




�

� �

�

ELECTROCHEMICAL
SYSTEMS



�

� �

�

THE ELECTROCHEMICAL SOCIETY SERIES

The Electron Microprobe
Edited by T. D. McKinley, K. F. J. Heinrich, and D. B. Wittry

Chemical Physics of Ionic Solutions
Edited by B. E. Conway and R. G. Barradas

High-Temperature Materials and Technology
Edited by Ivor E. Campbell and Edwin M. Sherwood

Alkaline Storage Batteries
S. Uno Falk and Alvin J. Salkind

The Primary Battery (in Two Volumes)
Volume I
Edited by George W. Heise and N. Corey Cahoon

Volume II
Edited by N. Corey Cahoon and George W. Heise

Zinc-Silver Oxide Batteries
Edited by Arthur Fleischer and J. J. Lander

Lead-Acid Batteries
Hans Bode
Translated by R. J. Brodd and Karl V. Kordesch

Thin Films-Interdiffusion and Reactions
Edited by J. M. Poate, M. N. Tu, and J. W. Mayer

Lithium Battery Technology
Edited by H. V. Venkatasetty

Quality and Reliability Methods for Primary Batteries
P. Bro and S. C. Levy

Techniques for Characterization of Electrodes and Electrochemical Processes
Edited by Ravi Varma and J. R. Selman

Electrochemical Oxygen Technology
Kim Kinoshita

Synthetic Diamond: Emerging CVD Science and Technology
Edited by Karl E. Spear and John P. Dismukes

Corrosion of Stainless Steels, Second Edition
A. John Sedriks

Semiconductor Wafer Bonding: Science and Technology
Q.-Y. Tong and U. Göscle

Fundamentals of Electrochemistry, Second Edition
V. S. Bagotsky



�

� �

�

Fundamentals of Electrochemical Deposition, Second Edition
Milan Paunovic and Mordechay Schlesinger

Uhlig’s Corrosion Handbook, Third Edition
Edited by R. Winston Revie

Fuel Cells: Problems and Solutions
Vladimir S. Bagotsky

Lithium Batteries: Advanced Technologies and Applications
Edited by B. Scrosati, K. M. Abraham, W. A. van Schalkwijk, and J. Hassoun

Modern Electroplating, Fifth Edition
Edited by Mordechay Schlesinger and Milan Paunovic

Electrochemical Power Sources: Batteries, Fuel Cells, and Supercapacitors
By V. S. Bagotsky, A. M. Skundin, and Y. M. Volfkovic

Molecular Modeling of Corrosion Processes: Scientific Development and Engineering Applications
Edited by C. D. Taylor and P. Marcus

Atmospheric Corrosion, Second Edition
Christofer Leygraf, Inger Odnevall Wallinder, Johan Tidblad, and Thomas Graedel

Electrochemical Impedance Spectroscopy, Second Edition
Mark E. Orazem and Bernard Tribollet

Electrochemical Systems, Fourth Edition
John Newman and Nitash P. Balsara



�

� �

�



�

� �

�

ELECTROCHEMICAL
SYSTEMS

Fourth Edition

JOHN NEWMAN and NITASH P. BALSARA
University of California, Berkeley



�

� �

�

This edition first published 2021
© 2021 John Wiley & Sons Inc.

Edition History
“John Wiley & Sons Inc. (3e, 2004)”.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by
any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by law. Advice on how to obtain
permission to reuse material from this title is available at http://www.wiley.com/go/permissions.

The right of John Newman and Nitash P. Balsara to be identified as the authors of this work has been asserted in accordance
with law.

Registered Office
John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, USA

Editorial Office
111 River Street, Hoboken, NJ 07030, USA

For details of our global editorial offices, customer services, and more information about Wiley products visit us at
www.wiley.com.

Wiley also publishes its books in a variety of electronic formats and by print-on-demand. Some content that appears in standard
print versions of this book may not be available in other formats.

Limit of Liability/Disclaimer of Warranty
In view of ongoing research, equipment modifications, changes in governmental regulations, and the constant flow of
information relating to the use of experimental reagents, equipment, and devices, the reader is urged to review and evaluate the
information provided in the package insert or instructions for each chemical, piece of equipment, reagent, or device for, among
other things, any changes in the instructions or indication of usage and for added warnings and precautions. While the publisher
and authors have used their best efforts in preparing this work, they make no representations or warranties with respect to the
accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation any
implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales
representatives, written sales materials, or promotional statements for this work. The fact that an organization, website, or
product is referred to in this work as a citation and/or potential source of further information does not mean that the publisher
and authors endorse the information or services the organization, website, or product may provide or recommendations it may
make. This work is sold with the understanding that the publisher is not engaged in rendering professional services. The advice
and strategies contained herein may not be suitable for your situation. You should consult with a specialist where appropriate.
Further, readers should be aware that websites listed in this work may have changed or disappeared between when this work
was written and when it is read. Neither the publisher nor authors shall be liable for any loss of profit or any other commercial
damages, including but not limited to special, incidental, consequential, or other damages.

Library of Congress Cataloging-in-Publication Data
Hardback ISBN: 9781119514602

Central Cover Image: Redrawn from Figure 22.12 by Hee Jeung Oh, with permission from The Electrochemical Society
Cover Image: Courtesy of John Newman, Nitash P. Balsara, and Hee Jeung Oh

Set in 10/12pt NimbusRom by SPi Global, Chennai, India

10 9 8 7 6 5 4 3 2 1

http://www.wiley.com/go/permissions
http://www.wiley.com


�

� �

�

CONTENTS

PREFACE TO THE FOURTH EDITION xv

PREFACE TO THE THIRD EDITION xvii

PREFACE TO THE SECOND EDITION xix

PREFACE TO THE FIRST EDITION xxi

1 INTRODUCTION 1

1.1 Definitions / 2
1.2 Thermodynamics and Potential / 3
1.3 Kinetics and Rates of Reaction / 6
1.4 Transport / 8
1.5 Concentration Overpotential and the Diffusion Potential / 15
1.6 Overall Cell Potential / 18

Problems / 20
Notation / 21

PART A THERMODYNAMICS OF ELECTROCHEMICAL CELLS 23

2 THERMODYNAMICS IN TERMS OF ELECTROCHEMICAL POTENTIALS 25

2.1 Phase Equilibrium / 25
2.2 Chemical Potential and Electrochemical Potential / 27

vii



�

� �

�

viii CONTENTS

2.3 Definition of Some Thermodynamic Functions / 30
2.4 Cell with Solution of Uniform Concentration / 36
2.5 Transport Processes in Junction Regions / 39
2.6 Cell with a Single Electrolyte of Varying Concentration / 40
2.7 Cell with Two Electrolytes, One of Nearly Uniform Concentration / 44
2.8 Cell with Two Electrolytes, Both of Varying Concentration / 47
2.9 Lithium–Lithium Cell With Two Polymer Electrolytes / 49
2.10 Standard Cell Potential and Activity Coefficients / 50
2.11 Pressure Dependence of Activity Coefficients / 58
2.12 Temperature Dependence of Cell Potentials / 59

Problems / 61
Notation / 68
References / 70

3 THE ELECTRIC POTENTIAL 71

3.1 The Electrostatic Potential / 71
3.2 Intermolecular Forces / 74
3.3 Outer and Inner Potentials / 76
3.4 Potentials of Reference Electrodes / 77
3.5 The Electric Potential in Thermodynamics / 78

Notation / 79
References / 80

4 ACTIVITY COEFFICIENTS 81

4.1 Ionic Distributions in Dilute Solutions / 81
4.2 Electrical Contribution to the Free Energy / 84
4.3 Shortcomings of the Debye–Hückel Model / 87
4.4 Binary Solutions / 89
4.5 Multicomponent Solutions / 92
4.6 Measurement of Activity Coefficients / 94
4.7 Weak Electrolytes / 96

Problems / 99
Notation / 103
References / 104

5 REFERENCE ELECTRODES 107

5.1 Criteria for Reference Electrodes / 107
5.2 Experimental Factors Affecting Selection of Reference Electrodes / 109
5.3 The Hydrogen Electrode / 110
5.4 The Calomel Electrode and Other Mercury–Mercurous Salt Electrodes / 112



�

� �

�

CONTENTS ix

5.5 The Mercury–Mercuric Oxide Electrode / 114
5.6 Silver–Silver Halide Electrodes / 114
5.7 Potentials Relative to a Given Reference Electrode / 116

Notation / 119
References / 120

6 POTENTIALS OF CELLS WITH JUNCTIONS 121

6.1 Nernst Equation / 121
6.2 Types of Liquid Junctions / 122
6.3 Formulas for Liquid-Junction Potentials / 123
6.4 Determination of Concentration Profiles / 124
6.5 Numerical Results / 124
6.6 Cells with Liquid Junction / 128
6.7 Error in the Nernst Equation / 129
6.8 Potentials Across Membranes / 131
6.9 Charged Membranes Immersed in an Electrolytic Solution / 131

Problems / 135
Notation / 138
References / 138

PART B ELECTRODE KINETICS AND OTHER INTERFACIAL
PHENOMENA 141

7 STRUCTURE OF THE ELECTRIC DOUBLE LAYER 143

7.1 Qualitative Description of Double Layers / 143
7.2 Gibbs Adsorption Isotherm / 148
7.3 The Lippmann Equation / 151
7.4 The Diffuse Part of the Double Layer / 155
7.5 Capacity of the Double Layer in the Absence of Specific Adsorption / 160
7.6 Specific Adsorption at an Electrode–Solution Interface / 161

Problems / 161
Notation / 164
References / 165

8 ELECTRODE KINETICS 167

8.1 Heterogeneous Electrode Reactions / 167
8.2 Dependence of Current Density on Surface Overpotential / 169
8.3 Models for Electrode Kinetics / 170
8.4 Effect of Double-Layer Structure / 185



�

� �

�

x CONTENTS

8.5 The Oxygen Electrode / 187
8.6 Methods of Measurement / 192
8.7 Simultaneous Reactions / 193

Problems / 195
Notation / 199
References / 200

9 ELECTROKINETIC PHENOMENA 203

9.1 Discontinuous Velocity at an Interface / 203
9.2 Electro-Osmosis and the Streaming Potential / 205
9.3 Electrophoresis / 213
9.4 Sedimentation Potential / 215

Problems / 216
Notation / 218
References / 219

10 ELECTROCAPILLARY PHENOMENA 221

10.1 Dynamics of Interfaces / 221
10.2 Electrocapillary Motion of Mercury Drops / 222
10.3 Sedimentation Potentials for Falling Mercury Drops / 224

Notation / 224
References / 225

PART C TRANSPORT PROCESSES IN ELECTROLYTIC
SOLUTIONS 227

11 INFINITELY DILUTE SOLUTIONS 229

11.1 Transport Laws / 229
11.2 Conductivity, Diffusion Potentials, and Transference Numbers / 232
11.3 Conservation of Charge / 233
11.4 The Binary Electrolyte / 233
11.5 Supporting Electrolyte / 236
11.6 Multicomponent Diffusion by Elimination of the Electric Field / 237
11.7 Mobilities and Diffusion Coefficients / 238
11.8 Electroneutrality and Laplace’S Equation / 240
11.9 Moderately Dilute Solutions / 242

Problems / 244
Notation / 247
References / 247



�

� �

�

CONTENTS xi

12 CONCENTRATED SOLUTIONS 249

12.1 Transport Laws / 249
12.2 The Binary Electrolyte / 251
12.3 Reference Velocities / 252
12.4 The Potential / 253
12.5 Connection with Dilute-Solution Theory / 256
12.6 Example Calculation Using Concentrated Solution Theory / 257
12.7 Multicomponent Transport / 259
12.8 Liquid-Junction Potentials / 262

Problems / 263
Notation / 264
References / 266

13 THERMAL EFFECTS 267

13.1 Thermal Diffusion / 268
13.2 Heat Generation, Conservation, and Transfer / 270
13.3 Heat Generation at an Interface / 272
13.4 Thermogalvanic Cells / 274
13.5 Concluding Statements / 276

Problems / 277
Notation / 279
References / 280

14 TRANSPORT PROPERTIES 283

14.1 Infinitely Dilute Solutions / 283
14.2 Solutions of a Single Salt / 283
14.3 Mixtures of Polymers and Salts / 286
14.4 Types of Transport Properties and Their Number / 295
14.5 Integral Diffusion Coefficients for Mass Transfer / 296

Problem / 298
Notation / 298
References / 299

15 FLUID MECHANICS 301

15.1 Mass and Momentum Balances / 301
15.2 Stress in a Newtonian Fluid / 302
15.3 Boundary Conditions / 303
15.4 Fluid Flow to a Rotating Disk / 304
15.5 Magnitude of Electrical Forces / 307



�

� �

�

xii CONTENTS

15.6 Turbulent Flow / 310
15.7 Mass Transfer in Turbulent Flow / 314
15.8 Dissipation Theorem for Turbulent Pipe Flow / 316

Problem / 318
Notation / 319
References / 321

PART D CURRENT DISTRIBUTION AND MASS TRANSFER IN
ELECTROCHEMICAL SYSTEMS 323

16 FUNDAMENTAL EQUATIONS 327

16.1 Transport in Dilute Solutions / 327
16.2 Electrode Kinetics / 328

Notation / 329

17 CONVECTIVE-TRANSPORT PROBLEMS 331

17.1 Simplifications for Convective Transport / 331
17.2 The Rotating Disk / 332
17.3 The Graetz Problem / 335
17.4 The Annulus / 340
17.5 Two-Dimensional Diffusion Layers in Laminar Forced Convection / 344
17.6 Axisymmetric Diffusion Layers in Laminar Forced Convection / 345
17.7 A Flat Plate in a Free Stream / 346
17.8 Rotating Cylinders / 347
17.9 Growing Mercury Drops / 349
17.10 Free Convection / 349
17.11 Combined Free and Forced Convection / 351
17.12 Limitations of Surface Reactions / 352
17.13 Binary and Concentrated Solutions / 353

Problems / 354
Notation / 359
References / 360

18 APPLICATIONS OF POTENTIAL THEORY 365

18.1 Simplifications For Potential-Theory Problems / 366
18.2 Primary Current Distribution / 367
18.3 Secondary Current Distribution / 370
18.4 Numerical Solution by Finite Differences / 374



�

� �

�

CONTENTS xiii

18.5 Principles of Cathodic Protection / 375
Problems / 389
Notation / 396
References / 397

19 EFFECT OF MIGRATION ON LIMITING CURRENTS 399

19.1 Analysis / 400
19.2 Correction Factor for Limiting Currents / 402
19.3 Concentration Variation of Supporting Electrolyte / 404
19.4 Role of Bisulfate Ions / 409
19.5 Paradoxes with Supporting Electrolyte / 413
19.6 Limiting Currents for Free Convection / 417

Problems / 423
Notation / 424
References / 426

20 CONCENTRATION OVERPOTENTIAL 427

20.1 Definition / 427
20.2 Binary Electrolyte / 429
20.3 Supporting Electrolyte / 430
20.4 Calculated Values / 430

Problems / 431
Notation / 432
References / 433

21 CURRENTS BELOW THE LIMITING CURRENT 435

21.1 The Bulk Medium / 436
21.2 The Diffusion Layers / 437
21.3 Boundary Conditions and Method of Solution / 438
21.4 Results for the Rotating Disk / 440

Problems / 444
Notation / 446
References / 447

22 POROUS ELECTRODES 449

22.1 Macroscopic Description of Porous Electrodes / 450
22.2 Nonuniform Reaction Rates / 457
22.3 Mass Transfer / 462



�

� �

�

xiv CONTENTS

22.4 Battery Simulation / 463
22.5 Double-Layer Charging and Adsorption / 477
22.6 Flow-Through Electrochemical Reactors / 478

Problems / 482
Notation / 484
References / 486

23 SEMICONDUCTOR ELECTRODES 489

23.1 Nature of Semiconductors / 490
23.2 Electric Capacitance at the Semiconductor–Solution Interface / 499
23.3 Liquid-Junction Solar Cell / 502
23.4 Generalized Interfacial Kinetics / 506
23.5 Additional Aspects / 509

Problems / 513
Notation / 514
References / 516

24 IMPEDANCE 517

24.1 Frequency Dispersion at a Disk Electrode / 519
24.2 Modulated Flow With a Disk Electrode / 522
24.3 Porous Electrodes for Batteries / 526
24.4 Kramers–Kronig Relation / 528

Problems / 530
Notation / 531
References / 532

APPENDIX A PARTIAL MOLAR VOLUMES 535

APPENDIX B VECTORS AND TENSORS 537

APPENDIX C NUMERICAL SOLUTION OF COUPLED, ORDINARY
DIFFERENTIAL EQUATIONS 543

INDEX 567



�

� �

�

PREFACE TO THE FOURTH EDITION

Electrochemical systems provide the basis for many technologically important applications, such as
batteries and fuel cells, production and refining of metals and chemicals, fabrication of electronic
materials and devices, and operation of sensors, including those regulating the air/fuel ratio in
automobile engines. The rechargeable lithium-ion battery has emerged as a vital element of the emerging
clean-energy landscape. In biological systems, nerve action involves electrochemical processes. While
applications continue to evolve, the fundamentals need only minor revision to train and guide people
in adapting to new applications. Electrochemical systems involve many simultaneously interacting
phenomena, drawn from many aspects of chemistry and physics, and require a disciplined learning
process. The book provides a comprehensive coverage of electrochemical theories as they pertain to the
understanding of electrochemical systems. It describes the foundations of thermodynamics, chemical
kinetics, and transport phenomena including the electric potential and charged species.

This fourth edition incorporates further improvements developed over the years in teaching both
graduate and advanced undergraduate students. Chapter 2 has expanded to include cells with polymer
electrolytes. Chapter 6 now includes a discussion of equilibration of a charged polymer material and an
electrolytic solution (Donnan equilibrium). The discussion of the oxygen electrode in Chapter 8 now
includes insight from recent computer simulations. The application of concentrated solution theory to
polymer electrolytes is added to Chapters 12 and 14. The number of transport properties describing
different systems is now clearly stated. Chapter 15 presents a method for predicting turbulence by
means of dissipation. Chapter 15 presents a method for predicting turbulence by means of dissipation.
Finally, impedance measurements in electrochemical systems are important because experimental
implementation is easy and diagnostic information is obtained without destroying the system. A new
chapter on this subject, Chapter 24, is added.

xv
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xvi PREFACE TO THE FOURTH EDITION

We have much gratitude for the many students and colleagues who have done experiments and
calculations that are reported in the book, and to our families for their continual support. We thank Saheli
Chakraborty, Youngwoo Choo, Louise Frenck, Michael Galluzzo, Kevin Gao, Lorena Grundy, David
Halat, Darby Hickson, Alec Ho, Zach Hoffman, Whitney Loo, Jacqueline Maslyn, Eric McShane,
Hee Jeung Oh, Morgan Seidler, Gurmukh Sethi, Deep Shah, Neel Shah, and Irune Villaluenga, who
patiently corrected many drafts of this manuscript. NPB thanks JN for the honor of working with him
on the fourth edition and for being his mentor for more than a decade.

JOHN NEWMAN

Berkeley, California
April 27, 2020

NITASH P. BALSARA

Berkeley, California
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PREFACE TO THE THIRD EDITION

This third edition incorporates various improvements developed over the years in teaching
electrochemical engineering to both graduate and advanced undergraduate students. Chapter 1 has
been entirely rewritten to include more explanations of basic concepts. Chapters 2, 7, 8, 13, 18, and
22 and Appendix C have been modified, to varying degrees, to improve clarity. Illustrative examples
taken from real engineering problems have been added to Chapters 8 (kinetics of the hydrogen
electrode), 18 (cathodic protection), and 22 (reaction-zone model and flow-through porous electrodes).
Some concepts have been added to Chapters 2 (Pourbaix diagrams and the temperature dependence of
the standard cell potential) and 13 (expanded treatment of the thermoelectric cell). The exponential
growth of computational power over the past decade, which was made possible in part by advances in
electrochemical technologies such as semiconductor processing and copper interconnects, has made
numerical simulation of coupled nonlinear problems a routine tool of the electrochemical engineer. In
realization of the importance of numerical simulation methods, their discussion in Appendix C has
been expanded.

As discussed in the preface to the first edition, the science of electrochemistry is both fascinating
and challenging because of the interaction among thermodynamic, kinetic, and transport effects. It is
nearly impossible to discuss one concept without referring to its interaction with other concepts. We
advise the reader to keep this in mind while reading the book, in order to develop facility with the basic
principles as well as a more thorough understanding of the interactions and subtleties.

We have much gratitude for the many graduate students and colleagues who have worked on the
examples cited and proofread chapters and for our families for their continual support. KET thanks JN
for the honor of working with him on this third edition.

JOHN NEWMAN

Berkeley, California
June 1, 2004

KAREN E. THOMAS-ALYEA

Manchester, Connecticut
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PREFACE TO THE SECOND EDITION

A major theme of Electrochemical Systems is the simultaneous treatment of many complex, interacting
phenomena. The wide acceptance and overall impact of the first edition have been gratifying, and
most of its features have been retained in the second edition. New chapters have been added on porous
electrodes and semiconductor electrodes. In addition, over 70 new problems are based on actual course
examinations.

Immediately after the introduction in Chapter 1, some may prefer to study Chapter 11 on transport in
dilute solutions and Chapter 12 on concentrated solutions before entering the complexities of Chapter
2. Chapter 6 provides a less intense, less rigorous approach to the potentials of cells at open circuit.
Though the subjects found in Chapters 5, 9, 10, 13, 14, and 15 may not be covered formally in a
one-semester course, they provide breadth and a basis for future reference.

The concept of the electric potential is central to the understanding of the electrochemical systems.
To aid in comprehension of the difference between the potential of a reference electrode immersed
in the solution of interest and the electrostatic potential, the quasi-electrostatic potential, or the cavity
potential—since the composition dependence is quite different—Problems 6.16 and Figure 12.1 have
been added to the new edition. The reader will also benefit by the understanding of the potential as it
is used in semi-conductor electrodes.

JOHN NEWMAN

Berkeley, California
June 10, 1991
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PREFACE TO THE FIRST EDITION

Electrochemistry is involved to a significant extent in the present-day industrial economy. Examples
are found in primary and secondary batteries and fuel cells; in the production of chlorine, caustic
soda, aluminum, and other chemicals; in electroplating, electromachining, and electrorefining; and in
corrosion. In addition, electrolytic solutions are encountered in desalting water and in biology. The
decreasing relative cost of electric power has stimulated a growing role for electrochemistry. The
electrochemical industry in the United States amounts to 1.6 percent of all U.S. manufacturing and is
about one third as large as the industrial chemicals industry.[1]

The goal of this book is to treat the behavior of electrochemical systems from a practical point of
view. The approach is therefore macroscopic rather than microscopic or molecular. An encyclopedic
treatment of many specific systems is, however, not attempted. Instead, the emphasis is placed on
fundamentals, so as to provide a basis for the design of new systems or processes as they become
economically important.

Thermodynamics, electrode kinetics, and transport phenomena are the three fundamental areas
which underlie the treatment, and the attempt is made to illuminate these in the first three parts of
the book. These areas are interrelated to a considerable extent, and consequently the choice of the
proper sequence of material is a problem. In this circumstance, we have pursued each subject in turn,
notwithstanding the necessity of calling upon material which is developed in detail only at a later point.
For example, the open-circuit potentials of electrochemical cells belong, logically and historically,
with equilibrium thermodynamics, but a complete discussion requires the consideration of the effect
of irreversible diffusion processes.

The fascination of electrochemical systems comes in great measure from the complex phenomena
which can occur and the diverse disciplines which find application. Consequences of this complexity
are the continual rediscovery of old ideas, the persistence of misconceptions among the uninitiated,
and the development of involved programs to answer unanswerable or poorly conceived questions. We
have tried, then, to follow a straightforward course. Although this tends to be unimaginative, it does
provide a basis for effective instruction.

The treatment of these fundamental aspects is followed by a fourth part, on applications, in which
thermodynamics, electrode kinetics, and transport phenomena may all enter into the determination of
the behavior of electrochemical systems. These four main parts are preceded by an introductory chapter
in which are discussed, mostly in a qualitative fashion, some of the pertinent factors which will come

xxi
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xxii PREFACE TO THE FIRST EDITION

into play later in the book. These concepts are illustrated with rotating cylinders, a system which is
moderately simple from the point of view of the distribution of current.

The book is directed toward seniors and graduate students in science and engineering and toward
practitioners engaged in the development of electrochemical systems. A background in calculus and
classical physical chemistry is assumed.

William H. Smyrl, currently of the University of Minnesota, prepared the first draft of Chapter 2, and
Wa-She Wong, formerly at the General Motors Science Center, prepared the first draft of Chapter 5.
The author acknowledges with gratitude the support of his research endeavors by the United States
Atomic Energy Commission, through the Inorganic Materials Research Division of the Lawrence
Berkeley Laboratory, and subsequently by the United States Department of Energy, through the
Materials Sciences Division of the Lawrence Berkeley Laboratory.

REFERENCE

1. G. M. Wenglowski, “An Economic Study of the Electrochemical Industry in the United States,” in
J. O’M. Bockris, ed., Modern Aspects of Electrochemistry, no. 4 (London: Butterworths, 1966), pp. 251–306.

JOHN NEWMAN

Berkeley, California
December 20, 1972
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CHAPTER 1

INTRODUCTION

Electrochemical techniques are used for the production of aluminum and chlorine, the conversion
of energy in batteries and fuel cells, sensors, electroplating, and the protection of metal structures
against corrosion, to name just a few prominent applications. While applications such as fuel cells and
electroplating may seem quite disparate, in this book we show that a few basic principles form the
foundation for the design of all electrochemical processes.

The first practical electrochemical system was the Volta pile, invented by Alexander Volta in 1800.
Volta’s pile is still used today in batteries for a variety of industrial, medical, and military applications.
Volta found that when he made a sandwich of a layer of zinc metal, paper soaked in salt water, and
tarnished silver and then connected a wire from the zinc to the silver, he could obtain electricity (see
Figure 1.1). What is happening when the wire is connected? Electrons have a chemical preference to
be in the silver rather than the zinc, and this chemical preference is manifest as a voltage difference
that drives the current. At each electrode, an electrochemical reaction is occurring: zinc reacts with
hydroxide ions in solution to form free electrons, zinc oxide, and water, while silver oxide (tarnished
silver) reacts with water and electrons to form silver and hydroxide ions. Hydroxide ions travel through
the salt solution (the electrolyte) from the silver to the zinc, while electrons travel through the external
wire from the zinc to the silver.

We see from this example that many phenomena interact in electrochemical systems. Driving forces
for reaction are determined by the thermodynamic properties of the electrodes and electrolyte. The
rate of the reaction at the interface in response to this driving force depends on kinetic rate parameters.
Finally, mass must be transported through the electrolyte to bring reactants to the interface, and
electrons must travel through the electrodes. The total resistance is therefore a combination of the
effects of reaction kinetics and mass and electron transfer. Each of these phenomena—thermodynamics,
kinetics, and transport—is addressed separately in subsequent chapters. This chapter defines basic
terminology and gives an overview of the principal concepts that are derived in subsequent chapters.

Electrochemical Systems, Fourth Edition. John Newman and Nitash P. Balsara.
© 2021 John Wiley & Sons, Inc. Published 2021 by John Wiley & Sons, Inc.
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2 INTRODUCTION

ZnO Ag2O

Zn Ag

e–

Aqueous
KOH

OH–

Figure 1.1 Volta’s first battery comprised of a sandwich of zinc with its oxide layer, salt solution, and silver
with its oxide layer. While the original Volta pile used an electrolyte of NaCl in water, modern batteries use
aqueous KOH to increase the conductivity and the concentration of OH−.

1.1 DEFINITIONS

Every electrochemical system must contain two electrodes separated by an electrolyte and connected
via an external electronic conductor. Ions flow through the electrolyte from one electrode to the other,
and the circuit is completed by electrons flowing through the external conductor.

An electrode is a material in which electrons are the mobile species and therefore can be used to sense
(or control) the potential of electrons. It may be a metal or other electronic conductor such as carbon, an
alloy or intermetallic compound, one of many transition-metal chalcogenides, or a semiconductor. In
particular, in electrochemistry an electrode is considered to be an electronic conductor that carries out
an electrochemical reaction or some similar interaction with an adjacent phase. Electronic conductivity
generally decreases slightly with increasing temperature and is of the order 102 to 104 S/cm, where a
siemens (S) is an inverse ohm.

An electrolyte is a material in which the mobile species are ions and free movement of electrons
is blocked. Ionic conductors include molten salts, dissociated salts in solution, and some ionic solids.
In an ionic conductor, neutral salts are found to be dissociated into their component ions. The term
species refers to ions as well as neutral molecular components that do not dissociate. Ionic conductivity
generally increases with increasing temperature and is of the order 10−4 to 10−1 S/cm, although it can
be substantially lower.

In addition to these two classes of materials, some materials are mixed conductors, in which charge
can be transported by both electrons and ions. Mixed conductors are occasionally used in electrodes,
for example, in solid-oxide fuel cells.

Thus the key feature of an electrochemical cell is that it contains two electrodes that allow transport
of electrons, separated by an electrolyte that allows movement of ions but blocks movement of
electrons. To get from one electrode to the other, electrons must travel through an external conducting
circuit, doing work or requiring work in the process.

The primary distinction between an electrochemical reaction and a chemical redox reaction is that,
in an electrochemical reaction, reduction occurs at one electrode and oxidation occurs at the other,
while in a chemical reaction, both reduction and oxidation occur in the same place. This distinction has
several implications. In an electrochemical reaction, oxidation is spatially separated from reduction.
Thus, the complete redox reaction is broken into two half-cells. The rate of these reactions can be
controlled by externally applying a potential difference between the electrodes, for example, with an
external power supply, a feature absent from the design of chemical reactors. Finally, electrochemical
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reactions are always heterogeneous; that is, they always occur at the interface between the electrolyte
and an electrode (and possibly a third phase such as a gaseous or insulating reactant).

Even though the half-cell reactions occur at different electrodes, the rates of reaction are coupled
by the principles of conservation of charge and electroneutrality. As we demonstrate in Section 3.1,
a very large force is required to bring about a spatial separation of charge. Therefore, the flow of
current is continuous: all of the current that leaves one electrode must enter the other. At the interface
between the electrode and the electrolyte, the flow of current is still continuous, but the identity of the
charge-carrying species changes from being an electron to being an ion. This change is brought about
by a charge-transfer (i.e., electrochemical) reaction. In the electrolyte, electroneutrality requires that
there be the same number of equivalents of cations as anions:

∑

i

zici = 0, (1.1)

where the sum is over all species i in solution, and ci and zi are the concentration and the charge
number of species i, respectively. For example, zZn2+ is +2, zOH− is −1, and zH2O is 0.

Faraday’s law relates the rate of reaction to the current. It states that the rate of production of a
species is proportional to the current, and the total mass produced is proportional to the amount of
charge passed multiplied by the equivalent weight of the species:

mi = −
siMiIt

nF
, (1.2)

where mi is the mass of species i produced by a reaction in which its stoichiometric coefficient is si
and n electrons are transferred, Mi is the molar mass, F is Faraday’s constant, equal to 96,487 C/mol,
and the total amount of charge passed is equal to the current I multiplied by time t. The sign of the
stoichiometric coefficient is determined by the convention of writing an electrochemical reaction in
the form ∑

i

siM
zi
i ⇌ ne−, (1.3)

where Mi is the symbol for the chemical formula of species i. For example, for the reaction

Zn + 2OH− ⇌ ZnO + 2e− + H2O, (1.4)

sZnO is −1, sOH− is 2, and n is 2.
Following historical convention, current is defined as the flow of positive charge. Thus, electrons

move in the direction opposite to that of the convention for current flow. Current density is the flux of
charge, that is, the rate of flow of positive charge per unit area perpendicular to the direction of flow.
The behavior of electrochemical systems is determined more by the current density than by the total
current, which is the product of the current density and the cross-sectional area. In this text, the symbol
i refers to current density unless otherwise specified.

Owing to the historical development of the field of electrochemistry, several terms are in common
use. Polarization refers to the departure of the potential from equilibrium conditions caused by the
passage of current. Overpotential refers to the magnitude of this potential drop caused by resistance to
the passage of current. Later, we discuss different types of resistances that cause overpotential.

1.2 THERMODYNAMICS AND POTENTIAL

If one places a piece of tarnished silver in a basin of salt water and connects the silver to a piece of
zinc, the silver spontaneously will become shiny, and the zinc will dissolve. Why? An electrochemical
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reaction is occurring in which silver oxide is reduced to silver metal while zinc metal is oxidized. It
is the thermodynamic properties of silver, silver oxide, zinc, and zinc oxide that determine that silver
oxide is reduced spontaneously at the expense of zinc (as opposed to reducing zinc oxide at the expense
of the silver). These thermodynamic properties are the electrochemical potentials. Let us arbitrarily
call one half-cell the right electrode and the other the left electrode. The energy change for the reaction
is given by the change in Gibbs free energy for each half-cell reaction:

ΔG = (
∑

i

si𝜇i)
right

− (
∑

i

si𝜇i)
left

, (1.5)

where G is the Gibbs free energy, 𝜇i is the electrochemical potential of species i, and si is the
stoichiometric coefficient of species i, as defined by equation 1.3. If ΔG for the reaction with our
arbitrary choice of right and left electrodes is negative, then the electrons will want to flow spontaneously
from the left electrode to the right electrode. The right electrode is then the more positive electrode,
which is the electrode in which the electrons have a lower electrochemical potential. This is equivalent
to saying that ΔG is equal to the free energy of the products minus the free energy of the reactants.

Now imagine that instead of connecting the silver directly to the zinc, we connect them via a
high-impedance potentiostat, and we adjust the potential across the potentiostat until no current is
flowing between the silver and the zinc. (A potentiostat is a device that can apply a potential, while
a galvanostat is a device that can control the applied current. If the potentiostat has a high internal
impedance (resistance), then it draws little current in measuring the potential.) The potential at which
no current flows is called the equilibrium or open-circuit potential, denoted by the symbol U. This
equilibrium potential is related to the Gibbs free energy by

ΔG = −nFU. (1.6)

The equilibrium potential is thus a function of the intrinsic nature of the species present, as well as
their concentrations and, to a lesser extent, temperature.

While no net current is flowing at equilibrium, random thermal collisions among reactant and
product species still cause reaction to occur, sometimes in the forward direction and sometimes in the
backward direction. At equilibrium, the rate of the forward reaction is equal to the rate of the backward
reaction. The potential of the electrode at equilibrium is a measure of the electrochemical potential (i.e.,
energy) of electrons in equilibrium with the reactant and product species. Electrochemical potential is
defined in more detail in Chapter 2. In brief, the electrochemical potential can be related to the molality
mi and activity coefficient 𝛾i, by

𝜇i = 𝜇𝜃i + RT ln mi𝛾i, (1.7)

where 𝜇𝜃 is independent of concentration, R is the universal gas constant (8.3143 J/mol⋅K), and T is
temperature in kelvin. If one assumes that all activity coefficients are equal to 1, then equation 1.5
reduces to the Nernst equation

U = U𝜃 − RT
nF

ln(
∏

i

mi
si)

right

+ RT
nF

ln (
∏

i

mi
si)

left

, (1.8)

which relates the equilibrium potential to the concentrations of reactants and products. In many texts,
one sees equation 1.8 without the “left” term. It is then implied that one is measuring the potential of
the right electrode with respect to some unspecified left electrode.
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By connecting an electrode to an external power supply, one can electrically control the elec-
trochemical potential of electrons in the electrode, thereby perturbing the equilibrium and driving a
reaction. Applying a negative potential to an electrode increases the energy of electrons. Increasing the
electrons’ energy above the lowest unoccupied molecular orbital of a species in the adjacent electrolyte
will cause reduction of that species (see Figure 1.2). This reduction current (flow of electrons into the
electrode and from there into the reactant) is also called a cathodic current, and the electrode at which
it occurs is called the cathode. Conversely, applying a positive potential to an electrode decreases
the energy of electrons, causing electrons to be transferred from the reactants to the electrode. The
electrode where such an oxidation reaction is occurring is called the anode. Thus, applying a positive
potential relative to the equilibrium potential of the electrode will drive the reaction in the anodic
direction; that is, electrons will be removed from the reactants. Applying a negative potential relative to
the equilibrium potential will drive the reaction in the cathodic direction. Anodic currents are defined
as positive (flow of positive charges into the solution from the electrode) while cathodic currents are
negative. Common examples of cathodic reactions include deposition of a metal from its salt and
evolution of H2 gas, whereas common anodic reactions include corrosion of a metal and evolution of
O2 or Cl2.

Note that one cannot control the potential of an electrode by itself. Potential must always be
controlled relative to another electrode. Similarly, potentials can be measured only relative to some
reference state. While it is common in the physics literature to use the potential of an electron in a
vacuum as the reference state (see Chapter 3), electrochemists generally use a reference electrode, an
electrode designed so that its potential is well-defined and reproducible. A potential is well-defined
if both reactant and product species are present and the kinetics of the reaction is sufficiently fast
that the species are present in their equilibrium concentrations. Since potential is measured with a
high-impedance voltmeter, negligible current passes through a reference electrode. Chapter 5 discusses
commonly used reference electrodes.

Electrochemical cells can be divided into two categories: galvanic cells, which spontaneously
produce work, and electrolytic cells, which require an input of work to drive the reaction. Galvanic
applications include discharge of batteries and fuel cells. Electrolytic applications include charging
batteries, electroplating, electrowinning, and electrosynthesis. In a galvanic cell, connecting the
positive and negative electrodes causes a driving force for charge transfer that decreases the potential
of the positive electrode, driving its reaction in the cathodic direction, and increases the potential of
the negative electrode, driving its reaction in the anodic direction. Conversely, in an electrolytic cell, a
positive potential (positive with respect to the equilibrium potential of the positive electrode) is applied

Electrode

Reduction Oxidation
+

– Solution

e–

e–

Electrode Solution

Potential

Energy
of

electron

Figure 1.2 Schematic of the relative energy of the electron in reduction and oxidation reactions. During a
reduction reaction, electrons are transferred from the electrode to the lowest unoccupied energy level of a reactant
species. During oxidation, electrons are transferred from the highest occupied energy level of the reactant to the
electrode.
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to the positive electrode to force the reaction in the anodic direction, whereas a negative potential
is applied to the negative electrode to drive its reaction in the cathodic direction. Thus, the positive
electrode is the anode in an electrolytic cell while it is the cathode in a galvanic cell, and the negative
electrode is the cathode in an electrolytic cell and the anode in a galvanic cell.

1.3 KINETICS AND RATES OF REACTION

Imagine that we have a system with three electrodes: a zinc negative electrode, a silver positive
electrode, and another zinc electrode, all immersed in a beaker of aqueous KOH (see Figure 1.1).
We pass current between the negative and positive electrodes. For the moment, let us just focus on one
electrode, such as the zinc negative electrode. Since it is our electrode of interest, we call it the working
electrode, and the other electrode through which current passes is termed the counterelectrode. The
second zinc electrode will be placed in solution and connected to the working electrode through a
high-impedance voltmeter. This second zinc electrode is in equilibrium with the electrolyte since no
current is passing through it. We can therefore use this electrode as a reference electrode to probe
changes in the potential in the electrolyte relative to the potential of the working electrode.

As mentioned above, a driving force is required to force an electrochemical reaction to occur.
Imagine that we place our reference electrode in the solution adjacent to the working electrode. Recall
that our working and reference electrodes are of the same material composition. Since no current is
flowing at the reference electrode, and a potential has been applied to the working electrode to force
current to flow, the difference in potential between the two electrodes must be the driving force for
reaction. This driving force is termed the surface overpotential and is given the symbol 𝜂s. The rate of
reaction often can be related to the surface overpotential by the Butler–Volmer equation, which has the
form

i = i0 [exp (
𝛼aF
RT

𝜂s) − exp (−
𝛼cF
RT
𝜂s)] . (1.9)

A positive 𝜂s produces a positive (anodic) current. The derivation and application of the Butler–Volmer
equation, and its limitations, are discussed in Chapter 8. As mentioned above, random thermal collisions
cause reactions to occur in both the forward and backward directions. The first term in equation 1.9
is the rate of the anodic direction, while the second term is the rate of the cathodic direction. The
difference between these rates gives the net rate of reaction. The parameter i0 is called the exchange
current density and is analogous to the rate constant used in chemical kinetics. In a reaction with a high
exchange current density, both the forward and backward reactions occur rapidly. The net direction of
reaction depends on the sign of the surface overpotential. The exchange current density depends on the
concentrations of reactants and products, temperature, and also the nature of the electrode–electrolyte
interface and impurities that may contaminate the surface. Each of these factors can change the value
of i0 by several orders of magnitude. i0 can range from over 1 mA/cm2 to less than 10−7 mA/cm2. The
parameters 𝛼a and 𝛼c, called apparent transfer coefficients, are additional kinetic parameters that relate
how an applied potential favors one direction of reaction over the other. They usually have values
between 0.2 and 2.

A reaction with a large value of i0 is often called fast or reversible. For a large value of i0, a large
current density can be obtained with a small surface overpotential.

The relationship between current density and surface overpotential is graphed in Figures 1.3 and
1.4. In Figure 1.3, we see that the current density varies linearly with 𝜂s for small values of 𝜂s, and
from the semilog graph given in Figure 1.4 we see that the current density varies exponentially with 𝜂s
for large values of 𝜂s. The latter observation was made by Tafel in 1905, and Figure 1.4 is termed a
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Tafel plot. For large values of the surface overpotential, one of the terms in equation 1.9 is negligible,
and the overall rate is given by either

in = i0 exp (
𝛼aF
RT

𝜂s) (for 𝛼aF𝜂s ≫ RT) (1.10)

or
in = −i0 exp (−

𝛼cF
RT
𝜂s) (for 𝛼cF𝜂s ≪ −RT). (1.11)

The Tafel slope, either 2.303RT/𝛼aF or 2.303RT/𝛼cF, thus depends on the apparent transfer coefficient.

1.4 TRANSPORT

The previous section describes how applying a potential to an electrode creates a driving force for
reaction. In addition, the imposition of a potential difference across an electronic conductor creates a
driving force for the flow of electrons. The driving force is the electric field E, related to the gradient
in potential Φ by

𝐄 = −∇Φ. (1.12)

Ohm’s law relates the current density to the gradient in potential by

𝐢 = −𝜎∇Φ, (1.13)

where 𝜎 is the electronic conductivity, equal to the inverse of the resistivity.
Similarly, applying an electric field across a solution of ions creates a driving force for ionic current.

Current in solution is the net flux of charged species:

𝐢 =
∑

i

ziF𝐍i, (1.14)

where Ni is the flux density of species i.
While electrons in a conductor flow only in response to an electric field, ions in an electrolyte

move in response to an electric field (a process called migration) and also in response to concentration
gradients (diffusion) and bulk fluid motion (convection). The net flux of an ion is therefore the sum of
the migration, diffusion, and convection terms. In the following pages we look at each term individually.
To simplify our discussion, let us consider a solution that contains a single salt in a single solvent,
CuSO4 in H2O. An electrolyte that contains only one solvent and one salt is called a binary electrolyte.

To give the reader a quantitative sense of the effect of different transport processes on the
performance of an electrochemical system, we give calculations in the following sections for the
specific system shown in Figure 1.5. This example consists of two concentric copper cylinders, of inner
radius ri, outer radius ro, and height H, and with the annulus between filled with electrolyte. Since
both cylinders are copper, at rest the open-circuit potential is zero. If we apply a potential between
the inner and outer cylinders, copper will dissolve at the positive electrode to form Cu2+, which will
be deposited as Cu metal at the negative electrode. This type of process is widely used in industry for
the electroplating and electrorefining of metals. While the annulus between concentric cylinders is not
a practical geometry for many industrial applications, it is convenient for illustrating the concepts.
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Figure 1.5 Two concentric copper electrodes with the annulus filled with electrolyte. The inner electrode can
be rotated.

Migration

Imagine that we place electrodes in the solution and apply an electric field between the electrodes.
For the moment, let us imagine that the solution remains at a uniform concentration. We discuss the
influence of concentration gradients in the next section. The electric field creates a driving force for the
motion of charged species. It drives cations toward the cathode and anions toward the anode, that is,
cations move in the direction opposite to the gradient in potential. The velocity of the ion in response
to an electric field is its migration velocity, given by

𝑣i,migration = −ziuiF∇Φ, (1.15)

where Φ is the potential in the solution (a concept that is discussed in detail in Chapters 2, 3, and 6)
and ui, called the mobility, is a proportionality factor that relates how fast the ion moves in response to
an electric field. It has units of cm2⋅mol/J⋅s.

The flux density of a species is equal to its velocity multiplied by its concentration. Thus, the
migrational flux density is given by

𝐍i,migration = −ziuiFci∇Φ. (1.16)

Summing the migrational fluxes according to equation 1.14 for a binary electrolyte, we see that the
current density due to migration is given by

𝐢 = −F2(z2
+u+c+ + z2

−u−c−)∇Φ. (1.17)

The ionic conductivity 𝜅 is defined as

𝜅 = F2(z2
+u+c+ + z2

−u−c−). (1.18)
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Thus, the movement of charged species in a uniform solution under the influence of an electric field
is also given by Ohm’s law:

𝐢 = −𝜅∇Φ. (1.19)

We use 𝜅 instead of 𝜎 to indicate that the mobile charge carriers in electrolytes are ions, as opposed to
electrons as in metals.

One can use this expression to obtain the potential profile and total ionic resistance for a cell
of a given geometry, for example, our system of concentric cylinders. If the ends are insulators
perpendicular to the cylinders, then the current flows only in the radial direction and is uniform in the
angular and axial directions. The gradient in equation 1.19 is then simply given by

𝐢 = −𝜅dΦ
dr
. (1.20)

If a total current I is applied between the two cylinders, then the current density i in solution will
vary with radial position by

i(r) = I
2𝜋rH

, (1.21)

where H is the height of the cylinder. Substitution of equation 1.21 into equation 1.20 followed by
integration gives the potential distribution in solution,

Φ(r) − Φ(ri) = −
I

2𝜋H𝜅 ln
r
ri
, (1.22)

and the total potential drop between the electrodes is

Φ(ro) − Φ(ri) = −
I

2𝜋H𝜅 ln
ro

ri
. (1.23)

The potential profile in solution is sketched in Figure 1.6. The potential changes more steeply closer
to the smaller electrode, and the potential in solution at any given point is easily calculated from
equation 1.22. As mentioned above, the current distribution on each electrode is uniform (although it
is different on the two electrodes, being larger on the smaller electrode). Infinite parallel plates and
concentric spheres are two other geometries that have uniform current distributions.

The reader may be familiar with the integrated form of Ohm’s law commonly used in the field of
electrostatics:

ΔΦ = IR, (1.24)

where R is the total electrical resistance of the system in ohms. For our concentric cylinders we see that

R =
ln(ro∕ri)

2𝜋H𝜅 . (1.25)

For 0.1 M CuSO4 in water, 𝜅 = 0.00872 S/cm. For H= 10 cm, ro = 3 cm, and ri = 2 cm, equation 1.25
gives the ohmic resistance of the system to be 0.74Ω.

This analysis of the total resistance of the solution applies only in the absence of concentration
gradients.

Diffusion

The application of an electric field creates a driving force for the motion of all ions in solution by
migration. Thus for our system of aqueous copper sulfate, the current is caused by fluxes of both Cu2+
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Figure 1.6 Distribution of the potential in solution between cylindrical electrodes.

and SO2−
4 , with the cation migrating in the direction opposite to the anion. The transference number

of an ion is defined as the fraction of the current that is carried by that ion in a solution of uniform
composition:

ti =
ziFNi

i
. (1.26)

For example, for 0.1 M CuSO4 in water at 25∘C, tCu2+ = 0.363 and tSO2−
4
= 0.637. However, in our

system of copper electrodes, only the Cu2+ is reacting at the electrodes. Movement of sulfate ions
toward the anode will therefore cause changes in concentration across the solution. In general, if the
transference number of the reacting ion is less than unity, then there will be fluxes of the other ions
in solution that will cause concentration gradients to form. These concentration gradients drive mass
transport by the process of diffusion, which occurs in addition to the process of migration described
above. The component of the flux density of a species due to diffusion is

𝐍i,diffusion = −Di ∇ci, (1.27)

where Di is the diffusion coefficient of species i. In aqueous systems at room temperature, diffusion
coefficients are generally of order 10−5 cm2/s.

If the sulfate ion is not reacting electrochemically, how does it carry current? At steady state, of
course, it does not. The flux of sulfate in one direction by migration, proportional to its transference
number, must be counterbalanced by the flux of sulfate in the opposite direction by diffusion. Thus,
concentration gradients will develop until diffusion of sulfate exactly counterbalances migration of
sulfate. At steady state,

𝐍−,migration = −z−u−Fc−∇Φ = −𝐍−,diffusion = D−∇c−. (1.28)
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Before the concentration gradients have reached their steady-state magnitudes, the sulfate ion is
effectively carrying current because salt accumulates at the anode side of the cell and decreases at the
cathode side of the cell. While migration and diffusion of the sulfate ions oppose each other, migration
and diffusion act in the same direction for the cupric ion, which carries all of the current at steady state.

A low transference number means that little of the current is carried by migration of that ion. If
the ion is the reacting species, then more diffusion is needed to transport the ion for a lower ti, and
therefore a larger concentration gradient forms.

The magnitude of these concentration gradients is given by a combination of both the transference
number and the salt diffusion coefficient, as discussed in Chapters 11 and 12. The salt diffusion
coefficient D for a binary electrolyte is an average of the individual ionic diffusivities:

D =
z+u+D− − z−u−D+

z+u+ − z−u−
. (1.29)

For a binary electrolyte, the transference number is related to the mobilities by

t+ =
z+u+

z+u+ − z−u−
. (1.30)

The treatment of transport in electrolytic solutions is thus more complicated than the treatment
of solutions of neutral molecules. In a solution with a single neutral solute, the magnitude of the
concentration gradient depends on only one transport property, the diffusion coefficient. In contrast,
transport in a solution of a dissociated salt is determined by a total of three transport properties. The
magnitude of the concentration gradient is determined by D and t+, while 𝜅 determines the ohmic
resistance.

Convection

Convection is the bulk movement of a fluid. The equations describing fluid velocity and convection
are detailed in Chapter 15. The flux density of a species by convection is given by

𝐍i,convection = ci𝐯, (1.31)

where v is the velocity of the bulk fluid. Convection includes natural convection (caused by density
gradients) and forced convection (caused by mechanical stirring or a pressure gradient). Convection
can be laminar, meaning that the fluid flows in a smooth fashion, or turbulent, in which the motion is
chaotic.

Substitution into equation 1.14 for the current gives

𝐢convection =
∑

i

ziciF𝐯. (1.32)

By electroneutrality,
∑

izici = 0. Therefore, in an electrically neutral solution, bulk convection alone
does not cause a net current. However, convection can cause mixing of the solution, and while it alone
cannot cause a current, fluid motion can affect concentration profiles and serve as an effective means
to bring reactants to the electrode surface.

The net flux density of an ion is given by the combination of equations 1.16, 1.27, and 1.31:

𝐍i = −ziuiFci∇Φ − Di∇ci + ci𝐯. (1.33)
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Figure 1.7 Concentration profile in the annular space between the electrodes. The dashed curve refers to the
absence of a radial component of velocity. The solid curve refers to the presence of turbulent mixing.

To understand how the different components interact, consider Figure 1.7, which shows the concentra-
tion profile between the two copper cylinders at steady state for two cases. The dashed curve shows the
case in which there is no convection. The slope of this curve is determined by the transference number,
salt diffusion coefficient, and the current density, as mentioned previously. The cation migrates toward
the negative electrode (here the outer electrode), and the concentration profile shows that this migration
is augmented by diffusion down the concentration gradient. Conversely, migration of the unreacting
sulfate ion toward the anode is counterbalanced by diffusion acting in the opposite direction.

If one increases the current density, the slope of the dashed curve in Figure 1.7 increases. At some
current density, the concentration of cupric ion at the cathode will reach zero. Experimentally, one
observes a large increase in the cell voltage if one tries to increase the current density beyond this
value. This current is called the limiting current and is the highest current that can be carried by the
cupric ion in this solution and geometry. A higher current can be passed only if another reaction, such
as hydrogen evolution, starts occurring to carry the extra current.

The concentration profile in solution can be modified by convection. For example, one could flow
electrolyte axially through the annulus, causing the concentration to vary with both radial position and
distance from the inlet. Conversely, laminar angular flow of the solution in the annulus, such as would
be caused by slow rotation of one of the cylinders, would have no impact on the concentration profile
since the fluid velocity would be always perpendicular to the concentration gradients.

The solid curve in Figure 1.7 shows the concentration profile for the case when the inner cylinder is
rotated at a high speed, causing turbulent convection in the bulk of the solution. At the solid–solution
interface, the “no-slip” condition applies, which damps the fluid velocity. Diffusion and migration
therefore dominate convection immediately adjacent to the electrodes. The mixing causes the solution
to be more or less uniform in all regions except narrow boundary layers adjacent to the electrode
surfaces. These boundary regions are called diffusion layers. They become thinner as the rate of
mixing increases. Because the mixing evens out the concentration in the bulk of the electrolyte, the
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concentration gradients can now be steeper in these boundary regions, leading to much higher rates of
mass transport than would be possible without the stirring. Thus, stirring increases the limiting current.
For example, for the system shown in Figure 1.5 with ro = 3 cm, ri = 2 cm, and 0.1 M aqueous CuSO4,
the limiting current given by diffusion and migration in the absence of convection is 0.37 mA/cm2. If
one rotates the inner cylinder at 900 rpm to cause turbulent mixing, the system can carry a much higher
limiting current of 79 mA/cm2.

Convection can occur even in the absence of mechanical stirring. At the cathode, cupric ions are
consumed, and the concentration of salt in solution decreases. Conversely, the concentration of salt
increases at the anode. Since the density of the electrolyte changes appreciably with salt concentration,
these concentration gradients cause density gradients that lead to natural convection. The less dense
fluid near the cathode will flow up, and the denser fluid near the anode will flow down. The resulting
pattern of streamlines is shown in Figure 1.8. A limiting current, corresponding to a zero concentration
of cupric ions along the cathode surface, still can develop in this system. The corresponding current
distribution on the cathode now will be nonuniform, tending to be higher near the bottom and decreasing
farther up the cathode as the solution becomes depleted while flowing along the electrode surface. The
stirring caused by this natural convection increases the limiting current, from a calculated value of
0.37 mA/cm2 in the case of no convection to 9.1 mA/cm2 with natural convection.

In the field of electrochemical engineering, we are often concerned with trying to figure out the
distribution of the current over the surface of an electrode, how this distribution changes with changes
in the size, shape, and material properties of a system, and how changes in the current distribution affect
the performance of the system. Often, the engineer seeks to construct the geometry and system parame-
ters in such a way as to ensure a uniform current distribution. For example, one way to avoid the natural
convection mentioned above is to use a horizontal, planar cell configuration with the anode on the
bottom.

In many applications, such as metal electrodeposition and some instances of analytical electro-
chemistry, it is common to add a supporting electrolyte, which is a salt, acid, or base that increases
the conductivity of the solution without participating in any electrode reactions. For example, one
might add sulfuric acid to the solution of copper sulfate. Adding sulfuric acid as supporting electrolyte
has several interrelated effects on the behavior of the system. First, the conductivity 𝜅 is increased,
thereby reducing the electric field in solution for a given applied current density. In addition, the

Anode

ri ro

Cathode

Figure 1.8 Streamlines for free convection in the annular space between two cylindrical electrodes.
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transference number of the cupric ion is reduced. These two effects mean that the role of migration
in the transport of cupric ion is greatly reduced. The effect of adding supporting electrolyte is thus to
reduce the ohmic potential drop in solution and to increase the importance of diffusion in the transport
of the reacting ion. Since migration is reduced, a supporting electrolyte has the effect of decreasing
the limiting current. For example, adding 1.53 M H2SO4 to our 0.1 M solution of CuSO4 will increase
the ionic conductivity from 0.00872 to 0.548 S/cm, thus substantially decreasing the ohmic resistance
of the system. The resultant decrease in the electric field for a given applied current and lowering
of tCu2+ cause a decrease in the limiting current from 79 mA/cm2 with no supporting electrolyte to
48 mA/cm2 with supporting electrolyte (with turbulent mixing).

The conductivity of the solution could also have been increased by adding more cupric sulfate.
However, in refining a precious metal, it is desirable to maintain the inventory in the system at a low
level. Furthermore, the solubility of cupric sulfate is only 1.4 M. To avoid supersaturation at the anode,
we might set an upper limit of 0.7 M, at which concentration the conductivity is still only 0.037 S/cm.
An excess of supporting electrolyte is usually used in electroanalytical chemistry and in studies of
electrode kinetics or of mass transfer, not only because the potential variations in the solution are
kept small but also because activity coefficients, transport properties, and even the properties of the
interface change little with small changes of the reactant concentration.

The above discussion describes transport under a framework called dilute-solution theory in which
migration is considered independently from diffusion. Chapter 12 describes how to unify the treatment
of migration and diffusion under the framework of concentrated-solution theory.

1.5 CONCENTRATION OVERPOTENTIAL AND THE DIFFUSION POTENTIAL

Already we have described two sources of resistance: the surface overpotential, which represents the
resistance to electrochemical reaction, and the ohmic resistance, which is the resistance to ionic or
electronic current. In this section, we discuss how the presence of concentration gradients creates
another source of overpotential.

Consider the following scenario shown in Figure 1.9. A solution of 0.1 M CuSO4 is connected
to a solution of 0.05 M CuSO4 via a porous glass disk. The disk prevents rapid mixing between the

Porous
disk0.1 M CuSO4 0.05 M CuSO4

–+

II I

Cu

Figure 1.9 Concentration cell.
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solutions, but it does allow the flow of current and slow diffusion between the solutions. Into each
solution we dip an identical copper electrode.

In Section 1.2, we discuss the dependence of the open-circuit potential on concentration. Thus,
from equation 1.8, we can predict that there will be a potential difference between the two electrodes
placed in solutions of differing reactant concentrations. Because of the concentration differences, there
is a tendency for cupric ions to plate out from the 0.1 M solution and for copper to dissolve into
the 0.05 M solution. This manifests itself in a potential difference between the electrodes to prevent
the flow of current, the electrode in the more concentrated solution being positive relative to the other
electrode. If these electrodes were connected through an external resistor, current would flow through
the resistor from the positive to the negative electrode and through the solution from the negative to the
positive.

Even if a potential is applied to prevent the flow of current between the electrodes, the situation
depicted in Figure 1.9 is not at equilibrium. Diffusion may be restricted by the glass disk, but it will still
occur until eventually the two sides of the cell reach the equilibrium condition of equal concentrations.
Therefore, the potential difference between the electrodes includes transport properties as well as
thermodynamic properties. The meaning of potential in a solution of nonuniform concentration and
the calculation of potential differences across nonuniform solutions are treated in detail in Chapters 2
and 12. For the particular case given by Figure 1.9, the potential of the cell is given approximately by

ΦI − ΦII = Uconc = (1 − t+)
RT
F

ln
cI
cII
. (1.34)

Notice the difference between this equation and equation 1.8. Equation 1.8 describes how the
open-circuit potential depends on the concentrations of reactants and products at equilibrium whereas
equation 1.34 includes in addition the diffusion potential caused by the presence of concentration
gradients.

If we have a solution with a concentration gradient across it, instead of two solutions separated
by a porous disk, the potential between any two points in solution still depends on the concentration
differences in a manner described by equation 1.34. This potential difference caused by a concentration
gradient can be referred to as a concentration overpotential.

Let us consider the concentration overpotentials in our system of concentric copper cylinders. We
rotate one cylinder to create turbulent mixing, so that the concentration profile is uniform in the middle
of the annulus (see Figure 1.7). This arrangement allows us to isolate the concentration overpotentials
at each electrode.

We place three copper reference electrodes in the solution as shown in Figure 1.10. Reference
electrode 1 is adjacent to the anode, reference 2 is adjacent to the cathode, and reference 3 is in
the middle of the cell where the concentration is uniform. These reference electrodes can sense the
potential in a solution carrying current, even though they themselves carry no current. One tries to
situate the reference electrodes in such a position that they do not alter conditions significantly from
those prevailing in their absence. We can do that here by using very small copper wires.
Φ1−Φ2 is the potential difference in the solution. It consists of two components, the ohmic potential

drop and a concentration overpotential:

Φ1 − Φ2 = Uconc + ∫
2

1

𝐢 ⋅ d𝐫
𝜅 , (1.35)

where we have included 𝜅 inside the integral because it may vary with concentration and Uconc is given
approximately by equation 1.34 (the term concentration overpotential is redefined in equation 1.36).
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Figure 1.10 Placement of reference electrodes (1, 2, and 3) in the solution between cylindrical electrodes.
The concentration profile shown corresponds to turbulent mixing at a current somewhat below the limiting
current.

The ohmic portion is proportional to the current and will disappear immediately if the current is
interrupted. This provides a means for distinguishing between the two. The total potential difference
between the two reference electrodes is measured with the current flowing. The contribution of
concentration variations is that value measured just after the current is interrupted but before the
concentration distribution can change by diffusion or convection. The difference between these two
measurements is the ohmic contribution. (It should be pointed out that—in many geometries—internal
current redistribution may occur after the external current is turned off. In these cases, ohmic resistance
is still present for some time after the current is interrupted.)

We can use the third reference electrode to separate the concentration overpotential into contributions
from the anode and cathode. The concentration overpotential at the anode is then Φ1 −Φ3, and the
cathodic concentration overpotential isΦ2 −Φ3, just after the current is interrupted. This decomposition
of the concentration overpotential depends on the concept of thin diffusion layers near the electrodes
and the existence of a bulk solution where the concentration does not vary significantly. Then
the anodic and cathodic concentration overpotentials are independent of the precise location of the
third reference electrode, since it is in a region of uniform concentration and there is no current
flow.

Alternatively, we can define the concentration overpotential by

𝜂c = Uconc + ∫
bulk

0
(1
𝜅 −

1
𝜅bulk

) iy dy, (1.36)

where y is the distance from the electrode and bulk represents the solution properties in the uniform
region of the annulus. ThenΦ1 −Φ2 = 𝜂c +ΔΦohm, where ΔΦohm is the potential difference that would
be measured in the hypothetical scenario of the same current distribution but with no concentration
gradients.ΔΦohm can be calculated using the procedure given in Section 1.4 with constant conductivity.
This definition of concentration overpotential means that 𝜂c accounts for all potential changes induced
by concentration effects. Figure 1.11 shows how the cathodic overpotential depends on current density
for current densities up to the limiting current.
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Figure 1.11 Concentration overpotentials at a cathode in 0.1 M CuSO4.

1.6 OVERALL CELL POTENTIAL

The potential difference across a cell will depend on all four components described above: the
open-circuit potential U, the surface overpotential, the ohmic potential drop, and the concentration
overpotential. These potential drops are interrelated, making the calculation of the total potential of the
cell more complicated than that given by the ohmic potential drop alone. It is these interrelationships
that make electrochemical engineering both a challenging and an interesting field.

The open-circuit potential U represents the maximum work that can be obtained from the system.
We use the symbol V to denote the cell potential, which is often called the cell voltage. The cell
potential V may differ from the open-circuit potential U, both during and shortly after the passage of
current, because the passage of current has induced overpotentials. All of the overpotentials represent
dissipative losses. Thus, for a galvanic cell, the actual cell potential during passage of current will
always be less than U (the rate of work output of the cell, IV, is less than IU), while for an electrolytic
cell the actual cell potential will be greater (the work that one must put into the cell is greater than
the reversible work). The cell potential will approach the reversible potential as the current becomes
infinitesimally small.

As described in Section 1.3, the potential drop due to kinetic resistance at the anode is 𝜂s, anode =
Φanode −Φ1, where Φanode and Φ1 are measured by electrodes made of the same compounds, and
likewise the surface overpotential at the cathode is 𝜂s, cathode = Φcathode −Φ2, where Φcathode and Φ2 are
measured by electrodes made of the same compounds. 𝜂s,anode is positive while 𝜂s,cathode is negative.

The cell potential is given by

V = Φanode − Φcathode

= (Φanode − Φ1) + (Φ1 − Φ2) − (Φcathode − Φ2)

= 𝜂s,anode + (𝜂c,anode + U + ΔΦohm − 𝜂c,cathode) − 𝜂s,cathode, (1.37)
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where each 𝜂s is obtained from an equation of the form of equation 1.9,ΔΦohm is given by equation 1.23,
calculated using a constant conductivity, and 𝜂c is obtained from equation 1.36, which includes the
variation of conductivity with concentration as well as the diffusion potential. For generality, we have
included the possibility that the cathode and anode may be made of different metals, such as zinc
and silver, respectively. Then we would use a silver electrode for reference 1 and a zinc electrode
for reference 2 to measure the surface overpotentials. To isolate the concentration overpotentials, we
could use two reference electrodes, for example, a silver and a zinc, placed side by side at position 3.
Call Φ3,a the potential measured by the reference electrode of the same kind as the anode and Φ3,c
that measured by the reference electrode of the same kind as the cathode. Φ3,a −Φ3,c is then U, the
equilibrium potential difference between the anode and cathode electrodes in a region of uniform
concentration. For the case in which all of the electrodes are the same, for example, all copper metal,
U is zero. The terms 𝜂c and 𝜂s for the cathode enter with negative signs because of the conventions
that have been adopted. Since they are negative, they make a positive contribution to the cell potential
of this electrolytic cell. Thus, all of the overpotentials represent resistive losses.

Figure 1.12 indicates what we should expect for the response of the current I to the applied potential
V. At low currents, most of the applied potential is consumed by ohmic losses, which increase linearly
with the applied current. At low currents the surface overpotential increases linearly with current,
and changes with the logarithm of current at moderate currents. As the concentration of reactants at
the cathode is depleted near the limiting current, the exchange current density becomes very small
and the surface overpotential increases substantially. The concentration polarization at the cathode
increases dramatically as the limiting current is approached. At sufficiently large voltages, a second
reaction such as hydrogen evolution may occur at the cathode, as indicated by the dashed line on the
figure. 𝜂s,anode and 𝜂c,anode are not shown on the figure because, for this particular cell, they are small.
𝜂s,anode is less than 𝜂s,cathode because a different value of the apparent transfer coefficient was used (see
Figure 1.3). 𝜂c,anode is smaller than 𝜂c,cathode because the order of magnitude of increase in the logarithm
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Figure 1.12 The dependence of the cell potential and its component overpotentials on current for concentric
cylinders, the inner of which rotates. The overpotentials for the anode are small for this particular system and are
not shown.



�

� �

�

20 INTRODUCTION

0

2

0 0.1 0.2

4

6

8

0.3 0.4

0.1 M CuSO4  1.53 M   H2SO4
Ω = 900 rpm  H = 10 cm
   ro = 3 cm  ri = 2 cm

Potential (V)

I (
A

)

0.5

10

−η
s
 (c

at
ho

de
)

V

−ηc (cathode)

ΔΦ ohm

Figure 1.13 Current–potential relations with sulfuric acid added as a supporting electrolyte.

of the concentration of Cu2+ at the anode is much less than the order of magnitude of decrease in the
logarithm of the concentration at the cathode, where the concentration is driven to zero.

Figure 1.13 shows how the current–potential relationships change when sulfuric acid is added as
supporting electrolyte. The ohmic potential drop is reduced relative to Figure 1.12, and the concentration
and surface overpotentials now constitute a larger fraction of the applied potential. The magnitude of
the limiting current is also reduced.

The energy efficiency for a galvanic cell is given by the net work out (∫ IV dt) divided by the
reversible work (∫ IU dt), that is, the work that could be obtained if the cell potential were always
equal to its equilibrium potential. For an electrolytic cell, the energy efficiency is the reversible work
divided by work input required to drive the reaction. One can also speak in terms of current efficiency
for cells in which multiple reactions may occur in the same potential range. For example, if a metal’s
reduction potential is close to that of hydrogen evolution, then one may evolve hydrogen while trying to
electrodeposit the metal. Current efficiency is the ratio of the charge consumed by the desired reaction
to the total charge passed in the cell.

In conclusion, kinetics, thermodynamics, and transport are closely interrelated in electrochemical
systems. In Parts A, B, and C, we describe the fundamentals of each in turn. However, it is impossible
to discuss each aspect in complete isolation since all three phenomena are interdependent. In Part D,
we describe applications that illustrate how to treat the coupled phenomena, and we discuss when sim-
plifying assumptions may be used to reduce the complexity of the analysis of electrochemical systems.

PROBLEMS

1.1 Starting with equation 1.36, derive the following equation for the concentration overpotential in
a binary salt solution:

𝜂c =
RT
F
[ln

co

cb
+ t+ (1 −

co

cb
)] .
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Assume that the concentration profile is linear within the diffusion layer and uniform outside
this layer, which can be taken to be of finite thickness. In addition to the relationships expressed
in this chapter, it is necessary to use the Nernst–Einstein relation between the mobility and the
diffusion coefficient of species i:

Di = RTui.

Use equation 1.18 for the variation of conductivity with concentration. co is the concen-
tration at the electrode surface, and cb is the concentration outside the diffusion layer (see
Section 20.2).

NOTATION

ci concentration of species i, mol/cm3

cb concentration in bulk solution, mol/cm3

c0 concentration at electrode surface, mol/cm3

D diffusion coefficient of electrolyte, cm2/s
Di diffusion coefficient of species i, cm2/s
F Faraday’s constant, 96,487 C/mol
G Gibbs free energy, J/mol
H depth of solution, cm
i current density, A/cm2

in normal component of the current density, A/cm2

i0 exchange current density, A/cm2

I total current, A
𝓁 distance, cm
m molality of species i, mol/kg
n number of electrons involved in electrode reaction
Ni flux density of species i, mol/cm2⋅s
r radial position, cm
ri radius of inner electrode, cm
ro radius of outer electrode, cm
R resistance, Ω
R universal gas constant, 8.3143 J/mol⋅K
si stoichiometric coefficient of species i
t+ cation transference number
T absolute temperature, K
ui mobility of species i, cm2⋅mol/J⋅s
U cell potential at open circuit, V
v fluid velocity, cm/s
vi average velocity of species i, cm/s
V cell potential, V
y distance from electrode, cm
zi charge number of species i
𝛼a, 𝛼c anodic and cathodic transfer coefficients
𝜂c concentration overpotential, V
𝜂s surface overpotential, V
𝜅 ionic conductivity, S/cm
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𝜇i electrochemical potential of species i, J/mol
𝜎 electronic conductivity, S/cm
Φ potential, V
ΔΦohm ohmic potential drop, V
Ω rotation speed, rad/s
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PART A

THERMODYNAMICS OF ELECTROCHEMICAL
CELLS

For a discussion of the thermodynamics of electrochemical cells, we first need to introduce free
energies, chemical potentials, and activity coefficients. If we restrict ourselves to electrodes in
equilibrium with the solution adjacent to them, then the cell potential can be obtained by expressing
these phase equilibria in terms of the electrochemical potentials of species present in the electrodes
and in the solutions. The condition of phase equilibrium precludes the passage of anything but an
infinitesimal current; it also precludes the possibility of the occurrence of spontaneous reactions that
require no net current. Under certain conditions it is possible, however, to have more than one reaction
simultaneously in equilibrium.

In all but the simplest cells, the expression of the phase equilibria does not lead to an immediately
useful result. The solutions adjacent to the two electrodes of a cell usually have different compositions,
and in order to preclude spontaneous reactions at the electrodes, it is necessary to prevent the reactants
for one electrode from reaching the other. Thus, somewhere between the electrodes there must be
a region of nonuniform composition; and in this region, which is referred to as a liquid junction,
spontaneous diffusion occurs. To treat the potentials of any but the simplest cells, therefore, requires
some consideration of the irreversible process of diffusion. The necessary results are carried over from
Part C on transport processes in electrolytic solutions.

The treatment of cell potentials follows a certain pattern. The description of phase equilibria allows
the cell potential to be expressed in terms of the electrochemical potentials of species in the solutions
adjacent to the electrodes. To obtain useful results, these electrochemical potentials must be related to
each other, usually by a consideration of the transport process in the junction region.

The concept of the potential is important in electrochemistry, but an understanding of the concept
is made difficult by the background that most of us acquire in classical electrostatics. A discussion of
the potential and its use in electrochemistry is therefore in order. Many equations in common use can

Electrochemical Systems, Fourth Edition. John Newman and Nitash P. Balsara.
© 2021 John Wiley & Sons, Inc. Published 2021 by John Wiley & Sons, Inc.
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be clarified by this study, and, at the same time, the assumptions inherent in their derivation can be
exposed.

The remainder of this part deals with practical and theoretical aspects of electrochemical
thermodynamics—in particular, with activity coefficients and reference electrodes.
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CHAPTER 2

THERMODYNAMICS IN TERMS OF
ELECTROCHEMICAL POTENTIALS

2.1 PHASE EQUILIBRIUM

An electrochemical cell necessarily consists of several phases. These phases must include two electrode
metals and an electrolytic solution (three phases); but additional phases, such as a solid salt or a gas, are
included in most cells of practical interest. Equilibria between these individual phases (e.g., electrode
metal 𝛽 in equilibrium with the solution 𝛿) characterize an electrochemical cell used for thermodynamic
measurements.

The system shown in cell 2.1 is illustrative of the type of cell commonly called a cell without
transference, which is a cell in which there are no concentration gradients:

𝛼
metal

|||||||||||

𝛽
metal

|||||||||||

𝛿
electrolytic

solution

|||||||||||

𝜖
solid
salt

|||||||||||

𝜙
metal

|||||||||||

𝛼′
metal. (2.1)

The vertical lines denote phase separation. The several phase equilibria that may be attained are:

Phase 𝛼 in equilibrium with phase 𝛽
Phase 𝛽 in equilibrium with phase 𝛿
Phase 𝛿 in equilibrium with phase 𝜖
Phase 𝜖 in equilibrium with phase 𝜙
Phase 𝜙 in equilibrium with phase 𝛼′.

