fixed external potential (𝜈ext) has the following form:

S
𝜎
=
(
𝜕N
𝜕𝜇

)
𝜈ext

≈ ∫
∞

−∞
g(𝜀)

𝜕f (𝜀)
𝜕𝜇

d𝜀 = −∫
∞

−∞
f ′(𝜀)g(𝜀)d𝜀 (28.5)

where we have used the expression for total electron number (N) at finite kTel, i.e.
N = ∫ ∞

−∞ f (𝜀)g(𝜀)d𝜀. The local version of Fermi softness could be derived in a similar
fashion.

We note by passing that dFDD is normalized, regardless of the value kT takes, i.e.

−∫
∞

−∞
f ′(𝜀) = 1 (28.6)

This feature is coveted as it is the density of states that enters as the sole factor deter-
mining the reactivity of a surface.

Due to the existence of locality of electronic systems aforementioned, we have to
extract the contribution to SF from some surface atom (say atom with index I) only.
There exists several approaches to do this. One straightforward way is to partition
the space into atomic contributions (e.g. Bader scheme, Voronoi scheme, or simply
Wigner–Seitz scheme, etc.) and then integrate sF(r) within the subspace associated
with atom I, i.e.

S(I)F = ∫ΩI

sF(r)dr (28.7)

where ΩI is the space partitioned to atom I. Due to the fact that space partition-
ing could be time-consuming (especially true for Bader scheme for large systems),
an alternative sF(𝜀)-based approach may be adopted, in which we have to obtain
the density of states projected to surface atom I first and then employ the following
equation to calculate S(I)F (see Figure 28.3 for graphical illustration):

S(I)F = ∫
∞

−∞
g(I)(𝜀)f ′(𝜀)d𝜀 (28.8)

EF EF

SF g(E)w(E)dE g(E) w(E)
kT > 0

EF EF

Fermi
softness

Density
of states

Weight
function

Fermi–Dirac
distribution
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DerivativeMultiply

=

Figure 28.3 Graphical illustration of SF , defined as a weighted sum of the density of states
∫ g(𝜀)w(𝜀)d𝜀, where the weight function w(𝜀) is chosen as the derivative of the
Fermi–Dirac distribution function at nonzero electronic temperature. Reprinted from ref.
Huang et al. [31] with permission from Wiley.
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where s(I)F (𝜀) is the projected energy-resolved Fermi softness of surface atom I, and
g(I)(𝜀) is the total density of states projected to I, including all possible angular com-
ponents of atom I.

Before leaving this section, it is necessary to clarify the exact meaning of being
global or local. Here, global refers to a single scalar quantity, for instance, electron
number, or the global Fermi softness (SF). Note that SF may also refer to a specific
surface atom, i.e. S(I)F , and it is the default meaning of SF whenever we mention
SF hereafter, unless otherwise stated. When speaking of a local picture, we mean
there is a scalar value associated with every point in the three dimensional space,
for instance, charge density and the local Fermi softness sF(r).

28.1.1.2 Fermi Softness vs. d-Band Center
Perhaps one of the most successful descriptors to date for transition metal surface
is the so-called d-band center model developed by Hammer and Nørskov [30, 32],
which states that the reactivity of a transition metal surface could be approximately
characterized by the first moment (𝜀d) of the projected density of states to the local-
ized d-orbitals of surface atom (I), i.e. ∫ ∞

−∞(𝜀 − 𝜀F)gI
d(𝜀)d𝜀.

There are three major differences between d-band model and Fermi softness:
(i) Fermi softness offers both global and spatial picture of surface reactivity, while
d-band model offers only the global picture. (ii) Fermi softness describes the
response of the whole electron density with respect to change in chemical potential,
i.e. it includes the contribution from both s-, p-, and d-orbitals, while d-band model,
as its name implies, considers only projection to d-orbitals (the projection amplitude
does depend on projection amplitude to the other angular channels though). Note
that this does not suggest better performance of Fermi softness model (cf. d-band
model), as the contribution to interaction from sp-band is similar across different
transition metal surfaces. By subtracting this part of contribution, the relative
magnitude of Fermi softness across transition metal surfaces would not change.
That is, at least for transition metal surface, sp-band has minor effect on the relative
magnitude of Fermi softness. However, for other gapless systems, such as sp-block
metal surface or nonmetal surfaces, Fermi softness may stand out as a more
competitive descriptor due to its response nature. (iii) d-band model is theoretically
more rigorous than Fermi softness, as the former offers a direct link between
chemisorption strength and d-band center (though it is much approximated) based
on simplified quantum model. Fermi softness, like most CDFT-based descriptor, is
lack of such direct relationship and often assumed to describe only the early stages
of interaction.

In principle, both d-band model and Fermi softness are applicable to systems
sharing some similarity only, but for somewhat different reasons. More specifically,
for Fermi softness, the interaction types/trends in early stages are similar, so are
the interaction types/trends in late stages (which determine the final interaction
strength), and therefore the relative interaction strengths persist throughout. For
d-band model, similar coupling matrix element between adsorbate state and surface
d band would be desired [33].
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28.2 Applications

In this section, we demonstrate the usefulness of Fermi softness, including both its
global and local picture through a few representative applications. For more use
cases, the reader is referred to the original publication [31].

28.2.1 Correlation with Adsorption Energy

In Figure 28.4, we have already demonstrated that the global Fermi softness as a reac-
tivity index exhibits a nice correlation with oxygen adsorption energy for Pt-derived
metal surfaces. Here, we offer two more examples.

The first one is for Pd(111) and supported Pd monolayer on various transition
metal surfaces. The property investigated is still oxygen adsorption energy. Again,
an approximate monotonic trend is observed: as the global Fermi softness of surface
Pd atom increases, the surface reactivity is enhanced, resulting in stronger chemical
bond. As a comparison, correlation of oxygen adsorption energy and d-band
center for the same set of systems, is also plotted, as displayed in Figure 28.5b.
The latter correlation to 𝜀d is more scattered and notably worse than the former
correlation with SF. The same statement could be made for Pt and other transition
metal-derived systems. This seems to suggest that the global Fermi softness is a very
robust surface reactivity descriptor.

To further support our finding, more numerical results are necessary. As such,
we consider further the adsorption of a saturated molecule carbon monoxide (CO)
on a series of Pd, Pt, and Au NPs, with results for Pt NPs shown in Figure 28.6.
The overall correlation of ΔECO

ads with SF is very good and resembles much the
correlation with d-band center. Similar correlations could be found for other NPs
(not shown here).
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Figure 28.4 Comparison of correlations between oxygen adsorption energy (ΔEO) on
Pt-related surfaces and SF of surface Pt atom at two electronic temperatures: 0 eV ((a), no
spreading in dFDD) and 0.4 eV (b). How well ΔEO is correlated with SF is measured by the
Spearman’s r and larger absolute value indicates better correlation. Reprinted from ref.
Huang et al. [31] with permission from Wiley.
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Figure 28.5 (a) Correlation between the global Fermi softness (SF) and the surface
reactivity as indicated by the oxygen adsorption strength on Pd-derived surfaces (see the
supplementary material of Ref. [31] for details). (b) Correlation between the d-band center
and the surface reactivity for the same systems as in (a). Reprinted from ref. Huang
et al. [31] with permission from Wiley.
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Figure 28.6 Demonstration of the correlation between the Fermi softness (SF) and the
reactivity of various top sites (tpf, tpc, and tpl, as shown in the inset) on Pt nanoparticles as
represented by the CO adsorption strength (b). For comparison, correlation with the d-band
center is also presented (a). tpl79: top site on Pt atom in Pt nanoparticle made up of 79 Pt
atoms.
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28.2.2 Active Sites of MoS2

The local picture of Fermi softness is particularly valuable when dealing with
heterogeneous surface structure, which represents a wider range of catalysts in
real-world applications. Here, we demonstrate its power through only one example:
a one-dimensional (1D) MoS2 edge, which is responsible for the high catalytic
activity toward hydrogen evolution reaction [34–36].

The structure of 1D MoS2 is displayed in Figure 28.7a and exhibits much richer
local atomic environments than previously studied transition metal-derived sur-
faces. More specifically, it covers three types of sulfur atoms, including S#1, S#2,
and S#3, as well as two types of Mo atoms, i.e. Mo#1 and Mo#2. Among all the S
sites, the dimer consisting of two S#1 atoms (along y direction, see Figure 28.7a)
stands out as the most prominent local environments, i.e. around which the
reactivity distribution of sF(r) exhibits a magnitude significantly larger than that of
any of the rest S environments, which is totally consistent with the experimental
finding [35, 36]. The sharp peak around Fermi level in the projected density of
states (DOS) plot in Figure 28.7b also support the observation. More intriguing is
the tilted p-orbital-like distribution of sF(r) around S#1, which reveals the subtle
information that the reactivity of the S#1 dimer edge is spatially anisotropic: the
reactivity field over the aforementioned S dimer is stronger than between the two
S#1 atoms lying along x direction. In particular, the distance between the two cen-
ters of the crown of sF(r) of two S#1 atoms in the S dimer matches the interatomic
distance of two H atoms in H2 and is therefore ideal for catalyzing the formation
reaction of H2 from two adsorbed H atoms. To verify such a hypothesis, we have
calculated the reaction profile of H–H bond formation reaction 2Had →H2 at
two kinds of bridge sites: br-x (intra-dimer site) or br-y (inter-dimer site, see the
inset of Figure 28.7e) on the S#1 dimer edge. The computational results clearly
show that the barrier at the br-x site is significantly lower compared to that at
the br-y site, regardless of the direction of the reaction. This is in full agreement
with the anisotropic nature suggested by sF(r), an insight previously unknown
and could not be unraveled by any other reactivity descriptors, to the best of our
knowledge.

28.3 Conclusion and Outlook

To recap, we have reviewed the detailed theory of Fermi softness, and some repre-
sentative applications. Numerical evidences suggest that Fermi softness could serve
as a very useful reactivity descriptor for solid surface due to its robustness as well
as low computational cost. While the d-band model is limited to transition metal
surfaces and NPs, the potential applicability of Fermi softness is largely unlimited,
thanks to its response nature, as well as its deep connection to the CDFT. Currently,
only a small amount of applications have been reported, and its power to tackle more
complicated systems and ultimately help with catalysts design still awaits to be fully
unleashed in the future.
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29.1 Introduction

Potential energy surface (PES) is the potential energy of a molecular system by using
atomic or nuclear coordinates as variables [1]. It is a necessary and basic quantity for
the study of both molecular static properties and dynamic behaviors. In the frame-
work of Born–Oppenheimer approximation; however, accurate calculation and con-
struction of a PES through solving the Schrödinger equation of the electronic motion
by a suitable quantum chemical method for a large molecule is not accessible. There-
fore, theoretical chemists intelligently construct an empirical form of PES for a large
molecular system, the molecular potential energy function called the force field that
is based on plenty of both experimental data and theoretical results. This kind of
attempt has begun since the 1930s [2]. Here, we will not trace the history of the devel-
opment of the force field in detail, and only want to focus on the content related to
the title.

With the fast pace of development of computer techniques, molecular modeling
and simulations on the computer have become more and more powerful and popu-
lar tools for scientists. In this respect, for treating large complex molecular systems,
a force field or molecular mechanics (MM) plays a fundamental role, even as it is
combined with quantum mechanics (QM). The core of a force field is the potential
energy function of molecular systems at the atomistic level. In fact, it is an effec-
tive expression of the PES for large molecular systems in molecular modeling or
molecular dynamics (MDs) simulations.

29.2 Classical Force Fields with the Fixed Atomic Partial
Charges

The classical force fields were proposed and used as early as 1930s [2], and the gen-
eral force fields, such as MMx (x = 2–4) [3–5], CHARMM [6], OPLS [7–10], AMBER
[11, 12], etc. arose during 1970s. The details of describing various force fields can be

Conceptual Density Functional Theory: Towards a New Chemical Reactivity Theory, First Edition.
Edited by Shubin Liu.
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found in many literatures and excellent textbooks. The main difference between the
old and new generation of force fields is that the latter treat the polarization effect
explicitly and/or make the partial atomic charges fluctuating in the geometry opti-
mization and dynamic simulation rather than using the fixed atomic charges. There
has been a steady interest since the 1970s in the development and use of polariz-
able force fields (PFFs) with early work focusing on liquid water and ions in water.
Nevertheless, it is generally accepted, the development of a new generation of the
molecular force field is a fundamental, challenging, and difficult work [13].

29.2.1 The Potential Energy Function in a Force Field

The general form of the potential energy function in a force field for both old and
new generations is usually written as a sum of empirical terms, each describing the
energy required for distorting a molecule in a specific fashion:

ET = Eb + Eθ + E
𝜙
+ Eimptors + EvdW + Eelec (29.1)

Here, Eb is the energy function for stretching a bond between two atoms, Eθ repre-
sents the energy required for bending an angle, Eφ is the torsional energy for rotation
around a bond, Eimptors is the improper dihedral angle term, Evdw describes the van
der Waals (vdW) or nonbonded atom–atom interaction, and Eelec is the electrostatic
interaction energy. Usually, the first two terms are simply expressed in accordance
with harmonic (or Morse) function forms as Eqs. (29.2) and (29.3):

Eb(r) =
∑

bonds
kr(r − req)2 (29.2)

Eθ(𝜃) =
∑

angles
kθ(𝜃 − 𝜃eq)2 (29.3)

where kr and kθ represent the force constants of the stretching and bending; r and
𝜃 are the actual values of bond length and bond angle. The subscripts of req and 𝜃eq
are used to denote the equilibrium values of the bond length and bond angle.

The torsional term takes the form as Eq. (29.4) and the improper dihedral angle
term is written as Eq. (29.5):

Eϕ(𝜙) =
∑

torsions

{v1

2
[1 + cos(𝜙)] +

v2

2
[1 − cos(2𝜙)] +

v3

2
[1 + cos(3𝜙)]

}
(29.4)

Eimptors =
∑

imptors
𝜈[1 − cos(2𝜙)] (29.5)

where𝜙 is the dihedral angle, and v1, v2, v3, and 𝜈 are the dihedral angle and improper
dihedral angle force constants, respectively.

The vdW atom–atom interaction term, Evdw, usually takes the Lennard–Jones 12-6
form (in some force fields it may take other sophisticated forms):

EvdW =
∑
i<j

4fij𝜀ij

(
𝜎

12
ij ∕r12

ij − 𝜎
6
ij∕r6

ij

)
(29.6)

Usually, the geometric combining rules for the Lennard–Jones coefficients are
employed: 𝜎ij = (𝜎ii𝜎jj)1/2 and 𝜀ij = (𝜀ii𝜀jj)1/2. The summation runs over all of the pairs
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of atoms i< j on molecules A and B for intermolecular interactions or A and A for
the intramolecular interactions. Moreover, in the latter case, the coefficient f ij = 0.0
for any i–j pair connected by a valence bond (1–2 pairs) or a valence bond angle (1–3
pairs), f ij = 0.5 for 1–4 interactions (atoms separated by exactly three bonds) and
f ij = 1.0 for all of the other cases.

The term electrostatic interaction energy Eelec is usually expressed as following
effective Coulombic form:

Eelec =
∑
i<j

qiqj∕rij (29.7)

where i and j stand for the partial charge sites; qi and qj are the partial charges of
sites i and j; rij is the separation of sites i and j.

Each term in the energy function (29.1) may take a different form from the one
given in Eqs. (29.2)–(29.7) and may also add the crossing terms, depending on the
designer’s consideration.

The classical force fields keep all the partial charges fixed during the process of
molecular modeling or dynamic simulations.

However, as well known, for more accurate description, there are polarization
effects between atoms and molecules that should not be neglected.

29.2.2 Charge Distribution and Polarization

From a more microscopic view, a molecule consists of nuclei and electrons. An
arrangement of the nuclei or atoms in a molecule leads to electron density (or
intuitively, electron cloud) re-distribution around the nuclear framework and
vice versa. However, the electron density is still very difficult to be intuitively
represented and particularly to be visualized except very simple cases, as well as
to be applied to large molecular systems for calculating the electrostatic energy of
both intramolecular and intermolecular interactions. Instead, very simply, chemists
like to partition a molecule into individual atomic regions, each containing a
nucleus and related electron cloud around it, and hence say atomic partial charges
(condensed atomic charges, including both a nuclear charge and electron cloud
charge around). This is not only an intuitive picture but also a meaningful model
for discussing many molecular properties. Most importantly, this model simplifies
the treating and greatly decreases the calculations involved in MD simulations for
large molecular systems.

Theoretically, atomic charges of a molecule can be calculated by various
approaches, such as quantum chemical methods through a number of the electron
population analyses, such as famous Mulliken’s [14], Lowdin’s [15], NBO’s (natural
bond orbital) [16], and Hirshfeld’s [17]. Experimentally, although electron density
may, in principle, be determined by X-ray diffraction for a crystal, its practical
application is very limited. But some experimental data, such as dipole moments of
various molecules, may provide valuable information about partial atomic charges
for small molecules.
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Certainly, a proper and consistent assignment or calculation of the partial atomic
charges is essential for the development of a force field, particularly a PFF. How-
ever, just as Cramer pointed out [18]: “There is no universally agreed upon ‘best’
procedure for obtaining partial atomic charge. This failure to agree is, in some sense,
inevitable, because partial atomic charges are used in different ways within the con-
text of different quantitative and qualitative models in chemistry. Therefore, there is
no reason to expect a single procedure for determining such charge to be optimal for
all purposes.”

Now we talk about polarization a little bit. In chemistry, polarization usually
describes both spatial distortion and electron density change of the electron cloud
due to intramolecular or intermolecular interaction or an external electric field.
The intramolecular polarization implies the distortion of the electron cloud of a
fragment or an atom relative to that of an isolated one or a reference one. In fact, the
electron cloud or electron distribution around an atom or nucleus in a molecule,
particularly in the bonding region, is always different from the electron cloud of
an isolated one. The polarization process can be intuitively represented by the
change of the molecular face (MF, Chapter 19), the frontier electron density on the
molecular intrinsic characteristic counter.

Mainly, in the PFFs, there are two sorts of models to represent the polarization
effect. In the first model, the polarization is described by assumed induced dipole
moment (multipole) or Drude model located on each atomic site or a partial elec-
tron being connected to each atomic site while all atomic charges being fixed during
geometry change or simulation process. In contrast, in the second model, the par-
tial charge of every site changes or fluctuates during the simulation process whence
the polarization effect is naturally included during the simulation process. In the
following sections, we will give brief descriptions of the two models, respectively.

29.3 Polarizable Force Fields

MDs simulations have become a very active research field due to interpretive and
predictive significance on structures and properties of various systems [19–22]. For
increasing the accuracy and reliability of MD simulations, a lot of efforts have been
made to develop the new generation of force fields, the PFFs that can treat polariza-
tion effect explicitly in a real environment that varies during the simulation process.
In this respect, OPLS [7–10], CHARMM [22–26], NEMO [27–29], QMPFF [30–32],
AMBER [33–38], AMOEBA [39–42], etc. force fields have made a lot of progresses.
In many PFFs, such as in the AMOEBA force field [42], the potential energy func-
tion is expressed by containing some orders of induced multipoles, such as dipole
moments, quadrupole moments, and even higher order of multipoles at atomic sites
besides the partial atomic charges. In the new era, it is noticed that Xie and Gao have
designed and developed a new generation force field, called the X-POL potential,
which is based on a quantum mechanical model to avoid deficiencies in the usual
force fields [43]. Mackerell and his coworkers have developed CHARMM Drude PFF
[44–49], applied to nucleic acid bases and accurate calculation of the hydration free
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energies [45, 49], and also to peptides and proteins, ethers, sulfur-containing com-
pounds, and alkanes [44, 46–48]. This model has been used by the Robinson group
to investigate cholesterol and sphingomyelin [50], and by the Best group for multi-
scale simulations of the condensed phase [51]. van Gunsteren group is developing
PFFs by using Drude-type approaches for MDs simulation of liquid hydrocarbons
[52]. There are also inducible point dipole models, such as in the AMBER FF02 PFF.
Duan et al. have developed it for simulations of proteins and peptides [36]; Mancera
group presented it for calculations of the free energy of interaction of the c-Fos–c-Jun
coiled-coil [53]; Sagui et al. presented it for MDs simulations of DNA [54].

At the same period of time, a few fluctuating charge models for PFFs have also
been proposed and applied by some groups, such as Rick et al. [55–57], Patel and
Brooks [58, 59], van der Graaf and coworkers [60, 61], Rappé and Goddard [62, 63],
Chelli and Procacci [64, 65], Stern and Berne [66, 67], Oberhofer and coworkers
[68], and Yang and his coworkers [69–90]. The fluctuating charge model for calcu-
lating the charge distribution is based on the electronegativity equalization method
(EEM) [91, 92], the charge equilibration (QEq) [93], chemical potential equalization
principle (CPE) [94, 95], atom-condensed Kohn–Sham density functional theory
(DFT) approximated to second-order (ACKS2) [96] or the atom–bond electroneg-
ativity equalization method (ABEEM) [97–100]. The advantage of this method is its
clear significance of the partial region charges and fast computation by solving a set
of linear equations without any iteration procedures.

Evaluation of electrostatic interaction in a force field is an important and chal-
lenging task. A proper and consistent assignment or calculation of the charge dis-
tribution and polarization effect is an essential step in the representation of a force
field.

29.3.1 Induced Dipole Moment (Multipole) Model and Drude Model

In the induced dipole (multipoles) model used in the PFFs, taking an N-
methylacetamide (NMA) molecule as an example as shown in Figure 29.1, it
is assumed that there exists a permanent partial atomic charge for an atom and
then an induced atomic dipole (and multipoles) at each atomic region is produced
due to the electric field given by the other permanent atomic charges. These sets
of the induced atomic dipoles can be evaluated by the atomic polarizabilities. In
the induced dipole PFF; therefore, the potential energy function is augmented by
an inductive term from the induced dipoles. The contribution of the electrostatic
interaction comes from both permanent charges and induced dipole moments,
obtained from the atomic polarizabilities through an iterative procedure [101].
Karlström and coworkers [29] have demonstrated the importance of the quadrupole
moment. Higher-order multipoles were included in AMOEBA PFF [102].

In the Drude model, to describe the polarization of a molecule, it is proposed that
every atom other than hydrogen is attached a negative charge qatt at some position
bound to the nucleus by a harmonic force constant where the involved parameters
are determined by an iterative optimization.
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Figure 29.1 The atomic
regions and the induced
atomic dipoles of
N-methylacetamide (NMA)
molecule and water molecule.

29.3.2 Electronegativity Equalization Method for Calculating
the Charge Distribution

In a PFF, the main characteristic is the expression of its electrostatic interaction.
Here, we describe the methods that give rise to calculate the partial site charges in
terms of the EEM.

29.3.2.1 EEM Method
Conventional EEM methods partition a molecular system into individual atomic
regions, each having one partial atomic charge. The atomic charges are calculated
by the EEM whose basis is conceptual DFT [103, 104]. In the usual EEM scheme, by
using the atomic partial charges and three characteristic parameters per atom, the
molecular energy is represented as:

E =
∑

a

(
E∗a + 𝜒∗a qa + 𝜂∗a q2

a
)
+
∑
a<b

kab
qaqb

Rab
(29.8)

where E∗a is the energy of atom a at its neutral valence state, qa is the atomic partial
charge at a region (atom and/or specified one), 𝜒∗a and 𝜂∗a are the valence-state elec-
tronegativity and valence-state hardness of region a, Rab is the separation between
regions a and b, and the summation for both a and b is overall sites. In DFT, the effec-
tive electronegativity 𝜒a of a site a is equal to the partial derivative of the electrostatic
energy with respect to the partial charge qa of site a. kab is a correction factor of the
Coulombic interaction energy between the partial charges qa and qb, which stems
from the reality that qa and qb involve the electron clouds rather than the ideal point
charges.

Based on DFT, the effective electronegativity 𝜒a of every site a is expressed as the
partial derivative of the electrostatic energy with respect to the partial charge qa
of site a. According to the EEM, at the equilibrium state, the effective electroneg-
ativities of all sites are equal to the global molecular electronegativity 𝜒mol for
every molecule, which constitutes the electronegativity equalization equation, i.e.
𝜒a = 𝜒b = · · · = 𝜒mol. It can be shown that the number of the equations of EEM
is equal to the number of the sites of molecules. These equations, together with
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Figure 29.2 The sketch of all regions
in N-methylacetamide (NMA) molecule
defined in ABEEM method, which
contains the regions or sites of the
atoms, bonds, and lone pairs.
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the charge constraint and given parameters (valence-state electronegativity 𝜒∗a and
valence-state hardness 𝜂∗a of region a), can be explicitly and quickly solved to give
the global molecular electronegativity 𝜒mol and the partial charge qa on each site a.

There are several fine implementations of EEM to allow rapid calculations of the
partial charge distribution in molecules [91–95]. Particularly, the ACKS2 method
[96] has given a systematic derivation and extension of the EEM of Mortier et al.
[91, 92], demonstrating the limitation of the EEM and related methods in terms of
the atom-condensed Kohn-Sham DFT ACKS2.

29.3.2.2 Atom–Bond Electronegativity Equalization Method (ABEEM)
In Figure 29.2, as an example, we draw the charts of all regions in NMA molecule
in the ABEEM method. In addition to atomic sites, some new virtual sites including
lone pair, and σ and π bond sites are placed according to the physical meaning. The
C atom of carbonyl connects two single bonds and one double bond. The geometry
around this C atom is trigonally planar. The geometry around the O atom is also trig-
onally planar too because the O atom of carbonyl connects one double bond and two
lone pairs. The oxygen atom involves six partial charges, namely, one centered on the
oxygen nucleus, one σ region, two π separate upper and lower regions, and two lone
pairs. σ bond partial charge shared by oxygen and carbon atoms is on the bond at the
point that partitions the bond length according to the ratio of covalent radii between
O and C atoms; the π bond partial charges are placed above and below the O atom
at the covalent radius (0.74 Å) of O atom perpendicular to the plane formed by the
σ bonds and may have different values depending on the environment; the two lone
pair partial charges are placed in the covalent radius of the oxygen atom (0.74 Å).
A pair of electrons of the N atom can be used to make a delocalized π bond with car-
bonyl. There are also similar π bond partial charges for the nitrogen atom and carbon
atom of carbonyl in NMA. So the nitrogen atom involves six partial charges, includ-
ing one atom, threeσ, and two π regions. As a whole, besides 12 atomic sites, an NMA
molecule has additional 19 sites: 11 σ bond sites, 6 π bond sites, and 2 lone pair sites.
Therefore, partial charges of these sites may fairly reflect the charge distribution,
including anisotropic polarization around an atom.

The potential energy function of ABEEM PFF takes the same form as usual force
fields as expressed by Eq. (29.1), but the electrostatic interaction energy term Eelec is
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particularly expressed as:

Eelec =
∑
i<j

kijqiqj∕rij (29.9)

In Eq. (29.9), i and j stand for the sites, qi and qj are the partial charges of sites i and
j (including lone pair, σ and π bond sites), rij is the separation of sites i and j; kij = 0,
when the shortest linking path relationship between sites i and j is smaller than
1,6; kij = kH-bond, when i and j are in the hydrogen bond interaction regions (HBIR);
kij = 0.57 for all the other cases as used [75, 76, 79, 84, 86]. The partial charges qi and
qj are calculated in terms of the ABEEM method. The parameter kij may overcome
the limitation of EEM to some extent, and here simply taking as a constant of 0.57.

The fine ABEEM [97–100] total energy of a system can be expressed as:

E[q] = E∗ +
∑

i

[
𝜒
∗
i qi + 𝜂∗i qi

2] + k
∑
i<j

qiqj

Rij
(29.10)

In a fluctuating charge PFF, the valence state electronegativity and hardness are
important parameters, which are the first and second order expansion coefficients
of the potential energy function with respect to the partial charges of the regions.
According to conceptual DFT theory, the valence-state electronegativities 𝜒∗i and
valence-state hardnesses 𝜂∗i for region i in a molecule are defined by the first partial
derivative of the E[q] with respect to the partial charge qi of region i: 𝜒∗i =

(
𝜕E
𝜕qi

)
qj,Rij

,

2𝜂∗i =
(
𝜕

2E
𝜕q2

i

)
qj ,Rij

, where E is the molecular potential energy function as expressed by

Eq. (29.10), qi and qj are the partial charges of regions i and j, and Rij is the distance
between regions i and j. Working out the partial derivatives, we obtain the following
expression of the effective electronegativity 𝜒 i of a region i:

𝜒i = 𝜒∗i + 2𝜂∗i qi + k
∑
j(≠i)

qj

Rij
(29.11)

According to the electronegativity equalization principle, all the effective elec-
tronegativity 𝜒 i are equal to a global molecular electronegativity 𝜒mol:

𝜒1 = 𝜒2 = · · · = 𝜒M = 𝜒mol (29.12)

Equations (29.12) and (29.13) represent linear associated equations with respect
to the partial charges qi as variables. In addition, there is a constraint of the total
charge which means that the system may have an apparent charge qmol:∑

i
qi = qmol (29.13)

By solving these linear associated equations, the partial charges qi of all the regions
can be obtained as long as the valence state electronegativity 𝜒∗i , valence state hard-
ness 𝜂∗i , and parameter k are known. Different molecules may accordingly take dif-
ferent concrete forms.

It is noted that these equations are geometry-dependent. When the geometry or
conformation of the system considered has a change, the region partial charges or
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charge distributions have changes correspondingly. In this way, the ABEEM fluc-
tuating charge method is adopted to be a PFF. Particularly, its multi-partial charge
regions around an atom can well reflect the polarization effect and charge transfer
as the geometry and/or the environment vary.

29.3.3 Calibration of the Parameters

Calibration of parameters for any force field is a highly cumbersome task with a huge
amount of tests, calculations, and analyses. This is a systematic and long-term work;
even the framework of a force field has been established.