Phases 𝛼 and 𝛼′ are composed of the same metal but are not necessarily in equilibrium since they may
not be at the same electrical potential.

Electrochemical Systems, Fourth Edition. John Newman and Nitash P. Balsara.
© 2021 John Wiley & Sons, Inc. Published 2021 by John Wiley & Sons, Inc.
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If two phases are in equilibrium and if a neutral species A is present in each phase, then the chemical
potential of A is the same in the two phases, that is,

𝜇𝛿A = 𝜇
𝜖
A. (2.2)

Here the subscript A refers to the species, and the superscript refers to the phase. Similar equations
hold for other equilibrated species. Indeed, this equation must be obeyed for each species that exists in
both neighboring phases before the phases may be said to be in equilibrium.

When two phases are at the same temperature but are not in equilibrium, upon contact there will
be transport of material across the phase boundary until the condition described by equation 2.2 is
attained. Thus, each of the phases in equilibrium may be considered to be open with respect to those
species that can be transported between the phases. It should be pointed out that phase equilibrium
as used here does not require that all species be present in each phase or that each species be at the
same chemical potential in each phase. For example, if phase 𝛼 is platinum and phase 𝛽 is a potassium
amalgam, platinum is not present in phase 𝛽, and neither potassium nor mercury is present in phase
𝛼. It is electrons that are equilibrated between these phases. Similarly, the electrons are presumed
to be absent in the solution phase 𝛿. If all species were present in all phases and were equilibrated,
then phases 𝛼 and 𝛼′ would be in equilibrium, and there would be no electrical potential difference
between them.

To repeat, phase equilibrium is taken to be the thermodynamic state in which equation 2.2 applies
to those species that are present in both neighboring phases.

In electrochemical systems, there are also equilibria that involve ionic or charged species. Let 1 mol
of the neutral species A dissociate into 𝜈A

+ moles of a positively charged species and 𝜈A
− moles of a

negatively charged species. The chemical potential of A can then be expressed as

𝜇𝛼A = 𝜈
A
+𝜇

𝛼
+ + 𝜈A

−𝜇𝛼−, (2.3)

where 𝜇+ and 𝜇− are the electrochemical potentials of the charged species and depend on the
temperature, pressure, chemical composition, and electrical state of the phase. We return to these
terms in the next section. Since species A is electrically neutral, the coefficients 𝜈A

i are subject to the
restriction ∑

i

zi𝜈A
i = 0, (2.4)

where zi is the charge number of species i and the superscript A refers to the particular neutral species.
For example, phosphoric acid (H3PO4) is made up of H+ ions and PO3−

4 ions, for which v+ = 3, v− = 1,
z+ = 1, and z− = − 3. Copper metal can be regarded as composed of cupric ions and electrons, for
which v+ = 1, v− = 2, z+ = 2, and z− = − 1.

Equation 2.2 expresses the condition of phase equilibrium involving neutral species. For the charged
species i, the corresponding condition of phase equilibrium between the two phases 𝛼 and 𝛽 is

𝜇𝛼i = 𝜇
𝛽
i . (2.5)

If there are several ionic species present in each phase, equation 2.5 must be obeyed for each ionic
species present in both phases before phase equilibrium is attained.

Each phase individually will be electrically neutral even though all the ionic species are not present
in each phase. Thus, the composition of any phase is determined by specifying the concentrations of
all but one of the charged species, the concentration of the remaining species then being given by this
condition of electrical neutrality.
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Occasionally, it is desirable and convenient to express the condition of equilibrium for an electrode
reaction all at once. For the general electrode reaction

∑

i

siM
zi
i → ne−, (2.6)

this condition is ∑

i

si𝜇i = n𝜇e−. (2.7)

Here si is the stoichiometric coefficient of species i in the electrode reaction and Mi is a symbol for
the chemical formula of species i. Superscripts for the appropriate phases in which the species exist
should be added.

2.2 CHEMICAL POTENTIAL AND ELECTROCHEMICAL POTENTIAL

The potential of a cell is the difference in electrochemical potential of electrons between the leads
connected to the positive and negative electrodes, divided by Faraday’s constant. What, then, is
electrochemical potential? One can think of it analogously to other types of potentials with which the
reader may be familiar, such as gravitational potential. Like a ball rolling down a hill, a species will
tend to move from a region where it has a high electrochemical potential to a region where it has a low
electrochemical potential. This example raises the question, what factors cause the electrochemical
potential of a species to be higher in one region than in another? Electrochemical potential depends on
temperature, pressure, composition, and electrical state. We see many examples in our daily lives of
the dependence on composition. If one pours sugar into a cup of hot tea and then waits a few minutes,
eventually the sugar will diffuse throughout the tea until it has a uniform concentration. This is because
the chemical potential of the more concentrated sugar solution is higher than the chemical potential of
the less concentrated solution. We speak of the chemical potential of neutral species, 𝜇A, and of the
electrochemical potential of charged species such as ions and electrons, 𝜇i. The difference between the
two is that the energy, or potential, of an electrically charged species is affected by the presence of an
electric field, whereas the potential of a neutral species is unaffected by an electric field.

Electrochemical potential is a measure of the energy of the species. Thermodynamics describes
macroscopically how the free energy of a species depends on temperature, pressure, composition,
and electrical state. Quantum mechanics provides another framework for describing the energy of a
species in terms of electron orbitals and energy levels. In quantum mechanical terms, electrochemical
potential is defined as the energy level of the electron orbitals in the species that have a 50% probability
of occupancy. “Applying a potential” shifts the energy levels, that is, the electrochemical potential,
up or down. The quantum mechanical viewpoint will be revisited in Chapter 23 in the context of
semiconductors. In contrast to thermodynamics and quantum mechanics, the field of electrostatics
ignores chemical interactions and describes an idealized “electric potential” that is the result of
moving idealized electric charges from one place to another, ignoring the chemical environment
that the electrons experience. This idealization breaks down when one tries to consider electric
potential differences between media of different chemical compositions. For example, consider the
electrochemical potential difference between electrons in a piece of copper and electrons in a piece
of aluminum. Even if both metals are uncharged, there will be an electrochemical potential difference
because the chemical environment of copper is different from that of aluminum. What, then, is the
electric potential difference? It cannot be measured separately from the chemical potential difference.
Therefore, the legitimate measurement to make is the difference in electrochemical potential between
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two identical electrodes at the same temperature, pressure, and composition, one electrode connected
to the piece of copper metal and the other connected to the piece of aluminum.

However, the electrostatic idealization is not a bad one when considering the electrochemical
potential within a given metal. Consider the process of applying a potential difference between two
copper spheres, each of mass 38 g (this example is revisited in Section 3.1). Depending on the dielectric
medium separating the spheres, transferring about 1× 10−9 mol of charge from one sphere to the
other results in coulombic forces that cause a potential difference of about 2× 108 V. However, the
10−9 mol has a negligible impact on the chemical composition of the copper. Moreover, all of the
charge will reside at the surface of an electronic conductor. Thus, the bulk of the metal is unchanged
chemically, but the electrochemical potential of electrons in the metal has been substantially changed
by the electric field caused by the charge added to the surface of the metal. Therefore, the idealization
of electric potential can be fruitfully used to describe how one can apply a potential to a metal by
adding or removing electrons, with little loss of precision from neglecting the chemical effects of the
minute change in the concentration of electrons.

However, one should keep in mind that the concept of “electric potential” as used in the field of
electrostatics is only an idealized limit of the electrochemical potential in which chemical interactions
are ignored. For this reason, the electric potential difference between two phases of different chemical
composition is undefined, and one must speak of the cell potential as the difference in the thermodynamic
electrochemical potential of electrons between two leads of identical composition, temperature, and
pressure. In addition, division of the electrochemical potential into chemical and electrical components
is arbitrary. What is meaningful is the electrochemical potential.

Before introducing the definition of 𝜇i, we should recall the thermodynamic definition of 𝜇A:

𝜇A = (
𝜕G
𝜕nA

)
T ,p,nB

B≠A

= ( 𝜕A
𝜕nA

)
T ,V ,nB

B≠A

= ( 𝜕U
𝜕nA

)
S,V ,nB

B≠A

= ( 𝜕H
𝜕nA

)
S,p,nB

B≠A

, (2.8)

where G is the Gibbs free energy, A is the Helmholtz free energy, U is the internal energy, H is the
enthalpy, S is the entropy, V is the volume, T is the temperature, nB, B≠A is number of moles of all
species besides A, and p is the pressure. In making measurements, one always determines a difference
in the chemical potential between different thermodynamic states and never the absolute value in a
particular state. However, in tabulating data, it is convenient to assign a value to each thermodynamic
state. One can do this by arbitrarily assigning the value of the chemical potential in some state and
determining the value in other states by comparison to this reference state. For example, the chemical
potentials of pure elements at 25∘C and 1 bar can be taken to be zero. Once the reference state is clearly
specified and the values of the chemical potential in other states are tabulated, one can easily reproduce
the experimental results. This will be mentioned again in the treatment of data from electrochemical
cells.

One of the characteristics of the chemical potential, developed in thermodynamics, is that the
reversible work of transferring a species from one point to another is proportional to the difference
in chemical potential between the two points. Guggenheim[1] used this concept to define the electro-
chemical potential of an ion so that the difference between its values in two phases is defined as the
work of transferring reversibly, at constant temperature and constant volume, 1 mol from one phase to
the other.∗ It is a function of temperature, pressure, chemical composition, and electrical state of the
phase. It is still necessary to determine how well defined these independent variables are. Consider the
following cases where transfer of ions may be involved:

∗For condensed phases, a distinction between a constant-volume process and a constant-pressure process is of little practical
significance.
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1. For constant temperature and pressure and identical chemical composition of phases 𝛼 and 𝛽,
the only difference between the two phases will be electrical in nature.
a. For the transfer of 1 mol of species i from phase 𝛽 to phase 𝛼, the work of transfer is

𝑤 = 𝜇𝛼i − 𝜇
𝛽
i = ziF(Φ𝛼 − Φ𝛽), (2.9)

where, in the second equation, the difference in electrical state of the two phases can be
characterized by the difference in electrical potential of the two phases, as defined by
equation 2.9.

b. For the transfer of v1 moles of species 1 and v2 moles of species 2 such that

∑

i

zi𝜈i = 0, (2.10)

the work of transfer is zero. Such electrically neutral combinations of ions do not depend on
the electrical state of the phase, and we can utilize this fact to examine the potential difference
defined above. Since the total work of transfer will be zero for neutral combinations such that
equation 2.10 holds, we have

𝑤 = 0 = 𝜈1(𝜇𝛼1 − 𝜇
𝛽
1 ) + 𝜈2(𝜇𝛼2 − 𝜇

𝛽
2 ). (2.11)

If we take equation 2.9 to apply to the ionic species 1, we can combine equations 2.9 through
2.11 to express the electrochemical potential difference of the ionic species 2 as

𝜇𝛼2 − 𝜇
𝛽
2 = −

𝜈1

𝜈2
(𝜇𝛼1 − 𝜇

𝛽
1 ) = −

z1𝜈1

𝜈2
F(Φ𝛼 − Φ𝛽)

= z2F(Φ𝛼 − Φ𝛽). (2.12)

Therefore, the electric potential difference Φ𝛼 −Φ𝛽 defined by equation 2.9 does not depend
on which charged species, 1 or 2, is used in equation 2.9. In this sense, the electric potential
difference is well defined.

2. If the two phases have different chemical composition, but still the same pressure and temperature,
the work of transfer of a species from phase 𝛽 to phase 𝛼 is still

𝑤 = 𝜇𝛼i − 𝜇
𝛽
i , (2.13)

but this can no longer be expressed simply in terms of differences of electric potential because
the chemical environment of the transferred species will be different in the two phases. The work
to transfer neutral species or neutral combinations of species is 𝑤 = 𝜇𝛼A − 𝜇

𝛽
A, which is nonzero

if the chemical potential of A is different in the different compositions.

It should be noted that no quantitative characterization or measure of the difference of electrical
state of two phases has yet been given when the phases are of different chemical composition.
It is possible (and even expedient for some purposes of computation) to define such an electrical
variable, but this involves an unavoidable element of arbitrariness and is not essential to a treatment
of the thermodynamic phenomena involved. Several possible methods of doing this are discussed in
Chapter 3. We prefer to avoid an arbitrary decomposition of 𝜇i into electrical and chemical components
and instead choose to speak in terms of electrochemical potentials.
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2.3 DEFINITION OF SOME THERMODYNAMIC FUNCTIONS

We have seen in the previous section that the cell potential is determined by the electrochemical potential
of electrons in equilibrium with the components of the electrode and the electrolyte. In Section 2.4, we
relate 𝜇e− to the electrochemical potentials of the cell components. These electrochemical potentials
are functions of temperature, pressure, concentration, and electrical state. In this section, we discuss
formalisms for describing the dependence of the electrochemical potential on concentration and
electrical state.

Before delving into the study of the electrochemical potential of electrolytes in solution, the
reader should already be familiar with the concepts of the chemical potentials of pure elements and
compounds and their dependence on temperature and pressure, as covered in texts on thermodynamics.
Thermodynamics teaches us that there is no absolute value of chemical potential. Rather, any numerical
value is only relative to some arbitrary datum. For pure elements and compounds, this arbitrary datum
is called the primary reference state. The usual convention for the primary reference state is that the
chemical potential of pure elements at 298.15 K and 1 bar is zero, although other primary reference
states, such as setting the chemical potential to zero at the critical point or the triple point, are sometimes
used.

The chemical potential of a species in a mixture depends on the composition of the mixture. To
describe this dependence, it is convention to define an “ideal” dependence of 𝜇i on composition, and
then to define a parameter called the activity coefficient to describe the deviation of the actual 𝜇i from
the ideal. The choice of the ideal dependence of 𝜇i on concentration creates a second arbitrary datum,
which is the state at which the activity coefficient is defined to be 1. This state is termed the secondary
reference state. As is described in this section, the historical convention has been to use different
secondary reference states for liquid, gaseous, and solid mixtures.

In this section, the absolute activity, activity coefficient, mean activity coefficient, and osmotic
coefficient are introduced. The last two are useful for the tabulation of the composition dependence of
the thermodynamic properties of electrolytic solutions but may appear cumbersome in the theoretical
treatment of cell potentials.

The absolute activity 𝜆i of an ionic or a neutral species, used extensively by Guggenheim,[2] is
defined by

𝜇i = RT ln 𝜆i. (2.14)

It has the advantage of being zero when the species is absent, whereas the chemical potential is equal
to minus infinity in such a case. Furthermore, 𝜆i is dimensionless. It also has the advantage that it can
be manipulated like conventional activities but is independent of any secondary reference states that
might be adopted for a particular solution or solvent at a particular temperature and pressure.

For solute species in a solution, 𝜆i is further broken down as follows:

𝜆i = mi𝛾i𝜆𝜃i , (2.15)

where mi is the molality, or moles of solute per unit mass of solvent (usually expressed in moles
per kilogram of solvent), 𝛾i is the molal activity coefficient of species i, and 𝜆𝜃i is a proportionality
constant, independent of composition and electrical state, but characteristic of the solute species and the
solvent and dependent on temperature and pressure. For condensed phases, the pressure dependence is
frequently ignored.

Other concentration scales can be used, but the activity coefficient and the constant are changed so
that 𝜆i is independent of the concentration scale used. Another concentration scale in common use is
molarity, or moles per unit volume of solution (usually expressed in moles per liter, denoted M), and
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𝜆i is related to this scale by
𝜆i = ci fia

𝜃
i , (2.16)

where ci is the molarity of species i, fi is the molar activity coefficient, and a𝜃i is a proportionality
constant (analogous to 𝜆𝜃i ). The molality is related to the molarity according to

mi =
ci

𝜌 −
∑

j≠0cjMj
=

ci

c0M0
, (2.17)

where 𝜌 is the density of the solution (g/cm3), Mj is the molar mass of species j (g/mol), and where the
sum does not include the solvent, denoted by the subscript 0.†

The molality is perhaps popular among experimentalists in the physical chemistry of solutions
because it can be calculated directly from the masses of the components in the solution, without a
separate determination of the density. The concentration on a molar scale is more directly useful in
the analysis of transport processes in solutions. Furthermore, the molality is particularly inconvenient
if the range of concentrations includes the pure molten salt with no solvent, since the molality is
then infinite. However, molar concentrations do not work well in the Gibbs–Duhem equation for
multicomponent systems. A mole fraction scale can be used, but then a decision has to be made on how
to treat a dissociated electrolyte. The mass fraction has the advantage of depending only on the masses
of the components and is also independent of the scale of atomic weights, which has been known to
change. However, a mass fraction scale does not allow a simple account of the colligative properties
of solutions (freezing-point depression, boiling-point elevation, and vapor-pressure lowering) nor of
the properties of dilute solutions of electrolytes. Of these several scales, the molar concentration is the
only one that changes with temperature when a particular solution is heated.

The secondary reference states necessary to specify 𝜆𝜃i or a𝜃i for species in solution are defined
by the statement that certain combinations of activity coefficients should approach unity in infinitely
dilute solutions; namely, ∏

i

(𝛾i)𝜈i → 1 as
∑

i≠0

mi → 0 (2.18)

and ∏

i

(fi)𝜈i → 1 as
∑

i≠0

ci → 0 (2.19)

for all such combinations of 𝛾i and fi where the vi’s satisfy equation 2.10. In particular, the activity
coefficient of any neutral, undissociated species approaches unity as the concentrations of all solutes
approach zero. If we take the activity coefficients to be dimensionless, then 𝜆𝜃i and a𝜃i have the
reciprocals of the dimensions of mi and ci. In view of the definitions 2.18 and 2.19 of the secondary
reference states, 𝜆𝜃i and a𝜃i are then related by

𝜆𝜃i = 𝜌0a𝜃i , (2.20)

where 𝜌0 is the density of the pure solvent (g/cm3).
For an ionic species, 𝜆i depends on the electrical state of the phase. Since 𝜆𝜃i and mi are taken

to be independent of the electrical state, we conclude that 𝛾i is dependent upon this state. A similar
statement applies to the activity coefficient fi. In contrast, Guggenheim takes 𝛾i to be independent of
electrical state and 𝜆𝜃i to be dependent upon it. This leaves us with the unsatisfactory situation that 𝛾i

†Consistent units for equation 2.17 would be mi in mol/g, ci in mol/cm3, and 𝜌 in g/cm3.
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should depend on composition at constant electrical state. However, a constant electrical state has not
yet been defined for solutions of different composition.

To illustrate further the nature of these activity coefficients, consider a solution of a single electrolyte
A that dissociates into v+ cations of charge number z+ and v− anions of charge number z−. (Since only
a single electrolyte is involved, the superscript A on v+ and v− is omitted.) Then the stoichiometric
concentration of the electrolyte can be represented as

m =
m+
𝜈+

=
m−
𝜈−

or c =
c+
𝜈+
=

c−
𝜈−
. (2.21)

The chemical potential of A can then be expressed by equation 2.3 as

𝜇A = 𝜈+𝜇+ + 𝜈−𝜇− = 𝜈+RT ln(m+𝛾+𝜆𝜃+) + 𝜈−RT ln(m−𝛾−𝜆𝜃−) (2.22)

or
𝜇A = RT ln[(m+𝛾+𝜆𝜃+)𝜈+(m−𝛾−𝜆𝜃−)𝜈−]. (2.23)

Since A is neutral, equation 2.18 requires that 𝛾𝜈++ 𝛾
𝜈−
− → 1 as m→ 0. Hence, this specification of

the secondary reference state allows a certain combination of the 𝜆𝜃i ’s to be determined:

(𝜆𝜃+)𝜈+(𝜆𝜃−)𝜈− = limm→0

e𝜇A∕RT

m𝜈++ m𝜈−−
. (2.24)

This limiting process then allows the subsequent determination of the combination 𝛾𝜈++ 𝛾
𝜈−
− at any

nonzero value of m by means of equation 2.23. Methods for measuring 𝜇A are discussed later in this
chapter.

By a generalization of these thoughts we come to the following conclusions: Combinations of the
form ∏

i

(𝜆𝜃i )
𝜈i𝛾𝜈i

i

can be determined unambiguously for products whose exponents satisfy the Guggenheim condition
∑

i

zi𝜈i = 0.

A choice of the secondary reference state, equation 2.18, thus allows the separate determination of the
corresponding products of the forms

∏

i

(𝜆𝜃i )
𝜈i and

∏

i

𝛾𝜈i
i .

These conclusions follow from the fact that the corresponding combinations of electrochemical
potentials and absolute activities ∑

i

𝜈i𝜇i and
∏

i

𝜆𝜈i
i

are independent of the electrical state for neutral combinations of ions.
On the other hand, differences in 𝜇i and ratios of 𝜆i between phases are well defined but depend

upon the electrical states of the phases. The absolute values, in a single phase, are not defined because
the primary reference state (say, the elements at 25∘C and 1 bar) involves no electrical reference state.
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Correspondingly, the secondary reference state also involves only neutral combinations of species.
Consequently, the 𝜆𝜃i ’s for ionic species are not uniquely determined, a situation that could be rectified
by the arbitrary assignment of the value of 𝜆𝜃i for one ionic species in each solvent at each temperature.
However, in any application, the equations can be arranged so that only those products of 𝜆𝜃i ’s (and
also 𝛾i’s) corresponding to neutral combinations of ions are ever needed.

Let us return to the solution of a single electrolyte. By convention, the mean activity coefficient 𝛾+−
(or 𝛾±) on the molal scale is defined by

𝛾𝜈+− = 𝛾
𝜈+
+ 𝛾

𝜈−
− , (2.25)

where
𝜈 = 𝜈+ + 𝜈−. (2.26)

The discussion above shows that this mean activity coefficient is unambiguously defined and
independent of the electrical state of the solution. It is this activity coefficient 𝛾+− that is measured and
tabulated for solutions of single electrolytes. Tabulations of chemical thermodynamic properties also
usually include 𝜇𝜃i = RT ln 𝜆𝜃i for the ions and

𝜇𝜃A = RT ln 𝜆𝜃A = 𝜈+RT ln 𝜆𝜃+ + 𝜈−RT ln 𝜆𝜃− (2.27)

for an electrolyte. Combining equations 2.27, 2.25, and 2.22 yields

𝜇A = 𝜇𝜃A + 𝜈RT ln m𝛾+− + RT ln(𝜈𝜈++ 𝜈
𝜈−
− ). (2.28)

The thermodynamic properties of solutions of a single electrolyte can, of course, be studied by
nonelectrochemical means and without detailed consideration of its state of dissociation into ions. For
example, a study of the vapor pressure or the freezing point will yield the variation in the chemical
potential 𝜇A with concentration. It is, in fact, one of the beauties of thermodynamics that it provides a
framework to record the macroscopic properties of a system without knowledge of its state of molecular
aggregation, as long as the possible molecular species equilibrate rapidly with each other.

If we apply equation 2.15 to the electrolyte A, without regard for its dissociation, we have

𝜇A = RT ln(m𝛾A𝜆𝜃A). (2.29)

This differs from equation 2.28 principally in the absence of the factor v. Consequently, 𝛾A must be
different from 𝛾+−, and 𝛾A must have a concentration dependence considerably different from that of
𝛾+−. Specifically, we have

𝛾A = m𝜈−1𝛾𝜈+−(𝜈
𝜈+
+ 𝜈

𝜈−
− ). (2.30)

Consequently, 𝛾A→ 0 as m→ 0 for v> 1, and equation 2.18 cannot be applied to define a secondary
reference state for 𝜆𝜃A in equation 2.29. The state of aggregation of the solution at infinite dilution
should be used as the secondary reference state for solutes that partially dissociate. This is explored
in more detail in Section 4.7. Except for this necessity to choose a different secondary reference state,
it is legitimate from a strictly thermodynamic point of view to treat the electrolyte as undissociated,
although this is seldom done. By the activity coefficient, we shall thus mean the mean ionic activity
coefficient of an electrolyte.

A parallel development can be carried through for the molar scale of concentration. On this scale,
the mean activity coefficient of the electrolyte is defined by

f 𝜈+− = f 𝜈++ f 𝜈−− . (2.31)
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We then can express the chemical potential of the electrolyte as

𝜇A = RT ln cfAa𝜃A = RT ln 𝜆𝜃A + 𝜈RT ln(cf+−∕𝜌0) + RT ln(𝜈𝜈++ 𝜈
𝜈−
− ). (2.32)

The mean activity coefficients on the two scales are related by

f+− =
𝜌0𝛾+−
c0M0

. (2.33)

Various examples can be cited to illustrate the consequences of ionic dissociation. Lewis et al.[3]

show the effect of considering hydrochloric acid to be dissociated or undissociated by plotting the
partial pressure of HCl in equilibrium with the solution against both m and m2. The partial pressure
would be proportional to m for a nonelectrolyte. Because HCl dissociates, the partial pressure is
observed to be proportional to mv. They also plot the freezing-point depressions of acetic acid, a weak
acid with a small dissociation constant, indicating that acetic acid behaves as a nonelectrolyte except at
very low concentrations. This behavior is also reflected in Figure 2.1, which shows how 1+ d ln fA/d ln c
varies with the concentration of acetic acid in water. The activity coefficient fA is defined on a molar
scale, analogously with how 𝛾A is defined on a molal scale. At moderate concentrations, the acetic acid
behaves as a nonelectrolyte in that 1+ d ln fA/d ln c varies linearly with c at moderate concentrations
(up to about 4 M) and in that 1+ d ln fA/d ln c appears to approach 1 as c approaches 0. For a dissociated
electrolyte, 1+ d ln fA/d ln c would be proportional to

√
c at low concentrations and 1+ d ln fA/d ln c

would approach v as c approaches 0. The reason for these differences between electrolytes and
nonelectrolytes is explained by the definition of 𝛾A as given in equation 2.30 (see Section 4.3 for the
theory of how 𝛾+− varies with concentration). Although data at very low concentrations are not shown
in Figure 2.1, one would expect that acetic acid would behave as an electrolyte when the concentration
of acetate ions exceeds that of undissociated acetic acid (which occurs for bulk concentrations below
10−5 mol/kg for acetic acid). Thus, 1+ d ln fA/d ln c would be expected to shoot up to approach 2
as c→ 0.

The activity of the solvent could be expressed by equation 2.15. However, it is more common to
relate deviations from ideal behavior to an osmotic coefficient 𝜙, defined by

ln
𝜆0

𝜆0
0

= −𝜙M0

∑

i≠0

mi, (2.34)

0
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Figure 2.1 Variation of the molar activity coefficient of aqueous acetic acid with concentration. For
1+ d ln f+−/d ln c, divide the ordinate scale by 2. Source: Values taken from Vitagliano and Lyons.[4]
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where 𝜆0
0 is the absolute activity of the pure solvent at the same temperature and pressure. For a solution

of a single electrolyte, this becomes

ln
𝜆0

𝜆0
0

= −𝜈m𝜙M0. (2.35)

For a solution of a single electrolyte, the mean molal activity coefficient can be related to the osmotic
coefficient by means of the Gibbs–Duhem equation, which, for constant temperature and pressure,
reads

c0d𝜇0 + cd𝜇A = 0. (2.36)

Substitution of the relevant equations gives

d(m𝜙) = md ln(m𝛾+−) (2.37)

or
d[m(𝜙 − 1)] = md ln 𝛾+−. (2.38)

Integration from m= 0 to m = m gives

ln 𝛾+− = ∫
m

0

𝜕[m(𝜙 − 1)]
𝜕m

dm
m
. (2.39)

The chemical potential of a gaseous species is expressed as

𝜇A = 𝜇∗A + RT ln pA, (2.40)

where pA is called the fugacity of gas A. The secondary reference state is an ideal gas at 1 bar. This
reference state is defined by

pA → xAp as p → 0, (2.41)

where p is the total gas pressure, xA is the mole fraction of A, and xAp is the partial pressure of gas A.
For solid solutions, such as alloys, we can represent the chemical potential of component A as

𝜇A = 𝜇0
A + RT ln aA, (2.42)

where the superscript 0 denotes pure A at the same temperature and pressure and where aA is the
relative activity, given by

aA =
𝜆A

𝜆0
A

, (2.43)

where 𝜆A is the absolute activity as in equation 2.14. The secondary reference state is pure A, yielding
the requirement that

aA → 1 as xA → 1. (2.44)
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2.4 CELL WITH SOLUTION OF UNIFORM CONCENTRATION

The cells discussed in this section are taken to contain a single electrolyte in a solution of uniform
concentration throughout the cell. In most textbooks of physical chemistry, electrochemistry, or
thermodynamics, a distinction is made between cells without transference (no concentration gradients)
and cells with transference (concentration gradients are present in the electrolytic solution). As we shall
see, this division is somewhat subjective, except for the simplest cells. The division rather depends
upon whether we are willing to ignore the concentration gradients that do exist.

An example of a cell with the same solution throughout is a cell with two electrodes of the same
metal dipping into the same solution of a salt of the metal. To be specific, consider the cell:

𝛼
Pt(s)

|||||||
𝛽

Cu(s)
|||||||

𝛿
CuSO4 inH2O

|||||||
𝛽′

Cu(s)
|||||||
𝛼′
Pt(s). (2.45)

Phase equilibrium among the several phases is described by equation 2.5, for example,

𝜇𝛼e− = 𝜇
𝛽
e−, (2.46)

𝜇𝛽
Cu2+ = 𝜇

𝛿
Cu2+. (2.47)

Similarly, cupric ions are equilibrated between the solution 𝛿 and the electrode 𝛽′, and electrons are
equilibrated between the electrode 𝛽′ and the platinum lead 𝛼′.

The procedure for relating the cell potential to the electrochemical potentials of the components is
as follows. First, one draws a schematic of the cell, as shown in equation 2.45. We define the cell
potential U to be the potential of the right electrode minus the potential of the left electrode. This
is equivalent to saying that the right electrode in our schematic is the working electrode and the left
electrode is the reference electrode and is also equivalent to saying that one would measure U in a
laboratory by connecting the positive lead of a voltmeter to the right electrode and the negative lead to
the left electrode (keeping in mind that depending on how one draws the schematic, i.e., connects the
leads of the voltmeter, the voltmeter may read a positive or a negative value).

The cell potential is related to the electrochemical potentials of electrons in the leads by

FU = ze−F(Φ𝛼 − Φ𝛼′) = 𝜇𝛼e− − 𝜇𝛼
′
e− . (2.48)

We then write out the reactions at each electrode. In this case, the reaction at both electrodes is

Cu ⇌ Cu2+ + 2e−. (2.49)

At equilibrium, these reactions result in a relationship among the electrochemical potentials:

𝜇Cu = 𝜇Cu2+ + 2𝜇e−. (2.50)

Rearranging this equation allows one to obtain 𝜇e− in terms of the electrochemical potentials of the
other components of the cell. One can then substitute these expressions into equation 2.48 to obtain
the expression for the cell potential

FU = 1
2
𝜇𝛽Cu −

1
2
𝜇𝛽

′

Cu −
1
2
𝜇𝛿
Cu2+ +

1
2
𝜇𝛿′
Cu2+. (2.51)

If the electrolyte is uniform across the cell, then 𝜇𝛿
Cu2+ = 𝜇

𝛿′

Cu2+ , and the expression for the cell potential
simplifies to

FU = 1
2
𝜇𝛽Cu −

1
2
𝜇𝛽

′

Cu. (2.52)
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For this simple cell, the electrodes are identical, and therefore the cell potential is zero. However,
there are numerous examples of cells in which the electrodes, while both reacting with the same ion,
are of different composition. For example, one could alloy the copper with another metal, resulting in
a change in the cell potential. For the present analysis, we require that the alloying metal be inert in the
cell, so that it serves only to alter the electrochemical potential of the copper. A cell of this type is

𝛼
Pt(s)

|||||||
𝛽

Pb(s)
|||||||

𝛿
PbCl2 inH2O

|||||||
𝜖

Pb(Hg)
|||||||
𝛼′
Pt(s) , (2.53)

in which Pb(Hg) is a lead amalgam (alloy with mercury). Following the procedure given above, the
cell potential is found to be

FU = −F(Φ𝛼 − Φ𝛼′) = 1
2
𝜇𝛽Pb −

1
2
𝜇𝜖Pb. (2.54)

This cell provides the means for determining the thermodynamic properties of lead amalgam as a
function of the amalgam composition, the most common application for this type of cell.

Another type of cell with a uniform concentration has the form of equation 2.1, if one assumes that
the solid salt is insoluble. For example, consider the system

𝛼
Pt(s)

|||||||
𝛽

Li(s)
|||||||

𝛿
LiCl in DMSO

|||||||
𝜖

TlCl(s)
|||||||

𝜙
Tl(Hg)

|||||||
𝛼′
Pt(s) , (2.55)

where the electrolytic solution is a solution of lithium chloride in the solvent dimethyl sulfoxide
(DMSO), TlCl is a salt that is sparingly soluble in DMSO, and Tl(Hg) is a thallium amalgam. By
sparingly soluble, we mean that the salt has a very small saturation concentration in the electrolyte. For
the present, let us ignore even this small concentration and assume that the electrolyte consists only of
LiCl in DMSO. Again, the procedure for obtaining the cell potential is as follows. The cell reactions
are given by

Li ⇌ Li+ + e− (2.56)

and
Tl + Cl− ⇌ TlCl + e−. (2.57)

Then the electrochemical potentials of the electrons are given by

𝜇𝛽Li = 𝜇
𝛿
Li+
+ 𝜇𝛼e− (2.58)

and
𝜇𝜙Tl + 𝜇

𝛿
Cl− = 𝜇

𝜖
TlCl + 𝜇

𝛼′
e− . (2.59)

The second statement is true because of the conditions of equilibrium among the phases:

𝜇𝛿Cl− = 𝜇
𝜖
Cl− and 𝜇𝜖

Tl+
= 𝜇𝜙

Tl+
. (2.60)

Substituting equations 2.58 and 2.59 into equation 2.48, we find

FU = −F(Φ𝛼 − Φ𝛼′) = 𝜇𝛽Li − 𝜇
𝜙
Tl + 𝜇

𝜖
TlCl − 𝜇

𝛿
LiCl, (2.61)

where we have used the identity 𝜇Li+ + 𝜇Cl− = 𝜇LiCl. Thus, the cell potential is related to the
thermodynamic properties of neutral species, even though the phase equilibria were expressed in terms
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of charged species. This will always be true for cells that can be treated by thermodynamics alone.
This type of cell, in which the overall cell reaction includes the electrolyte, can be used to study the
thermodynamic properties of the electrolyte.

The above treatment assumes the electrolyte is of uniform composition. However, it is known that
there will be thallous chloride in the solution, although the quantity will be small, and the presence
of this added electrolyte will change the chemical potential of LiCl in the immediate vicinity of the
thallium amalgam–thallous chloride electrode. One cannot allow the thallous chloride to saturate the
entire solution because it will react spontaneously with the lithium metal. Thus, there must be a gradient
of the concentration of TlCl and of the electrochemical potential of the chloride ion, and one can no
longer assume that both electrodes are in contact with the same electrolytic solution. This picture can
be represented as

Pt(s) Li(s) LiCl in
DMSO

LiCl and TlCl
in DMSO

TlCl(s) Tl(Hg) Pt(s) .transition
region

α αʹβ δ ϕϵδʹ

(2.62)

Here phase 𝛿′ differs from phase 𝛿 due to the dissolved TlCl, and these are connected by a junction, or
transition region, in which the concentration of thallous chloride varies with position.

The equilibria among phases 𝛿′, 𝜖, and 𝜙 can now be written:

𝜇𝛿′Cl− = 𝜇
𝜖
Cl− and 𝜇𝛿′

Tl+
= 𝜇𝜖

Tl+
= 𝜇𝜙

Tl+
. (2.63)

The solution 𝛿′ will actually facilitate the equilibrium between the amalgam 𝜙 and the solid salt 𝜖.
Instead of equation 2.61, we now obtain

FU = 𝜇𝛽Li − 𝜇
𝜙
Tl + 𝜇

𝜖
TlCl − 𝜇

𝛿
LiCl + (𝜇

𝛿
Cl− − 𝜇

𝛿′
Cl−). (2.64)

We see that this equation will be identical with equation 2.61 if we are willing to ignore the difference
in electrochemical potential of the chloride ion between the solutions adjacent to the two electrodes.
Thermodynamics alone does not provide the means for evaluating this difference since the junction
region basically involves the irreversible process of diffusion and must be treated by the laws of
transport in electrolytic solutions. For this system, in the absence of current, the gradient of the
electrochemical potential of the chloride ion can be expressed in terms of the neutral salts, as discussed
in the next section,

∇𝜇Cl− = t0
Li+
∇𝜇LiCl + t0

Tl+
∇𝜇TlCl, (2.65)

where t0
i is the transference number of species i with respect to the solvent velocity. From this equation,

we can perceive that the more insoluble the salt (here, TlCl), the smaller the value of t0
Tl+

will be
and the more nearly the same the solution will be throughout. Then equation 2.64 can be adequately
approximated by equation 2.61.

The purpose of this section has been to illustrate how to apply the phase-equilibrium conditions of
Section 2.1 to typical systems that involve an electrolytic solution of uniform composition throughout
the cell. For the first two cases examined above (cells 2.45 and 2.53), the thermodynamic properties of
the solution do not influence the cell potential. The third example (cell 2.55) can be used to study the
thermodynamic properties of the electrolytic solution, although, if the TlCl is soluble, this cell does not
belong in this section. The assessment of the errors involved in ignoring the concentration gradients in
cells such as cell 2.62 is treated in Section 2.7.

The results of the previous examples can be applied to cells with additional solvent or salt species
in solution at a uniform concentration under the following conditions:
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1. The additional species changes the thermodynamic properties of the first electrolyte in solution,
but it does not react with it to form a precipitate or evolve a gas, and it does not react spontaneously
with the electrodes.

2. The additional species does not participate in the phase equilibria except to alter thermodynamic
properties in the solution phase.

Such cells would provide information about how the chemical potential of the first salt is affected by
the additive.

2.5 TRANSPORT PROCESSES IN JUNCTION REGIONS

The treatment of the open-circuit potentials of electrochemical cells involves first the description of
phase equilibria between the electrodes and the solutions or solids adjacent to them (discussed briefly
in Section 2.1) followed by a consideration of the junction regions that are likely to exist between
the solutions adjacent to the electrodes. We have found, in the previous section, a need to treat such
regions.

Equation 2.65 shows that evaluation of the cell potential requires evaluation of the gradient in
chemical potential of a species across the electrolyte. To do this, we call upon an equation developed
in Part C, transport processes in electrolytic solutions (see Section 12.7):

F
𝜅 𝐢 = −

∑

i

t 0
i

zi
∇𝜇i, (2.66)

where i is the current density, 𝜅 is the conductivity, t0
i is the transference number of species i relative

to the velocity of species 0, and ∇𝜇i is the gradient of the electrochemical potential of species i. This
equation is derived from the laws of multicomponent diffusion and can be regarded as an extended
form of Ohm’s law.

The species 0 whose velocity is used as a reference can be any species in the solution, but it is
usually taken to be the solvent, if a solvent is evident. The sum in equation 2.66 includes any neutral
species that might be present, and the ratio t0

i ∕zi is not generally zero for a neutral species. However,
t0
i and t0

i ∕zi are always zero for the reference species, and this is one reason why it is convenient to
choose the solvent for this reference.

Equation 2.66 applies, regardless of the number of species, including a solution that contains two
or more neutral species. Consider for example the case of a solution of copper sulfate dissolved in a
mixture of sucrose and water, with water as a reference. The right side of equation 2.66 will have 3
nonzero terms corresponding the cupric ions, sulfate ions, and sucrose. The term for sucrose is nonzero
in spite of the fact that zi is zero; this is a situation where both the numerator and denominator formally
approach zero but the ratio is finite. For the term corresponding to sucrose, it is convenient to replace
the term t0

i ∕zi in equation 2.66 by a transport number, 𝜏0
i . Note that the transport number of a neutral

species is also defined relative a reference species. Nothing is gained by defining transport numbers
for charged species.

In the treatment of the open-circuit potentials of electrochemical cells, the current density i is
supposed to be zero. However, its presence in equation 2.66 would aid in the assessment of the
effects of those small currents that are unavoidable in the actual measurement of cell potentials. In
this connection, and to give further insight into equation 2.66, we might note that it reduces to Ohm’s
law in a medium of uniform composition. Then the variations in the electrochemical potentials can be
expressed by equation 2.9, and we have

𝐢 = −𝜅∇Φ
∑

i

t 0
i = −𝜅∇Φ, (2.67)
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the second equality following from the fact that the sum of the transference numbers of all species is
equal to one.

To treat junction regions, it is convenient to rewrite equation 2.66 in the form

1
zn
∇𝜇n = −

F
𝜅 𝐢 −

∑

i

t 0
i

zi
(∇𝜇i −

zi

zn
∇𝜇n) , (2.68)

where species n can be any charged species in the solution. The combinations of electrochemical
potentials in parentheses correspond to neutral combinations of species and hence are independent of
the electrical state of the solution; these terms depend only on the spatial variation of the chemical
composition of the medium (at uniform temperature and pressure). Hence, equation 2.68 permits the
assessment of the variation of the electrochemical potential of one charged species in a region of
nonuniform composition. In other words, the electrical states of different parts of a phase are related to
each other because they are physically connected to each other. In a medium of uniform composition,
this amounts to a determination of the ohmic potential drop; in a nonuniform medium, the variation of
composition can also be accounted for.

For the solution of lithium chloride and thallous chloride in DMSO, considered in Section 2.4,
equation 2.68 becomes equation 2.65 if species n is taken to be the chloride ion and if the current
density is zero. In practice, this equation must now be integrated across the junction region for known
concentration profiles of TlCl and LiCl.

In this section, only one equation has been presented, one which is roughly equivalent to Ohm’s law.
It is useful for assessing variations in electrical state across a junction region where the concentration
profiles are known. It is not sufficient for the determination of these concentration profiles nor of the
current density. These concentration profiles, which may change with time, are determined from the
laws of diffusion and the method of forming the junction, topics that are beyond the scope of this
section.

2.6 CELL WITH A SINGLE ELECTROLYTE OF VARYING CONCENTRATION

A cell in which the concentration of a single electrolyte varies with location in the cell is the simplest
example of a so-called cell with transference. An example is

Pt(s) Li(s) Li(s)LiCl in
DMSO

LiCl in
DMSO

Pt(s) ,transition
region

α αʹβ βʹδ ϵ

(2.69)

in which the chemical composition of both platinum leads is identical, as is that of both lithium
electrodes. This cell is also sometimes called a concentration cell. The concentration of LiCl in the
𝛿 phase is different from that in the 𝜖 phase. The transition region is one in which concentration
gradients exist, as the concentration varies from that in the 𝛿 phase to that in the 𝜖 phase. This region
is sometimes called a liquid junction. Diffusion across the transition region will gradually mix the two
solutions, but the rate of diffusion can be slowed by using a porous separator or by placing the two
solutions in separate compartments joined by a capillary tube (see Figure 1.9).

By means of the conditions of phase equilibrium (equation 2.5) and the definition of the potential
difference between phases of identical composition (equation 2.9), the cell potential reduces to

FU = −F(Φ𝛼 − Φ𝛼′) = 𝜇𝜖
Li+
− 𝜇𝛿

Li+
. (2.70)
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One can go no further in treating the cell by reversible thermodynamics since diffusion is present.
Equation 2.68 can be applied to evaluate the difference of electrochemical potentials appearing in
equation 2.70. If we take the current density to be zero and lithium ions to be species n, equation 2.68
becomes

∇𝜇Li+ = t 0
Cl−∇𝜇LiCl. (2.71)

This can be integrated across the junction region and the results substituted into equation 2.70 to yield

FU = ∫
𝜖

𝛿
t 0
Cl−
𝜕𝜇LiCl

𝜕x
dx. (2.72)

In this particular case of a binary electrolyte, both t 0
Cl− and 𝜇LiCl depend only on the concentration of

LiCl, and the integral in equation 2.72 becomes independent of the detailed form of the concentration
profile in the junction region:

FU = ∫
𝜖

𝛿
t 0
Cl−d𝜇LiCl = ∫

𝜖

𝛿
t 0
Cl−

d𝜇LiCl

dm
dm. (2.73)

This equation is equivalent to the expressions that appear in most treatments of cells of the type
considered here. However, the virtual passage of current used in most derivations has been avoided
here because such derivations give the impression that reversible thermodynamics is sufficient to yield
the cell potential. The potential difference in equation 2.73 should not be called a liquid-junction
potential; rather it is the potential of a cell with a liquid junction.

Equation 2.73 can be generalized to metals and electrolytes with different charge numbers, with the
result

FU = ∫
𝜖

𝛿

t0
−

z+𝜈+
d𝜇A

dm
dm, (2.74)

where A denotes the single electrolyte in the solution. The equilibria between the electrodes and the
solutions are assumed to involve only cations, and the electrodes are assumed to be identical. This
would include the copper sulfate concentration cell in Figure 1.9.

Upon introduction of activity coefficients by means of equation 2.28, equation 2.74 becomes

FU = 𝜈RT ∫
𝜖

𝛿

t0
−

z+𝜈+
(1 +

d ln 𝛾+−
d ln m

) d ln m. (2.75)

If the concentration dependence of the transference number is ignored, we have the approximation

U = 𝜈
z+𝜈+

RT
F

t0
− ln

(m𝛾+−)𝜖
(m𝛾+−)𝛿

= 𝜈
z+𝜈+

RT
F

t0
− ln

(cf+−)𝜖
(cf+−)𝛿

. (2.76)

The latter expression was the basis for the approximation in equation 1.34 for the potential of the
copper concentration cell used as an example in Chapter 1.

Finally, one might generalize these results for an arbitrary electrode reaction with a solution of a
single electrolyte A. Let the cell be represented as

Pt(s) electrode electrodesolution solution
transition

region Pt(s)

α αʹβ βʹδ ϵ
’ (2.77)
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where electrode 𝛽 is identical to electrode 𝛽′. If the “electrodes” involve an additional gas phase or
sparingly soluble salt, the chemical potentials of these neutral species are taken to be the same on both
sides of the cell, and the solubilities are taken to be small enough that the solution can still be regarded
as that of the electrolyte alone in the solvent.

A general electrode reaction can be expressed by equation 2.6, which we repeat here:
∑

i

siM
zi
i → ne−, (2.78)

where si is the stoichiometric coefficient of species i and Mi is a symbol for the chemical formula of
species i. A generalization of the formulas for phase equilibrium for this reaction is

∑

i

si𝜇i = n𝜇e−, (2.79)

where superscripts for the appropriate phases in which the species exist should be added. Since the
electrode phases have only neutral species, a charge balance based on equation 2.78 yields

s+z+ + s−z− = −n, (2.80)

and we see that the cations and anions of the electrolyte must be responsible for the electrons produced
or consumed at the electrodes.

In this case, we choose to treat the cell by means of a reference electrode, perhaps imaginary, of the
same kind as the main electrodes and that can be moved, together with its extraneous neutral phases,
through the solution in the region between the electrodes. The variation of the potential of this electrode
with position is given by the gradient of equation 2.79:

s+∇𝜇+ + s−∇𝜇− + s0∇𝜇0 = n∇𝜇e− = −nF∇Φ, (2.81)

it being presumed that only the properties of the solution vary with position and that the solution
contains only solvent, cation, and anion. Equation 2.68 allows us to relate variations of electrochemical
potentials of ions to variations of the chemical potential of the electrolyte:

1
z+
∇𝜇+ =

t0
−

z+𝜈+
∇𝜇A. (2.82)

The Gibbs–Duhem equation 2.36 allows us to relate the variation of the chemical potential of the
solvent to that of the electrolyte:

∇𝜇0 +M0m∇𝜇A = 0. (2.83)

Combination of equations 2.81 through 2.83 yields

F∇Φ = (
t0
−

z+𝜈+
−

s−
n𝜈−

+
s0M0

n
m)∇𝜇A. (2.84)

Integration across the junction region gives

FU = − F(Φ𝛼 − Φ𝛼′) = ∫
𝜖

𝛿
(

t0
−

z+𝜈+
−

s−
n𝜈−

+
s0M0

n
m)

d𝜇A

dm
dm

=𝜈RT ∫
𝜖

𝛿
(

t0
−

z+𝜈+
−

s−
n𝜈−

+
s0M0

n
m) (1 +

d ln 𝛾+−
d ln m

) d ln m. (2.85)
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If t0
− is independent of concentration, this becomes

FU = 𝜈RT (
t0
−

z+𝜈+
−

s−
n𝜈−

) ln
(m𝛾+−)𝜖
(m𝛾+−)𝛿

+ 𝜈RT
s0M0

n
∫
𝜖

𝛿
(1 +

d ln 𝛾+−
d ln m

) dm. (2.86)

In the case where the anion and the solvent do not participate in the electrode reaction, equation 2.85
is seen to coincide with equation 2.75.

We have given here, in various degrees of generality, a treatment of concentration cells, where the
electrodes are identical but are placed in different solutions of a single electrolyte that are joined by
a junction region where the concentration varies. The measured cell potential is found to depend not
only on the thermodynamic properties but also on the transport properties of the solutions in the cell.
Such cells are useful for determining the activity coefficient if the transference number is known and
the transference number if the activity coefficient is known. Both types of determination are common
practice.

Let us consider some additional examples. For the cell

Pt(s), H2(g) Pt(s), H2(g) ’HCl in H2O HCl in H2Otransition
region

α αʹλϵ
(2.87)

the cell potential is

FU = − F(Φ𝛼 − Φ𝛼′) = 1
2

RT ln
p𝛼H2

p𝛼′H2

− 𝜇𝜖H+ + 𝜇
𝜆
H+

=1
2

RT ln
p𝛼H2

p𝛼′H2

+ ∫
𝜆

𝜖
t0
Cl−d𝜇HCl. (2.88)

This agrees with equation 2.73 if the partial pressure of hydrogen is the same near the two platinum
electrodes.

If the hydrogen electrodes are replaced by silver–silver chloride electrodes, we have the cell

Pt(s) Pt(s) ,Ag(s) Ag(s)AgCl(s) AgCl(s)HCl in
H2O

HCl in
H2O

transition
region

α αʹβ βʹδ ϵ δʹλ

(2.89)

for which the cell potential is

FU = −F(Φ𝛼 − Φ𝛼′) = 𝜇𝜖Cl− − 𝜇
𝜆
Cl− = ∫

𝜖

𝜆
t0
H+d𝜇HCl (2.90)

if the silver electrodes are identical and the solid silver chloride is the same on both sides of the cell.
The potential of this cell is opposite in sign to that of the preceding cell and the magnitudes are quite
different since t0

H+ ≈ 0.82, whereas t0
Cl− ≈ 0.18. Equation 2.90 agrees with equation 2.85 if we use the

values s− = 1, s0 = 0, and n = 1.
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Finally, for the cell

Pt(s) Pt(s)Hg(l) Hg(l)HgO(s) HgO(s)KOH in
H2O

KOH in
H2O

transition
region

α αʹβ βʹδ ϵ δʹλ

(2.91)

the reaction at the mercury–mercuric oxide electrodes is

Hg + 2OH− → HgO + H2O + 2e−, (2.92)

for which we have
n = 2, s− = 2, s0 = −1. (2.93)

Consequently, the cell potential is given by

FU = −F(Φ𝛼 − Φ𝛼′) = ∫
𝜖

𝜆
(t0
K+ +

1
2

M0m) d𝜇KOH. (2.94)

2.7 CELL WITH TWO ELECTROLYTES, ONE OF NEARLY UNIFORM
CONCENTRATION

The purpose of this section is to show an approximate method for calculating the effect of a sparingly
soluble salt on the cell potential. By making approximations for the dependence of transference
numbers and activity coefficients on concentration, we can relate the potential of the cell to the
solubility product for the sparingly soluble salt. An alternative, more straightforward treatment is given
in Chapter 6.

The cells of this section have two electrolytes in solution: One of the electrolytes is of nearly
uniform concentration throughout, while the concentration of the other varies with position in the cell.
An example of this type of cell has been discussed in Section 2.4:

Pt(s) Pt(s) ,Li(s) TlCl(s) Tl(Hg)LiCl in
DMSO

LiCl and TlCl
in DMSO

transition
region

α αʹβ δ ϵδʹ ϕ
(2.95)

in which the transition region denotes the region of variable concentration of TlCl. The lithium chloride
is of nearly uniform concentration, although its value may be changed slightly near the thallous
chloride salt.

The potential of this cell was expressed as

FU = 𝜇𝛽Li − 𝜇
𝜙
Tl + 𝜇

𝜖
TlCl − 𝜇

𝛿
LiCl + (𝜇

𝛿
Cl− − 𝜇

𝛿′
Cl−). (2.96)

Just as for the cells of Section 2.6, this expression contains a difference in the electrochemical potential
of an ionic species between two points in the solution. In this section, we consider cells for which this
term can be regarded as a small error term in an expression that otherwise relates the cell potential to
thermodynamic quantities, in contrast to Section 2.6, which described concentration cells for which
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the cell potential depended entirely on such a term. The estimation of these errors has been treated by
Smyrl and Tobias,[5] whose development we follow here.

Equation 2.65, as repeated below,

∇𝜇Cl− = t0
Li+
∇𝜇LiCl + t0

Tl+
∇𝜇TlCl, (2.97)

provides the means for assessing the magnitude of this difference. Thus,

𝜇𝛿Cl− − 𝜇
𝛿′
Cl− = ∫

𝛿

𝛿′
(t0
Li+

d𝜇LiCl

dx
+ t0

Tl+
d𝜇TlCl

dx
) dx. (2.98)

In contrast to the situation in Section 2.6, this integral cannot be evaluated exactly without knowledge of
the detailed concentration profiles in the junction region since the transference numbers and chemical
potentials depend on the concentrations of both LiCl and TlCl. Here we only want to assess the
magnitude of a term that is usually neglected, and for this purpose we make approximations appropriate
to dilute solutions and also take the mobilities of the ions to be equal.

For the transference numbers, these approximations become (see equation 11.9)

t0
Li+
=

mLi+

2mCl−
and t0

Tl+
=

mTl+

2mCl−
. (2.99)

From equation 2.23, the variations of the chemical potential of thallous chloride can be expressed as

∇𝜇TlCl = RT∇ ln(mTl+mCl−𝛾2
TlCl), (2.100)

and a similar expression applies to the lithium chloride. Substitution of these equations into equation 2.97
gives

∇𝜇Cl− = RT∇ ln mCl− + RT (
mLi+

mCl−
∇ ln 𝛾LiCl +

mTl+

mCl−
∇ ln 𝛾TlCl) . (2.101)

For dilute solutions, the Debye–Hückel limiting law can be used for the activity coefficients (see
Section 4.2):

ln 𝛾LiCl = ln 𝛾TlCl = −𝛼I1∕2 = −𝛼m1∕2
Cl− , (2.102)

where 𝛼 is the Debye–Hückel constant, equal to 1.176 and 2.57 kg1/2/mol1/2 for water and DMSO,[5]

respectively, at 25∘C. In the Debye–Hückel approximation, the activity coefficients are the same for
electrolytes of the same charge type and depend only on the ionic strength I, which here is equal to
mCl− .

Equation 2.101 now becomes

∇𝜇Cl− = RT∇ ln mCl− − 𝛼RT∇m1∕2
Cl− , (2.103)

and integration allows us to write equation 2.98 as

𝜇𝛿Cl− − 𝜇
𝛿′
Cl− = −RT ln

m𝛿
′

Cl−

m𝛿LiCl

+ 𝛼RT
[
(m𝛿′Cl−)

1∕2 − (m𝛿LiCl)
1∕2
]
. (2.104)

In order to measure activity coefficients and standard cell potentials by using cells of this type,
one makes measurements at low concentrations of LiCl and extrapolates to infinite dilution of this
electrolyte, thereby establishing the reference state given by equation 2.18. These measurements at
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low concentrations of LiCl are, therefore, the most important thermodynamically and are also the
measurements that are most subject to errors from liquid-junctions such as treated here. We can
approximate the concentration change from solution 𝛿 to 𝛿′ as

m𝛿
′

Cl− − m𝛿LiCl ≈ m𝛿
′

Tl+
=

Ksp

m𝛿′Cl−
(2.105)

where Ksp is the solubility product of thallous chloride. For the corresponding uncertainty in the
measured cell potential to be less than 10 μV for m = 10−3 mol/kg, the solubility product of the
sparingly soluble salt must be less than about 4× 10−10 (mol/kg)2.

Another cell of this type, in aqueous solution, is

transition
region

α αʹβ δ ϵ λ
Pt(s),
H2(g)

HCl in
H2O

HCl and AgCl
in H2O

AgCl(s) Ag(s) Pt(s) , (2.106)

where solutions 𝛽 and 𝛿 are different primarily because solution 𝛿 is saturated with silver chloride.
The expression for the cell potential is

FU = −F(Φ𝛼 − Φ𝛼′) = 1
2
𝜇𝛼H2

− 𝜇𝛽HCl − 𝜇
𝜆
Ag + 𝜇

𝜖
AgCl + (𝜇

𝛽
Cl− − 𝜇

𝛿
Cl−). (2.107)

Table 2.1 gives values of (𝜇𝛽Cl− − 𝜇
𝛿
Cl−)∕F for Ksp = 10−10(mol/kg)2, calculated by a method[6] to be

outlined in Section 6.5. Values obtained from equations 2.104 and 2.105 are given for comparison.
From Table 2.1, one can see that the effect of the sparingly soluble salt on the cell potential becomes
significant when the bulk concentration of the electrolyte is of the same order of magnitude as the
square root of the solubility product.

The effect of the sparingly soluble salt on the cell potential, treated above, was ignored for some of
the cells in Section 2.6, specifically cells 2.89 and 2.91.

Under the classification of this section, cells with two electrolytes, one of nearly uniform concentra-
tion, we could logically include cells with an inert electrolyte of nearly uniform concentration, where

TABLE 2.1 Effect of solubility of silver chloride for
decreasing values of bulk HCl concentration

(𝜇𝛽Cl− − 𝜇
𝛿
Cl− )∕F (mV)

m (mol/kg) m𝛿
Cl−∕m𝛽

Cl− Calculated Formulaa

10−4 1.00961 −0.226 −0.252
5× 10−5 1.0392 −0.914 −0.967
2× 10−5 1.200 −4.32 −4.82
10−5 1.604 −11.22 −12.34
5× 10−6 2.539 −22.16 −24.13
2× 10−6 5.499 −40.58 −43.86

aFrom equations 2.104 and 2.105 for Ksp = 10−10 (mol/kg)2.
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the species that react at the electrodes are present at much smaller concentrations. An example is

Pt(s) Pt(s)Na(Hg) NaNO3
KNO3
in H2O

AgNO3
KNO3
in H2O

Ag(s)
transition

region
KNO3 in

H2O

α αʹβ δ ϵ χ

 , (2.108)

in which KNO3 is present throughout the cell at the same, or nearly the same, concentration. The
transition region contains concentration gradients of both NaNO3 and AgNO3. The cell potential can
be expressed as

FU = − F(Φ𝛼 − Φ𝛼′)

=𝜇𝛽Na − 𝜇
𝛿
NaNO3

− 𝜇𝜒Ag + 𝜇
𝜖
AgNO3

+ (𝜇𝛿NO−3
− 𝜇𝜖NO−3

), (2.109)

on the assumption that KNO3 is not involved in the phase equilibria at the electrodes, except to alter
the chemical potentials of the other electrolytes in the solution.

With the same approximations used above, we can write

FU = 𝜇𝛽Na − 𝜇
𝜒
Ag + RT ln

𝜆𝜃
Ag+

𝜆𝜃
Na+

+ RT ln
m𝜖
Ag+

m𝛿
Na+

− 𝛼RT [(m𝜖NO−3
)1∕2 − (m𝛿NO−3

)1∕2] . (2.110)

Variations in the cell potential are thus due primarily to changes in the concentrations of silver and
sodium ions. If the ionic strength is reasonably uniform, the last term, related to activity-coefficient
corrections, can be ignored. We notice that the ratio 𝜆𝜃

Ag+
∕𝜆𝜃
Na+

is uniquely determined according to
the considerations of Section 2.3.

When activity coefficients are ignored, equation 2.110 is a form of the so-called Nernst equation,
relating cell potentials to the logarithms of ionic concentrations (see equation 1.8). It is frequently
written in terms of molar concentrations. The Nernst equation can be used when there is an excess of
inert electrolyte of nearly uniform concentration and the reactant species are present at much smaller
concentrations. The assessment of the errors involved is considered again in Chapter 6.

We have seen that cell potentials frequently depend upon the transport properties of the electrolytic
solutions as well as the thermodynamic properties, and they also depend upon the detailed form of
the concentration profiles in the junction region. Under certain conditions, such as those considered
in this section, approximations can be introduced so that the cell potential is expressed in terms of
thermodynamic properties alone. Whether these approximations are sufficiently accurate depends on
the intended application.

2.8 CELL WITH TWO ELECTROLYTES, BOTH OF VARYING CONCENTRATION

Cells of this type may still be divided into two groups according to whether the two electrolytes have
an ion in common. A cell with a junction between solutions of CuSO4 and ZnSO4 is an example where
there is a common ion; a junction between NaCl and HClO4 is an example where there is not. The
former class is discussed first.
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Consider the cell

Pt(s) Pt(s) ,Ag(s) Ag(s)AgCl(s) AgCl(s)HCl in
H2O

KCl in
H2O

transition
region

α αʹβ βʹδ δʹε λ

(2.111)

for which the cell potential is

FU = −F(Φ𝛼 − Φ𝛼′) = 𝜇𝜖Cl− − 𝜇
𝜆
Cl− . (2.112)

For the present analysis, we ignore the small solubility of AgCl, which was treated in Section 2.7.
Integration of equation 2.68 for this case gives

𝜇𝜖Cl− − 𝜇
𝜆
Cl− = ∫

𝜖

𝜆
(t0
H+
𝜕𝜇HCl
𝜕x

+ t0
K+
𝜕𝜇KCl
𝜕x

) dx. (2.113)

Here, as with equation 2.98, and in contrast to equation 2.72, the integral depends on the detailed form
of the concentration profiles in the junction region. The evaluation of this integral is considered in
Chapter 6 in a manner that is more accurate than that used in Section 2.7.

We should also like to know how to treat the potentials of cells containing two electrolytes of
varying concentration but with no common ion. Such a cell is

Pt(s),
H2(g)

HClO4
in H2O

transition
region

NaCl in
H2O

AgCl(s) Ag(s) Pt(s) .
α αʹβ δ ϵ λ

(2.114)

The transition region contains the solutions that vary in composition from 𝛽 to 𝛿. From the conditions
of phase equilibria at the electrodes and the definitions of the chemical potentials of neutral species,
the cell potential can be written

FU = −F(Φ𝛼 − Φ𝛼′) = 1
2
𝜇𝛼H2

− 𝜇𝜆Ag + 𝜇
𝜖
AgCl − (𝜇

𝛽
H+ + 𝜇

𝛿
Cl−). (2.115)

The cell potential is again related to the thermodynamic properties of electrically neutral components,
but a new term has appeared. Instead of the difference of electrochemical potential of a single ion
between the two solutions, there is now a combination of electrochemical potentials of two ions. One
way to analyze this more complicated situation is to select an intermediate point I in the junction where
both ions are present. If the concentration profiles are known, equation 2.68 can be used to evaluate
the differences 𝜇𝛽H+ − 𝜇

I
H+ and 𝜇𝛿Cl− − 𝜇

I
Cl− . The cell potential can then be written

FU = 1
2
𝜇𝛼H2

− 𝜇𝜆Ag + 𝜇
𝜖
AgCl − (𝜇

𝛽
H+ − 𝜇

I
H+) − (𝜇

𝛿
Cl− − 𝜇

I
Cl−) − 𝜇

I
HCl. (2.116)

The last term, 𝜇I
HCl, can be evaluated if the activity coefficient of HCl is known for the solution of

HClO4 and NaCl at the point I. The cell potential is, of course, independent of the choice of the location
of I within the transition region.

Although none of the examples is carried through here, it should be apparent that the potential of
such cells can, in principle, be treated. The concentration profiles are determined from the laws of
diffusion and the method of forming the junction. The expression for the cell potential will involve the
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difference in electrochemical potential of an ion or of two different ions in different solutions, and this
difference can be evaluated from equation 2.68, perhaps with the selection of an intermediate point,
because the solutions are connected to each other through the junction. The development is brought to
fruition in Chapter 6.

2.9 LITHIUM–LITHIUM CELL WITH TWO POLYMER ELECTROLYTES

While we have focused on platinum electrodes and aqueous electrolytes, the concepts described above
apply to different kinds of electrolytes such as lithium salts mixed with either cyclic carbonates
or polymers. The carbonate-based electrolytes are used in rechargeable lithium-ion batteries while
polymer-based electrolytes are being developed for future generations of rechargeable batteries. A
popular polymer electrolyte system is a mixture of lithium bis(trifluoromethanesulfonyl)imide (LiTFSI)
and poly(ethylene oxide) (PEO).[7, 8] Mixtures of LiTFSI and linear PEO chains in the rubbery state
are liquids with long relaxation times; they can thus appear solid-like on short time scales. If the PEO
chains are crosslinked, then diffusion of the chains on length scales larger than the distance between
crosslinks (typically on the 10-nm length scale) is forbidden, and one obtains a soft solid. Shown below
is a cell wherein two LiTFSI/PEO mixtures with different molalities, mr and m, are brought in contact
with each other at constant T and p.

LiTFSI in
PEO(mr)

transition
region

LiTFSI in
PEO(m)

Li(s) .
ϵ λ αʹ

Li(s)
α

(2.117)

Such a cell is shown schematically in Figure 2.2a. As soon as the phases 𝜖 and 𝜆 are brought into
contact, diffusion of salt across the boundary leads to the development of a transition region. At
long times, the concentrations of the electrolytes 𝜖 and 𝜆 will approach each other, and U will be

–1.5 –1.0 –0.5 0.0 0.5 1.0 1.5 2.0

–100
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U
 (

m
V

)

(b)(a)

Figure 2.2 (a) Schematic of a concentration cell with two lithium electrodes and a junction between two polymer
electrolytes with different salt concentrations (molalities) in contact with each other. (b) Open-circuit potential U,
as a function of molality m, of PEO/LiTFSI, with a reference molality of 1.36 mol/kg, measured before diffusion
substantially changes the electrolyte concentration at the electrodes.
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zero. The time scale on which this equilibrium configuration is obtained will depend on the size of
the phases 𝜖 and 𝜆 (diffusion length), the nature of the PEO chains (length and whether or not they
are crosslinked), and salt concentration. At early times, the transition region will be confined to the
middle of the cell and will not reach either electrode. Under these conditions, the cell potential is given
by equation 2.75 applied to univalent salts

FU = −F(Φ𝛼 − Φ𝛼′) = 2RT ∫
m

mr

t0
− (1 +

d ln 𝛾+−
d ln m

) d ln m. (2.118)

In the simple case where t0
− is a known constant, measurements of U as a function of m, keeping mr

fixed, may be used to determine the dependence of 𝛾+− on the salt concentration. This is often not the
case, and the differential form of equation 2.118 must be used to interpret U versus m data:

dU
d ln m

=
2RTt0

−
F

(1 +
d ln 𝛾+−
d ln m

) , (2.119)

where the U data must be augmented by other measurements to enable the determination of the
dependences of both 𝛾+− and t0

− on salt concentration.[9]

Data obtained from a concentration cell containing PEO (molar mass = 5 kg/mol)/LiTFSI mixtures,
with mr = 1.36 mol/kg, are shown in a plot of U versus m in Figure 2.2b.[10, 11] We revisit this data set
and additional characterization of this electrolyte in Section 14.3.

2.10 STANDARD CELL POTENTIAL AND ACTIVITY COEFFICIENTS

Uses for Different Types of Cells

We have described four types of cells. The first is of the form of cell 2.45, in which the electrolyte is
uniform and the net cell reaction does not involve the electrolyte. The potential of this cell depends on
the electrochemical potentials of the components of the electrodes but is independent of the nature or
concentration of the electrolyte. Such a cell can be used to obtain thermodynamic data on the electrode
materials.

The second is of the form of cell 2.55, in which there is still a uniform electrolyte (assuming the
TlCl to be insoluble) but in which the overall cell reaction does involve the electrolyte. For example,
for the case of cell 2.55, Li+ reacts at the left electrode, whereas Cl− reacts at the right electrode. The
potential of this cell depends on the electrochemical potentials both of the electrode materials and of
the components of the electrolytic solution. If the thermodynamic properties of the electrode materials
are already known, then a cell of this type can be used to measure the chemical potential of the salt
in the electrolyte. If nonreactive salts or solvents are mixed into the electrolyte, then this cell can be
used to see how the activity coefficient of the reacting salt depends on the presence of other additives
in solution.

The third cell is called a concentration cell, and an example is cell 2.69. In a concentration cell, the
electrodes are identical, the electrolyte consists of a single salt in a single solvent, and the concentration
of the electrolyte is different next to each electrode. The potential of a concentration cell is independent
of the nature of the electrodes and depends on the electrochemical potential of the salt in solution and
on the transference number. For a binary electrolyte, the cell potential is independent of the shape of
the concentration profile across the cell. If the activity coefficient is already known, for example, from
cells of type 2.55 or vapor-pressure measurements, then cells of type 2.69 can be used to obtain the
transference number. Alternatively, if the transference number is known from moving-boundary or
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Hittorf measurements, then the concentration cell can be used to obtain the activity coefficient. The
latter procedure is particularly useful in dilute solutions where the transference numbers may be well
known and are relatively independent of concentration.

The fourth cell contains two salts nonuniformly distributed across the electrolyte. These cells are
less useful for determining thermodynamic properties. The cells discussed in Section 2.7, in which
one salt is present in very small concentrations next to one of the electrodes, still will be useful for
the determination of thermodynamic properties if the error in the estimation of the transport-related
effects can be made sufficiently small. The potential of cells with multicomponent electrolytes
with concentration gradients can be computed given knowledge of the composition profile and the
dependence of the activity coefficients and transference numbers on composition.

Standard Cell Potential

In general, cell potentials depend on the components of the electrodes and electrolyte, the concentration
of those components present in mixtures, and the transference number of the electrolyte (for cells
with concentration gradients). Rather than tabulating the cell potential of every pair of electrodes in
electrolytes of every possible concentration, it is convention to report the data in two parts, a standard
cell potential, which is independent of concentration, and an activity coefficient, which describes how
𝜇i depends on concentration, relative to some idealized dependence.

For example, for the cell 2.55 the potential is expressed as

FU = 𝜇𝛽Li − 𝜇
𝜙
Tl + 𝜇

𝜖
TlCl − 𝜇

𝛿
LiCl. (2.120)

By means of equation 2.28, this can be written as

FU = FU𝜃 − 2RT ln(m𝛿LiCl 𝛾
𝛿
LiCl) − RT ln a𝜙Tl, (2.121)

where the relative activity of thallium in the thallium amalgam is given by equation 2.43 and where
the standard cell potential is given by

FU𝜃 = 𝜇0
Li − 𝜇

0
Tl + 𝜇

0
TlCl − RT ln 𝜆𝜃LiCl. (2.122)

To measure U𝜃, one could measure U at some concentration of the electrolyte and of the amalgam.
Then U𝜃 can be found from

FU𝜃 = FU + 2RT ln(m𝛿LiCl 𝛾
𝛿
LiCl) + RT ln a𝜙Tl, (2.123)

if 𝛾+−(m) and aTl are already known. U𝜃 depends only on the temperature, pressure, and the components
of the cell. If one has defined the activity coefficients consistently, then U𝜃 will be independent of the
concentration of the solution in which U was measured. However, the values of 𝛾LiCl and 𝜆𝜃LiCl depend
on the choice of secondary reference state, although the product 𝛾+−𝜆𝜃A is independent of this choice.
Since U𝜃 includes 𝜆𝜃A, then U𝜃 will depend on the choice of secondary reference state, and this choice
must be specified when tabulating values of U𝜃. In addition, since 𝜆𝜃A has units of inverse molality, U𝜃

will depend on the choice of concentration units. The usual convention is to express 𝜆𝜃A in kg/mol, and
thus m should have units of mol/kg.

Values of the activity coefficient can be obtained experimentally by specifying its value to be 1 at the
secondary reference state and then measuring how the chemical potential changes as the concentration
is varied from the secondary reference concentration. The reference state used for liquid solutions is
expressed by equation 2.18, even though this reference state is difficult to apply experimentally. These
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difficulties are associated with the larger relative effect of impurities in dilute solutions, inaccuracies
in the determination of the salt concentration at low concentrations, the rapid variation of the activity
coefficient with concentration in dilute solutions, and the effect of the solubility of the thallous chloride,
which can become significant in dilute solutions. Nevertheless, this reference state is used because no
other logical possibility presents itself. It has the advantage that the reference state is essentially the
same for all the solute species, and activity-coefficient expressions for multicomponent solutions are
thereby simplified.

The method of applying the secondary reference state 2.18 to the cells above is considered again
in Chapter 4 after discussion of the behavior of activity coefficients in dilute solutions. One wants to
extrapolate to infinite dilution in a way that provides the greatest accuracy.

U𝜃 and 𝛾+− can also be determined by specifying U𝜃 and 𝛾+− for a particular thermodynamic state
of the system and then determining the value of 𝛾 in other states by potential measurements and the use
of equation 2.121. Data for 𝜇0

A can also be obtained by thermochemical methods, such as by measuring
the enthalpy and entropy change upon reaction of elements to form a compound (see Section 2.11).