It is well known that parameters for the hard degrees of freedom (bond stretching
and angle bending) can be transferred from one FF to another with little modifica-
tion. For example, for some bonds and angles in the amide system, the same force
constants, equilibrium bond lengths, and bond angles are used in both OPLS-AA [7]
and AMBER [11] FFs. Therefore, we refer and take the parameters of bond stretching
and angle bending for protein from OPLS-AA FF and for DNA from AMBER FF with
minor modification. The torsional terms are often regarded as “soft” degrees of free-
dom, in which most of the variations in structure and relative energy are due to the
complex interplay between the torsional and nonbonded contributions. In ABEEM
PFF, the torsional and improper torsional parameters of OPLS-AA or AMBER are
taken as a reference, refitting them through the least square optimization proce-
dure to make the conformation energies and the key dihedral angles RMSD of the
model molecules be in good agreement with those calculated by high-level ab ini-
tio method. In addition, the Lennard–Jones parameters are determined by fitting ab
initio conformational energies, dimer binding energies, dipole moments, and so on,
using regression and least-squares method.

For the parameter calibration of ABEEM fluctuating charge force field for usual
chemical (mainly organic) and biological molecules, we have chosen more than 3000
model molecules that involve a large number of organic and biological species. A
great amount of effort has been devoted to optimize the ABEEM parameters to make
them consistent, transferable, and applicable to reproduce and/or predict structural,
energetic, and dynamic properties of various species with proper accuracy.

29.4 Molecular Dynamic Simulations

29.4.1 Water Clusters and Water Solution

As shown in Figure 29.3, the ABEEM model, i.e. ABEEM-7P or TIP7P model for
a water molecule, in addition to three usual atomic sites, four new virtual sites are
placed, including two lone pairs and two OH σ bond sites. This model means that a
water molecule contains seven electron cloud regions in three atoms, two σ bonds
whose angle is 104.5∘, and two lone pairs whose angle is 109.47∘. As seen, there
are four electron pairs around the oxygen atom, which are spread to point roughly
toward the vertexes of a tetrahedron. Every atomic charge is placed in the position
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Figure 29.3 A sketch map of the ABEEM-7P water
molecule sites, including one oxygen atomic
region, two hydrogen atomic regions, two O—H σ
bond regions, and two lone pair regions.

of the corresponding atom. The σ bond charge is assumed to locate on the point
that partitions the bond length according to the ratio of covalent atomic radii of two
bonded atoms, and the lone pair sites are placed on the points, which are 0.74 Å
far from the oxygen nucleus with an intervening angle of 109.47∘ between two lone
pairs on the oxygen atom in the ABEEM model.

In the practical treatment of our ABEEM-7P model, it is a nonrigid body and fluc-
tuating charge model, which is a transferable, intermolecular, seven-point approach
(ABEEM-7P), in which the bond and angle are allowed to vibrate and the partial
charges on charged sites are treated to respond to changes in their environments.
The partial charges of regions are obtained by using the ABEEM. The bond stretch-
ing is represented by the Morse function. When extending the ABEEM method to a
system containing many molecules, such as a water system, special attention must
be given to the description of the intermolecular PES. In the water system, many
of the special properties are due to the ability of water molecules to form hydro-
gen bonds with other water molecules; thus, a correct description of the hydrogen
bond is essential. Yang et al. [70] have introduced a “HBIR,” in which the interaction
between the lone-pair electron of the O atom of one water molecule and the H atom
of the other is dependent on their distance until the hydrogen bond is formed, and
they have used a new fitted function that is introduced to better account for hydrogen
bonding between water molecules.

Small water clusters (H2O)n (n = 1–6) are chosen for the first application of
ABEEM-7P model [70]. The ABEEM-7P model is an improved alternative one that
differs from the previous TIP4P-FQ, POL5, and other models for the water system
in two aspects. The Morse potential function is selected for bond stretching in
the ABEEM-7P model because it can characterize a wide range of behavior from
the equilibrium geometry to dissociation, and for vdW interaction the ABEEM-7P
model takes oxygen–oxygen, hydrogen–hydrogen, oxygen–hydrogen interaction
into account to calculate the 12-6 Lennard-Jones interaction energy.

Furthermore, the ABEEM-7P model has been used to study larger water clus-
ters (H2O)n(n = 7–34) and water liquid [105], the obtained geometries, combina-
tion energies, and successive combination energies, and dipole moments are in fair
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agreement with the results from experimental measurements or high-level ab ini-
tio calculations (such as MP2 method), which demonstrates that ABEEM-7P model
works much better than those with fixed charge models [106–111], such as TIP3P,
SPC, TIP4P, and TIP5P.

This ABEEM-7P model is also employed to study ion–water, water–amide acids,
water–peptides, water–proteins, and water–bases systems.

29.4.2 Chemical and Biological Systems as Well as in Their Aqueous
Solution

Many chemical and biological molecular systems, including in aqueous solution,
have been investigated in terms of the ABEEM PFF. The water model is the
ABEEM-7P flexible water model as given above.

The interaction between various molecules, water and biological molecules, such
as peptides and proteins, bases and DNA, ion and biomolecules, has been described
by means of the ABEEM model. The ABEEM potential functions for these systems
have been constructed, sometimes combined with QM, and MDs simulations have
been performed.

Just to give one example, the structures of a protein, Crambin, from the protein
data bank were used as the initial geometries of MD simulations. The MD simula-
tions were performed using the modified TINKER program in the NVT ensemble
with Berendsen thermostats, the velocity Verlet integrator, and the time step of 1 fs.
The systems were initially heated over 5 ps to 285 K. The cutoff radius for nonbond-
ing interactions was 10.0 Å with the minimum image convention if the periodic
boundary condition was used. For all simulations, 0.5 ns of MD run for equilibra-
tion was performed, followed by 9.5 ns of simulations for the calculation of various
properties. We recomputed the partial charges of all sites using the ABEEM method
in every 0.1 ps. The obtained structure of Crambin is quite close to that in the crystal.

The exhaustive conformations of Ala, Gly, and Val dipeptides and tripeptides have
been investigated at B3LYP/6-311++G(d,p) theory of level at the gaseous phase.
Total 17 stable structures of these dipeptides and 83 stable structures of tripeptides
are obtained by optimizing at the same level. Force fields containing OPLS/AA,
AMBER99sb, CHARMM27, AMOEBA, and ABEEM are employed in reproducing
all minima. By scanning 𝜑 and 𝜓 , which are dihedral angles at the backbone
of amino acids, the PESs are investigated by both the B3LYP/6-311++G(d,p) and
ABEEM. ABEEM method locates all minima with the least mean absolute deviation
values. The distributions of energy regions by ABEEM agree well with that from
B3LYP/6-311++G(d,p). ABEEMσπ depicts two energy barrier regions at 𝜑 = 0∘ and
150∘ throughout𝜓 (−180∘∼180∘). Because of the feature, which is that the charge in
each region fluctuates simultaneously with the changing geometry and surround-
ings, ABEEM describes the charge distributions as credible and reasonable and
further obtains reliable region distributions. MDs simulations for four dipeptides in
explicit water are performed to examine the conformational properties in aqueous
with the same parameters. The preference of ABEEM in locating minima of short
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peptides consists of the ab initio method. The energy barrier benefits the simulation
of amino acid conformations and the location of stable structures.

Hydrogen-bonding and stacking interactions play a unique role in the structure
and replication of DNA. When adenine in DNA is oxidized, it increases the num-
ber of hydrogen bond donor and acceptor sites and may lead to various mutations.
8-oxo-A is the most common oxidative product of adenine. Taking high-level ab
initio calculations as benchmarks, we developed the ABEEM PFF and investigated
the charges, structures, energies, and mutations of base pairs containing canonical
bases and 8-oxo-A [86]. During this process, we do a great deal of ab initio, ABEEM,
and other force field calculations for investigation, testing, and calibration. Compar-
ing the results of ab initio with those of ABEEM, the linear correlation coefficients
of the charges, dipole moments, and interaction energies are 0.99, 0.96, and 0.96,
respectively; and the ABEEM force field provides reliable information on hydro-
gen bonding, stacking interactions, and mutation processes. In the DNA double
helix, the mutations of AT→GC, AT→TA, or AT→CG would happen. Meanwhile,
the active centers of nucleophilic or electrophilic reaction transfer during AT→GC,
AT→TA, and AT→CG mutations. The results also indicate that the performance
of the ABEEM PFF is generally better than that of the common force fields, and its
accuracy can compare with that of the MP2 method.

We have performed many studies on the chemical and biological systems and
achieved fruitful results, demonstrating ABEEM PFF is also a promising one.
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30.1 Introduction

Traditional fixed-charge molecular mechanics force fields play a key role in compu-
tational chemistry because they are the most computationally affordable model with
atomistic resolution [1–4]. When atomistic coarse-graining fails, the straightforward
approach is to revert to solving the electronic Schrödinger equation. However, in
doing so, the dimensionality of the problem increases by an order of magnitude
or more, and more expensive quantum-mechanical equations must be solved. This
motivates the construction of models that are intermediate between fixed-charge
classical molecular mechanics force fields and ab initio molecular dynamics. In that
liminal space reside polarizable force fields [5–10] and (generalized) electronega-
tivity equalization methods (EEMs) [11–22]. EEMs relax the requirement of fixed
charges, allowing for charge transfer within, and between, molecules in response to
their environment while nonetheless retaining an essentially classical description of
the system. They are arguably the most straightforward, and rigorous, approach to
coarse-graining the electronic Schrödinger equation to provide a classical potential
energy surface for the atomic nuclei.

Density functional theory (DFT) plays a key role in the development of EEM
[23–29]. The key quantities in EEM are atoms’ charges (and possibly multipoles)
that are determined by the balance between their electronic population and their
nuclear charge. Atomic electronic population is defined by their (atomic) electron
densities. Therefore, insofar as atomic charges/multipoles are coarse-grained
models for molecular electronic densities, EEM energy models are course-grained
DFT. Traditionally, such models were conceived using orbital-free DFT, but such
models had inherent shortcomings related to the absence of a derivative disconti-
nuity [30–34]. This motivated the development of a Kohn–Sham-based EEM, the
atom-condensed Kohn–Sham (ACKS) model, where it is, for practical reasons,
typically truncated at second order (ACKS2). The motivation for, and formulation
of, the ACKS2 model is the topic of this chapter [15, 19, 35–38].

Conceptual Density Functional Theory: Towards a New Chemical Reactivity Theory, First Edition.
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In Section 30.2, we motivate the use of EEM methods in general and ACKS2 in
particular, followed by the pedagogical presentation of the ACKS2 framework. We
conclude by listing some challenging systems that ACKS2, and other emerging force
field methods, should be tested against.

30.2 Motivation: Where Do Current Approaches Fail

Before delving into the formulation of EEM in general, and ACKS2 in particular, it
seems appropriate to mention the inherent difficulties faced by atomistic force fields
in general [4, 35, 39] and traditional EEM in particular [35]. Of these difficulties, only
the last (degenerate electronic ground states) is inherently beyond the scope of the
ACKS approach.

30.2.1 Challenge: Molecular Polarizability and Hyperpolarizability

A traditional fixed-charge force field can model the vibrational contribution to
the polarizability but cannot capture the electronic component of polarizability.
To mimic the true (vibrational + electronic) polarizability with a fixed-charge
force field, the values of the atomic charges and various electrostatic screening
parameters must be adjusted to have “effective values,” but these adjustments
are not very reliable, since the precise balance between electronic and vibrational
polarization is highly system specific. Some atomic charges are typically amplified
to mimic induction effects. For example, one might increase atomic charges on an
electronegativity atom and a hydrogen atom to mimic the inductive polarization
of a hydrogen bond, but these increased atomic charges will lead to unrealistic
interactions when the associated moiety is not participating in a hydrogen bond.

The simplest strategy to treat polarization is to allow atomic dipoles (or even multi-
poles) to be induced on the atoms. This captures a component of the electronic polar-
ization. However, if one partitions the electron density of a molecule in an external
electric field, typically about half the polarization is associated with charge transfer
between atoms. This is most notable in chemical bonds, where electrons tend flow
in opposition to the electric field, so that the atom with higher field (lower potential)
tends to decrease in charge. To mimic this effect, classical fixed-charge polarizable
force fields tend to have exaggerated atomic dipole polarizabilities, which compro-
mise their ability to treat other types of interactions [10, 40, 41]. Attempting to model
the polarizability tensor in molecules with highly directional polarization is espe-
cially challenging; treating long-range charge separation in chain-like molecules or
metal clusters is inherently beyond the scope of local polarization models.

Traditional EEM models allow charge transfer between atoms but, as we
shall discuss later, they typically exaggerate the polarizability [42]. Emerging
machine-learned (ML) force fields have great potential, as they can (implicitly
or explicitly) learn atomic charges. However, the models the author is aware of
presume a level of locality that is inappropriate for externally imposed fields or for
cases where the electric field on an atom is induced by charged atoms that are very
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far away. It is also expected at ML-based force fields will, for larger molecules, suffer
from some of the same overpolarization effects as traditional EEM models, as their
(often implicit) underlying models for atomic energies/charges are smooth.

Modelling hyperpolarizabilities is even more difficult. In fact, accurately comput-
ing the hyperpolarizability is challenging even for many ab initio methods, because
hyperpolarizability is exquisitely sensitive to the quality of the electron correlation
model [43–46]. Likewise, phenomena that are superficially measurements of atoms’
structure and motion but are sensitive to vibronic coupling (e.g. various types of
Raman spectroscopy) are, and likely to remain, extremely challenging for all atom-
istic force field models [47].

30.2.2 Challenge: Charge and Spin States

Traditional molecular mechanics force fields determine the force on the atomic
nuclei based only on the nuclear positions and therefore have no knowledge of
molecular charge and spin states. Molecules must be parameterized separately for
each charge/spin state of interest. This is not particularly problematic except for
molecular processes (charge transfer, spin transfer) and reactions where electron
transfer or spin-crossover occurs. As long as one presumes that the reaction occurs
on the ground-state potential energy surface, reactive force fields, whether based
on electronegativity equalization or models or machine learning, can (implicitly)
address these changes. In practice, however, it is challenging to accurately model
spin crossover from a singlet to a triplet carbene, or from a high-spin to a low-spin
transition metal complex, with standard (single-reference) quantum chemistry
methods, and it is expected that this will also be very challenging for atomistic
force fields. It is even harder to describe systems where changes in charge/spin
state are associated with wholesale rearrangements in molecular electronic
structure [48–54].

30.2.3 Challenge: Molecular Dissociation and Long-Range
Electron Transfer

Traditional classical force fields do not describe bond fracture and formation at
all, but reactive force fields (and even some correlated electronic structure theory
approaches [55–58]) also struggle because, in the absence of symmetry, isolated
molecular fragments always have integer charge and spin. As a pernicious example,
a force field must dissociate KCl into neutral atoms, but NK4Cl to ions [59]. This
is extremely challenging. Traditional EEM tends to dissociate molecules into
fractionally charged species [15, 35, 37, 38, 60–65] because they do not address the
inherent nonlocality of the electronic chemical potential [66]. Machine-learned
(ML) force fields are typically incapable of including the effects of extremely distant
reagents and thus cannot distinguish between two Cl centers, one of which is
far away from K and the other of which is far away for NK4 [67–69]. The ACKS
approach is capable of addressing this issue because it explicitly accounts for both
the nonlocality of the electronic chemical potential (like all EEM) and the derivative
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discontinuity (like Kohn–Sham DFT). Nonetheless, as currently formulated, ACKS2
only supports changes up to ±1 electron.

30.2.4 Challenge: (Near) Degeneracy

In atomistic force fields, atoms’ charges and multipoles are used to mimic the molec-
ular electrostatic potential. However, the electron density, and consequently the elec-
trostatic potential, is not uniquely defined for a degenerate ground state [70–72]. The
response of the system to an external field is therefore nondifferentiable. A particular
pernicious, yet important, example is nitric oxide, NO, where any fixed-charge force
field will give errors of more than 10 kJ mol−1 for the differential interaction energy
for positive and negatively charged ions [71]. For molecules with nearly degener-
ate ground states, the problem is mitigated in amplitude but not effect: very differ-
ent parameterizations for the charges/multipoles and polarization parameters are
needed, depending on the nature of the intermolecular interaction that is being con-
sidered [73]. As a practical example, consider the way a 1,3-dipolar compound can
shift between zwitterionic and diradicaloid electronic structures depending on its
molecular environment [74–77].

Fixed-charge and polarizable force fields are intrinsically incapable of describing
such phenomena, as are straightforward EEM models. One can choose the parame-
ters in a force field to provide a reliable lower bound on the interaction energy, but
this bound is usually very loose [70]. ML models seem more promising here, but
because the atomic properties change discontinuously with respect to the atomic
environment, traditional ML force fields are unlikely to work well here also [68].
In addition, acquiring adequate training data is difficult since systems with (near)
degeneracy are inherently multireference, and the reliability of standard protocols
for constructing ab initio training data is doubtful. While ACKS2 is an inherently per-
turbative approach and is therefore incapable of describing (nearly) degenerate elec-
tronic ground states, the ACKS framework is exact in principle and could possibly be
used develop a practical approach for molecules with degenerate electronic states.

30.3 The Atom-Condensed Kohn–Sham Framework

30.3.1 Explicit Demonstration That Atomistic Force Fields Can Be
Derived from DFT

In traditional DFT, the electron density is determined by the variational principle
[78, 79]

𝜌(r) = arg min
𝜌(r)≥0

∫ 𝜌(r)dr=N

Ev[𝜌] + Vnn[v] (30.1)

where Vnn[v] denotes the self-repulsion of the external potential (normally just the
nuclear–nuclear repulsion energy) [80],

Vnn[v] =
1

32𝜋2 ∫ ∫r≠r′

∇2
rv(r)∇2

r′v(r
′)|r − r′| drdr′ (30.2)
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and Ev[𝜌] is the density functional for the electronic energy, which can be decom-
posed as [81]

Ev[𝜌] = Ts[𝜌] + Exc[𝜌] + J[𝜌] + Vne[𝜌, v] (30.3)

The expressions for the classical Coulomb repulsion between the density and
the interaction of the electrons with the external potential (normally just the
electron-nuclear attraction energy) are

J[𝜌] = ∫ ∫
𝜌(r)𝜌(r′)|r − r′| drdr′ (30.4)

and

Vne[𝜌, v] = ∫ 𝜌(r)v(r)dr (30.5)

respectively. Note that Vnn, J, and Vne are all electrostatic in nature. These terms,
then, are especially amenable to an atomistic force field treatment, as they can be
approximated by the interaction energy between the atomic charges/multipoles:

Uq = J[𝜌] + Vne[𝜌] + Vnn[v] (30.6)

≈
Natoms∑
A=1

Natoms∑
1≤B<A

qAqB||RA − RB
|| +

(
qAdB − qBdA

)
⋅
(
RA − RB

)
||RA − RB

||3 + · · ·

The Kohn–Sham kinetic energy, Ts, and the exchange–correlation energy, Exc,
do not have simple equations in terms of atomic charges and multipoles. However,
their expressions can be formulated using constrained DFT [82–84]. Specifically, the
Hohenberg–Kohn functional

F[𝜌] = Ts[𝜌] + Exc[𝜌] + J[𝜌] (30.7)

can be defined through the Levy constrained search [85, 86]

F[𝜌] = min
Ψ→𝜌

⟨
Ψ|T̂ + V̂ ee|Ψ⟩ (30.8)

Relaxing the constraint where the density is specified, and forcing only the atomic
charges/multipoles to be specified, gives the Hohenberg–Kohn function of the
atomic charges/multipoles:

F
({

m𝓁,m
A

})
= min
Ψ→

{
m𝓁,m

A

} ⟨Ψ|T̂ + V̂ ee|Ψ⟩ (30.9)

This, or an equivalent formulation in terms of the Legendre transform [35, 87–89],
establishes that it is theoretically possible to define an atom-condensed force field,
even for a near-degenerate or excited state [90–95], directly from quantum mechan-
ics [96, 97]. To actually construct such a force field, however, we need to explicitly
specify what we mean by an atom in a molecule (AIM) and how this changes during
chemical processes [98–106].
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30.3.2 Atoms in a Molecule (AIM)

The electron density of molecules and materials can be condensed into atomic
contributions by choosing a set of atomic weights, {wA(r)}. These weights must be
nonnegative, and every point in space should be fully assigned to one (or more)
atoms. The atomic weights are therefore a partition of unity [98, 99, 102]:

0 ≤ wA(r) (30.10)

1 =
Natoms∑
A=1

wA(r) (30.11)

The atomic electron densities are then defined as

𝜌A(r) = wA(r)𝜌total(r) (30.12)

For simplicity, the notation and nomenclature in this paper assumes that the
coarse graining is performed at the atomic level. However, larger moieties (e.g.
functional groups) can be treated without significant changes to the subsequent
analysis. The atomic charge density is then

qA(r) = ZA𝛿(r − RA) − 𝜌A(r) (30.13)

and the atomic charges, dipoles, and higher-order multipoles can be computed
directly therefrom. For example, the Cartesian multipoles are determined by
integration:

mkx ,ky ,kz
A = ∫ (x − XA)kx (y − YA)ky (z − ZA)kz𝜌A(r)dr (30.14)

The ACKS2 method is agnostic about the choice of partitioning. However, some
partitioning methods perform much better than others. For example, it is desirable if
the atomic densities are compact (with little long-range structure), nearly spherical
(so that the multipole expansion of the charge density converges quickly), and insen-
sitive to molecular conformation [102, 106, 107]. It is often convenient if the atomic
weights do not change when the atomic charges/multipoles change [26, 108–110].
This suggests the use of a Hirshfeld partitioning [110–112]:

wA(r) =
𝜌
(0)
A (r)∑Natoms

B=1 𝜌
(0)
B (r)

(30.15)

where 𝜌(0)A (r) is the density of a reference pro-atom, which need not be neutral [113].

30.3.3 Energy Difference from Changes in Molecular Density

To model the potential energy surface with DFT, one needs to understand how a
system’s energy changes when its electron density changes. The electrostatic energy
(Eq. (30.6)) is already easily expressed in terms of the nuclear positions and elec-
tron density, so the challenge is to expression how the kinetic exchange–correlation
energy

Etxc[𝜌] = Ts[𝜌] + Exc[𝜌] (30.16)
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changes with respect to electron-density changes. Such changes can be modeled
with the functional Taylor series [114, 115]

Etxc

[
𝜌
(0)
total + Δ𝜌total

]
− Etxc

[
𝜌
(0)
total

]
= ∫

[
𝛿Etxc

𝛿𝜌(r)

]
𝜌
(0)
total

Δ𝜌total(r)dr

+ 1
2 ∫ ∫

[
𝛿

2Etxc

𝛿𝜌(r)𝛿𝜌(r′)

]
𝜌
(0)
total

Δ𝜌total(r)Δ𝜌total(r′)drdr′ + · · · (30.17)

We have assumed the functional derivatives exist: that is not true in general, but it
is true if Etxc is modeled using traditional orbital-free density functional approxima-
tions [87, 88, 116, 117].

30.3.4 The Electronegativity Equalization Method (EEM): Energy
Difference from Changes in Atomic Densities

To decompose Eq. (30.17) as atomic contributions, we introduce a basis set for the
density changes. Since we would like to have atomic contributions, and since we
would like to be able to easily compose atomic contributions into multipoles, we
choose a basis that is a product of atom-centered radial functions and spherical har-
monic functions:

𝜎
n,𝓁,m
A (r) = 𝜍n

A
(||r − RA

||) × ||r − RA
||𝓁Y m

𝓁 (𝜃, 𝜙) (30.18)

While any (complete) basis can work [96, 118], one can argue that the most intuitive
choice is to choose the spherically averaged atomic Fukui function, dual descriptor,
and hyperdual descriptors for the radial functions [119–132]:

𝜍
n
A(r) =

⟨
f (n)A (r)

⟩
spherical average

(30.19)

These descriptors describe how the atomic density changes when electrons are
added/removed therefrom.

The change in molecular density can then be decomposed into atomic contribu-
tions:

Δ𝜌total(r) =
Natoms∑
A=1

nmax∑
n=1

𝓁max∑
𝓁=0

m=𝓁∑
m=−𝓁

cn,𝓁,m
A 𝜎

n,𝓁,m
A (r) (30.20)

The change in energy can then be written as a Taylor series in the coefficients{
cn,𝓁,m

A

}
, i.e. Eq. (30.17) can be rewritten as

ΔEtxc

({
cn,𝓁,m

A

})
=

∑
A,n,𝓁,m

[
𝜕Etxc

𝜕cn,𝓁,m
A

]
cn,𝓁,m

A =0

cn,𝓁,m
A

+ 1
2

∑
A,n,𝓁,m

∑
A′ ,n′ ,𝓁′ ,m′

[
𝜕

2Etxc

𝜕cn,𝓁,m
A 𝜕cn′ ,𝓁′ ,m′

A′

]
cn,𝓁,m

A =0

cn,𝓁,m
A cn′ ,𝓁′ ,m′

A′ + · · ·

(30.21)
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In the context of conceptual DFT [108, 115, 133–137], the coefficients in Eq. (30.21)
are referred to as (atom-condensed) chemical potentials [138]

𝜇
n,𝓁,m
A =

[
𝜕Etxc

𝜕cn,𝓁,m
A

]
cn,𝓁,m

A =0

(30.22)

and the (atom-condensed) hardness kernel (or matrix) [139]

𝜂
n,𝓁,m,n′ ,𝓁′ ,m′

A,A′ =

[
𝜕

2Etxc

𝜕cn,𝓁,m
A 𝜕cn′ ,𝓁′ ,m′

A′

]
cn,𝓁,m

A =cn′ ,𝓁′ ,m′
A′

=0

(30.23)

The EEM results when the sum of the electrostatic (cf. Eq. (30.6)) and kinetic
exchange–correlation (cf. Eq. (30.21)) energies is minimized with respect to the
unknown atomic density change coefficients,

{
cn,𝓁,m

A

}
, subject to the constraint

that the total number of electrons is preserved. If, for concreteness, we assume that
a radial basis of (hyper)Fukui functions is used, then because the Fukui function
is normalized to one, and the (hyper)dual descriptors are normalized to zero, the
normalization constraint is that [129, 130, 140]

0 =
Natoms∑
A=1

nmax∑
n=1

cn,0,0
A (30.24)

The EEM method then amounts to the minimization

ΔEEEM = min{
cn,𝓁,m

A
|||0=∑A,ncn,0,0

A

}ΔEtxc

({
cn,𝓁,m

A

})
+ Uq

({
cn,𝓁,m

A

})
(30.25)

The electrostatic energy expression is a quadratic functional of the density; if the
Taylor series for ΔEtxc is also truncated at second order, then the unknown atomic
density change expansion coefficients,

{
cn,𝓁,m

A

}
, can be determined by a system of

linear equations.

30.3.5 Ab Initio Parameterization of EEM

To parameterize EEM directly from ab initio data, one needs to construct an elec-
trostatic model, and one needs to determine the derivatives in Eq. (30.21) from a
density functional approximation. The electrostatic model is often approximated in
terms of atomic charges and multipoles, which is quite easy if the basis in Eq. (30.18)
is used. However, charge penetration effects can be modeled by explicitly evaluating
the interatomic Coulomb attractions and repulsions:

V n,𝓁,m
A = ∫ 𝜎

n,𝓁,m
A (r)v(r)dr (30.26)

Jn,𝓁,m;n′ ,𝓁′ ,m′

A,A′ = ∫ ∫
𝜎

n,𝓁,m
A (r)𝜎n′ ,𝓁′ ,m′

A′ (r′)|r − r′| drdr′ (30.27)

where, for economy of notation, the reference atomic density is assigned as the
zeroth-order radial basis function

𝜎
0,0,0
A (r) = 𝜌(0)A (r) (30.28)
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The method for expanding functional derivatives in a basis is quite standard and
can be easily adapted to the unknown partial derivatives in Eq. (30.21). Specifi-
cally, the atom-condensed chemical potentials, 𝜇n,𝓁,m

A , can be parameterized using
the chain rule for functional derivatives:

𝜇
n,𝓁,m
A =

[
𝜕Etxc

𝜕cn,𝓁,m
A

]
cn,𝓁,m

A =0

= ∫
[
𝛿Etxc

𝛿𝜌(r)

]
𝜌
(0)
total

[
𝜕𝜌(r)
𝜕cn,𝓁,m

A

]
cn,𝓁,m

A =0

dr

= ∫
[
𝛿Etxc

𝛿𝜌(r)

]
𝜌
(0)
total

𝜎
n,𝓁,m
A (r)dr (30.29)

The strategy for parameterizing the atom-condensed hardness kernel is similar: one
uses the chain rule to derive the equation

𝜂
n,𝓁,m,n′ ,𝓁′ ,m′

A,A′ = ∫ ∫
[

𝛿
2Etxc

𝛿𝜌(r)𝛿𝜌(r′)

]
𝜌
(0)
total

𝜎
n,𝓁,m
A (r)𝜎n′,𝓁′ ,m′

A′ (r′)drdr′ (30.30)

Note that the same expressions for 𝜇n,𝓁,m
A and 𝜂n,𝓁,m,n′ ,𝓁′ ,m′

A,A′ are obtained by direct sub-
stitution of Eq. (30.18) into Eq. (30.21).

30.3.6 Kohn–Sham DFT: Fixing the Failures of Orbital-Free DFT
and Traditional EEM

It is clear from Section 30.3.5 that EEM is merely a (re)parameterization of
orbital-free DFT, and, as such, it is subject to the same caveats [141–144]. For
example, traditional orbital-free density functional approximations suffer from
extremely large delocalization errors because they do not have any derivative
discontinuity. However, without a derivative discontinuity, it is always favorable to
donate electrons from the fragment with higher chemical potential to the fragment
with lower chemical potential, no matter how far the fragments are apart [66].

In Kohn–Sham DFT, the derivative discontinuity in the energy is regained by
explicitly using a wavefunction — namely, the wavefunction of the Kohn–Sham
reference system of noninteracting electrons — in the functional [145, 146]. In most
(but not all) cases, Kohn–Sham DFT gives appropriate dissociation products [58].
The remaining failures of Kohn–Sham DFT, which mostly result from the tendency
of electrons to delocalize to minimize the unphysical self-interaction error, are
acceptable, at least insofar as an atomistic force field that could retain the accuracy
of an underlying local and semilocal (gradient-corrected) exchange–correlation
density functional would be acceptable.

30.3.7 Atom-Condensed Kohn–Sham DFT (ACKS-DFT)

In an atomistic force field, there is no concept of orbital, so direct construction of the
Kohn–Sham energy expression is infeasible. Thus, instead of the atom-condensed
constrained-search functional

Ts

({
cn,𝓁,m

A

})
= min
Ψ→

{
cn,𝓁,m

A

} ⟨Ψ|T̂|Ψ⟩ (30.31)
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we use the Legendre transform technique [87]. The Legendre transform expression
for the Kohn–Sham density functional is

Ts[𝜌] = sup
w

Es[w;N] − ∫ 𝜌(r)w(r)dr (30.32)

where Es[w;N] is the energy of a system of N noninteracting fermions bound by the
effective potential w(r).