For the cell 2.114, the cell potential can be written

FU = FU𝜃 + 1
2

RT ln p𝛼H2
− (𝜇𝛽H+ − 𝜇

I
H+) − (𝜇

𝛿
Cl− − 𝜇

I
Cl−) − RT ln[mI

H+mI
Cl−(𝛾

I
HCl)

2], (2.124)

where the standard cell potential is

FU𝜃 = 1
2
𝜇∗H2

− 𝜇0
Ag + 𝜇

0
AgCl − 2RT ln 𝜆𝜃HCl (2.125)

and where pH2
is the fugacity of hydrogen (see equation 2.40). The standard cell potential is a

collection of thermodynamic quantities, independent of the concentrations in the cell, and also equal
to the standard cell potential of cell 2.106. However, in this case, the nonthermodynamic terms in
equation 2.124 are not negligible; they are difficult to evaluate accurately because they require a
knowledge of transference numbers and activity coefficients in multicomponent solutions of moderate
concentration, as well as a knowledge of how the junction was formed.

As the above example demonstrates, the cells of Section 2.8 are not particularly useful for the precise
determination of thermodynamic or transport properties of solutions, or of standard cell potentials. Cell
2.106 will yield the same standard cell potential as cell 2.114 but with less uncertainty. Cells such as
those treated in Section 2.8 are encountered in practice, and prediction of their potentials is more a test
of our ability to treat junction regions. Tabulated values of standard cell potentials, as well as activity
coefficients and transference numbers, do find application in this endeavor.

In compiling the standard cell potentials of many cells, it is desirable to tabulate as few details as
possible without being ambiguous. Of n possible electrodes, one can make measurements on 1

2
n(n − 1)

different combinations of these electrodes taken two at a time. Only n− 1 of these combinations are
independent, and the others can be obtained by appropriate addition and subtraction of the n − 1
independent combinations. Hence, one can report the standard cell potentials of n − 1 possible
electrodes against the other possible electrode, and the standard cell potential of other combinations
can be obtained from these.

By convention, the hydrogen electrode is used for this reference point. Table 2.2 gives values for
selected standard electrode potentials in aqueous electrolytes relative to the hydrogen electrode. To
emphasize the thermodynamic nature of these quantities, the explicit expressions in terms of chemical
potentials in the secondary reference states are also given. A number of remarks can be made about the
entries in Table 2.2.

The sign convention gives the standard potential of the electrode of interest relative to the hydrogen
electrode; that is, one reports Φelectrode − ΦH2∣H+ . The expression for the standard electrode potential
involves only those species that are involved in the overall cell reaction. For entry 15, the overall cell
reaction is the electrolysis of water and involves no ions at all. The chemical potentials with a superscript
0 denote elements or compounds in the pure state. The values of 𝜆𝜃i depend on the extrapolation to



TABLE 2.2 Selected standard electrode potentials referred to the hydrogen electrode in aqueous solutions at 25∘C

Reaction FU𝜃a U𝜃(V)

1 K→K+ + e−
1
2
𝜇∗H2

− 𝜇0
K + RT ln

(
𝜆𝜃K+∕𝜆

𝜃
H+
)

−2.95

2 Pb + SO2−
4 → PbSO4 + 2e− 1

2

(
𝜇∗H2

+ 𝜇0
PbSO4

− 𝜇0
Pb

)
− 1

2
RT ln [

(
𝜆𝜃H+

)2
𝜆𝜃
SO2−

4
] −0.356

3 Pb→Pb2+ + 2e−
1
2
𝜇∗H2

− 1
2
𝜇0
Pb +

1
2

RT ln [𝜆𝜃
Pb2+∕

(
𝜆𝜃H+

)2
] −0.126

4 H2→ 2H+ + 2e− — 0

5 Hg+ 2OH− →HgO+H2O+ 2e−
1
2

(
𝜇∗H2

+ 𝜇0
HgO + 𝜇

0
H2O

− 𝜇0
Hg

)
− RT ln

(
𝜆𝜃H+𝜆

𝜃
OH−

)
0.098

6 Cu+ →Cu2+ + e−
1
2
𝜇∗H2

+ RT ln
[
𝜆𝜃
Cu2+∕

(
𝜆𝜃H+𝜆

𝜃
Cu+

)]
0.153

7 Ag+Cl− →AgCl+ e−
1
2
𝜇∗H2

+ 𝜇0
AgCl − 𝜇

0
Ag − RT ln

(
𝜆𝜃H+𝜆

𝜃
Cl−
)

0.222

8 Cu→Cu2+ + 2e−
1
2
𝜇∗H2

− 1
2
𝜇0
Cu +

1
2

RT ln [𝜆𝜃
Cu2+∕

(
𝜆𝜃H+

)2
] 0.337

9 4OH− →O2 + 2H2O+ 4e−
1
2
𝜇∗H2

+ 1
4
𝜇∗O2

+ 1
2
𝜇0
H2O

− RT ln
(
𝜆𝜃H+𝜆

𝜃
OH−

)
0.401

10 Cu→Cu+ + e−
1
2
𝜇∗H2

− 𝜇0
Cu + RT ln

(
𝜆𝜃
Cu+
∕𝜆𝜃H+

)
0.521

11 2I− → I2(s)+ 2e−
1
2
𝜇∗H2

+ 1
2
𝜇0
I2
− RT ln

(
𝜆𝜃H+𝜆

𝜃
I−
)

0.5355

12 3I− → I−3 + 2e− 1
2
𝜇∗H2

+ 1
2

RT ln 𝜆𝜃I−3 −
3
2

RT ln 𝜆𝜃I− − RT ln 𝜆𝜃H+ 0.536

13 Fe2+ → Fe3+ + e−
1
2
𝜇∗H2

+ RT ln
[
𝜆𝜃
Fe3+∕

(
𝜆𝜃
Fe2+𝜆𝜃H+

)]
0.771

14 Au + 4Cl− → AuCl−4 + 3e− 1
2
𝜇∗H2

− 1
3
𝜇0
Au +

1
3

RT ln 𝜆𝜃AuCl−4
− 4

3
RT ln 𝜆𝜃Cl− − RT ln 𝜆𝜃H+ 1.00

15 2H2O→O2 + 4H+ + 4e−
1
2
𝜇∗H2

+ 1
4
𝜇∗O2

− 1
2
𝜇0
H2O

1.229

16 2Cl− →Cl2(g)+ 2e−
1
2
𝜇∗H2

+ 1
2
𝜇∗Cl2 − RT ln

(
𝜆𝜃H+𝜆

𝜃
Cl−
)

1.3595

17 PbSO4 + 2H2O → PbO2 + SO
2−
4 + 4H+ + 2e− 1

2

(
𝜇∗H2

+ 𝜇0
PbO2

− 𝜇0
PbSO4

)
− 𝜇0

H2O
+ 1

2
RT ln [

(
𝜆𝜃H+

)2
𝜆𝜃
SO2−

4
] 1.685

a𝜆𝜃i must be expressed in kg/mol. The superscript 0 denotes the pure element or compound at 25∘C and 1 atm. The superscript * denotes the chemical
potential of gases in an ideal standard state (see Problem 2.14).
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TABLE 2.3 Additional standard electrode potentials
in aqueous solutions at 25∘C

Reaction U𝜃 (V)

1 Li→Li+ + e− −3.045
2 Na→Na+ + e− −2.714
3 Al→Al3+ + 3e− −1.66
4 Mn→Mn2+ + 2e− −1.18
5 Cr→Cr2+ + e− −0.91
6a 1

2
H2 + OH

− → H2O + e− −0.828
7 Zn→Zn2+ + 2e− −0.763
8 Cr→Cr3+ + 3e− −0.74
9 Fe→ Fe2+ + 2e− −0.440

10 Cr2+ →Cr3+ + e− −0.41
11 H2→ 2H+ + 2e− 0
12 2Hg+ 2Cl− →Hg2Cl2 + 2e− 0.2676
13 Fe(CN)4−6 → Fe(CN)3−6 + e− 0.36
14 2Hg → Hg2+

2 + 2e− 0.789
15 Ag→Ag+ + e− 0.7991
16 Hg2+

2 → 2Hg2+ + 2e− 0.920
17 2Br− →Br2(l)+ 2e− 1.0652
18 Ag+ →Ag2+ + e− 1.98
19 2F− → F2(g)+ 2e− 2.87

aRepresents a hydrogen electrode in a basic medium relative to
a hydrogen electrode in an acidic medium. Here

FU𝜃 = 𝜇0
H2O

− RT ln(𝜆𝜃H+𝜆
𝜃
OH−).

infinite dilution and therefore depend on the particular solvent involved. Consequently, the table of
electrode potentials would be different in a different solvent. Values of 𝜆𝜃i for ions appear only in those
combinations that can be unambiguously determined according to the considerations of Section 2.3.

Table 2.3 gives additional values of standard electrode potentials in aqueous solutions at 25∘C.
Detailed expressions for FU𝜃, as given in Table 2.2, are not given here. The reader can reproduce
them by reference to the examples in Table 2.2. Latimer[12] prepared the classic tabulation of standard
electrode potentials in aqueous solutions. He also discusses how to obtain these by thermochemical
calculations as well as by direct measurements on galvanic cells. Tables of chemical thermodynamic
data[13] permit rapid evaluation of standard cell potentials.

Standard cell potentials and activity coefficients are tabulated separately. Activity coefficients
are characteristic of the solutions and can be measured by nonelectrochemical methods, such as
vapor-pressure measurements, or by the cells of Section 2.6, which do not involve standard cell
potentials. On the other hand, standard cell potentials are associated with the overall cell reaction, for
which all the ionic species in the solution need not be specified. Because of the diverse sources and
applications of standard cell potentials and activity coefficients, their separate tabulation is dictated
and amounts to the briefest way to collect the results of many experiments on many different systems.
Consequently, in an attempt to reproduce the potentials of a particular cell with the use of these separate
tabulations, the errors associated with the extrapolation to infinite dilution may not cancel exactly.

Calculation of Cell Potentials

One can use the following procedure to calculate the cell potential based on tables of standard oxidation
potentials. First, one chooses one electrode to be the “right” electrode and the other to be the “left”
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electrode. For example, let our right electrode be reaction 17 of Table 2.2 and our left electrode be
reaction 2. Subtract the potential of the left electrode from that of the right electrode to obtain the cell
potential. For our example, this yields (1.685)− (−0.356) = 2.041.

If the cell potential as calculated is positive, then we have made the more positive electrode the
“right” electrode and the more negative electrode the “left” electrode, and vice versa if the calculated
cell potential is negative. Write the positive electrode in the cathodic direction and the negative
electrode in the anodic direction. For our example, this is

PbO2 + SO
2−
4 + 4H+ + 2e− → PbSO4 + 2H2O (2.126)

and
Pb + SO2−

4 → PbSO4 + 2e−. (2.127)

When the positive electrode is connected through an external circuit to the negative electrode, the
reactions will occur spontaneously in the directions as written. To get the overall cell reaction, multiply
one half-cell reaction so that it involves the same number of electrons as the other, and add the two
half-cell reactions. For our example, this yields

Pb + PbO2 + 2H2SO4 → 2PbSO4 + 2H2O. (2.128)

The method of Section 2.4 then can be used to write the cell potential in terms of the standard cell
potential and concentration-dependent terms. For our example, this is

FU = FU𝜃 + 3RTmH2SO4
𝜙MH2O + 3RT ln(mH2SO4

𝛾H2SO4
) + RT ln 4. (2.129)

One can then use tabulated values of 𝛾+− and 𝜙 to calculate U at different molalities of sulfuric
acid. For example, the plot of U as a function of electrolyte concentration given in Figure 12.1 was
constructed from the data tabulated in reference [13]. The RT In 4 term comes in because of the use of
𝛾+− as opposed to 𝛾A (see equation 2.28).

Another example of how to treat such terms is found in the cell

𝛼
Pt(s), H2(g)

|||||||
𝛽

H2SO4 inH2O
|||||||

𝛿
PbSO4(s)

|||||||
𝜖

PbO2(s)
|||||||
𝛼′
Pt(s) , (2.130)

for which the expression for the cell potential is

FU = FU𝜃 + 1
2

RT ln p𝛼H2
+ 3

2
RT ln(m𝛽H2SO4

𝛾𝛽H2SO4
) − RT ln a𝛽H2O

+ RT ln 2. (2.131)

Use of Cell Potentials to Calculate Equilibrium Constants

The standard cell potential provides data for the sum of the chemical potentials, and thus the products
of the absolute activities, of the species involved in the reaction. These data can be used to calculate
equilibrium constants. Here, we present three examples of different types of equilibrium constants,
such as dissociation constants and solubility products, that can be calculated from the information
provided by standard cell potentials.

Entries 9 and 15 of Table 2.2 give

𝜆𝜃H+𝜆
𝜃
OH−

𝜆0
H2O

= exp (1.229 − 0.401
RT∕F

) = 1014 kg
2

mol2
. (2.132)
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Since the absolute activities are related at equilibrium by

𝜆H+𝜆OH− = 𝜆H2O, (2.133)

this corresponds to a dissociation constant for water of

Kw =
mH+mOH−𝛾H+𝛾OH−

aH2O
= 10−14 mol2

kg2
. (2.134)

Entries 2 and 3 of Table 2.2 yield

𝜆𝜃
Pb2+𝜆

𝜃
SO2−

4

𝜆0
PbSO4

= exp (0.356 − 0.126
RT∕2F

) = 6 × 107 kg2

mol2
. (2.135)

Hence, the solubility product of PbSO4 is

Ksp = mPb2+mSO2−
4
𝛾2

PbSO4
= 1.7 × 10−8 mol2

kg2
. (2.136)

Entries 6, 8, and 10 of Table 2.2 are not independent. Specifically, two times entry 8 is equal to the
sum of entries 6 and 10, both for the numerical values of U𝜃 and for the expressions for FU𝜃. These
entries also describe the equilibrium concentrations of cuprous ions present in the solution of a cupric
salt. The cuprous ions can disproportionate according to the reaction

2Cu+ → Cu + Cu2+, (2.137)

for which the equilibrium condition is

𝜆2
Cu+

= 𝜆Cu𝜆Cu2+. (2.138)

From entries 6 and 10 of Table 2.2,

(𝜆𝜃
Cu+
)2

𝜆0
Cu
𝜆𝜃
Cu2+

= exp (0.521 − 0.153
RT∕F

) = 1.67 × 106 kg
mol

. (2.139)

Hence the equilibrium constant can be expressed as

m2
Cu+
𝛾2
Cu+

mCu2+𝛾Cu2+
= 0.6 × 10−6 mol

kg
. (2.140)

By ignoring the activity coefficients, we estimate the equilibrium concentration of cuprous ions to be
2.4× 10−4 mol/kg in a 0.1 M CuSO4 solution. We see from this example that two or more electrode
processes can be simultaneously in equilibrium at the same electrode at the same potential.
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Figure 2.3 Simplified Pourbaix diagram of potential versus pH for zinc at 1 mol/kg concentration of Zn2+ and
Zn(OH)2−4 , showing regions of stability of ZnO and Zn(OH)2−4 . For reference, the dashed lines for the evolution
of oxygen and hydrogen indicate the limits of stability of water.

Multiple Simultaneous Reactions and Pourbaix Diagrams

The occurrence of different reactions at different potentials on the same electrode is often depicted
in a plot called a Pourbaix diagram. A detailed example of a Pourbaix diagram is given in Section
18.5. Pourbaix diagrams have been constructed for a large number of systems, mostly with aqueous
electrolytes.[14] It is customary to include the hydrogen and oxygen reactions on a Pourbaix diagram
and to plot the potential of the reactions as a function of the pH of the electrolyte. A Pourbaix diagram
shows which species are thermodynamically stable as a function of potential and pH.

Figure 2.3 shows a simplified Pourbaix diagram for the system of a zinc electrode in an aqueous
electrolyte, with potentials given relative to the normal hydrogen electrode.[15] Three electrochemical
reactions are shown: evolution of oxygen and of hydrogen (dashed lines) and dissolution of zinc (solid
horizontal and diagonal segments). All three reactions may occur simultaneously on the same zinc
surface. If the potential at the surface of the zinc metal is more positive than the equilibrium potential
for a reaction, then that reaction will be driven in the anodic direction; a more negative potential will
drive the reaction in the cathodic direction. Thus, O2 will tend to steal electrons spontaneously from
the zinc to form H2O and Zn2+.

The vertical lines indicate the chemical reactions between Zn2+ and H2O to form ZnO+ 2H+ and
between ZnO, H2O, and 2OH− to form Zn(OH)2−4 . Thus, from this diagram, one can see that at pH
2, zinc will tend to dissolve to form Zn2+, whereas at pH 10, zinc will react to form a solid coating
of ZnO.
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2.11 PRESSURE DEPENDENCE OF ACTIVITY COEFFICIENTS

The definition of activity coefficients involves the use of a secondary reference state for the solute,
for example, that given by equation 2.18. The value of 𝜆𝜃i depends upon the choice of the secondary
reference state in a complementary manner, so that the product 𝛾i𝜆𝜃i is independent of this choice. If
equation 2.18 is to be applied at each temperature and pressure, then 𝜆𝜃i will also depend on temperature
and pressure. If, on the other hand, equation 2.18 is applied at each temperature but only at 1 bar, then
𝜆𝜃i depends only on temperature. The mean ionic activity coefficient of neutral combinations of ions
will then approach unity at infinite dilution only at this pressure of 1 bar.

The variation of activity coefficients with pressure is determined by the fact that the derivative of
the chemical potential with respect to pressure is equal to the partial molar volume:

(
𝜕𝜇A

𝜕p
)

T ,mi

= ( 𝜕V
𝜕nA

)
T ,p,nB

B≠A

= VA. (2.141)

We apply this equation only to neutral electrolytes, for which the method of obtaining partial molar
volumes from density determinations is given in Appendix A. For an electrolyte,

𝜇A = RT ln[(m+𝜆𝜃+)𝜈+(m−𝜆𝜃−)𝜈−𝛾
𝜈
+−]. (2.142)

If 𝜆𝜃i is taken to be independent of pressure, then equation 2.141 yields

(
𝜕 ln 𝛾+−
𝜕p

)
T ,mi

=
VA

𝜈RT
(𝜆𝜃i independent of p). (2.143)

For VA = 27 cm3∕mol and a 1–1 electrolyte (v+ = v− = 1), the pressure variation of 𝛾+− at 25∘C is

𝜕 ln 𝛾+−
𝜕p

= 5.4 × 10−4 bar−1. (2.144)

Thus, a pressure change of 18 bar is necessary to change 𝛾+− by 1%. This will apply to the value of
𝛾+− at infinite dilution as well.

If, on the other hand, equation 2.18 is applied at each pressure and 𝜆𝜃i depends on pressure, then
application of equation 2.141 to equation 2.142 gives

𝜕 ln 𝜆𝜃𝜈++ 𝜆𝜃𝜈−−
𝜕p

+ 𝜈
𝜕 ln 𝛾+−
𝜕p

=
VA

RT
. (2.145)

Under these conditions, 𝛾+− is independent of pressure at infinite dilution, and consequently

𝜕 ln 𝜆𝜃𝜈++ 𝜆𝜃𝜈−−
𝜕p

=
V
𝜃
A

RT
, (2.146)

where the superscript 𝜃 denotes the value at infinite dilution. At other concentrations, equation 2.145
then becomes

(
𝜕 ln 𝛾+−
𝜕p

)
T ,mi

=
VA − V

𝜃
A

𝜈RT
(𝛾+− → 1 at infinite dilution). (2.147)
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Since the partial molar volume does not change very much with concentration, the activity coefficient
so defined changes even less with pressure than the variation indicated by equation 2.143. For example,
if VA = 32 at 3 M and 27 cm3/mol at infinite dilution, then for a 1–1 electrolyte at 25∘C,

𝜕 ln 𝛾+−
𝜕p

= 10−4 bar−1, (2.148)

and a pressure change of 99 bar is required for a 1% change in 𝛾+−.
From these examples, one can perceive why the pressure dependence of activity coefficients is of

little concern.

2.12 TEMPERATURE DEPENDENCE OF CELL POTENTIALS

Many data have been tabulated in the literature that allow calculation of U as a function of temperature.
As an example, let us consider the potential of a hydrogen/oxygen fuel cell. The reaction at the positive
electrode is reaction 15, and the reaction at the negative electrode is reaction 4 of Table 2.2. Thus, for
gaseous reactants and products,

U = U𝜃 + RT
4F

ln
⎛
⎜
⎝

pO2
p2
H2

p2
H2O

⎞
⎟
⎠
, (2.149)

where
FU𝜃 = 1

2
𝜇∗H2

+ 1
4
𝜇∗O2

− 1
2
𝜇∗H2O

. (2.150)

From equation 1.6,

U = −ΔG
nF

= − 1
4F

∑

i

si𝜇i . (2.151)

𝜇0
i and 𝜇∗i are often tabulated as ΔGo

f , the Gibbs energy of formation evaluated at the reference state
of 1 bar and 298.15 K or an ideal gas at 298.15 K, respectively. From the data in Table 2.4, we can
compute U𝜃 to be 1.184 V at 298.15 K.

To calculate how U varies with temperature at constant pressure and composition, we first relate
the Gibbs free energy to the enthalpy by the Gibbs–Helmholtz equation,

ΔH = ΔG − TΔS = −T2 𝜕(ΔG∕T)
𝜕T

. (2.152)

Just as the cell potential U is related to ΔG, we can define the enthalpy potential UH by

UH = −
ΔH
nF

= U − T
𝜕U
𝜕T
, (2.153)

where 𝜕U/𝜕T is related to the entropy of the reaction ΔS by

𝜕U
𝜕T

= ΔS
nF
. (2.154)

In addition,
𝜕(ΔH)
𝜕T

= ΔCp, (2.155)
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TABLE 2.4 Thermodynamic data for the hydrogen/oxygen fuel cell evaluated at standard reference
conditions of 298.15 K and 1 bar for liquid water and the ideal-gas state for gaseous speciesa

𝜇∗i
(kJ/mol)

H̃∗
i

(kJ/mol)
C̃∗

p,i
(J/mol⋅K)

ai
(J/mol⋅K)

bi
(J/mol⋅K2)

ci
(J⋅K/mol)

𝛾i
(J/mol⋅K3)

O2 0.0 0.0 29.355 29.96 4.2× 10−3 −1.67× 105 0.0
H2 0.0 0.0 28.824 27.28 3.3× 10−3 0.5× 105 0.0
H2O (g) −228.572 −241.818 33.577 30.54 10.3× 10−3 0.0 0.0
H2O (l) −237.129 −285.830 75.291 75.291 0.0 0.0 0.0

a𝜇i, H̃i, and C̃p,i are the Gibbs free energy, enthalpy, and heat capacity per mole of species i for the pure components,
respectively.

where ΔCp is the change in heat capacity between reactants and products, equal to
∑

isiC̃p,i. The
temperature dependence of the heat capacity can often be described by an empirical equation of the
form

C̃p,i = ai + biT +
ci

T2
+ 𝛾iT

2. (2.156)

Thus, we have a strategy for our calculations. Integrate ΔCp/nF with respect to temperature to get
−UH. Divide by T2 and integrate again to get U, using the values of U𝜃 and U𝜃

H at some reference
temperature T0 (usually 298.15 K) to obtain the constants of integration. In general, we thus have

ΔH = − nFUH = ΔH|T0
+ Δa(T − T0) + Δb

T2 − T2
0

2
− Δc ( 1

T
− 1

T0
) + Δ𝛾

T3 − T3
0

3
, (2.157)

and

ΔG = − nFU = ΔG
|||||||T0
( T

T0
) + ΔH

|||||||T0

(1 − T
T0
) + Δa (T − T0 − T ln

T
T0
)

− (T − T0)2 (
Δb
2
+ Δc

2TT2
0

) −
Δ𝛾
6
(T3 − 3TT2

0 + 2T3
0 ), (2.158)

where Δa =
∑

isiai, which for the present example yields Δa = 2aH2O − 2aH2
− aO2

, and similarly for
Δb, Δc, and Δ𝛾.

The results for the fuel-cell example are shown in Figure 2.4. The data with a liquid water product
are physically unrealistic at higher temperatures. The two lines for U cross at 100∘C, where the
vapor pressure of water equals 1 bar, and the liquid systems would need to be pressurized at higher
temperatures.

The rate of heat generation for an isothermal electrochemical system is given by

Q̇ = I (V − U + T
𝜕U
𝜕T
) = I(V − UH), (2.159)

where I is the current and V is the cell voltage. Thus, a cell operating at V = UH will have zero heat
generation. For this reason, UH is often called the thermal neutral potential. We see that for the case
of the hydrogen–oxygen reaction, this situation of V = UH corresponds to a water electrolyzer rather
than a fuel cell—that is, the current would have to flow in the reverse direction. When V is between U
and UH, heat will be absorbed by the system. Whether UH is higher or lower than U depends on the
sign of 𝜕U/𝜕T.
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Figure 2.4 Open-circuit potential and enthalpy potential for a hydrogen–oxygen fuel cell, using either liquid or
gaseous water as the product, with all pressures at 1 bar.

PROBLEMS

2.1 For theoretical treatments of diffusion, it is sometimes desirable to use a diffusion coefficient
𝒟 for which the driving force is based on a gradient of chemical potential. For a solution of
a single electrolyte, this is related to the measured value D (based on a concentration driving
force) by

D = 𝒟(1 + 𝜈M0m) (1 +
d ln 𝛾+−
d ln m

) .

(a) Show that the factor 1+ d ln 𝛾+−/d ln m is independent of the choice of the secondary
reference state and is, therefore, characteristic of the solution at the concentration m. In
other words, this factor can be used even for solutions below the freezing point of the pure
solvent, where equation 2.18 can be used only by consideration of supercooled liquids.

(b) Show that osmotic coefficients can be used directly for this conversion by deriving the
relationship

1 +
d ln 𝛾+−
d ln m

= 𝜙 +
d𝜙

d ln m
.

(c) Obtain the following relation, where activity coefficients based on molar concentrations are
used:

D = 𝒟

(1 + 𝜈M0m)
(1 +MAm)

(1 +
d ln f+−
d ln c

)

1 −
d ln 𝜌
d ln c

.

(d) Describe the behavior of 1+ d ln 𝛾+−/d ln m in a concentration range which includes the
pure molten salt. What is the behavior of the expression in part (c)?

(e) Express the relationship between 𝒟 and D in terms of the activity coefficient 𝛾A, for which
the dissociation of the electrolyte is ignored. On the other hand, for a nonelectrolyte one
expects to use the relation

D = 𝒟(1 +M0m) (1 +
d ln 𝛾A

d ln m
) .
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Since the two expressions are different and since the measured value D is independent of the
state of molecular aggregation, one concludes that𝒟, like 𝛾, is an idealized quantity whose
definition depends on whether the solute is to be regarded as dissociated or undissociated.

2.2 Obtain an expression for the potential of the cell

𝛼
Pt(s)

|||||||||

𝛽
Ni(s), O2(g)

|||||||||

𝛿
KOH in H2O

|||||||||

𝝐
HgO(s)

|||||||||

𝜙
Hg(l)

|||||||||

𝛼′
Pt(s).

The nickel electrode can be regarded as inert, and the solubility of oxygen and mercuric oxide in
the solution can be ignored. Thus, the solution can be regarded to be of uniform concentration.
The electrode reactions are

O2 + 4e− + 2H2O → 4OH−

and
Hg + 2OH− → HgO + H2O + 2e−.

Actually, it is difficult to achieve a reversible potential for the oxygen electrode. What is the
expression for the standard cell potential, and what is its value?

2.3 Obtain an expression for the potential of the cell

𝛼
Pt(s)

|||||||||

𝛽
K(Hg)

|||||||||

𝛿
KOH in H2O

|||||||||

𝝐
HgO(s)

|||||||||

𝜙
Hg(l)

|||||||||

𝛼′
Pt(s).

The solution can be treated as one of uniform concentration. What is the expression for the
standard cell potential, and what is its value? Here, the cell potential depends on the chemical
potentials of both the potassium hydroxide and the water in the solution.

2.4 Obtain an expression for the potential of the copper concentration cell in Figure 1.9. What is the
standard cell potential? Introduce approximations sufficient to obtain equation 1.34.

2.5 Treat the potential of a copper concentration cell with an excess of sulfuric acid of nearly
uniform concentration. What is the standard cell potential? Introduce approximations sufficient
to justify the following expression for the concentration overpotential for the rotating cylinder
cell with an excess of sulfuric acid as a supporting electrolyte:

𝜂c =
RT
2F

ln
c𝝐
Cu2+

c𝛿
Cu2+

.

2.6 Obtain an expression for the potential of the cell

𝛼
Pt(s)

|||||||||

𝛽
Pb(s)

|||||||||

𝛿
PbO2(s)

|||||||||

𝝐
PbSO4(s)

|||||||||

𝜙
H2SO4 in H2O

|||||||||

𝝐′

PbSO4(s)

|||||||||

𝛽′

Pb(s)

|||||||||

𝛼′
Pt(s),

for which the electrode reactions are

PbO2 + SO
2−
4 + 4H+ + 2e− → PbSO4 + 2H2O

and
Pb + SO2−

4 → PbSO4 + 2e−.
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This is the common lead–acid battery. For the electrode at the left, electrons are equilibrated
among phases 𝛼, 𝛽, and 𝛿, while the lead dioxide protects the lead from contact with the
solution. What is the expression for the standard cell potential, and what is its value?

2.7 Treat the potential of the cell

Pt(s) Cu(s) AgNO3
in H2O

Ag(s) Pt(s) .Cu(ClO4)2
in H2O

transition
region

α αʹβ δ ϵ ϕ

What is the expression for the standard cell potential, and what is its value?

2.8 Treat the potential of the cell

Pt(s),
H2(g)

HCl in
H2O

transition
region

KNO3
in H2O

K(Hg) Pt(s) .
α αʹβ δ ϵ

What is the expression for the standard cell potential, and what is its value?

2.9 Treat the potential of a cell in which the solution is saturated throughout with a component. Pick
one of the cells 2.89 or 2.87 or that of Problem 2.6. What is the expression for the standard cell
potential, and what is its value?

2.10 Derive the appropriate form of the Nernst equation for the following cells:

(a) 2.55 (h) 2.111
(b) 2.62 (i) 2.114
(c) 2.69 (j) Problem 2.2
(d) 2.87 (k) Problem 2.3
(e) 2.89 (l) Problem 2.6
(f) 2.91 (m) Problem 2.7
(g) 2.106 (n) Problem 2.8

2.11 Treat the potential of the cell

Pt(s),
H2(g)

Pt(s) .HCl in
H2O

KOH in
H2O

HgO(s) Hg(l)transition
region

α αʹβ δ ϕϵ

Here, the electrolytes can react in the junction region to form KCl and H2O. Assume that the
junction region is maintained at a uniform temperature. What is the expression for the standard
cell potential, and what is its value?
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2.12 Treat the potential of the cell

𝛼
Pt(s), H2(g)

|||||||||

𝛿
KOH in H2O

|||||||||

𝝐
HgO(s)

|||||||||

𝜙
Hg(l)

|||||||||

𝛼′
Pt(s),

where the reaction for the hydrogen electrode in alkaline media is regarded to be

2H2O + 2e− → H2 + 2OH−.

What is the expression for the standard cell potential, and what is its value?

2.13 From the entries in Tables 2.2 and 2.3, determine the solubility product of silver chloride in
water at 25∘C.

2.14 In setting up tables of standard electrode potentials, the chemical potentials of gases are referred
to the ideal-gas state for the secondary reference state. Thus, for hydrogen gas,

𝜇H2
= 𝜇∗H2

+ RT ln pH2
= RT ln pH2

𝜆∗H2
,

where pH2
is the partial pressure or fugacity of hydrogen, expressed in bar. The secondary

reference state is defined such that

pH2
→ xH2

p as p → 0,

where xH2
is the mole fraction of hydrogen in the gas. Consequently, 𝜆∗H2

is expressed in bar−1,
and the value of 𝜇∗H2

depends upon this choice of units:

𝜇∗H2
= RT ln 𝜆∗H2

.

Show that the fugacity of pure hydrogen gas can be expressed as

pH2
= p exp (

Bp
RT
) ,

where B is the second virial coefficient appearing in the equation of state

pV
nRT

= 1 +
Bp
RT
.

The second virial coefficient for hydrogen can be expressed as

B = 17.42 − 314.7T−1 − 211,100T−2 (cm3∕mol) ,

where T is the temperature (K). Show that the difference between using 𝜇0
H2

and 𝜇∗H2
in the

tables of standard electrode potentials amounts to 7.25 μV in the tabulated values (at 25∘C).
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2.15 In thiosulfate solutions, silver ions are complexed:

Ag+ + 2S2O2−
3 → Ag(S2O3)3−2 .

The equilibrium constant for this reaction is estimated to be 1.7× 1013 (kg/mol)2. If the standard
electrode potential for the silver electrode (Ag–Ag+) is 0.7991 V, estimate the standard electrode
potential for the deposition of silver from a thiosulfate solution:

Ag(S2O3)3−2 + e− → Ag + 2S2O2−
3 .

Should interference from hydrogen evolution be expected to be more or less of a problem when
plating silver from a thiosulfate solution instead of a nitrate solution?

2.16 The following cell is being contemplated for use as an energy-storage system:

α αʹβ βʹδ ϵ
Pt(s) Pt(s) .C(s) C(s)FeCl2, FeCl2

+ ,
HCl in H2O

transition
region

Ti3+, Ti(OH)2
2+,

HCl in H2O

The electrode reaction and standard electrode potential on the right on charge are

FeCl2 → FeCl+2 + e−, U𝜃 = 0.6513V,

and those on the left are

Ti(OH)2+2 + 2H+ + e− → Ti3+ + 2H2O, U𝜃 = 0.1V.

(a) Obtain a complete expression for the cell potential based on chemical and phase equilibria
at the electrodes.

(b) Obtain the expression of the Nernst equation for the potential of this cell.

2.17 The battery-development group is evaluating the system:

𝛼
Pb(s)

|||||||||||||

𝛽
PbO(s)

|||||||||||||

𝛿
KOH
in H2O

|||||||||||||

𝛽′

PbO(s)

|||||||||||||

𝝐
PbO2(s)

|||||||||||||

𝛼′
Pb(s).

What open-circuit potential should be expected for the cell? Some thermochemical data at 25∘C
are as follows:

Compound 𝜇0
i or 𝜇𝜃i

(kJ/mol)

Pb (s) 0.0
PbO (s) −187.89
KOH(𝜃) −440.50
H2O (l) −237.129
PbO2 (s) −217.33
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The concentration of KOH has been chosen as 5.7 M, near the conductivity maximum.
Information from Chapter 4 may be needed to estimate activity coefficients.

2.18 One idea for a battery is to use a nonaqueous solution of LiCl dissolved in LiClO3 at 150∘C. At
the negative electrode, lithium goes into solution. At the inert, positive electrode, the chlorate is
reduced, and insoluble Li2O precipitates. A protective, self-healing film is supposed to form on
the lithium and prevent the chlorate from reacting there. (If it does not, there is a sharp explosion.
This would undoubtedly be very dangerous if significant amounts of reactants were present.
Remember that any high-energy, high-power battery is a potential bomb.) Thermochemical data
and molar mass of some presumably relevant materials are given in the following table:

𝜇0
i or 𝜇𝜃i

(kJ/mol)
Mi

(g/mol)

Li 0.0 6.939
Li+ 0.0 6.939
LiClO3 188.2 72.67
Cl− −383.7 17.73
Li2O −560.2 29.88

Obtain an expression for the open-circuit potential of this cell. Obtain a numerical value for
the standard-cell potential (being sure that you have properly defined the quantity you report).
Obtain a numerical value for the theoretical specific energy of this system. Here inert materials
such as the solvent, the inert positive, the container, and the current collectors are excluded from
the weight in computing this theoretical value. Express the specific energy in W-h/kg.

2.19 The electrolyte in a cell has a nearly uniform composition of 2.5 mol/kg of NaCl and 0.2 mol/kg
of NaOH. If hydrogen is to be evolved at a left electrode, what minimum cell potential would
need to be applied to produce a solution 0.01 mol/kg in chlorate ion at a right electrode? Both
electrodes are made of an inert metal. Some thermodynamic data (at 25∘C) are given below.

Species Quantity tabulated kJ/mol

ClO−3 RT ln 𝜆𝜃i −7.95
Cl− RT ln 𝜆𝜃i −131.228
H+ RT ln 𝜆𝜃i 0
Na+ RT ln 𝜆𝜃i −261.905
OH− RT ln 𝜆𝜃i −157.244
H2O 𝜇0

0 −237.129
O2 𝜇∗i 0
Cl2 𝜇∗i 0
H2 𝜇∗i 0

2.20 Chlorate ions may actually be produced as a by-product of chlorine production by homogeneous
reaction of dissolved chlorine with hydroxyl ions.
(a) Give a balanced chemical reaction by which chlorate ions might be produced under these

conditions.
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(b) Sketch concentration profiles of the relevant species in a diffusion layer near the anode.
Assume that the bulk concentration of hydroxyl ions is about 0.001 mol/kg and that the
solution near the anode is saturated with chlorine, whose solubility is modest—certainly no
larger than 0.001 mol/kg.

(c) From the thermodynamic information given below, estimate the solubility of chlorine in
pure water at 25∘C.

(d) From the thermodynamic information given below, estimate the equilibrium concentration
of chlorate ions if a solution initially 2.5 mol/kg in NaCl and 0.001 mol/kg in NaOH is
contacted with Cl2 maintained at a partial pressure of 1 atm.

Species Quantity tabulated kJ/mol

Cl2 𝜇∗i 0
Cl2 RT ln 𝜆𝜃i 6.94
ClO−3 RT ln 𝜆𝜃i −7.95
OH− RT ln 𝜆𝜃i −157.244
Cl− RT ln 𝜆𝜃i −131.228
Na+ RT ln 𝜆𝜃i −261.905
H+ RT ln 𝜆𝜃i 0
H2O 𝜇0

i −237.129
Na 𝜇0

i 0
O2 𝜇∗i 0
H2 𝜇∗i 0

2.21 A proposed battery has a negative electrode of lithium undergoing dissolution and a positive
electrode of MnO2, which is reduced to Mn3O4 according to the reaction

3MnO2 + 4Li+ + 4e− ⇌ Mn3O4 + 2Li2O.

Estimate the open-circuit cell potential from the following thermodynamic data at 25∘C:

Substance H̃0
i (kJ/mol) 𝜇0

i (kJ/mol)

MnO2 −520.03 −465.14
Mn2O3 −959.0 −881.1
Mn3O4 −1387.8 −1283.2
Li 0 0
Li2O −597.94 −561.18

2.22 Lead dioxide, PbO2, is the active material for the positive electrode of the lead acid battery.
This material covers and protects a lead grid, which is used as a current collector. Pb and PbO2
are both electronic conductors; however, they should be able to react to produce PbO, an ionic
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conductor in which O2− ions can be regarded as the charge carrier. Thus, we have an interest in
the solid-state electrochemical cell

𝛽
Pb
|||||||
𝜆
PbO

|||||||
𝛿

PbO2

|||||||
𝛽′
Pb.

The reaction at the right electrode is

PbO2 + 2e− ⇌ PbO + O2−.

Develop an expression or expressions for the open-circuit potential U of this cell. Obtain a
numerical value for U at 25∘C on the basis of the following thermochemical data:

Chemical formula State H̃0
i (kJ/mol) 𝜇0

i (kJ/mol) C̃0
p (J/mol⋅K)

Pb cr 0 0 26.44
PbO Yellow −217.32 −187.89 45.77
PbO2 cr −277.4 −217.33 64.64

2.23 A Pourbaix diagram is a plot of electrode potential versus pH. It is used to display thermodynamic
information and is helpful in understanding corrosion and other electrochemical processes. It is
a form of a phase diagram. The oxygen and hydrogen lines are usually shown to indicate the
range of stability of the solvent. The oxygen line extends from 1.229 V at a pH of 0 to 0.401 V
at a pH of 14. The hydrogen line extends from 0 V at a pH of 0 to −0.828 at a pH of 14.

Show where to place ranges of stability for Fe3+, Fe2+, and Fe. Also deal with Cu2+, Cu+,
and Cu. Show your reasoning. Deal only with the low pH range, where oxides and hydroxides
do not precipitate. The following values of standard electrode potentials may be useful.

Reaction U𝜃 (V)

Cu+→Cu2+ + e− 0.153
Cu→Cu2+ + 2e− 0.337
Cu→Cu+ + e− 0.521
Fe2+→Fe3+ + e− 0.771
Fe→Fe2+ + 2e− −0.440
Fe→Fe3+ + 3e− −0.016

NOTATION

ai relative activity of species i
a𝜃i property expressing secondary reference state, liter/mol
A Helmholtz free energy, J
c molar concentration of a single electrolyte, mol/liter
ci molar concentration of species i, mol/liter
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fi molar activity coefficient of species i
f+− mean molar activity coefficient of an electrolyte
F Faraday’s constant, 96,487 C/mol
G Gibbs free energy, J
H enthalpy, J
i current density, A/cm2

I ionic strength, mol/kg
Ksp solubility product of sparingly soluble salt, mol2/kg2

Kw dissociation constant for water, mol2/kg2

m molality of a single electrolyte, mol/kg
mi molality of species i, mol/kg
Mi symbol for the chemical formula of species i
Mi molar mass of species i, g/mol
n number of electrons involved in electrode reaction
ni number of moles of species i, mol
p pressure, N/cm2

pi fugacity of species i, bar
R universal gas constant, 8.3143 J/mol⋅K
si stoichiometric coefficient of species i in an electrode reaction
S entropy, J/K
t0
i transference number of species i with respect to the velocity of species 0

T absolute temperature, K
U open-circuit cell potential, V
U internal energy, J
V volume, cm3

Vi partial molar volume of species i, cm3/mol
w work of transfer, J/mol
zi charge number of species i
𝛼 Debye–Hückel constant, (kg/mol)1/2

𝛾i molal activity coefficient of species i
𝛾+− mean molal activity coefficient of an electrolyte
𝜅 conductivity, S/cm
𝜆i absolute activity of species i
𝜆𝜃i property expressing secondary reference state, kg/mol
𝜇i electrochemical potential of species i, J/mol
𝜈 number of moles of ions into which a mole of electrolyte dissociates
𝜈+, 𝜈− numbers of cations and anions into which a mole of electrolyte dissociates
𝜌 density, g/cm3

𝜌0 density of pure solvent, g/cm3

𝜏0
i transport number of neutral species i with respect to the velocity of the species 0.
𝜙 osmotic coefficient
Φ electric potential, V

Superscripts

0 pure state
0 relative to velocity of species 0
𝜃 secondary reference state at infinite dilution
* ideal-gas secondary reference state



�

� �

�

70 THERMODYNAMICS IN TERMS OF ELECTROCHEMICAL POTENTIALS

Subscripts

0 solvent
+ cation
− anion
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CHAPTER 3

THE ELECTRIC POTENTIAL

In Chapter 2, we discuss the thermodynamics of electrochemical cells without the introduction of
electric potentials except the potential difference between two phases of identical composition, namely
the terminals of the cell. Much of the electrochemical literature is written in terms of electrical potentials
of various kinds, and it is necessary to set our minds straight on these matters and to investigate how
potentials might be used in electrochemistry. Much of the confusion in electrochemistry arises from
uncertainty in the use of these concepts.

3.1 THE ELECTROSTATIC POTENTIAL

Electrostatic theory deals with purely electrical forces between bodies and not with any specific
chemical forces such as exist between molecules. The systems treated are usually macroscopic bodies
separated by a vacuum, and the specific forces are not important. For this reason, the concepts
developed in electrostatic theory are not directly applicable to energetic relationships within condensed
phases.

The electric force f between two bodies of charges q1 and q2, separated by a distance r, is given by
Coulomb’s law

f =
q1q2

4𝜋𝜖r2
, (3.1)

where 𝜖 is the permittivity of the medium surrounding the bodies. The force is directed along the line
joining the bodies and is repulsive if the two charges are of the same sign and attractive if the charges
are of opposite sign.

The permittivity 𝜖0 of a vacuum has the value 𝜖0 = 8.8542× 10−14 F/cm = 8.8542× 10−14 C/V⋅cm.
If the bodies are immersed in a dielectric medium composed of polarizable matter, the force between
them will be different from that in a vacuum. The ratio 𝜖/𝜖0 is called the relative dielectric constant of
the medium. For water, the value of this ratio is 78.303 at 25∘C.

Electrochemical Systems, Fourth Edition. John Newman and Nitash P. Balsara.
© 2021 John Wiley & Sons, Inc. Published 2021 by John Wiley & Sons, Inc.
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The force on a body is the sum of the forces exerted on it by all the other bodies in the system. For
the development of the theory, it is convenient to define the electric field E so that the electric force
acting on a charge q is given by

𝐟 = q𝐄. (3.2)

The electric field is defined at all points in the medium by supposing that a test charge q can be
introduced to test the force, and hence the electric field E by means of equation 3.2, without disturbing
the other charges comprising the system.

In this manner, it is possible to obtain differential equations describing the variation of the electric
field. For example, the curl of the electric field is zero:∗

∇ × 𝐄 = 0. (3.3)

This allows us to introduce the electrostatic potential Φ, so that the electric field can be expressed as
the negative gradient of this scalar quantity:

𝐄 = −∇Φ. (3.4)

This is permissible since the curl of the gradient of any scalar field is zero:

∇ × ∇Φ = 0. (3.5)

The variation in the electric field is also related to the charge distribution in the system by Poisson’s
equation

∇ ⋅ (𝜖𝐄) = −∇ ⋅ (𝜖∇Φ) = 𝜌e, (3.6)

where 𝜌e is the electric charge density per unit volume. For a medium of uniform dielectric constant,
this is equivalent to the expression of the electrostatic potential in terms of the charges:

Φ(𝐫) =
∑

i

qi

4𝜋𝜖|𝐫 − 𝐫i|
, (3.7)

where the sum includes all the charges in the system.
Equation 3.6 provides a differential equation for the determination of the electrostatic potential in

terms of the charge distribution. For a medium of uniform dielectric constant, this becomes

∇2Φ = −
𝜌e
𝜖 , (3.8)

∗Equation 3.3 is an approximate form of one of Maxwell’s equations. The full set is

∇ ×𝐇 = 𝜕𝐃
𝜕t

+ 𝐢,

∇ × 𝐄 = −𝜕𝐁
𝜕t
,

∇ ⋅ 𝐃 = 𝜌e,

∇ ⋅ 𝐁 = 0,

where, approximately, D = 𝜖E and B = 𝜇H. See Ref. [1].
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and in a medium with no free charges, it reduces to Laplace’s equation

∇2Φ = 0. (3.9)

At the interface between two phases, the tangential component of the electric field is continuous.
The relationship between the normal components of the electric field in the two phases can be obtained
by applying equation 3.6 to a pill box enclosing a portion of the interface (see Figure 3.1). We include
the possibility that the surface charge density at the interface is not zero. By means of the divergence
theorem, equation 3.6 can be written in terms of integrals over the surface and the volume of an
arbitrary region:

∮𝜖𝐄 ⋅ 𝐝𝐒 = ∫𝜌edV . (3.10)

This is an expression of Gauss’s law, which says that the integral of the outward normal component of
𝜖E over the surface of a closed region is equal to the charge enclosed. Application of this result to the
interface in Figure 3.1 gives the relationship between the normal components of the electric field:

𝜖1En1 − 𝜖2En2 = 𝜎, (3.11)

where 𝜎 is the charge per unit area at the interface.
A considerable body of electrostatic theory has been developed,[1–3] concerned with the solution of

equations 3.8 and 3.9 for a variety of geometries and boundary conditions. We have not discussed the
magnetic effects that arise when the electric field varies in time and electric currents are present.

We conclude this section with an example. Consider two metal spheres, each 1 cm in radius and
with a distance of 10 cm between their centers (see Figure 3.2). We want to charge each sphere to an
average of 10 μC/cm2 by transporting 125.7 μC or 1.3× 10−9 mol of electrons from one sphere to the
other. The capacity of this system should be about 0.618× 10−12 F. Hence, we can estimate that the
final potential difference between the spheres will be 2.04× 108 V.

This example shows that large potentials are required to effect a modest separation of electrical
charge.

Medium 1

Medium 2En2

En1
Surface charge
density σ

Figure 3.1 Normal components of the electric field at an interface. The interface may have a charge 𝜎 per unit
area.

2 cm

–125.7 μc
–1.02 × 108 V

125.7 μc
1.02 × 108 V

2 cm

10 cm

Figure 3.2 Potential difference between two metal spheres for an average surface charge of 10 μC/cm2.
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3.2 INTERMOLECULAR FORCES

The intermolecular potential energy relation for two ions is given an idealized representation in
Figure 3.3. The corresponding intermolecular force is shown in Figure 3.4. The noteworthy feature of
these interactions is how slowly they go to zero at large distances of separation.

f =
q1q2

4𝜋𝜖r2

𝑤 = ∫
∞

r
f dr =

q1q2

4𝜋𝜖r

⎫
⎪

⎬
⎪
⎭

as r →∞. (3.12)

Because they obey the Coulomb force law at large distances, they are called ions, to distinguish them
from neutral nonpolar molecules or neutral polar molecules, for which the interaction energy is

𝑤 = −constant
r6

as r →∞. (3.13)

r

w

O

Figure 3.3 Intermolecular potential energy for two ions at a distance r apart.

r
O I

f

Figure 3.4 Intermolecular force between two ions.
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At close distances of approach, the interionic interaction depicted in Figures 3.3 and 3.4 departs
from equations 3.12. Since the nature of this deviation at short distances depends on the specific
nature of the ions, this deviation is sometimes referred to as the short-range specific interaction force.
Of course, the decomposition of the single curves of Figures 3.3 and 3.4 into coulombic parts and
specific-interaction parts is artificial. It is the intermolecular interaction itself that determines the
behavior of ions.

The asymptotic behavior expressed by equations 3.12 is sufficiently common and causes such
difficulties as to warrant a special treatment. A large body of knowledge included in electrostatic and
electromagnetic theory has been developed to deal with coulombic interactions. This involves, for
example, the electrostatic potential given by equation 3.7.

The results and methods of electrostatic theory can be applied most directly to dilute, ionized gases.
The restriction to a dilute, ionized gas is useful for two reasons:

1. There is a large fraction of free space, and we can imagine inserting a probe among the
ions without actually disturbing them. In a condensed phase, on the other hand, all space is
occupied.

2. All the ions are widely separated, so that an ion interacts at close range with no more than one
other ion at a time. This close range interaction can be called a collision. A nonionized gas can
be treated by consideration of binary interactions or binary collisions.[4] In an ionized gas where
the inverse square law applies, an ion interacts at all times with all other ions in the system. Some
progress can be made by introducing an electric potential that accounts for interactions between
distant ions. A binary collision is then an interaction with another ion at small distances where
the coulombic force law no longer holds, and this can be treated separately.

Even in this case, however, it remains a fact that the separation of the intermolecular force law
into different parts, say, an electric part and a specific chemical part, is without any physical basis.
The same difficulty arises in attempts to separate electrochemical potentials, used in Chapter 2, into
chemical potentials and electric potentials.

The electrostatic theory can be modified somewhat to handle condensed phases that involve a dilute
dispersion of charged particles in an otherwise uniform, dielectric medium. In this case, the electric
field due to the charged particles induces dipoles in the dielectric medium or causes a preferential
orientation of permanent dipoles. The presence of all these charges induced in the medium can be
accounted for by introducing an averaged electric field and an averaged electrostatic potential. The sum
in equation 3.7 then extends over the permanently charged particles but not over the charges induced
in the dielectric medium. The average of E and Φ is taken over spatial regions of at least molecular
dimensions and accounts for the dipole charges not included in the sum by the use of the permittivity ϵ
of the dielectric medium rather than the permittivity ϵ0 of free space.

This treatment of a condensed phase can be justified only when the charged particles are so far apart
that the coulombic interaction applies, just as for a dilute, ionized gas. Also, there should be enough
dielectric between charged particles to permit the averaging. Thus, both Φ and ϵ are macroscopic
concepts, and it is not meaningful to discuss variations of Φ and ϵ over distances of molecular
dimensions. The evaluation of the energy required to move a charged particle from one phase to
another requires, in addition, consideration of the energy of interaction with the dielectric solvent and
the nature of the charge distribution near the interface.

Although concentrated ionic solutions defy exact treatment on an electrostatic basis, the coulombic
inverse square law has many important consequences. For example, the coulombic attraction between
charges is so strong that large departures from electrical neutrality are precluded in electrolytic
solutions. This conclusion remains valid even though the interionic forces depart from Coulomb’s law
at small distances.
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The electrostatic model of a dilute dispersion of charged particles in a dielectric medium is applied
fruitfully in the theory of Debye and Hückel for the activity coefficients of extremely dilute electrolytic
solutions. Although the result and the model are applicable only in the limit of infinite dilution, the
strong departures from ideal-solution behavior can be clearly attributed to the inverse square law
governing the force between ions at large distances. The same model can be applied to determine the
consequences of these long-range forces on other properties of the solution, notably the conductivity,
at high dilutions.

Long-range forces are also important in electrode reactions. In a nonequilibrium double layer, there
can be extremely large forces acting on an ion; and one is led to say that there is a very large gradient of
potential in the double layer at an electrode surface even though the rigorous definition of this potential
may be difficult.

3.3 OUTER AND INNER POTENTIALS

The outer potential, also called the cavity or Volta potential, is frequently used in electrochemistry.
It is defined in terms of the energy required to move a charged particle from a point just outside one
phase to a point just outside another phase:

𝑤i = ziF(Φ𝛽 − Φ𝛼). (3.14)

In order to avoid the influence of external fields, it is imagined that the charged particle is moved from
a macroscopic cavity in one phase to a macroscopic cavity in the other phase (see Figure 3.5), and this
is the origin of the term cavity potential.

By moving the particle only to a point outside each phase, only the long-range forces of charges
in that phase are able to act on the test particle; the short-range, specific forces are not encountered.
For this reason, the outer potential is independent of the ion type used for the test particle. Differences
in outer potentials are measurable since they are differences in the potential of two points in a
phase of uniform composition, namely the external medium. However, the accurate measurement of
differences in outer potentials is a difficult experimental undertaking. Outer potentials can be used to
characterize the electrical state of a phase, but they do not have any direct thermodynamic relevance
and require difficult experimental measurements that are not necessary for any thermodynamic
discussion.

The inner potential, also called the Galvani potential, relates to the energy required to move an
idealized charged particle to a point inside a phase. It is generally conceded that inner potentials
are not measurable, and they do not need to occupy our attention further. The difference between
the inner potential and the outer potential is called the surface potential, another unmeasurable
quantity.

Metal α
Metal β

Figure 3.5 Movement of a charged particle from a cavity in one phase to a cavity in another phase. This thought
experiment is used to define the Volta potential and the contact potential difference between two metals.
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3.4 POTENTIALS OF REFERENCE ELECTRODES

From a practical point of view, the potential that is measured in an electrochemical system in order to
assess the electrical state of part of the system is that of a reference electrode. For our present discussion,
we mean an electrode that can be inserted directly into the solution at any point. In particular, we
exclude reference electrodes that are in a separate vessel and connected to the point in question by
a capillary probe, unless the solution in the capillary probe and the auxiliary vessel is of the same
composition as the solution at the point where we intend to insert the probe. This restriction is imposed
in order to avoid the uncertainties associated with liquid junctions. In practical measurements, this
restriction cannot always be observed. Reference electrodes are discussed in more detail in Chapter 5.

A reference electrode should behave reversibly with respect to one of the ions in the solution. The
material presented in Chapter 2 shows that the reference electrode will provide, in essence, a measure
of the electrochemical potential of that ion. Figure 3.6 shows how Ag–AgCl electrodes might be used
to measure the potential difference between two solutions. Equation 2.112 indicates that the measured
potential difference is related to the difference in electrochemical potential of chloride ions between
the two points 𝛼 and 𝛽:

−F(Φ𝛼 − Φ𝛽) = 𝜇𝛼Cl− − 𝜇𝛽Cl− . (3.15)

In Figure 3.7, the two reference electrodes are placed in the same vessel. By moving electrode 𝛼 in the
solution, one can investigate the spatial variation of the electrochemical potential of chloride ions even
though the concentration of electrolyte is not uniform and a current passes between the two working
electrodes.

Reference electrodes provide the most convenient means for assessing the electrical state of an
electrolytic solution.

+ –

HCI solution NaCI solution

β

Φα – Φβ

α

Figure 3.6 Use of reference electrodes to investigate the potential in a solution. Silver–silver chloride reference
electrodes are represented by 𝛼 and 𝛽. The vessel on the left also contains two working electrodes.

Φα – Φβ

α

β

–+

HCl
solution

Figure 3.7 Use of reference electrodes to investigate potential variations within a solution.
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3.5 THE ELECTRIC POTENTIAL IN THERMODYNAMICS

The potential sought in thermodynamics is one related to the energy required for the reversible
transfer of ions from one phase to another. This, of course, is the electrochemical potential of an ionic
species. The electrostatic potential, aside from the problems involved in its definition in condensed
phases, is not directly related to reversible work. Although the electrostatic potential can be avoided
in thermodynamics, electrochemical potentials being used in its stead, there does remain a need to
characterize the electrical state of a phase.

Frequently, the electrochemical potential of an ionic species is split into an electrical term and a
“chemical” term,

𝜇i = 𝜇chem
i + ziFΦ = RT ln 𝜆𝜃i miΓi + ziFΦ, (3.16)

where Φ is the “electrostatic” potential and Γi, is an activity coefficient that now is supposed to be
independent of the electrical state of the phase. We should first note that this decomposition is not
necessary, since the relevant formulas of thermodynamic significance have already been derived in
Chapter 2.

The electrostatic potential Φ could be defined so that it is measurable or unmeasurable. Depending
upon how well defined Φ is, so Γi is just as well or poorly defined. It is possible to proceed with only
a vague concept of the electrostatic potential, as supplied by electrostatic theory, and never bother to
define carefully just what is meant. If the analysis is consistent, physically meaningful results can be
obtained by recombining poorly defined terms at the end of the analysis.

Any definition of Φ that is chosen should satisfy one condition. It should reduce to the definition 2.9
used for the difference in electric potential between phases of identical composition. Thus, if 𝛼 and 𝛽
are phases of identical composition, then

𝜇𝛼i − 𝜇𝛽i = ziF(Φ𝛼 − Φ𝛽). (3.17)

The potential Φ, thus, provides a quantitative measure of the electrical state of one phase relative to a
second phase of identical composition. Several possible definitions of Φ satisfy this condition.

The outer potential, which is measurable in principle, can be used for Φ. It has the disadvantages of
difficulty of measurement and lack of relevance in thermodynamic calculations. It has the advantage
of giving a definite meaning to Φ, and, at the end of the analysis, its definition cancels out so that its
value need never be actually measured.

A second possibility is to use the potential of a suitable reference electrode. Since the reference
electrode is reversible to an ion in the solution, this is equivalent to using the electrochemical potential
of an ion, or 𝜇i/ziF. The arbitrariness of this definition is apparent from the need to select a particular
reference electrode or ionic species for the definition. This choice has the added disadvantage that 𝜇i is
equal to minus infinity for a solution in which this ionic species is absent. Thus, it does not conform to
our usual concept of an electrostatic potential; this is because 𝜇i relates to reversible work. This choice
of the potential does have the advantage of being related to a measurement, with reference electrodes,
commonly made in electrochemistry.

A third possibility should occupy our attention here. Select an ionic species n and define the
quasi-electrostatic potential Φ as follows:

𝜇n = RT ln cn + znFΦ. (3.18)

Then, the electrochemical potential of any other species can be expressed as

𝜇i = RT ln ci + ziFΦ + RT (ln fi −
zi

zn
ln fn)

+ RT (ln a𝜃i −
zi

zn
ln a𝜃n) . (3.19)
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One should recognize that the combinations of fi’s and a𝜃i ’s in parentheses are well defined and
independent of the electrical state, according to the rules laid down in Section 2.3. At constant
temperature, the gradient of the electrochemical potential is then

∇𝜇i = RT∇ ln ci + ziF∇Φ + RT∇(ln fi −
zi

zn
ln fn) . (3.20)

(In certain applications it will be more natural to use molalities or mole fractions (ci/cT; see Section 12.3)
in the definition of the quasi-electrostatic potential.)

The arbitrariness of this definition of Φ is again apparent from the need to select a particular ionic
species n. This definition ofΦ has the advantage of being related unambiguously to the electrochemical
potentials and it conforms to our usual concept of an electrostatic potential. It can be used in a solution
of vanishing concentration of species n because of the presence of the term RT ln cn in equation 3.18.

In the limit of infinitely dilute solutions, the activity-coefficient terms in equations 3.19 and 3.20
disappear due to the choice of the secondary reference state 2.19. In this limit, the definition of Φ
becomes independent of the choice of the reference ion n. This forms the basis of what should be
termed the dilute-solution theory of electrolytic solutions. At the same time, equations 3.19 and 3.20
show how to apply activity-coefficient corrections to dilute-solution theory without the utilization of
the activity coefficients of individual ions. In infinitely dilute solutions, the lack of dependence on
the ion type n is related to the ability to measure differences in electric potential between phases of
identical composition. Such solutions are of essentially the same composition in the sense that an ion in
solution is subject only to interactions with the solvent, and even the long-range electrical interactions
with other ions are not felt. This concept becomes practically useful in semiconductor electrodes (see
Chapter 23).

The introduction of such an electric potential is useful in the calculation of transport processes in
electrolytic solutions.[5] Smyrl and Newman use the term quasi-electrostatic potential for the potential
so defined.

We have discussed here possible ways of using the electric potential in electrochemical thermody-
namics. The use of the potential in transport theory is basically the same as its use in thermodynamics.
By using electrochemical potentials, it is possible to avoid the electric potential, although its intro-
duction may be useful or convenient. In the kinetics of electrode processes, it is possible to use a
Gibbs energy change as a driving force for the reaction. This is equivalent to the use of the surface
overpotential defined in Section 1.3.

An electric potential also finds use in microscopic models, such as the Debye–Hückel theory alluded
to earlier and developed in the next chapter. Such a potential cannot always be defined with rigor.
A clear distinction should always be made between macroscopic theories—such as thermodynamics,
transport phenomena, and fluid mechanics—and microscopic theories—such as statistical mechanics
and the kinetic theory of gases and liquids. Microscopic theories explain the behavior of, predict the
values of, and provide means to correlate macroscopic properties, such as activity coefficients and
diffusion coefficients, on the basis of molecular or ionic properties. Quantitative success is seldom
achieved without some additional empiricism. The macroscopic theories, on the other hand, provide
both the framework for the economical measurement and tabulation of macroscopic properties and the
means for using these results to predict the behavior of macroscopic systems.

NOTATION

𝛼𝜃i property expressing secondary reference state, liter/mol
B magnetic induction, V⋅s/cm2

ci concentration of species i, mol/liter
D electric displacement, C/cm2

E electric field, V/cm
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f force, J/cm
fi molar activity coefficient of species i
F Faraday’s constant, 96,487 C/mol
H magnetic field strength, A/cm
mi molality of species i, mol/kg
q electric charge, C
r distance or position, cm
R universal gas constant, 8.3143 J/mol⋅K
S surface area, cm2

T absolute temperature, K
V volume, cm3

w work or interaction energy
zi charge number of species i
Γi activity coefficient
𝜖 permittivity, F/cm
𝜖0 permittivity of free space, 8.8542× 10−14 F/cm
𝜆𝜃i property expressing secondary reference state, kg/mol
𝜇 magnetic permeability, Ω⋅ s/cm
𝜇i electrochemical potential of species i, J/mol
𝜌e electric charge density, C/cm3

𝜎 surface charge density, C/cm2

Φ electric potential, V
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CHAPTER 4

ACTIVITY COEFFICIENTS

Due to long-range coulombic interactions between ions, the activity coefficients of electrolytes in dilute
solutions behave differently from those of nonelectrolytes, as explained by the electrostatic theory of
Debye and Hückel. This theory forms the basis for the empirical correlation of activity coefficients
over a range of concentration, including the activity coefficients of solutions of several electrolytes.

4.1 IONIC DISTRIBUTIONS IN DILUTE SOLUTIONS

When an electrolyte dissolves in a solvent, it dissociates into cations and anions; this is the source of
the electrical conductivity of the solution. This dissociation also manifests itself in the thermodynamic
properties of the solution, as discussed in Section 2.3. For example, it leads to the presence of the factor
v in equation 2.28, and it is responsible for the large freezing-point depression and vapor-pressure
lowering of solutions of electrolytes.

The distribution of ions is not completely random even in dilute solutions because of the attractive
and repulsive electrical forces between ions. Consequently, the thermodynamic properties show further
departures from those of nonelectrolytic solutions. Debye and Hückel[1] used an electrostatic model to
describe these ionic distributions quantitatively.

Suppose that an ion of valence zc is at the origin of coordinates. Ions of opposite charge to this
central ion will be attracted toward the origin, and ions of like sign will be repelled. Random thermal
motion of the ions and the solvent molecules tends to counteract this electric effect and promote a
random distribution of ions. The balance of these competing effects can be expressed by a Boltzmann
distribution of ionic concentrations:

ci = ci∞ exp (−
ziFΦ
RT

) , (4.1)

where ci∞ is the average concentration of species i and Φ is the electrostatic potential established
around the central ion. The electrical interaction energy per mole is expressed as ziFΦ, and other

Electrochemical Systems, Fourth Edition. John Newman and Nitash P. Balsara.
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contributions to the interaction energy are ignored. Far from the central ion, the potential Φ approaches
zero, and, consequently, ci approaches ci∞.

The potential Φ results not only from the central ion but also from other ions that are attracted
toward or repelled from the origin. Its distribution is governed by Poisson’s equation 3.8

∇2Φ = −
𝜌e

𝜖 = −F
𝜖

∑

i

zici. (4.2)

In a solution at equilibrium, radial symmetry prevails. In spherical coordinates, with the central ion at
the origin, equation 4.2 becomes

1
r2

d
dr

(r2 dΦ
dr

) = −
𝜌e

𝜖 = −F
𝜖

∑

i

zici∞ exp (−
ziFΦ
RT

) . (4.3)

The centers of other ions are supposed to be precluded from approaching within a distance a of
the central ion because of the short-range repulsive forces. Thus equation 4.1 and hence equation 4.3
applies only for r > a. The boundary condition at r = a can be found by applying Gauss’s law 3.10 to
the region within r = a:

dΦ
dr

= −
zce

4𝜋𝜖a2
at r = a. (4.4)

This is equivalent to the statement that the charge distribution around the central ion exactly
counterbalances the charge on that ion. Thus, integration of equation 4.3 from a to ∞ gives

r2 dΦ
dr

|||||||

∞

a
= −∫

∞

a

𝜌er2

𝜖 dr (4.5)

∫
∞

a
𝜌e4𝜋r2 dr = 4𝜋𝜖a2 dΦ

dr

|||||||r=a
= −zce. (4.6)

On the left is the integral of the charge density 𝜌e over the volume outside r = a, and this is equated to
the negative of the charge zce on the central ion.

Equation 4.3 now describes the potential distribution near the central ion in terms of the known
average concentrations ci∞ and other known parameters. To effect a solution, Debye and Hückel
approximated the exponential terms in equation 4.3 as though the exponents were small:

exp (−
ziFΦ
RT

) ≈ 1 −
ziFΦ
RT

. (4.7)

Equation 4.3 becomes
1
r2

d
dr

(r2 dΦ
dr

) = Φ
𝜆2

, (4.8)

where 𝜆 is the Debye length given by

𝜆 = ( 𝜖RT

F2
∑

i z2
i ci∞

)
1∕2

. (4.9)

The term involving
∑

i zi ci∞ is zero because the solution is electrically neutral on the average.
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The solution of equation 4.8 satisfying the boundary condition 4.4 and the condition that Φ
approaches zero as r approaches infinity is

Φ =
zce

4𝜋𝜖r
e(a−r)∕𝜆

1 + a∕𝜆
. (4.10)

The potential due to the central ion alone would be zce/4𝜋𝜖r. Therefore, equation 4.10 reveals that the
other ions attracted toward the origin, being of opposite sign to the central ion, lower the magnitude of
the potential and cause it to vanish rapidly at large distances from the central ion. Thus, ions at some
distance are shielded from the charge of the central ion by these other ions.

The Debye length 𝜆 is an important parameter describing the potential distribution. It has the value
𝜆 = 9.6 × 10–8 cm = 0.96 nm in a 0.1 M aqueous solution of a uni-univalent electrolyte at 25∘C. It is
inversely proportional to ionic charges and the square root of concentration and directly proportional to
the square roots of the permittivity and the absolute temperature. Figure 4.1 shows the distribution of
anions and cations near a central cation as calculated from equations 4.1 and 4.10 for a 0.1 M aqueous
solution of a uni-univalent electrolyte at 25∘C. The shielding ions form an ion cloud around the central
ion, with a thickness on the order of the Debye length 𝜆.

The parameter a is generally regarded as an average value of the sum of the radii of pairs of hydrated
ions. For a solution containing only one kind of anion and one kind of cation, the sum of the radii of a
cation and an anion dominates this average since the long-range repulsive forces tend to prevent ions
of like sign from interacting at short distances.

3

2

0
0 1 2

r/λ
α/λ

Cations

c i
 / 

c i
∞

Anions

a = 0.4 nm
λ = 0.96 nm

3

1

Figure 4.1 Ionic distributions near a central cation, according to the theory of Debye and Hückel, for a 0.1 M
aqueous solution of a uni-univalent electrolyte at 25∘C.
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4.2 ELECTRICAL CONTRIBUTION TO THE FREE ENERGY

For an ideal solution of dissociated ions, the activity coefficient of neutral combinations of ions
would be equal to unity. Important departures from ideality result from the coulombic electrical forces
between ions. This effect can be assessed by means of the following thought experiment. Start with
a given volume of solvent and also a reservoir, which is a large volume of solution containing ions
at high dilution. Now imagine that the charge can be removed from the ions, and let this involve
an amount of work w1. The discharged ions are now to be transferred reversibly at constant volume
from the reservoir to the given volume of solvent. The work involved in this process is the ideal or
nonelectrical contribution to the change in the Helmholtz free energy A. The average concentration of
a solute species in the new solution is now ci.

Finally, the ions are to be recharged simultaneously to their appropriate charge levels, an amount of
work w2 being expended in this process. This work w2 is different from w1 because the ions are now at
a high enough concentration that they shield each other, and the potential distribution around a central
ion is given by equation 4.10. The electrical contribution to the Helmholtz free energy is taken to be
the difference between these two work terms:

Ael = 𝑤2 − 𝑤1. (4.11)

It now remains to express this quantitatively.
The work required to bring an element of charge dq from infinity to a distance r = a from a central

ion is Φ(r = a) dq. Since all the ions are to be charged simultaneously, it is expeditious to let 𝜉 denote
the fraction of the final charge carried by any ion at any time during the charging process. Then,
the charge on an ion is zie𝜉, and dq = zie d𝜉, and 𝜉 varies from 0 to 1 during the charging process.
The quantity a/𝜆 in equation 4.10 should be expressed as 𝜉a/𝜆 since 𝜆 is inversely proportional to the
charge level.