Inspired by the strategy for deriving an atom-condensed version of orbital-free
DFT, we obtain an atom-condensed version of Ts[𝜌] by using a Taylor series approx-
imation to Es[w;N]:

Es[w;N] = Es[w(0);N] + ∫
[
𝛿Es

𝛿w(r)

]
w(0)(r),N

Δws(r)dr

+ 1
2 ∫ ∫

[
𝛿

2Es

𝛿w(r)𝛿w(r′)

]
w(0)(r),N

Δws(r)Δws(r′)drdr′ (30.33)

Let us assume that we know the exact Kohn–Sham effective potential, w(0)(r), for
a reference molecular density, 𝜌(0)total(r). For this reference system, we have

Ts

[
𝜌
(0)
total

]
= Es

[
w(0);N

]
− ∫ 𝜌

(0)
total(r)w

(0)(r)dr (30.34)

The key functional derivatives are [147–151][
𝛿Es

𝛿w(r)

]
w(0)(r),N

= 𝜌(0)total(r) (30.35)

and [
𝛿

2Es

𝛿w(r)𝛿w(r′)

]
w(0)(r),N

= 𝜒 (0)s (r, r′) (30.36)

𝜒
(0)
s (r, r′) is the Kohn–Sham linear response function, which is a standard quan-

tity available in time-dependent DFT and conceptual DFT software [130, 152]. The
Taylor series expansion, truncated at second order, is

Ts

[
𝜌
(0)
total + Δ𝜌total

]
− Ts

[
𝜌
(0)
total

]
= sup

Δw

[
1
2 ∫ ∫ 𝜒

(0)
s (r, r′)Δw(r)Δw(r′)drdr′

−∫ Δ𝜌total(r)
(

w(0)(r) + Δw(r)
)

dr
]

(30.37)

To use this expression, we need to decompose both the density and the potential
as a sum of atomic contributions. We (re)introduce the basis set for the density

𝜌total(r) = 𝜌
(0)
total(r) +

Natoms∑
A=1

nmax∑
n=1

𝓁max∑
𝓁=0

m=𝓁∑
m=−𝓁

cn,𝓁,m
A 𝜎

n,𝓁,m
A (r) (30.38)

and define a basis set for the potential

w(r) = w(0)(r) +
Natoms∑
A=1

nmax∑
n=1

𝓁max∑
𝓁=0

m=𝓁∑
m=−𝓁

wn,𝓁,m
A vn,𝓁,m

A (r) (30.39)

Constructing a good basis set for a potential can be rather tricky; one strategy is
to choose the potential basis functions,

{
vn,𝓁,m

A (r)
}

, to be identical to the density



30.4 Recapitulation 613

basis functions. A somewhat more rigorous approach is to define the potential basis
functions as dual to the density basis functions. For example, if a Coulomb kernel
were used, then [153–158]

vn,𝓁,m
A (r) = ∫

𝜎
n,𝓁,m
A (r′)|r − r′| dr′ (30.40)

Note that the number of density and potential basis functions need not be identical,
though it is traditional to keep the sets balanced.

The change in kinetic energy is then

ΔTs

[{
cn,𝓁,m

A

}]
=

∑
A,n,𝓁,m

𝜇
n,𝓁,m
s;A cn,𝓁,m

A + max{
wn,𝓁,m

A

} ∑
A,A′ ,n,n′ ,𝓁,𝓁′ ,m,m′

×
(1

2
wn,𝓁,m

A wn′ ,𝓁′ ,m′

A′ 𝜒
n,n′ ,𝓁,𝓁′ ,m,m′

s;A,A′ − cn,𝓁,m
A wn′ ,𝓁′ ,m′

A′ Sn,n′ ,𝓁,𝓁′ ,m,m′

A,A′

)
(30.41)

where the supremum has been replaced by a maximum and the following terms
have been defined:

𝜇
n,𝓁,m
s;A = −∫ 𝜎

n,𝓁,m
A (r)w(0)(r)dr (30.42)

𝜒
n,n′ ,𝓁,𝓁′ ,m,m′

s;A,A′ = ∫ ∫ vn,𝓁,m
A (r)𝜒 (0)s (r, r′)vn′ ,𝓁′ ,m′

A′ (r′)drdr′

Sn,n′ ,𝓁,𝓁′ ,m,m′

A,A′ = ∫ 𝜎
n,𝓁,m
A (r)vn′ ,𝓁′ ,m′

A′ (r)dr (30.43)

The final expression for the EEM is obtained by substituting Eq. (30.41) into
Eq. (30.25), obtaining a quadratic objective function to optimize and, therefore, a
linear system of equations to solve. These final equations will be summarized in
Section 30.4.

30.4 Recapitulation

The atom-condensed Kohn–Sham (second-order) (ACKS2) strategy for discretizing
the Kohn–Sham equations relies on only three approximations:

● An approximate exchange–correlation functional without a derivative discontinuity
is used. This means that the ACKS model will fail where semilocal density func-
tional approximations fail. To remedy this assumption, one would need to either:
– Develop a practical Legendre transform strategy for generalized Kohn–Sham

methods. Then, one could use any modern density functional approximation,
including hybrid functionals, range-separated hybrid functionals, double-hybrid
functionals, and various random phase approximation approaches to parame-
terize the model.

– Use the Legendre transform for the Hohenberg–Kohn functional. The result-
ing method would appear similar to this one, but one would need to evaluate
interacting linear response functional.
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● An limited basis of atom-centered density/potential functions is used. In prac-
tice, this assumption can be relaxed by increasing the basis. However, as the
basis increases, the cost of the method increases, and the transferability of the
parameters decreases.

● The Taylor series expansions of the exchange–correlation energy functional and the
Kohn–Sham noninteracting energy functional are truncated at second order. This
assumption is helpful because it leads to a linear system of equations to solve
for the unknown parameters. However, the resulting equations need not always
have a solution. Computing the higher-order Kohn–Sham responses is expensive,
so the cost of parameterization also increases. The other case where the Taylor
series approximation fails is when the Kohn–Sham system has a (nearly) degen-
erate ground state. The mathematical treatment necessary to resolve such cases is
known [70], but the Taylor series coefficients would then depend on the perturba-
tion, which is an unpleasant (and computationally demanding) complication.

After these three assumptions are made, one needs to evaluate the following
quantities:

Nk = ∫ 𝜎k(r)dr (30.44)

Vk = ∫ 𝜎k(r)v(r)dr (30.45)

Jkl = ∫ ∫
𝜎k(r)𝜎l(r′)|r − r′| drdr′ (30.46)

𝜇k = ∫ 𝜎k(r)
(

v(0)xc (r) − w(0)(r)
)

dr (30.47)

𝜒s;kl = ∫ ∫ vk(r)𝜒
(0)
s (r, r′)vl(r′)drdr′ (30.48)

Exc;kl = ∫ ∫ 𝜎k(r)f
(0)
xc (r, r′)𝜎l(r′)drdr′ (30.49)

Skl = ∫ 𝜎k(r)vl(r)dr (30.50)

where 𝜎k(r) and vl(r) denote the (atomic) density and potential basis sets, respec-
tively. (Specific useful choices for these basis sets are recommended in Eqs. (30.18)
and (30.40).) v(r) denotes the external potential, which specifies the molecular
geometry. The reference system about which the Taylor series is expanded has elec-
tron density 𝜌(0)total(r), exchange–correlation potential v(0)xc (r), exchange–correlation
kernel f (0)xc (r, r′), Kohn–Sham potential w(0)(r), and noninteracting (Kohn–Sham)
linear response 𝜒 (0)s (r, r′). Note that J + V + Vnn is just the classical electrostatic
energy associated with the external potential v(r) and the electron density

𝜌total(r) = 𝜌
(0)
total(r) +

∑
k

ck𝜎k(r) (30.51)

This leads to an energy functional that must be minimized with respect to the coef-
ficients of the atomic density basis set and maximized with respect to the coefficients
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of the atomic potential basis set [35, 96]:

ΔEEEM = min{
ck|0=∑

k
ckNk

}max
{wk}

ΔExc
({

ck
})
+ Uq

({
ck
})
+ ΔTs

({
ck
}
,

{
wk

})
(30.52)

Depending on the potential basis set, it may also be necessary to constrain the
{

wk
}

,
so shifts of the potential by a constant (i.e. arbitrary changes in the zero of energy)
are not allowed; this is not necessary, however, if all the potential basis functions
decay to zero asymptotically. The objective function can be re-expressed using the
precomputed integrals defined above:

ΔExc
({

ck
})
+Uq

({
ck
})
+ ΔTs

({
ck
}
,

{
wk

})
=Vnn[v] +

∑
k

ck
(
𝜇k + Vk

)
+ 1

2
∑
k,l

ckcl
(

Jkl + Exc;kl
)

−
∑
k,l

ckwlSkl +
1
2
∑
k,l

wkwl𝜒s;kl (30.53)

where Vnn[v] denotes the nuclear–nuclear repulsion energy contribution to
the electrostatic energy Uq. There would always a unique energy if the exact
exchange–correlation were used (because the exact density functional is noncon-
cave, while the exact potential functional is nonconvex) [87, 159, 160]. However,
while the (approximate) Kohn–Sham response is still concave, the approximate
density functional may not be convex. A unique solution, which equals the varia-
tional solution when the density functional is convex, can be found by solving the
linear system of equations:

𝜇k + Vk = −
∑

l
Jklcl −

∑
n

Sknwn + 𝜇mol

0 =
∑

l
Slmcl −

∑
n
𝜒s;mnwn

0 =
∑

l
Nlcl (30.54)

where k and l are the density basis functions, m and n are the potential basis func-
tions, and 𝜇mol is the electronic chemical potential of the molecule, which appears
as the Lagrange multiplier for the normalization constraint on the total density.

30.5 Challenges

30.5.1 Parameterization of the ACKS2 Model

The ACKS approach and its quadratic approximation (ACKS2) can resolve many
of the difficulties that thwarted previous electronegativity equalization approaches
and provide a strong basis for further work [35]. Arguably the greatest strength of
the ACKS2 model is that it can be directly parameterized from ab initio calculations
[96]. This, however, is also its greatest weakness. The traditional charge/multipole
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and bond terms in ACKS2 are readily transferable and do not change much between
conformers, or even when sufficiently large fragments/monomers combine to form
large structures. The ACKS polarizability is not so transferable: it is conformationally
dependent. In addition, the atom-condensed polarizability is inherently a two-site
nonlocal quantity. As yet, there is no robust method to construct the atom-condensed
polarizability of a macromolecule from its fragments, though methods based on
(approximate) decomposition of the linear response kernel are promising [161, 162].

30.5.2 Tests for Atomistic Force-Field Models

While the shortcomings of the ACKS2 model, and atomistic force-field approaches
in general, can always be resolved by resorting to accurate molecular quantum
mechanics methods, coarse-grained atom-condensed quantum mechanics is many
times more computationally efficient and allows much longer length scales to be
probed and much larger molecules to be simulated. With this in mind, a few salient
difficulties and associated computational tests are listed here.

Whether one uses traditional explicitly parameterized molecular mechanics force
fields or the emerging machine-learned models, modeling chemical reactions is still
extremely difficult. Even if reasonable models for bond dissociation energies were
accessible, models for molecular dissociation products are extremely challenging.
Two generic tests that should be employed are as follows:

● Diatomic molecules always dissociate into neutral atoms. In most cases, this
means the potential energy curve’s asymptotic decay is ≈ −R−6, though this
is different when both atoms have permanent quadrupole moments (i.e. total
angular momentum L = 1). For example, the asymptotic decay of the fluorine
dimer is ≈ −R−5 [163].

● Molecules always dissociate into fragments with integer charge, and the choice
of charge depends relative ionization potentials and electron affinities of the
fragments. Therefore, KCl dissociates into neutral atoms (and the potential
energy curve’s asymptotic decay is ≈ −R−6), but NK4Cl dissociates into ions, and
the potential energy curve’s asymptotic decay is ∼ −R−1 [59].

ACKS2 was created to solve the molecular dissociation problem and can describe
both neutral-fragment and ionic-fragment dissociation. Unfortunately, because the
Taylor series expansion of the Kohn–Sham energy functional converges only up to
±1 electron, one can only consider ionic fragments that differ by ±1 from the refer-
ence state that was used in the parameterization [115, 145].

Faced with these difficulties, one might reasonably decide to focus on nonreac-
tive force fields, in which the identity and connectivity of atoms are unchanged.
However, due to the (near) degeneracy, the electrostatic potential of a molecule can
change dramatically depending on its environment. Some tests (with increasing lev-
els of difficulty) are as follows:

● Nitric oxide (NO). The ground state has an exact spatial degeneracy [71].
● 1,3-Butadiene radical cation. The ground state is degenerate for the symmetric

structure and nearly degenerate otherwise [71].
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● Molecules where zwitterionic and diradical structures are nearly degenerate.
(These molecules are also very challenging for machine-learned atomic charges,
because small changes in molecular environment/composition can lead to
vast changes in molecular dipole moment.) A few special cases include the
following:
– A small set of tetramethylenes and trimethylenes near the zwitterionic/

diradical threshold was compiled by Jug and Kölle. One very special case is
1-methoxy-4,4-dicyanotetramethylene, whose dipole moment changes from
2.7 Debye (diradical) in the gas phase to 24.8 Debye (zwitterion) in water [164].

– Organic ring compounds, especially carbazole-based diradicals, also show
strong competition between diradical and zwitterionic states [165, 166].

– Other fused-ring heteroaromatic compounds show similar effects [167]. For
example, tetraphenylhexaazaanthracene is primarily zwitterionic, tetraphenyl-
hexaazapentacene has predominately singlet diradical character, and
tetraphenylhexaazaoctacene has a triplet diradical ground state [168].

In general, ACKS2 will struggle to describe near degeneracy because the Taylor
series expansion of the ACKS kinetic energy is unreliable in such cases.

At this stage, one might reasonably decide to dramatically lower one’s expectations
of a force-field method and focus on molecules with relatively rigid electronic struc-
ture. (Exactly how to quantify this is an open question, but closed-shell molecules
with single Lewis structures are usually safe. Some simple aromatic systems could
also be treated.) The next main difficulty is the description of molecular response to
external fields. Such effects are important also for describing how molecules’ charges
adapt in the presence of solvent, especially if the solvent has high ionic strength.
Describing the (hyper)polarizability of molecules is therefore critical. A couple sim-
ple, but challenging, cases include the following [169, 170]:

● Polyynes: Polyynes have high (hyper)polarizability. Describing the linear growth
of polarizability with chain length is a challenge for traditional EEM methods and
even some ab initio electronic structure theory approaches [44].

● Cumulenes: Cumulenes are superficially similar to polyynes, but electrons are
less delocalized. In addition, odd and even cumulenes behave in qualitatively dif-
ferent ways. Describing the difference in (hyper)polarizability of odd/even cumu-
lenes and polyynes is likely to be quite challenging, even though both families of
molecules possess only a single dominant resonant structure.