The contribution to w2 − w1 from charging a central ion of valence zj is, therefore,

∫
1

0
[

zje𝜉
4𝜋𝜖a

1
1 + 𝜉a∕𝜆

−
zje𝜉
4𝜋𝜖a

] zje d𝜉 = −
z2

j e2

4𝜋𝜖𝜆
∫

1

0

𝜉2d𝜉
1 + 𝜉a∕𝜆

. (4.12)

The term in brackets is the difference between the potential at r = a for the charging processes
corresponding to w2 and w1. The electrical contribution to the Helmholtz free energy is now the sum
of the contributions from charging the individual ions:

Ael = 𝑤2 − 𝑤1 = −
∑

j

Lnj

z2
j e2

4𝜋𝜖𝜆
∫

1

0

𝜉2 d𝜉
1 + 𝜉a∕𝜆

, (4.13)

where nj is the number of moles of species j and L is Avogadro’s number. Integration gives

Ael = − Fe
12𝜋𝜖𝜆

𝜏 (a
𝜆
)
∑

j

z2
j nj, (4.14)

where

𝜏(x) = 3
x3

[ln(1 + x) − x + 1
2

x2] . (4.15)
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The chemical potential of a species can be obtained by suitable differentiation of the Helmholtz free
energy (see equation 2.8):

𝜇i = ( 𝜕A
𝜕ni

)
T ,V ,nj

j ≠ i

= (𝜕A
𝜕ci

)
T ,V ,cj

j ≠ i

(
𝜕ci

𝜕ni
)

T ,V ,nj
j ≠ i

= 1
V

( 𝜕A
𝜕ci

)
T ,V ,cj

j ≠ i

. (4.16)

From equation 4.14,
Ael
V

= − Fe
12𝜋𝜖𝜆

𝜏 (a
𝜆
)
∑

j

z2
j cj. (4.17)

The electrical contribution to the chemical potential, therefore, is

𝜇i,el = − Fe
12𝜋𝜖

𝜏(a∕𝜆)
𝜆

z2
i − Fe

12𝜋𝜖
∑

j

z2
j cj

dx𝜏(x)
dx

|||||||x=a∕𝜆
(
𝜕1∕𝜆
𝜕ci

)
T ,V ,cj

j ≠ i

. (4.18)

The second term arises from the fact that 𝜆 depends on ci. It should also be borne in mind that only
neutral combinations of these chemical potentials are independent of the electrical state of the phase.
Carrying out the differentiation in equation 4.18, we obtain

𝜇i,el = −
z2

i Fe

8𝜋𝜖𝜆
1

1 + a∕𝜆
. (4.19)

The above method of obtaining the electrical effect on the thermodynamic properties is known as
the Debye charging process. The electrical contribution to the chemical potential can be arrived at
more directly by means of the so-called Güntelberg charging process. Equation 4.16 shows that the
chemical potential of a species is equal to the reversible work of transferring, at constant temperature
and volume, one mole of the species to a large volume of the solution. The electrical contribution to 𝜇i
then comes from charging one ion or a mole of ions in a solution in which all the other ions are already
charged. The Debye length 𝜆 is consequently treated as a constant in this process, and we have

𝜇i,el = L ∫
1

0
[

zie𝜉
4𝜋𝜖a

1
1 + a∕𝜆

−
zie𝜉
4𝜋𝜖a

] zie d𝜉 = −
z2

i Fe

8𝜋𝜖𝜆
1

1 + a∕𝜆
. (4.20)

This result agrees with equation 4.19.
For dilute solutions, the activity coefficient can now be expressed as

ln fi = ln 𝛾i = −
z2

i Fe

8𝜋𝜖RT𝜆
1

1 + a∕𝜆
. (4.21)

The activity coefficient depends on the composition of the solution through the Debye length 𝜆.
Consequently, it is convenient to introduce the molar ionic strength I′ of the solution:

I′ = 1
2

∑

i

z2
i ci. (4.22)

Then, equation 4.21 becomes

ln fi = ln 𝛾i = −
z2

i 𝛼
′
√

I′

1 + B′a
√

I′
, (4.23)
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where
B′ = F

√
𝜖RT∕2

, (4.24)

𝛼′ = Fe
8𝜋𝜖RT

B′ =
F2e

√
2

8𝜋(𝜖RT)3∕2
. (4.25)

In applications, molal concentrations are frequently employed, and the molal ionic strength is
defined as

I = 1
2

∑

i

z2
i mi = I′

c0M0
. (4.26)

In dilute solutions, c0M0 is approximately equal to 𝜌0, the density of the pure solvent, and one writes
I′ = 𝜌0I. Consequently, in terms of the molal ionic strength, the activity coefficients are given by

ln fi = ln 𝛾i = −
z2

i 𝛼
√

I

1 + Ba
√

I
, (4.27)

where
𝛼 = 𝛼′√𝜌0 and B = B′√𝜌0. (4.28)

Values of these parameters for aqueous solutions are given in Table 4.1.
The Debye–Hückel limiting law is the limiting form of equation 4.23 or 4.27 as the ionic strength

goes to zero.
ln fi = ln 𝛾i → −z2

i 𝛼
′
√

I′ = −z2
i 𝛼

√
I. (4.29)

This form, which has been verified experimentally, shows that the logarithm of the activity coefficient
is proportional to the square root of the ionic strength. This is a stronger concentration dependence than
one encounters in solutions of nonelectrolytes. The limiting law is independent of the parameter a. All
the quantities entering into 𝛼 and 𝛼′ can be measured independently. The nonelectrical contributions
to the logarithm of the activity coefficient should be proportional to the concentration or the ionic
strength to the first power in dilute solutions. Thus, the limiting law of Debye and Hückel is valid
because the effect of long-range electrical forces is so much larger than the effects usually encountered.
Other effects are not, however, included in the theory of Debye and Hückel, and its validity is therefore
restricted to dilute solutions.

Equation 4.16 gives no direct information on the electrical contribution to the chemical potential
of the solvent. However, the Gibbs–Duhem equation can be used for this purpose. For variations at
constant temperature and pressure, it reads

∑

i

cid𝜇i = 0 (4.30)

TABLE 4.1 Debye–Hückel parameters for aqueous solutions

T (∘C) 0 25 50 75

𝛼′, (liter/mol)1/2 1.1325 1.1779 1.2374 1.3115
𝛼, (kg/mol)1/2 1.1324 1.1762 1.2300 1.2949
B′, (liter/mol)1/2/nm 3.249 3.291 3.346 3.411
B, (kg/mol)1/2/nm 3.248 3.287 3.326 3.368
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or
−d𝜇0 = M0

∑

i ≠ 0

mid𝜇i = RTM0

∑

i ≠ 0

mi d(ln mi 𝛾i). (4.31)

Substitution of equation 4.27 gives

−d𝜇0 = RTM0
⎡
⎢
⎣

∑

i ≠ 0

dmi − 2𝛼I d (
√

I

1 + Ba
√

I
)
⎤
⎥
⎦

= RTM0
⎡
⎢
⎣

∑

i ≠ 0

dmi −
2𝛼I

(1 + Ba
√

I)2
d
√

I
⎤
⎥
⎦

. (4.32)

Integration gives
𝜇0

0 − 𝜇0

RT
= − ln (

𝜆0

𝜆0
0

) = M0

∑

i ≠ 0

mi −
2
3
𝛼M0I3∕2𝜎(Ba

√
I), (4.33)

where
𝜎(x) = 3

x3
[x − 2 ln(1 + x) − 1

1 + x
+ 1] . (4.34)

Comparison with equation 2.34 shows that the osmotic coefficient 𝜙 is

𝜙 = 1 −

2

3
𝛼I3∕2𝜎(Ba

√
I)

∑
i ≠ 0mi

. (4.35)

Since 𝜎 approaches one as the ionic strength approaches zero, 1 −𝜙 is proportional to the square root
of the ionic strength in dilute solutions of electrolytes.

4.3 SHORTCOMINGS OF THE DEBYE–HÜCKEL MODEL

The expression of Debye and Hückel for the activity coefficients of ionic solutions is valid only in
dilute solutions. This restricted range of validity can be discussed in terms of neglected factors that
would be important even in solutions of nonelectrolytes, in terms of the mathematical approximation
4.7, and from the point of view of sound application of the principles of statistical mechanics.

The theory of Debye and Hückel gives specific consideration of only the long-range electrical
interactions between ions. Even here, physical properties, such as the dielectric constant, are given
values appropriate to the pure solvent. At higher concentrations, ion–solvent interactions and short-range
interactions between ions become important. Solvation and association should not be ignored. These
effects give contributions to the logarithm of the activity coefficient which are proportional to the
solute concentration even in solutions of nonelectrolytes. Consequently, at concentrations where such
terms are comparable to the square-root term, the Debye–Hückel theory can no longer adequately
describe the thermodynamic properties. Refinement of the electrical contributions is not very useful
unless these noncoulombic interactions are also accounted for.

The only significant mathematical approximation introduced by Debye and Hückel is that of
equation 4.7. Its validity depends on the magnitude of ziFΦ/RT being small compared to unity, and this
means that zizceF/4𝜋𝜖RTa should be small. However, this ratio is larger than unity for uni-univalent
electrolytes in water, and the situation becomes worse for higher valence types and for solvents other
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than water. Furthermore, this ratio is independent of concentration, and it is not immediately clear that
even the Debye–Hückel limiting law is free from error introduced by this approximation.

Fortunately, the Debye–Hückel limiting law can be substantiated by a singular-perturbation
treatment of the problem. What enters into equation 4.12 or 4.20 is the potential at r = a due to the
ion cloud. For extremely dilute solutions, the Debye length becomes very large. This means that most
of the ions comprising the ion cloud are at a considerable distance from the central ion, where the
potential due to the central ion is greatly reduced and the approximation 4.7 is valid. Consequently,
a valid approximation to the concentration distributions is obtained in the region where most of the
counterbalancing charge is found; and this, in turn, yields a correct value for the potential at r = a
due to the ion cloud. This result is obtained even though there is always a region near the central ion
where the approximation 4.7 is not valid.

It is of interest to note that even though the parameter a does not appear in the Debye–Hückel
limiting law, no solution of the nonlinearized problem will be found, except with the ion cloud
concentrated at the origin, unless a nonzero value for a is assumed.

Equation 4.3 is known as the Poisson–Boltzmann equation, and considerable effort has been
devoted to its solution without approximation 4.7 of Debye and Hückel. Gronwall et al.[2] and
La Mer et al.[3] obtained series expansions for small values of parameter zizceF/4𝜋𝜖RTa. This is,
of course, not the same as a series expansion for small values of the concentration. More recently,
Guggenheim[4–7] has reported the results of computer solutions of the Poisson–Boltzmann equation. He
concludes that Gronwall’s expansions do not give a significant improvement over Debye and Hückel’s
solution for aqueous solutions of uni-univalent electrolytes and that the terms reported by Gronwall
are not sufficient for higher valence types. Guggenheim gives some hope that accurate solutions
of the Poisson–Boltzmann equation would give substantial improvement, for higher valence types,
over the result of Debye and Hückel at low concentrations where noncoulombic effects are not yet
considerable.

Finally, one should note that the theory of Debye and Hückel is not a straightforward application
of the principles of statistical mechanics. One may even marvel that the charging process gives a
correct electrical contribution to the Helmholtz free energy. The inconsistencies in the model of
Debye and Hückel first showed up when refined calculations gave different results for 𝜇i, el according
to the Debye and Güntelberg charging processes. These problems have been discussed clearly by
Onsager.[8] The interaction energy which should enter into the Boltzmann factor in equation 4.1 is the
potential of mean force, the integral of the average force associated with virtual displacements of an
ion when all interactions with the solvent and other ions are considered. This is not necessarily equal
to ziFΦ.

An example due to Onsager illustrates this contradiction. Let the potential around a central ion of
type j be denoted by Φj. The probability of finding an ion of type j within a volume element at the
origin is proportional to cj∞. The conditional probability of finding an ion of type i within a volume
element at a distance r, when it is known that an ion of type j is at the origin, is, according to the model
of Debye and Hückel, proportional to ci∞ exp(−ziFΦj/RT). Hence, the probability of finding an ion of
type j at a point and an ion of type i at a point at a distance r is proportional to cj∞ci∞ exp(−ziFΦj/RT).
However, this probability must be the same, independent of which ion is regarded as the central ion.
Thus, we must have

cj∞ci∞ exp (−
ziFΦj

RT
) = ci∞cj∞ exp (−

zjFΦi

RT
) , (4.36)

where the term on the right is Debye and Hückel’s expression for this probability when the ion of type i
is regarded as the central ion. Equality of these expressions requires that

ziΦj(r) = zjΦi(r). (4.37)
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To complete the demonstration, one needs to show that equation 4.37 is violated for some case
where the potentials Φj(r) and Φi(r) are determined by the solution of the Poisson–Boltzmann equation.
The simplest case is that of an unsymmetric electrolyte (see Problem 4.1). Equation 4.37 does not
happen to be violated for symmetric electrolytes. However, this does not mean that the basic model
is free from objection in this case. The Debye and Güntelberg charging processes still give different
results for 𝜇i, el.

It is frequently stated erroneously that the model of Debye and Hückel is inconsistent because
it violates the principle of superposition of electrostatics. This principle is embodied in Poisson’s
equation 4.2; the potential due to a given charge distribution will be everywhere doubled if all the
charges are doubled but remain in the same positions. Instead, the inconsistency arises from an
improper statistical treatment of the problem.

The difficulty pinpointed by Onsager has been overcome by Mayer.[9] He has applied the principles
of statistical mechanics to the physical model of Debye and Hückel, namely, hard-sphere ions of
diameter a moving in a continuous dielectric fluid. The basic statistical methods, involving cluster
integrals, found in Chapter 13 of Mayer and Mayer’s book[10] and in the article by McMillan and
Mayer,[11] form the starting point for Mayer’s work on ionic solutions. Because of the long-range
nature of coulombic forces, this extension is not easy, and the cluster method itself is far from
simple.

Mayer is able to obtain the Debye–Hückel limiting law without invoking anything comparable
to approximation 4.7. He also collects the expressions for the evaluation of the logarithm of the
activity coefficient, accurate through terms of order c3/2. He recommends evaluation of these terms
without expansion for small values of c, although there is no rigorous justification for expecting better
accuracy.

For the reasons stated at the beginning of this section, higher order corrections to the activity
coefficient cannot be obtained without consideration of noncoulombic effects, and the statistical
methods will not be pursued further here. Résibois,[12] states “Disappointingly enough, it must be
admitted that the rigorous justification of the D-H theory is the most important progress that has been
made by the recent developments in the field of electrolyte theory.”

4.4 BINARY SOLUTIONS

In this section, we consider solutions of a single electrolyte that dissociates into v+ cations of charge
number z+ and v− anions of charge number z−. The thermodynamic properties of such solutions have
been studied extensively; activity and osmotic coefficients are summarized by Lewis and Randall[13]

and by Robinson and Stokes.[14]

Since individual ionic activity coefficients can depend on the electrical state of the phase,
activity coefficients from equation 4.27 should be combined into the mean molal activity coefficient
𝛾+−:

ln 𝛾+− =
z+z−𝛼

√
I

1 + Ba
√

I
. (4.38)

From equation 4.35, the corresponding form of the osmotic coefficient is

𝜙 = 1 + 1
3

z+z−𝛼
√

I𝜎(Ba
√

I). (4.39)
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To account for effects neglected in the theory of Debye and Hückel, additional terms can be added
to these expressions:

ln 𝛾+− =
z+z−𝛼

√
I

1 + Ba
√

I
+ A2m + A3m3∕2

+ A4m2 + · · · + Anmn∕2 + · · · , (4.40)

𝜙 = 1 + 1
3

z+z−𝛼
√

I𝜎(Ba
√

I) + 1
2

A2m + 3
5

A3m3∕2

+ 2
3

A4m2 + · · · + n
n + 2

Anmn∕2 + · · · , (4.41)

where equation 4.41 has been derived from equation 4.40 by means of the Gibbs–Duhem equation
2.38. The values of the As can be determined empirically by fitting equation 4.40 to activity-coefficient
data or equation 4.41 to osmotic-coefficient data. Enough terms are carried to ensure a good fit, but no
special significance should be attached to the values of the As so obtained.

For many purposes, it is sufficient to drop the terms beyond that in A2m. Guggenheim[15] then writes
A2 in the form

A2 =
4𝜈+𝜈−
𝜈+ + 𝜈−

𝛽. (4.42)

It is further recommended that Ba be given the same value for all electrolytes (say, Ba = 1 (kg/mol)1/2,
which corresponds to a = 0.304 nm for aqueous solutions at 25∘C). One advantage of this procedure
is that for each electrolyte there is now only one adjustable parameter, which can be fit by linear
regression.

Equation 4.38 shows that, with the Debye–Hückel expression, the activity coefficient would have
the same value for all electrolytes of the same charge type. Departures from this rule must be associated
with specific interactions of the ions with the solvent and with each other. The parameter 𝛽 can, thus,
be considered to account for these specific interactions. According to Brønsted’s principle of specific
interaction of ions,[16] ions of like charge will repel each other to such an extent that their interaction
will be nonspecific. This is the basis of the treatment of multicomponent solutions in the next section,
and A2 is expressed by equation 4.42 with a view toward this goal. That treatment also requires that Ba
be given the same value for all electrolytes.

Table 4.2 gives values of 𝛽 for uni-univalent electrolytes at 25∘C. Table 4.3 gives values for 2–1
and 1–2 electrolytes.

Pitzer and Brewer[13] use one electrolyte as a reference and treat ln (𝛾+−/𝛾KCl) or ln(𝛾+−∕𝛾CaCl2).
In these ratios, the electrical or coulombic effects should largely cancel; and the logarithm of the ratio
should be proportional to m in dilute solutions, if the reference electrolyte is of the same valence type
as the electrolyte in question. Thus, Pitzer and Brewer use KCl as a reference for 1–1 electrolytes
and CaCl2 as a reference for 2–1 and 1–2 electrolytes. Earlier, Lewis and Randall[17] had used a
similar comparison to aid in extrapolations to infinite dilution for electrolytes for which data at low
concentrations were absent or unreliable. Pitzer and Brewer did not find suitable reference electrolytes
of higher valence types for which concordant data were available.

To illustrate the behavior of activity coefficients of electrolytes, Figure 4.2 shows 𝛾+− for HCl and
HNO3. The logarithm of 𝛾+− shows a linear dependence on

√
m at low concentrations, as predicted

by equation 4.38 or 4.40, and the values of 𝛾+− for HCl and HNO3 approach each other at low
concentrations. Hence, the electrical effects tend to cancel in the ratio 𝛾HCl∕𝛾HNO3

, and this ratio shows
a linear dependence on m at low concentrations, as indicated by Figure 4.3. The slope of this curve
should be proportional to 𝛽HCl − 𝛽HNO3

.
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TABLE 4.2 Values of 𝜷 (kg/mol) for 1–1 electrolytes at 25∘C and for Ba = 1 (kg/mol)1/2

HCl 0.27 NaOH 0.06 KOH 0.13 RbCl 0.06
HBr 0.33 NaF 0.07 KF 0.13 RbBr 0.05
HI 0.36 NaCl 0.15 KC1 0.10 Rbl 0.04
HClO4 0.30 NaBr 0.17 KBr 0.11 RbNO3 −0.14
HNO3 0.20a NaI 0.21 KI 0.15 RbC2H3O2 0.26
LiOH −0.21b NaClO3 0.10 KClO3 −0.04 CsOH 0.35
LiCl 0.22 NaClO4 0.13 KBrO3 −0.07 CsCl 0.00
LiBr 0.26 NaBrO3 0.01 KIO3 −0.07 CsBr 0.00
Lil 0.35 NaNO3 0.04 KNO3 −0.11 CsI −0.01
LiClO4 0.34 NaC2H3O2 0.23 KC2H3O2 0.26 CsNO3 −0.15
LiNO3 0.21 NaCNS 0.20 KCNS 0.09 CsC2H3O2 0.28
LiC2H3O2 0.18 NaH2PO4 −0.06 KH2PO4 −0.16 TlClO4 −0.17
NH4Cl 0.10b NH4NO3 −0.10b AgNO3 −0.14 TlNO3 −0.36

TlC2H2O2 −0.04

Source: Guggenheim and Turgeon.[18] Reproduced with permission of The Royal Society of Chemistry.
aDerived from Ref. [7].
bDerived from Ref. [13].

TABLE 4.3 Values of 𝜷 and Ba for 2–1 and 1–2 electrolytes at 25∘C
√

3Ba (kg∕mol)1∕2 8𝛽/3 ln 10 (kg/mol)
√

3Ba (kg∕mol)1∕2 8𝛽/3 ln 10 (kg/mol)

MgCl2 2.75 0.206 Mg(NO3)2 2.65 0.208
CaCl2 2.66 0.169 Ca(NO3)2 2.40 0.052
SrCl2 2.70 0.125 Sr(NO3)2 2.40 −0.043
BaCl2 2.70 0.066 Co(NO3)2 2.75 0.148
MnCl2 2.70 0.148 Cu(NO3)2 2.65 0.122
FeCl2 2.70 0.162 Zn(NO3)2 2.85 0.172
CoCl2 2.70 0.188 Cd(NO3)2 2.75 0.104
NiCl2 2.70 0.188 Mg(ClO4)2 3.25 0.356
CuCl2 2.70 0.084 Li2SO4 2.45 −0.065
MgBr2 2.80 0.291 Na2SO4 2.20 −0.165
CaBr2 2.80 0.212 K2SO4 1.85 −0.087
SrBr2 2.80 0.176 Rb2SO4 2.30 −0.148
BaBr2 2.70 0.140 Cs2SO4 2.30 −0.113

Source: Guggenheim and Stokes.[19] Reproduced with permission of The Royal Society of Chemistry.
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Figure 4.2 Mean molal activity coefficients of HCl (from Ref. [13]) and HNO3 (from Ref. [23]) and the ratio of
the activity coefficients of the two acids.
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Figure 4.3 Ratio of the activity coefficients of HCl and HNO3 plotted against the molality.

Robinson and Stokes[14] give a chemical model for hydration and arrive at a two-parameter equation
that can be fit to activity-coefficient data.

4.5 MULTICOMPONENT SOLUTIONS

Equations 4.40 and 4.41 express the composition dependence of the activity and osmotic coefficients
of a binary solution. The parameters 𝛼, Ba, and the As are taken to be constant at a given temperature
and pressure; that is, they are independent of the solute concentration. The activity and osmotic
coefficients are not independent; equation 4.41 could be derived from equation 4.40 by applying
the Gibbs–Duhem relation at constant temperature and pressure. Since the chemical potentials of the
components of a mixture are not independent, inconsistencies are most easily avoided by deriving the
chemical potentials from an expression for the total free energy. The Gibbs free energy is used instead
of the Helmholtz free energy so that chemical potentials can be obtained by differentiation at constant
pressure instead of constant volume (see equation 2.8), and the Gibbs–Duhem equation can be more
easily applied if the parameters are constant at a given pressure.

For moderately dilute solutions containing several electrolytes, let us express the Gibbs free energy
as[21, 22]

G
RT

=
n0𝜇0

0

RT
+

∑

j ≠ 0

nj[ln(mj𝜆𝜃
j ) − 1]

− 2
3
𝛼
√

I𝜏(Ba
√

I)
∑

j

z2
j nj +

∑

i ≠ 0

∑

j ≠ 0

𝛽i.jnimj, (4.43)

where 𝜇0
0 is the chemical potential of the pure solvent at the same temperature and pressure.

The first two terms on the right in equation 4.43 can be regarded as an ideal contribution to the free
energy, but it should be realized that this is only a manner of speaking. An ideal contribution should
be expressed in terms of mole fractions, particle fractions, volume fractions, or concentrations since
the molality approaches infinity as the concentration of the solvent approaches zero. Notice that the
combination of 𝜆𝜃

j ’s in the second term is uniquely defined according to the principles of Section 2.3
since the solution as a whole is electrically neutral.
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The third term on the right in equation 4.43 represents the electrical contribution expressed by
equation 4.14, Ba

√
I approaching a/𝜆 as the ionic strength approaches zero. Recall that a represents an

average value of the sum of the radii of pairs of hydrated ions and that only a single value of a can
apply to a given solution.

The last term in equation 4.43 is a first approximation to the effect of specific interactions between
pairs of ions, and we take 𝛽i, j = 𝛽j, i. (This is no loss in generality since nimj = njmi.) In accordance
with Brønsted’s principle of specific interaction of ions, 𝛽i,j is set equal to zero if zizj > 0; that is, for a
pair of ions i and j with charges of the same sign.

Molalities and the molal ionic strength I are employed in equation 4.43 because this simplifies the
differentiation and facilitates the use of the Gibbs–Duhem equation. Furthermore, Scatchard[22] argues
on a theoretical basis that the molal ionic strength is more appropriate for the electrical contribution to
the free energy.

Differentiation of equation 4.43 according to equation 2.8 gives, for the chemical potential of the
solute species,

𝜇k

RT
= ln(mk𝜆𝜃

k ) −
z2

k𝛼
√

I

1 + Ba
√

I
+ 2

∑

j ≠ 0

𝛽k,jmj (4.44)

and, for the chemical potential of the solvent,

𝜇0

RT
=

𝜇0
0

RT
− M0

∑

j ≠ 0

mj +
2
3
𝛼M0I3∕2𝜎(Ba

√
I) − M0

∑

i ≠ 0

∑

j ≠ 0

𝛽i,jmimj. (4.45)

Hence, the solute activity coefficients are

ln 𝛾k = −
z2

k𝛼
√

I

1 + Ba
√

I
+ 2

∑

j ≠ 0

𝛽k,jmj, (4.46)

and the osmotic coefficient is

𝜙 = 1 −

2

3
𝛼I3∕2𝜎(Ba

√
I) −

∑
i ≠ 0

∑
j ≠ 0𝛽i,jmimj

∑
i ≠ 0mi

. (4.47)

Although equations 4.44 and 4.46 apply to individual ions, the dependence on the electrical state of
the phase has not been included. Consequently, these expressions should be used only for electrically
neutral combinations of ions, as discussed in Section 2.3.

As a consequence of Brønsted’s principle of specific interaction of ions, 𝛽i, j = 0 for a pair of
ions of like charge. This means that each 𝛽 that appears in these equations for multicomponent
solutions corresponds to one cation and one anion and can be determined from activity-coefficient or
osmotic-coefficient measurements in a binary solution of this electrolyte. Such values are given in
Tables 4.2 and 4.3. However, the same value of Ba must be used in fitting the data for the binary
solutions. For the systems in Table 4.3, an average value of Ba should be selected, and values of 𝛽
recomputed from the original data. The same value of Ba should then be used to compute 𝛽 values for
the systems of Table 4.2. The tables of Pitzer and Brewer[13] would be helpful in these calculations,
since they give activity coefficients relative to a reference electrolyte, KCl or CaCl2.

The theory presented above is valuable because it allows the thermodynamic properties of
multicomponent solutions to be predicted from measurements on binary solutions. For a solution of
two electrolytes, the logarithms of the activity coefficients of the electrolytes are predicted to vary
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TABLE 4.4 Values of 𝜷 for ions
of like charge

Ions 𝛽 (kg/mol)

H+–Li+ 0.021
H+–Na+ 0.015
H+–K+ −0.010
Li+–Na+ 0.006
Li+–K+ −0.022
Cl− − NO−

3 0.01

Source: Guggenheim.[7] Reproduced with
permission of Oxford University Press.

linearly with the molality of one of the electrolytes when the ionic strength I is maintained constant.
Such behavior is commonly observed.

When the above treatment proves to be inadequate, more terms can be added to expression 4.43
for the free energy. For uni-univalent electrolytes, Guggenheim[7, 23] relaxes Brønsted’s principle and
allows 𝛽i,j to be different from zero for pairs of ions of like charge. (𝛽i,j is still zero for i = j.) The
new values of 𝛽’s (see Table 4.4) are not applicable to binary solutions and are somewhat smaller than
those for pairs of ions of unlike charge, in partial accord with Brønsted’s principle. The modification
does not greatly affect the activity coefficients in mixed electrolytes and is perhaps more important in
the correlation of enthalpies of mixing.

In addition to the terms in equation 4.43, Scatchard[22, 24] generally carries terms of cubic and
higher order in the molalities. Harned and Robinson[25] have reviewed the equilibrium properties of
solutions of several electrolytes. They discuss the behavior of activity coefficients corresponding to
several representations of the free energy, and they present literature references for those systems
where measurements have been made.

4.6 MEASUREMENT OF ACTIVITY COEFFICIENTS

The activity coefficients of electrolytic solutions can be determined by methods applicable to
solutions of nonelectrolytes. We mention, in particular, freezing-point measurements, vapor-pressure
measurements, and isopiestic methods. Other methods involve the measurement of the potentials
of galvanic cells and are peculiar to electrolytic solutions. Robinson and Stokes[14] and Lewis and
Randall[13] review these and other methods.

Measurement of freezing-point depressions is useful if the solution can exist in equilibrium with the
pure solid solvent. Then, at the freezing point of the solution,

𝜇0(T) = 𝜇0,s(T), (4.48)

where 𝜇0, s denotes the chemical potential of the solid solvent. Next, it is necessary to correct the
chemical potentials to a constant temperature (since the data are at the freezing points of the solutions),
usually to the temperature Tf of the freezing point of the pure solvent. This is done on the basis of the
relation

𝜕𝜇i∕T
𝜕T

= −
Hi

T2
, (4.49)
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where Hi is the partial molar enthalpy of component i in the phase in question. Then

𝜇0(Tf )
Tf

=
𝜇0(T)

T
− ∫

Tf

T

H0

T2
dT , (4.50)

and
𝜇0,s(Tf )

Tf
=

𝜇0
0(Tf )
Tf

=
𝜇0,s(T)

T
− ∫

Tf

T

H0,s

T2
dT , (4.51)

where we have noted that at Tf the pure liquid solvent is in equilibrium with the solid solvent. Hence,
we have

𝜇0(Tf ) − 𝜇0
0(Tf )

Tf
= R ln

𝜆0

𝜆0
0

= −𝜙RM0𝜈m = −∫
Tf

T

H0 − H0,s

T2
dT . (4.52)

The measurements give the freezing points of solutions of molality m. The above calculation then
yields the osmotic coefficient for the solution of molality m at the freezing point Tf of the pure solvent.
Finally, osmotic coefficients can be converted to activity coefficients by means of the Gibbs–Duhem
equation 2.36. Measurements of the freezing-point depressions are an important source of accurate
values of activity coefficients of electrolytic solutions, particularly dilute solutions. The calculation
procedure was developed by Lewis and Randall[17] and is described in detail by Pitzer and Brewer,[13]

including the treatment of the thermal properties of the solution.
Many electrolytes are nonvolatile, and measurement of the vapor pressure yields the chemical

potential of the solvent in the solution. This gives directly the osmotic coefficient. Measurement of the
absolute vapor pressure is necessary for only one system. Subsequently, only isopiestic measurements
for other systems are needed. This amounts to the determination of the solution concentration which
has the same vapor pressure as a given solution of the standard system for which the solvent activity
is already known. The osmotic coefficients of solutions of many electrolytes have been determined by
the isopiestic method, although the accuracy is not adequate below about 0.1 m.

The open-circuit potentials of electrochemical cells are treated extensively in Chapter 2. These
provide a means for determining the chemical potential of the solute. Consider cell 2.106:

transition
region

α
Pt(s), H2(g)

αʹ

Pt(s).
β

HCl in
H2O

δ
HCl in
H2O

ε
AgCl(s)

λ

Ag(s) (4.53)

If the difference in electrochemical potential of chloride ions between solutions 𝛽 and 𝛿 is ignored, the
cell potential can be expressed as (see equation 2.107)

FU = −F(Φ𝛼 − Φ𝛼′) = FU𝜃 + 1
2

RT ln p𝛼
H2

− 2RT ln(m𝛽
HCl 𝛾

𝛽
HCl), (4.54)

where
FU𝜃 = 1

2
𝜇∗

H2
− 𝜇0

Ag + 𝜇0
AgCl − 2RT ln 𝜆𝜃

HCl. (4.55)

A system should be chosen such that the neglected term 𝜇𝛽
Cl− − 𝜇𝛿

Cl− is as small as possible. For the
present system, where the solubility of silver chloride is low, Table 2.1 shows that the error amounts
to less than 0.23 mV for HCl concentrations greater than 10−4 m.
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Equation 4.54 can be used to calculate 𝛾HCl directly from the measured cell potentials. However,
this requires that the standard cell potential U𝜃 be known, and this is determined by definition 2.18 of
the secondary reference state. To extrapolate most accurately to infinite dilution, one makes use of the
fact that in dilute solutions the activity coefficient behaves like (see equations 4.40 and 4.42)

ln 𝛾HCl = −
𝛼
√

m

1 +
√

m
+ 2𝛽HClm, (4.56)

where 𝛼 is the Debye–Hückel constant and is known (see equation 4.28). Consequently, one defines a
secondary quantity U′ by

FU′ = FU − 1
2

RT ln p𝛼
H2

+ 2RT ln m −
2RT𝛼

√
m

1 +
√

m
, (4.57)

where m signifies m𝛽
HCl. Then, to the extent that equation 4.56 is applicable, U′ behaves in dilute

solutions like
U′ = U𝜃 −

4RT𝛽HClm
F

. (4.58)

A plot of U′ versus m should be linear near m = 0. The intercept of this straight line is then U𝜃, and
the slope is −4RT𝛽HCl/F. This procedure, which allows the most accurate extrapolation of cell data
to infinite dilution, was apparently first used by Schumb et al.[26] Equation 4.54 can now be used to
calculate values of 𝛾HCl, which correspond to the secondary reference state 2.18.

For some electrolytes, electrodes reversible to both ions may be impossible to find or difficult to
work with. A cell with liquid junction, such as cell 2.91:

transition

region

ε
KOH in

H2O

λ

KOH in

H2O

α
Pt(s)

αʹ

Pt(s),
β

Hg(l)
βʹ

Hg(l)
δ

HgO(s)
δʹ

HgO(s) (4.59)

may then be set up with only one type of electrode. The potential of this cell is given by

FU = −F(Φ𝛼 − Φ𝛼′) = ∫
𝜖

𝜆
(t0

K+ + 1
2

M0m) d𝜇KOH. (4.60)

If the transference number t0
K+ is known, measurements of the potential of this cell can be used to study

the activity and osmotic coefficients of this electrolytic solution.
For thermodynamic measurements, cells with liquid junction are generally to be avoided. However,

when the junction involves solutions of only one electrolyte, the cell potential is independent of the
method of forming the junction and can be expressed unambiguously in terms of the thermodynamic
and transport properties according to equation 4.60.

4.7 WEAK ELECTROLYTES

Aqueous solutions of sulfuric acid involve the equilibrium between sulfate and bisulfate ions:

H+ + SO2−
4 ⇌ HSO−

4 . (4.61)
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Because the equilibrium is rapid, there are only two independent components, which can be taken to
be H2SO4 and H2O. In treating the activity coefficient of the solute, one can consider the solution to
be composed of one of the following sets of species:

(a) H2SO4 and H2O
(b) H+, HSO−

4 , and H2O
(c) H+, SO2−

4 , and H2O

In the last two cases, one deals with the mean activity coefficient of hydrogen and bisulfate ions or the
mean activity coefficient of hydrogen and sulfate ions.

In Section 2.3, we dealt with the difference between the treatments of the electrolyte as dissociated
or without regard for its dissociation. Any one of the above three formulations provides a consistent
basis for describing all the relevant thermodynamic properties of the system, although formulations (a)
and (b) have the disadvantage that they do not take into account the state of aggregation of the solute
at infinite dilution and thus preclude the application of equations 2.18 and 2.19 to define the secondary
reference state.

One can attempt to take into explicit account the equilibrium 4.61 by writing

𝜇H+ + 𝜇SO2−
4

= 𝜇HSO−
4

(4.62)

and defining an equilibrium constant, for example,

K =
c∗
H+c∗

SO2−
4

f ∗
H+ f ∗

SO2−
4

c∗
HSO−

4
f ∗
HSO−

4

=
a∗
HSO−

4

a∗
H+a∗

SO2−
4

. (4.63)

We have put asterisks on these quantities to denote the fact that they refer to a view of the solution as
composed of water molecules and hydrogen, bisulfate, and sulfate ions. For example, the concentrations
c∗

i are not the stoichiometric concentrations of independent components that can be assessed by ordinary
analytical means.

The thermodynamic constant K is independent of concentration. In addition to this constant, we
have introduced one extra concentration and one extra activity coefficient. In Problem 4.6, we show
how to calculate K, f ∗

H+ f ∗
HSO−

4
, and (f ∗

H+)2f ∗
SO2−

4
, if a microscopic concentration, say c∗

HSO−
4

, is known as

a function of stoichiometric concentration. It should be emphasized, however, that such a procedure is
outside the strict bounds of thermodynamics.

In going beyond thermodynamic means to investigate the equilibrium of a weak electrolyte, one
could adopt the microscopic model, assume that the activity coefficients of the microscopic species
are given by some suitably simple theory (see Section 4.5), and fit the macroscopic thermodynamic
quantities to determine the best values of K and any other parameters of the microscopic model.
Transport properties also can be used to help determine the values of these parameters.

This approach can be valuable to predict the behavior of macroscopic quantities in the absence of
complete data, for example, for the activities of phenolic compounds in water. For sulfuric acid, the
data are quite complete, but this approach can give a guide to the correlation of the concentration
dependence of the activity coefficient (compare Ref. [14], p. 213).

A second approach is to use, for example, Raman spectra to give independent evidence of the
microscopic species concentrations. Then one can obtain a reliable value for K, determine values for
the microscopic activity coefficients, and compare these with simple theoretical models, as outlined in
Problem 4.6.
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The results of Raman spectra measurements are given for sulfuric acid solutions by Young et al.[27]

From these results, we can calculate directly the value of

K′ =
c∗
H+c∗

SO2−
4

c∗
HSO−

4

=
Kf ∗

HSO−
4

f ∗
H+ f ∗

SO2−
4

. (4.64)

This quantity is useful for retrieving the values of the microscopic concentrations from the stoichiometric
concentration. We see that K′ depends on concentration through the activity coefficients. From the
development in the preceding sections, we might expect to be able to correlate K′ in terms of the
microscopic or “true” ionic strength Ir:

Ir = 1
2

∑

i

z2
i c∗

i . (4.65)

Such a correlation of Young’s data is shown in Figure 4.4, where the experimental points are correlated
by the equation

ln
K′

K
=

5.29
√

Ir

1 + 0.56
√

Ir

, (4.66)

where, Ir is expressed in mol/liter. The value of K = 0.0104 mol/liter, from Ref. [14], p. 387, is also
shown in Figure 4.4. The points on the figure extend to a stoichiometric concentration of sulfuric acid
of 2.95 M.

Such a correlation can be of value in estimating the microscopic species concentrations in, for
example, solutions of copper sulfate and sulfuric acid, where the data are far from complete. The
interactions of weak acids and bases involve chemical reactions that can reduce considerably the
volatility of the materials. This well known fact is elaborated upon by Edwards et al.[28]

0 0.2 0.4 0.6 0.8 1.0
0.01

0.02

0.05

0.1

Kʹ
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2

1

 / (1 + 0.56         )IrIr

Figure 4.4 Correlation of the second dissociation constant of sulfuric acid with the true ionic strength.
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PROBLEMS

4.1 Set up the Poisson–Boltzmann equations for a solution containing cations of charge number z+
and anions of charge number z−. Let x = r/𝜆; for the cation as the central ion, let 𝜙+ = z−FΦ/RT,
and for the anion as the central ion, let 𝜙− = z+FΦ/RT. Show that 𝜙+ −𝜙− satisfies the differential
equation

1
x2

d
dx

(x2 d𝜙+ − 𝜙−
dx

) =
z+

z+ − z−
(e−𝜙− − e−z−𝜙−∕z+)

−
z−

z+ − z−
(e−z+𝜙+∕z− − e−𝜙+)

and the boundary conditions

d𝜙+ − 𝜙−
dx

= 0 at x = a∕𝜆,

𝜙+ − 𝜙− → 0 as x → ∞.

The Onsager criterion requires that 𝜙+(x) = 𝜙−(x) (see equation 4.37). Can this criterion be
satisfied exactly when z+ is not equal to −z−, that is, for a nonsymmetric electrolyte?

4.2 Set up the Poisson–Boltzmann equations as in Problem 4.1. Let 𝛿 = a/𝜆 and S = − z+z−Fe/4𝜋𝜖RTa
so that the boundary condition at r = a becomes

𝛿
d𝜙+
dx

= S at x = 𝛿.

To justify the Debye–Hückel limiting law, we wish to solve the problem for small values of 𝛿,
that is, for small values of the concentration.
(a) Seek a solution by singular-perturbation expansions, letting the inner variable be x = x∕𝛿

and the outer variable be x̃ = x. (See Ref. [29], for the application of singular-perturbation
techniques to a problem of electrochemical interest.) In the inner region, the potential due
to the ion cloud is negligible in the first approximation. In the outer region, the potential is
small, and the exponential Boltzmann terms can be linearized.

(b) Use the result of part (a) and the Güntelberg charging process to substantiate the limiting law
of Debye and Hückel. If possible, obtain the next term in an expansion for small 𝛿.

(c) Repeat part (b) with the Debye charging process.

4.3 In Section 4.2, the Helmholtz free energy was used; in Section 4.5, the Gibbs free energy. For
a 0.1 mol/kg solution, calculate the difference between A and G and compare with the electrical
contribution to the free energy. Obtain an expression for the difference between the derivative
of A with respect to ni, when the differentiation is carried out at constant volume or constant
pressure. Is the determination of the chemical potential of the solvent according to equation 4.31
completely legitimate? Is the derivation of equation 4.41 from equation 4.40 completely rigorous?

4.4 (This is a very difficult problem.) Smyrl and Newman[30] express molar activity coefficients of
solute species in essentially the following form (compare equation 4.46):

ln fi −
zi

zn
ln fn = −

𝛼′zi(zi − zn)
√

I′

1 + B′a
√

I′
+ 2

∑

j ≠ 0

(𝛽′
i.j −

zi

zn
𝛽′

n, j) cj,
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where the sum is over solute species, 𝛽′
i,j = 0 for a pair of ions of like charge, and

𝛽′
i,j = 𝛽′

j,i.
(a) Is this expression consistent with the thermodynamic requirement that 𝜕𝜇i/𝜕mj = 𝜕𝜇j/𝜕mi?.

(Hint: fi = 1 is thermodynamically inconsistent if it is applied to all the species in a
multicomponent system.)

(b) Show that

2
∑

j ≠ 0

(𝛽′
i, j −

zi

zn
𝛽′

n, j) cj = 2
∑

j ≠ 0

(𝛽′
i, j −

zi

zn
𝛽n, j)

cj

𝜌0

− (1 −
zi

zn
) (

c0M0

𝜌0
− 1) + O(c3∕2)

if the expression of Smyrl and Newman is to be equivalent to the corresponding one for
molal activity coefficients through terms of order c in the solute concentrations. Here, 𝜌0 is
the density of the pure solvent.

(c) Show for a solution of a single electrolyte that

𝛽′
+− =

𝛽+−
𝜌0

+
𝜈Ve

4𝜈+𝜈−
,

where Ve is the partial molar volume of the electrolyte in an infinitely dilute solution. For
Ve = 27 cm3∕mol, compare the value of the correction term with typical values of 𝛽+−/𝜌0
for uni-univalent electrolytes from Table 4.2.

4.5 Assume that the Gibbs free energy for a solution of several electrolytes can be expressed as:

G
RT

=
n0𝜇0

0

RT
+

∑

j ≠ 0

nj[ln(mj𝜆𝜃
j ) − 1]

− 2
3
𝛼
√

I𝜏(Ba
√

I)
∑

j

z2
j nj −

1
2

∑

i ≠ 0

∑

j ≠ 0

𝜖i,jzizjnimj + · · · .

Here the last terms, involving 𝜖i, j are supposed to account for short-range specific interactions
between pairs of solute ions. The factor zizj is included solely for convenience.
(a) Discuss why this expression is sufficiently general without including terms like 𝜖i, 0 for

interaction of species i with the solvent.
(b) Show that, with no loss of generality, we can require that 𝜖i, j = 𝜖j, i.
(c) The molalities of the ions are not independent since they satisfy the electroneutrality relation

∑

i

zimi = 0.

Therefore, since the 𝜖i, j’s cannot be determined separately, define

𝛽i, j = −1
4

zizj(2𝜖i, j − 𝜖i, i − 𝜖j, j),



�

� �

�

PROBLEMS 101

so that 𝛽i, j = 𝛽j, i and 𝛽i, i = 0. Show that

−1
2

∑

i ≠ 0

∑

j ≠ 0

𝜖i,jzizjnimj =
∑

i ≠ 0

∑

j ≠ 0

𝛽i,jnimj.

Do you think that the 𝛽i,j values are subject to experimental determination?
(d) Show that, for a solution of a single electrolyte, the expression for G now reduces to

G
RT

=
n0𝜇0

0

RT
+

∑

j ≠ 0

nj[ln(mj𝜆𝜃
j ) − 1]

− 2
3
𝛼
√

I𝜏(Ba
√

I)
∑

j

z2
j nj + 2𝛽+−M0n0m+m−.

Part (c) reveals why there is no 𝛽++ or 𝛽−− for solutions of a single electrolyte.
(e) For mixtures containing cations of the same charge number z+ and anions of the same charge

number z−, Guggenheim[7] expresses the free energy relative to a reference electrolyte for
which 𝛽+− = 𝛽0

+−. Assume that G0, a reference free energy, denotes the expression in part
(d) with 𝛽+− replaced by 𝛽0

+− and with m+ and m− having the meaning

m+ =
∑

+
mi = 𝜈+m and m− =

∑

−
mi = 𝜈−m,

where, m is the total molality of the solution. Show that the excess free energy is given by

G − G0

RT
= M0n0

⎡
⎢
⎣

∑

i ≠ 0

∑

j ≠ 0

𝛽i, jmimj − 2𝛽0
+−m+m−

⎤
⎥
⎦

= (𝜙 − 𝜙0)M0n0𝜈m

and that the mean activity coefficient of a cation k and an anion l is

𝜈 ln
𝛾k,l

𝛾0
+−

= 2𝜈+
⎛
⎜
⎝

∑

i ≠ 0

𝛽k,imi −
∑

i−
𝛽0

+−mi

⎞
⎟
⎠

+ 2𝜈−
⎛
⎜
⎝

∑

i ≠ 0

𝛽l,imi −
∑

i+
𝛽0

+−mi

⎞
⎟
⎠
,

where 𝜙0 is the osmotic coefficient and 𝛾0
+− is the mean molal activity coefficient of the

reference electrolyte, both at the molality m.
(f) Let

Δi,j = 𝛽i,j − 𝛽0
+− if zizj < 0

= 𝛽i,j if zizj > 0.

Show that
G − G0

RT
= (𝜙 − 𝜙0)M0n0𝜈m = M0n0

∑

i ≠ 0

∑

j ≠ 0

Δi,jmimj
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and
𝜈 ln

𝛾k,l

𝛾0
+−

= 2𝜈+
∑

i ≠ 0

Δk,imi + 2𝜈−
∑

i ≠ 0

Δl,imi.

Note that 𝛽0
+− provides a reference value for 𝛽i, j for ions with charges of opposite sign,

whereas none is available for ions with the same charge.
These exercises indicate that the theory presented in Section 4.5, with 𝛽i, j not assumed

to be zero for ions of opposite charge, is sufficient to account rigorously for the activity
coefficients of mixtures of electrolytes through order m.

4.6 For the sulfuric acid solutions considered in Section 4.7,
(a) Express the stoichiometric concentrations of hydrogen and sulfate ions in terms of the

microscopic concentrations of hydrogen, bisulfate, and sulfate ions.
(b) Show that the Gibbs–Duhem equation applies to the model system:

∑

i

c∗
i d𝜇i = 0

at constant temperature and pressure.
(c) Show from equation 4.63 that as the ionic strength approaches zero

c∗
H+ → cH+, c∗

SO2−
4

→ cSO2−
4

, c∗
HSO−

4
→

cH+cSO2−
4

K
,

where K is as yet undetermined. Assume that equation 2.19 applies to the model system.
(d) Apply equation 2.19 and the result of part (c) to show that

(a𝜃
H+)2a𝜃

SO2−
4

= (a∗
H+)2a∗

SO2−
4

.

(e) Show from parts (d) and (a) that

(f ∗
H+)2f ∗

SO2−
4

=
c2
H+cSO2−

4

(c∗
H+)2c∗

SO2−
4

f 3
H+,SO2−

4

=
c2
H+cSO2−

4
f 3
H+,SO2−

4

(cH+ − c∗
HSO−

4
)2(cSO2−

4
− c∗

HSO−
4
)
,

where, fH+,SO2−
4

is the mean molar activity coefficient of hydrogen and sulfate ions and is
measurable by thermodynamic means.

(f) If c∗
HSO−

4
can measured at one stoichiometric concentration, then we know, from the above

result, the value of (f ∗
H+)2f ∗

SO2−
4

at the same concentration. Show that

Kf ∗
H+ f ∗

HSO−
4

=
c2
H2+cSO2−

4
f 3
H+,SO2−

4

(cH+ − c∗
HSO−

4
)c∗

HSO−
4
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and discuss how to get K and f ∗
H+ f ∗

HSO−
4

separately if c∗
HSO−

4
is known as a function of

stoichiometric concentration.
Note that in this problem we have used only the activity coefficients of neutral combinations

of ions, even for the model system.

NOTATION

a mean diameter of ions, cm
a∗

i property expressing secondary reference state, for microscopic point of view, liter/mol
A Helmholtz free energy, J
An coefficients in expression of thermodynamic properties of a solution of a single electrolyte
B Debye–Hückel parameter, (kg/mol)1/2/nm
B′ Debye–Hückel parameter, (liter/mol)1/2/nm
ci molar concentration of species i, mol/liter
e electronic charge, 1.60210 × 10−19 C
fi molar activity coefficient of species i
F Faraday’s constant, 96,487 C/mol
G Gibbs function, J
Hi partial molar enthalpy of species i, J/mol
I molal ionic strength, mol/kg
I′ molar ionic strength, mol/liter
Ir “true” ionic strength, mol/liter
K dissociation constant, mol/liter
K′ dissociation constant, mol/liter
L Avogadro’s number, 6.0225 × 1023/mol
m molality of a single electrolyte, mol/kg
mi molality of species i, mol/kg
Mi molar mass of species i, g/mol
ni number of moles of species i, mol
pi partial pressure or fugacity of species i, bar
q charge, C
r radial position coordinate, cm
R universal gas constant, 8.3143 J/mol⋅K
t0
i transference number of species i with respect to the velocity of species 0

T absolute temperature, K
U open-circuit cell potential, V
U𝜃 standard cell potential, V
U′ modified open-circuit potential, V
V volume, cm3

w1, w2 reversible work of electrical charging, J
zi charge number of species i
𝛼 Debye–Hückel constant, (kg/mol)1/2

𝛼′ Debye–Hückel constant, (liter/mol)1/2

𝛽i,j coefficient for ion–ion specific interactions, kg/mol
𝛾i molal activity coefficient of species i
𝛾+− mean molal activity coefficient of an electrolyte
𝜖 permittivity, F/cm
𝜆 Debye length, cm
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𝜆i absolute activity of species i
𝜆𝜃

i property expressing secondary reference state, kg/mol
𝜇i chemical or electrochemical potential of species i, J/mol
v number of ions into which a molecule of electrolyte dissociates
v+, v− numbers of cations and anions into which a molecule of electrolyte dissociates
𝜉 fraction of charge
𝜌e electric charge density, C/cm3

𝜌0 density of pure solvent, g/cm3

𝜎 see equation 4.34
𝜏 see equation 4.15
𝜙 osmotic coefficient
Φ electric potential, V

Subscripts

el electrical
0 solvent
* from a microscopic point of view
∞ in the bulk solution
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CHAPTER 5

REFERENCE ELECTRODES

In many applications, the ability to assess the potential in the solution is important; this is the primary
purpose of reference electrodes. The estimation of potentials across liquid junctions, treated in Chapter
6, is directly related to the use of reference electrodes.

Since the absolute potential of a single electrode cannot be measured, all potential measurements
in electrochemical systems are performed with a reference electrode. To obtain meaningful results,
the reference electrode should be reversible, and its potential should remain constant during the
measurement. Theoretically, any electrode in an equilibrium state can be used as a reference electrode
if its thermodynamic properties are known. However, no real electrode is ideal or has a completely
reversible equilibrium potential. Since some electrodes are more reversible and easier to reproduce
than others, they are more suitable as reference electrodes.

The purpose of this chapter is to discuss how to select a suitable reference electrode. Some important
factors that will cause the electrode potential to deviate from the equilibrium potential are discussed, and
some reference electrodes that are commonly used in electrochemical measurements are introduced.

The material here follows mainly from the book edited by Ives and Janz.[1] A review on reference
electrodes in nonaqueous solvents has been compiled by Butler.[2]

5.1 CRITERIA FOR REFERENCE ELECTRODES

An ideal reference electrode should be reversible and reproducible. In other words, the species that can
cross the phase boundary of the reference electrode should exist in equilibrium in both phases of the
half-cell, and this equilibrium should not be disturbed during the measurement. Practically, this ideal
case is impossible to obtain. One can only select a reference electrode for which the deviation from
the ideal case is small enough to suit one’s experimental work. In this section, we discuss the causes
of deviation of a reference electrode from the ideal case and how to test a reference electrode.

Electrochemical Systems, Fourth Edition. John Newman and Nitash P. Balsara.
© 2021 John Wiley & Sons, Inc. Published 2021 by John Wiley & Sons, Inc.
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Even though a reference electrode is carefully selected so that there is no spontaneous reaction
between the electrode and the solution, some irreversible reactions still occur during the measurement.
Because all potential detection systems are operated by current, a certain amount of current, even
though very small, must be passed through the cell. This current will cause an irreversible reaction
to occur at the reference electrode and thus disturbs its equilibrium state. When a current is passed
through an electrode, an overpotential representing the deviation from the equilibrium potential is set
up and introduces an error in the desired measurement. If the current density is very small, the relation
of current density i to the overpotential 𝜂s can be represented by the equation (see equation 1.9 and
Section 8.2)

i = i0
(𝛼a + 𝛼c)F

RT
𝜂s, (5.1)

where i0 is the exchange current density. This equation shows that, if a certain amount of current is
passed through an electrode, the overpotential decreases as the exchange current density increases.
In other words, electrodes with larger exchange current densities are more suitable for reference
electrodes. The larger the surface area of a reference electrode, the smaller the current density for a
given amount of current, and the smaller the overpotential will be.

A second source of error can arise from liquid junctions. If liquid junctions exist inside the cell, the
measured potential will include the liquid-junction potentials. A cell without a liquid junction means
that the solution inside the cell is homogeneous. An example is given in equation 2.45. Even in the
hydrogen/silver–silver chloride cell 2.106, the solution is not completely homogeneous since the silver
ions should not reach the hydrogen electrode. Normally, the liquid-junction potential in this cell can
be neglected, although in dilute solutions it becomes appreciable (see Table 2.1).

Other types of cells are even less ideal in this regard. The liquid-junction potentials are established
by the activity gradients of species across the cell and can be represented by the integral of equation 6.5.
This equation shows that the liquid-junction potential decreases as the difference between the solutions
across the junction decreases. Because of the low solubilities of the reactants, the liquid-junction
potential of the cell containing the hydrogen electrode, or electrodes of the second kind with a sparingly
soluble salt, is small. Therefore, they are more suitable for the purpose of reference electrodes.

For convenience, some cells with liquid junctions are also used for electrochemical measurements.
The estimation or minimization of these liquid-junction potentials is treated in Chapter 2 and in more
detail in Chapter 6.

As a third source of error, the equilibrium potential of an electrode can be affected by impurities.
The impurities inside the electrode can change the electrode activity, or react with the electrolyte, or
react with the electrode. The impurities can affect the electrode potential in the following ways:

1. They can react corrosively with the electrode, thus disturbing the equilibrium of the electrode
and shifting the potential (see Section 8.7). This is a second reason why the exchange current
density for the desired electrode reaction should be high, so that the open-circuit potential is
determined by the desired reaction and not by chance impurities. To achieve this high exchange
current density, the concentration of the reactant should be much larger than the concentration
of impurities.

Sometimes, the products of the reaction of impurities are insoluble in the solution and deposit
on the electrode covering the electrode surface, thus changing the electrode properties. The most
common impurity of this kind is oxygen dissolved in the solution. Some electrodes, such as
amalgam electrodes, are extremely sensitive to a trace of oxygen dissolved in the solution.

Some electrodes, such as the hydrogen electrode, need the catalytic action of a metal surface
to establish equilibrium. If this catalyst is poisoned by impurities, the equilibrium state of the
electrode cannot be attained.
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2. The impurities in the solution may change the activity of the reacting species. Some impurities
have a strong tendency to form complexes with the reacting species in the solution, thus changing
the electrode potential. The electrode potential in nonaqueous solutions can be affected seriously
by the presence of even a trace of water.

3. Impurities can change the properties of the electrolyte. Some electrodes are very sensitive to the
pH of the solution. Impurities, such as carbon dioxide, in the solution can change the pH of the
solution considerably if the solution is near neutral and unbuffered.

5.2 EXPERIMENTAL FACTORS AFFECTING SELECTION OF REFERENCE
ELECTRODES

We mentioned in Section 5.1 that, theoretically, an electrode of the second kind with a large exchange
current density is suitable as a reference electrode. Experimentally, a good reference electrode should
be reproducible, constant in time, and easy to prepare. The reproducibility and stability of an electrode
depend on the purity and sometimes on the surface condition of the metal. Discussion of the purification
of chemicals is beyond the scope of this book, but the purity of materials is an important consideration.
The common methods of treating a metal surface before it is used as an electrode are:

1. Clean and smooth the metal surface mechanically, either by polishing with sandpaper or by
scraping.

2. Smooth the metal surface by electrochemical polishing.
3. Clean the electrode surface by prepolarization.

The last method is very effective in removing any oxide layer.
To eliminate all the impurities from the solution and make the metal surface completely reproducible

would require a large amount of work. Electrodes that are much less sensitive to impurities and metal
surface condition are easier to prepare to obtain the same degree of accuracy and should be chosen as
reference electrodes.

There is no definite rule about the selection of reference electrodes. A literature search is the best
way to find a suitable reference electrode that has been used in the system of interest. In the literature,
usually the method of preparation of the reference electrode is given, as well as its reproducibility and
stability. If no suitable reference electrode can be found in the literature, the only way to obtain a good
reference electrode is by trial and error. Even if the method of preparation of a reference electrode is
given in the literature, the reference electrode should be tested before use; the simplest method is to
put several electrodes prepared by the same method into the same solution with a different kind of
reference electrode. The potential difference between the identical electrodes is a test of reproducibility;
the potential difference between them and the different reference electrode as a function of time is
a test of stability. The dependence of the behavior of the electrode on the metal surface can be
detected in this way by measuring the potential difference between electrodes prepared by different
methods.

Generally, a reference electrode should be selected that is reversible to one of the ions in the solution
to avoid liquid junctions. However, such an electrode may be difficult to prepare, or unreproducible,
or may not exist. Or the solution in question may be of such complex composition that simultaneous
reactions are unavoidable. In such a case, a well-behaved reference electrode in its own solution must
be connected to the solution in question by means of a liquid junction. The estimation of the resulting
liquid-junction potentials then introduces less uncertainty than the use of an unreliable reference
electrode.
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5.3 THE HYDROGEN ELECTRODE

Some reference electrodes commonly used in electrochemistry are introduced in this and the following
three sections. It is not the purpose of these sections to present a complete process for preparing a
reference electrode. These commonly used reference electrodes are used only as examples to show
what important factors should be considered in the selection and preparation of reference electrodes.
Therefore, the methods of purification of the chemicals and the structure of the cells, which are very
important in experimental work, are not included.

The hydrogen electrode is the best reference electrode in aqueous solutions, not only because its
potential is universally adopted as the primary standard with which all other electrodes are compared,
but also because it is easy to prepare and capable of the highest degree of reproducibility. Another
advantage of the hydrogen electrode is that it has a broad field of application. It can be used over large
ranges of temperature, pressure, and pH and in many nonaqueous or partly aqueous solutions. The
disadvantage of the hydrogen electrode is that its equilibrium depends on the catalytic activity of the
metal surface. Thus, its reproducibility and stability are affected by the condition and the aging effect
of the metal surface.

The reaction mechanism of the hydrogen electrode is still not clear and free from arguments.
However, one can see that, before they can undergo the electrochemical reaction, the hydrogen
molecules dissolved in the solution must first dissociate into hydrogen atoms:

H2 (aq soln) ⇌ 2H (adsorbed onmetal surface) ⇌ 2e− + 2H+ (aq soln). (5.2)

Since the dissociation reaction of hydrogen molecules has a very high activation energy comparable
to the heat of dissociation (431.8 kJ/mol), the equilibrium can be established only with the aid of a
catalyst. Therefore, the metal phase in the hydrogen electrode not only conducts electrons but also acts
as a catalyst.

The general requirements for a good metal for the hydrogen electrode are summarized as follows:

1. The metal must be noble and must not itself react or dissolve in the solution.
2. The metal must be a good catalyst for the hydrogen dissociation reaction; that is, the metal can

adsorb hydrogen atoms on the surface but will not react with them to form a stable hydride.
3. The metal should not absorb the hydrogen atoms into its crystal lattice, or the equilibrium of the

hydrogen electrode will be disturbed.
4. The metal surface should be made by finely divided deposits. Because the catalytic activity of the

metal surface is associated with crystal imperfections, the metal surface made by finely divided
deposits increases not only the real surface area but also the active catalytic sites.

5. In nonaqueous or partly aqueous solutions, the metal must not promote undesired nonelectro-
chemical hydrogenation reactions.

Palladium is the best catalyst for the hydrogen dissociation reaction but is not suitable for the
hydrogen electrode because a large amount of hydrogen atoms can penetrate into the metal phase; these
hydrogen atoms then become inaccessible to the liquid phase, with which they are required to remain
in equilibrium. A thin layer of palladium deposited on gold or platinum is satisfactory. Platinized
platinum, because of its large surface area, although slightly permeable to hydrogen atoms, is the
best metal for the hydrogen electrode. In those cases in which the presence of platinized platinum in
the solution will promote some undesirable hydrogenation reactions in nonaqueous or partly aqueous
solutions, bright platinum or gold can be used. The surface of bright platinum or gold should be
activated by anodic treatment or by chemical treatment with strong oxidizing reagents, such as chromic
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acid or aqua regia. Transition metals are also suitable as catalysts for the hydrogen dissociation reaction
because of their incompletely filled d orbitals.

Some impurities carried by the hydrogen gas are undesirable and should be eliminated. Oxygen will
participate in a corrosion reaction on the metal surface. This oxide reacts with the dissolved hydrogen
and decreases the concentration of the dissolved hydrogen gas in the neighborhood of the electrode,
thus making the potential of the hydrogen electrode shift to the positive side. However, oxygen can
activate the catalytic activity of the metal and prolong the life of the electrode. Therefore, a trace of
dissolved oxygen in the solution is desirable when a bright platinum or gold electrode is used. Carbon
dioxide dissolved in the solution can change the pH of the solution. Other impurities, such as arsenic
and sulfur compounds, can act as catalyst poisons and shorten the life of the electrode.

Hydrogen gas directly generated by the electrolytic process is very pure but is unsuitable for
hydrogen electrodes because it carries some solution and is not free of oxygen. Pure commercial
hydrogen after deoxygenation and passing through a dust trap containing potassium hydroxide, which
also serves as a carbon dioxide absorbent, is satisfactory. The most common deoxygenation process is
to pass the hydrogen gas through a commercial deoxygenating cartridge containing platinum catalysts
that are active at room temperature. The other method of deoxygenation is to pass the hydrogen gas
through a clean vitreous silica tube containing hot reduced copper (450 to 700∘C) or hot palladized or
platinum asbestos (200∘C).

If rubber tubing is used for the connection, it should be pretreated by boiling in caustic soda solution,
thoroughly washed, and then aged for 24 hours in hydrogen gas because sulfur compounds may come
from the rubber tubing.

To maintain a constant concentration of the electrolyte, the hydrogen gas should be presaturated
with the solvent at the same vapor pressure as that of the electrolytic solution at the same temperature
before it enters the cell.

The stability of hydrogen electrodes can be affected by the presence of impurities in three additional
ways:

1. The impurities themselves can be reduced by the dissolved hydrogen gas to form soluble
products. This will seriously deplete the concentration of the molecular hydrogen in the solution,
and the potential of the hydrogen electrode will be displaced positively. Dissolved oxygen gas,
CrO2−

4 , and Fe3+ all fall into this category.
2. Some cations of metals—such as silver, mercury, copper, and lead—can be reduced and deposit

as solids, covering the electrode surface and changing the properties of the electrode.
3. Impurities—such as arsenic and sulfur compounds and some organic compounds—can be

adsorbed on the active centers of the metal surface and can poison the catalytic activity.

Even in the absence of impurities, the catalytic activity of the metal surface can be destroyed by
the hydrogen poison, which means that the active centers on the metal surface are burned out by
the combination reaction of the hydrogen atoms. Since the catalytic activity of the metal surface is
associated with crystal imperfections, the active sites are in a higher energy state than the perfect crystal
surface. With the help of a large amount of energy delivered by the combination reaction of hydrogen
atoms, the active centers can return to the lower energy state (perfect crystal surface) and lose their
catalytic activity. An aged or fatigued hydrogen electrode should be reactivated or replatinized before
being used again.

In aqueous solutions, the hydrogen electrode can be used in a wide range of pH. It has been used in
alkali hydroxide solutions up to a molality of 4 mol/kg and in sulfuric acid solutions up to a molality
of 17.5 mol/kg. However, it fails in neutral solutions in the absence of buffers. The hydrogen electrode
potential is very sensitive to the pH. In neutral solutions with even a trace of current passed through
the cell, the pH of the solution in the neighborhood of the electrode will change considerably.
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The pressure of the hydrogen gas can be measured accurately with a barometer. However, in most
cell designs, hydrogen gas is bubbled through the solution. Therefore, the effective pressure of the
hydrogen gas should be used in potential calculations. For aqueous solutions, the effective pressure
can be calculated from the empirical equation:

pH2
= pbar − psoln +

0.4h
13.6

, (5.3)

where pbar is the barometric pressure (mmHg), psoln is the vapor pressure of the solution (mmHg), and
h is the depth of immersion of the bubbler (mm). Recall that fugacities are to be used in potential
calculations (see Problem 2.14).

The hydrogen electrode can also be used in many nonaqueous and partly aqueous solutions,
especially alcoholic solutions.

5.4 THE CALOMEL ELECTRODE AND OTHER MERCURY–MERCUROUS SALT
ELECTRODES

Mercury is a noble liquid metal, easy to purify, with a completely reproducible surface. Therefore, it
is considered to be the best electrode metal. Many mercurous salts have a very low solubility in water
and are suitable for the preparation of an electrode of the second kind. However, these advantages of
mercury–mercurous salt electrodes are offset by the fact that mercury has two valence states, and all
mercurous salts can disproportionate. The calomel electrode (Hg/Hg2Cl2) is the most common of all
the mercury–mercurous salt electrodes and is used as an example for the discussion in this section.

The calomel electrode was first introduced by Ostwald in 1890. However, no reproducible potential
could be obtained, except in saturated KCl solution, and it was rejected for a period of 20 years. In later
studies, it was found that many precautions must be taken to obtain a reproducible calomel electrode,
as summarized below.

1. Interaction between the calomel and the mercury surface. If calomel is added to mercury already
covered by solution, no satisfactory reversibility can be obtained. If very finely divided calomel
contacts the mercury surface in the dry state, it spreads rapidly, almost violently, over the
whole surface and forms a pearly skin. This pearly skin is preserved after solution is added
and gives a reproducible electrode. It is suggested that a calomel electrode prepared in this way
has a monolayer of calomel molecules covering the mercury surface, with their chlorine atoms
covalently bonded to the mercury surface. The calomel molecules act as a two-dimensional gas,
free to move along the mercury surface and able to sustain fast exchange equilibria.

To prepare a reproducible calomel electrode, the very finely divided calomel should first be
mixed with mercury to form calomel–mercury paste; then this paste is added to the mercury
surface in small amounts until the whole surface is covered with pearly calomel skin.

Excess calomel on the mercury surface segregates the solution on the mercury surface from
the bulk of the solution. This magnifies the results of any residual nonequilibrium in the
system and makes an untidy electrode. The potential is sensitive to movement and is generally
unreproducible. A very thin layer of calomel covering the mercury surface is all that is required
for a good calomel electrode.

It was found that the coarse size of calomel particles is not suitable for the calomel electrode.
It causes a positive deviation of potential, slow to decay, and leads to erratic behavior. Very
finely divided (0.1 to 0.5 μm) calomel particles prepared by the chemical precipitation method
are satisfactory. The calomel should be stored in a dark place with exclusion of moisture and air
before use.
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2. Wedge effect. Aqueous solutions can penetrate into the space between the mercury and the glass
wall by capillary action, called the wedge effect. This will create a large area of thin liquid film
contacting the mercury. The properties of this liquid film may not be the same as those in the
bulk of the solution. Because of the large area, this thin liquid film can affect the behavior of the
electrode seriously.

The wedge effect can be eliminated by rendering the electrode vessel hydrophobic by
treatment with a silicone preparation. Any platinum–glass seal should be avoided. The electric
connection is formed by filling a capillary tube with mercury and making electric contact with a
removable platinum wire in the remote end.

3. Dissolved oxygen. If the solution contains dissolved oxygen, a corrosion reaction will occur:

2Hg + 2HCl + 1
2
O2 → Hg2Cl2 +H2O, (5.4)

shifting the potential positively toward that of the oxygen electrode. In addition, the reaction will
result in a gradual change in the properties of the electrolytic solution in the neighborhood of the
electrode. This reaction had been known for a long time, but it was thought to be of significant
effect only in low concentrations of HCl. Later it was found that this reaction can affect the
electrode potential seriously, not only in a high concentration of HCl solution but also in KCl
solution.

4. Disproportionation reaction. Because of the two valency states of mercury, mercuric ions are
produced by a disproportionation reaction. Mercuric ions have a tendency to form complexes.
Consequently, two distinct potentials tend to result for the calomel electrode. When a half-cell
(Hg/Hg2Cl2/HCl) is freshly set up, thermal and other equilibria (diffusion, adsorption, etc.) will
be established at a normal rate; and the potential of the cell will level off to a value that is
constant within 10 μV over several hours. This is the potential corresponding to the metastable
calomel electrode. In this case, the solution of the cell is still free from mercuric ions.

The potential of the metastable calomel electrode is not constant. It will increase to a higher
value, corresponding to the potential of the stable calomel electrode, in which a complete
equilibrium among mercury, calomel, and mercuric entities in the solution is established. The
difference of the potential between these two calomel electrodes is as much as 0.24 mV at 25∘C.

The calomel electrode is best used in acid solution (HCl). The standard potential has been determined
over a range of temperatures by a number of workers. Since nearly all potential measurements performed
before 1922 were affected by dissolved oxygen, the standard potential of the calomel electrode is not
determined without argument because of the limited amount of reliable experimental data.

Due to the disproportionation reaction, two types of calomel electrodes have been distinguished.
The metastable calomel electrode is satisfactory for isothermal measurements not extending over a
long interval of time, applied to the low ranges of concentration and temperature (c≤ 0.1 N; t≤ 25 ∘C).
The stable calomel electrode is a very sluggish electrode, but its use is obligatory in the higher ranges
of concentration and temperature in which, however, its useful life is limited.

The calomel electrode is also commonly used as a standard half-cell of fixed potential. In this case,
concentrated neutral KCl solution is used rather than dilute HCl because it is very seldom that the
fixed-potential half-cells are required to show a reproducibility better than 0.1 mV and because the
disproportionation reaction of the calomel and the oxidation reaction are much slower in concentrated
neutral KCl solution.

Among the mercurous salt electrodes, the mercury–mercurous sulfate electrode is second in
popularity to the calomel electrode. It is, of course, reversible to sulfate ions. Because mercurous
fluoride can be rapidly and completely hydrolyzed in aqueous solution, it is very seldom used as a
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reference electrode in aqueous solution. However, it has been used in some nonaqueous solvents, such
as liquid hydrogen fluoride.

The behavior of the mercury–mercurous bromide and iodide electrodes is similar to that of the
calomel electrode. However, they have two disadvantages compared to the calomel electrode: They
are more photosensitive, especially to ultraviolet light; and, while the solubility products decrease
markedly in the order from chloride to bromide to iodide, the formation constants of the corresponding
complex mercuric halides increase rapidly in the same order and progressively restrict the range of
halide concentration in which potential measurements can usefully be made. Therefore, they are used
only in special cases. Mercurous phosphate, iodate, and acetate have also been used as the bases of
reference electrodes.

5.5 THE MERCURY–MERCURIC OXIDE ELECTRODE

As the calomel electrode is commonly used in acid solutions, so the mercury–mercuric oxide electrode
(Hg/HgO/OH−) is commonly used in alkaline solutions. Since mercurous oxide does not exist, there
is no disturbing effect due to a variable valence of the mercuric oxide. The formal acidic and basic
dissociation constants of mercuric oxide have been estimated to be very small. It is more basic than
acidic. Therefore, the usefulness of the mercury–mercuric oxide electrode is confined to alkaline
solutions.

The mercury–mercuric oxide electrode has a relatively long life, is stable for several days, and
is reproducible to better than ±0.1 mV. It is easy to prepare; no special precaution is needed if the
chemicals are reasonably pure.

The standard potential of the mercury–mercuric oxide electrode has been investigated intensively
by many authors. All data agree within 0.4 mV, which indicates that the mercury–mercuric oxide
electrode is well behaved.

5.6 SILVER–SILVER HALIDE ELECTRODES

Due to the low solubility of silver halides, silver–silver halide electrodes are electrodes of the second
kind. Among them, the most common is the silver–silver chloride electrode [Ag/AgCl(s)/Cl−], which
is reversible to the chloride ion. The relationship of its standard electrode potential to that of the silver
electrode and the solubility product of silver chloride was treated in Problem 2.13.

The advantages of the silver–silver chloride electrodes are that they are small and compact, can be
used in any orientation, and usually do not significantly contaminate any medium into which they are
immersed. The disadvantage is that their thermodynamic properties depend on the physical properties
of the solid phases, such as mechanical strain and crystal structure, and thus depend on the method of
preparation.

There is still no method to prepare a perfect silver–silver halide electrode. Three methods are
commonly used in experimental work:

1. Electrolytic. Platinum metal is generally used as the electrode base on which a layer of silver
is electrodeposited from a solution of KAg(CN)2. After thorough washing, the silver-plated
electrode is halidized anodically; in 0.1 N HCl solution for a silver chloride electrode and, for
silver bromide and silver iodide electrodes, in 0.1 N KBr or KI solutions, sometimes made weakly
acidic by adding the appropriate acid. About 10% of the silver is halidized. The reproducibility
of silver–silver halide electrodes prepared by this method should be within ±0.02 mV.
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2. Thermal. The thermal electrodes are prepared by the decomposition of a mixture of silver oxide
and silver chlorate, bromate, or iodate, the proportion being approximately 90% silver oxide by
weight. Conductance water is added to the mixture to form a smooth paste. A platinum wire
spiral is covered with the paste, heated to the decomposition temperature of 650∘C, and then
slowly cooled to room temperature.

Silver iodide is sometimes used in the preparation of the silver–silver iodide electrodes (and
heated with Ag2O to 450∘C for 10 to 15 minutes), and a mixture of silver oxide and silver
perchlorate has also been used in the preparation of silver chloride electrodes.

The thermal silver–silver halide electrodes are less reliable than the electrolytic or
thermal-electrolytic electrodes, probably because the surface condition of the latter types is more
reproducible.

3. Thermal-electrolytic. By this method, silver is first prepared by decomposing silver oxide and
then halidizing by the electrolytic process. The reproducibility of the silver–silver chloride
electrode prepared by this method should be within 0.04 mV.

Several less common methods, which we shall not consider here, have also been used in the
preparation of silver–silver halide electrodes.

The standard potential of the silver–silver chloride electrode has been thoroughly investigated from
the cell

H2 | HCl,H2O | AgCl(s) | Ag. (5.5)

In the temperature range from 0 to 95∘C, the results can be expressed as

U𝜃 = 0.23659 − 4.8564 × 10−4t − 3.4205 × 10−6t2 + 5.869 × 10−9t3 (V), (5.6)

where t is temperature (∘C). The standard potentials of the silver bromide and silver iodide electrodes
have also been investigated over a range of temperature, although that of the AgI electrode has been
more difficult to establish by direct measurement because of experimental difficulties, such as the
oxidation of the HI solution.

Certain impurities, such as iodide and sulfide, can form silver salts with solubilities lower than
that of silver chloride or silver bromide and can deposit on the electrode surface, thus changing the
electrode potential. Even a trace of bromide in the solution will shift the potential of the silver–silver
chloride electrode to the positive side. Oxygen dissolved in the electrolytic solutions can affect the
behavior of the silver chloride and bromide electrodes if HCl or HBr is used as the electrolyte by
means of the slow oxidation reaction:

2Ag + 2HCl + 1
2
O2 → 2AgCl +H2O. (5.7)

For the silver iodide electrode, a marked oxygen effect is noted in both neutral and acidic solutions.
All silver–silver halide electrodes are subject to the aging effect. The potentials of the older

electrodes are slightly positive relative to the new electrodes. This effect is always in the same direction
and of the same order of magnitude, about 0.05 mV. The potential of a freshly prepared silver–silver
halide electrode increases slowly and will reach a stable value. The period of the aging effect varies
from a few minutes to 1 to 20 days. This effect has been attributed to a concentration polarization
associated with the electrolytic halidization or the initial immersion of the electrode in the solution
being investigated.

Silver–silver halide electrodes are widely used in electrochemical measurements because they are
compact and easy to set up. The most important application of the silver–silver chloride electrode is
in the investigation of the thermodynamic properties of electrolytes, such as the standard electrode
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potential and the activity coefficients. Silver–silver halide electrodes can also be applied in nonaqueous
solutions. However, this application is limited by the strong tendency for complex formation of the
silver ion, which will greatly increase the solubility of the silver halides. Silver chloride electrodes
have important applications in the investigation of the behavior of biological membranes.

5.7 POTENTIALS RELATIVE TO A GIVEN REFERENCE ELECTRODE

Not infrequently one encounters in the literature a set of potentials of various electrodes, in various
solutions, referred to a given reference electrode, for example, to a normal calomel electrode in KCl. It
is usually noted that these potentials are corrected for liquid-junction potentials, whatever that might
mean. Let us inquire into what quantity is tabulated, and why such a tabulation might be useful.

Let U′ be “the potential of a given electrode relative to a normal calomel electrode in KCl, corrected
for liquid-junction potentials.” The half-cell of interest is

𝛿
solution

(e.g., 0.1 N NaCl)

|||||||||||

𝛽
electrode
(e.g., Hg)

|||||||||||

𝛼′
Pt(s). (5.8)

If U′ is to be a thermodynamic quantity of interest, it must assess the electrical state of electrode 𝛽
relative to solution 𝛿 since these are the only relevant phases.

We should want U′ to be a thermodynamic quantity since we should have measured the potential U
relative to a well-defined electrode appropriate to the system; for example,

𝛼
Pt(s)

|||||||||||

𝜙
Hg(l)

|||||||||||

𝜖
Hg2Cl2(s)

|||||||||||

𝛿
0.1 N NaCl

inH2O

|||||||||||

𝛽
Hg(l)

|||||||||||

𝛼′
Pt(s), (5.9)

and the introduction of any liquid-junction potential in the conversion to U′ would obviate such a useful
measurement. The note, corrected for liquid-junction potentials, is a further hint that a thermodynamic
quantity is intended, although it may also give the erroneous impression that a liquid junction was
involved in the measurement.

By these arguments we are led to the conclusion that U′ is given by

FU′ = −𝜇𝛽e− − FΦ𝛿 + const, (5.10)

where Φ is the quasi-electrostatic potential relative to some ionic species n. (The outer potential Φ
might have been intended, but then U′ would be a nonthermodynamic quantity.) It seems logical that
ion n should be either Cl− or K+ since these ions are in the statement of the reference electrode
(normal calomel electrode in KCl). The chloride ion is the more likely candidate since the calomel
electrode responds to this ion.

In seeking the value of the constant in equation 5.10, we are led next to conclude that U′ is the
potential of the system

𝛼
Pt(s)

|||||||||||

𝜙
Hg(l)

|||||||||||

𝜖
Hg2Cl2(s)

|||||||||||

𝜆 𝛿
lN KCl − − − solution
inH2O

|||||||||||

𝛽
electrode

|||||||||||

𝛼′
Pt(s). (5.11)
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The dashed line does not denote a junction region. Instead, we make the (perhaps imaginary)
requirement that the electrical states of solutions 𝜆 and 𝛿 are related by

Φ𝜆 = Φ𝛿. (5.12)

The potential of this system is thus given by

FU′ = −F(Φ𝛼 − Φ𝛼′)

= −𝜇𝛽e− − FΦ𝛿 + 𝜇𝜙Hg −
1
2
𝜇𝜖Hg2Cl2

+ RT ln c𝜆Cl− . (5.13)

Since phases 𝜙 and 𝜖 are pure phases, we thus determine that the constant in equation 5.10 is

const = 𝜇0
Hg −

1
2
𝜇0
Hg2Cl2

+ RT ln c𝜆Cl− , (5.14)

where c𝜆Cl− = 1 mol/liter.
Note that the electrode 𝛽 could be a reversible electrode at equilibrium, an ideally polarizable

electrode (see Section 7.1), an irreversible electrode, or an electrode undergoing one or more electrode
reactions without affecting the above arguments. Similarly, the solution 𝛿 could be of any composition.

Now consider explicitly system 5.9, for which the potential U is given by

FU = −𝜇𝛽e− + 𝜇𝛿Cl− + 𝜇0
Hg −

1
2
𝜇0
Hg2Cl2

. (5.15)

Hence, the difference is

FU − FU′ = RT ln
c𝛿Cl−

c𝜆Cl−
. (5.16)

The conversion from the measured value of U to the desired value of U′ is, thus, very simple in
this case.

Now let us take solution 𝛿 to be 0.1 N Na2SO4 and let us suppose that U is measured relative to a
lead–lead sulfate electrode; that is, U is now the potential of the system

𝛼
Pt(s)

|||||||||||

𝜙
Pb(s)

|||||||||||

𝜖
PbSO4(s)

|||||||||||

𝛿
0.1 N Na2SO4

inH2O

|||||||||||

𝛽
Hg(l)

|||||||||||

𝛼′
Pt(s), (5.17)

that is,
FU = −𝜇𝛽e− +

1
2
(𝜇0

Pb + 𝜇𝛿
SO2−

4
− 𝜇0

PbSO4
) . (5.18)

The difference between U and U′ is now given by

FU − FU′ =1
2
(𝜇0

Pb + 𝜇𝛿
SO2−

4
− 𝜇0

PbSO4
) + FΦ𝛿

− 𝜇0
Hg +

1
2
𝜇0
Hg2Cl2

− RT ln c𝜆Cl− . (5.19)
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Substitution of equation 3.19 for 𝜇𝛿
SO2−

4
gives

FU − FU′ = 1
2
(𝜇0

Pb − 𝜇0
PbSO4

+ RT ln a𝜃
SO2−

4
) − 𝜇0

Hg

+ 1
2
𝜇0
Hg2Cl2

− RT ln a𝜃Cl− +
1
2

RT ln
c𝛿
SO2−

4
f 𝛿
SO2−

4
(
c𝜆Cl− f 𝛿Cl−

)2
. (5.20)

For standard electrode potentials referred to the hydrogen electrode, we have for the lead sulfate
electrode (Table 2.2)

FU𝜃
PbSO4

= 1
2

(
𝜇∗H2

+ 𝜇0
PbSO4

− 𝜇0
Pb

)
− 1

2
RT ln [

(
𝜆𝜃H+

)2
𝜆𝜃
SO2−

4
] , (5.21)

U𝜃 = −0.356 V, (5.22)

and for the calomel electrode (Table 2.3)

FU𝜃
Hg2Cl2

= 1
2
(𝜇∗H2

+ 𝜇0
Hg2Cl2

) − 𝜇0
Hg − RT ln

(
𝜆𝜃H+ 𝜆𝜃Cl−

)
, (5.23)

U𝜃 = 0.2676 V. (5.24)

Since (see equation 2.20)
𝜆𝜃i = 𝜌0a𝜃i , (5.25)

equation 5.20 becomes

FU − FU′ = FU𝜃
Hg2Cl2

− FU𝜃
PbSO4

+ 1
2

RT ln
⎡
⎢
⎢
⎣

𝜌0c𝛿
SO2−

4
f 𝛿
SO2−

4

(c𝜆Cl− f 𝛿Cl−)
2

⎤
⎥
⎥
⎦

. (5.26)

Because of the conventions that have been adopted in establishing Tables 2.2 and 2.3, 𝜌0, the density
of the pure solvent, should be expressed in g/cm3 and the concentrations ci, should be expressed in
mol/liter.

We now need the activity coefficient of sulfate ions relative to chloride ions in the 0.1 N Na2SO4
solution 𝛿. It should be emphasized that this is a thermodynamic quantity despite the fact that no
chloride ions exist in this solution. Let us use Guggenheim’s expression for multicomponent solutions
(see Section 4.5) as written on a concentration scale (see Problem 4.4):

ln fi −
zi

zn
ln fn =

𝛼′zi(zi − zn)
√

I′

1 + B′a
√

I′
+ 2

∑

j

(𝛽′ij −
zi

zn
𝛽′nj) cj, (5.27)

where I′ is given by equation 4.22 and 𝛼′ is given by equation 4.25 or Table 4.1. See Problem 4.4 for
the relationship of 𝛽′ to 𝛽. Then

ln
f 𝛿
SO2−

4

(f 𝛿Cl−)
2
= −

2𝛼′
√

I′

1 + B′a
√

I′
+ 2(𝛽′Na2SO4

− 2𝛽′NaCl)c
𝛿
Na+

. (5.28)
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The calculation of the potential U′ from the measured potential U is somewhat complicated in this
case, but it introduces no nonthermodynamic concepts.

Finally, suppose that the potential U′′ of the cell with liquid junction

α αʹβδϕ κε
Pt(s) Pt(s)Hg(l) Hg(l)0.1 N KCl

in H2O
0.1 N NaCl

in H2O
Hg2Cl2(s) (5.29)

has been measured. How should we obtain U′? The potential U′′ is given by

FU′′ = −F(Φ𝛼 − Φ𝛼′)

= −𝜇𝛽e− − FΦ𝜅 + 𝜇𝜙Hg −
1
2
𝜇𝜖Hg2Cl2

+ RT ln c𝜅Cl− . (5.30)

Hence,

FU′′ − FU′ = F(Φ𝛿 − Φ𝜅) + RT ln
c𝜅Cl−

c𝜆Cl−
. (5.31)

Thus, we must obtain an estimate of the liquid-junction potential Φ𝛿 −Φ𝜅 between solutions 𝛿 and 𝜅,
which is beyond the scope of the present chapter. For the last term, c𝜅Cl− = 0.1 N and c𝜆Cl− = 1 N.

If solution 𝜅 had been a 1 N KCl solution, that is, the left electrode in cell 5.29 were a normal
calomel electrode in KCl, then the last term in equation 5.31 would be zero, but we would instead have
to estimate Φ𝛿 −Φ𝜅 for the junction between 1 N KCl and 0.l N NaCl.

The result in equation 5.31 can be applied to the case where solution 𝛿 is different, say 0.1 N
Na2SO4. One still has to estimate the liquid-junction potential Φ𝛿 −Φ𝜅, referred to the chloride ion.

These examples make it clear that U′ represents a thermodynamic quantity. A correction for
liquid-junction potentials is necessary only if a measurement was made on a cell with liquid junction;
and the correction concerns the junction in that cell, which may not involve normal KCl at all. The
examples also show that the definition of U′ could involve a normal calomel electrode in NaCl without
changing the numerical values.

One may well ask why he or she should use potentials relative to a normal calomel electrode in
KCl. Why not use a mercury–mercuric oxide electrode for solutions of KOH, a lead–lead sulfate
electrode for solutions of Na2SO4, and a calomel electrode in NaCl for solutions of NaCl, always
letting the electrolyte concentration in the reference electrode be the same as in the solution of interest?
In at least two cases, some insight into the physical situation is afforded by the use of one given
reference electrode. First, electrocapillary curves coincide on the negative branch plotted against U′

(see Figure 7.12), indicating that cations are not specifically adsorbed at a mercury–solution interface.
Second, anodic current densities in a metal dissolution reaction are relatively independent of solution
composition when plotted against U′ but not when plotted against, say, the surface overpotential 𝜂s,
which involves a shift of the equilibrium potential with the reactant concentration.

NOTATION

a mean diameter of ions, cm
a𝜃i property expressing secondary reference state, liter/mol
B′ Debye–Hückel parameter, (liter/mol)1/2/nm
ci molar concentration of species i, mol/liter
fi molar activity coefficient of species i
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F Faraday’s constant, 96,487 C/mol
h depth of immersion of bubbler, mm
i current density, A/cm2

i0 exchange current density, A/cm2

I′ molar ionic strength, mol/liter
p pressure, mmHg
pi partial pressure or fugacity of species i, mmHg
R universal gas constant, 8.3143 J/mol⋅K
T absolute temperature, K
U open-circuit cell potential, V
U′ electrode potential relative to a given reference electrode, V
U′′ electrode potential measured with a liquid junction present, V
U𝜃 standard electrode potential, V
zi charge number of species i
𝛼a, 𝛼c transfer coefficients
𝛼′ Debye–Hückel constant, (liter/mol)1/2

𝛽′i,j coefficient for ion–ion specific interactions, liter/mol
𝜂s surface overpotential, V
𝜆𝜃i property expressing secondary reference state, kg/mol
𝜇i chemical or electrochemical potential of species i, J/mol
𝜌o density of pure solvent, g/cm3

Φ electric potential, V
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CHAPTER 6

POTENTIALS OF CELLS WITH JUNCTIONS

In this chapter, we build on the material developed in Chapter 2, on thermodynamics in terms
of electrochemical potentials. Numerical values of cell potentials can now be calculated from
standard electrode potentials, ionic concentrations, and methods for estimating activity coefficients
and liquid-junction potentials.

Taylor[1] showed clearly that the problems of measuring liquid-junction potentials and individual
ionic activity coefficients are inexorably tied up with each other. Also of interest here is the work of
MacInnes,[2] Wagner,[3] and Smyrl and Newman.[4]

6.1 NERNST EQUATION

The Nernst equation was defined at the end of Section 2.7. We can state here a more definite procedure
for arriving at the appropriate form of the Nernst equation for a particular cell. We use cell 2.114 as an
example.

1. Write down the expression for the cell potential using chemical potentials and electrochemical
potentials as indicated in Chapter 2. For cell 2.114, this is given by equation 2.115:

FU = 1
2
𝜇𝛼H2
− 𝜇𝜆Ag + 𝜇

𝜖
AgCl − 𝜇

𝛽
H+ − 𝜇

𝛿
Cl− . (6.1)

2. Use equation 3.19 to express the electrochemical potentials of ions in solution. For gaseous
components, use the fugacity as outlined in Problem 2.14. For the chemical potentials of pure
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phases, replace the superscript with 0. For alloys, use the expression for the activity, for example,
equation 2.43. For equation 2.115, we now have

FU = 1
2
𝜇∗H2
− 𝜇0

Ag + 𝜇
0
AgCl − RT ln(a𝜃H+a𝜃Cl−) +

1
2

RT ln p𝛼H2

− RT ln(c𝛽H+c𝛿Cl−) − RT ln(f 𝛽H+ f 𝛽Cl−) + F(Φ𝛿 − Φ𝛽), (6.2)

where the chloride ion has been chosen as species n in using equation 3.19.
3. Identify the standard cell potential, using equation 2.20 where necessary. Equation 6.2 becomes

FU = FU𝜃 + 1
2

RT ln p𝛼H2
− RT ln

c𝛽H+c𝛿Cl−

𝜌2
0

− RT ln(f 𝛽H+ f 𝛽Cl−) + F(Φ𝛿 − Φ𝛽), (6.3)

where FU𝜃 corresponds to entry 7 in Table 2.2.
4. Set all ionic activity coefficients equal to 1, and neglect any difference in quasi-electrostatic

potential between points in the solution. Equation 6.3 becomes

FU = FU𝜃 + 1
2

RT ln p𝛼H2
− RT ln

c𝛽H+c𝛿Cl−

𝜌2
0

. (6.4)

The potential difference Φ𝛿 −Φ𝛽 in equations 6.2 and 6.3 can be called a liquid-junction potential.
These quasi-electrostatic potentials are referred to the chloride ion. The ionic activity coefficients
always appear in the equation in a manner that compensates for the arbitrary choice of species n. In
writing the Nernst equation, both the liquid-junction potential and the ionic activity coefficients are
discarded. It would be somewhat inconsistent to retain one but not the other in view of their dependence
upon the choice of species n.

The rest of this chapter provides a basis for assessing the error involved in the Nernst equation. We
can assert at the outset that we should rather seek other approximations for the cells of Section 2.6,
involving a single electrolyte of varying concentration.

6.2 TYPES OF LIQUID JUNCTIONS

The potentials of cells with liquid junctions are assessed, using equation 2.68 to evaluate the variation
of the electrochemical potential of an ion in the junction region. As already noted in Chapter 2, the
integration of this equation requires a knowledge of the concentration profiles except in the simple
case of a two-component solution, an electrolyte and a solvent or two electrolytes with a common ion
in a fused salt. Consequently, we discuss first the popular models of liquid junctions.

1. Free-diffusion junction. At time zero, the two solutions are brought into contact to form an
initially sharp boundary in a long, vertical tube. The solutions are then allowed to diffuse into
each other, and the thickness of the region of varying concentration increases with the square root
of time. Even if the transport properties are concentration dependent and the activity coefficients
are not unity, the potential of a cell containing such a junction should be independent of time.

2. Restricted-diffusion junction. The concentration profiles are allowed to reach a steady state by
one-dimensional diffusion in the region between x = 0 and x = L, in the absence of convection.
The composition at x = 0 is that of one solution and, at x = L, that of the other solution. The
potential of a cell containing such a junction is independent of L (as well as time). The condition
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of no convection is usually not specified (i.e., zero solvent velocity or zero mass-average velocity,
etc.).

3. Continuous-mixture junction. At all points in the junction, the concentrations (excluding, we
suppose, that of the solvent) are assumed to be linear combinations of those of the solutions at
the ends of the junction. This assumption obviates the problem of calculating the concentration
profiles by the laws of diffusion.

4. Flowing junction. In some experiments, the solutions are brought together and allowed to
flow side by side for some distance. It is sometimes supposed that observed potentials should
approximate those given by a free-diffusion boundary.

5. Electrode of the second kind. To these we add the region of varying composition produced when
a sparingly soluble salt is brought into contact with a solution containing a common ion. We
might use a model similar to the free-diffusion junction if we imagine the salt to be introduced at
the bottom of a vertical tube containing the solution. The sparingly soluble salt will then diffuse
up the tube, and the concentration at the bottom will be governed by the solubility product.

6.3 FORMULAS FOR LIQUID-JUNCTION POTENTIALS

Substitution of equation 3.19 into equation 2.66 yields (see equation 12.49)

F∇Φ = −F
𝜅 𝐢 − RT

∑

i

t0
i

zi
∇ ln ci − RT

∑

i

t0
i

zi
∇(ln fi −

zi

zn
ln fn) , (6.5)

where Φ is the quasi-electrostatic potential referred to species n. Integration of this equation across the
junction region in the absence of current is the basis of the calculation of liquid-junction potentials.

For solutions so dilute that the activity coefficients can be ignored, it becomes immaterial which
species is chosen for species n. In these dilute solutions, we can use equation 11.9 to express the
transference numbers, with the result that

F∇Φ = −F
𝜅 𝐢 − RT

∑
i ziui∇ci
∑

j z2
j uj cj

, (6.6)

where ui is the mobility of species i.
It is now a relatively simple matter to perform the integration for the continuous-mixture junction,

where the concentrations are given by

ci = cIIi + 𝜉(c
I
i − cIIi ) (6.7)

and where 𝜉 varies from 0 in solution II to 1 in solution I. Equation 6.6, in the absence of current,
becomes

F∇Φ = −RT
A∇𝜉

BII + (BI − BII)𝜉
, (6.8)

where

A =
∑

i

ziui(cIi − cIIi ), BI =
∑

i

z2
i uic

I
i , BII =

∑

i

z2
i uic

II
i . (6.9)

Integration gives

ΦI − ΦII = −RT
F

A
ln (BI∕BII)

BI − BII
. (6.10)
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This is the Henderson formula[5, 6] for the junction potential of a continuous-mixture junction, valid
under the conditions cited in its derivation. Because of its simplicity, it is useful for estimating
liquid-junction potentials. The ionic mobilities ui in A and B can be replaced by the ionic diffusion
coefficients Di (see Table 11.1).

Planck[7, 8] has obtained an implicit expression for the liquid-junction potential for the
restricted-diffusion junction for univalent ions where activity coefficients can be ignored. MacInnes[2]

has reproduced the derivation of Planck’s formula.
The Goldman[9] constant-field equation for liquid-junction potentials is popular among biologists.

Although its basis has been justifiably criticized,[10] it predicts values that are in reasonable accord
with those obtained by other methods.

6.4 DETERMINATION OF CONCENTRATION PROFILES

The concentration profiles in the junction region are governed by the laws of diffusion in cases 1, 2,
and 5 of Section 6.2, the free-diffusion and restricted-diffusion junctions and the electrode of the second
kind. The transport laws are developed in Section 11.1 for dilute solutions and in Section 12.1 for
concentrated solutions. We treat solutions so dilute that we can neglect the interaction of the diffusing
species with the other components except the solvent. The appropriate form of the diffusion law is
developed in Section 11.9 (see also Section 12.5 and Ref. [4]). However, the activity coefficients are
not assumed to be unity. Instead, Guggenheim’s expression for dilute solutions of several electrolytes
is used (see Section 4.5 and Problem 4.4).

To determine the concentration profiles in liquid junctions, then, involves solving the diffu-
sion equation 11.72 or 12.29 in conjunction with the first equation of Problem 4.4 and with the
material-balance equation 11.3, the electroneutrality equation 11.4, and the condition of zero current.

This problem can be solved numerically for the various models of liquid junction. In the case
of restricted diffusion, the equations are already ordinary differential equations. For free diffusion
and for an electrode of the second kind, the similarity transformation Y = y∕

√
t reduces the problem

to ordinary differential equations. These coupled, nonlinear, ordinary differential equations can be
solved readily by the method outlined in Appendix C. The equations can be linearized about a trial
solution, producing a series of coupled, linear differential equations. In finite-difference form, these
give coupled, tridiagonal matrices that can be solved on a digital computer. The nonlinear problem can
then be solved by iteration.

6.5 NUMERICAL RESULTS

We present here calculated[4] values of the liquid-junction potential ΔΦ for the several models (Section
6.2) for the junctions between solutions of various compositions. No detailed concentration profiles
will be given since the potentials of cells with liquid junctions can be calculated directly from the
tabulated values of ΔΦ, without further reference to the concentration profiles, as indicated in the next
section. The tabulation of the values of ΔΦ, rather than the potentials of complete cells, is convenient
because these values relate to the junction itself, whereas more than one combination of electrodes
is possible for a given junction. In addition to ΔΦ, only thermodynamic data are needed to calculate
potentials of complete cells, as the entire effect of the transport phenomena is included in ΔΦ.

The value of ΔΦ depends on the choice of the reference ion n. In each case, this is the last ion for a
given junction in the tables. For infinitely dilute solutions, ΔΦ becomes independent of this choice and,
furthermore, depends only on the ratios of concentrations of the ions in the end solutions. Solutions
of zero ionic strength (fi = 1) are indicated by an asterisk, but the concentrations are given nonzero
values so that these ratios will be clear. These junctions also provide a basis for comparison with more
concentrated solutions, to indicate the effect of the activity coefficients.
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Table 6.1 gives values of ΔΦ for the continuous-mixture, restricted-diffusion, and free-diffusion
junctions. Table 6.2 gives values ofΔΦ for an electrode of the second kind, where AgCl, with a solubility
product∗ of 10−10 (mol/liter)2, diffuses into hydrochloric acid solutions of various concentrations. For
solutions of zero ionic strength, the values of ΔΦ for the continuous-mixture and restricted-diffusion

TABLE 6.1 Values of 𝚫𝚽 for various junctions and various models at 25∘Ca

mol/liter Φ1 −Φ2 (mV)

Ion Solution 1 Solution 2 Free diffusion
Restricted
diffusion

Continuous
mixture

H+ 0.2 0.1 — — −10.31
Cl− 0.2 0.1 — — −11.43*

K+ 0.2 0.1 — — 1.861 (2.05)b

Cl− 0.2 0.1 — — 0.335*

K+ 0 0.01 −33.50 −32.65 −33.75
H+ 0.02 0 −34.67* −33.80* −34.95*

Cl− 0.02 0.01

K+ 0 0.1 −27.31 (−27.08)c −27.45 −27.47
H+ 0.1 0 (28.25, 18∘)d −26.85* (28.10, 18∘)d

Cl− 0.1 0.1 (−28.3)e− 26.69* −26.85*

K+ 0 0.2 −27.92 −28.04 −28.09
H+ 0.2 0 −26.69* −26.85* −26.85*

Cl− 0.2 0.2

K+ 0 0.2 −22.58 −23.03 −22.31
H+ 0.1 0 −20.24* −20.74* −19.96*

Cl− 0.1 0.2

K+ 0 0.05 −20.70 −21.09 −20.23
H+ 0.02 0 −18.50* −18.97* −18.02*

Cl− 0.02 0.05

K+ 0 0.1 −18.02 −17.89 −16.84
H+ 0.02 0 −14.05* −14.12* −12.90*

Cl− 0.02 0.1

K+ 0 0.1 −15.91 −14.99 −14.04
H+ 0.01 0 −10.85* −10.30* −9.09*

Cl− 0.01 0.1

K+ 0 0.1 −27.24 −27.38 −27.40
H+ 0.09917 0 (−27.98)f −26.77* −26.76*

Cl− 0.09917 0.1 −26.60*

K+ 0 0.1
H+ 0.09917 0 −27.39 −27.48 −27.55
NO−3 0 0.05 −26.53* −26.62* −26.70*

Cl− 0.09917 0.05

K+ 0.1 0.1 −0.157 −0.157 −0.157
NO−3 0.05 0 −0.423* −0.423* −0.423*

Cl− 0.05 0.1

∗The solubility product actually is 1.77 × 10−10 (mol/kg)2 (see Problem 2.13).
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TABLE 6.1 Values of 𝚫𝚽 for various junctions and various models at 25∘Ca

continued

mol/liter Φ1 −Φ2 (mV)

Ion Solution 1 Solution 2 Free diffusion
Restricted
diffusion

Continuous
mixture

Na+ 0.1 0
H+ 0 0.05 28.58 29.64 28.10
ClO−4 0 0.05 26.72* 27.90* 26.22*

Cl− 0.1 0

Na+ 0.1 0
H+ 0 0.1 32.83 33.50 33.50
ClO−4 0 0.1 32.35* 33.11* 32.57*

Cl− 0.1 0

Na+ 0.2 0
H+ 0 0.2 33.29 33.88 33.53
ClO−4 0 0.2 32.35* 33.11* 32.57*

Cl− 0.2 0

Na+ 0.05 0
H+ 0 0.1 38.77 38.31 39.26
ClO−4 0 0.1 39.96* 39.58* 40.48*

Cl− 0.05 0

Cu2+ 0 0.1
Ag+ 0.2 0 −6.22* −6.22* −6.22*

NO−3 0.2 0
ClO−4 0 0.2

aValues for fi = 1 are indicated by an asterisk. The last ion is the reference ion. Experimental values are given in parentheses.
bShedlovsky and MacInnes.[11]

cChloupek et al.[12]

dGuggenheim and Unmack.[13]

eGrahame and Cummings.[14]

f Finkelstein and Verdier.[15]

TABLE 6.2 Values of 𝚫𝚽 for a Ag–AgCl electrode in HCl solutions at 25∘Ca

HCl, bulk (mol/liter) Φ0 −Φ∞ (mV) c0
Cl−∕c

∞
Cl− (𝜇∞Cl− − 𝜇

0
Cl− )∕F (mV)

10−4 0.0198 1.00961 −0.226
5× 10−5 0.0737 1.0392 −0.914
2× 10−5 0.359 1.200 −4.32
10−5 0.915 1.604 −11.22
5× 10−6 1.780 2.539 −22.16
2× 10−6 3.21 5.499 −40.58

aChloride is the reference ion, and 𝛽′ values are taken to be zero.

junctions agree with the values calculated from the formulas of Henderson and Planck, respectively
(see Section 6.3). In Figure 6.1 are presented the results of more extensive calculations on the HCl–KCl
junction. Some of the results in Table 6.2 have already been presented in Table 2.1 and discussed in
connection with the errors in an electrode of the second kind in very dilute solutions. Table 6.2 shows
that only a small part of the error is a “liquid-junction potential.”
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Figure 6.1 Calculated values of ΔΦ for free-diffusion, restricted-diffusion, and continuous-mixture boundaries
between HCl and KCl. (a–c) graphs are for given concentrations of KCl on one side of the boundary. (d–f) graphs
are for a given ratio of concentrations on the two sides of the boundary. The dashed lines represent ideal-solution
calculations; the solid lines include activity-coefficient corrections.

The only junction for which our calculations can be compared with other calculations and with
experimental results is the 0.1 M HCl–0.1 M KCl junction. MacInnes and Longsworth[16] have made
calculations for this junction of the free-diffusion type and reported a value of 28.19 mV to compare
with 27.31 mV of the present study. Spiro[17] has discussed cells with liquid junctions, including salt
bridges, for junctions of constant ionic strength across the junction and of the continuous-mixture
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type and has included activity-coefficient corrections. For this HCl–KCl junction, Spiro calculated
29.07 mV, and we calculate 27.47 mV. The experimental results are given in Table 6.1. For further
discussion of these comparisons, see Ref. [4].

6.6 CELLS WITH LIQUID JUNCTION

Once the concentration profiles are known for a liquid-junction region, it is then possible to calculate
the effect of the nonuniform composition on the cell potential. The procedure involves first the
treatment of electrode equilibria. This allows the expression of the cell potential in terms of a difference
in the electrochemical potential of ions in the solutions adjacent to the two electrodes (see Chapter 2).
The evaluation of this difference involves the integration of equation 2.68 across the junction region.
Alternatively, one can proceed as in Section 6.1 to obtain an expression involving the liquid-junction
potential, which has been evaluated in the course of determining the concentration profiles.

For the cells of Section 2.6, involving a single electrolyte of varying concentration, one should
proceed directly with the evaluation of the integral since transference numbers and activity coefficients
are usually known accurately for solutions of a single electrolyte and the cell potential does not depend
on the method of forming the junction.

For cell 2.114, involving a junction between perchloric acid and a sodium chloride solution, the cell
potential was expressed in Section 6.1 as

FU = FU𝜃 + 1
2

RT ln p𝛼H2
− RT ln

c𝛽H+c𝛿Cl−

𝜌2
0

− RT ln (f 𝛽H+ f 𝛽Cl−) + F(Φ𝛿 − Φ𝛽), (6.11)

where FU𝜃 corresponds to entry 7 in Table 2.2 and Φ is referred to the chloride ion. In this case, it is
particularly convenient to use the quasi-electrostatic potential since it is no longer necessary to select
an intermediate solution in the junction (see equation 2.116). Evaluation of the terms in equation 6.11
for c𝛽HClO4

= 0.05 M and c𝛿NaCl = 0.1 M and a fugacity of hydrogen of 1 bar gives

U = 0.222 + 0 + 0.136 + 0.0096 + 0.0281 = 0.396 V, (6.12)

where the term 0.0281 corresponds to the continuous-mixture junction in Table 6.1.
A salt bridge is often used to separate two electrolytic solutions, and sometimes the stated purpose

is “to eliminate liquid-junction potentials.” We should now be in a position to evaluate whether this
purpose is achieved, if we could define the liquid-junction potential that is supposed to be eliminated.
(Recall that the definition in Section 6.1 depends on the choice of the reference species n.)

Such a salt bridge might be

HCl (0.1 M
in H2O)

KCl (0.2 M
in H2O)

HCl (0.2 M
in H2O)

. (6.13)

It seems clear that the salt bridge does not make the value of 𝜇Cl− equal in the two hydrochloric acid
solutions. The value of ΔΦ (referred to the chloride ion) for this combination of junctions is 5.78 mV if
the junctions are of the continuous-mixture type. This can be compared with the value ΔΦ = 10.31 mV
for a single, direct junction between 0.1 and 0.2 M HCl solutions.
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If the transference numbers of KCl were equal to 0.5 and if departures of activity coefficients from
unity could be ignored, the liquid-junction potential of the combination of two junctions of the salt
bridge should decrease as the concentration of KCl increases. If one insists on using salt bridges, one
might consider as an alternative the series of junctions

HCl (0.1 M
in H2O)

KCl (0.1 M
in H2O)

KCl (0.2 M
in H2O)

HCl (0.2 M
in H2O)

, (6.14)

for which ΔΦ = 1.24 mV and for which the value of ΔΦ would approach zero as all the concentrations
were reduced in proportion if the transference numbers of KCl were 0.5.

6.7 ERROR IN THE NERNST EQUATION

The approximations made in the Nernst equation are to ignore liquid-junction potentials and to ignore
the activity coefficients of ionic species in solution. Table 6.1 gives an idea of the range of magnitude
of liquid-junction potentials. In the example treated in equation 6.11, the activity-coefficient term
amounts to 10 mV, and the liquid-junction potential amounts to 28 mV.

Before one can decide whether it is more serious to neglect activity coefficients or liquid-junction
potentials, one should inquire into the effect of using different species for the reference species n. The
effect, of course, cancels if both activity coefficients and liquid-junction potentials are retained. For
the junction between solutions 𝛿 and 𝜖, this difference can be expressed as

F(Φ𝛿n∗ − Φ
𝜖
n∗) = F(Φ𝛿n − Φ𝜖n) +

RT
zn∗
(ln

f 𝛿n∗
f 𝜖n∗
−

zn∗

zn
ln

f 𝛿n
f 𝜖n
) , (6.15)

where the species chosen for n is denoted by a subscript on the quasi-electrostatic potential. The
activity coefficients can be evaluated by the formalism of Problem 4.4.

For the junction

0.1 N KCl 0.1 N HCl,
δε

we have
(Φ𝛿K+ − Φ

𝜖
K+) − (Φ

𝛿
Cl− − Φ

𝜖
Cl−) = 0.87 mV (6.16)

and
(Φ𝛿H+ − Φ

𝜖
H+) − (Φ

𝛿
K+ − Φ

𝜖
K+) = 0. (6.17)

For the junction

0.2 N KCl 0.1 N HCl,
δε

we have
(Φ𝛿K+ − Φ

𝜖
K+) − (Φ

𝛿
Cl− − Φ

𝜖
Cl−) = 4.01 mV (6.18)
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and
(Φ𝛿H+ − Φ

𝜖
H+) − (Φ

𝛿
K+ − Φ

𝜖
K+) = −0.87 mV. (6.19)

For the junction

0.1 N KCl 0.05 N KNO3, 0.05 N KCl,
δε

we have
(Φ𝛿K+ − Φ

𝜖
K+) − (Φ

𝛿
Cl− − Φ

𝜖
Cl−) = −0.54 mV (6.20)

and
(Φ𝛿NO−3

− Φ𝜖NO−3
) − (Φ𝛿Cl− − Φ

𝜖
Cl−) = 0. (6.21)

These examples show that liquid-junction potentials can be uncertain by several millivolts, depending
on which species is selected for ion n, and this uncertainty can be as large as the magnitude of ΔΦ
itself in some cases.

Next, let us analyze the cell

Pt(s) Pt(s),Ag(s)Li(Hg) LiNO3, KNO3
in H2O

AgNO3, KNO3
in H2O

transition
region

(KNO3 in H2O)

α αʹβ δ χε

(6.22)

in which KNO3 is present throughout the cell at the same concentration. The transition region contains
concentration gradients of both LiNO3 and AgNO3. (Compare with cell 2.108.) The cell potential can
be expressed as

FU = −F(Φ𝛼 − Φ𝛼′) = 𝜇𝛽Li − 𝜇
𝜒
Ag + 𝜇

𝜖
Ag+
− 𝜇𝛿

Li+
(6.23)

or

FU = FU𝜃 + RT ln
a𝛽Lic

𝜖
Ag+

c𝛿
Li+

+ RT ln
f 𝜖
Ag+

f 𝛿K+

f 𝛿
Li+

f 𝜖K+
+ F(Φ𝜖 − Φ𝛿), (6.24)

where Φ is referred to the potassium ion and

FU𝜃 = 𝜇0
Li − 𝜇

0
Ag + RT ln

𝜆𝜃
Ag+

𝜆𝜃
Li+

(6.25)

and

a𝛽Li =
𝜆𝛽Li
𝜆0
Li

. (6.26)

The activity-coefficient term in equation 6.24 can be expressed as

ln
f 𝜖
Ag+

f 𝛿K+

f 𝛿
Li+

f 𝜖K+
= 2(𝛽′AgNO3

− 𝛽′KNO3
)c𝜖NO−3

− 2(𝛽′LiNO3
− 𝛽′KNO3

)c𝛿NO−3
. (6.27)
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Evaluation for cKNO3
= 0.1 M, c𝜖AgNO3

= 0.01 M, and c𝛿LiNO3
= 0.01 M gives a contribution to U of

−2.0 mV from the activity-coefficient term and a contribution of −0.47 mV from the liquid-junction
potential. In this case, the Nernst equation is seen to be fairly accurate, the error from the activity
coefficients being somewhat larger than the error from the liquid-junction potential.

If we adopt the condition
c𝜖
Ag+
= c𝛿

Li+
≪ cK+, (6.28)

then the expression for the cell potential becomes

FU = FU𝜃 + RT ln a𝛽Li + 2RT(𝛽′AgNO3
− 𝛽′LiNO3

)cNO−3 . (6.29)

Thus, the measured cell potential should be a linear function of cNO−3 . As cNO−3 → 0, the standard
cell potential can be determined from the intercept. It would not be necessary to extrapolate to the
low concentrations necessary for cells without transference. Thus, a cell with a supporting electrolyte
throughout, although it is not useful for determining activity coefficients, can be useful for determining
standard cell potentials.

6.8 POTENTIALS ACROSS MEMBRANES

In many cells of interest, a membrane forms all or part of the junction region. Equation 2.66 can still
be used to assess variations of electrochemical potentials across the membrane, although there may
be some uncertainty about the values of the transference numbers in the region where the chemical
potentials vary.

Membranes can belong to four classes. Some are relatively inert, electrically, such as cellulose
acetate membranes used to desalt water by reverse osmosis. A porous glass disk could be in this class.
Ion-exchange membranes have charged groups bonded to the membrane matrix.[18] Consequently,
they tend to exclude co-ion of the same charge as the bound charge. Thus, the transference numbers of
anions are small in a cation-exchange resin. Such membranes are used to desalt water by electrodialysis.
The third class includes glass, ceramics, and solid electrolytes.[19, 20] A glass membrane in which the
transference number for hydrogen ions is one in the region where the chemical potentials vary is used
to form an electrode that is, in essence, reversible to the hydrogen ion just like the hydrogen electrode.
Such electrodes are used in the measurement of pH since they are more convenient than hydrogen
electrodes. Biological membranes[21, 22] constitute an interesting class that has been the subject of
extensive investigation to determine how living cells transport material and operate to create nerve
impulses.

6.9 CHARGED MEMBRANES IMMERSED IN AN ELECTROLYTIC SOLUTION

Ion-exchange and fuel cell membranes are often polymeric in nature with ions of fixed charge
covalently bound to the polymer chains. The simplest manifestation is a physically or chemically
crosslinked polymer; the crosslinks prevent the membrane from dissolving when it is immersed in
an electrolyte. Such a membrane immersed in an electrolytic solution is shown in Figure 6.2. At
equilibrium, thermodynamics dictates the extent to which the membrane (the polymer could be of
any shape, e.g., beads) soaks up the solvent and the ions. The electrolytic solution is labeled s, and
the polymeric membrane phase is labeled m. For concreteness, we assume that the bound ions are
negatively charged with charge number zb

−, and the concentration of the bound ions in the equilibrated
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Figure 6.2 Schematic of a charged crosslinked polymer membrane with negative charges covalently bound to
the polymer chains in contact with an electrolytic solution. Some of the ions in the electrolytic solution enter the
membrane.

membrane is cb
−. The membrane is electrically neutral, and it contains positively charged counterions

with charge number z+. The electrolytic solution contains positively charged ions that are identical to
those in the membrane. If this were not the case, and if the electrolyte is in large excess, ion exchange
will occur, and the majority of the ions in both phases will be the same. The negatively charged ions
in the solution have a charge number, z−.

At equilibrium, the chemical potential of each mobile species in the two phases is equal.

𝜇m
i = 𝜇

s
i , (6.30)

where i refers to the species (solvent [e.g., water] and the mobile positive and negative ions). For
simplicity, we ignore the solvent, and examine only the consequences of ionic equilibria. This is
often referred to as the Donnan equilibrium. We take the positive ion to define the quasi-electrostatic
potential, Φm and Φs of both phases. From equation 3.18

𝜇s
+ = RT ln c+ + z+FΦs (6.31)

and
𝜇m
+ = RT ln cm

+ + z+FΦm, (6.32)

where c+ is the concentration of positive ions in the solution. For simplicity, the symbols without
superscript refer to the solution. Then the electrochemical potential of the mobile negative ion, which
is the same ion in both phases, is given by equation 3.19,

𝜇s
− = RT ln c− + z−FΦs + RT (ln f− −

z−
z+

ln f+) + RT (ln a𝜃− −
z−
z+

ln a𝜃+) (6.33)

and

𝜇m
− = RT ln cm

− + z−FΦm + RT (ln f m
− −

z−
z+

ln f m
+ ) + RT (ln a𝜃,m− −

z−
z+

ln a𝜃,m+ ) , (6.34)
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where the superscript 𝜃 implies the secondary reference state. We use the same secondary reference
states to define the chemical potential in both phases.

Equations 6.31 and 6.32 give

F(Φs − Φm) = RT
z+

ln (
cm
+

c+
) . (6.35)

The same secondary reference state eliminates the terms involving them when equations 6.33 and 6.34
are substituted into equation 6.30. Equations 6.30, 6.33, and 6.34 then give

F(Φs − Φm) = RT
z−

ln (
cm
−

c−
) + RT

z−
ln (

f m
−
f−
) − RT

z+
ln (

f m
+
f+
) . (6.36)

Elimination of the potential difference between equations 6.35 and 6.36 gives

(
cm
+

c+
)

1
z+
ℱ = (

cm
−

c−
)

1
z−
, (6.37)

where

ℱ = (
f m
+
f+
)

1
z+
(

f m
−
f−
)
− 1

z−
(6.38)

is an electrically neutral combination of activity coefficients in the two phases.
Electroneutrality of the two phases can be expressed as,

z+c+ + z−c− = 0 (6.39)

and

z+cm
+ + z−cm

− + zb
−cb
− = 0. (6.40)

The ionic species in the solution phase is represented by (Mz+)𝜈+(X
z−)𝜈− , where

z+𝜈+ + z−𝜈− = 0. (6.41)

Combination of equations 6.37 and 6.39 through 6.41 yields

fm
− 1
𝜈+ W

−𝜈−
𝜈+ +W = −Q, (6.42)

where fm is the mean molar activity coefficient of the ions in the membrane divided by that in the
solution phase,

fm = (
f m
+
f+
)
𝜈+

(
f m
−
f−
)
𝜈−
, (6.43)

W is the ratio of the coion concentration in the membrane and in the electrolytic solution,

W =
cm
−

c−
, (6.44)
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and Q is the ratio of charge densities in the membrane and in the electrolytic solution concentration.

Q =
zb
−cb
−

z+c+
. (6.45)

Equation 6.42 is our main result. It enables calculation of the concentration of the coions in the
membrane as a function of the charge on the membrane and concentration of the external electrolytic
solution. It is interesting that the solution to the problem is given by a relatively simple relationship
between three dimensionless quantities. Q is negative, reflecting the fact that our membrane is
negatively charged. If we assume fm = 1, that is, the activity coefficients in the membrane and the
electrolytic solution are identical (they need not be unity), then one can assume a value for W and
calculate the corresponding Q. Results for the cases 𝜈−

𝜈+
= 1

2
, 1, and 2 are plotted in Figure 6.3. The

concentration of the counterion in the membrane is readily obtained using equation 6.40.
In our discussion thus far, the charge density in the membrane is equal to Fzb

−cb
−. This is obtained

if the membrane is completely ionized. The extent of ionization in polymers is, however, affected by
coulombic repulsion along the polymer backbone. In highly charged systems, this repulsion results in
partial ionization, that is, a significant number of counterions stay in close proximity to the bound ions.
This phenomenon is sometimes called counterion condensation.[23] In this case, cb

− must be interpreted
as the effective charge concentration within the membrane. The dilute charged membrane is similar
to semiconducting solids discussed in Chapter 23, where it is assumed that the charged moieties are
ionized.

If cb
− is determined independently, measurement of cm

+ as a function of c+ (e.g., by titration of
the coions in the membrane) yields the activity coefficient in the equilibrated membrane relative to
the external solution. Equation 6.42 can be used with experimentally determined values of W as a
function of Q to yield fm. The mean molal activity coefficient of the electrolyte can be calculated
if it has been characterized (e.g., Tables 4.1 to 4.3, and Figures 4.2 and 4.3) or measured using the
approach described in Section 4.6. It is useful to recall that the secondary reference state for the activity
coefficients is generally taken to be an infinitely dilute electrolytic solution.
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Figure 6.3 Dependence of the coion and counterion concentrations in the membrane on concentration of the
electrolytic solution for different values of v−/v+. Ion concentrations in the membrane are normalized by the
charge concentration within the membrane, assumed to be negatively charged. fm has been taken to be unity.
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The potential difference measured between the two equilibrated phases with a reference electrode
reversible to one of the mobile ions is zero. It is thus unrelated to the quasi-electrostatic potential
difference between the phases, (Φs−Φm), which is clearly nonzero. Measurement of the coion
concentration in the membrane in conjunction with equation 6.35 enables measurement of (Φs−Φm).

Finally, membranes with positive bound charges can be treated analogously; the coions will now be
positive, and excluded as in Figure 6.3, and the counterions will be negative.

PROBLEMS

6.1 Treat the potential of the cell

Pt(s),
H2(g)

Pt(s).HCl in
H2O

transition
region

KNO3
in H2O

K(Hg)

α αʹβ δ ε

(a) Express the cell potential in terms of chemical potentials and electrochemical potentials of
species (except electrons) in the various phases, by means of an equilibrium relationship for
each electrode and definitions of chemical potentials of neutral components.

(b) Discuss briefly how to treat the junction region by means of equation 2.66 or 2.68.
(c) What is the expression for the standard cell potential, and what is its value?
(d) Re-express the result of part (a), using the quasi-electrostatic potential. Be sure to specify

the reference ion in defining the quasi-electrostatic potential.
(e) State the Nernst equation for this cell.
(f) Solutions 𝛽 and 𝛿 each have 0.1 mol/kg electrolyte concentrations. Obtain a numerical

estimate of any activity coefficient combination appearing in the result for part (d). State
separately the contribution due to the Debye–Hückel term and that due to terms beyond the
Debye–Hückel term.

(g) Would you expect the magnitude of the liquid-junction potential appearing in the result of
part (d) to be (choose one): (i) about 2 mV, (ii) about 10 mV, or (iii) about 30 mV?

6.2 Deposition of copper on an electrode of extended surface area is used to remove cupric ions
from dilute aqueous waste solutions containing sodium sulfate and sulfuric acid as supporting
electrolytes. If the electrode at the stream exit can be maintained at −0.25 V relative to a normal
calomel electrode without excessive hydrogen evolution, what is the minimum concentration
of copper to which the exit stream can be reduced? Express your answer also in mg/liter. (The
molar mass of copper is 63.5 g/mol.) You can use Nernst equations and neglect liquid-junction
potentials and activity-coefficient corrections.

6.3 Estimate as accurately as possible the potential of the cell

Fe 2 M FeCl2
in H2O

Membrane Inert
graphite.

2 M FeCl3
0.5 M FeCl2

in H2O

Show all terms you can symbolically. Some parameters may be hard to estimate, but the terms
in which they appear may be small. Make the best effort you can to estimate the total cell
potential numerically without spending too much time getting accurate parameter values.
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6.4 For the cell

Pt(s) Pt(s),Hg(l) Hg2Cl2(s) KCl saturated
in H2O

transition
region

Hg ions in
4 M NaCl soln

Hg(l)

α αʹβ δ λ ϕε

Reaction FU𝜃 U𝜃(V)

1. Hg2+
2 → 2Hg2+ + 2e− 1

2
𝜇∗H2
− 1

2
RT ln 𝜆𝜃

Hg2+2
+ RT ln 𝜆𝜃

Hg2+
∕𝜆𝜃H+ 0.920

2. Hg→Hg2+ + 2e− 1

2
𝜇∗H2
− 1

2
𝜇0
Hg +

1

2
RT ln 𝜆𝜃

Hg2+
∕(𝜆𝜃H+)

2 0.8545

3. 2Hg → Hg2+
2 + 2e− 1

2
𝜇∗H2
− 𝜇0

Hg +
1

2
RT ln 𝜆𝜃

Hg2+2
∕(𝜆𝜃H+)

2 0.789

4. Hg+ 2Cl−→HgCl2 + 2e− 1

2
𝜇∗H2
− 1

2
𝜇0
Hg − RT ln 𝜆𝜃Cl− +

1

2
RT ln 𝜆𝜃HgCl2

∕(𝜆𝜃H+)
2 0.4768

5. Hg + 3Cl− → HgCl−3 + 2e− 1

2
𝜇∗H2
− 1

2
𝜇0
Hg −

3

2
RT ln 𝜆𝜃Cl− +

1

2
RT ln 𝜆𝜃

HgCl2−3
∕(𝜆𝜃H+)

2 0.4434

6. Hg + 4Cl− → HgCl2−4 + 2e− 1

2
𝜇∗H2
− 1

2
𝜇0
Hg − 2RT ln 𝜆𝜃Cl− +

1

2
RT ln 𝜆𝜃

HgCl2−4
∕(𝜆𝜃H+)

2 0.4138

7. Hg2+
2 + 6Cl− → 2HgCl−3 + 2e− 1

2
𝜇∗H2
− 1

2
RT ln 𝜆𝜃

Hg2+2
(𝜆𝜃H+)

2 − RT ln (𝜆𝜃Cl−)
3∕𝜆𝜃HgCl−3

0.09787

8. Hg2+
2 + 8Cl− → 2HgCl2−4 + 2e− 1

2
𝜇∗H2
− 1

2
RT ln 𝜆𝜃

Hg2+2
(𝜆𝜃H+)

2 − RT ln (𝜆𝜃Cl−)
4∕𝜆𝜃

HgCl2−4
0.03852

the potential of the right electrode is maintained at −0.1 V relative to the left electrode. Estimate
numerical values for the total mercury concentration and its distribution among the principal
mercury species present if the system is essentially at equilibrium and the standard electrode
potentials for a number of mercury species in chloride solution are given in the preceding
table. The saturated KCl solution can be taken to be 4.17 M. Ignore activity-coefficient and
liquid-junction-potential corrections in your calculations.

6.5 For the cell of Problem 6.4, obtain a numerical estimate of the liquid-junction potential. Again,
you may take all activity coefficients to be unity.

6.6 A cell for the production of Cl2 and NaOH could be represented as follows:

Pt(s)
H2(g)

NaOH in
H2O

2.8 mol/kg

transition
region

NaCl in
H2O

3.2 mol/kg

  Pt(s) .
Cl2(g)

α αʹβ δ

Obtain an expression for the open-circuit cell potential in terms of chemical potentials and
electrochemical potentials of specified species in specified phases. Identify an expression for
the standard cell potential, and obtain a numerical value for this quantity.

6.7 For the cell of Problem 6.6, obtain the Nernst equation for the open-circuit potential of the cell.

6.8 For the cell of Problem 6.6, estimate a numerical value for the liquid-junction potential. Make
sure that your method and assumptions are clear.
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6.9 At a point in the transition region of the cell of Problem 6.6, the NaOH molality is 2.5 mol/kg,
and the NaCl molality is 0.2 mol/kg. Explain, with formulas, how you would evaluate the
relevant activity coefficients of the solutes and the osmotic coefficient of the solvent. Record
numerical values for substantially all the parameters you would use in the evaluation. However,
you need not actually perform the calculations.

6.10 What would be good reference electrodes to use (not gas electrodes such as Cl2 or H2) to probe
the potential in the solution on each side of the cell in Problem 6.6?

6.11 A 0.1 mol/kg KOH solution is used to absorb carbon dioxide from an air stream in a packed
column. Before the fluid leaves the bottom of the column, essentially all of the KOH is converted
to KHCO3. Estimate the electrostatic potential of the liquid at the top of the column relative to
the liquid at the bottom. Where did the H come from in the KHCO3? Assume dilute solutions
and the absence of current flow. The temperature is 25∘C.

6.12 One region of an electrochemical cell contains 0.2 mol/kg HCl in H2O. A second region contains
0.1 mol/kg HCl in H2O. The less dense solution is placed above the more dense solution in a
vertical tube, and the two solutions are allowed to diffuse into each other. Each solution has
immersed within it a silver–silver chloride electrode and a hydrogen electrode—a total of four
electrodes (see Figure 6.4). Calculate, to the best of your ability, the activity coefficient 𝛾± of
HCl in each solution. Show your work.

6.13 Treat the potential difference of the two cells each comprised of one hydrogen electrode and
one Ag–AgCl electrode in a solution of essentially uniform composition. That is, with reference
to Figure 6.4, calculate numerical values for U4 −U2 and also U3 −U1.

6.14 Consider the junction between the two solutions (see Figure 6.4).
(a) Would you expect the electrostatic potential to be more positive in the 0.1 mol/kg solution

or in the 0.2 mol/kg solution?
(b) Describe qualitatively the mechanism by which this electrostatic difference between the

two solutions is established.
(c) Would a different numerical value result for this potential difference if the junction were

formed by steady-state diffusion across a porous glass plug instead of by transient diffusion
in an unrestricted manner? Explain.

12

4

3

Ag/AgCl

0.2 mol/kg HCl

0.1 mol/kg

Junction
region

Ag/AgCl

H2 H2

Figure 6.4 Four electrodes in a cell with a liquid junction.
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6.15 Treat the potential difference U2 −U1 between the two hydrogen electrodes in the cell of
Problem 6.12. Obtain a numerical value. Summarize the potentials of the four electrodes by
giving numerical values for electrodes 2, 3, and 4, all referred to electrode 1. (The result of
Problem 6.13 is also needed for this summary.)

6.16 What equation would you try to solve for the concentration profile in the junction region in the
cell of Problem 6.12? What numerical value(s) might be appropriate for any physical properties
appearing in this equation? (You may need to study Chapter 11 or 17 for this part of the
problem.)

After having determined the concentration profile, what equation would you try to solve
for the profile of the electrostatic potential in the junction region? What numerical value(s)
would you use for any physical properties appearing in this equation? How might you go about
determining a distribution of electric charge within the junction region, after having determined
both the concentration and potential profile?

NOTATION

ai relative activity of species i
a𝜃i property expressing secondary reference state, liter/mol
ci molar concentration of species i, mol/liter
Di diffusion coefficient of species i, cm2/s
fi molar activity coefficient of species i
F Faraday’s constant, 96,487 C/mol
i current density, A/cm2

L thickness of restricted-diffusion junction, cm
pi partial pressure or fugacity of species i, bar
R universal gas constant, 8.3143 J/mol⋅K
t0
i transference number of species i with respect to the velocity of species 0

T absolute temperature, K
ui mobility of species i, cm2⋅mol/J⋅s
U open-circuit cell potential, V
U𝜃 standard cell potential, V
x distance, cm
zi charge number of species i
𝜅 conductivity, S/cm
𝜆i absolute activity of species i
𝜆𝜃i property expressing secondary reference state, kg/mol
𝜇i electrochemical potential of species i, J/mol
𝜌0 density of pure solvent, g/cm3

Φ electric potential, V
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PART B

ELECTRODE KINETICS AND OTHER
INTERFACIAL PHENOMENA

The second major area of fundamental electrochemistry necessary in the analysis of electrochemical
systems is a knowledge of what goes on at the interface. This part deals with various aspects of this area
of electrochemistry, in particular, with models of the structure of the double layer and with the kinetics
of electrode processes. Finally, it deals with electrokinetic and electrocapillary phenomena; although
these frequently can be ignored in the analysis of electrochemical systems, they are fundamental parts
of electrochemistry and colloid chemistry.

Electrochemical Systems, Fourth Edition. John Newman and Nitash P. Balsara.
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CHAPTER 7

STRUCTURE OF THE ELECTRIC
DOUBLE LAYER

Most of our knowledge of the double layer comes from the study of mercury in contact with electrolytic
solutions. The mercury electrode is good for the study of the nature of the double layer because it is a
liquid and its surface tension can be measured straightforwardly. As is shown in this chapter, the added
observable of surface tension provides insight into the charge at the interface. Mercury is relatively
unreactive with aqueous solutions over a fairly wide potential range, which means that no faradaic
reactions occur to complicate the study of the capacitive current. Finally, a mercury drop is a highly
reproducible surface.

There are two aspects to the study of the double layer, thermodynamics and microscopic models.
Thermodynamics provides a sound basis for expressing relationships among potential, surface tension,
and the composition of the bulk solution and for determining the surface concentrations of various
species at the interface. Microscopic models of the diffuse and the inner parts of the double layer offer
an explanation for the behavior of macroscopically measurable quantities, such as the surface tension
and the double-layer capacity, and provide a useful picture of the detailed structure of the double
layer. By comparing the predictions of a microscopic model with measurements of thermodynamic
properties such as capacitance, scientists have gained insight into the structure of the double layer. In
many cases, such comparisons show that the double layer may be comprised of multiple adsorbed or
oriented layers, and it can be difficult to find a unique model to explain the data. However, the simple
models discussed in this chapter, consisting of a diffuse region bordering a charged surface with or
without adsorbed ions, have proved to be useful in gaining a qualitative explanation of electrokinetic
and colloidal effects, which are discussed in Chapters 9 and 10.

7.1 QUALITATIVE DESCRIPTION OF DOUBLE LAYERS

Why is there a double layer? There is a double layer at an interface, first of all, because some species in
the solution may have a preference for being near the solid. Let us suppose that we have a solid–solution

Electrochemical Systems, Fourth Edition. John Newman and Nitash P. Balsara.
© 2021 John Wiley & Sons, Inc. Published 2021 by John Wiley & Sons, Inc.
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Solid Solution
KI, H2O

1 nm

Figure 7.1 Solid–solution interface with no charge in the solid.

y, distance from solid

ρe

1 nm

Figure 7.2 Excess electric charge density in the diffuse part of the double layer.

Electric
dipole

HH

–
+

Figure 7.3 Dipole moment in a water molecule.

interface, and let us suppose that there is no charge in the solid itself (see Figure 7.1). If the solution is
one of potassium iodide in water, then we might suppose that there is a greater tendency for the iodide
ions to get very close to the interface than for the potassium ions. This then forms a double charge
layer with a diffuse part in the solution in which there are more potassium ions than iodide ions. The
excess of potassium ions in the diffuse part of the double layer balances the excess of iodide ions very
close to the interface.

The iodide ions very near the interface can be regarded as bound by covalent (or specific) forces to
the solid itself. The excess potassium ions in the solution are prevented from wandering very far from
the interface by the electrical force of attraction to the adsorbed iodide ions. Just how far they wander
is determined by a balance of the electric force with the thermal agitation, which tries to make ions
wander. This distance is characterized by the Debye length (see equation 4.9):

𝜆 =

√
ϵRT

2z2F2c∞
(7.1)

for a single salt of symmetric ionic valences (z+ = − z− = z). Figure 7.2 shows the electric charge
density 𝜌e away from the surface of the solid. The Debye length can amount to perhaps 1 nm.

Now consider the interface between a solid (still without charge) and pure water. Suppose that a
water molecule looks like that shown in Figure 7.3; that is, it has a nonzero electric dipole moment or,
in other words, a separation of charge within the molecule itself. Now even in this simple case, the
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Pure water
Solid

Figure 7.4 Oriented water molecules at an interface with no charge in the solid.

Solution

– +

NaF, H2O

MetalMetal MetalMetalMetal Metal

Figure 7.5 Metal–solution interfaces arranged so that the charge on the metal can be varied. Now there is a
charge in the metal near the interface with the solution.

SolutionMetal
Φ

Distance

Metal

Figure 7.6 Steady potential distribution in a system of ideally polarizable electrodes.

oxygen and the hydrogen may have different tendencies to be close to the solid surface, and the water
molecules may orient themselves at the surface. This is also a double charge layer at the interface (see
Figure 7.4). In all cases, the interface as a whole, including all the region in which properties vary from
one bulk phase to the other, is electrically neutral, as we can easily see in this particular case since the
water molecules are themselves neutral.

A second reason for a double layer to form is that we can vary the charge on the metal side of an
interface. Imagine now two metal surfaces exposed to a solution (see Figure 7.5). Suppose now that we
can apply an appreciable potential difference between these two pieces of metal without there being
any appreciable passage of current in the steady state. Where, then, does the potential drop take place?
Since it cannot exist in the metal phases or in the solution, due to the absence of an ohmic potential
drop, it must occur at the interfaces (see Figure 7.6). Thus, we have a potential jump at the interface
that we can vary by means of our external power supply. In this way, we can vary at the same time the
charge in the metal at the surface.

The idea that we can vary the charge on the metal side of the surface and also the potential without
an electrode reaction occurring is an important one. It perhaps can be only approximated in practice,
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Metal Diffuse
layer

Diffusion
layer

Bulk

1 to 10 nm 10 to 100 mm30,000 nm
(0.03 mm)

0.2
nm

0.2
nm

ym

q

y1 y0

q1 q2

IHP

y2

OHP

Figure 7.7 Structure of the double layer. The charge on the metal side of the interface is q. Specifically adsorbed
ions or molecules are located at the inner Helmholtz plane, while solvated adsorbed ions are located beyond
(but not quite at) the outer Helmholtz plane. The diffuse layer is like the bulk of the solution except that it is
not electrically neutral, but rather has a net charge q2. The diffusion layer is electrically neutral but may have a
nonuniform salt concentration.

but it can be approximated sufficiently closely for our purposes. Such an electrode system is called an
ideally polarizable electrode.

A model of the double layer is shown in Figure 7.7, where ym is the surface of the metal, which is
assumed in this chapter to be an impenetrable barrier. A charge on the metal, q, may be present on this
surface. The inner Helmholtz plane (IHP) is the position of the centers of ions or molecules that are
adsorbed at the surface, such as the water molecules shown in Figure 7.4. The outer Helmholtz plane
(OHP) is the locus of the centers of solvated ions at their distance of closest approach to the surface.
The solvent molecules prevent the solvated ions from touching the surface directly. The surface charge
in the IHP is designated q1. Next to the OHP is the diffuse layer, a region with a net electrical charge
q2 comprised of solvated anions and cations dispersed in the electrolytic solution. The diffusion layer
contains the same electrolytic solution. While the diffusion layer may have a concentration gradient of
the salt, it differs from the diffuse layer in that the diffusion layer is electrically neutral. The whole of
the interfacial region is electrically neutral:

q + q1 + q2 = 0. (7.2)

The example concluding Section 3.1 is designed to illustrate that extremely large potentials are required
to effect any appreciable separation of charge over any appreciable distance. Problem 7.7 also illustrates
the magnitude of potential variations in interfacial regions.

If, in Figure 7.5, the two metals are initially uncharged and both are ideally polarizable electrodes,
then the application of a current will transfer charge from one metal to the other, leaving them with
equal but opposite charges. A current will also flow through the solution, transferring charge from
the solution side of one double layer to the solution side of the other double layer so that the charges
q1 + q2 will be equal and opposite in the two double layers. Finally, when a steady state has been
attained, the overall system will be electrically neutral, the bulk metal and solution phases will be
electrically neutral, and the two interfacial regions will each be electrically neutral. We shall have
effected, however, a separation of charge within each double layer over a small distance of perhaps
1 nm, and the charge q or q1 + q2 on each side of the interface will not be zero.

Let us consider more closely how we may know the charge in the metal side of the surface. For
many of these situations, mercury is a useful electrode material, and many concepts derived from this
source are applied to solid electrodes. Let us use mercury dropping from the end of a capillary tube into
an electrolytic solution (see Figure 7.8). First, consider the situation in which no charge is applied to
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Mercury
reservoir

0.5–mm
capillary tube

Electrolytic
solution

KI,
H2O

Figure 7.8 Apparatus for determining the point of zero charge on mercury in an electrolytic solution.

Mercury
reservoir

Capillary

Aqueous KI
solution

Platinum electrode,
evolving hydrogen

–+

I

Figure 7.9 Apparatus for charging mercury drops in an electrolytic solution.

the mercury reservoir, and its potential is monitored with respect to a reference electrode, such as the
Ag/AgCl electrode shown in Figure 7.11. As the mercury drops fall, they rapidly deplete the mercury
reservoir of excess charge so that soon the mercury drops are uncharged, that is, q= 0. This potential
of the mercury in this condition is called the point of zero charge.

If we look at one of these droplets in the course of its fall, we may find that there is a double
layer formed as a consequence of the desire of iodide ions to be closer to the mercury surface than the
potassium ions. A spherically symmetric shell of adsorbed iodide ions will not induce any redistribution
of charge within the mercury drop, since the spherical shell of charge cannot exert any electric forces
on charges within the shell. Instead, the adsorbed shell of iodide ions is balanced by an excess of
potassium ions in the diffuse part of the double layer (see the first two paragraphs of this section).

Now, imagine that we change the potential of the mercury reservoir, adding a charge at the metal
surface (see Figure 7.9). As each drop falls, its surface will carry a small amount of this charge with
it. By measuring the current, we can know how much charge is on the surface of each drop. Only the
current, the drop size, and the time between drops are important in determining the charge q.

The charge–potential relationships for such a system allow one to define an electric capacity of the
double layer, the value of which amounts to about 30 μF/cm2, a fairly large value. For a plane plate
capacitor with a relative dielectric constant of 78.3, this corresponds to a plate separation of about
2.3 nm and attests to the thinness of the double layer as cited earlier.
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In the above discussion, we have distinguished between electrical forces and covalent (or specific)
forces. It is really quite difficult to make this distinction precise, even though the concept is useful.
The problem has been discussed in Chapter 3. In macroscopic descriptions of interfacial phenomena,
reference electrodes should be used to assess the potential of an electrode relative to a solution, but for
microscopic models one may resort to the concept of the electrostatic potential.

7.2 GIBBS ADSORPTION ISOTHERM

An interface is the region between two phases, here taken to be homogeneous. There is a transition
within the interface from the properties of one phase to those of the other, and the thickness 𝜏 of the
interface can range from 1 to 10 nm (see Figure 7.10). The thermodynamic treatment of an interface
begins generally by considering a system composed of the interface and the two adjacent, homogeneous
phases. The extensive properties of the system must be ascribed to these three regions. For example,
the number of moles ni of a species in the system can be written

ni = n𝛼i + n𝛽i + n𝜎i . (7.3)

Those moles not assigned to the homogeneous phases are assigned to the interface.
The surface concentration Γi, is then written as

Γi =
n𝜎i
A
, (7.4)

where A is the area of the interface, and is usually expressed in mol/cm2.
One should recognize that there is some ambiguity in the definition of Γi because the positions

of the surfaces bounding the interface have not been specified. Because the detailed structure of the
interface is not subject to direct observation, Gibbs took the thickness of the interface to be zero in his
classical thermodynamic treatment of the subject. Then, the position of only one surface needs to be
specified. Choose a position y = yI on Figure 7.10. Then, the definition of the surface concentration
can be expressed as

ΓIi = ∫
yI

−∞
(ci − c𝛼i )dy + ∫

∞

yI

(ci − c𝛽i )dy. (7.5)

The superscript I is added to Γi in this equation to emphasize that the value obtained for Γi depends
on the position yI chosen for the Gibbs surface. For example, if we choose the position yII, then the
surface concentrations ΓIi and ΓIIi are related by

ΓIi − ΓIIi = (c𝛼i − c𝛽i )(yII − yI). (7.6)

Homogeneous
phase α

τ

Interfacial
phase σ

Homogeneous
phase β

y

Figure 7.10 Interfacial, nonhomogeneous region of thickness 𝜏 between two homogeneous phases.
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Thus, an unambiguous value for Γi is obtained only if the bulk concentrations of species i are identical
in the two adjacent, homogeneous phases. This situation prevails, to a fair approximation, in the case
of certain organic compounds that may be adsorbed at an air–solution interface but are essentially
insoluble in the adjacent phases.

The surface concentration Γi as defined above can easily be negative. The ambiguity concerning
the choice of the position of the Gibbs surface is usually harmless as long as one is careful to allow for
it. The surface concentrations can be fixed by adopting some convention, such as taking Γi to be zero
for a given reference species, usually the solvent, or taking the mass of the interface to be zero. An
alternative is to use quantities, called Gibbs invariants, which are independent of the position chosen
for the Gibbs surface. For example, the quantity

Γi

c𝛼i − c𝛽i
−

Γj

c𝛼j − c𝛽j

is such an invariant.
Intensive quantities can be assigned to the interface when these quantities have identical values

in the adjacent, homogeneous phases. For example, the temperature and the chemical potentials of
equilibrated species have meaning for an interface.

The surface tension 𝜎 is a special intensive property of an interface. It depends on the temperature
and composition of the adjacent phases. The surface tension has a mechanical meaning in terms of
the forces acting at the interface and a thermodynamic meaning in terms of an energy of the surface
per unit area. For example, the variation of the Gibbs function for the system considered in the first
paragraph of this section is

dG = −S dT + V dp + 𝜎 dA +
∑

i

𝜇i dni. (7.7)

Integration at constant temperature, pressure, and composition, while the area and number of moles
are allowed to vary from zero to some nonzero values, gives

G = 𝜎A +
∑

i

𝜇ini. (7.8)

If we also express this as

G = G𝜎 + G𝛼 + G𝛽 = G𝜎 +
∑

i

𝜇i(n𝛼i + n𝛽i ), (7.9)

we can show that the surface tension is the excess Gibbs free energy of the surface (per unit area)

𝜎 = G𝜎

A
−
∑

i

𝜇iΓi. (7.10)

Incidentally, one can see from equation 7.8 that the surface tension is a Gibbs invariant, independent
of the choice of the position of the Gibbs surface.

Differentiation of equation 7.8 and substitution into equation 7.7 gives

A d𝜎 = −S dT + V dp −
∑

i

ni d𝜇i. (7.11)
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With the Gibbs–Duhem relations for phases 𝛼 and 𝛽, for example,

0 = −S𝛼 dT + V𝛼 dp −
∑

i

n𝛼i d𝜇i, (7.12)

we obtain
A d𝜎 = −S𝜎 dT + V𝜎 dp −

∑

i

n𝜎i d𝜇i (7.13)

or
d𝜎 = −s𝜎 dT + 𝜏 dp −

∑

i

Γi d𝜇i, (7.14)

where

S𝜎 = As𝜎 = S − S𝛼 − S𝛽,

V𝜎 = A𝜏 = V − V𝛼 − V𝛽. (7.15)

Equation 7.14 is the surface analogue of the Gibbs–Duhem relation and is known (for dT = 0) as
the Gibbs adsorption isotherm. By Gibbs convention, the volume assigned to the interface is zero, and
𝜏 can be set equal to zero. However, Guggenheim prefers to regard the interface to have a nonzero
thickness. In either case, equation 7.14 is applicable, independent of the choice of the position of the
surface or surfaces defining the interface.

The Gibbs adsorption equation is useful for determining the surface concentrations Γi since accurate
direct measurement of Γi is usually more difficult than the determination of variations in surface
tension and the use of equation 7.14.

In applying the Gibbs adsorption equation, one should remember that it applies to the interface
between two phases in equilibrium. Consequently, variations must be carried out with the constraint of
this phase equilibrium and the consequent loss of a degree of freedom. For a two-component system, we
can take the temperature and one mole fraction as the independent variables. With the Gibbs–Duhem
equations for the homogeneous phases, equation 7.14 becomes

d𝜎 = −
⎛
⎜
⎝
s𝜎 − s𝛼 − s𝛽

c𝛼1 − c𝛽1
Γ1

⎞
⎟
⎠

dT −
⎛
⎜
⎝
Γ2 −

c𝛼2 − c𝛽2

c𝛼1 − c𝛽1
Γ1

⎞
⎟
⎠

d𝜇2, (7.16)

where s𝛼 and s𝛽 are the entropies per unit volume of phases 𝛼 and 𝛽, respectively. Since

d𝜇2 = [−S
𝛼
2 + V

𝛼
2(

𝜕p
𝜕T

)
x𝛼2 ,sat

] dT +
⎡
⎢
⎣
(
𝜕𝜇2

𝜕x𝛼2
)

T ,p

+ V
𝛼
2(

𝜕p
𝜕x𝛼2

)
T ,sat

⎤
⎥
⎦

dx𝛼2 , (7.17)

we have finally

d𝜎 = − {s𝜎(1) + Γ2(1) [−S
𝛼
2 + V

𝛼
2(

𝜕p
𝜕T

)
x𝛼2 ,sat

]} dT

− Γ2(1)
⎡
⎢
⎣
(
𝜕𝜇2

𝜕x𝛼2
)

T ,p

+ V
𝛼
2(

𝜕p
𝜕x𝛼2

)
T ,sat

⎤
⎥
⎦

dx𝛼2 , (7.18)
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where

s𝜎(1) = s𝜎 − s𝛼 − s𝛽

c𝛼1 − c𝛽1
Γ1 and Γ2(1) = Γ2 −

c𝛼2 − c𝛽2

c𝛼1 − c𝛽1
Γ1 (7.19)

are the entropy of the interface and the surface concentration of species 2, both evaluated with the
Gibbs surface chosen such that Γ1(1) = 0. We see that a measurement of the variation of the surface
tension with x𝛼2 at constant temperature allows us to determine Γ2(1). A subsequent measurement of
the variation of surface tension with temperature at constant x𝛼2 allows us to determine the surface
entropy s𝜎(1).