In general, ACKS2 is able to describe molecular polarization as well as the
underlying Kohn–Sham method used in the parameterization. (This indicates that a
range-separated Kohn–Sham DFT method is to be preferred in the parameterization
phase [171].) However, because the Taylor expansion of the ACKS energy function
is truncated at second order, molecular hyperpolarizabilities are expected to be far
too small.

In summary, the ACKS approach overcomes many of the difficulties of traditional
fixed-charge and polarizable force fields and also some of the problems that are
likely to plague machine-learned force-field models. However, ACKS2 should
not be used to describe molecular hyperpolarizabilities or molecules with nearly
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degenerate ground states. Such molecules and molecular properties, however, are
already difficult to describe by single-reference quantum chemistry methods (like
Kohn–Sham DFT), so these limitation are not unexpected, nor should they be
considered unduly discouraging.
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31.1 Introduction

Multiwfn is a highly integrated analysis code for processing electronic wave function
produced by quantum chemistry programs. It has been contiguously developed by
one of us since 2009. At present, this code has been cited more than 6000 times
by users in more than 70 countries. The latest version of Multiwfn provides rich
functions in studying the quantities defined under the framework of conceptual den-
sity functional theory (CDFT) and the information-theoretic approach (ITA). In this
chapter, we will present an overview of relevant functions.

This chapter is organized as follows: In Section 31.2, we first introduce some rel-
evant knowledge that is closely related to Multiwfn and practical calculations. In
Section 31.3, we describe, in turn, the various kinds of CDFT analyses that Multi-
wfn can realize. The capacity of evaluation of ITA quantities in Multiwfn will be
mentioned in Section 31.4. Finally, in Section 31.5, we make concluding remarks.

31.2 Some Relevant Knowledge

31.2.1 Basic Features of Multiwfn

Multiwfn is an open-source program and has a very wide range of functions, which
can be used in studying various problems such as chemical bonds, charge distri-
bution, aromaticity, weak interaction, electronic excitation, reaction site prediction,
molecular property prediction, and so on. For a complete list of supported func-
tions, see the main page of the Multiwfn website (http://sobereva.com/multiwfn).
From the website, the source code, executable files, and manual of Multiwfn can be
freely downloaded. The compiled code can be run on all popular platforms, includ-
ing Windows, Linux, and Mac OS. Multiwfn was developed by Fortran 95; all the
time-consuming codes have been substantially parallelized by OpenMP technique.

Conceptual Density Functional Theory: Towards a New Chemical Reactivity Theory, First Edition.
Edited by Shubin Liu.
© 2022 WILEY-VCH GmbH. Published 2022 by WILEY-VCH GmbH.

http://sobereva.com/multiwfn
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Multiwfn is designed as an interactive program. Generally, users can easily com-
plete various analyses simply by following the prompts on the screen. Most parts of
Multiwfn are text-based, but when the calculation results are needed to be visual-
ized, a graphical user interface will be available upon request by users. This hybrid
interface design not only makes wave function analysis very convenient but also
enables Multiwfn to be run using a command line and thus be embedded into shell
scripts for batch analysis of a large number of systems.

Most analyses supported by Multiwfn are based on the electronic wave function,
which needs to be generated by quantum chemistry programs. Multiwfn supports
various common file formats for wave function exchange, including wfn, wfx,
fch/fchk, and molden. Multiwfn also defines a private format “mwfn,” which is
stricter and contains more comprehensive information than other formats. Ref. [1]
contains a full introduction to these file formats. Nearly all mainstream quantum
chemistry programs can export at least one kind of wave function file supported by
Multiwfn.

31.2.2 Evaluation of Electron Density

Almost all quantities defined under the framework of CDFT and ITA are directly
dependent on electron density and/or its derivatives. Electron density is calculated
via the following expression.

𝜌(r) =
∑

i
𝜂i|𝜑i(r)|2 (31.1)

where the index i loops over all orbitals, 𝜂 stands for orbital occupation number, r is
coordinate vector, and 𝜑 corresponds to orbital wave function, which is represented
as a linear combination of basis functions, 𝜒 , or linear combination of primitive
Gaussian-type functions, 𝜙

𝜑i(r) =
∑
𝜇

C
𝜇,i𝜒𝜇(r) (31.2)

𝜑i(r) =
∑

l
C̃l,i𝜙l(r) (31.3)

The linear transformation between the 𝜙 and 𝜒 , and thus between the C̃ and C, is
defined by contraction coefficients of the basis set employed in the calculation. The
definition of 𝜙 or 𝜒 , as well as that of coefficient matrix C̃ or C, can be loaded by
Multiwfn from the inputted wave function file.

Multiwfn is able to perform CDFT and ITA analyses for any common type of wave
function. Hartree–Fock (HF) and Kohn–Sham density functional theory (KS–DFT)
wave functions can be analyzed if the wave function file records their molecular
orbitals (MOs). The analyses are also applicable to multiconfiguration wave func-
tions such as those produced by post-HF, complete active space self-consistent
field (CASSCF), and multi-reference methods; the requirement is that the wave
function file contains their natural orbitals. Analyzing excited state wave functions
is also possible in Multiwfn as long as the excited state wave function can be
passed to Multiwfn in terms of natural orbitals. Many quantum chemistry codes
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such as Gaussian are able to generate natural orbitals of excited states calculated
at the popular time-dependent density functional theory (TDDFT), state-average
CASSCF, and EOM-CCSD levels and export them as wave function files.

31.2.3 Atomic Space Partition and Integration

Atomic CDFT and ITA quantities, such as condensed Fukui function and atomic
Shannon entropy, directly depend on how to partition the whole molecular space
into atomic spaces. A very common type of partition is real space partition, and the
subspace belonging to an atom is represented by an atomic weighting function. Next,
all atomic weighting functions supported by Multiwfn will be briefly outlined.

The very popular Hirshfeld weighting function is defined as follows.

wHirsh
A (r) =

𝜌
0
A(r)

𝜌pro(r)
(31.4)

where 𝜌0
A is spherically averaged electron density of atom A at its isolated state, and

the 𝜌pro is known as promolecular density, which is expressed as

𝜌
pro(r) =

∑
A
𝜌

0
A(r) (31.5)

In Multiwfn, there are two choices of the 𝜌0 utilized in the practical calculation: (i)
The ones evaluated based on the atomic wfn files generated by invoking Gaussian
program via Multiwfn (ii) Directly using the built-in 𝜌

0 library, see Appendix 3 of
Multiwfn manual for detail.

The Hirshfeld-I is a variant of Hirshfeld partition [2]; it iteratively updates atomic
weighting functions until convergence to improve the representation of atomic
spaces. Hirshfeld-I calculation requires radial electron density of all elements in the
present system at various oxidation states, which can be automatically generated
by Multiwfn via invoking Gaussian. Users can also choose to directly use the
high-quality atomic radial density library that comes with the Multiwfn package,
which covers almost all elements at all oxidation states possibly involved in the
Hirshfeld-I calculation.

Another supported partition method is Becke’s method, which originally comes
from the integration algorithm proposed in Ref. [3]. Becke’s partition does not
depend on atomic densities in isolated states but relies on element radii. With
proper choice of element radii, Becke’s partition could be chemically meaningful.
Details of the implementation of Becke’s partition in Multiwfn can be found in the
supplemental material of Ref. [4].

All aforementioned definitions of atomic weighting functions are collectively
known as a fuzzy partition; the weighting function goes from 1 to 0 smoothly
as the coordinate moves from the present atom to adjacent atoms. For integrat-
ing real space functions in an atomic space defined in this way, the algorithm
based on atomic-center grids is employed in Multiwfn. Specifically, the second
Gauss–Chebyshev quadrature and Lebedev quadrature are employed for radial and
angular parts, respectively. The integration accuracy and computational cost are
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simultaneously determined by the number of radial and angular integration points,
which can be controlled by users.

Multiwfn also supports many other kinds of partitions, such as Mulliken [5],
Voronoi [6], SCPA [7], and so on. Among these, the well-known atoms in molecules
(AIM) partition [8, 9] is worth noting here, and it can be employed in the evaluation
of some atomic CDFT and ITA quantities in Multiwfn [10]. AIM is a discrete parti-
tion of molecular space, namely the boundary between two adjacent atoms is clear
rather than fuzzy. The interatomic boundary is defined as the zero-flux surface of
the gradient of electron density. In Multiwfn, the near-grid method [11] is employed
by default for the construction of AIM atomic spaces, each of which is represented
by a batch of uniformly distributed grids. Then, the integration of the real space
function is realized by a special algorithm proposed by us, namely the regions
close to nuclei are integrated by atomic-center grids, while the other regions are
integrated based on uniform grids, and the two parts are finally combined together
by a switching function. Our experiences show that this integration method is not
only efficient but also robust.

31.3 Conceptual Density Functional Theory Analysis
in Multiwfn

Many different kinds of CDFT analyses can be realized in Multiwfn; they will be
mentioned in turn in the next sections.

31.3.1 Automatic Calculation of Common CDFT Quantities

To make the CDFT study as convenient as possible, we have developed a module
in Multiwfn that can calculate all real space functions and quantities involved in
common CDFT analyses at one time; all data are printed in a compact and readable
format. This module also enables quantum chemistry beginners to readily and cor-
rectly apply CDFT analysis in their practical research. In addition, if combining this
module with shell scripts, CDFT-based descriptors can be easily gathered for a huge
number of chemical systems, which may then be used in, e.g. building quantitative
structure–property relationship (QSPR) and training machine learning models.

In this module, all quantities listed below can be automatically calculated by sim-
ply providing wave function files of N, N−1, and N + 1 electron states, where N is
the number of electrons of the original state of the present system. It does not mat-
ter even if the users have little knowledge about quantum chemistry calculation,
because the corresponding input files of Gaussian or ORCA program can be directly
prepared by this module, one just needs to provide a file containing reasonable geom-
etry corresponding to N electron state in a popular format such as pdb, xyz, and mol2.

● Global indices for the whole system
• Vertical ionization potential (VIP): E(N − 1)−E(N), where E denotes electronic

energy, similarly hereinafter
• Vertical electron affinity (VEA): E(N)−E(N + 1)
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• Mulliken electronegativity (χ): (VIP+VEA)/2
• Chemical potential (𝜇): −𝜒
• Hardness (𝜂): VIP-VEA
• Softness (S): 1/𝜂
• Parr’s electrophilicity index (𝜔): 𝜇2/(2𝜂)
• Nucleophilicity index (NNu):[12] EHOMO(Nu)−EHOMO(TCE), where Nu

(nucleophile) corresponds to the present system, TCE denotes tetracyano-
ethylene

● Real space functions
• Fukui function in different forms: f +(r), f −(r), f 0(r)
• Dual descriptor: Δf (r)
• Local softness in different forms: s+(r) = Sf +(r),s−(r) = Sf −(r), s0(r) = Sf 0(r)
• Local electrophilicity index: 𝜔loc(r) = 𝜔f +(r)
• Local nucleophilicity index: N loc

Nu(r) = NNuf −(r)
● Atomic indices. Hirshfeld partition is employed for this purpose
• Hirshfeld atomic charges of N, N − 1 and N + 1 states
• Condensed Fukui function (f A) and condensed dual descriptor (Δf A)
• Condensed local softness in different forms: s+A = Sf +A ,s−A = Sf −A , s0

A = Sf 0
A

• Relative electrophilicity index: s+A∕s−A
• Relative nucleophilicity index: s−A∕s+A
• Condensed local electrophilicity index: 𝜔A = 𝜔f +A
• Condensed local nucleophilicity index: NA

Nu = NNuf −A

In addition, Multiwfn can also calculate an alternative form of electrophilicity
index, 𝜔cubic [13]

𝜔cubic = 𝜔
(

1 + 𝜇

3𝜂2 𝛾

)
(31.6)

This definition considered higher-order term than Parr’s electrophilicity index and
is thus physically more rigorous.

A detailed example of using this module to calculate the aforementioned CDFT
quantities and visualize the real space functions can be found in Section 4.22.1
of Multiwfn manual. As an illustration, Figure 31.1 shows the three kinds of
Fukui functions and dual descriptor of phenol directly plotted by Multiwfn. The
corresponding grid data can also be exported to cube file so that they can be further
utilized in other codes or rendered in third-part visualization software such as
VMD [14].

31.3.2 Orbital-Weighted Fukui Function and dual Descriptor

The Fukui function (f ) and dual descriptor (Δf ) in the conventional form usually
do not work reasonably when frontier MOs are degenerate or quasi-degenerate. In
addition, when the system shows point group symmetry, such as C60 fullerene and
cyclo[18]carbon, the distributions of f and Δf are usually inconsistent with molec-
ular symmetry, giving rise to an apparently misleading picture.
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Figure 31.1 Isosurface map of Fukui functions and dual descriptor of phenol plotted by
Multiwfn. Isovalue is chosen to be 0.007 a.u. Solid and mesh surfaces correspond to positive
and negative parts, respectively.

To address these problems, orbital-weighted Fukui function (f w) [15] and
orbital-weighted dual descriptor (Δf w) [16] were proposed; they have been sup-
ported in the same module of Multiwfn as described in the last section. Three forms
of f w as well as Δf w are defined as follows

f +w (r) =
∞∑

i=LUMO
wi|𝜑i(r)|2 wi =

exp
[
−
(
𝜇−𝜀i
Δ

)2
]

∞∑
i=LUMO

exp
[
−
(
𝜇−𝜀i
Δ

)2
]

f −w (r) =
HOMO∑

i
wi|𝜑i(r)|2 wi =

exp
[
−
(
𝜇−𝜀i
Δ

)2
]

HOMO∑
i

exp
[
−
(
𝜇−𝜀i
Δ

)2
]

f 0
w(r) =

[
f +w (r) + f −w (r)

]
∕2

Δfw(r) =f +w (r) − f −w (r) (31.7)

where 𝜀i is the energy of orbital i. The chemical potential 𝜇 is approximately calcu-
lated as (EHOMO+ELUMO)/2 in this context. TheΔ is an adjustable parameter; its most
suitable value is the one able to make these functions have ideal predictability of local
reactivity. According to our experiences, theΔ between 0.05 and 0.10 Hartree works
reasonably for most cases. Compared to the frozen orbital approximation form of f −,
namely f −F = |𝜑HOMO|2, the obvious advantage of f −w is that it takes all occupied MOs
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Figure 31.2 Isosurface maps of different forms of Fukui function and dual descriptor of
C60 plotted by Multiwfn. Isovalue is set to 0.0005 a.u. for f −w and f −F , 0.0002 a.u. for Δf w, and
0.001 a.u. for f −. Solid and solid+mesh surfaces represent positive and negative parts,
respectively.

into account with different weights, w. According to Eq. (31.7), the closer orbital
energy to the HOMO energy, the greater the weight of the orbital in f −w .

Multiwfn can also print condensed f w and Δf w, which are simply evaluated by
integrating f w and Δf w in each atomic space under Hirshfeld partition.

Section 4.22.2 of Multiwfn manual presents some analysis examples, from which
the readers will fully recognize the unique value of f w and Δf w. Only a representa-
tive example, C60 fullerene, is given here. Figure 31.2 shows various forms of Fukui
function, f − (calculated as 𝜌N − 𝜌N − 1), f −w , f −F as well as Δf w. It can be clearly seen
that distributions of f −w and Δf w are fully in line with molecular symmetry, both of
them correctly indicate that all C—C bonds shared by two adjacent six-membered
rings are the preferential sites for electrophilic reaction. In contrast, f −F and f − are
only distributed over some of the bonds and thus failed to exhibit the realistic
regioselectivity.