7.3 THE LIPPMANN EQUATION

We now wish to apply the Gibbs adsorption isotherm to an interface involving an ideally polarizable
electrode. We treat the system shown in Figure 7.11. Here the counterelectrode is used to maintain the
potential of the mercury, which is measured relative to a silver chloride reference electrode. This latter
circuit can be represented by the diagram

α
Pt(s)

|||||||||||||

β
Ag(s)

|||||||||||||

δ
AgCl(s)

|||||||||||||

ϵ
KCl in
H2O

|||||||||||||

𝜆
Hg(l)

|||||||||||||

α′
Pt(s) , (7.20)

for which the potential can be expressed by the methods of Chapter 2 as

FU = −F(Φα − Φα′) = 𝜇αe− − 𝜇α′e− = 𝜇ϵCl− − 𝜇λe− + 𝜇βAg − 𝜇δAgCl. (7.21)

For variations of the surface tension of the mercury at constant temperature, the Gibbs adsorption
isotherm, equation 7.14 becomes

d𝜎 = −Γe− d𝜇𝜆e− − ΓK+ d𝜇ϵK+ − ΓCl− d𝜇ϵCl− . (7.22)

We consider the mercury phase 𝜆 to be composed of mercury atoms and electrons. The surface
concentration of mercury does not appear in equation 7.22 because we take d𝜇𝜆Hg = 0. The surface

Aqueous KCI
solution

Counter-
electrode

–

+

Hg
U

AgCl reference
electrode

Figure 7.11 System for applying a potential to an ideally polarizable electrode.
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concentration of electrons is a Gibbs invariant because the concentration of electrons is zero in the
bulk of the homogeneous phases 𝜆 and ϵ (see equation 7.6). In fact, Γe− is related to the surface charge
density q discussed in Section 7.1 for an ideally polarizable electrode:

q = −FΓe−. (7.23)

We consider the aqueous phase ϵ to be composed of potassium ions, chloride ions, and water. We
choose the Gibbs surface such that ΓH2O = 0.

We have emphasized before that the interface as a whole is electrically neutral,

∑

i

ziΓi = 0. (7.24)

If we use equation 7.24 to eliminate ΓCl− from equation 7.22 and use equation 7.23 to introduce q, we
obtain

d𝜎 = −ΓK+ d𝜇ϵKCl −
q
F
(d𝜇ϵCl− − d𝜇𝜆e−). (7.25)

Finally, equation 7.21 can be used to introduce the potential U:

d𝜎 = −ΓK+ d𝜇ϵKCl − q dU. (7.26)

This important equation is known as the Lippmann equation. It tells us that, if we measure the variation
of the surface tension with composition at constant potential, we can obtain the surface concentration of
potassium ions and, if we measure the variation with potential at constant composition, we can obtain
the surface charge q. All this can be done on a firm thermodynamic basis without resort to microscopic
models of the interface, although the experiments require considerable effort to obtain accurate results.
Bear in mind that ΓK+ is relative to the convention that ΓH2O = 0.

The above derivation of the Lippmann equation differs from the treatments of reversible electrodes
in Chapter 2 in that there are no species that are equilibrated between phases 𝜆 and ϵ. Or, if they
are equilibrated, they are assumed to be of negligible concentration in one phase or the other. An
alternative treatment assumes that there is an impenetrable barrier through which no species, and hence
no current, passes. The surface charge q is then the surface charge density on the electrode side of
this barrier, and again no species exists on both sides of the barrier in an appreciable concentration.
Both developments lead to the Lippmann equation, and the difference in the bases is of little practical
consequence.

The double-layer capacity (per unit area) C is the derivative of the double-layer charge q with
respect to potential at constant composition:

C = (
𝜕q
𝜕U

)
𝜇,T
, (7.27)

where the subscript 𝜇 denotes constant composition. From equation 7.26 we see that

q = −( 𝜕𝜎
𝜕U

)
𝜇,T
. (7.28)

Hence,

C = −( 𝜕
2𝜎

𝜕U2
)
𝜇,T

. (7.29)
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The double-layer capacity of an ideally polarizable electrode can be measured directly with an
alternating current. Because the double layer is thin, it responds rapidly to the alternating current.
Consequently, except when the adsorption of long-chain organic compounds is involved, the alternating
current capacity does not begin to depart from the static capacity defined by equation 7.27 until a
frequency of about 106 Hz is reached.

Grahame[1] described an experimental confirmation of the Lippmann equation in which the charge
is determined as a function of potential in three independent ways:

1. Differentiation of the surface tension with respect to potential according to equation 7.28.
2. Integration of the double-layer capacity with respect to potential according to equation 7.27. The

integration constant must be evaluated to give agreement with the other two methods.
3. Direct measurement of q by means of an apparatus such as that sketched in Figure 7.8.

Note that only the second method can be applied to solid electrodes and that the determination of the
point of zero charge, equivalent to the integration constant, is then uncertain.

The above derivation of the Lippmann equation can be modified to apply to a different reference
electrode and to multicomponent solutions, including systems involving the adsorption of neutral
organic molecules. The application of thermodynamic principles allows a coherent treatment of a
variety of data involving the measurement of surface tension, surface charge, and double-layer capacity
as functions of temperature, potential, and solution composition. These data can be manipulated by
thermodynamic methods to yield derived quantities of interest, such as the surface concentrations. (See
Problems 7.2 and 7.3 and references [1, 2].)

The surface tension of mercury in contact with several electrolytic solutions is plotted against
potential in Figure 7.12. The potential of zero charge is given in Table 7.1 (at 25∘C rather than
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Figure 7.12 Interfacial tension of mercury as a function of potential for several electrolytic solutions at 18∘C.
Potentials relative to a normal calomel electrode are shifted by 0.48 V. These are referred to as electrocapillary
curves because the surface tension is often measured with a capillary electrometer. Source: Grahame 1947.[1]

Reproduced with permission of The American Chemical Society.
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TABLE 7.1 Potential of zero charge for mercury (relative to a normal calomel
electrode in KCl) for various electrolytic solutions at 25∘C

Electrolyte c (M) Potential (V) Electrolyte c (M) Potential (V)

LiCl 1.0 −0.557 CsCl 1.0 −0.556

0.1 −0.5592 0.1 −0.5564

NaCl 1.0 −0.557 HCl 0.1 −0.558

0.1 −0.5591 NH4Cl 0.1 −0.5587

KCl 1.0 −0.5555 CaCl2 0.1 −0.5586

0.7 −0.5535 SrCl2 0.1 −0.5588

0.3 −0.5515 BaCl2 0.1 −0.5587

0.1 −0.5589 MnCI2 0.1 −0.5589

0.01 −0.5936 CoCl2 0.1 −0.5585

0.001 −0.640 NiCl2 0.1 −0.5588

RbCl 0.1 −0.5576 AlCl3 0.1 −0.5585

NaF 1.0 −0.472 LaCl3 0.1 −0.5588

0.1 −0.474 KCH3COO 0.1 −0.4884

KF 0.1 −0.4714 KClO4 0.1 −0.5074

KHCO3 0.1 −0.4728 KNO3 0.1 −0.5166

K2CO3 0.05 −0.4734 KBr 0.1 −0.5741

K2SO4 0.05 −0.4705 KCNS 0.1 −0.626

KOH 0.1 −0.4767 KI 0.1 −0.732

Source: Grahame et al. 1952.[3] Reproduced with permission of The American Chemical Society. See
also reference [4].

U, potential (V)
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Figure 7.13 Charge and adsorption of sodium and chloride ions at a mercury interface in contact with 0.3 M
NaCl at 25∘C. The surface concentrations of the ions are expressed as ziFΓi. Source: Grahame 1947.[1] Reproduced
with permission of The American Chemical Society.
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U, potential (V)
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Figure 7.14 Charge and adsorption of sodium and chloride ions at a mercury interface in contact with a 1 M
NaCl solution at 25∘C. The surface concentrations of the ions are expressed as ziFΓi. Source: Grahame 1947.[1]

Reproduced with permission of The American Chemical Society.

18∘C). From equation 7.28, we see that zero charge corresponds to the maximum on the surface
tension curve. Consequently, this point of zero charge is also referred to as the electrocapillary
maximum. In Figure 7.12, the potentials relative to a normal calomel electrode in KCl have been
shifted by +0.48 V in order that the electrocapillary maximum for KOH might appear at about 0 V
(see Problem 7.4).

The surface charge and surface concentrations (the latter being expressed as ziFΓi) are represented
in Figures 7.13 and 7.14 for two concentrations of NaCl. Here, the potentials are measured relative
to a calomel electrode in the same solution as the ideally polarizable electrode, and no questions of
liquid-junction potentials are involved. It is such well-defined potentials that are used in the Lippmann
equation 7.26.

Figures 7.15 and 7.16 show the double-layer capacity as a function of potential for NaCl and NaF
solutions. More curves of this type can be found in Ref. [1].

7.4 THE DIFFUSE PART OF THE DOUBLE LAYER

The thermodynamics of the double layer was developed for an ideally polarizable electrode in the
preceding two sections. Beyond this one must resort to microscopic models. These are discussed
qualitatively in Section 7.1.

The diffuse part of the double layer is regarded as part of the electrolytic solution, but here the
solution is not electrically neutral. The model used to treat this region is essentially identical to that
of Debye and Hückel, used to determine the ionic distributions around a central ion and subsequently
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Figure 7.15 Double-layer capacity for mercury in contact with NaCl solutions at 25∘C. Potentials are relative to
the electrocapillary maximum. Source: Grahame 1947.[1] Reproduced with permission of The American Chemical
Society.

to calculate the electrical contribution to the activity coefficients (see Sections 4.1 and 4.2). The ionic
concentrations in the diffuse part of the double layer are assumed to be related to the potential by the
Boltzmann distribution (see equation 4.1)

ci = ci∞ exp (−
ziFΦ
RT

) , (7.30)

and Poisson’s equation relates the variation of the potential to the charge density (see equation 4.2).
For a planar electrode this becomes

d2Φ
dy2

= −F
ϵ
∑

i

zici∞ exp (−
ziFΦ
RT

) , (7.31)

where y is the distance from the electrode.
Similar limitations apply to the validity of this model as to that of Debye and Hückel (see Section

4.3). For the planar case, in contrast to the spherical case treated in Section 4.1, one can go further
without the introduction of the mathematical approximation of Debye and Hückel (see equation 4.7).
We should note again that the derivation of the Lippmann equation in the preceding section did not
involve the introduction of any model.
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Figure 7.16 Double-layer capacity for mercury in contact with NaF solutions at 25∘C. Potentials are relative to
the normal calomel electrode. Source: Grahame 1954.[5] Reproduced with permission of The American Chemical
Society. The calculated capacitance is explained in Section 7.5. At the highest concentration, 0.916 M in (a),
Grahame has used the measured values C to infer values for C0, the capacitance across the inner part of the double
layer, known as CM−2 in Section 7.5. In parts (b–e) of this figure, Grahame has calculated values of C from C0

and the diffuse-layer theory, using two slightly different methods in the case of the most dilute solution, 0.001 M
in (e).
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The first boundary condition on equation 7.31 is that

Φ → 0 as y →∞. (7.32)

From equation 7.30, we thus see that ci∞ is the concentration of species i approached at large distances
from the electrode. Furthermore, since the right side of equation 7.31 is the charge density divided by
−ϵ, integration of this equation allows the potential gradient at y2 to be related to the surface charge
density q2 in the diffuse part of the double layer:

dΦ
dy

=
q2

ϵ at y = y2. (7.33)

This constitutes the second boundary condition for equation 7.31. Here, y2 is the position of the inner
limit of the diffuse layer, that is, the closest distance to which solvated ions can approach the electrode,
the same value being applicable to all ionic species. Note the similarity of y2 to the parameter a of the
theory of Debye and Hückel.

Let us introduce the electric field E:
E = −dΦ

dy
. (7.34)

The electric field can be determined as a function of the potential by rewriting equation 7.31 as

d2Φ
dy2

= −dE
dy

= − dE
dΦ

dΦ
dy

= E
dE
dΦ = −F

ϵ
∑

i

zici∞ exp (−
ziFΦ
RT

) . (7.35)

Integration gives
1
2

E2 = RT
ϵ
∑

i

ci∞ [exp (−
ziFΦ
RT

) − 1] , (7.36)

the integration constant being evaluated from the fact that as y →∞, both Φ and E approach zero. The
electric field therefore is given in terms of the potential as

E = ±{2RT
ϵ

∑

i

ci∞ [exp (−
ziFΦ
RT

) − 1]}
1∕2

, (7.37)

the plus sign being used if Φ is positive and conversely, since E and Φ must be of the same sign.
Without carrying the problem further, we can now relate the charge in the diffuse layer to the

potential at y2 since introduction of condition 7.33 gives

q2 = ∓{2RTϵ
∑

i

ci∞ [exp (−
ziFΦ2

RT
) − 1]}

1∕2

, (7.38)

where Φ2 is the potential at y2. This relationship has important applications in double-layer theory.
The determination of the potential as a function of distance is straightforward in principle, although

it can be complicated in practice. Equation 7.34 gives

y − y2 = ∫
Φ2

Φ

dΦ
E
, (7.39)

where E is given as a function of Φ by equation 7.36.
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Although numerical integration of equation 7.39 is necessary in general, the analysis can be
completed for the special case where the magnitudes of the ionic charges are all the same, |zi| = z. Let
us carry out the development in dimensionless form where

x =
y
𝜆
, 𝜙 = FΦ

RT
, ℰ = 𝜆FE

RT
, Ci∞ =

2ci∞∑
j

z2
j cj∞

, (7.40)

and 𝜆 is the Debye length given by equation 4.9. Equations 7.37 and 7.39 become

ℰ = ±[
∑

i

Ci∞(e−zi𝜙 − 1)]
1∕2

(7.41)

and

x − x2 = ∫
𝜙2

𝜙

d𝜙
ℰ . (7.42)

For the special case of |zi| = z, we have

zℰ = ±(ez𝜙 − 2 + e−z𝜙)1∕2 = 2 sinh
z𝜙
2
. (7.43)

Integration of equation 7.42 then gives

x − x2 = ln
tanh z𝜙2∕4
tanh z𝜙∕4

. (7.44)

This result can be rearranged to yield

𝜙 = 2
z

ln
1 − Ke−x+x2

1 + Ke−x+x2
, zℰ = −4Ke−x+x2

1 − (Ke−x+x2)2
, (7.45)

where K is a dimensionless constant whose value lies between −1 and +1 and is related to the potential
𝜙2 and the charge q2 in the diffuse layer by

K = − tanh
z𝜙2

4
=

Q2√
4 + Q2

2 + 2
, (7.46)

where Q2 = z𝜆Fq2/RTϵ.
The double-layer capacity C is defined by equation 7.27. Correspondingly, we define the capacity

Cd of the diffuse layer as

Cd = −(
𝜕q2

𝜕Φ2
)
𝜇,T
, (7.47)

the minus sign being introduced because q2 is on the opposite side of the double layer from q. With
equation 7.38 we have

Cd =
ϵF
q2

∑

i

zici∞ exp (−
ziFΦ2

RT
) , (7.48)
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and for the special case where the magnitudes of the ionic charges are all the same

Cd =
ϵ
𝜆

cosh
zFΦ2

2RT
. (7.49)

Equation 7.49 indicates that the diffuse-layer capacity is proportional to the square root of the
ionic strength because of the composition dependence of the Debye length 𝜆. For aqueous solutions at
25∘C and an ionic strength of 0.1 mol/liter, ϵ/𝜆 has a value of about 72 μF/cm2. There is also a strong
dependence on the potential Φ2. For 1–1 electrolytes at 25∘C, the diffuse-layer capacity is about 3.6
times higher when Φ2 = 0.1 V than when Φ2 = 0.

7.5 CAPACITY OF THE DOUBLE LAYER IN THE ABSENCE OF SPECIFIC
ADSORPTION

The structure of the double layer is discussed qualitatively in Section 7.1, where we indicated that
species could be adsorbed by specific forces at the interface. Cations, generally speaking, are not
specifically adsorbed, thallous ions being an exception to this rule. Evidence that cations are not
specifically adsorbed is given by the fact that the electrocapillary curves of Figure 7.12 coincide on
the branch at negative electrode potentials. Anions usually are specifically adsorbed, exceptions being
fluoride, hydroxyl, and sulfate ions. Evidence that chloride ions are specifically adsorbed can be seen
in Figure 7.13, which shows that sodium ions are again adsorbed toward more positive potentials. This
is attributed to adsorption of chloride ions in excess of that dictated solely by the charge q on the
electrode.

It is simpler to look first at a system involving an electrolyte, such as NaF, where both ions show
little or no tendency for specific adsorption. Then we can say that q1 = 0, and, consequently,

q2 = −q; (7.50)

that is, the charge in the diffuse layer is given by the charge on the electrode, which can be determined
by thermodynamic means. As the subject was developed in Section 7.4, all the properties of the diffuse
layer depend solely on the charge q2. For example, the potentialΦ2 at the inner limit of the diffuse layer
is related to q2 by means of equation 7.38, and the capacity of the diffuse layer Cd is expressed in terms
of Φ2 and q2 in equation 7.48. In the absence of specific adsorption, the ionic surface concentrations Γi
must be accounted for by the diffuse layer, and these can also be related to q2 or Φ2 (see Problem 7.5).
There are thus several ways in which one can test the assumptions that there is no specific adsorption
with solutions of NaF and that the diffuse-layer theory is valid.

Grahame[5] looked at the double-layer capacity C. Since

U = U − Φ2 + Φ2, (7.51)

we can write

(𝜕U
𝜕q

)
𝜇
= (

𝜕(U − Φ2)
𝜕q

)
𝜇

+ (
𝜕Φ2

𝜕q
)
𝜇

(7.52)

or
1
C
= 1

CM−2
+ 1

Cd
, (7.53)
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where CM−2 is the capacity of the region between the metal and the plane at y = y2. In obtaining
equation 7.53, we have made use of the assumption that q2 =−q, the electroneutrality equation 7.24,
and the definition 7.47.

In equation 7.53, we know C by direct measurement, and we know Cd by the assumption of no
specific adsorption, as outlined above. Consequently, we can calculate CM−2. Instead, we can make
various assumptions about CM−2 and make predictions of C using diffuse-layer theory to obtain Cd.
The first plausible assumption that CM−2 is constant does not work well at all. Grahame therefore made
the second plausible assumption that CM−2 depends only on q, independent of the bulk concentration.
He calculated CM−2 as a function of q from equation 7.53 by using data for C for NaF solutions of about
1 M concentration. At these relatively high concentrations, the contribution of Cd in equation 7.53
is small. On the basis of this calculated dependence of CM−2 on q, Grahame then made predictions
of C for solution concentrations ranging down to 0.001 M (see Figure 7.16). The agreement with
experimental values turned out to be quite good, even at the lowest concentration.

In this manner, Grahame has made a substantial case for the relevance of the diffuse-layer theory
and the assumption that sodium and fluoride ions are not specifically adsorbed. It remains to explain
the charge dependence of CM−2, a problem that appears to require a detailed microscopic theory of the
region very close to the mercury surface.

7.6 SPECIFIC ADSORPTION AT AN ELECTRODE–SOLUTION INTERFACE

Specific adsorption refers to the attraction of a species toward the mercury surface by forces that are
not purely coulombic in nature. Frequently, anions are specifically adsorbed while cations are not. In
this case, Γ+, which can be obtained by thermodynamic means, can be immediately associated with
the surface concentration of cations in the diffuse part of the double layer. The theory in Section 7.4
can then be used to treat the diffuse part of the double layer, all the properties of the diffuse layer being
uniquely related by this theory to the surface concentration of cations in that layer. In this manner
one can determine the potential Φ2 at the OHP, the charge q2 in the diffuse layer, and the surface
concentration of anions in the diffuse layer.

From the measured value of Γ−, one is now in a position to determine the surface concentration
of the specifically adsorbed anions. This quantity is subject to chemical interpretation in terms of
adsorption isotherms and the energetics of specific adsorption, with either the electrode charge q or
the electrode potential as a correlating variable. A lot of work has been done along these lines, and we
must refer to the literature for details.[1, 2, 6, 7] Electrocapillary phenomena and effects of the double
layer will be encountered again in Chapters 8 to 10.

PROBLEMS

7.1 A weighed amount of NaCl solution (n moles) of mole fraction xi
NaCl is added to a highly porous

carbon of area A. After the carbon has settled, the supernatant solution has a different mole
fraction, xf

NaCl. The amount of NaCl adsorbed is calculated as n(xi
NaCl − xf

NaCl)∕A. What value
of ΓNaCl is calculated, that is, relative to what Gibbs convention for the position of the surface?

7.2 From the Lippmann equation 7.26, derive the Maxwell relations

(
𝜕ΓK+
𝜕U

)
𝜇
= (

𝜕q
𝜕𝜇

)
U
, (

𝜕𝜇
𝜕U

)
ΓK+

= −(
𝜕q
𝜕ΓK+

)
U
,

(
𝜕ΓK+
𝜕q

)
𝜇
= −(𝜕U

𝜕𝜇
)

q
, (

𝜕𝜇
𝜕q

)
ΓK+

= ( 𝜕U
𝜕ΓK+

)
q
.
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Show that
(
𝜕q
𝜕𝜇

)
U
= −(

𝜕q
𝜕U

)
𝜇
(𝜕U
𝜕𝜇

)
q
= −C(𝜕U

𝜕𝜇
)

q
.

7.3 Show how to obtain the surface concentration ΓK+ for the mercury, KCl solution interface from
measurements of the double-layer capacity as a function of potential and KCl concentration. In
addition, the potential and the surface tension at the point of zero charge can be assumed to be
known as functions of concentration.

7.4 (a) The potential of the point of zero charge for mercury in various electrolytic solutions is
given in Table 7.1. This is measured relative to a normal calomel electrode in KCl. On
the assumption that this is supposed to be a thermodynamic quantity, for example, not
involving the uncertainty of liquid-junction potentials, discuss the merit of the suggestion
that, for the interface

δ
0.1 N Na2SO4

inH2O

|||||||||||||

β
Hg(l),

the tabulated value represents (or should represent)

−𝜇𝛽e− − FΦ𝛿 + 𝜇0
Hg −

1

2
𝜇0
Hg2Cl2

+ RT ln c𝜆Cl−

F
,

where Φ𝛿 is the quasi-electrostatic potential of phase 𝛿 relative to the chloride ion as
species n and c𝜆Cl− is the concentration of the chloride ion in the 1 N KCl solution of the
reference electrode (see Section 5.7).

(b) If the potential of zero charge for the interface

δ
0.3 M NaCl

inH2O

|||||||||||||

β
Hg(l)

is measured relative to a calomel electrode in the same solution, how should we calculate
the potential of zero charge relative to the normal calomel electrode in KCl?

(c) If the potential of zero charge for the interface of part (b) is measured relative to a calomel
electrode in 0.3 N KCl in a system involving a liquid junction, how might we estimate the
value relative to the normal calomel electrode in KCl, corrected for the liquid junction?
Repeat for the case where the experimental reference electrode is in 1 N KCl.

(d) For the interface of part (a), assume that the potential has been measured relative to a lead
sulfate electrode in the same solution. Show how to calculate the potential relative to the
normal calomel electrode in KCl.

(e) If the potential for the interface of part (a) has been measured relative to a calomel
electrode in 0.1 N KCl in a system involving a liquid junction, show how to estimate the
value relative to the normal calomel electrode in KCl, corrected for the liquid junction.

(f) How should we modify the values in Table 7.1 in order to obtain tables of potentials
of zero charge relative to a hydrogen electrode in 1 M HCl and relative to a hydrogen
electrode in 1 M HNO3? Would these two tables be different? Speculate on what we might
mean by “potentials relative to a standard hydrogen electrode.”
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7.5 Let the surface excess Γi,d of an ionic species in the diffuse layer be defined as

Γi,d = ∫
∞

y2

(ci − ci∞)dy

(compare equation 7.5). Show, for the special case where the magnitudes of the ionic charges
are all the same, |zi| = z, that diffuse-layer theory yields the expression

Γi,d = 2𝜆ci∞(e−zi𝜙2∕2 − 1).

From this result, show that

(
𝜕Γi,d

𝜕q2
)
𝜇

=
2∕F

1 + ezi𝜙2

zici∞∑
j

z2
j cj∞

and that, consequently, in the absence of specific adsorption, the potential Uz of zero charge
varies with composition as

dUz

d𝜇 = 1
2zF

,

where Uz is measured relative to a reference electrode reversible to the anion. Note that
for repelling potentials Γi,d shows a limiting amount of exclusion from the double layer,
Γi,d →−2𝜆ci∞.

7.6 (a) Apply the Debye–Hückel approximation, equation 4.7, to the theory of the diffuse layer,
and show that the diffuse-layer capacity is given, in this approximation, by

Cd =
ϵ
𝜆
.

(b) Show from equations 7.37 and 7.39 that asymptotically, as y approaches infinity, the
potential and electric field in the diffuse layer are given by

Φ = 𝜆Ae−y∕𝜆 and E = Ae−y∕𝜆,

where A is a constant independent of position.

7.7 For a layer of water dipoles oriented perfectly at an interface as sketched in Figure 7.4, estimate
the magnitude of the difference in electrostatic potential across the layer. Take the dipole
moment of water to be 7.85× 10−30 C⋅m, the area per molecule to be 0.16× 10−18 m2, and
the permittivity to be that of free space. Compare the magnitude of the result with potential
differences encountered in electrochemistry, for example, in Table 2.3 or in the figures in this
chapter.

7.8 (a) For an ideally polarizable electrode in a solution of a single salt in the absence of specific
adsorption, show how to calculate C, U, Γ+, and 𝜎 as functions of q and 𝜇 if you are given
CM−2 as a function of q. In addition, the potential and the surface tension at the point of
zero charge can be assumed to be known as functions of concentration.

(b) Is all of this last information necessary?
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7.9 A porous carbon material acts as an ideally polarizable electrode and has a double-layer capacity
of 30 μF/cm2 and a surface area of 250 m2/g. Estimate the electric capacity of a cubic centimeter
of electrode packed with this material. The density of the pure solid carbon is 2.25 g/cm3, its
molar mass is 12.00 g/mol, and the porosity (void volume fraction) of the porous material is
estimated to be 0.7 as packed. What difference in applied potential is required to effect a change
of surface charge density of 10 μC/cm2? If this change of surface charge density is accomplished
by the adsorption of chloride ions, what surface area, expressed in nm2, is available to each
adsorbed chloride ion?

7.10 (a) The following data at 18∘C are obtained for the surface tension of mercury in NaCl
solutions at the point of zero charge. Estimate the surface concentration of NaCl for a
0.3 M NaCl solution at the point of zero charge.

cNaCl (M) 𝜎 (mN/m)

0 425
1 422

(b) What convention is used for the position of the Gibbs interface for the result expressed in
part (a)?

7.11 A waste solution from washing radiator parts contains 20 mg/liter of Zn2+ in a solution mainly
made up of 400 mg/liter of NaCl. It is proposed to remove the zinc by electrosorption on a bed
of porous carbon electrodes. Alternate layers 1 cm thick are polarized negatively 0.5 V relative
to the remaining layers. If the porous carbon has a double-layer capacity of 69 F/cm3, how many
bed volumes of solution can be treated before the bed becomes saturated? Assume that only the
divalent zinc ions are involved in the sorption process over a potential change of 0.25 V. The
molar mass of zinc is 65.37 g/mol.

7.12 A bulk solution 0.06 M in sodium chloride and 0.001 M in zinc chloride is subjected to
electrosorption on a high-surface-area carbon material. Assume that there is no specific
adsorption, and estimate the selectivity of the diffuse layer for zinc ions relative to sodium ions.
Assume that the potential at the outer Helmholtz plane (relative to the bulk solution) is so small
that the expression for the Boltzmann distribution can be linearized wherever it is encountered.

7.13 The MnO2 in the cell of Problem 2.21 is estimated to have a surface area of 58 m2/g. If this
material has a double-layer capacity of 50 μF/cm2 and can be polarized (i.e., displaced in
potential) by 100 mV, how many coulombs can be associated with double-layer charging? How
does this compare with the coulombs that can be passed in the discharge reaction? (The molar
mass of MnO2 is 86.93 g/mol.)

NOTATION

A area, cm2

ci concentration of species i, mol/cm3

C double-layer capacity, F/cm2

Cd capacity of the diffuse layer, F/cm2

Ci dimensionless concentration
CM−2 capacity of region between the metal and the inner limit of the diffuse layer, F/cm2

E electric field, V/cm
ℰ dimensionless electric field
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F Faraday’s constant, 96,487 C/mol
G Gibbs free energy, J
K see equation 7.46
ni number of moles of species i, mol
p pressure, N/cm2

q surface charge density on the metal side of the double layer, C/cm2

q1 surface charge density of specifically adsorbed ions, C/cm2

q2 surface charge density in the diffuse layer, C/cm2

Q2 see equation 7.46
R universal gas constant, 8.3143 J/mol⋅K
S entropy, J/K
T absolute temperature, K
U electrode potential, V
V volume, cm3

x y/𝜆
xi mole fraction of species i
y distance from surface, cm
y2 position of inner limit of diffuse layer, cm
zi charge number of species i
Γi surface concentration of species i, mol/cm2

ϵ permittivity, F/cm
𝜆 Debye length, cm
𝜇i electrochemical potential of species i, J/mol
𝜌e electric charge density, C/cm3

𝜎 surface tension, mN/m
𝜏 thickness of surface, cm
𝜙 dimensionless potential
Φ electric potential, V

Superscripts

α, β phases α and β
σ surface
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CHAPTER 8

ELECTRODE KINETICS

8.1 HETEROGENEOUS ELECTRODE REACTIONS

Current concepts of double-layer structure are based on information obtained from the mercury
electrode in the absence of the passage of a faradaic current, that is, from an ideally polarizable
electrode. Now we want to turn to the consideration of charge-transfer or faradaic reactions. In
electrochemical systems of practical importance, including corrosion, it is reactions at the electrodes
that are of primary importance.

The first thing we want to know about an electrode reaction is its rate. For a single electrode reaction
occurring in a steady state, the rate of the reaction is related in a simple manner by Faraday’s law to
the current density in, which is easily measured experimentally. Simultaneous reactions are discussed
in Section 8.7. Transient electrode processes involve the double-layer capacity, discussed in Chapter 7
and again in Section 8.4. They may also involve transient changes in the nature of the electrode surface.

The rate of the electrode reaction, characterized by the current density, depends first on the nature
and previous treatment of the electrode surface. Second, the rate of reaction depends on the composition
of the electrolytic solution adjacent to the electrode, just outside the double layer. This may be different
from the composition of the bulk solution because of limited rates of mass transfer, treated in Parts C
and D. However, the diffuse part of the double layer is regarded as part of the interface. It is too thin to
probe adequately, and the theory of the diffuse layer is a microscopic model rather than a macroscopic
theory. The effect of double-layer structure on electrode kinetics is discussed in Section 8.4.

Finally, the rate of the reaction depends on the electrode potential. This electrode potential is
characterized by the surface overpotential 𝜂s defined in Section 1.3 as the potential of the working
electrode relative to a reference electrode of the same kind placed in the solution adjacent to the
surface of the working electrode (just outside the double layer). This is a macroscopically well-defined
potential and can be expressed in terms of electrochemical potentials. For the general electrode reaction
expressed by equation 2.6, the equilibrium condition 2.7 is

∑

i

si𝜇i = n𝜇e−. (8.1)

Electrochemical Systems, Fourth Edition. John Newman and Nitash P. Balsara.
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The surface overpotential 𝜂s expresses the departure from the equilibrium potential and is given by

F𝜂s = F(Φelectrode − Φsolution) = −𝜇e− +
∑

i

si

n
𝜇i. (8.2)

The sign can be understood by thinking of 𝜇e− as related to the potential by ziFΦ=𝜇i, and remembering
that zi is negative for the electrons. Superscripts for the appropriate phases in which the species exist
should be added; in particular, 𝜇e− is the electrochemical potential of the electrons in the metal of the
electrode. This definition of 𝜂s is equivalent to that given in Section 1.3.

As an example, the surface overpotential for a copper electrode undergoing the reaction

Cu ⇌ Cu2+ + 2e− (8.3)

is

𝜂s = −
2𝜇e− + 𝜇Cu2+ − 𝜇Cu

2F
. (8.4)

Thus, we can state three definitions of the driving force 𝜂s for electrochemical reactions:

1. The potential of the electrode minus that of a reference electrode of the same kind and located
adjacent to the surface. (Perhaps no such electrode exists in a corroding system where spontaneous
side reactions occur. Also, it would be desirable if the reference electrode were protected from
exposure to current flow, even if its net current is zero.)

2. The potential of the electrode (relative to the solution) minus the value at equilibrium or
open-circuit. Conceptually this is what one is trying to achieve, as an idealization.

3. The electrochemical potential of electrons in the electrode compared to electrochemical potentials
of other participants in the electrode reaction, according to equation 8.2. This is particularly
helpful with modeling because it allows the surface overpotential to be defined in the same
manner as other modeling quantities.

All three definitions are equivalent to the extent that they can be applied. In the presence of side
reactions or corrosion reactions, the use of a reference electrode and the concept of an open-circuit
potential are compromised.

By the above construction, the reaction rate goes to zero at 𝜂s = 0, for any composition or reaction
surface. For analyzing the behavior of electrochemical systems, we seek the macroscopic relationship
between the current density and the surface overpotential and the composition adjacent to the electrode
surface:

in = f (𝜂s, ci). (8.5)

Microscopic models may be useful in correlating these results, although they are not essential.
Transient electrode processes can also involve the double-layer capacity and possibly hysteresis related
to changes in the surface of the electrode.

For sources treating electrode kinetics in general, one should consult Vetter,[1] Delahay,[2] and
Bockris and Reddy.[3] Vetter has a wealth of experimental information on specific electrode reactions,
and Tanaka and Tamamushi[4] give tables of parameters for a number of reactions.
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8.2 DEPENDENCE OF CURRENT DENSITY ON SURFACE OVERPOTENTIAL

We have already indicated in Section 1.3, the simplest type of dependence of the current density
on the surface overpotential and composition adjacent to the electrode surface, that given by the
Butler–Volmer equation 1.9:

in = i0 [exp (
𝛼aF𝜂s

RT
) − exp (

−𝛼cF𝜂s

RT
)] , (8.6)

and we have indicated that this can be regarded as a result of cathodic and anodic reactions proceeding
independently, each with an exponential dependence on the surface overpotential 𝜂s. The exchange
current density i0 then depends on the composition of the solution adjacent to the electrode, as well as
the temperature and nature of the electrode surface.

We have also indicated in Section 1.3 the Tafel approximations, equations 1.10 and 1.11 valid for
large surface overpotentials. At low surface overpotentials, equation 8.6 can be approximated by a
linear expression:

in = i0
(𝛼a + 𝛼c)F

RT
𝜂s. (8.7)

Another method of plotting equation 8.6 is worth noting. Equation 8.6 can be written

in = i0 {exp [
(𝛼a + 𝛼c)F

RT
𝜂s] − 1} exp (−

𝛼cF
RT

𝜂s) (8.8)

or
ln

in

exp
(𝛼a+𝛼c

RT
F𝜂s

)
− 1

= ln i0 −
𝛼cF
RT

𝜂s. (8.9)

If the sum 𝛼a +𝛼c is known, experimental values of in as a function of 𝜂s (at a given composition
adjacent to the electrode) yield a straight line when the left side of equation 8.9 is plotted versus 𝜂s.
Then, the slope gives the value of 𝛼c, and the intercept gives the value of i0. As indicated in the next
section, there is some reason to expect the sum 𝛼a +𝛼c to have an integral value.

It should be emphasized again that, for a given composition adjacent to the electrode surface, there
are three kinetic parameters in equation 8.6; these are i0, 𝛼a, and 𝛼c. Experimental data are needed to
determine these constants, in those cases where the experimental data can be adequately represented
by equation 8.6.

The exchange current density i0 depends on the composition of the solution adjacent to the electrode
surface. Frequently, this dependence can be represented in terms of the concentrations of reactant and
product species raised to some power:

i0 = (
c1

c∞1
)
𝛾

(
c2

c∞2
)
𝛿

i0(c∞i ), (8.10)

where species 1 and 2 are reactant and product species and i0(c∞i ) is the exchange current density for
some conveniently selected values of c∞i . The concentrations adjacent to the electrode are denoted
by ci.

Many simple electrode reactions follow equation 8.6, possibly with some allowance for the effect
of double-layer structure (see Section 8.4). However, many reactions of technical importance show
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Figure 8.1 Current–potential relation for an electrode exhibiting passivation.

considerably different behavior. Outstanding among these are anodic dissolution processes showing
passivation. A typical curve for such a process is shown in Figure 8.1. Here, the reaction rate first
increases for increasing overpotential as indicated by equation 8.6. However, for sufficiently large
overpotentials, a protective anodic oxide film, which may be very thin, forms on the electrode; and
the current density drops to a very low value. Eventually, it may increase again either for the anodic
dissolution process or, for an electronically conducting film, for anodic evolution of oxygen on the film.
This is called the transpassive region of the curve. Such passivation phenomena can be reproducible,
with very little time required for the formation or removal of the oxide film. Many ferrous alloys show
this passivation phenomenon, with the passive current density and the maximum active current density
depending on the composition of the alloy as well as the composition of the solution. Such behavior is
important in the analysis of corroding systems.

The oxygen reaction generally is sluggish and not reproducible. On noble metals, oxide films can
form, and a considerable hysteresis can be present, so that the reaction rate depends strongly on
the previous history of the electrode, as well as on the present values of the overpotentials and the
concentrations adjacent to the electrode.

8.3 MODELS FOR ELECTRODE KINETICS

We should like to distinguish between surface reactions that are simple reactions and those that are
elementary steps. A simple reaction is the simplest that can be observed by analytical methods; that
is, the reactants and products can be determined by macroscopic analysis, but intermediates in the
reaction cannot be detected or are quite unstable. A simple reaction may be composed of one or
many elementary steps. An elementary step is the elementary, mechanistic process by which a reaction
occurs. A stable reactant may thus produce, via one elementary step, an unstable intermediate that
immediately enters into reaction in another elementary step.

For example, the copper dissolution and deposition reaction in equation 8.3 can be regarded as
being composed of two elementary steps, each of which involves the transfer of an electron:

Cu ⇌ Cu+ + e− (fast), (8.11)

Cu+ ⇌ Cu2+ + e− (slow). (8.12)

According to Mattsson and Bockris,[5] the second step is inherently much slower than the first step.
Only in exceptional cases does an elementary step involve the transfer of more than one electron.
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The rates of the elementary steps comprising a simple reaction should always be proportional to
one another. For example, reaction 8.11 should occur once every time reaction 8.12 occurs. A reaction
is much simpler to analyze if it can be treated as a simple reaction because then the rates of the
elementary steps are simply related to each other. Whether a reaction should be regarded as a simple
reaction or two or more simple reactions depends on just how unstable the active intermediate is, on the
limits of detection of our analytical methods, and on the accuracy with which we wish to describe the
system.

For the copper reaction, the intermediate cuprous ions are not completely unstable, and they can
diffuse away from the electrode where they decompose by the disproportionation reaction

2Cu+ ⇌ Cu2+ + Cu. (8.13)

Furthermore, it makes a difference whether reaction 8.3 proceeds in the anodic or the cathodic direction.
In the cathodic direction, the slow reaction 8.12 occurs first and is relatively slow. The cuprous ions
thus produced react in reaction 8.11. Thus, the rate of reaction 8.11 is limited by the rate of supply of
cuprous ions from reaction 8.12 and is the same as the rate of reaction 8.12. In the anodic direction, the
cuprous ions are produced by the relatively fast reaction 8.11. These can either diffuse away from the
electrode or react in reaction 8.12. Now the rate of reaction 8.12 is determined in large part by its own
kinetic characteristics and may not occur as fast as reaction 8.11, the difference corresponding to the
cuprous ions which diffuse away from the electrode.

The rigorous treatment of the anodic process requires the treatment of reactions 8.11 and 8.12 as
simultaneous reactions (see Section 8.7) rather than as elementary steps of a simple reaction, and
the analysis is complicated by the need to account for the diffusion and convection of cuprous ions,
requiring the consideration of transport processes described in Part C. On the other hand, if the cuprous
ions were a species adsorbed on the electrode, they could not diffuse away. The coverage of cuprous
ions would increase so that reactions 8.11 and 8.12 again occur at the same rate, and reaction 8.3 can be
regarded as a simple equation. An example of detailed mechanistic analysis of the hydrogen evolution
reaction is covered in a later section.

In our further treatment of the copper reaction, we assume that the cuprous ions do not diffuse away
from the electrode, that their concentration reaches a value such that reactions 8.11 and 8.12 occur at
the same rate, and that reaction 8.3 can be regarded as a simple reaction.

The distribution of potential in the double layer (see Chapter 7) gives rise to a potential difference
between the electrode and the solution, which we shall denote by

V = Φmet − Φsoln, (8.14)

where Φmet is the electrostatic potential of the electrode and Φsoln is the electrostatic potential of the
solution just outside the double layer. This is usually not a well-defined potential; we can take V to be
the potential relative to a given electrode (see Section 5.7).

Figure 7.7 illustrates the region near the interface and the greatly different length scales that can
be associated with the diffuse layer, the diffusion layer, the bulk, and the reaction sites related to the
metal surface and the inner and outer Helmholtz planes. For a reaction transferring an electron from
the electrode to a Fe(CN)3−

6 ion to form a Fe(CN)4−
6 ion, depicted in Figure 8.2, the action occurs

in the inner part of the interface, where the Fe(CN)3−
6 ion in the outer Helmholtz plane is stripped

of its waters of hydration to become adsorbed in the inner Helmholtz plane. With the ion and water
molecules remaining relatively stationary, the electron transfer occurs with this configuration. The
Fe(CN)4−

6 ion can then desorb to the outer Helmholtz plane and become hydrated again. Other mass
transfer of ions occurs through the diffuse layer and the diffusion layer. Figure 8.2 also illustrates
what is meant by just outside the double layer, a concept that distinguishes between the diffuse layer
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Figure 8.2 A 3-valent ion (ferricyanide) from the outer Helmholtz plane can be adsorbed at the inner Helmholtz
plane, where it can react with an electron from the metal electrode. The resulting 4-valent ion (ferrocyanide) is
then desorbed.

(which has a nonzero distributed charge density) and the diffusion layer (which is largely electrically
neutral).

A Simple Stoichiometry

Let us write a redox reaction as
O + ne− ⇌ R, (8.15)

where O is the oxidized species and R is the reduced species. If only one reaction is occurring at the
electrode, then the current is proportional to the net rate of reaction. The reactions in the cathodic and
anodic directions occur simultaneously, each with its own dependence on the surface overpotential and
reactant concentrations.

The net rate of reaction r is equal to the difference between the rate of the forward reaction and the
rate of the backward reaction, and can be written as

r =
in
nF

= kacR exp [
(1 − 𝛽)nF

RT
V] − kccO exp (

−𝛽nF
RT

V) , (8.16)

where ka and kc are rate constants for the anodic and cathodic reactions, respectively, and cR and cO
are the concentrations of the anodic and cathodic reactants, respectively. This implies that the cathodic
and anodic reactions are first order in the reactants.

Equation 8.16 for this electrochemical reaction is similar to what one sees in ordinary chemical
kinetics, with the additional factor of the dependence of the rates on the potential. The rate constants
ka and kc would be expected to show an Arrhenius dependence on temperature, and they also depend
on the nature of the electrode surface. The k’s and the exponential factors together represent Arrhenius
rate constants with potential-dependent activation energies.

The symmetry factor 𝛽 represents the fraction of the applied potential V that promotes the cathodic
reaction. Similarly, 1−𝛽 is the fraction of the applied potential that promotes the anodic reaction.
Frequently, it is assumed that 𝛽 should have the value 1/2, although the theoretical justification for this
is not completely rigorous.

The meaning of the symmetry factor 𝛽 is usually illustrated by means of a potential–energy diagram.
Figure 8.3 shows two upward opening parabolas describing adiabatic electron transfer at an active



�

� �

�

MODELS FOR ELECTRODE KINETICS 173

Electron-transfer reaction
must occur adiabatically

Adsorbed
ion

Metal
Reduced

state
Oxidized

state

Reaction coordinate
(position of electron)

Energy

Figure 8.3 Active-intermediate diagram, showing the potential energy of an electrode–ion system as a function
of distance of the electron from the ion.

Reduced
state

P
ot

en
tia

l e
ne

rg
y

Oxidized state

(1 – β)nF(V2 – V1)

nF(V2 – V1)

Reaction coordinate

Ec

Ea

Figure 8.4 Potential–energy diagram for an elementary charge-transfer step. The solid curve is for V = V1. The
dashed curve is for V = V2, where V2 is greater than V1.

intermediate. The reaction coordinate can be thought of as the position of the electron during the
transfer process. In Figure 8.4, the potential–energy curve for an applied potential V1 is shown by a
solid line, the activation energies Ea and Ec in the anodic and cathodic directions, respectively, being
indicated on the figure. A change of the applied potential from V1 to V2 results in a change of the
energy of the reduced state relative to the oxidized state by an amount nF(V2 −V1), and this tends to
drive the reaction anodically if V2 is greater than V1.

If the applied potential is changed from V1 to V2, the potential–energy diagram is envisioned to
change to the dashed curve. (The zero of potential is not material here; consequently, the reduced state
has been sketched at the same energy level. The zero of potential is absorbed into the rate constants
ka and kc in equation 8.16.) Then, according to Figure 8.4, the activation energy in the cathodic
direction increases by 𝛽nF(V2 −V1), and the activation energy in the anodic direction decreases by
(1−𝛽)nF(V2 −V1):

Ec2 = Ec1 + 𝛽nF(V2 − V1), (8.17)

Ea2 = Ea1 − (1 − 𝛽)nF(V2 − V1). (8.18)
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This corresponds to the exponential terms in equation 8.16 and illustrates how 𝛽 is the fraction of the
applied potential that favors the cathodic reaction.

At some value U of the potential difference V between the metal and the solution, the rate of the
forward reaction equals the rate of the backward reaction, and the net rate of reaction is zero. Then
equation 8.16 becomes

kacR exp {
(1 − 𝛽)nFU

RT
} = kccO exp {

−𝛽nFU
RT

} . (8.19)

Further rearrangement yields

U = RT
nF

ln
kccO

kacR
, (8.20)

a form of the Nernst equation. As discussed in Section 8.1, the potential at which the net rate of
reaction is zero is known as the equilibrium potential, and the surface overpotential 𝜂s is defined as the
difference between the actual potential and the equilibrium potential:

𝜂s = V − U. (8.21)

Substituting these two equations into equation 8.16 yields

in
nF

=kacR exp [
(1 − 𝛽)nF

RT
𝜂s + (1 − 𝛽) ln

kccO

kacR
]

− kccO exp (
−𝛽nF

RT
𝜂s − 𝛽 ln

kccO

kacR
) . (8.22)

With this definition of 𝜂s and the exchange current density i0 defined by

i0 = nFk𝛽a k1−𝛽
c c𝛽Rc1−𝛽

O , (8.23)

equation 8.22 can be written

in = i0 {exp [
(1 − 𝛽)nF

RT
𝜂s] − exp (−

𝛽nF
RT

𝜂s)} . (8.24)

This equation is known as the Butler–Volmer equation, often seen in the form given in equation 8.6.
From equation 8.23, one sees that i0 depends on the composition of the solution adjacent to the electrode,
as well as the temperature and the nature of the electrode surface. Comparison with equation 8.6 shows
that for this redox reaction we have 𝛼a = (1−𝛽)n and 𝛼c = 𝛽n.

The next section repeats this development for a general stoichiometry. After that, the discussion of
the hydrogen evolution reaction shows how 𝛼a and 𝛼c might be related to the 𝛽’s of the component
elementary steps of a simple reaction.

A General Stoichiometry

Consider an elementary step that can be represented by the general equation
∑

i

siMi ⇌ ne−. (8.25)

The number of electrons transferred n is zero if the elementary step does not involve charge transfer; it
is one if charge transfer is involved, multiple electron transfers being unlikely in an elementary step.
The rate of the elementary step can then usually be expressed by the equation
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r =
in
nF

= ka exp [
(1 − 𝛽)nF

RT
V]

∏

i

cpi
i − kc exp (−

𝛽nF
RT

V)
∏

i

cqi
i . (8.26)

If more than one elementary step is involved in the simple reaction, an additional subscript should be
added to r, in, n, 𝛽, ka, kc, pi, qi, and si to distinguish the elementary steps from each other and from
the overall reaction.

Just as in equation 8.16, ka and kc are rate constants for the anodic and cathodic directions,
respectively. Only the reaction stoichiometry has been generalized. The reaction orders for species i in
the anodic and cathodic directions are pi and qi, respectively.

For a simple reaction involving one elementary step, equation 8.26 yields for the equilibrium
potential U

nFU
RT

= ln
kc

ka
+
∑

i

(qi − pi) ln ci. (8.27)

Comparison with the Nernst equation for this reaction suggests that qi, pi, and si should be related by

qi − pi = −si. (8.28)

In fact, for an elementary step, we presume that the reaction orders are given by the elementary reaction
8.25 itself. If si = 0, the species is neither a reactant nor a product, and we set pi and qi equal to zero. If
si > 0, the species is an anodic reactant, and we set pi = si and qi = 0. If si < 0, the species is a cathodic
reactant, and we set qi = − si and pi = 0.

With definition 8.21 of the surface overpotential, equation 8.26 can be written as equation 8.24,
where now the exchange current density i0 is given by

i0
nF

= ka exp [
(1 − 𝛽)nF

RT
U
∏

i

cpi
i ] = kc exp (−

𝛽nF
RT

U)
∏

i

cqi
i . (8.29)

Elimination of U by means of equation 8.27 gives

i0 = nFk1−𝛽
c k𝛽a

∏

i

c(qi+𝛽si)
i . (8.30)

This gives an explicit dependence of the exchange current density i0 on the reactant and product
concentrations adjacent to the electrode. We see that 𝛾 and 𝛿 in equation 8.10 correspond to qi +𝛽si.
Because 𝛽 is a fraction, the power on ci in equation 8.30 is generally a fraction even though pi, qi, and
si are all integers. This power is positive if the rules following equation 8.28 apply. Thus, the exchange
current density increases if either the reactant or product concentration is increased.

An increase in the concentration of an anodic reactant for which pi = 1 leads to a proportionate
increase in the anodic term in equation 8.26 at constant V. However, i0 is related to this term, not at
constant V, but at the equilibrium potential. An increase in the concentration of the anodic reactant
shifts the equilibrium potential such that the two terms in equation 8.26 remain equal. Thus, both terms
in equation 8.26 increase, and the exchange current density i0 increases, proportional to a fractional
power of the anodic concentration. Study of Figure 8.5 may be helpful in understanding how this
works.

Simple Reactions with Elementary Steps

For more complex electrode reactions, one needs to write down the reaction mechanism in terms of
elementary steps and analyze the kinetics of each step, as has been done here for a single elementary
step. For the elementary steps 8.11 and 8.12 of the copper reaction, we write equation 8.26 as
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Figure 8.5 Anodic and cathodic contributions to the current density (from equation 8.35 with 𝛽3 = 0.5) plotted
against the potential relative to a copper electrode in 1 M CuSO4 (see Section 5.7).

i2
F

= ka2 exp [
(1 − 𝛽2)F

RT
V] − kc2cCu+ exp (−

𝛽2F
RT

V) (8.31)

and
i3
F

= ka3cCu+ exp [
(1 − 𝛽3)F

RT
V] − kc3cCu2+ exp (−

𝛽3F
RT

V) . (8.32)

Subscripts 2 and 3 have been added corresponding to reactions 8.11 and 8.12. The concentration of the
anodic reactant in reaction 8.11, copper, has not been included in equation 8.31 since it is constant. As
stated earlier, we assume that reactions 8.11 and 8.12 occur at the same rate. Hence

in = i2 + i3 = 2i2 = 2i3. (8.33)

Next, we introduce the surface overpotential for the overall reaction (see equation 8.4), not those
for reactions 8.11 and 8.12 individually. We also assume that reaction 8.11 is fast and essentially in
equilibrium. (For the more general case, see Problem 8.1.) For large values of ka2 and kc2, equation 8.31
yields the potential-dependent equilibrium concentration of cuprous ions:

cCu+ =
ka2

kc2
exp (FV

RT
) . (8.34)

Substitution into equation 8.32 gives

i3
F

= i
2F

=
ka3ka2

kc2
exp (

(2 − 𝛽3)F
RT

V) − kc3cCu2+ exp (−
𝛽3F
RT

V) . (8.35)

From equation 8.35, the equilibrium potential is

U = RT
2F

ln (
kc3kc2

ka3ka2
cCu2+) , (8.36)
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and the exchange-current density is

i0 = 2Fkc3(
ka3ka2

kc3kc2
)
𝛽3∕2

c(2−𝛽3)∕2

Cu2+ . (8.37)

With the surface overpotential given by equation 8.21, equation 8.35 can now be written in the form
of the Butler–Volmer equation 8.6, where

𝛼a = 2 − 𝛽3 (8.38)

and
𝛼c = 𝛽3. (8.39)

The concentration dependence of the exchange-current density from equation 8.37 can now be
expressed as

i0 =
⎛
⎜
⎝

cCu2+

c∞
Cu2+

⎞
⎟
⎠

𝛾

i0(c∞Cu2+), (8.40)

where
𝛾 =

2 − 𝛽3

2
. (8.41)

Mattsson and Bockris[5] studied the copper deposition reaction in 1 N sulfuric acid with various
concentrations of copper sulfate. The exchange-current density i0 can depend on the concentration of
sulfuric acid and the nature of the electrode surface as well as the cupric ion concentration. Mattsson
and Bockris studied surfaces prepared by quenching molten copper in purified helium and surfaces
prepared by electrodeposition of copper.

Mattsson and Bockris[5] conclude that reaction 8.11 is inherently fast compared to reaction 8.12.
Within the limits of reproducibility, 𝛼a was 1.6 and 𝛼c was 0.5, indicating that the symmetry factor 𝛽3
for reaction 8.12 is equal to 0.5. A value of 𝛾 (in equation 8.40) of 0.6 was obtained for the deposited
electrodes and a value of 0.3 for the helium-prepared electrode. On the other hand, equation 8.41 gives
𝛾 = 0.75 if 𝛽3 = 0.5. Our examination of their data suggests a value of 0.42 for 𝛾 for the deposited
electrodes. For later calculations, we shall use this value for 𝛾 and take i0 equal to 1 mA/cm2 for a
cupric ion concentration of 0.1 mol/l.

The results of Mattsson and Bockris[5] deviate from equation 8.6 at low overpotentials. They
attribute this to slow diffusion of adsorbed ions and atoms to and from lattice sites, indicating that this
is not a simple charge-transfer process. This, along with standard deviations of 10% or 20% in the
exchange-current density values, indicates that electrode kinetics is, in general, neither predictable nor
reproducible on solid electrodes.

The anodic and cathodic contributions to the current density according to equation 8.35 are plotted
in Figure 8.5 to illustrate the fact that the anodic contribution is independent of cupric ion concentration
when plotted against the potential relative to a given reference electrode (see the remarks at the end
of Section 5.7). With some approximations, this situation and the appearance of the conventional
reaction orders is restored when the total overpotential is used instead of the surface overpotential; see
Problem 20.4.

The models discussed in this section provide a basis for the electrode kinetic equation 8.6. However,
these models do not have the rigor of a thermodynamic derivation. The expressions in equation 8.26
are not rigorously valid, and in equations 8.27 and 8.20, it was seen that comparison was made to the
approximate Nernst equation rather than to the exact thermodynamic expression of the equilibrium



�

� �

�

178 ELECTRODE KINETICS

potential. Furthermore, the potential V depends on the choice of the given reference electrode.
A different reference electrode would involve, implicitly, different combinations of ionic activity
coefficients.

Equation 8.6 involves an unambiguous potential, the surface overpotential, and is thus superior
to equations 8.26, from which equation 8.6 can be “derived.” In equation 8.6, one can only say that
the exchange-current density depends on the composition of the solution. Although not completely
rigorous, the models do provide an explicit idea of the composition dependence of the exchange-current
density.

The surface overpotential alone is discussed in this chapter. In Chapter 20, the concentration
overpotential and the total overpotential are developed. Complex models of elementary steps and
reaction sequences are developed further in Section 23.4 in the context of reaction at a semiconductor
electrode. As a prelude, the student might explore surface coverages in Problem 8.6 and in the following
sections. Models of electrode kinetics are also developed with the goal of making quantitative estimates
of rate constants.[6]

Hydrogen Electrode Reaction

Various mechanisms can be constructed from three reactions: the Volmer reaction

Had ⇌ H+ + e−, (8.42)

the Heyrovský reaction
H2 ⇌ H+ + e− + Had, (8.43)

and the Tafel reaction
2Had ⇌ H2, (8.44)

depending upon which reaction, if any, is rate determining, which reaction, if any, is equilibrated, and
which reaction, if any, proceeds at a negligible rate. We shall number these reactions 1, 2, and 3 for
consistency, and occasionally V, H, and T will stand for Volmer, Heyrovský, and Tafel. It is believed
that the oxidation of hydrogen on a platinum catalyst occurs by the Tafel and Volmer steps, with the
Tafel reaction being the rate-limiting step. In this section, we use these three steps in hypothetical
combinations to provide examples of the methodology for developing an overall rate expression for a
reaction involving multiple elementary steps.

The general procedure is to write down rate expressions for the above steps in the reaction
mechanism and then to eliminate the surface concentration Γad of the intermediate Had and relate the
reaction rates of the steps to the rate of the overall reaction. For an overall rate expression in terms
of the surface overpotential, set the rate to zero and identify the open-circuit potential U. This should
reduce to a Nernst expression in which only ratios of rate constants occur, in the form of equilibrium
constants. Because there can be only one Nernst equation for the overall reaction, independent of the
catalytic nature of the electrode surface (Pt or Hg or some other material), this implies relationships
among the equilibrium constants for the three individual steps.

Example of the Volmer–Tafel (VT) Mechanism

Here we develop an overall rate expression for the hydrogen electrode reaction proceeding according to
the following mechanism. The Tafel reaction 8.44 is relatively rapid and can be treated as equilibrated,
while the Volmer reaction 8.42 determines the overall rate. In particular, we show the exponential
dependence on the surface overpotential 𝜂s and discuss how the exchange current density is defined.
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Solution The rate expression for the Tafel reaction would be

r3 = kfΓ2
ad − kbpH2

(Γmax − Γad)2, (8.45)

where Γmax −Γad is the surface concentration of unoccupied catalytic sites, which constitute a
participant in the electrode reaction. Since this reaction can be treated as equilibrated, we have

Γad
Γmax − Γad

= (
kb

kf
pH2

)
1∕2

=
√

P, (8.46)

or
Γad =

Γmax

√
P

1 +
√

P
and Γmax − Γad =

Γmax

1 +
√

P
, (8.47)

where P, a dimensionless partial pressure of H2, has been defined by equation 8.46.
The rate expression for the Volmer reaction would be

r1 = ka1Γad exp [
(1 − 𝛽1)FV

RT
] − kc1(Γmax − Γad)cH+ exp [

−𝛽1FV
RT

] . (8.48)

Substitution of equation 8.47 and recognition of the relationship of i to r1 give

in
F

= r1 =
Γmax

1 +
√

P

[
ka1

√
Pe(1−𝛽1)FV∕RT − kc1cH+e−𝛽1FV∕RT

]
. (8.49)

At open circuit, the Nernst equation results

U = RT
F

ln
⎡
⎢
⎣

kc1cH+

ka1

√
P

⎤
⎥
⎦
, (8.50)

showing the correct dependence on hydrogen partial pressure and on hydrogen ion concentration. This
expression is independent of reaction mechanism, and therefore certain combinations of equilibrium
constants are related to each other and to the standard cell potential. Thus, U𝜃 follows the approximate
relationships:

FU𝜃

RT
∼ ln

⎡
⎢
⎣

kc1

ka1
(

kf

kb
)

1∕2
⎤
⎥
⎦
= ln

⎡
⎢
⎣

kc2

ka2
(

kb

kf
)

1∕2
⎤
⎥
⎦
. (8.51)

There are three elementary steps in the mechanism, but only two thermodynamically independent
reactions and only one overall reaction (which does not mention the adsorbed hydrogen species).
Introduction of the surface overpotential 𝜂s = V−U into equation 8.49 yields

in = i0V [e(1−𝛽1)F𝜂s∕RT − e−𝛽1F𝜂s∕RT ], (8.52)

where

i0V =
FΓmax(ka1

√
P)𝛽1(kc1cH+)1−𝛽1

1 +
√

P
. (8.53)

Equation 8.52 is of the Butler–Volmer form. Different catalytic metals have different values of the
equilibrium constant for hydrogen adsorption as well as different rate constants for the components of
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the mechanism. Again, the overall thermodynamics is independent of the catalysis. Figure 8.6 shows
the current–potential relationship for the hydrogen-evolution reaction on various electrode materials.
It is noteworthy that the Tafel slopes are so similar and that the magnitude of the exchange current
density varies by so many orders of magnitude.

Equation 8.52 would be nearly identical to the equation for the HT mechanism (see Problem 8.10),
if the 𝛽 values were the same for the two charge-transfer reactions. However, the exchange-current
density would have a different dependence on the hydrogen partial pressure in the two cases, but the
dependence on the hydrogen ion concentration would then be the same.

The above reaction analysis should be contrasted to what we would get if we had analyzed the
overall reaction

H2 ⇌ 2H+ + 2e−, (8.54)

as though it were an elementary step. Then we would write

in
2F

= r = kapH2
exp (

𝛼aFV
RT

) − kcc2
H+ exp (

−𝛼cFV
RT

) . (8.55)

This relation has different reaction orders at constant V from what we derived in the analysis of the
reaction mechanism. Furthermore, the sum of 𝛼a and 𝛼c is 2 here but only 1 for equation 8.52.∗

Second Example—The HV Mechanism

Now we develop an overall rate expression for the hydrogen reaction proceeding according to a
mechanism where the Volmer reaction 8.42 is equilibrated, while the Heyrovský reaction 8.43 is rate
determining. In this case, a true Butler–Volmer equation does not result.

Solution Again, we use 1 for the Volmer reaction and 2 for the Heyrovský reaction (the number
3 being reserved for the Tafel reaction). The rates of the relevant two reactions are given by
equation 8.48 and

r2 = ka2pH2
(Γmax − Γad) exp (

(1 − 𝛽2)FV
RT

) − kc2ΓadcH+ exp [
−𝛽2FV

RT
] . (8.56)

Each of these reactions occurs once when the overall reaction of hydrogen oxidation occurs once;
hence, in/2F = r1 = r2. Take the first reaction to be virtually equilibrated:

Γad
Γmax − Γad

=
kc1

ka1
cH+ exp (−FV

RT
) = D, (8.57)

which also defines D, a potential-dependent equilibrium constant. We can also solve for both Γad and
Γmax −Γad, which occur in the other kinetic equation 8.56:

Γad =
ΓmaxD
1 + D

and Γmax − Γad =
Γmax

1 + D
. (8.58)

∗Reaction orders are conventionally defined at constant electrode potential V (relative to a reference electrode of a given
kind), not at constant surface overpotential. Figure 8.5 is plotted so that one can see the reaction order.
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Figure 8.6 Tafel plot of surface overpotential for the hydrogen-evolution reaction on various electrode materials.
Source: From Vetter 1961.[1] Data from different sources can differ substantially.
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Thus, equation 8.56 becomes

in
2F

=
Γmax

1 + D
{ka2pH2

exp [
(1 − 𝛽2)FV

RT
] − kc2DcH+ exp [

−𝛽2FV
RT

]} . (8.59)

At open circuit,

ka2pH2
exp (2FU

RT
) = kc2c2

H+
kc1

ka1
(8.60)

or

U = RT
2F

ln (
kc2kc1c2

H+

ka2ka1pH2

) , (8.61)

which has the correct concentration and partial-pressure dependence for the Nernst equation. With the
surface overpotential 𝜂s, defined by equation 8.21, the rate expression becomes

in = iHV

exp
[ (1−𝛽2)F𝜂s

RT

]
− exp

(−(1+𝛽2)F𝜂s

RT

)

1 +
√

Pe−F𝜂s∕RT
, (8.62)

where

iHV = 2FΓmax(ka2pH2
)(1+𝛽2)∕2(

kc2kc1

ka1
c2
H+)

(1−𝛽2)∕2

. (8.63)

The dimensionless partial pressure of H2, P, is again given by equation 8.46 when equation 8.51 is used
to relate the equilibrium constants. Equation 8.62 is not completely in the form of the Butler–Volmer
equation since the denominator depends on 𝜂s. The asymptotic forms are given below:

in = iHV exp [
(1 − 𝛽2)F𝜂s

RT
] for 𝜂s ≫

RT
F

, (8.64)

and

in = −
iHV√

P
exp (

−𝛽2F𝜂s

RT
) for 𝜂s ≪ −RT

F
. (8.65)

Figure 8.7 shows the complicated current–potential behavior. The true exchange-current density for
this case can be taken to be the forward or backward rate in equation 8.62 when 𝜂s = 0:

i0H =
iHV

1 +
√

P
. (8.66)

An alternative would be to use iHV as a term called the exchange-current density, making this look a
little bit more like Problem 8.1.

Three Steps Together The above two examples show how to simplify the reaction mechanism
by considering one step to be rate determining and another to be equilibrated, with the third step being
of negligible importance. This leads to a total of six mechanisms that can be created from the three
steps.

The above examples also illustrate general principles on the analysis of a reaction mechanism by
means of simplifying assumptions:

1. One (or more) of the elementary steps can be taken to be equilibrated (see Problem 8.1).
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2. Reaction rate constants come in three sizes:

(a) Large (which implies that the reaction is equilibrated),

(b) Small (which implies that the reaction can be ignored),

(c) Intermediate (which implies that the rate expression must be accounted for and also suggests
that this reaction is a candidate for the rate-determining step).

3. The apparent rate-determining step can change with applied potential because some rate constants
are effectively potential dependent (see Figure 8.7).

4. The ratio of forward and backward rate constants is always an equilibrium constant and, therefore,
is determined by thermodynamics alone. It is better to take this into account explicitly. (The
Butler–Volmer equation does this; equilibrium is built into U while i0 is a kinetic quantity.)

5. A computer can be used to analyze complex reaction sequences. A large number of rate
parameters may appear, but points 2a and 2b can eliminate some from real consideration.

When the simplifying assumptions are not considered appropriate, one can treat (particularly with
the aid of computers) all of the reaction steps simultaneously, according to their specific rate constants.
Without going into great detail, we discuss some general aspects. With three steps, we can focus on
two ratios of rate constants. Ratios establishing the relative rates of reactions 1 and 3 and of reactions
2 and 1 are

𝜆1 =
ka1

kfΓmax
, 𝜆2 =

kc2

kc1
. (8.67)
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Figure 8.7 Tafel plot of overpotentials for the hydrogen electrode when the Heyrovský reaction
(H+ + e− +Had →H2) is the rate-determining step and the Volmer reaction is rapid.
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Figure 8.8 Map of the relative rates for the three elementary steps involved in the hydrogen electrode reaction.
The three intersecting lines give the directions for increasing rate constants for the Volmer (V), Heyrovský (H),
and Tafel (T) reactions. The other arrows indicate where the six limiting cases can be found, the first letter standing
for the rate-determining step and the second letter showing the equilibrated step.

This permits us to make a parameter map as in Figure 8.8, using log(𝜆1) and log(𝜆2) as the
coordinate axes.

In Figure 8.8, the three intersecting lines give the directions for increasing rate constants for the
Volmer (V), Heyrovský (H), and Tafel (T) reactions. Any particular electrode, such as Pt or Hg, can
be represented by a point on this diagram. When all three steps are important, the point would lie
relatively close to the origin, where the three lines intersect. When a particular step is equilibrated, its
rate constants are relatively large, and the point would be found out along the direction of the arrow
for that step. Correspondingly, when the reaction is slow, the point would be located in the opposite
direction along this line.

The six simplified mechanisms can be represented by the arrows located between the three
intersecting lines representing the steps themselves. For example, the HV mechanism has the Volmer
step equilibrated and therefore lies along the arrow direction for the V line. The Tafel step is
unimportant, and therefore the HV arrow lies adjacent to the negative arrow direction for the T line.
The Heyrovský reaction becomes the rate-determining step; the H line is more or less perpendicular to
the arrow for the HV mechanism.

In addition to the rate-constant ratios 𝜆1 and 𝜆2, the algebra in treating the reactions simultaneously
is simplified with a dimensionless partial pressure of hydrogen and a dimensionless concentration of
hydrogen ions:

P =
kb

kf
pH2

, C =
kc1

ka1
cH+. (8.68)

Dimensionless potential and overpotential can also be introduced, and the coverage can be made
dimensionless with Γmax. To proceed, one needs to write expressions for the rates of the three
elementary steps (already done in equations 8.45, 8.48, and 8.56 and identify the net current density in
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in terms of these three rates. A balance on the adsorbed species can be regarded as the governing equation
for the surface coverage. These steps have already been carried out for two specific mechanisms, VT
and HV. The resulting current–potential curves can be even more complicated than Figure 8.7, because
of the greater complexity of considering the three steps simultaneously.

Of the six reaction mechanisms represented by the small arrows in Figure 8.8, two give pure
Butler–Volmer equations, namely the VT mechanism (treated in an earlier section) and the HT
mechanism. Two show a more complicated behavior because of the potential dependence of rate
constants; these are the HV mechanism (treated in the preceding section) and the VH mechanism.
The remaining two mechanisms, the TH and the TV mechanisms, show a limiting-current behavior,
possibly because the Tafel step is nonelectrochemical. (Note that this is a kinetic limiting current, not
a transport limiting current.)

8.4 EFFECT OF DOUBLE-LAYER STRUCTURE

The double-layer structure can have an effect on the overall behavior of the interface, first, by
superimposing a capacitive effect on top of the electrode kinetics of the electrode reaction itself. This
means that when the potential of the electrode is varied, the current that flows is partly due to charging
the double-layer capacity and partly due to a faradaic reaction. The capacity of the double layer in the
absence of a faradaic reaction is discussed in Chapter 7.

We might now express the current density i for an electrode of constant area as

i = f (𝜂s, ci) + C
d𝜂s

dt
, (8.69)

where C is the double-layer capacity, 𝜂s is the surface overpotential, ci is the concentration of species i
just outside the double layer, and f is a function describing the kinetics of the electrode reaction (see
equation 8.5).

The double layer can behave like a capacitor that is in parallel with the electrode reactions, so that the
current passing from the electrode to the solution either can take part in charge-transfer reactions or can
contribute to the charge in the double-layer capacitor. It is this capacitive effect that reduces electrode
polarization when alternating current is used for conductivity measurements. The double-layer capacity
can also depend on the concentrations ci and the electrode potential V (see Figures 7.15 and 7.16).

Many experiments described in the literature have involved a growing mercury drop, in which the
electrode area changes with time. In this case, the last term in equation 8.69 should be replaced by

1
A

dq A
dt

,

where q is the surface charge density on the electrode side of the interface and A is the instantaneous
electrode area. (Recall that i is the current density flowing from the electrode into the solution.)

Equation 8.69 is written for constant concentrations ci adjacent to the electrode surface. In this case,
the equilibrium potential U is constant, and

dV
dt

=
d𝜂s

dt
. (8.70)

When the concentrations vary, the last term in equation 8.69 should, strictly, be replaced by dq/dt
because q depends on ci as well as V. This complex transient situation has been explored by Appel.[7]
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When more than one reaction occurs, the first term in equation 8.69 should be replaced by f(V, ci),
where f now describes the faradaic current due to all the reactions at the electrode potential V (see
Section 8.7). The last term can also be replaced by C dV/dt.

The distinction between the contributions of the charging current and the faradaic current to the
overall current density i in equation 8.69 may be subtle since one can measure only the overall current
density directly. Ordinarily, one would try to measure f by making observations under steady conditions
where the second term in equation 8.69 is zero. With the assumption that f has the same dependence on
𝜂s and ci for unsteady conditions in the interface, the double-layer capacity can then be measured by
superimposing a small alternating potential. The situation with a growing electrode area is even more
complex and has been the subject of some discussion in the literature.[8–11]

The second way in which double-layer structure enters into electrode kinetics is in the method of
application of the models of Section 8.3 to an elementary step. Long ago, Frumkin[12] proposed that
the diffuse part of the double layer should be treated separately from the charge-transfer reaction.
Specifically, it was suggested that the concentrations ci which enter into equation 8.69 should be the
concentrations c0

i at the inner limit of the diffuse layer and that the potential 𝜂s in the first term in
equation 8.69 should be replaced by 𝜂s −Φ2, where Φ2 is the potential at the inner limit of the diffuse
layer (see Figure 8.2).

The value of Φ2 is to be taken at zero current (to eliminate the ohmic potential drop) but at the
same electrode potential V as involved during the passage of current. It has been shown[13–15] that the
equilibrium diffuse layer (see Section 7.4) is disturbed to only a minor extent by the passage of current.
Thus, Φ2 is still related to the surface charge density q2 in the diffuse layer by equation 7.38 (ci being
represented as ci∞ there), and c0

i is related to ci by

c0
i = ci exp (−

ziFΦ2

RT
) (8.71)

(compare equation 7.30).
It is difficult to know a priori the magnitude of the surface charge density q2 in the diffuse layer

since this is determined in large part by interaction with the rest of the interface (metal surface and
inner Helmholtz plane), the whole of which is electrically neutral. It is not the value of q2 in the same
system at equilibrium (zero current); it depends on the electrode potential in a way that is not readily
determined during the passage of current. The discussion in Section 23.4 can help to resolve these
issues by showing how kinetic rate constants for anodic and cathodic processes contain the information
related to charge distributions in the system.

The structure of the diffuse layer is studied best with an ideally polarizable electrode in the absence
of a faradaic current and, hence, in the absence of any reacting species. In practice, we investigate
the double layer with the nonreactive supporting electrolyte alone. Then, we add a small amount of
the reactant and assume that q2 and Φ2 (at a given electrode potential) are not changed by the small
addition or the small current now being passed.

One can also object that the correction is based on the microscopic theory of the diffuse layer
and does not have a firm macroscopic basis. For these reasons, we do not expect that the correction
can be applied with any certainty to solid electrodes, significant concentrations of reactants, or high
ionic strengths. Nevertheless, the Frumkin correction does give an impressive qualitative account
of complicated electrode behavior that can be attributed to double-layer structure, as reviewed by
Parsons.[16] Reduction of anions or oxidation of cations can lead to particularly interesting double-layer
effects because the reacting ion tends to be repelled by the intense electric field in the diffuse double
layer, but this must be qualified by consideration of the potential of the point of zero charge relative to
the open-circuit potential for the reaction.
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8.5 THE OXYGEN ELECTRODE

The oxygen electrode is the most complicated electrode commonly encountered. One reason is that the
reaction is so irreversible, that is, the exchange-current density is so low that even traces of impurities
can successfully compete with it. Consequently, the reversible, equilibrium oxygen potential could not
be successfully observed until impurities had been rigorously excluded.[17]

A second reason for the complicated behavior of the oxygen electrode is that the overall reaction

O2 + 4H+ + 4e− ⇌ 2H2O (8.72)

can be regarded as the result of two simple reactions,

O2 + 2H+ + 2e− ⇌ H2O2 (8.73)

H2O2 + 2H+ + 2e− ⇌ 2H2O, (8.74)

in which hydrogen peroxide is a relatively stable and detectable intermediate. This has the consequence
that the heterogeneous decomposition of hydrogen peroxide

2H2O2 ⇌ 2H2O + O2 (8.75)

can be regarded as a result of the electrochemical reactions 8.73 and 8.74, the first reaction proceeding
anodically and the second reaction proceeding cathodically (the second proceeding as written but with
the first proceeding in the opposite direction, so that the electrons cancel in equation 8.75).

Furthermore, the hydrogen peroxide can diffuse away from the electrode at either an anode or a
cathode, and depending on the relative rates of reactions 8.73 and 8.74, four or fewer electrons are
required to produce or consume a molecule of oxygen. Since reaction 8.73 is generally inherently faster
than reaction 8.74, one expects to observe peroxide formation in the cathodic consumption of oxygen,
but not in the anodic process. Also, an appreciable time may be needed to get a steady current at a given
cathodic potential until a steady bulk concentration of peroxide can build up. Compare Problem 8.1
and the text below equation 8.13.

A third complicating factor for the oxygen electrode is that there is an alternative reaction path
involving adsorbed species and not the production of hydrogen peroxide. This leads to a fourth
complication. The adsorbed layers can become so thick and are so slow to respond to changes in
electrode potential that measurements can easily be carried out at the same potential on surfaces of
quite different character. Also, the current for the reaction of these layers can be appreciable compared
to the current for the primary reaction.

There are still other complications. Some metals, notably platinum, palladium, and rhodium, can
dissolve oxygen to an appreciable extent. This can contribute to a hysteresis and is noted particularly in
charging curves. Many metals, even gold, tend to corrode near the oxygen potential. Surface oxides are
also responsible for the passivation characteristics of ferrous alloys, so that the reaction rate depends
strongly on the previous history of the electrode. This behavior of the oxygen electrode is reviewed by
several authors.[18–21]

The mechanism of Rossmeisl et al. [22] for the oxygen electrode involves only heterogeneous
reactions, with no intermediate like peroxide leaving the electrode. It involves three adsorbed
intermediates, four if you count empty catalyst sites. The reaction mechanism in acid media is

∗ + H2O ⇌ ∗OH +H+ + e−, (8.76)
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∗OH ⇌ ∗O + H+ + e−, (8.77)

∗O + H2O ⇌ ∗OOH +H+ + e−, (8.78)

∗OOH ⇌ ∗ + O2 +H+ + e−, (8.79)

where * denotes a site on the catalyst surface, * by itself being an empty site. Water molecules are
adsorbed with reactions that emit protons to the solution and electrons to the electrode. There is only
one electron involved in each step, and only a few molecular species. With this reaction mechanism,
the catalyst is returned to its original state after performing the overall reaction.

The analysis of the mechanism and the derivation of current/potential curves are somewhat similar
to those given in Section 8.3 for the hydrogen electrode reaction involving three elementary steps and
only one adsorbed species. The Butler–Volmer rate equation is written for each elementary step.

r1 = ka1Γ∗ exp (
(1 − 𝛽1)F

RT
V) − kc1Γ∗OHcH+ exp (

−𝛽1F
RT

V) , (8.80)

r2 = ka2Γ∗OH exp (
(1 − 𝛽2)F

RT
V) − kc2Γ∗OcH+ exp (

−𝛽2F
RT

V) , (8.81)

r3 = ka3Γ∗O exp (
(1 − 𝛽3)F

RT
V) − kc3Γ∗OOHcH+ exp (

−𝛽3F
RT

V) , (8.82)

r4 = ka4Γ∗OOH exp (
(1 − 𝛽4)F

RT
V) − kc4Γ∗pO2

cH+ exp (
−𝛽4F

RT
V) . (8.83)

It is common in reaction analysis in aqueous media to take the activity of water to be unity, and not
show it explicitly in the rate equation. It is also common in heterogeneous reaction analysis to divide
surface concentrations by the total number of sites per unit area and hence to use fractional coverage.

𝜃i = Γi∕Γmax. (8.84)

The value of Γmax eventually gets absorbed into rate constants, but one should expect the surface area
of a dispersed catalyst to need to be accounted for also.

The unknowns now amount to four reaction rates rl and four surface concentrations Γi. The
parameters include four symmetry factors 𝛽l, which are generally taken to be 0.5 for elementary steps,
unless a lot of experimental data is available to give better values. There are eight rate constants kl,
but we generally prefer to count four rate constants kal and four thermodynamic equilibrium constants
Kl = kal/kcl. The thermodynamic constants come from a different (equilibrium) source of information
and need to be consistent with each other and with known values for the thermodynamics of the overall
reaction (the oxygen electrode reaction in the present case). This is accomplished straightforwardly by
assigning a secondary reference thermodynamic quantity to each species, as done in Chapter 2 and
carried further in Chapter 23. The adsorption equilibrium constants can be expected to be different on
different electrode materials. The situation can be compared with that for the hydrogen electrode (see
the latter part of Section 8.3 and particularly Figure 8.6). For this section, and for the chapter generally,
the bulk concentrations are taken to be known constants, like cH+ and pO2

. When transport limitations
are involved, transport phenomena from Part C need to be treated, although a diffusion-layer thickness
is used in Section 8.7. See also Chapters 11 and 17.
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Four more equations are needed. These can be expressed as material balances on the adsorbed
species and can be written, for a steady process, as

dΓ∗

dt
= 0 = r4 − r1, (8.85)

dΓ∗OH
dt

= 0 = r1 − r2, (8.86)

dΓ∗O
dt

= 0 = r2 − r3, (8.87)

and
dΓ∗OOH

dt
= 0 = r3 − r4. (8.88)

These equations are redundant, and any one of them should be replaced by the overall site balance

Γ∗ + Γ∗OH + Γ∗O + Γ∗OOH = Γmax. (8.89)

A computer is generally helpful in solving the resulting eight simultaneous nonlinear algebraic
coupled equations. One wants to use linearization over the nonlinearities to produce an iteration method
that converges quadratically, as discussed in Appendix C. Here it is easier because the unknowns do
not extend over a spatial domain, as they do in Appendix C, but the method is similar.

After the rates and surface concentrations are obtained, with a series of values of the electrode
potential V, the current density is calculated by adding the rates for the four reactions. The number of
electrons is the same in all four reactions, and the formula is

in∕F = r1 + r2 + r3 + r4 = 4r1. (8.90)

The procedure is the same in principle as that used in the latter part of Section 8.3 for the hydrogen
electrode reaction.

With experimental data on a catalyst of choice, the parameters listed above would be adjusted to
give the best fit of the data. Rossmeisl et al. [22] help by calculating the (potential-dependent) free
energy of adsorption of the various surface species by simulating equilibrated species of interest on the
surface of several different catalysts. This gives us the equilibrium constants and eliminates the need
for them to remain as fitting parameters. These free energies are given in Table 8.1 for three oxides,[22]

RuO2, IrO2, and TiO2, and for two metals,[23] Pt and Au. The values for the oxides interest us more
because oxides are more likely to be stable at the potential of the oxygen electrode. These values
correspond to the open-circuit potential of the O2 electrode relative to the H2 electrode (1.229 V).

A valuable lesson is provided by the consideration of the catalysis of a series of reactions that
comprise the mechanism of an electrode reaction. It applies both to the present oxygen electrode
reaction and to the hydrogen reaction treated in the latter part of Section 8.3. A high-energy (or
a low-energy) intermediate leads to very poor kinetics, without even invoking the Butler–Volmer
equation. The free energy levels for the intermediates for RuO2 are plotted in Figure 8.9 as a function
of potential. The data at potentials different from the open-circuit potential were also obtained directly
from simulations.[22] The reaction path can be considered to be from left to right, since for the
mechanism considered here each of the four reactions must occur in sequence, evolving oxygen from
left to right and reducing oxygen from right to left. When there is a high-energy intermediate, it
constitutes a state which stands in the way of the progression of the reaction, much like the active
intermediate shown at the top of the plot of energy versus reaction coordinate in Figure 8.3 or 8.4.
With a high-energy intermediate, the left (uphill) reaction becomes the rate-limiting step, and the right
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TABLE 8.1 Free energy of surface species at the open-circuit potential of the oxygen electrode
(p𝐎2

= 1 bar, c𝐇+ = 1 mol/L), 1.229 V, with respect to the standard H2 electrode

State RuO2 IrO2 TiO2 Pt Au

* 0 0 0 0 0
*OH 0.08 −0.77 0.965 0.67 0.27
*O 0.23 −0.75 2.09 0.84 0.44
*OOH 0.59 −0.20 1.62 108 105
*With O2 0 0 0 0 0

Values from Refs. [22, 23] are adjusted slightly to conform to the known value of the standard potential of the oxygen
electrode. The unit is eV; multiply by 96.487 to get kJ/mol.

1.6 V

*OH* *OOH *O2*O

1.23 V

1.0 V

1.5

0.5

E
ne

rg
y 

(e
V

)

–0.5

–1.5

–1

0

1

Figure 8.9 The potential-dependent surface free energies of surface species in the oxygen electrode on RuO2.
Adopted from Rossmeisl et al. 2007.[22] Adapted with permission of Elsevier. Potentials are relative to the normal
hydrogen electrode. See also Problem 8.13.

reaction becomes the rate-limiting step in the opposite direction. With a low-energy intermediate, the
reverse is true; uphill is always more difficult, and energy is not recovered going downhill. The energy
landscapes at three different electrode potentials V are plotted in Figure 8.9 to illustrate how the ease or
facility of the reaction changes with potential. This can be compared with the dashed line in Figure 8.4.

Figure 8.10 shows current–potential curves for RuO2. Ruthenium oxide is the best catalyst for
oxygen evolution, because the adsorbed intermediates in the sequence lie more on the same energy
level with the reactants and the products. Iridium oxide is somewhat worse. Iridium oxide is likely
to be preferred in practice because it has a higher degree of stability than ruthenium oxide. Titanium
oxide is worse yet. Marshall et al. [24] synthesize and test alloys of RuO2 and IrO2 and conclude that
the best is that with 40% RuO2.

Rossmeisl et al. [22] report that for electrode potentials greater than 1.6 V, the adsorption free
energies are all going downhill for oxygen evolution and that therefore high rates can be expected.
Figure 8.9 shows this decreasing free energy for the curve labeled 1.6 V. Figure 8.10 gives a more
complete picture; it shows current densities as functions of electrode potential for both anodic and
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Figure 8.10 Calculated current–potential curves for oxygen reduction and evolution on a Tafel plot. The values
for RuO2 use equilibrium constants slightly modified from those in Ref. [22] (to make the open-circuit potential
agree with that in Table 2.2). The ideal system uses unity values for K1, K2, K3, and K4, thereby giving a fractional
coverage of 0.25 for each of the four surface species. This figure is very similar to Figure 8.7, but with the axes
rotated by 90∘.

cathodic reactions. It also shows that the anodic rate reaches the ideal curve at a potential of about
1.8 V and follows the ideal curve at higher potentials. These curves might be said to be in “arbitrary
units;” increase of all the rate constants (ka1, ka2, ka3, and ka4) by an order of magnitude increases
all the current densities by the same factor, including those on the ideal curve. For these simulations,
the rate constants kal are all given the same value. (The graph changes substantially if the cathodic
rate constants kcl are made the same instead of the anodic rate constants. The ideal rate is no longer
reached at 1.8 V.) Changing the ratios would change the shape of the curves, and the curve with all
the equilibrium constants equal to 1 would no longer be ideal because the four reactions would no
longer be equally difficult and the surface coverages would no longer all equal 0.25 away from the
open-circuit potential.

This example encapsulates a lesson in catalysis. The better catalysts are those that have free energies
of adsorption of intermediates that lie on the path from desired reactant to desired product. Where these
energies lie depends on the characteristics of the material. (This is embodied somewhat in Figure 8.8
for the hydrogen electrode, where each catalytic metal shown in Figure 8.6 can be imagined to yield
parameters for the three reactions, the Tafel, the Volmer, and the Heyrovský reactions and therefore
define a point or dot in Figure 8.8. Reactions which are equilibrated, those which are absent, and those
which are rate limiting are defined by the positions of these points in Figure 8.8 and are labeled by the
mechanism types.)

The oxygen electrode is discussed extensively in Section 18.5 in connection with an important
application, cathodic protection of pipelines and other steel structures.
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8.6 METHODS OF MEASUREMENT

One wants to determine the composition and overpotential dependence of the current density in
electrode kinetics, that is, to find how f in equation 8.5 depends on ci and 𝜂s. The electrochemist
is interested in elucidating the mechanism of the electrode reaction. The electrochemical engineer
is interested in predicting the behavior of practical electrochemical systems. This means that the
electrochemist can work with high concentrations of supporting electrolyte on the reproducible surface
of liquid mercury in highly purified solutions, whereas the electrochemical engineer needs values of
the current density for electrode surfaces and solution compositions (including impurities) that are
likely to be encountered.

The electrochemist also wants to study increasingly fast reactions (larger exchange current densities),
which becomes increasingly more difficult due to the ohmic potential drop and the concentration
variations near the electrode surface. On the other hand, from the point of view of analyzing the
overall system behavior, we can assume that the kinetics become unimportant as the electrode reaction
becomes too fast to measure conveniently.

For relatively slow reactions, the function f in equation 8.5 can be measured directly under steady
conditions by varying the electrode potential and the composition adjacent to the electrode. For faster
reactions, there is a preference to use stirred solutions with known hydrodynamic characteristics or to
use transient methods. The known hydrodynamic conditions allow us to calculate the composition at
the electrode surface, where it may be significantly different from the bulk solution composition (see
Sections 17.2, 17.8, and 17.9).

Perhaps the simplest transient procedure is to interrupt the current after a steady condition at the
interface has been developed. This may occur before the concentrations have changed appreciably
from their initial values, in which case the convection is unimportant. Interrupter methods are useful
for deposition and dissolution reactions because they allow the character of the surface to be more
carefully controlled, since a smaller charge need be passed.

Interruption of the current is also supposed to eliminate the ohmic potential drop from the
measurement, while the surface overpotential is maintained for a while by the charge in the double-layer
capacitor. Systems used for interruption (and other transient methods) should have a uniform primary
current distribution over the electrode of interest (see Section 18.2), since otherwise the current density
in the solution may not be zero everywhere after interruption of the current to the electrode.[25–27]

An ideal geometry in this respect is the sphere, provided that the means of support is constructed so
that it does not interfere with the current distribution. Mattsson and Bockris[5] used such a system to
study the copper reaction. A growing mercury drop is another common example of this geometry and
has the further advantages of a reproducible surface and known hydrodynamic conditions that further
promote a uniform rate of mass transfer to the electrode (see Section 17.9).

Rotating cylinders (see Section 17.8) also provide a uniform primary current distribution and
uniform, known conditions of mass transfer. With the sphere and cylinder geometries, the ohmic
potential drop can be calculated easily, in case interrupter methods are not to be used or one wants a
check on the potential change when the current is interrupted.

Microelectrodes in the shape of spheres or disks provide another means to reduce ohmic drop in
the solution. Methods of studying electrode kinetics are reviewed in Refs. [1, 28, 29] and include a
variety of possibilities among the transient procedures. Mention should be made of the use of a rotating
ring–disk system to detect relatively unstable intermediates in the electrode reaction. For example, the
presence of hydrogen peroxide produced in carrying out the oxygen reaction on a disk electrode (see
Section 8.5) can be quantitatively determined by reacting the hydrogen peroxide back to oxygen on a
concentric ring electrode mounted in the same rotating surface as the disk electrode[30, 31] (see Figure
18.22).
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8.7 SIMULTANEOUS REACTIONS

We discussed a single electrode reaction, but this idealization is not always achieved. If two or more
reactions can occur simultaneously, it is simplest to regard each reaction to occur independently, and
the net current density is the sum of the current densities due to the several reactions.[32–35] Under
these conditions, the open-circuit potential is not an equilibrium potential corresponding to any of
these reactions but is a mixed or corrosion potential. At open circuit, equilibrium does not prevail;
one reaction proceeds anodically and another cathodically, so that the net current density is zero.
A potential positive of the equilibrium potential for a reaction will drive the reaction in the anodic
direction; a more negative potential will drive the reaction in the cathodic direction. The net rates of
the cathodic and anodic reactions must balance by conservation of charge. The mixed potential on a
surface will therefore be determined by the kinetics of the reactions. By such a mixed potential, even
traces of impurities can obscure the measurement of the equilibrium potential for the oxygen electrode
(see Section 8.5).

The same thing occurs in corrosion processes. The anodic process may be dissolution of iron

Fe → Fe2+ + 2e−, (8.91)

and the cathodic process may be the reduction of oxygen

O2 + 4H+ + 4e− → 2H2O, (8.92)

the two processes being coupled so that the electrons produced in equation 8.91 are consumed in
equation 8.92, leaving a zero net current for the piece of iron. Thus, the rate of corrosion may be
determined by the rate of mass transfer of oxygen to the corroding surface. Corrosion in aqueous media
is often an electrochemical process.

All corrosion processes do not proceed by simultaneous reactions on the same surface, however.
When two dissimilar metals are in contact, an electrochemical cell can easily be established. The
anodic dissolution process may occur predominantly on one metal, while the cathodic process of
oxygen reduction or hydrogen evolution occurs predominantly on the other metal. In other cases—for
example, pitting corrosion—the anodic and cathodic processes may occur on different parts of the same
metal. Analysis of these systems requires consideration of the ohmic potential drop and concentration
variations in the solution[35, 36] and cannot be confined to the electrochemical reactions at the surface.

Simultaneous reactions are also encountered when, for example, the limiting current for copper
deposition is exceeded and hydrogen evolution begins. This is shown in Figures 1.12 and 1.13.

The behavior of passivating metals[35, 36] in corroding systems deserves special mention. For these
metals, an increase in the severity of the corrosion environment can lead to passivation and a reduction
in the corrosion rate. This can be achieved by making the metal more positive, which is the basis
of anodic protection. For the iron–oxygen couple, an increase in stirring, which promotes the rate of
oxygen transfer to the surface, can passivate the metal and decrease the corrosion rate.

Let us finally treat the oxygen reduction reaction, regarding equations 8.73 and 8.74 as simultaneous
reactions. We shall imagine that a stagnant diffusion layer of thickness 𝛿 is adjacent to the metal,
and we denote oxygen and hydrogen peroxide as species A and B, respectively. Since reaction 8.73 is
inherently faster than reaction 8.74, the hydrogen peroxide produced in the first reaction can diffuse
away from the surface instead of reacting in the second reaction. The material balances for oxygen and
hydrogen peroxide take the form

−
i2
2F

= DA

c∞A − c0
A

𝛿
, (8.93)
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i3 − i2
2F

= −DB

c∞B − c0
B

𝛿
. (8.94)

Equation 8.93 represents the rate of diffusion of oxygen to the surface, this oxygen being consumed
in reaction 8.73. (Subscripts 2 and 3 denote reactions 8.73 and 8.74, respectively.) Equation 8.94
represents the rate of diffusion of hydrogen peroxide away from the surface, this being equal to the
difference between the rates at which it is being produced in reaction 8.73 and consumed in reaction
8.74.

At 25∘C in water, the saturation concentration of oxygen is 1.26× 10−3 mol/liter at a partial pressure
of one atmosphere (corrected for the vapor pressure of water but not for the fugacity coefficients in the
gas phase), and the diffusion coefficient is 1.9× 10−5 cm2/s. Davis et al.,[37] among others, report the
saturation concentration and the diffusion coefficient as functions of the concentration of potassium
hydroxide.

In acidic or neutral media, let us assume that reactions 8.73 and 8.74 are pseudo first order in oxygen
and peroxide and write

i2
2F

= ka2c0
B exp (

𝛼a2F
RT

V) − kc2c0
A exp (−

𝛼c2F
RT

V) , (8.95)

i3
2F

= ka3 exp (
𝛼a3F
RT

V) − kc3c0
B exp (−

𝛼c3F
RT

V) , (8.96)

where the k’s may now be pH dependent and where the electrode potential V is measured relative to a
hydrogen electrode in the same solution (see Section 5.7).

For sufficiently negative potentials, the anodic terms in equations 8.95 and 8.96 are negligible, and
this seems particularly appropriate for the relatively irreversible oxygen electrode. In addition, we take
𝛼c2 = 𝛼c3 = 0.5 and c∞B = 0. With these approximations, equations 8.93 to 8.96 can be combined to
express the overall current density as

−
i2 + i3

2F
𝛿

c∞A DA
= e−𝜙

1 + e−𝜙
(1 + 1

1 + Ke𝜙
) , (8.97)

where

𝜙 =
𝛼c2FV ′

RT
, (8.98)

V ′ = V − RT
𝛼c2F

ln
kc2𝛿
DA

, (8.99)

and
K =

DBkc2

DAkc3
. (8.100)

Equation 8.97 is plotted in Figure 8.11.
Figure 8.11 shows limiting currents for the reduction of oxygen and hydrogen peroxide (compare

Figures 1.12 and 1.13). For small values of K, the processes occur simultaneously; for large values of
K, the processes become clearly distinguishable. For either very small or very large values of K, the
current reaches half of its plateau value when V = (RT/𝛼c2F) ln(kc2𝛿/DA), thus providing a method of
determining kc2. This value of V is known as the half-wave potential.

The position of the second wave relative to the first depends on the value of K, that is, on the
slowness of reaction 8.74 relative to reaction 8.73. Polarographic curves for the reduction of oxygen
on mercury[38, 39] suggest that K has a value of about 3× 107 for this system. A more exact analysis
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Figure 8.11 Theoretical polarographic curves for the reduction of oxygen, with neglect of the anodic reaction
terms. In this, K = DBkc2/DAkc3.

would include the possibility of 𝛼c2 and 𝛼c3 being different from each other and different from 0.5.
Also, the anodic term in equation 8.95 should perhaps be included in the analysis.

One can contrast the behavior of cupric ion reduction to oxygen reduction. Since reaction 8.11 is
faster than reaction 8.12, cuprous ion reduction should occur simultaneously with reduction of cupric
ions to cuprous ions, and only one polarographic wave would be distinguishable. On the other hand,
reaction 8.73 is faster than reaction 8.74, and two waves are observed for oxygen reduction.

PROBLEMS

8.1 (a) Ignoring the fact that cuprous ions can diffuse away from the electrode, derive the following
expression for the dependence of the current density on the surface overpotential for the
copper reaction:

i =
i0
{
exp

[ (2−𝛽3)F
RT

𝜂s

]
− exp

(
−𝛽3F

RT
𝜂s

)}

1 + ka3

kc2
[ kc3kc2

ka3ka2
cCu2+ exp

( 2F

RT
𝜂s

)
]
(1+𝛽2−𝛽3)∕2

,

where 𝜂s is given by equation 8.21, U by equation 8.36, and i0 by equation 8.37. This
equation has been written so as to be directly comparable to equation 8.6.

(b) Show that this expression reduces to equation 8.6 for large cathodic overpotentials. Show
that the Tafel slope for large anodic overpotentials is 2.303RT/(1−𝛽2)F (see equation 1.10).
Reaction 8.11 appears to be rate controlling for large anodic overpotentials, and reaction 8.12
for large cathodic overpotentials. Rationalize this in physical terms.

(c) Show that this expression reduces to equation 8.6 when kc2 and ka2∕cCu2+ are much larger
than kc3 and ka3.

8.2 Develop the analog of equation 8.24 with consideration of the Frumkin correction,

i = i0 exp [
FΦ2

RT
(𝛽n −

∑

i

ziqi)] {exp [
(1 − 𝛽)nF

RT
𝜂s] − exp (−

𝛽nF
RT

𝜂s)} ,

where the composition dependence of i0 is given by equation 8.30.
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8.3 The standard electrode potential for reaction 8.73 is 0.682 V and that for reaction 8.74 is 1.77 V.
Derive the second of these values from the first and entry 15 of Table 2.2. Show that the
equilibrium concentration of hydrogen peroxide should be about 3.2× 10−19 mol/liter for an
oxygen partial pressure of 1 bar.

8.4 An electrode exhibiting active–passive kinetics, or passivation, is in a circuit that can maintain
its potential at a given value relative to a reference electrode placed near it but at such a distance
that there remains a significant resistance between the passivating electrode and the reference
electrode.
(a) Sketch on a linear scale the current density of the working electrode versus the potential

relative to an imaginary reference electrode adjacent to its surface.
(b) For a fixed value of V−Vref, develop a graphical method of determining the current density

at the working electrode, with due allowance for the resistance between the two actual
electrodes.

(c) Discuss the possibility of multiple solutions for the current density. What conditions of
resistance, potential, and shape of the current–potential relation ensure a single solution,
and what conditions permit multiple solutions? Which of these solutions are stable and
which unstable? If one cyclically increases and decreases V−Vref over a large range, what
hysteresis will result in the current density?

8.5 An aqueous solution contains 10−3 M CuSO4 and 1.5 M H2SO4 and is saturated with H2 at a
partial pressure of 1 bar. A copper disk is rotated in this solution at about 400 rpm, so that the
mass-transfer coefficient for copper deposition is 3× 10−3 cm/s. Copper deposition is interfered
with, to some extent, by hydrogen evolution, which, however, does not significantly modify
the H+ concentration near the surface. Calculate and plot the total current density versus the
electrode potential V−Φ0 (measured by means of an adjacent reference electrode of a given
kind, copper in a 0.1 M cupric ion solution). The exchange-current density for Cu is 1 mA/cm2 at
a concentration of 0.1 M; the transfer coefficients can be taken to be 0.5 and 1.5 in the cathodic
and anodic directions, respectively; and the concentration dependence of i0 is given by 𝛾 = 0.75
(so that the cathodic reaction is first order in cupric concentration at a fixed value of V−Φ0).
The exchange current density for hydrogen evolution is 10−7 A/cm2, with anodic and cathodic
transfer coefficients of 0.5.

8.6 Alternating-current impedance techniques are promising as a tool to investigate electrode
processes because, by varying the frequency, one can obtain a lot of information and if the
amplitude of the applied signal is kept small, the analysis should be tractable because the
system should show a linear response. We hope to develop a comprehensive treatment that
includes migration, convection, and diffusion in the diffusion layer on a rotating disk and
arbitrary numbers of homogeneous and heterogeneous reactions involving an arbitrary number
of species. This problem here should focus on the surface coverage and the double-layer
capacity, on the assumption that the diffusion layer has already been treated.

It is felt that adsorbed species should be treated in terms of surface excesses Γi, and that
adsorbed species must compete for a limited number of surface sites that number Γmax (in units
of mol/cm2). The coverage of a species then is taken to be Γi/Γmax. It is felt that the double-layer
capacity is merely a manifestation of adsorption of these charged species. Develop a model for
surface adsorption and electrochemical reaction. Ignore the diffuse layer or regard the boundary
of your model to be the outer Helmholtz plane—with the adsorbed species occupying the inner
Helmholtz plane. Three electric potentials are involved, Φm, Φ1, and Φ2, corresponding to the
metal, the adsorbed layer, and the outer Helmholtz plane, respectively.
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(a) Develop a material balance for the species in the adsorbed layer. The equation in Problem 8.5
might be a helpful starting point.

(b) Put down plausible kinetic equations for adsorption and/or electrochemical reaction. For
concreteness, you should deal with the following mechanism for zinc deposition or
dissolution:

Zn2+(2) → Zn2+(1),

Zn2+(1) + e−(m) → Zn+(1),

Zn+(1) + e−(m) → Zn(1),

Zn(1) → Zn(m),

where 1, 2, or m in parentheses indicates the position of the entity (in the inner Helmholtz
plane, the outer Helmholtz plane, or the metal).

8.7 Assume that the kinetics of the electrochemical reduction of ferricyanide ion to ferrocyanide ion
is rapid. Develop an equation for the current density as a function of potential (or vice versa).
The potential is that of the working electrode relative to a ferricyanide–ferrocyanide reference
electrode placed just outside the diffusion layer (not the diffuse part of the double layer). You
can neglect the ohmic potential drop, assume an excess of supporting electrolyte, and assume
that there is a stagnant diffusion layer of thickness 𝛿 adjacent to the working electrode.

8.8 Analyze the kinetics of the reaction sequence in chloride medium:

Cu → Cu+ + e− (slow),

Cu+ + 2Cl− → CuCl−2 (fast).

Compare with the apparent reaction orders obtained when the overall reaction

Cu + 2Cl− → CuCl−2 + e−

is analyzed as though it were an elementary step. Obtain expressions for the composition
dependence of the exchange current density in the two cases.

8.9 Consider the evolution of bromine gas or liquid at a metal anode, occurring via the elementary
steps:

Br− +M ⇌ MBr + e−.

2MBr → 2M+ Br2.

Assuming that the first reaction is rapid and pseudo-equilibrated and the second is irreversible
and rate determining, derive an expression for the current density as a function of electrode
potential. Provide expressions for the exchange-current density and the standard electrode
potential.

8.10 Develop an overall rate expression for the hydrogen reaction proceeding according to the
following mechanism. The Tafel reaction is equilibrated:

H2 ⇌ 2Had,
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and the Heyrovský reaction is rate determining:

H2 → H+ + e− + Had (rate-determining step).

In particular, show the exponential dependence on the surface overpotential 𝜂s and discuss how
the exchange-current density might be defined.

8.11 Investigate the behavior of the adsorption equilibrium constants in the latter part of Section 8.5.
(a) Show that, at equilibrium (and at pO2

= 1 bar, cH+ = 1 mol/L) kal/kcl exp(FU/RT) = Γl+1/Γl
= Kl exp(FU/RT), where subscripts 1, 2, 3, and 4 on Γ correspond to *, *OH, *O, and
*OOH, respectively. This implies that the equilibrium constants depend on the choice of
the reference electrode, as do the rate constants. If the reference electrode is chosen to
be of the same kind as the working electrode, the exponential factor will be unity. (For
the oxygen electrode, a reference electrode of the same kind is a poor choice in practice
because the oxygen electrode has such a low exchange current density.)

(b) Show that K1K2K3K4 = 1 at the equilibrium potential for the oxygen reaction. (The
equilibrium constants, defined as Kl = kal/kcl, are independent of electrode potential. Do
they depend on the choice of the reference electrode?)

(c) Show that at the equilibrium potential the surface coverages are 𝜃1 = 1/(1+K1 +K1K2 +
K1K2K3) and 𝜃2 = 𝜃1K1, 𝜃3 = 𝜃2K2, 𝜃4 = 𝜃3K3.

(d) Calculate and report numerical values for the coverage of each surface species in Table 8.1
for RuO2, IrO2, and TiO2. Comment briefly on the results.

(e) Identify candidates for a rate-determining step for both oxidation and reduction for the
three oxides. Explain your reasoning.

8.12 For the RuO2 material, K1 = exp[(0.08− 0)F/RT]. Similarly, K4 = exp[(0− 0.59)F/RT], where
the numerical values come from Table 8.1. What are the units of K1 and K4? Take into account
the defining equations 8.80 and 8.83 and the fact that the concentration of protons and the partial
pressure of oxygen have units. Similar problems were encountered in Chapter 2, where units
could be hidden in secondary reference quantities and something that looks like the exponential
of a dimensionless quantity can end up having units. How does this affect the kinetic expressions
when applied to a system not at pH = 0 and not at a partial pressure of oxygen of 1? (Answer
to the last part: Use the numerical value calculated and let the kinetic equations take care of the
dependence on concentration and pressure.)

8.13 For Table 8.1 or Figure 8.9, the numbers of atoms must be the same for products and reactants.
In this particular case, one starts with two water molecules and one empty catalytic site. Write
down the species and their number for each entry in one column of the table. The same specifics
apply to each abscissa species shown in Figure 8.9; these are not free energies of just one
adsorbed species.

8.14 Look at the data in Table 8.1 for IrO2. Are there high- or low-energy intermediates? Calculate
𝜃i values for the four species at the open-circuit potential. Do you expect IrO2 or RuO2 to be
the better catalyst for the oxygen electrode?

8.15 Outline a program for treating basic and intermediate solutions by adding to equations 8.76 to
8.79 four more equations with OH− ions as a reactant instead of H+ ions as a product. The
advantage would be that four more rate constants can be added, thereby permitting treatment of
data at various pH, even though the surface coverage (perhaps an oxide) might change.
(a) Write down the four additional kinetic equations. What assumption are you likely to make

for the symmetry factors 𝛽l?
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(b) What modifications should be made for the site balances?
(c) The surface species are presumed to remain the same. How many additional equilibrium

constants are introduced? Discuss in detail how you would obtain these equilibrium
constants from those given (as in Table 8.1) for the acid system.

(d) An elaborate experimental program is funded to treat the catalysis of the oxygen electrode
at various values of the pH. Suggest a procedure for obtaining the necessary data and
treating it so as to be able to predict kinetic behavior in the intermediate pH range. Confine
yourself to only one catalyst. (Answer: Determine rate constants kal for acid media from
data in acid at pH = 0. Determine rate constants kal for the additional rate equations in
a medium at pH = 14. Argue that these extreme pH values can be treated with minimal
interaction because the concentration of OH− ions is very small in the acid solutions and
that of H+ ions is very small in the basic solution (pH = 14).)

8.16 Suppose that we have been treating the RuO2 system, but that there is reason to believe that the
rate constant ka3 of the third reaction in the sequence is several orders of magnitude lower than
those of the other rate constants. How would this affect the surface concentrations of the several
surface species for both anodic and cathodic reactions. You can speak of this as a potential
bottleneck. Would any of the four reactions become a candidate for a rate-limiting step? Again,
consider both directions, anodic and cathodic.

NOTATION

A electrode area, cm2

ci concentration of species i, mol/cm3

C double-layer capacity, F/cm2

Di diffusion coefficient of species i, cm2/s
e− symbol for the electron
Ea, Ec activation energies in anodic and cathodic directions, J/mol
f function in expression of electrode kinetics
F Faraday’s constant, 96,487 C/mol
in current density, A/cm2

i0 exchange current density, A/cm2

ka, kc rate constants in anodic and cathodic directions
Mi symbol for the chemical formula of species i
n number of electrons transferred in electrode reaction
pi reaction order for anodic reactants
q surface charge density on the metal side of the double layer, C/cm2

qi reaction order for cathodic reactants
q2 surface charge density in the diffuse layer, C/cm2

r reaction rate, mol/cm2⋅s
R universal gas constant, 8.3143 J/mol⋅K
si stoichiometric coefficient of species i in electrode reaction
t time, s
T absolute temperature, K
U open-circuit potential, V
V electrode potential, V
zi charge number of species i
𝛼a, 𝛼c transfer coefficients
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𝛽 symmetry factor
𝛾, 𝛿 exponents in composition dependence of the exchange current density
𝛿 thickness of stagnant diffusion layer, cm
𝜂s surface overpotential, V
𝜇i electrochemical potential of species i, J/mol
Φ electric potential, V
Φ2 potential at inner limit of diffuse layer, V
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CHAPTER 9

ELECTROKINETIC PHENOMENA

This chapter deals with the effects observed when the diffuse double layer and an external electric field
interact in relation to a hydrodynamic flow. A tangential electric field can produce a small change in
velocity over the very small thickness of the double layer, and a shear stress or velocity gradient at the
surface can produce electrical effects.

This subject is important in the study of colloids. It also yields some information on the structure
of the electrical double layer at a solid–solution interface, which cannot be studied with the aid of the
interfacial tension. The treatment here is incomplete, particularly with regard to experimental results
for specific interfaces, and the reader is referred to the literature.[1–3]

9.1 DISCONTINUOUS VELOCITY AT AN INTERFACE

Suppose that we have a planar, solid dielectric in contact with an electrolytic solution and that there is
a tangential electric field (see Figure 9.1). A double layer can exist at the surface due to the specific
adsorption of ions, and this means that there will be a counterbalancing charge in a diffuse layer. The
structure of this diffuse layer is discussed in Section 7.4. The tangential electric field exerts a force on
the charge in the diffuse layer. This layer, being part of the solution, is mobile and can be expected to
move relative to the solid as a result of the electric field.

The tangential electric field is taken to be uniform throughout the dielectric and the solution. The
structure of the double layer will then not be disturbed from that treated in Section 7.4. The resulting
motion of the solution will be described by the Navier–Stokes equation 15.10 with the electrical force
included (see equation 15.5). This equation is simplified by the fact that the velocity is only in the
x direction and depends only on the distance y from the dielectric. In the steady state and with no
significant gradient of the dynamic pressure, we have (see equation B.9 in Appendix B)

𝜇
𝜕2𝑣x

𝜕y2
+ 𝜌eEx = 0. (9.1)

Electrochemical Systems, Fourth Edition. John Newman and Nitash P. Balsara.
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Electrolytic
solution

Diffuse layer
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ʋx

Dielectric
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Figure 9.1 Velocity produced by a tangential electric field in the diffuse charge layer. A positive charge in the
diffuse layer will produce a negative zeta potential and will result in a positive value of 𝑣0 if Ex is also positive.

Substitution of Poisson’s equation 3.8 gives

𝜇
𝜕2𝑣x

𝜕y2
− 𝜖𝜕2Φ

𝜕y2
Ex = 0, (9.2)

and integration gives

𝜇
𝜕𝑣x

𝜕y
= 𝜖𝜕Φ

𝜕y
Ex, (9.3)

the integration constant being evaluated from the fact that both 𝜕𝑣x/𝜕y and 𝜕Φ/𝜕y are zero outside the
diffuse layer. A second integration gives

𝜇(𝑣x − 𝑣0) = 𝜖(Φ − Φ∞)Ex, (9.4)

where 𝑣0 is the value of the velocity outside the diffuse layer.
If we take 𝜁 to be the value of Φ−Φ∞ at the plane where 𝑣x = 0, equation 9.4 yields

𝑣0 = −
𝜖𝜁Ex

𝜇 . (9.5)

The zeta potential 𝜁 can be roughly associated with the potential Φ2 at the inner limit of the diffuse
layer, since this is the plane where we should expect the velocity 𝑣x to become zero. However, we are
unlikely to have an independent determination of Φ2 at a solid–solution interface.

The zeta potential is a property of the dielectric–solution interface and is due to the amount of
specific adsorption at that interface. Because 𝜇 and 𝜖 are unlikely to be constant through the diffuse
layer, 𝜁 should more be regarded as a macroscopic variable relating the velocity 𝑣0 to the tangential
electric field Ex, and its relationship to the potential Φ2 thereby becomes more remote.

Because of the thinness of the diffuse layer compared to macroscopic dimensions, equation 9.5
can be regarded as a relation between the local slip velocity 𝑣0 and the local tangential field Et, even
though the dielectric–solution interface is not planar, the tangential electric field is not uniform, and
the gradient of the dynamic pressure is not zero. We shall attempt to clarify the meaning of this
approximation in the context of a straight capillary through a dielectric; and this approximation will be
applied to spherical, colloidal particles in the treatment of electrophoretic velocities and sedimentation
potentials.

Small metal particles behave much like small dielectric particles if the metal behaves like an ideally
polarizable electrode (see Section 7.1). Then, the electric field is essentially zero within the metal, and
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the local polarization varies because of the tangential electric field. As long as the polarization does
not become so great as to violate the condition of ideal polarizability, equation 9.5 can be applied to
relate the local slip velocity 𝑣0 to the local tangential electric field Et. With metal particles, one has the
possibility to vary the charge density on the metal side of the interface.

Levich[4] preferred to replace the zeta potential by the charge density q2 in the diffuse layer. With
the Debye–Hückel approximation we can relate 𝜁 and q2 by

q2 = −
𝜖𝜁
𝜆

, (9.6)

(see Problem 7.6) so that equation 9.5 becomes

𝑣0 =
q2𝜆Ex

𝜇 . (9.7)

A zeta potential can be on the order of 0.1 V. For a relative dielectric constant 𝜖/𝜖0 of 78.3, a viscosity
𝜇 of 0.89 mPa s, and an electric field of 10 V/cm, equation 9.5 yields

𝑣0 = −7.8 × 10−3 cm∕s. (9.8)

This is a relatively small value and can be neglected in many applications.

9.2 ELECTRO-OSMOSIS AND THE STREAMING POTENTIAL

Let us consider a capillary of radius r0 in a dielectric material. The capillary is filled with an electrolytic
solution, and there is a uniform electric field in the direction z along the axis of the capillary. However,
the electric field is not zero in the radial direction. Instead, Poisson’s equation is obeyed in the form

1
r

𝜕
𝜕r

(r
𝜕Φ
𝜕r

) = −
𝜌e

ϵ . (9.9)

The term 𝜕2Φ/𝜕z2 is zero since the axial electric field Ez is constant. The momentum equation (see
Chapter 15) can be written

−
dp
dz

+
𝜇
r

𝜕
𝜕r

(r
𝜕𝑣z

𝜕r
) + Ez𝜌e = 0, (9.10)

the electric force Ez𝜌e appearing in the force balance.
Substitution of equation 9.10 into equation 9.9 and integration twice with respect to r, subject to the

conditions that 𝑣z = 0 at r = r0 and 𝑣z and Φ are finite at r = 0, give

𝑣z = Ez
ϵ
𝜇 (Φ − Φr=r0

) −
dp
dz

r2
0 − r2

4𝜇 . (9.11)

Hence, the volumetric flow rate Q can be expressed as

Q
2𝜋 = ∫

r0

0
r𝑣zdr = Ez

ϵ
𝜇 ∫

r0

0
r(Φ − Φr=r0

)dr −
dp
dz

∫
r0

0
r

r2
0 − r2

4𝜇 dr

= −Ez
ϵ

2𝜇 ∫
r0

0
r2 𝜕Φ

𝜕r
dr −

r4
0

16𝜇
dp
dz

. (9.12)
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Now, let us turn our attention to the electric current. We express the flux density of a species as (see
equation 11.1)

Niz = ziuiFciEz + ci𝑣z. (9.13)

The concentrations do not vary in the z direction for a given value of r; hence, there is no diffusion
term in equation 9.13. The current density in the solution becomes

iz = F
∑

i

ziNiz = F2Ez

∑

i

z2
i uici + F𝑣z

∑

i

zici = 𝜅Ez + 𝑣z𝜌e, (9.14)

where
𝜅 = F2

∑

i

z2
i uici (9.15)

is the conductivity (see equation 11.7) and

𝜌e = F
∑

i

zici (9.16)

is the charge density. The total current I can be expressed as

I
2𝜋 = ∫

r0

0
rizdr = Ez ∫

r0

0
r𝜅 dr + ∫

r0

0
r𝑣z𝜌edr. (9.17)

Now substitute equation 9.11 for 𝑣z and equation 9.9 for 𝜌e.

I
2𝜋 = Ez ∫

r0

0
r𝜅 dr −

Ezϵ2

𝜇 ∫
r0

0
(Φ − Φr=r0

) 𝜕
𝜕r

(r
𝜕Φ
𝜕r

) dr

+ ϵ
dp
dz

∫
r0

0

r2
0 − r2

4𝜇
𝜕
𝜕r

(r
𝜕Φ
𝜕r

) dr

= Ez ∫
r0

0
r𝜅 dr + Ez

ϵ2

𝜇 ∫
r0

0
r(𝜕Φ

𝜕r
)

2

dr +
dp
dz

ϵ
2𝜇 ∫

r0

0
r2 𝜕Φ

𝜕r
dr. (9.18)

Notice that the coefficient of Ez in equation 9.12 is identical to the coefficient of −dp/dz in
equation 9.18. This is an example of the Onsager reciprocal relation.

To obtain explicit expressions for the potential distribution within the capillary, let us use the
Debye–Hückel approximation 4.7:

ci = c0
i e−ziF𝜙∕RT ≈ c0

i (1 −
ziF𝜙
RT

) , (9.19)

where 𝜙 = Φ−Φr = 0 and c0
i is the concentration of species i on the center line of the capillary.

Now equation 9.9 becomes

1
r

𝜕
𝜕r

(r
𝜕𝜙
𝜕r

) = −F
ϵ

∑

i

zic
0
i + F

ϵ
∑

i

z2
i c0

i

F𝜙
RT

(9.20)

or
1
x

d
dx

(x
d𝜓
dx

) = −Γ + 𝜓, (9.21)
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where

𝜓 = FΦ
RT

, x = r
𝜆
, Γ =

∑
izic

0
i∑

iz
2
i c0

i

, (9.22)

and

𝜆 = ( ϵRT

F2
∑

iz
2
i c0

i

)
1∕2

(9.23)

is the Debye length.
The solution to equation 9.21 is

𝜓 = Γ − ΓI0(x), (9.24)

where I0 is the modified Bessel function of the first kind, of order zero. The coefficient of I0 is
evaluated from the condition that 𝜓 = 0 at x = 0. The other solution, K0(x), of the homogeneous form
of equation 9.21 is unbounded at x = 0 and must be discarded.

The approximate expression for the charge density now is

𝜌e = F(Γ − 𝜓)
∑

i

z2
i c0

i = ΓI0(x)F
∑

i

z2
i c0

i =
ΓI0(x)ϵRT

F𝜆2
. (9.25)

Note that the charge density on the center line of the capillary is not exactly zero. We should now like
to relate the constant Γ to the surface charge density q2 per unit of circumferential area of the capillary:

∫
r0

0
2𝜋r𝜌edr = 2𝜋r0q2 (9.26)

or
Γ𝜖RT

F
∫

R0

0
xI0(x)dx = r0q2 (9.27)

or
Γ =

q2F𝜆
ϵRTI1(R0)

, (9.28)

where R0 = r0/𝜆 and I1 is the modified Bessel function of the first kind, of order one. Also,

𝜌e =
q2I0(x)
𝜆I1(R0)

, (9.29)

and
𝜕Φ
𝜕r

= RT
𝜆F

d𝜓
dx

= −
q2

ϵ
I1(x)

I1(R0)
. (9.30)

We are now in a position to evaluate the integrals in equations 9.12 and 9.18:

ϵ
2𝜇 ∫

r0

0
r2 𝜕Φ

𝜕r
dr = −

𝜆3q2

2𝜇I1(R0)
∫

R0

0
x2I1(x)dx

= −
𝜆q2r2

0

2𝜇
I2(R0)
I1(R0)

= −
𝜆q2r2

0

2𝜇 [
I0(R0)
I1(R0)

− 2
R0

] , (9.31)
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∫
r0

0
(𝜕Φ

𝜕r
)

2

rdr =
𝜆2q2

2

ϵ2I2
1(R0)

∫
R0

0
I2
1(x)x dx

=
q2

2𝜆r0

ϵ2
{

I0(R0)
I1(R0)

−
R0

2
[

I2
0(R0)

I2
1(R0)

− 1]}

=
q2

2r2
0

2ϵ2
[1 −

I0(R0)I2(R0)
I2
1(R0)

] , (9.32)

∫
r0

0
rcidr =

c0
i r2

0

2
{1 + zi

q2𝜆F
ϵRT

[ 2
R0

− 1
I1(R0)

]} , (9.33)

and

∫
r0

0
r𝜅 dr =

r2
0

2
𝜅avg, (9.34)

where

𝜅avg = 𝜅0 {1 +
q2𝜆F
ϵRT

[ 2
R0

− 1
I1(R0)

]
∑

iz
3
i uic

0
i∑

iz
2
i uic

0
i

} (9.35)

and
𝜅0 = F2

∑

i

z2
i uic

0
i (9.36)

is the conductivity on the centerline of the capillary.
Equation 9.18 now becomes

I

𝜋r2
0

= ⟨iz⟩ = Ez {𝜅avg +
q2

2

𝜇 [1 −
I0(R0)I2(R0)

I2
1(R0)

]} −
dp
dz

𝜆q2

𝜇
I2(R0)
I1(R0)

, (9.37)

and equation 9.12 becomes

Q

𝜋r2
0

= ⟨𝑣z⟩ = Ez
𝜆q2

𝜇
I2(R0)
I1(R0)

−
r2

0

8𝜇
dp
dz

. (9.38)

Figure 9.2 shows the velocity profile in the capillary when there is no pressure drop, dp/dz = 0. This
can be obtained from equation 9.11, which now becomes

𝑣z =
𝜆q2Ez

𝜇I1(R0)
[I0(R0) − I0(x)] −

dp
dz

r2
0 − r2

4𝜇 . (9.39)

In the absence of a pressure drop, an axial electric field can induce a flow in the capillary, and this is
known as electro-osmosis. The average velocity or flow rate is then given by equation 9.38 as

𝜇⟨𝑣z⟩
𝜆q2Ez

=
I2(R0)
I1(R0)

when
dp
dz

= 0 (9.40)

and is tabulated in Table 9.1 as a function of R0, the ratio of the radius of the capillary to the Debye
length. For large values of R0, the diffuse layer is relatively thin, and the velocity variation occurs near
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Figure 9.2 Velocity profile in the capillary when there is no pressure drop; this is the case of electro-osmosis.

TABLE 9.1 Dimensionless flow rate 𝝁⟨𝒗z⟩/𝝀q2Ez as function of R0
in the absence of a pressure drop

R0 I2(R0)/I1(R0) R0 I2(R0)/I1(R0)

0 0 10 0.85419
0.1 0.02499 20 0.92599
0.2 0.04992 50 0.97015
0.5 0.12372 100 0.98504
1 0.24019 250 0.99401
2 0.43313 500 0.99700
5 0.71934 ∞ 1.0

This also corresponds to the dimensionless pressure drop (dp∕dz)r2
0∕8𝜆q2Ez gen-

erated in the absence of net fluid flow or to the dimensionless streaming potential
with no net current or to the dimensionless streaming current at zero potential drop
(see equations 9.41, 9.42, 9.44, and 9.46).

the wall. This velocity change is given approximately as 𝜆q2Ez/𝜇 and is essentially the same as that
given by equation 9.7.

The second term on the right in equation 9.39 corresponds to the usual velocity profile induced by
a pressure gradient dp/dz. The experiment might be constrained by a condition of no net flow, Q = 0,
rather than no pressure drop. In this case, the axial electric field induces a pressure drop rather than a
flow, and this pressure drop is given according to equation 9.38 as

r2
0

8𝜆q2Ez

dp
dz

=
I2(R0)
I1(R0)

when Q = 0, (9.41)

also tabulated in Table 9.1. The velocity is not zero throughout the capillary; the second term in
equation 9.39 now assumes a magnitude such that the average velocity is zero. The local velocity



�

� �

�

210 ELECTROKINETIC PHENOMENA

–1.0
0 0.2

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1.0

0.4 0.6 0.8 1.0

μʋ
z
/λ

q
2E

z

R0 = 50

R0 = 5

Q = 0

R0 = 10

r/r0

Figure 9.3 Velocity profile in the capillary when there is no net fluid flow.

profile is shown in Figure 9.3. For large values of R0, there appears to be a velocity discontinuity at the
wall of magnitude 𝑣0 = 𝜆q2Ez/𝜇, in agreement with equation 9.7. This velocity change actually occurs
over the thickness of the diffuse layer, which is now very small compared to the radius of the capillary.
Superimposed on this is a parabolic Poiseuille velocity profile given by the last term in equation 9.39.

Equation 9.12 or 9.38 shows how an axial electric field can give rise to fluid flow or a pressure
drop, that is, how electrical phenomena can produce fluid mechanical phenomena. On the other hand,
equation 9.18 or 9.37 shows how a pressure drop can produce an electric current or a potential drop.
Suppose that the electrolytic solution is forced by a pressure drop to flow through the capillary and
that the electrical conditions impose a zero net current. Then, the fluid flow generates the so-called
streaming potential, given by equation 9.37 as

𝜇E2𝜅ef f

𝜆q2(dp∕dz)
=

I2(R0)
I1(R0)

with I = 0, (9.42)

where

𝜅ef f = 𝜅avg +
q2

2

𝜇 [1 −
I0(R0)I2(R0)

I2
1(R0)

] . (9.43)
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One may prefer to relate the streaming potential to the flow rate rather than the pressure drop.
Elimination of dp/dz between equations 9.37 and 9.38 then gives

−
𝜋r4

0Ez𝜅′
ef f

8𝜆q2Q
=

I2(R0)
I1(R0)

with I = 0, (9.44)

where

𝜅′
ef f = 𝜅avg +

q2
2

𝜇 [1 −
I0(R0)I2(R0)

I2
1(R0)

− 8
R2

0

I2
2(R0)

I2
1(R0)

] . (9.45)

If the electrical conditions impose a zero potential drop, for example, by having large reversible
electrodes at the ends of the capillary and shorting these electrodes together, then the resulting
streaming current can be expressed according to equations 9.37 and 9.38 as

−I𝜇
𝜋r2

0𝜆q2(dp∕dz)
=

Ir2
0

8𝜆q2Q
=

I2(R0)
I1(R0)

with Ez = 0. (9.46)

The above development shows how a unified treatment can be given to the phenomena of
electro-osmosis and the streaming potential. In the former, electrical effects can give rise to fluid
flow, and in the latter fluid flow gives rise to electrical effects. In reality, the two are interrelated by
equations 9.37 and 9.38, in which there are two driving forces, Ez and dp/dz, and two flow quantities,
I and Q. However, the electrical effects and the fluid flow phenomena are not separated in these
equations.

Let us take an example of pure water in a capillary of radius r0 = 20 μm = 0.002 cm. We assume
the ionic species to be H+ and OH− ions with concentrations c0

+ = c0
− = 10−7mol∕liter at 25∘C. Then

the Debye length is 𝜆 = 0.96 μm, and R0 is about 20. We take q2 = 0.01 μC/cm2, corresponding to a
zeta potential of about −138 mV. From these values, we find

q2F𝜆
ϵRT

= 5.4, 𝜅0 = 5.5 × 10−8 S∕cm,
q2

2

𝜇𝜅0
= 2.05,

Γ = 1.3 × 10−7,
𝜅avg

𝜅0
= 1.15,

𝜅ef f
𝜅avg

= 1.089,
𝜅′
ef f

𝜅avg
= 1.059.

Under these conditions, the application of 100 V across the capillary, with no net fluid flow, should
generate a pressure difference equivalent to a column of water 7.3 cm high.

Frequently, the diffuse layer is very thin compared to other geometric lengths, and we want to
develop an approximate method of analysis that recognizes this fact. For large values of R0, the diffuse
layer is confined to a region close to the wall where the cylindrical geometry is not important. Outside
this region, the solution is electrically neutral. We consider first the fluid flow and then the current flow.

For large values of R0, equation 9.39 reduces to

𝑣z = 𝑣0 −
dp
dz

r2
0 − r2

4𝜇 , (9.47)

where

𝑣0 =
𝜆q2Ez

𝜇 . (9.48)
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Equation 9.47 applies outside the diffuse layer and corresponds to the solution of equation 9.10 with
zero charge density and with the boundary condition that 𝑣z = 𝑣0 at r = r0. This value of 𝑣0 comes
from the treatment of the thin diffuse layer according to Section 9.1.

Thus, one treats the fluid mechanical problem by solving the momentum equation as though the
solution were electrically neutral, but with a slip velocity at a solid wall which is related to the
tangential component of the electric field by equations 9.48, 9.7, or 9.5. Figures 9.2 and 9.3 show how
this situation is approximated more closely as R0 increases.

Equation 9.47 yields the flow rate as

Q

𝜋r2
0

= ⟨𝑣z⟩ = Ez
𝜆q2

𝜇 −
r2

0

8𝜇
dp
dz

, (9.49)

which is also obtained from equation 9.38 as R0 becomes infinite.
The situation for the current relationships is simple at first sight. As R0 approaches infinity, 𝜅avg,

𝜅eff, and 𝜅′
eff all approach 𝜅0, and equation 9.37 becomes

I

𝜋r2
0

= ⟨iz⟩ = 𝜅0Ez −
𝜆q2

𝜇
dp
dz

. (9.50)

This yields the correct asymptotic forms for the streaming potential and the streaming current according
to equations 9.42, 9.44, and 9.46. Outside the diffuse layer, the solution is taken to be electrically
neutral with the conductivity 𝜅0, and this region obviously contributes the term 𝜅0EZ to equation 9.50.
The last term must come then from the diffuse layer.

For the purpose of examining the contribution of the diffuse layer, we want to define a surface
current density js, attributed to the diffuse layer, so that the total current is expressed as

I = 𝜋r2
0𝜅

0Ez + 2𝜋r0js, (9.51)

the surface current density being multiplied by the circumference in order to obtain the contribution to
the total current. Substitution of equation 9.51 into equation 9.37 yields, in the limit of large R0,

js = 𝜅sEz + 𝛽𝜆q2, (9.52)

where

𝜅s =
q2𝜆2F3

ϵRT

∑

i

z3
i uic

0
i +

𝜆q2
2

2𝜇 (9.53)

is the surface conductivity and 𝛽 is the velocity derivative 𝜕𝑣z/𝜕y just outside the diffuse layer (y being
the distance from the surface). In the present case,

𝛽 = −
r0

2𝜇
dp
dz

(9.54)

(see equation 9.47).
The terms in equations 9.52 and 9.53 are subject to physical interpretation. The first term on the

right in equation 9.53 might be termed the surface excess conductivity, due to the fact that the ionic
concentrations within the diffuse layer differ from their bulk values. This quantity can be positive
or negative and is zero for a symmetric electrolyte with equal cation and anion mobilities. In the
Debye–Hückel approximation (again for a symmetric electrolyte), c+ + c− is uniform within the
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diffuse layer. Therefore, replacing less mobile ions by more mobile counterions would increase the
local conductivity. If this approximation were relaxed, one should expect the ionic strength to increase
in the diffuse layer, and this would lead to more positive values of the surface excess conductivity.

The last term in equation 9.53 might be called the surface convective conductivity and is due to the
motion of the fluid in the diffuse layer as it is induced by the electric field. Since the induced velocity
is proportional to q2 and the charge density is proportional to q2, the surface convective conductivity
is proportional to the square of q2 and is always positive.

A shear stress in the fluid near the surface induces further fluid motion in the diffuse layer and leads
to an additional convective contribution to the surface current density. This term is written in terms of
𝛽 in order to refer to a quantity relevant to the local conditions at the interface. In some cases, erosion
corrosion may be related to this last term in equation 9.52 because the shear stress may vary over the
surface.[5, 6] This causes the surface current density to vary, and if this current cannot be supplied by
the bulk solution because of its low conductivity, it can lead to a corrosion reaction at a metal surface.

If the solid surface itself were moving, it would be necessary to include an additional convective
term in equation 9.52 when the surface current density includes only the current on the mobile side of
the double layer. The interface as a whole remains electrically neutral.

Equations 9.51 and 9.52 lead to the expression

I

𝜋r2
0

= Ez (𝜅0 +
2𝜅s

r0
) −

dp
dz

𝜆q2

𝜇 (9.55)

for the total current. Comparison with equation 9.50 shows that the surface conductivity can be
neglected for large values of r0/𝜆.

Equation 9.52 and equation 9.48 or 9.5 are vector equations relating to the surface current density,
the slip velocity at the surface, the tangential electric field, and the shear stress. They can be applied
in other geometric situations where the diffuse layer can be taken to be thin compared to other
characteristic lengths. In this approximation, the diffuse layer is essentially planar, and these equations
could be refined to account for the fact that the planar diffuse layer can be solved without the
Debye–Hückel approximation.

9.3 ELECTROPHORESIS

Electrophoresis means the motion of a dielectric particle in an electrolytic solution under the influence
of an electric field. The electric field interacts with the diffuse layer to produce a relative motion of
the solid and the fluid, as discussed in Section 9.1. This relative motion serves to propel the particle
through the fluid. The analysis applies equally well to a metallic particle, if the potential jump across
the interface is in a range where the surface is ideally polarizable and the charge in the diffuse layer is
essentially uniform over the surface of the particle.

Consider a spherical particle of radius r0, and let the origin of a spherical coordinate system be
fixed in the center of the particle. With this convention, the fluid moves past the particle in a steady
manner, and, far from the particle, the z component of the velocity is 𝑣∞. Let the z component of the
electric field be E∞ far from the particle. The objective is to relate 𝑣∞ to E∞. Gravitational forces are
neglected.

Outside the diffuse layer, the solution is electrically neutral, the fluid motion satisfies the
Navier–Stokes equation 15.10 and the continuity equation 15.3, and the electric potential satis-
fies Laplace’s equation 11.16. With the assumption that the diffuse layer is thin compared to the radius
of the particle, the fluid mechanical equations are to be solved with the boundary conditions that the
velocity approaches the uniform velocity at infinity, that the fluid exerts no net force on the particle
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including the diffuse layer, and that the slip velocity at the surface matches the tangential electric field
according to equation 9.48

𝑣𝜃 =
𝜆q2E𝜃

𝜇 at r = r0. (9.56)

The potential is to satisfy Laplace’s equation subject to the conditions that the electric field approaches
the uniform field at infinity and there is a charge balance at the interface

𝜅𝜕Φ
𝜕r

= ∇s ⋅ 𝐣s at r = r0, (9.57)

where ∇s ⋅ js is the surface divergence of the surface current density.
An exact solution of the Navier–Stokes equation satisfying the condition at infinity and the condition

of zero net force on the particle plus the diffuse layer is

𝑣r = (1 −
r3

0

r3
) 𝑣∞ cos 𝜃, (9.58)

𝑣𝜃 = −(1 +
r3

0

2r3
) 𝑣∞ sin 𝜃. (9.59)

It is not always realized that this is an exact solution of the Navier–Stokes and continuity equations.
From these results,

𝛽 = 3
2

𝑣∞
r0

sin 𝜃, (9.60)

and the surface current density from equation 9.52 becomes

js = 3
2

𝑣∞𝜆q2

r0
(1 −

𝜅s𝜇r0

𝜆2q2
2

) sin 𝜃. (9.61)

where E𝜃 has been eliminated by means of equation 9.56. The surface divergence of the surface current
density therefore is

∇s ⋅ 𝐣s = 1
r0 sin 𝜃

𝜕
𝜕𝜃

(js sin 𝜃) =
3𝑣∞𝜆q2

r2
0

(1 −
𝜅s𝜇r0

𝜆2q2
2

) cos 𝜃, (9.62)

and boundary condition 9.57 becomes

𝜕Φ
𝜕r

=
3𝑣∞𝜆q2

r2
0𝜅

(1 −
𝜅s𝜇r0

𝜆2q2
2

) cos 𝜃. (9.63)

The solution of Laplace’s equation satisfying condition 9.63 and giving the proper electric field at
infinity is

Φ = −[r + (1
2

+ A)
r3

0

r2
] E∞ cos 𝜃, (9.64)

where

A =
3𝑣∞𝜆q2

2r2
0𝜅E∞

(1 −
𝜅s𝜇r0

𝜆2q2
2

) . (9.65)
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Equation 9.64 yields the tangential electric field at the surface of the particle:

E𝜃 = −(3
2

+ A) E∞ sin 𝜃. (9.66)

Substitution of this result into equation 9.56 yields the final expression for the electrophoretic velocity
in terms of the applied field:

𝑣∞ =

E∞𝜆q2

𝜇

1 −
𝜆2q2

2

r2
0𝜅𝜇

+
𝜅s

𝜅r0

. (9.67)

The second term in the denominator in equation 9.67 is of order 𝜆0∕r2
0 and is small compared to the

last term, which is of order 𝜆/r0. Both terms should be negligible compared to the first term, and the
electrophoretic velocity can be expressed in terms of the zeta potential as

𝑣∞ = −
E∞ϵ𝜁

𝜇 . (9.68)

Recall that 𝑣∞ is the velocity of the fluid with respect to the particle. Therefore, a particle with a
positive zeta potential moves in the direction of the electric field.

9.4 SEDIMENTATION POTENTIAL

Small particles will fall through an electrolytic solution in a gravitational field with essentially a Stokes
velocity profile. This is not an exact solution of the Navier–Stokes equation; rather, it applies for small
values of the Reynolds number Re = 2𝑣∞r0/v. If the particle has a positive zeta potential, then the
charge in the diffuse layer is negative. The shear stress near the particle will cause a surface current
density to flow from the back of the particle to the front. This current must then flow through the bulk
of the solution from the front to the back. This means that the potential behind a particle with a positive
zeta potential will be negative relative to the potential in front of the particle. A number of particles
falling through the solution then establishes an electric field whose magnitude is given by

Ez =

−6𝜋n𝑣∞r0𝜆q2

𝜅

1 +
𝜅s

𝜅r0
− 2

𝜆2q2
2

r2
0𝜅𝜇

, (9.69)

where n is the number of particles per unit volume of the system. Ez is in the direction opposite to the
velocity 𝑣∞, of the particles. The same remarks apply to the terms in the denominator of this equation
as to those in equation 9.67.

By means of a force balance, the velocity of fall is given as

𝑣∞ =
2(𝜌′ − 𝜌)gr2

0

9𝜇

1 +
𝜅s

𝜅r0
− 2

𝜆2q2
2

r2
0𝜅𝜇

1 +
𝜅s

𝜅r0
−

𝜆2q2
2

r2
0𝜅𝜇

, (9.70)
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which differs insignificantly from the velocity for an uncharged particle

𝑣∞ =
2(𝜌′ − 𝜌)gr2

0

9𝜇 (9.71)

given by Stokes’s law since 𝜆2q2
2∕r2

0𝜅𝜇 is of order 𝜆2∕r2
0. In equations 9.70 and 9.71, 𝜌′ is the density

of the particle, 𝜌 is the density of the electrolytic solution, and g is the magnitude of the gravitational
acceleration.

The sedimentation potential is analogous to the streaming potential discussed in Section 9.2. In
both cases, the relative motion of a solid and an electrolytic solution gives rise to electrical effects.
However, the sedimentation potential is not much studied because it is difficult to obtain an appreciable
magnitude experimentally.

By adding shorted reversible electrodes to the system, one could maintain a zero electric field. One
should then observe a sedimentation current analogous to the streaming current discussed in Section 9.2.

PROBLEMS

9.1 (a) For a diffuse layer, the electrokinetic slip velocity is given by equation 9.5,

𝑣0 = −
ϵ𝜁Ex

𝜇 ,

equation 9.7 being valid only when the Debye–Hückel approximation is applicable. The
second basic electrokinetic equation is equation 9.52. Show that in general this equation
should be replaced by

js = 𝜅sEx − ϵ𝛽𝜁,

where the surface conductivity is

𝜅s = F2
∑

i

z2
i uiΓi,d + ϵ2

𝜇 ∫
𝜁

0
EydΦ.

Here Ey is given as a function of Φ by equation 7.37, and q2 can be determined in terms of 𝜁
from equation 7.38.

(b) For a solution of a binary, symmetric electrolyte, q2 and 𝜁 are related by

q2 = −2ϵRT
zF𝜆

sinh
zF𝜁
2RT

.

Show that the expression for the surface conductivity becomes

𝜅s =
𝜅𝜆2zFq2

ϵRT
(t+ − t− − tanh

zF𝜁
4RT

) +

𝜆q2
2

𝜇

1 +

√

1 + (
zF𝜆q2

2ϵRT
)

2
,
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where 𝜅 is the conductivity of the bulk solution and

t+ = 1 − t− =
u+

u+ + u−

is the cation transference number.
(c) Show that when the Debye–Hückel approximation is valid, that is, when zF𝜁/RT ≪ 1, the

results in part (b) reduce to equations 9.6 and 9.53. Notice that the surface excess conductivity
in part (b) is higher than that in equation 9.53, while the surface convective conductivity is
lower.

9.2 Show on the basis of Problem 9.1 that equation 9.55 should be written as

I

𝜋r2
0

= Ez (𝜅0 +
2𝜅s
r0

) +
ϵ𝜁
𝜇

dp
dz

and that consequently, for large values of r0/𝜆, the streaming potential (equations 9.42 and 9.44)
should be written

−
𝜇Ez𝜅0

ϵ𝜁
dp
dz

=
𝜋r4

0Ez𝜅0

8ϵ𝜁Q
= 1 with I = 0,

and the streaming current (equation 9.46) should be written

I𝜇

𝜋r2
0ϵ𝜁

dp
dz

=
−Ir2

0

8ϵ𝜁Q
= 1 with Ez = 0.

Make the corresponding changes in equation 9.49 and in the expressions for pressure drop at zero
flow (equation 9.41) and flow at zero pressure drop (equation 9.40).

9.3 Show on the basis of Problem 9.1 that the electrophoretic velocity, equation 9.67, should be
written

𝑣∞ =
−

E∞ϵ𝜁
𝜇

1 +
𝜅s

𝜅r0
−

ϵ2𝜁2

r2
0𝜅𝜇

or, for practical purposes, as equation 9.68. The sedimentation potential, equation 9.69, should
be written

Ez =
6𝜋n𝑣∞r0ϵ𝜁

𝜅 .

These equations are written in the form in the text for easier comparison with the corresponding
results in Chapter 10.

9.4 (a) Is the normal component of the current density continuous at an interface if the normal
component is to be evaluated just outside the interface?

(b) Rationalize or convince yourself of the validity of equation 9.57.
(c) Obtain an estimate of the magnitude of ∇s ⋅ js from equation 9.62 by using the values

𝑣∞ = 0.3 cm/s, 𝜆 = 1 nm, r0 = 20 μm, 𝜇 = 0.89 mPa s, 𝜅s/𝜆 = 0.01 S/cm, and q2 = 7 μC/cm2.
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9.5 Justify the material balance for a species at an interface:

𝜕Γi

𝜕t
+ ∇s ⋅ 𝐉is = N0

iy − N∞
iy ,

where Jis is the surface flux of species i, N0
iy is the normal component of the flux at the surface,

involved in faradaic electrode reactions, and N∞
iy is the normal component of the flux evaluated

just outside the diffuse layer. Use this equation to derive equation 9.57.

NOTATION

ci concentration of species i, mol/cm3

E electric field, V/cm
E∞ electric field far from the particle, V/cm
F Faraday’s constant, 96,487 C/mol
g magnitude of the gravitational acceleration, cm/s2

i current density, A/cm2

I total current, A
js surface current density, A/cm
n number of particles per unit volume of the system, cm−3

Ni flux of species i, mol/cm2⋅s
p pressure, N/cm2

q2 surface charge density in the diffuse layer, C/cm2

Q volumetric flow rate, cm3/s
r radial distance in spherical or cylindrical coordinates, cm
r0 radius of particle or capillary, cm
R universal gas constant, 8.3143 J/mol⋅K
R0 r0/𝜆
Re 2𝑣∞r/v, the Reynolds number
T absolute temperature, K
ui mobility of species i, cm2⋅mol/J⋅s
v fluid velocity, cm/s
𝑣0 electrokinetic velocity discontinuity, cm/s
𝑣∞ velocity far from the particle, cm/s
x distance along a surface, cm
x r/𝜆
y distance from surface, cm
z distance along capillary or in direction of particle motion, cm
zi charge number of species i
𝛽 velocity derivative outside diffuse layer, s−1

Γ dimensionless charge density on axis of capillary
𝜖 permittivity, F/cm
𝜖0 permittivity of free space, 8.8542 × 10−14 F/cm
𝜁 zeta potential, V
𝜃 angle from the axis of particle motion
𝜅 solution conductivity, S/cm
𝜅s surface conductivity, S
𝜆 Debye length, cm
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𝜇 viscosity, mPa⋅s
v kinematic viscosity, cm2/s
𝜌 density, g/cm3

𝜌e electric charge density, C/cm3

𝜙 Φ−Φr=0
Φ electric potential, V
𝜓 F𝜙/RT, dimensionless potential
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CHAPTER 10

ELECTROCAPILLARY PHENOMENA

The motion of charged mercury drops in an electrolytic solution can lead to much larger electrophoretic
velocities and sedimentation potentials than with solid particles because the drop can develop an
internal circulation. The motion of the surface leads to larger surface current densities and hence larger
sedimentation potentials. In electrophoresis, the electric force is not applied close to a solid surface,
and larger velocities result.