31.3.3 Evaluation of Contribution of Orbitals to Fukui Function

Multiwfn has a function to evaluate the contribution of each of selected orbitals to a
given density difference,Δ𝜌 so that one can understand which orbitals are the main
contributors of change in electron density distribution. In this module, it is assumed
thatΔ𝜌 can be approximately represented as a linear combination of the probability
density of a set of orbitals, that is

Δ𝜌(r) ≈ Δ𝜌′(r) =
∑

i
pi|𝜑i(r)|2 (31.8)
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The optimal coefficients {p}, namely contributions of considered orbitals, can be
derived via least-squares fitting to Δ𝜌, see Section 3.200.13 of Multiwfn manual for
implementation details.

Expanding Fukui function as a linear combination of natural bond orbitals (NBOs)
is particularly useful, and this idea has been visited in Ref. [17]. NBO is a kind of
highly localized orbital, and the Lewis-type of NBO usually has a clear chemical
meaning [18]. By approximately projecting Fukui function to various Lewis NBOs
with imposing the constraint

∑
i

pi = 1 due to the normalization condition of Fukui

function via the aforementioned way, the nature of Fukui function can be explained
according to the NBOs having the largest contributions. As an example, we charac-
terize f − of furan based on Lewis NBOs. One should first use Multiwfn to generate
grid data of f − and export it as a cube file, then use NBO program to yield NBO
plot files. After that, Multiwfn will be able to calculate the fitted Fukui function f −fit,
which corresponds to Δ𝜌′ in Eq. (31.8), and contributions of Lewis NBO orbitals.
The result is shown in Figure 31.3. It can be seen that the fitting quality is gener-
ally satisfactory, since f −fit it qualitatively reproduces the major character of f −. It is
found that the f −fit is almost solely contributed by the two NBOs shown at the bot-
tom of Figure 31.3, each one has contribution of about 50%. Since they, respectively
correspond to the π orbital of the two C—C bonds on both sides of the furan, the f −

essentially reflects that the π electrons on the two C—C bonds are easiest to partici-
pate in electrophilic reactions. This example demonstrates that it is not only possible
to quantify atomic contributions to Fukui function in Multiwfn but also feasible to
study bond contributions with the help of NBO orbitals. Detailed steps and more
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Figure 31.3 Isosurface map of f − and f −fit of furan with isovalue of 0.01 a.u. plotted by
Multiwfn. The two NBOs having largest contribution are also shown with isovalue of
0.1 a. u. Solid and solid+mesh surfaces correspond to positive and negative parts,
respectively.



31.3 Conceptual Density Functional Theory Analysis in Multiwfn 641

examples of performing this kind of analysis can be found in Section 4.200.13 of
Multiwfn manual.

31.3.4 Other CDFT Analyses

Due to the comprehensive functions, flexible design, and high integration, Multiwfn
can also realize many other CDFT-related analyses by combinedly using multiple
functions. For example, Multiwfn has a quantitative molecular surface analysis mod-
ule [19], which is able to locate extrema for arbitrary mapped real space functions on
isosurface of any supported real space function. In addition, various statistical data
of mapped real space function over the whole surface or over the local surfaces corre-
sponding to user-defined fragments can be derived. Therefore, one can use this mod-
ule to quantitatively study the distribution of f , Δf , f w, Δf w, etc. on the molecular
surface defined by the specific isosurface of 𝜌. The result of this kind of analysis for a
typical molecule benzaldehyde is shown in Figure 31.4, the isosurface of 𝜌= 0.01 a.u.
is taken as the molecular surface. The occurrence of surface minima ofΔf w above the
two carbons at meta-sites indicates that the meta-carbons are most likely to undergo
electrophilic attack because theΔf w values at these positions are more negative than
the surroundings. TheΔf w averaged over local molecular surfaces corresponding to
different carbon atoms further consolidates this conclusion. This theoretical pre-
diction is fully in line with experimental observation, namely aldehyde group is a
meta-positioning group. Realization of this analysis can be learned from examples
in Section 4.12 of Multiwfn manual.

It is worth noting that Multiwfn has powerful plotting functions, which can
draw any aforementioned function as a curve map, various types of plane maps,
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Figure 31.4 Quantitative molecular surface analysis of Δf w for benzaldehyde. Δ
parameter of 0.1 a.u. is employed. Molecular surface is defined as 𝜌 = 0.01 a.u. isosurface.
Surface minima of Δf w are shown as small spheres and their Δf w values are labeled.
Average Δf w over local surface corresponding to each carbon atom that may participate in
electrophilic substitution reaction is given at left side along with calculation formula, in
which the Aatom denotes surface area occupied by the corresponding atom.
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Figure 31.5 Color-filled contour line map of Δf w of cyclo [18] carbon on its molecular
plane. Δ parameter of 0.1 was employed. Positive and negative parts are represented by
solid and dashed lines, respectively.

and isosurface maps. As an example, the color-filled contour line map of Δf w
for cyclo[18]carbon directly plotted by Multiwfn is given as Figure 31.5. This
molecule consists of 18 carbon atoms and has two kinds of C—C bonds occurring
alternately [20–22]. According to the sign of Δf w around different bonds shown in
Figure 31.5, it can be clearly recognized that the shorter and longer C—C bonds
tend to participate in electrophilic and nucleophilic reactions, respectively.

31.4 Information-Theoretic Approach Analysis
in Multiwfn

In this section, we will list all quantities defined under the ITA framework [23] that
can be calculated by Multiwfn. The numerical integration algorithm employed for
them has been mentioned in Section 31.2.3. Detailed calculation examples can be
found in Ref. [24].

31.4.1 Shannon Entropy

Shannon entropy density is defined as

sS(r) = −𝜌(r) ln 𝜌(r) (31.9)
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In Multiwfn, this function can be integrated over the whole space to derive Shan-
non entropy for the whole system. Multiwfn is also able to integrate it within atomic
spaces to obtain the Shannon entropy of various atoms. This can be realized by fuzzy
analysis module based on Hirshfeld, Hirshfeld-I or Becke partition, or by basin anal-
ysis module using AIM partition.

It is noteworthy that the basin analysis module in Multiwfn is quite universal;
it can partition the entire space into subspaces (basins) using zero-flux conditions
based on any real space function. For example, zero-flux surfaces of electron localiza-
tion function (ELF), localized orbital locator (LOL) [25, 26], valence electron density
[27], electrostatic potential [28, 29], and even electron density difference may be used
for this purpose. Basins generated in different ways may have different chemical sig-
nificances; for example, it was shown that some basins of valence electron density
correspond to the atomic valence regions involved in forming covalent bonds [27].
Obviously, integrating Shannon entropy density in properly selected basins could
bring valuable information in understanding electronic structure.

31.4.2 Fisher Information and Ghosh–Berkowitz–Parr Entropy

In Multiwfn, the following functions can be integrated over the whole space or
within any kind of local space, like the case of Shannon entropy density.

Fisher information density:

iF(r) = |∇𝜌(r)|2∕𝜌(r) (31.10)

Second Fisher information density:

i′F(r) = −∇
2
𝜌(r) ln 𝜌(r) (31.11)

Ghosh–Berkowitz–Parr (GBP) entropy density:

s(r) = (3∕2)𝜌(r){𝜆 + ln[t(r)∕tTF(r)]} (31.12)

where t(r) is Lagrangian kinetic energy density and tTF(r) is Thomas–Fermi kinetic
energy density.

Note that since i′F varies sharply in some regions, to achieve a relatively high inte-
gration accuracy, a very large number of radial and angular integration points should
be employed, such as 400 and 2702, respectively. In the practical calculation of ITA
quantities, we encourage users to perform a convergence test for the integration grid
to ensure that the quality of the employed integration grid is high enough for the
present case.

31.4.3 Relative Shannon Entropy and Relative Fisher Entropy

Relative Shannon entropy and relative Fisher entropy of an atom are also known as
information gain; they characterize the variation of atomic entropy in a molecular
environment with respect to an isolated state. These two quantities are defined as
follows

ΔSA
S = ∫ 𝜌A(r) ln

𝜌A(r)
𝜌

0
A(r)

dr (31.13)
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ΔIA
F = ∫ 𝜌A(r)

|||||
∇𝜌A(r)
𝜌A(r)

−
∇𝜌0

A(r)
𝜌

0
A(r)

|||||
2

dr (31.14)

where 𝜌A = wHirsh
A 𝜌 is atomic electron density based on Hirshfeld partition,∇𝜌A is

simply evaluated as wHirsh
A ∇𝜌.

Relative Shannon and Fisher entropies under AIM partition are also supported by
Multiwfn and are evaluated in the following forms

ΔSA
S = ∫

ΩA

𝜌(r) ln 𝜌(r)
𝜌

0
A(r)

dr (31.15)

ΔIA
F = ∫

ΩA

𝜌(r)
|||||∇𝜌(r)𝜌(r)

−
∇𝜌0

A(r)
𝜌

0
A(r)

|||||
2

dr (31.16)

where the ΩA indicates that the integration is constrained in the basin of atom A.

31.4.4 Rényi Entropy

Rényi entropy of two forms can be calculated in Multiwfn for the whole system

Quadratic form ∶ − log∫ [𝜌(r)]2dr

Cubic form ∶ −(1∕2) log∫ [𝜌(r)]3dr

At the same time, ∫ wHirsh
A [𝜌(r)]2dr and ∫ wHirsh

A [𝜌(r)]3dr for each atom are also
printed to help users understand the role played by various atoms.

Two forms of molecular relative Rényi entropy can also be calculated based on
Hirshfeld partition:

Quadratic form ∶ − log
∑

A
∫ [𝜌A(r)]2∕𝜌0

A(r) dr

Cubic form ∶ − log
∑

A
∫ [𝜌A(r)]3∕

[
𝜌

0
A(r)

]2(r) dr

31.4.5 Other Quantities Theoretically Related to ITA

It was shown that the arithmetic mean of some information-theoretic quantities
of the atoms constituting a conjugated ring has a good linear relationship with
many widely accepted aromaticity indices [27]. In the fuzzy analysis module of
Multiwfn, there is a function dedicated to performing this kind of calculation, see
Section 3.18.11 of Multiwfn manual for a detailed explanation.

The strong covalent interaction (SCI) defined based on Pauli kinetic energy density
was shown to be very useful for identifying very strong covalent bonds [30, 31]. SCI
can be visually or quantitatively studied in many different ways in Multiwfn.

The energy decomposition analysis proposed by Shubin Liu divides the total
molecular energy as the sum of steric energy (Esteric), energy of classical electrostatic
interaction, and energy due to quantum effect [23]. Multiwfn is able to calculate
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Esteric and automatically derive other terms by loading proper information in
Gaussian output file, making this analysis convenient to realize. A detailed example
is given in Section 4.21.2 of Multiwfn manual.

Four real space functions related to steric effect, including steric energy density,
steric potential, steric charge, and magnitude of steric force, are available in Multi-
wfn as different user-defined functions. They can be integrated over the whole space
or within atomic spaces defined by any supported partition method. They can also
be easily plotted as various types of maps to visually study distribution characters.

31.5 Concluding Remarks

The purpose of our relentless development of the Multiwfn program is to provide
the most powerful, most efficient, and most straightforward-to-use analysis program
so that various valuable analysis methods based on wave function or its derivatives
available in the literature can be conveniently utilized by computational chemists
and create value in practical applications. Due to the importance of CDFT and ITA in
analyzing molecular chemical reactions and chemical properties, Multiwfn provides
many related analysis functions, which have been overviewed in this chapter. Due
to the limitation of the length of the article, usage details and complete examples
cannot be given. We strongly recommend readers to refer to corresponding parts of
the very detailed and easy-to-understand program manual. Readers will find that
Multiwfn makes CDFT analysis unprecedentedly convenient and flexible.

CDFT and ITA are still in rapid development. In the future, new analysis methods,
real space functions, and quantitative indices will surely emerge, and those with high
value will be added to the future version of Multiwfn.

At present, Multiwfn mainly analyzes isolated systems such as molecules and clus-
ters. In the future, we will consider making an investigation of periodic systems fully
supported in Multiwfn, and at that time, some CDFT and ITA analyses may also be
applicable to solid materials, liquids, and other condensed phase systems, thereby
providing chemically significant information for a broader system.
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32.1 Introduction

When a computational chemist runs a quantum mechanics (QM) calculation, the
immediate output is the approximate energy and wavefunction of the chemical sys-
tem under study. Most often, at the end of these calculations, some key chemical
data (e.g. atomic populations) are provided. These data help scientists make sense of
the gigabytes of raw wavefunction data, but most QM software only includes a few of
the simplest interpretative tools, typically tools from the 1930s and 1940s (Mulliken
populations, Boys–Wannier orbitals, etc.). For this reason, researchers have devel-
oped stand-alone postprocessing packages that incorporate more recent interpretive
tools.

These postprocessing packages are often developed based on the scientific goals
of a specific research group(s); as a result, the codes may have limited functionality
and a small development team. Being limited in scope, the code structure can make
it difficult to implement new features and to extend the package’s utility. In addition,
being an in-house code, most existing codes do not follow the latest quality assurance
(QA) protocols and software development practices. Thus, the package is likely to
have a monolithic source code with sparse documentation, few tests, and a rigid
application programming interface (API). Thus, we believe that it is crucial to have
an established and thoroughly tested framework for easy and rapid development and
distribution of conceptual tools.

These motivated us to develop ChemTools, a free and open-source Python library,
to provide a platform for collaborative research in conceptual quantum chemistry
and promote precepts of sustainable software development. Our goal is to make
it easy for theorists to test their ideas and help experimental and computational
chemists use advanced interpretive tools. ChemTools strives to provide unbiased
support for all mathematically rigorous postprocessing tools, not just the concep-
tual tools that we actively develop ourselves. Further, it strives to establish an open
and collaborate environment by inviting researchers to contribute to its growth and

*These authors contributed equally to this work.

Conceptual Density Functional Theory: Towards a New Chemical Reactivity Theory, First Edition.
Edited by Shubin Liu.
© 2022 WILEY-VCH GmbH. Published 2022 by WILEY-VCH GmbH.
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extend its scope. This provides researchers the opportunity to be listed as a contrib-
utor and makes their research accessible and reproducible to others.

This chapter will start with characterizing ChemTools in Section 32.2. This is
followed by listing its features in Section 32.3, outlining various computations
that a user can (currently and in the near future) perform with ChemTools, and
discussing our software design principles in Section 32.4. Our future prospects
are summarized in Section 32.5 to portray potential pathways for our users and
contributors.

32.2 Getting Started with ChemTools

Upon installation, ChemTools can be used as either a Python library or a set of
command-line scripts. We have developed ChemTools using widely established and
vastly used Python libraries for scientific computing and visualization, like NumPy,
SciPy, SymPy, and Matplotlib. As a result, even a beginner (Python) programmer
can easily and quickly get started with using ChemTools as a Python library. This
is greatly facilitated by the existing example gallery described in Section 32.2.2. For
less programming proficient users, we have developed a set of command-line scripts,
which expose a great portion, but not all, of ChemTools functionality. These scripts
have an elaborate help command to assist the user in providing correct input argu-
ments and customize their functionality through various flags.

ChemTools has an intuitive API, with extensive documentation, to help users
incorporate it for studying their chemical systems of interest. In addition, Chem-
Tools includes sensible default parameters but allows one to customize calculations
and combine tools in innovative ways.

32.2.1 Input and Output

As an input, ChemTools uses output file(s) from a broad range of quantum chemistry
software packages. Currently, the supported file formats include Gaussian format-
ted checkpoint files (*.fchk), wavefunction files (*.wfn), extended wavefunction files
(*.wfx), Molden files (*.molden), Molekel files (*.mkl), Mol2 files (*.mol2), basic XYZ
Cartesian coordinate files (*.xyz), extended XYZ files containing additional atomic
properties (*.extxyz), and cube files (*.cube). The wavefunction information, which
is available in most of these formatted files, is then analyzed by ChemTools and
translated into chemical language. In addition, ChemTools can use scalar properties
evaluated on a grid (as stored in a cube file) and compute pro-molecular electron
density for certain type of analysis.

As an output, ChemTools produces numerical values (e.g. global descriptors
like the electronegativity, gradient of electron density), tabular data (e.g. the
electrophilicity of different atoms in a molecule), and a broad variety of graphical
tools (both raw data like cube files and scripts for external interactive visualization
software) that reveal molecular electronic structure and chemical reactivity. Section
32.3 provides an extensive list of analysis that can be performed with ChemTools,
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Figure 32.1 Examples of chemical descriptors computed by ChemTools including 1. dual
descriptor of dichloropyridine (iso-surface= 0.0005 a.u.), 2. non-covalent interaction (NCI) of
[H2O]3, 3. electron localization function (ELF) of formamide (iso-surface= 0.09 a.u.), 4.
electron density isosurface colored with electrostatic potential values showing the sigma
hole of F3CBr (iso-surface= 0.001 a.u., min= 0.003, max= 0.03), 5. effective oxidation state
(EOS) of [FeO4]−2, 6. condensed Fukui function with minimal basis iterative stockholder
(MBIS) charges of CH2O, 7. highest occupied molecular orbital (HOMO) iso-surface of
caffeine molecule (iso-surface= 0.0045 a.u.), 8. Mayer bond order of vinylacetylene, and 9.
Laplacian iso-surface of Benzene (isosurface= 0.185 a.u.).

and Figure 32.1 exemplifies some of those chemical descriptors. Currently, we
delegate visualization to free, third-party packages like Visual Molecular Dynamics
(VMD) [1], USCF ChimeraX [2], Matplotlib, and RDKit packages and generate
required cube files and scripts to facilitate visualization.

32.2.2 Example Gallery

From early on, we included an example gallery on the ChemTools website to facili-
tate user training. We use Sphinx-Gallery (a Sphinx extension that builds an HTML
gallery of examples from a set of Python scripts) to showcase ChemTools functional-
ity and flexibility. With one click, users can download the example files as a Python
script or Jupyter notebook and easily modify them to new chemical systems. These
examples show how ChemTools can be used as a Python library, allow users to
quickly generate quality results, and give the developers an opportunity to identify
“pain points” when writing ChemTools examples.
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In addition, we encourage and invite researchers who use ChemTools in their
research to contribute their scripts and notebooks to ChemTools example gallery,
so that their published results can be easily reproduced and utilized by others.

32.3 ChemTools Features

The main six modules of ChemTools, sketched in Figure 32.2, are briefly discussed
here to showcase numerous conceptual tools that it can compute. This also demon-
strates the flexible framework of ChemTools for implementation and extension of
a wide range of conceptual chemistry tools. For each module, the existing features
are listed alongside their envisioned future extensions. While individual modules are
designed to be used independently, it is often useful and interesting to combine tools
from different modules. For example, to compute the electrophilicity of a given atom
in a molecule, one needs to first compute the local electrophilicity (using concep-
tual density functional theory [DFT] module discussed in Section 32.3.1) and then
determine how much of this local quantity is associated with a given atom (using
atoms-in-molecules [AIM] partitioning module discussed in Section 32.3.2). Hence,
ChemTools framework allows the user to combine various approaches for comput-
ing local electrophilicity with various approaches for partitioning it into atomic con-
tributions.

We strive to ensure that the source code and website of ChemTools are both com-
prehensively documented, including tests, scripts, and examples. As that documen-
tation is maintained with the software, providing code snippets and examples here
seems unwise as they will eventually be outdated. For the most updated documen-
tation and examples on how to use ChemTools, please refer to its website.

32.3.1 Conceptual Density Functional Theory

This module aims at understanding chemical reactivity and predicting the
outcome of chemical reactions, by computing the changes in the energy with
respect to the number of electrons and external potential. In other words, it
computes the global, local, mixed, and condensed reactivity indicators from
frontier molecular orbital (MO) theory or finite-difference approaches using
linear [3, 4], quadratic [5, 6], exponential [7], and other user-defined energy
models [8]. Currently, it allows one to compute the popular reactivity indicators
[9] like chemical potential [5], chemical hardness [6], electrophilicity [10], and
Fukui function [11, 12] and generate scripts and required cube files to visu-
alize the local reactivity descriptors (e.g. plotting property isosurfaces and/or
coloring it with another property) and condensed reactivity descriptors (e.g.
drawing a chemical structure and labeling each atom with the corresponding
reactivity descriptor value). It is being extended to compute spin-resolved and
non-local reactivity descriptors, aromaticity indices, ring currents, alchemi-
cal derivatives (using response theory or finite difference), and reaction force
analysis.
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32.3.2 Atoms-in-Molecules Partitioning Schemes

This module aims at decomposing molecules into atomic subsystems by dividing
the molecular electron density between constituent atoms. Currently, it includes
the Hirshfeld [13], iterative Hirshfeld (HI) [14], iterative stockholder analysis (ISA)
[15], minimal basis iterative stockholder (MBIS) [16], and Becke [17] partitioning
schemes. This is being extended to include additive variational Hirshfeld (AVH)
[18, 19] and quantum theory of atoms-in-molecules (QTAIM) [20], alongside adding
the periodic boundary conditions to extend these methods to solid state.

32.3.3 Chemical Topological Analysis

This module aims at identifying and characterizing critical points (i.e. points with
zero gradient) and topological basins of any scalar field. Currently, it includes critical
point finder for any scalar property using its analytical first and second derivatives.
However, it is being extended to compute and visualize topological basins, identify
inter-atomic surfaces, quantify components of interaction energy between atomic
basins, and calculate the (de)localization index.

32.3.4 Density Functional Theory Tools

This module aims at analyzing electronic structure by identifying where electrons
are concentrated and depleted, within molecules. Currently, it includes computing
various kinetic energy densities like Thomas Fermi, von Weizsacker, Lagrangian,
and gradient expansion kinetic energy densities, non-covalent interactions (NCI)
[21], electron localization function (ELF) [22, 23], and localized orbital locator (LOL)
[24]. It is being extended to compute information-theoretic descriptors like the Shan-
non/Fisher and steric entropies [25], density overlap regions indicator (DORI) [26],
and interconversion of density-like and potential-like reactivity descriptors.

32.3.5 Conceptual Density Matrix Functional Theory

This module aims at computing reactivity indicators based on density matrices.
Currently, it computes the Fukui matrix [27], dual-descriptor matrix [28], and
higher-order terms. It is being extended to compute the atomic overlap matrix,
electron oxidation state (EOS) [29], localized orbital bonding analysis (LOBA)
[30], probability distribution function analysis, and identifying/visualizing electron
pairs.

32.3.6 Molecular Orbital Theory

This module aims at describing the electronic structure of molecules by analyz-
ing MO. Currently, it computes the local ionization potential, temperature depen-
dent density, temperature dependent local density of states, electrostatic potential,
and population analysis methods like Mulliken and Löwdin [31, 32]. It is being
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extended to generate MO diagrams and compute the orbital localization methods
like Boys–Wannier [33] and Pipek–Mezey [34], intrinsic atomic orbitals (IAO) [35],
quasi-atomic minimal basis orbital (QUAMBO) [36], bond orders and multicenter
indices like shared-electron delocalization index (SEDI) [37], Cioslowski and Mayer
covalent bond order [38, 39], domain-averaged Femi hole (DAFH) [40, 41], σ-hole,
π-hole, orbital decomposition, and entanglement analysis.

32.4 ChemTools Design Principles

As software becomes ubiquitous in scientific research, the need for robust, reliable,
and sustainable software becomes more acute. Modern software engineering prac-
tices for sustainable software development are attuned to these needs [42, 43], but
not always aligned with the needs of scientific researchers. When scientists create
software, they rarely anticipate possible use cases for different scientific disciplines.
Similarly, software engineers often lack the domain knowledge to effectively antici-
pate the most common use cases [44].

Researchers usually develop software motivated by their own individual scien-
tific goals, and these goals constantly shift as scientific results (re)direct the project.
This favors an incremental development pattern, which makes it difficult to write
a complete specification document for a software package ahead of time, which in
turn makes it difficult to apply modern software engineering practices [44, 45]. On
the other hand, reproducibility, readability, verifiability, and collaboration are highly
valued by both software engineers and scientific researchers. This section declares
the guiding principles that ChemTools uses to balance its dual goals of advancing sci-
entific research while adhering to best practices from modern software engineering.

32.4.1 Open-Source Software

The open science movement encourages researchers to make their data and code
publicly available to facilitate accessibility and collaboration in science [46]. Simi-
larly, open-source software allows an individual to contribute to the development
of the software and openly share any problems with the community. There are
many examples of successful open, online, and community-based collaborations
like Wikipedia, Linux, NumPy, and SciPy. This is unfortunately rare in research,
because scientists are recognized based on publications, citations, patents, grants,
etc. [47] that incentivizes maintaining control over ones scientific output and
discourages efforts to advance the whole community [48].

To encourage contribution and collaboration, ChemTools contributors are all
listed on GitHub that gives a transparent view of their implementation. In addition,
ChemTools supports citation of key publications for each conceptual quantum
chemistry tool implemented or each notebook that reproduces published results.
As a result, researchers are recognized when they utilize ChemTools to distribute
their scientific findings and make them accessible to a broader audience. On the
other hand, users can publicly post any problems they encounter when installing or
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using ChemTools through GitHub’s issue tracking system that opens another level
of transparency and community engagement.

32.4.2 Modularity

Modularity, a fundamental concept in software engineering, separates a software
into its components, called modules, where each component satisfies one task
and is independent of other components. This greatly reduces the complexity of
software down to its individual modules, thus allowing easier maintenance of
large code bases, easier testing of smaller modules, and ease of extensions. Further,
modularity allows the components to become highly specialized to the expertise
of the contributor while minimizing their interaction with other specialized
components.

ChemTools modular structure is sketched in Figure 32.2. At the core, there
are six independent modules with non-overlapping functionality. As described in
Section 32.3, these six modules include conceptual density functional theory (DFT),
atoms-in-molecules (AIM) partitionings, chemical topology, DFT descriptors,
conceptual density matrix functional theory (DMFT), and molecular orbital theory.
Each of these six modules contain key computations to support different types of
conceptual quantum chemistry tools and can be modified independently. However,
there are fundamental computations (e.g. file parsing, numerical integration and
differentiation, evaluating integrals and functions using Gaussian basis sets) that
are used by almost every module of ChemTools. To ensure that modules remain
insensitive to the nature of these computational utilities, these computations are
performed through Wrappers and Toolbox modules. This makes ChemTools easily
maintainable since if the API of one of these external packages changes, the effects
of this change are localized only to the Wrappers module.

Currently, we only have wrappers for pure Python libraries including IOData
[49] (for handling input/output of chemical file formats), GBasis (for Gaussian
basis functions evaluations and integrals), and Grid (for numerical molecular
integration grids), which are parts of the HORTON3 (helpful open-source research
tools for N-fermion systems) software package. However, to improve ChemTools
performance, we are extending the Wrappers module to support PySCF [50] and
Psi4 [51], which have similar functionality and utility but, as a C++/Fortran code
with a veneer of Python, are often faster. The Wrappers functionality and the
six core modules are connected through Toolbox module that allows combining
utilities from different modules.

32.4.3 Robustness and Quality Assurance

Version control allows programmers to keep track of code changes, make changes
without affecting the main source code, and revert unwanted changes. In addition, it
facilitates collaboration and brings transparency to contributions made [43]. Along-
side version control, continuous integration frameworks are used to make software
development robust. This means that any change to the code triggers a series of
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Figure 32.2 Schematic representation of ChemTools architecture including its modules
and dependencies.

automatic tests to make sure it satisfies the software’s quality standard by being
tested, readable, and well-documented and following its coding style. These checks
can be either run manually by the contributor, or it is ran automatically whenever
the code is added to the main source code.

ChemTools uses Git for version control and uses various software testing resources
as part of its continuous integration and delivery framework that is also crucial for
scaling quality assurance (QA) process as more features are added. Because man-
ual testing is time-consuming, error-prone, and limited in scope, we have developed
automated scripts to quickly and repeatedly run tests upon making changes to the
code or making a release. To deliver a bug-free and high-quality code, as part of
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ChemTools continuous integration workflow, we incorporate automatic measures
for the following:

● Testing code correctness to ensure that code changes are working as expected
without degrading functionality. This includes (i) unit tests for independent test-
ing of individual functions and classes at a low level, (ii) integration tests to verify
that different modules work well together and test new features plus existing func-
tionality at a higher-level, and (iii) end-to-end tests to replicate a user behavior by
frequently running examples and tutorials as part of ChemTools automatic test
suite.

● Testing code quality to ensure that code changes are not degrading code qual-
ity and ChemTools coding standards. This includes (i) linters (like pycodestyle,
pyflakes, and pylint) to check that the code adheres to coding standards (PEP8)
and is well-documented (PEP257), (ii) black formatter to automatically and con-
sistently improve code’s readability, and (iii) code coverage to ensure that every
line of code is tested.

● Testing code built to check that the code properly installs and tests run success-
fully for different operating systems and versions of Python.

32.4.4 Ease of Extension and Contribution

Being modular and well-documented, it is very easy to add a new feature to Chem-
Tools. In addition, the source code is hosted on GitHub where contributors can easily
share and discuss their code and obtain the latest version of the development branch.
We welcome new contributions and, to facilitate that, have included an elaborate and
inclusive “Contributing Guidelines” on the ChemTools website. By contributing to
ChemTools, one can join the open-source community and publicly distribute their
research methods and findings, so that others can reproduce and utilize them.

32.5 Future Prospects

ChemTools is under active development to better cater to its audience. Currently,
we are focusing on (i) extending our support for other domain-specific quantum
chemistry packages like PySCF [50] and Psi4 [51], (ii) improving ChemTools visu-
alization capabilities by extending our support for other third-party visualization
packages like PyMol or UCSF ChimeraX, (iii) extending existing modules to include
more descriptors as described in Section 32.3, (iv) improving ChemTools computa-
tion speed, (v) improving ChemTools API to be more intuitive, and (vi) expanding
the notebooks and scripts in Examples Gallery and increase reproducibility of sci-
entific results. Even though using ChemTools command-line scripts is very straight-
forward and requires no knowledge of Python, we are taking advantage of various
libraries to transform the command-line functionality into a user-friendly graphi-
cal user interface (GUI). We provide these alternatives to facilitate user training and
on-boarding.
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