For mercury drops, we can ignore the usual electrokinetic effects since the surface velocity itself is
much larger than the electrokinetic velocity discontinuity discussed in Section 9.1. Instead, we treat
the mercury drop as an ideally polarizable electrode, where the surface tension varies with the local
electrode potential on the drop. These variations of surface tension serve to propel the drop through
the solution in the electrophoretic case. They can also affect the velocity of fall in a gravitational field
in the sedimentation case.

The mechanism and observations of electrocapillary motion were described by Christiansen[1] in
1903. Frumkin and Levich[2–4] presented a detailed theoretical analysis of the phenomena.

10.1 DYNAMICS OF INTERFACES

The force balance at an interface is treated in Section 15.3. For a spherical drop, equation 15.14 reads

𝜏′
r𝜃 − 𝜏r𝜃 + 1

r0

𝜕𝜎
𝜕𝜃

= 0, (10.1)

where 𝜏′
r𝜃 is the force in the 𝜃 direction exerted on the interface by the fluid within the drop and −𝜏r𝜃

is the force exerted by the fluid outside the drop. The shear stress is related to the velocity derivatives
for a Newtonian fluid:

𝜏r𝜃 = −𝜇 [r
𝜕
𝜕r

(
𝑣𝜃
r

) + 1
r

𝜕𝑣r

𝜕𝜃
] . (10.2)

Electrochemical Systems, Fourth Edition. John Newman and Nitash P. Balsara.
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Surface-tension-driven flows can lead to a variety of interesting phenomena. The surface tension
generally depends on the composition of the solution near the interface. In mass-transfer studies,
nonuniformities of surface tension can develop, resulting in what is called interfacial turbulence.[5, 6]

In the Marangoni effect, a nonuniform surface tension arises from differential evaporation of the
components of the solution. In the fall of a drop in a solution with surface-active agents, nonuniformities
of surface tension can hinder the internal circulation, so that the drop falls like a solid sphere.[7, 8]

Similar circumstances can hinder the formation of ripples on a falling liquid film.
In the electrocapillary motion of mercury drops, the surface tension can vary due to the nonuniform

potential in the solution. This can produce a motion, like electrophoresis, if there is an applied electric
field, or it can hinder the fall of drops in a manner similar to the surface-active agents referred to
above. Electrocapillary motion can also lead to some maxima observed in polarographic currents with
a dropping mercury electrode.[9, 10]

If proper account is taken of the variation of surface tension at a fluid–fluid interface, the concept
of the surface viscosity becomes of dubious value.

10.2 ELECTROCAPILLARY MOTION OF MERCURY DROPS

The electrocapillary motion of mercury drops in an external electric field is very similar to the
electrophoretic motion of solid particles treated in Section 9.3. The velocity distribution outside the
drop is again given by equations 9.58 and 9.59, so that

𝑣𝜃 = −3
2

𝑣∞ sin 𝜃 at r = r0 (10.3)

and
𝜏r𝜃 = −

3𝜇𝑣∞
r0

sin 𝜃 at r = r0. (10.4)

Since the interface as a whole now moves, the surface current density is

js = −q𝑣𝜃 at r = r0, (10.5)

with −q being the charge density on the solution side of the double layer. We take q to be essentially
constant over the surface of the drop so that the surface divergence is

∇s⋅𝐣s =
3q𝑣∞

r0
cos 𝜃. (10.6)

For an ideally polarizable drop, the current entering and leaving the surface cannot come from within
the drop. Consequently, the current comes from the electrolytic solution, and equation 9.57 applies:

𝜕Φ
𝜕r

=
3q𝑣∞
r0𝜅 cos 𝜃 at r = r0. (10.7)

This forms one of the boundary conditions for Laplace’s equation, the other being the uniform field far
from the drop. Consequently, the potential in the solution outside the drop is again given by equation
9.64, where now

A =
3q𝑣∞

2r0𝜅E∞
. (10.8)
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The velocity distribution inside the drop is

𝑣′
r = 3

2
( r2

r2
0

− 1) 𝑣∞ cos 𝜃, (10.9)

𝑣′
𝜃 = −3

2
(2

r2

r2
0

− 1) 𝑣∞ sin 𝜃. (10.10)

This is not an exact solution of the Navier–Stokes equation. It is a solution of the approximate form of
the equation of motion for creeping flow. Equations 10.9 and 10.10 yield

𝜏′
r𝜃 = 9

2
𝜇′𝑣∞

r0
sin 𝜃 at r = r0. (10.11)

The motion of the surface also creates a surface current density on the metal side of the double layer.
However, this current can easily be supplied from within the drop because of the high conductivity of
the metal, and the potential in the drop remains uniform. Consequently, the Lippmann equation 7.26
allows the variation in surface tension to be related to the variation of the potential in the solution near
the drop:

𝜕𝜎
𝜕𝜃

= −q
𝜕U
𝜕𝜃

= q
𝜕Φ
𝜕𝜃

at r = r0. (10.12)

With equation 9.64, we have
𝜕𝜎
𝜕𝜃

= qr0E∞ (3
2

+ A) sin 𝜃. (10.13)

Finally, substitution of equations 10.4, 10.8, 10.11, and 10.13 into the force balance equation 10.1
allows us to determine the velocity 𝑣∞ in terms of the electric field E∞:

𝑣∞ =
−qE∞r0

2𝜇 + 3𝜇′ +
q2

𝜅

. (10.14)

As in the case of equations 9.67 and 9.68, a positively charged drop moves in the direction of the
electric field, 𝑣∞ being the velocity of the fluid with respect to the particle.

Levich[11] cites from the Russian literature examples of the experimental verification of
equation 10.14. This can be done with some thoroughness, since it is possible to vary the surface
charge on the drop (see Figure 7.9). One notices that the velocity in equation 10.14 can be larger than
the usual electrophoretic velocities given by equation 9.67 or 9.68 by a factor of the order of r0/𝜆.
Again in contrast to equation 9.67, the last term in the denominator of equation 10.14 generally is not
negligible, and in media of low conductivity the velocity of electrocapillary motion can be small.

The charge in the double layer is the origin of the electrocapillary motion and gives rise to the
numerator in equation 10.14. The tangential electric field produces a variation in surface tension that
propels the drop (see equation 10.12). However, if the double layer has too great an ability to carry a
surface current compared to the bulk solution, it can reduce the tangential electric field and hence the
variation of surface tension around the drop. This will lower the velocity of electrophoretic motion, as
represented by the last term in the denominator of equation 10.14.
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10.3 SEDIMENTATION POTENTIALS FOR FALLING MERCURY DROPS

Mercury drops falling through an electrolytic solution will establish a sedimentation potential in much
the same manner as solid particles, as discussed in Section 9.4. In this case, equation 9.69 is replaced
by

Ez =
2𝜋n𝑣∞r2

0

q𝜇
𝜅

𝜇 + 𝜇′ +
q2

3𝜅

, (10.15)

where Ez is in the direction opposite to the velocity 𝑣∞ of the particles. The velocity of fall of the drops
is now given by

𝑣∞ =
2(𝜌′ − 𝜌)gr2

0

3𝜇

𝜇 + 𝜇′ +
q2

3𝜅

2𝜇 + 3𝜇′ +
q2

𝜅

. (10.16)

Now, both the sedimentation potential and the velocity of fall are subject to experimental verification,
as presented by Levich.[12] For large values of q2/𝜅, the drop falls like a solid particle according to
Stokes’s law:

𝑣∞ =
2(𝜌′ − 𝜌)gr2

0

9𝜇 . (10.17)

The motion of the charge in the double layer then establishes a potential distribution around the drop
that determines the variation of surface tension so as to retard strongly the motion of the surface. For a
small surface charge, on the other hand, the internal circulation of the drop is not retarded, and it falls
with the somewhat larger velocity

𝑣∞ =
2(𝜌′ − 𝜌)gr2

0

3𝜇
𝜇 + 𝜇′

2𝜇 + 3𝜇′ . (10.18)

For a small viscosity 𝜇′ of the drop compared to the viscosity 𝜇 of the solution, this velocity can be
50% larger than the Stokes velocity.

The sedimentation potential for falling drops is much greater than that given by equation 9.69 for
solid particles, by a factor of order r0/𝜆. The terms involving q2/𝜅 in the denominator in equations 10.15
and 10.16 are, in general, not negligible, in contrast to the corresponding terms in equations 9.69 and
9.70.

NOTATION

E∞ electric field far from the drop, V/cm
g magnitude of the gravitational acceleration, cm/s2

js surface current density, A/cm
n number of drops per unit volume of the system, cm−3

q surface charge density on the mercury side of the double layer, C/cm2

r radial distance from the center of the drop, cm
r0 radius of the mercury drop, cm
U electrode potential, V
𝑣r velocity in the r direction, cm/s
𝑣𝜃 velocity in the 𝜃 direction, cm/s
𝑣∞ velocity far from the drop, cm/s
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𝜃 angle from the axis of drop motion
𝜅 solution conductivity, S/cm
𝜆 Debye length, cm
𝜇 viscosity, mPa⋅s
𝜌 density, g/cm3

𝜎 surface tension, mN/m
𝜏r𝜃 shear stress, N/cm2

Φ electric potential in the solution, V

Superscript
′

in the drop
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PART C

TRANSPORT PROCESSES IN
ELECTROLYTIC SOLUTIONS

Frequently, the rate of an electrochemical process is governed by the transport of a reactant species
to the electrode surface by diffusion and convection. In other processes, the ohmic potential drop in
the solution is decisive. This part of the book treats the transport processes, migration and diffusion,
in electrolytic solutions from a descriptive point of view. For example, it is recognized that electric
conduction is a manifestation of the movement of charged species, but the quantitative characterization
of conduction in terms of the molecular properties of the species is not considered vital. Engineering
applications do not require values of transport properties predicted from molecular theory if measured
values are available.

Basic diffusion laws for dilute solutions are presented in Chapter 11 and are modified for
concentrated solutions in Chapter 12. The dilute-solution theory has been applied fruitfully to many
electrochemical problems; it is adequate for approximate analysis. It is more or less familiar to all
electrochemists. Nevertheless, a careful definition of transport properties requires modifications of that
theory except at infinite dilution. Furthermore, there are questions for which the dilute-solution theory
promotes circular or incorrect reasoning. A classic example is the question of liquid-junction potentials
and individual ionic activity coefficients. Such questions can be clarified or avoided in the theory for
concentrated solutions.

One should be aware that the consequences of dilute-solution theory developed in Chapter 11 are
subject to qualification or reinterpretation as a result of the theory of concentrated solutions. It is not
always indicated in the text whether a particular result has a strong analogy or is of little meaning in
the concentrated-solution theory.

Thermal effects and transport properties are developed in Chapters 13 and 14. The fluid mechanics
necessary to calculate the convective velocity is introduced in Chapter 15.

Transport equations are given in vector notation for generality and brevity. A short statement of the
information needed to comprehend such equations is found in Appendix B.

Electrochemical Systems, Fourth Edition. John Newman and Nitash P. Balsara.
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Chapters 11 and 12 are taken largely from J. Newman, “Transport Processes in Electrolytic
Solutions,” in C. W. Tobias, Advances in Electrochemistry and Electrochemical Engineering, Vol. 5;
copyright ©1967 by John Wiley & Sons, Inc., and reprinted by permission.
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CHAPTER 11

INFINITELY DILUTE SOLUTIONS

11.1 TRANSPORT LAWS

Mass transfer in an electrolytic solution requires a description of the movement of mobile ionic
species, material balances, current flow, electroneutrality, and fluid mechanics. Equations for the first
four of these are presented in this section and are elaborated upon in the following sections. The
medium we wish to describe consists of a nonionized solvent, ionized electrolytes, and uncharged
minor components. This description should be restricted to dilute solutions.

The flux density of each dissolved species is given by

𝐍i
flux

= −ziuiFci∇Φ
migration

− Di∇ci
diffusion

+ ci𝐯.
convection

(11.1)

The flux density Ni of species i, expressed in mol/cm2⋅s, is a vector quantity indicating the direction
in which the species is moving and the number of moles going per unit time across a plane of 1 cm2,
oriented perpendicular to the flow of the species. This movement is due first of all to the motion of the
fluid with the bulk velocity v. However, the movement of the species can deviate from this average
velocity by diffusion if there is a concentration gradient ∇ci or by migration if there is an electric field
−∇Φ and if the species is charged (zi is the number of proton charges carried by an ion).

The migration term is peculiar to electrochemical systems or systems containing charged species.
Here Φ is the electrostatic potential whose gradient is the negative of the electric field. These are not
quantities that can be measured easily and directly in a liquid solution. The quantity ui is called the
mobility and denotes the average velocity of a species in the solution when acted upon by a force
of 1 N/mol, independent of the origin of the force. Thus, ziF is the charge per mole on a species.
Multiplication by the electric field −∇Φ gives the force per mole. Multiplication by the mobility ui
gives the migration velocity, and finally multiplication by the concentration ci gives the contribution
to the net flux density Ni due to migration in an electric field.

The second and third terms on the right side of equation 11.1 are the usual terms required to describe
nonelectrolytic systems. The species will diffuse from regions of high concentration to regions of lower
concentration. The three terms on the right in equation 11.1 thus represent three mechanisms of mass

Electrochemical Systems, Fourth Edition. John Newman and Nitash P. Balsara.
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230 INFINITELY DILUTE SOLUTIONS

transfer: migration of a charged species in an electric field, molecular diffusion due to a concentration
gradient, and convection due to the bulk motion of the medium. Equation 11.1 thus serves to define
two transport properties, the diffusion coefficient Di and the mobility ui.

The current in an electrolytic solution is due to the motion of charged particles, and we can easily
express this quantitatively:

𝐢 = F
∑

i

zi𝐍i. (11.2)

Here, i is the current density expressed in amperes per square centimeter, and ziF is again the charge
per mole.

Next we need to state a material balance for a minor component:

𝜕ci

𝜕t
accumulation

= −∇ ⋅ 𝐍i
net input

+ Ri
production (in homogeneous

chemical reactions)

. (11.3)

In engineering parlance, accumulation is equal to input minus output plus production. For a differential
volume element, accumulation is simply the time rate of change of concentration.

For the net input, it is necessary to compute the net amount of material brought in by the different
fluxes on the various faces of the volume element (see Figure 11.1).

The difference in fluxes contributes to accumulation or depletion.

lim
Δx→0

Nix|x − Nix|x+Δx

Δx
= −

𝜕Nix

𝜕x
.

The Δx in the denominator comes from dividing by the volume of the element.
The production per unit volume Ri involves homogeneous chemical reactions in the bulk of

the solution, but not any electrode reactions, which occur at the boundaries of the solution. In
electrochemical systems, the reaction is frequently restricted to electrode surfaces, in which case Ri
is zero.

Finally, we can say that the solution is electrically neutral.
∑

i

zici = 0. (11.4)

Such electroneutrality is observed in all solutions except in a thin double charge layer near electrodes
and other boundaries. This double layer may be of the order of 1 to 10 nm in thickness. The phenomena
related to the double layer at electrodes can usually be taken into account by the boundary conditions.
Hence, it is reasonable to adopt equation 11.4 in a description of the bulk of a solution. The validity of
this equation will be considered again in Section 11.8.

These four equations provide a consistent description of transport processes in electrolytic solutions,
and their physical significance is worth repeating. The first states that species in the solution can move

Nix
•

𝜕Nix

𝜕xNi

𝜕Niy

𝜕y
𝜕Niz

𝜕z

x x + Δx

Nix = + +▿

Figure 11.1 Accumulation due to differences in the fluxes at the faces of a volume element.
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by migration, diffusion, and convection. The second equation merely says that the flux of a charged
species constitutes an electric current. The third is a material balance for a species, and the fourth
is the condition of electroneutrality. Although the specific description may be refined, any theory of
electrolytic solutions needs to consider these physical phenomena.

Note that in order to solve a mass-transfer problem it is necessary to know the convective velocity
v. This requires the equations of fluid mechanics, which are discussed in Chapter 15. The analysis of
electrochemical systems by means of the above differential equations requires in addition a statement
of the geometry of the system and of conditions existing at boundaries of the system. Important among
these are the electrode kinetics treated in Part B. Boundary conditions will be discussed as they arise,
mostly in Part D (see also equations 11.25 to 11.27).

We can also obtain physical insight by considering the validity of the above four equations. The
validity of the electroneutrality equation 11.4 will be discussed separately in Section 11.8, where we
come to the conclusion that electroneutrality is an accurate approximation. Equations 11.2 and 11.3
can be regarded as expressions of basic physical laws, stating that current is due to the motion of
charged particles and that individual species either are conserved or take part in homogeneous chemical
reactions. However, the rate processes in the expression of the production rate and the flux density
introduce uncertainties. The production rate involves chemical kinetics, for which rate expressions are
neither predictable nor general. The flux density has been expressed by equation 11.1, but even this
breaks down in concentrated solutions.

It is always possible to write mathematical expressions for the basic physical laws of conservation
of mass, energy, and momentum in terms of the fluxes of these quantities, but the difficult part is to
find correct expressions for these fluxes in terms of the appropriate driving forces in the system. We
are not speaking of the microscopic, theoretical explanation of transport properties, but rather of the
macroscopic definition of the appropriate transport properties.

The flux equation 11.1 breaks down, first of all, because migration and diffusion fluxes must be
defined with respect to some average velocity of the fluid (v in equation 11.1), and the flux relations
so defined must be consistent with this choice. We have not been careful to specify the fluid velocity.
In a concentrated solution, it is not just the solvent velocity that contributes to the average velocity.
This difficulty is avoided here by not applying equation 11.1 to the solvent and by restricting ourselves
to dilute solutions where v is essentially the same as the velocity of the solvent.

Furthermore, the flux equation 11.1 incorrectly defines the transport properties; in fact, it defines
an incorrect number of transport properties. This situation arises because equation 11.1 considers the
interaction or friction force of a solute species with the solvent and essentially neglects interactions
with the other solutes.

Finally, the driving force for diffusion should be an activity gradient, and activity gradients are
identical to concentration gradients only in extremely dilute solutions. However, in a generalization of
equation 11.1, one should avoid the use of single ionic activity coefficients, which are not physically
measurable. Furthermore, care is needed in the definition of potentials in media of varying composition
(see Chapter 3). One concludes that the correct driving force for both diffusion and migration is the
gradient of an electrochemical potential (discussed in Chapter 2), and any decomposition of this into
∇ci and ci ∇Φ is unnecessary.

The multicomponent diffusion equation, presented in Section 12.1, avoids these difficulties.
Nevertheless, equation 11.1 is recommended for general use because it is prevalent, both explicitly
and implicitly, in the electrochemical literature and because it gives a good account of the physical
processes involved without excessive complication. One should remember that it is strictly valid only
in dilute solutions.

The remaining sections of this chapter are designed to illustrate further the meaning, the application,
and the limitations of the basic transport laws discussed here.
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11.2 CONDUCTIVITY, DIFFUSION POTENTIALS, AND TRANSFERENCE NUMBERS

Let us expand the expression for the current density in the solution, equation 11.2, in terms of the
species fluxes, equation 11.1:

𝐢 = −F2∇Φ
∑

i

z2
i uici − F

∑

i

ziDi∇ci + F𝐯
∑

i

zici. (11.5)

By virtue of electroneutrality, the last term on the right is zero, which is equivalent to saying that bulk
motion of a fluid with no charge density can contribute nothing to the current density. When there are
no concentration variations in the solution, this equation reduces to the common concept of electrolytic
conductance:

𝐢 = −𝜅∇Φ, (11.6)

where
𝜅 = F2

∑

i

z2
i uici (11.7)

is the conductivity of the solution. This is an expression of Ohm’s law, valid for electrolytes in the
absence of concentration gradients.

Still with no concentration variations, we can say that the current carried by species j is

tj𝐢 = −F2z2
j ujcj∇Φ =

z2
j ujcj

∑
i

z2
i uici

𝐢, (11.8)

where

tj =
z2

j ujcj
∑

i
z2

i uici

(11.9)

is the fraction of the current carried by species j and is also known as the transference number. In such
a case, it is convenient and proper to identify a migration flux density of species i:

𝐍migr
i = −ziuiFci∇Φ =

ti
ziF

𝐢. (11.10)

When there are concentration gradients, the current density is not proportional to the electric
field, and Ohm’s law does not hold. Due to the diffusion current represented by the second term in
equation 11.5, the current density could even have a different direction from the electric field. One can
turn equation 11.5 around:

∇Φ = − 𝐢
𝜅 − F

𝜅
∑

i

ziDi∇ci, (11.11)

and say the same thing backwards. Even in the absence of current, there may be a gradient of potential.
The second term in this equation gives rise to what is known as the diffusion potential. If all the
diffusion coefficients were equal, this would be zero by electroneutrality. In conductivity measurements
an alternating current is used so that concentration differences will not build up (and so as to reduce
polarization at the electrodes).

The conductivity and the transference number are additional transport properties, defined in
equations 11.7 and 11.9 in terms of the ionic mobilities introduced earlier. These transport properties
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have relevance in solutions of varying composition, but they do not retain their same physical
significance. Ohm’s law is valid, and the transference number has the physical meaning of the fraction
of current carried by an ionic species only in the absence of concentration gradients.

When there are concentration gradients, one can identify contributions to the species flux density
Ni due to migration, molecular diffusion, and convection, according to equation 11.1. However, the
current density in equation 11.5 is composed of portions due to migration and to diffusion, and it is no
longer proper to identify the migration flux according to the last expression in equation 11.10, although
one finds in the literature such deceptively simple statements as

𝐍diff
i =

1 − ti
ziF

𝐢. (11.12)

It should be apparent that the transference number and the expression of the migration flux in terms of
current density should be used with caution in cases where concentration gradients exist.

11.3 CONSERVATION OF CHARGE

It is a physical law of nature that electric charge is conserved. This fact is already built into the basic
transport relations. Multiplication of equation 11.3 by ziF and addition over species yield

𝜕
𝜕t

F
∑

i

zici = −∇ ⋅ F
∑

i

zi𝐍i + F
∑

i

ziRi. (11.13)

The last term will be zero as long as all the homogeneous reactions giving rise to the Ri are electrically
balanced. Then, the term on the left is the time rate of change of the charge density; the first term on
the right is minus the divergence of the current density; and the equation describes conservation of
charge. In view of the assumption of electroneutrality, the equation reduces to

∇ ⋅ 𝐢 = 0. (11.14)

In physical terms, our line of reasoning has been that charge is carried by particles of matter and that
conservation (or electrically balanced reaction) of these particles implies conservation of charge.

Insertion of equation 11.5 into equation 11.14 yields

∇ ⋅ (𝜅∇Φ) + F
∑

i

zi∇ ⋅ (Di∇ci) = 0. (11.15)

In the absence of concentration gradients and with a uniform value of the conductivity 𝜅, this reduces
to

∇2Φ = 0, (11.16)

that is, the potential satisfies Laplace’s equation in a region of uniform composition.

11.4 THE BINARY ELECTROLYTE

By a binary electrolyte we mean the solution of a single salt composed of one kind of cation and one
kind of anion. At times the term has been known to denote a symmetric electrolyte, which dissociates
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into equal numbers of anions and cations. Let the positive species be denoted by the subscript+ and
the negative species by the subscript −. The mobilities and the diffusion coefficients will be assumed
to be constant.

Let 𝜈+ and 𝜈− be the numbers of cations and anions produced by the dissociation of one molecule
of electrolyte. The concentration of the electrolyte is then defined by

c =
c+
𝜈+

=
c−
𝜈−

, (11.17)

so that the electroneutrality equation 11.4 is satisfied. Substitution of the flux equation 11.1 into the
material balance equation 11.3 with Ri = 0 yields equations for each of the ionic species:

𝜕c
𝜕t

+ 𝐯 ⋅ ∇c = z+u+F∇ ⋅ (c∇Φ) + D+∇2c. (11.18)

𝜕c
𝜕t

+ 𝐯 ⋅ ∇c = z−u−F∇ ⋅ (c∇Φ) + D−∇2c. (11.19)

Subtraction gives (
z+u+ − z−u−

)
F∇ ⋅ (c∇Φ) +

(
D+ − D−

)
∇2c = 0. (11.20)

This can be used to eliminate the potential from either of equations 11.18 and 11.19, with the result

𝜕c
𝜕t

+ 𝐯 ⋅ ∇c = D∇2c, (11.21)

where

D =
z+u+D− − z−u−D+

z+u+ − z−u−
. (11.22)

Equation 11.21 is called the equation of convective diffusion. This equation or its analogue applies
to heat transfer or nonelectrolytic mass transfer, and its solutions have been extensively studied in the
literature. Consequently, it is possible to apply many of these results to electrochemical systems with
only minor changes in notation. This will be taken up in Part D.

Equation 11.21 shows that in the absence of current a salt, such as copper sulfate in water,
will behave like one species because of the requirement of electroneutrality. The observed diffusion
coefficient D represents a compromise between the diffusion coefficient of the anion and the cation.[1]

If these diffusion coefficients are different, the species will tend to separate, thereby creating a minute
charge density that prevents further separation. The charge density creates a nonuniform potential that
acts to speed up the ion with the smaller diffusion coefficient and slow down the ion with the larger
diffusion coefficient.

But equation 11.21 was derived without assuming that the current density is zero. The interesting
and useful conclusion is that the concentration distribution in a solution of a single salt is governed by
the same equation as the concentration distribution of a neutral species, even when a current is being
passed.

The potential distribution in a solution of a single salt is to be determined from equation 11.20. An
integrated form of this equation can be obtained from the expression 11.2 for the current density

− 𝐢
z+𝜈+F

= (z+u+ − z−u−)Fc∇Φ + (D+ − D−)∇c. (11.23)
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This equation shows directly how the potential gradient is related to the concentration gradient and the
difference in diffusion coefficients for the diffusion of a salt in the absence of current:

F∇Φ = −
D+ − D−

z+u+ − z−u−
∇ ln c. (11.24)

This is the diffusion potential, discussed in connection with equation 11.11, which prevents any
substantial separation of charge in a diffusing system. Equation 11.23 is analogous to equation 11.5,
while equation 11.20 is analogous to equation 11.14.

In situations where the boundary conditions permit, equation 11.21 can be solved first for the
concentration distribution. If the current density distribution is known, the potential distribution can
then be readily determined from equation 11.23. If the current density distribution is not known, the
potential distribution must be determined from equation 11.20 and the current distribution subsequently
from equation 11.23.

However, it is frequently possible to determine the current density distribution at an electrode from
the concentration distribution but without the potential distribution. The normal component of the
velocity will be zero at the electrode. Let us also assume that only the cation reacts at the electrode, a
common situation for a binary electrolyte. Then, the normal components of the cation and anion flux
densities at the electrode are

N+y =
iy

z+F
= −z+u+F𝜈+c

𝜕Φ
𝜕y

− D+𝜈+
𝜕c
𝜕y

, (11.25)

and
N−y = 0 = −z−u−F𝜈−c

𝜕Φ
𝜕y

− D−𝜈−
𝜕c
𝜕y

, (11.26)

where y is the distance from the electrode. Elimination of the potential gradient gives

iy
z+𝜈+F

= −
z−u−D+ − z+u+D−

z−u−

𝜕c
𝜕y

= − D
1 − t+

𝜕c
𝜕y

at y = 0. (11.27)

Here D is given by equation 11.22, and t+ is the cation transference number given by equation 11.9,
which reduces to

t+ = 1 − t− =
z+u+

z+u+ − z−u−
(11.28)

for a binary electrolyte. Equation 11.27 shows that the current density is directly related to the
concentration derivative at the electrode.

In this discussion, we have treated the diffusion coefficients and mobilities (but not the conductivity)
as constants. Usually these quantities depend upon the concentration. However, restriction to a
constant-property fluid is common in the literature and has advantages of simplicity and generality. If
we relax the assumption of constant properties, equation 11.23 still stands, but equation 11.21 is to be
replaced by

𝜕c
𝜕t

+ 𝐯 ⋅ ∇c = ∇ ⋅ (D∇c) −
𝐢 ⋅ ∇t+
z+𝜈+F

, (11.29)

where D is given by equation 11.22 and t+ by equation 11.28. The first term on the right is the expected
generalization of the diffusion term in the convective-diffusion equation for a varying diffusion
coefficient.



�

� �

�

236 INFINITELY DILUTE SOLUTIONS

11.5 SUPPORTING ELECTROLYTE

When the flux equation 11.1 is inserted into the material-balance equation 11.3, one obtains

𝜕ci

𝜕t
+ 𝐯 ⋅ ∇ci = ziF∇ ⋅ (uici∇Φ) + ∇ ⋅ (Di∇ci) + Ri. (11.30)

This also uses the incompressibility of the fluid (∇ ⋅ v = 0). The equation is useful for describing the
medium since the flux density has been eliminated, and it could therefore be used to determine the
concentration distribution when the velocity and potential distributions are known. Equation 11.1 is
still useful for formulating boundary conditions.

For a mass-transfer problem in forced convection, the velocity distribution can be assumed to be
known, but usually the potential distribution needs to be determined. This means that equation 11.30
for each ionic species must be solved simultaneously, the electroneutrality equation 11.4 providing
the additional relation needed to determine the potential. That is to say, all the equations are coupled
through the potential. The problem thus posed is quite complicated.

We have already seen the simplification possible when only two ionic species are present. Then
the requirement of electroneutrality allows the potential to be eliminated, and the concentration of
the electrolyte satisfies the equation of convective diffusion. A similar simplification applies when
migration and reactions in the bulk of the solution can be neglected. Then equation 11.30 becomes

𝜕ci

𝜕t
+ 𝐯 ⋅ ∇ci = Di∇2ci, (11.31)

for a constant diffusion coefficient. This is again the equation of convective diffusion.
In mass-transfer studies in electrolytic systems, in studies of electrode kinetics, and in some

commercial electrochemical cells, a supporting or indifferent electrolyte is frequently added to increase
the conductivity of the solution and thereby reduce the electric field. The mass transfer of minor species
then will be primarily due to diffusion and convection, and the effect of migration can be qualitatively
dismissed. The concentration distribution is then governed by equation 11.31.

Levich[2] has given a more formal statement of this procedure, one that also allows investigation of
the concentration distribution of the major species. Let us develop this for three ionic components, the
third of which is present in small amount. We do not consider the possibility of reaction in the bulk
of the solution, that is, Ri = 0. In the zero approximation, one assumes that the minor constituent is
absent and solves for the potential and the concentration of the major species by using the method for
binary electrolytes (see Section 11.4). Let this solution be denoted by c0

1, c0
2, and Φ0.

Then we can write

c1 = c0
1 + c(1)

1 , c2 = c0
2 + c(1)

2 ,

c3 = c(1)
3 , Φ = Φ0 + Φ(1). (11.32)

These are substituted into the basic equations; and, in the first approximation, terms of degree greater
than one in c(1)

1 , c(1)
2 , c(1)

3 , and Φ(1) are dropped. The equations for the first approximation are then
linear.

In many cases of importance, the minor constituent is the only one taking part in electrode reactions,
and the zero solution yields constants for c0

1, c0
2, and Φ0. This applies to mass-transfer studies, where

the system is selected so that the behavior of the minor component is of interest. For commercial cells,
a loss of current efficiency would result if the supporting electrolyte were to participate in electrode
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reactions, hence the name indifferent electrolyte. For this case, the equations for the first approximation
reduce to

𝜕c(1)
3

𝜕t
+ 𝐯 ⋅ ∇c(1)

3 = D3∇2c(1)
3 , (11.33)

𝜕c(1)
1

𝜕t
+ 𝐯 ⋅ ∇c(1)

1 = De∇2c(1)
1 +

z3u1(D2 − D3)
z1u1 − z2u2

∇2c(1)
3 , (11.34)

and
− 𝐢

z1F
= (z1u1 − z2u2)Fc0

1∇Φ(1) + (D1 − D2)∇c(1)
1 +

z3

z1
(D3 − D2)∇c(1)

3 , (11.35)

where
De =

z1u1D2 − z2u2D1

z1u1 − z2u2
(11.36)

is the diffusion coefficient of the supporting electrolyte. Here c2 has been eliminated by means of
the electroneutrality equation, and the mobilities and diffusion coefficients have been assumed to be
constant.

The minor species obeys the equation of convective diffusion with its ionic diffusion coefficient;
equation 11.33 is the same as equation 11.31. The supporting electrolyte obeys the equation of
convective diffusion with the diffusion coefficient of the salt, but with an additional term of interaction
with the minor species. The equations are to be solved in the order given: first, for the concentration
of the minor component, second, for the concentration of the supporting electrolyte, and finally, for
the potential from equation 11.35. In case the current is not known at this point, one can take the
divergence of this equation (see equation 11.14) and solve a second-order differential equation for the
potential.

It is not difficult to extend the development to a case where two minor constituents are involved in the
electrode reaction but the major species are not involved. An example would be an oxidation–reduction
reaction with a supporting electrolyte. Whether the above treatment applies to the reaction of a
nonelectrolyte, such as oxygen, will be considered in the problems (see also Section 19.3).

The treatment of a supporting electrolyte can be considered to be the beginning of a perturbation
expansion of the problem. The expansion parameter would be a characteristic concentration of the
minor species divided by a characteristic concentration of the supporting electrolyte. The procedure is,
of course, valid only when this ratio is small. In practice, one is usually content to solve equation 11.33
for the minor component.

The concept of supporting electrolytes raises a number of interesting and paradoxical questions.
Some of these are considered in Chapter 19.

11.6 MULTICOMPONENT DIFFUSION BY ELIMINATION OF THE ELECTRIC FIELD

Multicomponent diffusion in nonelectrolytic solutions has been treated in the literature. In concentrated
solutions, the diffusing species interact with each other; but in dilute solutions, each species diffuses
independently according to its own concentration gradient and diffusion coefficient. However, in a
dilute electrolytic solution even in the absence of current, the solute species do not diffuse independently.
A diffusion potential will be established, and the diffusing ions will interact with it.

Substitution of equation 11.11 into the flux equation 11.1 yields

𝐍i =
ti

ziF
𝐢 − Di∇ci + 𝐯ci +

ti
zi

∑

j

zjDj∇cj. (11.37)
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To satisfy the condition of electroneutrality, the concentration of an ionic species n can be eliminated:

zncn = −
∑

j≠n

zjcj, (11.38)

with the result
𝐍i =

ti
ziF

𝐢 − Di∇ci + 𝐯ci +
ti
zi

∑

j

zj(Dj − Dn)∇cj. (11.39)

These equations for all minor species except species n can be substituted into the appropriate material
balances (equation 11.3) to give

𝜕ci

𝜕t
+ 𝐯 ⋅ ∇ci = Di∇2ci + Ri −

𝐢 ⋅ ∇ti
ziF

−
∑

j

zj

zi
(Dj − Dn)∇ ⋅ (ti∇cj). (11.40)

Even in the absence of current and homogeneous chemical reactions, diffusion of species in an
electrolytic solution is coupled in much the same way as diffusion in concentrated, multicomponent,
nonelectrolytic solutions. One may also note that the migration flux density −ziuiFci ∇Φ is not the
same as tii / ziF when there are concentration gradients. This was discussed before in connection with
equation 11.10.

11.7 MOBILITIES AND DIFFUSION COEFFICIENTS

We mentioned in Section 11.1 that a single driving force, the gradient of the electrochemical potential
of a species, is appropriate for both diffusion and migration. We are thus led to expect that the ionic
mobility and diffusion coefficient are related. This relationship is provided by the Nernst–Einstein
equation

Di = RTui. (11.41)

This equation is strictly applicable only at infinite dilution, although its failure is related to the
approximate nature of the flux equation 11.1. The quantities Di and ui in equation 11.41 are not
adequately defined at nonzero concentrations, and further inquiry into the nature of this equation
should await the consideration of concentrated electrolytes in Chapter 12.

With the Nernst-Einstein relation, equations 11.7 and 11.41 can be combined to give

𝜅 =
F2z+c+(z+D+ − z−D−)

RT
, (11.42)

and the expression 11.22 for the diffusion coefficient of a binary electrolyte becomes

D =
D+D−(z+ − z−)
z+D+ − z−D−

. (11.43)

One commonly encounters the statement that “a salt bridge used to eliminate liquid-junction potentials
should contain a salt with equal cation and anion transference numbers.” (Liquid-junction potentials are
diffusion potentials that arise when one connects two electrolytic solutions of different composition;
see Chapter 6.) This can be interpreted with the aid of the Nernst–Einstein equation. For the
solution of a single salt, the transference numbers are nominally independent of concentration (due to
electroneutrality) and are given by equation 11.28. With equation 11.41 we have

t+ =
z+D+

z+D+ − z−D−
, t− =

−z−D−
z+D+ − z−D−

. (11.44)
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TABLE 11.1 Values of equivalent conductances and diffusion coefficients of selected ions at infinite
dilution in water at 25∘C

Ion zi

𝜆0
i

(S⋅cm2/mol)
Di × 105

(cm2/s) Ion zi

𝜆0
i

(S⋅cm2/mol)
Di × 105

(cm2/s)
H+ 1 349.8 9.312 OH− −1 197.6 5.260
Li+ 1 38.69 1.030 Cl− −1 76.34 2.032
Na+ 1 50.11 1.334 Br− −1 78.3 2.084
K+ 1 73.52 1.957 I− −1 76.8 2.044
NH+

4 1 73.4 1.954 NO−
3 −1 71.44 1.902

Ag+ 1 61.92 1.648 HCO−
3 −1 41.5 1.105

Tl+ 1 74.7 1.989 HCO−
2 −1 54.6 1.454

Mg2+ 2 53.06 0.7063 CH3CO−
2 −1 40.9 1.089

Ca2+ 2 59.50 0.7920 SO2−
4 −2 80 1.065

Sr2+ 2 59.46 0.7914 Fe(CN)3−
6 −3 101 0.896

Ba2+ 2 63.64 0.8471 Fe(CN)3−
6 −4 111 0.739

Cu2+ 2 54 0.72 IO−
4 −1 54.38 1.448

Zn2+ 2 53 0.71 ClO−
4 −1 67.32 1.792

La3+ 3 69.5 0.617 BrO−
3 −1 55.78 1.485

Co(NH3)
3+
6 3 102.3 0.908 HSO−

4 −1 50 1.33
Fe2+ 2 54 0.72 Fe3+ 3 68.4 0.61

Equality of the transference numbers, coupled with the Nernst–Einstein equation, implies that the
diffusion coefficients are equal for symmetric salts (z+ = −z−). Then, the concentration can vary
without giving rise to diffusion potentials (see equation 11.24 or 11.11). (We still do not have a
satisfactory answer to the question of what happens at the junctions of the salt bridge with the two
solutions we were trying to connect.)

Alternatively, equation 11.11 can now be written, by means of the Nernst–Einstein relation, as

F∇Φ = −F
𝜅 𝐢 − RT

∑

i

ti
zi
∇ ln ci. (11.45)

Table 11.1 gives an indication of the magnitudes of ionic diffusion coefficients and mobilities.
Ionic mobilities are usually not found directly in the literature; instead values of ionic equivalent
conductances are reported. These are related to ionic mobilities by

𝜆i = |zi|F2ui. (11.46)

Ionic diffusion coefficients can then be calculated with the aid of the Nernst–Einstein relation:

Di =
RT𝜆i

|zi|F2
. (11.47)

Table 11.1 shows that most ionic diffusion coefficients in aqueous solution are about 1 or 2 × 10−5 cm2/s.
Exceptions are hydrogen ions and hydroxyl ions, for which Di values are 9.3 and 5.3 × 10−5 cm2/s.

The equivalent conductance Λ of a single salt is the sum of the values for the two ions

Λ = 𝜆+ + 𝜆− (11.48)
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and is related to the conductivity of the solution by

Λ = 𝜅
z+𝜈+c

. (11.49)

The value of Λ will thus be about 100 S⋅cm2/mol except for acids and bases. The conductivity of the
solution is obtained by multiplying Λ by the equivalent concentration z+𝜈+c, but this should be in
mol/cm3 in order for 𝜅 to be in S/cm. Thus, the conductivity of 0.6 M NaCl solution (roughly sea
water) will be about 0.04 S/cm when due allowance is made for the concentration dependence of Λ.

The transference number of an ion in a binary salt solution will be

t+ = 1 − t− =
𝜆+

𝜆+ + 𝜆−
(11.50)

and will be close to 0.5 except for acids and bases, where t+ can be as high as 0.8 or as low as 0.2.
For solutions with an excess of inert electrolyte, the transference number of a minor ionic species
is proportional to its concentration and inversely proportional to the concentration of the supporting
electrolyte and hence will be small.

Ionic equivalent conductances, such as those in Table 11.1, are ordinarily determined by measuring
the equivalent conductance Λ and the transference number t+ for solutions of single salts and
extrapolating the values so obtained to infinite dilution. Equations 11.48 and 11.50 then yield 𝜆+ and
𝜆−. Good agreement is usually obtained for, say, 𝜆i for chloride ions determined from solutions of
NaCl and separately from solutions of KCl. Diffusion coefficients calculated from equation 11.43 are
also in good agreement with values measured at high dilution.

An approximate guide to the temperature dependence of ionic diffusion coefficients is provided by
the Stokes–Einstein relationship

Di =
RT

6𝜋𝜇Ri
, (11.51)

where 𝜇 is the viscosity of the solution and Ri is the radius of a hydrated ion. Thus, ionic diffusion
coefficients and equivalent conductances can vary by 2 to 3 percent per kelvin. This is a fairly strong
temperature dependence. Equation 11.51 can also be used to estimate the concentration dependence of
ionic diffusion coefficients.

11.8 ELECTRONEUTRALITY AND LAPLACE’S EQUATION

The electroneutrality equation 11.4 is not a fundamental law of nature. A more nearly correct
relationship would be Poisson’s equation, which, for a medium of uniform dielectric constant, reads
(see equation 3.8)

∇2Φ = −F
ϵ
∑

i

zici (11.52)

and relates the charge density to the Laplacian of the electric potential. The proportionality constant in
this equation is Faraday’s constant F divided by the permittivity or dielectric constant 𝜖. The value of
this proportionality constant is quite large (1.392 × 1016 V⋅cm/mol for a relative dielectric constant of
78.303), so that what, in terms of concentrations, would be a negligible deviation from electroneutrality
amounts to a considerable deviation from Laplace’s equation for the potential.

Another way of saying the same thing is that F/𝜖 is so large that an appreciable separation of
charge would require prohibitively large electric forces. Still another way is that the conductivity is
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so large that any initial charge density would be neutralized very rapidly or would rapidly flow to the
boundaries of the solution (see Problem 11.12).

The equations given in Section 11.1, with appropriately stated boundary conditions, are sufficient
to describe transport processes in electrolytic solutions. Therefore, the use of both Poisson’s equation
and electroneutrality would be inconsistent. The proper thing to do is to replace Poisson’s equation
in the analysis by the electroneutrality condition (11.4) on the basis of the large value of F/𝜖. Thus,
electroneutrality does not imply Laplace’s equation for the potential

∇2Φ = 0; (11.53)

this would be inconsistent. Of course, one could retain Poisson’s equation and discard the assumption
of electroneutrality in the description of electrochemical systems. However, the close adherence of
electrolytic solutions to the condition of electroneutrality, as well as the consequent mathematical
simplification in the treatment of specific problems, justifies the approach taken here. For the
perturbation analysis of phenomena near an electrode with the use of Poisson’s equation, see
Refs. [3, 4].

Electroneutrality and Laplace’s equation are firmly entrenched in electrochemistry, but the assump-
tion of electroneutrality does not imply that Laplace’s equation holds for the potential. In many cases,
the distribution of potential and current in cells of various configurations is determined from Laplace’s
equation for the potential and Ohm’s law

𝐢 = −𝜅∇Φ (11.54)

for the current. This procedure is valid when the current is not appreciably limited by mass transfer of
reactants to the electrodes. Then the concentrations are fairly constant, and equation 11.54 applies with
a fairly constant conductivity. Conservation of charge then yields Laplace’s equation for the potential
(see equations 11.14 through 11.16). This justification of Laplace’s equation is considerably different
from the statement that electroneutrality implies Laplace’s equation for the potential. The procedure
outlined here can be expected to lead to inconsistencies if one subsequently attempts to investigate the
detailed behavior of each species in the solution near electrodes.

It should be pointed out that it is not permissible to neglect the charge density in the electrode
double layer, since the electric field is indeed very large in this region. This region may be 1 to 10 nm
in thickness and is treated in Section 7.4. The double layer can legitimately be regarded as part of the
interface and not part of the solution. In extremely dilute solutions, the charge density may also be
appreciable compared to the total ionic concentration.

Next we illustrate the validity of the assumption of electroneutrality by means of an example. Let
us consider a cell in which a binary electrolyte is used to deposit the cation on the cathode while the
anode dissolves and replenishes the solution. Let us further simplify the problem by assuming a steady
state with no convection and with variations in only one dimension. This is not supposed to represent
a common system; it is merely a test of the electroneutrality assumption. Consider a uniunivalent
electrolyte, such as silver nitrate, and use the Nernst–Einstein relation (equation 11.41) throughout.

The procedure is to solve the problem using the electroneutrality equation, and, in the end, the
deviation from electroneutrality can be assessed by means of Poisson’s equation 11.52. Since the flux
of the anion is zero, equation 11.1 yields

Fc
dΦ
dx

= RT
dc
dx

. (11.55)

Equation 11.23 becomes

− i
F

= (u+ + u−)Fc
dΦ
dx

+ (D+ − D−)
dc
dx

= 2D+
dc
dx

. (11.56)
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Integration gives the steady-state concentration in terms of the current density,

c = cavg − i
2D+F

(x − 1
2

L) , (11.57)

where cavg is the average concentration in the cell, x is the distance measured from one electrode, and
L is the distance between the electrodes.

Now for

i = ±
4D+Fcavg

L
(11.58)

the concentration at one electrode will drop to zero, and the limiting current is attained. A higher
current can be passed only if another electrode reaction occurs. Let us operate at half of the limiting
current, so that

c =
cavg

2
(1 + 2x

L
) . (11.59)

Equation 11.55 gives
d2Φ
dx2

= −4RT
F

1
(L + 2x)2

. (11.60)

If, at the same time, both electroneutrality and Poisson’s equation were exact, this second derivative
would be equal to zero, but it is not. Thus, one can see the incompatibility of these relationships.

Let us test the electroneutrality assumption by calculating the charge density and the difference in
concentration of anions and cations required to produce this value of d2Φ/dx2.

d2Φ
dx2

= −4RT
F

1
(L + 2x)2

= −F
ϵ (c+ − c−). (11.61)

At 25∘C and for a relative dielectric constant of 78.303, RT/F = 25.692 mV, and
𝜖RT/F2 = 1.846 × 10−18 mol/cm. For L = 0.1 mm and x = 0.05 mm, this gives

d2Φ
dx2

= −256.92 V∕cm2 (11.62)

and
c+ − c− = 1.846 × 10−14 mol∕cm3 = 1.846 × 10−11 mol∕liter. (11.63)

This indicates that the assumption of electroneutrality is very good in electrochemical systems.

11.9 MODERATELY DILUTE SOLUTIONS

When the gradient of the electrochemical potential is used as the driving force for diffusion and
migration, the flux density equation 11.1 for an ionic component becomes

𝐍i = −uici∇𝜇i + ci𝐯. (11.64)
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The driving force per mole is −∇𝜇i. Multiplication by the mobility ui gives the velocity for diffusion
and migration, and multiplication by the concentration ci gives the contribution to the net flux Ni. With
the use of the Nernst–Einstein relation 11.41, equation 11.64 becomes

𝐍i = −
Dici

RT
∇𝜇i + ci𝐯. (11.65)

The use of the electrochemical potential avoids the problem of defining the electric potential in a
medium of varying composition. However, substitution of equation 11.64 into the material balance 11.3
yields

𝜕ci

𝜕t
+ 𝐯 ⋅ ∇ci = ∇ ⋅ (uici∇𝜇i) + Ri. (11.66)

Here one does not have a simple equation for the concentration, as in the case of the equation
of convective diffusion 11.31, since 𝜇i depends on the local electrical state as well as the local
composition.

One way to proceed is to define an electric potential on the basis of a chosen ionic species n (the
quasi-electrostatic potential; see equation 3.18):

𝜇n = RT ln cn + znFΦ. (11.67)

Then we can write for the gradient of the electrochemical potential of any species

∇𝜇i = ∇(𝜇i −
zi

zn
𝜇n) +

zi

zn
∇𝜇n. (11.68)

The term in parentheses now corresponds to a neutral combination of ions and can be expressed as

𝜇i −
zi

zn
𝜇n = RT [ln(a𝜃

i cifi) −
zi

zn
ln(a𝜃

ncnfn)]

= RT (ln a𝜃
i −

zi

zn
ln a𝜃

n) + RT (ln ci −
zi

zn
ln cn)

+ RT (ln fi −
zi

zn
ln fn) . (11.69)

These combinations of a𝜃
i
′s and ionic activity coefficients fi

′s are well defined according to the
considerations of Section 2.3, and there need be no hesitation in their use.

At uniform temperature, equation 11.68 now becomes

∇𝜇i = RT∇ ln ci + ziF∇Φ + RT∇(ln fi −
zi

zn
ln fn) , (11.70)

and equation 11.65 becomes

𝐍i = −
ziDiF

RT
ci∇Φ − Di∇ci − Dici∇(ln fi −

zi

zn
ln fn) + ci𝐯. (11.71)

Let
fi,n =

fi

f
zi∕zn
n

, (11.72)
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so that equation 11.71 can be written as

𝐍i = −
ziDiF

RT
ci∇Φ − Di∇ci − Dici∇ ln fi,n + ci𝐯. (11.73)

The electric potential Φ is introduced because we need a means of assessing the electrical state of
the solution. Its arbitrariness is indicated by the necessity of choosing a particular ionic species n in
equation 11.67. The advantage of this procedure is that the structure of the equations is now essentially
the same as that of the dilute-solution theory of Section 11.1. There are flux equations 11.73 and
material-balance equations 11.3 for each species, and these correspond to the unknown flux densities
Ni and concentrations ci. In addition, there is the electroneutrality equation 11.4 corresponding to the
unknown potential Φ. Calculation procedures worked out for the dilute-solution theory can still be
applied here.

The equations are now more complicated than before because the activity coefficients fi,n relative
to species n depend on the local composition of the solution. Here the thermodynamic properties of
multicomponent solutions, discussed in Section 4.5, can be applied to express these activity coefficients
in terms of the concentrations. This procedure also shows how activity coefficients can be introduced
into the dilute-solution theory without using activity coefficients of individual ions. The arbitrariness in
the potential Φ and the reference of ionic activities to the species n reflect in a complementary manner
the arbitrariness in selecting species n in equation 11.67. However, the potential Φ is well defined,
though arbitrary, and can be used to determine relationships of the electrical state at phase boundaries.

At the same time, this procedure illuminates the limitations of the dilute-solution theory. For
sufficiently dilute solutions, fi,n → 1 (see equation 2.19). The use of an electric potential Φ in the
dilute-solution theory is therefore not vague; which species n is chosen becomes immaterial when the
solution is so dilute that fi,n → 1. One also sees that variations in fi,n are neglected in the dilute-solution
theory. This theory works fairly well in moderately concentrated solutions, not so much because fi,n is
close to 1 as because variations in fi,n can be neglected.

The use of electrochemical potentials and the considerations of activity-coefficient variations might
appear to be the most important first correction to dilute-solution theory and have been treated as such
in references [5, 6] and in Chapter 6 on the calculation of the potentials of cells with liquid junctions.
However, the variation of ionic diffusion coefficients with concentration may be equally important. It
should also be recalled that interactions between a diffusing species and species other than the solvent
are not included in equation 11.65 or 11.73 and that the fluid velocity v has not been carefully defined.
These are considered in the next chapter.

PROBLEMS

11.1 Write down expressions for the diffusion coefficient D of the electrolyte, the cation transference
number t+, and the conductivity 𝜅 for solutions of sulfuric acid when the electrolyte is assumed
to dissociate either as

H2SO4 ⇌ H+ + HSO−
4

or as
H2SO4 ⇌ 2H+ + SO2−

4 .

Make numerical comparisons for these quantities on the basis of the information given in
Section 11.7.
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11.2 At the negative electrode in a lead–acid battery, the reaction is

Pb(s) + SO2−
4 ⇌ PbSO4(s) + 2e−.

Regard the solution as a binary electrolyte of H2SO4 dissociated into H+ and SO2−
4 ions and

show that the current density at the electrode surface is related to the concentration gradient by

iy
z−𝜈−F

= − D
1 − t−

𝜕c
𝜕y

at y = 0,

analogous to equation 11.27. Discuss any difficulties presented by the presence of the solid
PbSO4 at the electrode.

11.3 At the positive electrode in a lead–acid battery, the reaction is

PbO2(s) + SO2−
4 + 4H+ + 2e− ⇌ PbSO4(s) + 2H2O.

Regard the solution as a binary electrolyte of H2SO4 dissociated into H+ and SO2−
4 ions, and

show that the current density at the electrode surface is related to the concentration gradient by

iy
F

= − 2D
2 − t+

𝜕c
𝜕y

at y = 0,

analogous to equation 11.27. Discuss any difficulties presented by the presence of the solid
PbSO4 at the electrode.

11.4 The treatment of supporting electrolyte in Section 11.5 should be applicable to the reaction of
a dissolved, neutral species such as oxygen:

O2 + 2H2O + 4e− ⇌ 4OH−.

Would the concentration of supporting electrolyte change at all near the electrode surface?
Equation 11.34 suggests that it would not since z3 = 0 in this case. Sketch the concentration
profiles for the various species when the supporting electrolyte is
(a) NaOH
(b) NaCl
(c) HCl
Rationalize the shape of each profile in terms of the net flux density of the species determined
by the electrode reaction and the contributions of diffusion, migration, and convection to this
flux density. Remember that the condition of electroneutrality must be satisfied.

For NaCl as a supporting electrolyte, there must be two minor species, O2 and OH−. For
HCl as a supporting electrolyte, it should be convenient to write the electrode reaction as

O2 + 4H+ + 4e− ⇌ 2H2O.

11.5 The diffusion coefficients of cupric ions and sulfate ions at infinite dilution are 0.713 × 10−5

and 1.065 × 10−5 cm2/s, respectively at 25∘C. Estimate the transference number of the cupric
ion at infinite dilution and compare with the value 0.363 at a concentration of 0.1 M. Note that
the Nernst–Einstein equation

Di = RTui

relates the diffusion coefficient to the mobility.
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11.6 The conductivity of aqueous sodium chloride solutions becomes proportional to the concentra-
tion such that 𝜅/c approaches 126.45 S⋅cm2/mol at infinite dilution and the cation transference
number approaches 0.396 at 25∘C. Estimate the diffusion coefficient of the salt at infinite
dilution.

11.7 Dissolved oxygen at a concentration of 9.5 × 10−4 M is reacted at the limiting current from a
5 M KOH solution where the diffusion coefficient of oxygen is estimated to be 2.3× 10−5 cm2/s
and that of KOH is about 5 × 10−5 cm2/s. The diffusion layer near the electrode can be treated
as a stagnant region of thickness 50 μm.
(a) Estimate the magnitude of the limiting current density.
(b) Obtain an expression for the concentration profile of potassium ions.
(c) Estimate a numerical value for the concentration of potassium ions adjacent to the surface

(outside the diffuse part of the double layer).
(d) Obtain an expression for the concentration profile of hydroxide ions.

11.8 Consider a rotating-disk electrode 1 cm in diameter and rotating at 2000 rpm. It is in a solution
of 1.0 M FeCl2 and 1.0 M NaCl. At 25∘C, the viscosity of the solution is estimated to be
1.302 mPa⋅s, and the density is estimated as 1.20 g/cm3. The limiting ferrous ion diffusion
coefficient at zero concentration is found to be 0.72 × 10−5 cm2/s, where 𝜇 is 0.89 mPa⋅s.
(a) Calculate the limiting current assuming that there is no hydrogen evolution.
(b) What is the value of the thickness of a Nernst stagnant diffusion layer that approximates

the mass-transfer characteristics of the rotating disk?
(c) Calculate the value of the Debye length corresponding to the bulk solution.

11.9 Estimate the electrical conductivity of pure water.

11.10 Because Li reacts readily with water, the solvent in the cell of Problem 2.21 is propylene
carbonate. The electrolyte is LiCl. Sketch the concentration profiles of the ions in the gap
between the two electrodes, and discuss these profiles in terms of the net flux, the diffusive
flux, and the migration flux. You may assume that a steady state exists within this gap.

11.11 When the current flow is interrupted in the cell of Problem 11.10, the concentration profile
continues to exist for some time and may then relax over a period of some seconds to minutes.
To assess to what extent potential losses can be associated with different phenomena involved
in the cell, a second, lithium reference electrode is used, and it is desired to estimate the
potential of the following cell:

LiCl
0.5 mol/kg

in propylene
carbonate

LiCl
0.1 mol/kg

in propylene
carbonate

transition
regionLi Li.

Assume that the Li+ ion is half as mobile as the chloride ion, and use the Debye–Hückel
expression for the activity coefficient with an ion-size parameter of a = 0.3 nm, a permittivity
𝜖 equal to 63𝜖0, and 𝜌0 = 1.203 g/cm3.

11.12 Suppose that an electric charge distribution is established initially in a conducting medium.
Determine a time constant for the flow of this charge to the boundaries of the medium. Assume
that Ohm’s law is obeyed with a constant conductivity 𝜅. Obtain a numerical value for the time
constant if 𝜅 = 0.01 S/cm and 𝜖/𝜖0 = 79.



�

� �

�

REFERENCES 247

NOTATION

a𝜃
i property expressing secondary reference state, liter/mol

c molar concentration of a single electrolyte, mol/cm3

ci concentration of species i, mol/cm3

D diffusion coefficient of electrolyte, cm2/s
Di diffusion coefficient of species i, cm2/s
fi molar activity coefficient of species i
fi.n molar activity coefficient of species i relative to the ionic species n
F Faraday’s constant, 96,487 C/mol
i current density, A/cm2

L distance between electrodes, cm
Ni flux of species i, mol/cm2⋅s
R universal gas constant, 8.3143 J/mol⋅K
Ri rate of homogeneous production of species i, mol/cm3⋅s
t time, s
ti transference number of species i
T absolute temperature, K
ui mobility of species i, cm2⋅mol/J⋅s
v fluid velocity, cm/s
zi charge number of species i
𝜖 permittivity, F/cm
𝜖0 permittivity of free space, 8.8542 × 10−14 F/cm
𝜅 conductivity, S/cm
𝜆i ionic equivalent conductance, S⋅cm2/mol
Λ equivalent conductance of binary electrolyte, S⋅cm2/mol
𝜇 viscosity, mPa⋅s
𝜇i electrochemical potential of species i, J/mol
𝜈+, 𝜈− numbers of cations and anions into which a molecule of electrolyte dissociates
Φ electric potential, V

REFERENCES

1. W. Nernst, “Zur Kinetik der in Lösung befindlichen Körper’” Zeitschrift für physikalische Chemie 2 (1888),
613–637.

2. V. Levich, “The Theory of Concentration Polarization,” Acta Physicochimica URSS, 17 (1942), 257–307.
3. John Newman, “The Polarized Diffuse Double Layer,” Transactions of the Faraday Society, 61 (1965),

2229–2237.
4. William H. Smyrl and John Newman, “Double Layer Structure at the Limiting Current,” Transactions of the

Faraday Society, 63 (1967), 207–216.
5. William H. Smyrl and John Newman, “Potentials of Cells with Liquid Junctions,” Journal of Physical

Chemistry, 72 (1968), 4660–4671.
6. John Newman and Limin Hsueh, “Currents Limited by Gas Solubility,” Industrial and Engineering Chemistry

Fundamentals, 9 (1970), 677–679.



�

� �

�



�

� �

�

CHAPTER 12

CONCENTRATED SOLUTIONS

Although the use of the material of Chapter 11 has been quite successful in the analysis of
electrochemical problems, in this chapter we want to develop a description of transport processes that
is more generally valid.

12.1 TRANSPORT LAWS

Mass transfer in electrolytic solutions requires a description of the movement of mobile ionic
species (equation 11.1 or 11.65), material balances (equation 11.3), current flow (equation 11.2),
electroneutrality (equation 11.4), and fluid mechanics (see Chapter 15). The equations for material
balances, current flow, and electroneutrality given in Section 11.1 remain valid for concentrated
solutions, but the flux equation requires modification.

The flux equations treated earlier fail even in ternary solutions of nonelectrolytes since in such
solutions there are two independent concentration gradients and the diffusion flux of each species can
be affected by both concentration gradients.

To avoid the difficulties mentioned in Section 11.1, equation 11.1 can be replaced by the
multicomponent diffusion equation

ci∇𝜇i =
∑

j

Kij(𝐯j − 𝐯i) = RT
∑

j

cicj

cT𝒟ij
(𝐯j − 𝐯i), (12.1)

where 𝜇i is the electrochemical potential of species i and Kij are friction coefficients or interaction
coefficients, vi is the velocity of species i, an average velocity for the species but not the velocity of
individual molecules. Thus, the flux density of species i is Ni = civi. The total concentration is

cT =
∑

i

ci, (12.2)

Electrochemical Systems, Fourth Edition. John Newman and Nitash P. Balsara.
© 2021 John Wiley & Sons, Inc. Published 2021 by John Wiley & Sons, Inc.
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where the sum includes the solvent. 𝒟ij is a diffusion coefficient describing the interaction of species
i and j. These diffusion coefficients are, for the moment, simply parameters that can replace the drag
coefficients Kij.

Kij =
RTcicj

cT𝒟ij
. (12.3)

The term −ci∇𝜇i in equation 12.1 can be regarded as a driving force per unit volume acting on
species i and causing it to move with respect to the surrounding fluid. The force per unit volume
exerted by species j on species i as a result of their relative motion has been expressed as Kij(vj − vi),
that is, proportional to the difference in velocity of the two species. By Newton’s third law of motion
(action equals reaction), we find that Kij = Kji or

𝒟ij = 𝒟ji. (12.4)

Equation 12.1 thus expresses the balance between the driving force and the total drag exerted by the
other species.

The number of independent equations with the form of equation 12.1 is one less than the number of
species. Addition of equation 12.1 over i gives

∑

i

ci∇𝜇i =
∑

i

∑

j

Kij(𝐯j − 𝐯i). (12.5)

The left side is zero by the Gibbs–Duhem relation (at constant temperature and pressure), and the right
side is zero since Kij = Kji.

Equation 12.1 avoids the difficulties with the flux equation 11.1 mentioned in Section 11.1. The
gradient of the electrochemical potential has been used as the driving force for diffusion and migration,
as in Section 11.9. This resolves the question of the electric potential and the activity coefficients of
individual ions. The use of the velocity difference vj − vi in equation 12.1 avoids or postpones the
question of the reference or average velocity on which diffusion and migration fluxes are based. The
multicomponent diffusion equation is more general than equation 11.1 because it relates the driving
force to a linear combination of resistances instead of just to one resistance, that with the solvent. The
number of transport properties 𝒟ij defined by equation 12.1 is 1

2
n(n − 1), where n is the number of

species present, since 𝒟ij = 𝒟ji and 𝒟ii is not defined. This is different from the number of transport
properties ui and Di defined by equation 11.1, whether or not the Nernst–Einstein relation 11.41 is
used. Thus, for three species (e.g., two ions and a solvent), there are three transport properties defined
by equation 12.1; and for four species (e.g., three ions and a solvent), there are six transport properties.

Equation 12.1 is similar to the Stefan–Maxwell equation (see Ref. [1], p. 570) and is equivalent to
one developed by Onsager (equation 14, p. 245, in Ref. [2]). The Stefan–Maxwell equations apply to
diffusion in dilute gas mixtures and express the driving force as a mole fraction gradient or a gradient
of partial pressure instead of the gradient of the electrochemical potential. Equation 12.4 is equivalent
to the Onsager reciprocal relation. The reciprocals of the𝒟ij’s can be regarded as friction coefficients
similar to those used by Laity[3, 4] and Klemm[5, 6] to describe transport in ionic solutions and melts.
Burgers[7] has also used this concept to treat the conductivity of ionized gases, and Lightfoot et al.[8]

have applied equation 12.1 to liquid solutions. Truesdell[9] has discussed the validity of the arguments
that Kij = Kji (see also Lamm[10]). The modification of equation 12.1 for use in nonisothermal media
is indicated in Section 13.1.
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12.2 THE BINARY ELECTROLYTE

Equation 12.1 expresses the driving forces in terms of the species velocities vi or the species fluxes
civi. For use in the material-balance equation 11.3, it is necessary to invert the set of equations 12.1
so as to express the species flux densities in terms of the driving forces. Since these are linear,
algebraic equations, the inversion is straightforward but lengthy. The general procedure is indicated in
Section 12.7.

For a binary electrolytic solution composed of anions, cations, and solvent, equation 12.1 yields
two independent equations:

c+∇𝜇+ = K0+(𝐯0 − 𝐯+) + K+−(𝐯− − 𝐯+), (12.6)

c−∇𝜇− = K0−(𝐯0 − 𝐯−) + K+−(𝐯+ − 𝐯−). (12.7)

These equations can be rearranged, with introduction of the current density from equation 11.2, to read

𝐍+ = c+𝐯+ = −
𝜈+𝒟
𝜈RT

cT

c0
c∇𝜇e +

𝐢t0
+

z+F
+ c+𝐯0, (12.8)

𝐍− = c−𝐯− = −
𝜈−𝒟
𝜈RT

cT

c0
c∇𝜇e +

𝐢t0
−

z−F
+ c−𝐯0, (12.9)

where v = v+ + v− (see Section 11.4) and 𝜇e = 𝜈+𝜇+ + 𝜈−𝜇− = 𝜈RT ln(cf+−a𝜃+−). Here f+− is the
mean molar activity coefficient of the electrolyte (see equation 2.32). The diffusion coefficient of the
electrolyte, based on a thermodynamic driving force, is

𝒟 =
𝒟0+𝒟0−(z+ − z−)
z+𝒟0+ − z−𝒟0−

. (12.10)

The transference numbers (with respect to the solvent velocity) are

t0
+ = 1 − t0

− =
z+𝒟0+

z+𝒟0+ − z−𝒟0−
. (12.11)

The driving force for diffusion used in equations 12.8 and 12.9 is the gradient of the chemical
potential 𝜇e of the electrolyte in the solution. This chemical potential is readily measurable, and no
reference to individual ionic activity coefficients is necessary. The diffusion coefficient D of the salt
that is usually measured is based on a gradient of the concentration and is related to𝒟 by[11, 12]

D = 𝒟
cT

c0
(1 +

d ln 𝛾+−
d ln m

) , (12.12)

where 𝛾+− is the mean molal activity coefficient and m is the molality (moles of electrolyte per
kilogram of solvent). The gradient of chemical potential can be expressed in terms of the gradient of
concentration:

𝒟
𝜈RT

cT

c0
c∇𝜇e = D (1 −

d ln c0

d ln c
)∇c. (12.13)
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Insertion of equations 12.8 and 12.13 into the material-balance equation 11.3 yields

𝜕c
𝜕t
+ ∇ ⋅ (c𝐯0) = ∇ ⋅ [D (1 −

d ln c0

d ln c
)∇c] −

𝐢 ⋅ ∇t0
+

z+𝜈+F
, (12.14)

which bears a strong resemblance to equation 11.29. The second term is different because we have not
assumed that ∇⋅v0 = 0.

12.3 REFERENCE VELOCITIES

Diffusion might be defined as a motion of the various components relative to the bulk fluid motion as
a result of nonuniform thermodynamic potentials. To avoid ambiguity, a velocity characteristic of the
bulk motion must be clearly specified, and the diffusion velocities must be referred to this velocity.

In Section 12.2 and, in particular, in equations 12.8 and 12.9, the solvent velocity has been chosen
as the reference velocity. Two other possible reference velocities are the mass-average velocity v and
the molar-average velocity v* defined by

𝐯 = 1
𝜌
∑

i

𝜌i𝐯i and 𝐯∗ = 1
cT

∑

i

ci𝐯i, (12.15)

where 𝜌i is the mass of species i per unit volume (𝜌i = Mici). The choice of which reference velocity
to use is arbitrary, and the distinction is less important in sufficiently dilute solutions since the three
velocities become the same.

In particular situations, one reference velocity may be more advantageous than another. The solvent
velocity becomes less significant in concentrated mixtures and becomes quite inconvenient in a pure
fused salt. The mass-average velocity is useful because the fluid mechanical equations (see Chapter 15)
are invariably written in terms of v. On the other hand, the average velocity is not always determined
from momentum considerations, but perhaps from pure stoichiometry (e.g., in some porous electrodes).
In such a case, the molar-average velocity might be more convenient. Furthermore, chemists more
commonly work in molar units than in mass units.

For a binary electrolytic solution, the material-balance equation 12.14 can be written in the
equivalent forms

cT (
𝜕xe

𝜕t
+ 𝐯∗ ⋅ ∇xe) = ∇ ⋅ (cTD∇xe) −

𝐢 ⋅ ∇t∗+
z+𝜈+F

, (12.16)

and
𝜌 (
𝜕𝜔e

𝜕t
+ 𝐯 ⋅ ∇𝜔e) = ∇ ⋅ (𝜌D∇𝜔e) −

Me𝐢 ⋅ ∇t+
z+𝜈+F

, (12.17)

where Me = v+M+ + v−M− is the molar mass of the electrolyte, xe = c/cT is the mole fraction of
the salt (see the remarks below equation 2.17), 𝜔e = (𝜌+ +𝜌−)/𝜌 is the mass fraction of the salt,
t∗+ = (c− + c0t0

+)∕cT is the cation transference number with respect to the molar-average velocity,
and t+ = (𝜌− + 𝜌0t0

+)∕𝜌 is the cation transference number with respect to the mass-average velocity.
Equation 12.16 involves the molar-average velocity, and equation 12.17 involves the mass-average
velocity. These equations can be compared with the corresponding forms for binary solutions of
nonelectrolytes (see Ref. [1], p. 584).

The cation flux density referred to the molar-average velocity is

𝐍+ = −𝜈+cTD∇xe +
𝐢t∗+
z+F

+ c+𝐯∗, (12.18)
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and the cation flux density referred to the mass-average velocity is

𝐍+ = −𝜈+
𝜌D
Me
∇𝜔e +

𝐢t+
z+F

+ c+𝐯. (12.19)

Similar equations apply to the anion.
Equations 12.17 and 12.19 have been applied to mass transfer to a rotating-disk electrode from a

binary electrolytic solution in Ref. [13].
The corresponding equations for use with the volume-average velocity were developed by Newman

and Chapman.[12] The situation with three ionic species is almost as simple as that for two ions and a
solvent. Pollard and Newman[14] treated such molten salt systems with a derivation paralleling that in
Sections 12.1 through 12.5.

12.4 THE POTENTIAL

Now we want to introduce a potential in the solution for use as a driving force for the current.
Various candidates for this role were discussed in Section 3.5. We restrict ourselves here to a binary
electrolyte.

To assure that the potential introduced can be measured, let us first use the potential Φ of a suitable
reference electrode at a point in the solution measured with respect to a similar reference electrode at a
fixed point in the solution. By this we mean an actual electrode, not a reference half-cell connected to
the point in question by a capillary tube filled with an electrolytic solution. The electrode equilibrium
must, of course, involve the anions or the cations and possibly the solvent. This electrode reaction can
be written, in general, as

s−Mz−
− + s+Mz+

+ + s0M0 ⇌ ne−, (12.20)

where Mi is a symbol representing the chemical formula of species i and si is the stoichiometric
coefficient of species i.

In a practical experimental situation, one may want to replace the reference electrode by a reference
half-cell. The additional diffusion potential thus introduced can be calculated exactly for a reference
half-cell such as Hg–HgO in a KOH solution if the external electrolyte is also KOH but not if it is KCl
(see Chapters 2 and 6).

Application of thermodynamic principles to a reference electrode following equation 12.20 yields

s−∇𝜇− + s+∇𝜇+ + s0∇𝜇0 = −nF∇Φ. (12.21)

This equation can be rearranged so as to replace the electrochemical potentials by the current density and
the chemical potential of the electrolyte. Equations 12.8 and 12.9 can be substituted into equation 12.1
to yield

1
z−
∇𝜇− = −

F
𝜅 𝐢 −

t0
+

z+𝜈+
∇𝜇e, (12.22)

where 𝜅 is the conductivity of the solution whose reciprocal is given by

1
𝜅 =

−RT
cTz+z−F2

( 1
𝒟+−

+
c0t0
−

c+𝒟0−
) . (12.23)

Equation 12.22 can be compared with equation 2.68.
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From equation 12.21,∇𝜇0 can be eliminated by means of the Gibbs–Duhem equation, and the terms
with the gradients of the electrochemical potentials of the ions can be combined to give

s+∇𝜇+ + s−∇𝜇− =
s+
𝜈+
∇𝜇e −

n
z−
∇𝜇−, (12.24)

since
s+z+ + s−z− = −n. (12.25)

Equation 12.21 becomes

−F∇Φ = (
s+

n𝜈+
−

s0c
nc0
)∇𝜇e −

1
z−
∇𝜇−. (12.26)

Finally, ∇𝜇− is eliminated by means of equation 12.22 to yield the desired relation

𝐢 = −𝜅∇Φ − 𝜅
F
(

s+
n𝜈+

+
t0
+

z+𝜈+
−

s0c
nc0
)∇𝜇e. (12.27)

This result is analogous to equation 11.23, but the potential used here is considerably different from
the electrostatic potential used earlier. The new definition avoids the questionable concepts regarding
potentials in the solution. When the composition is uniform, the two potentials are similar; but the
reference electrode potential retains a clearly defined physical significance even in the presence of
concentration gradients. Equation 12.27 can be compared directly with equation 2.84.

Another way to avoid the questionable concepts regarding potentials in the solution is to use the
quasi-electrostatic potential. In a more general context, this leads eventually to equation 12.67 and will
not be pursued further here.

Figure 12.1 shows potentials of three electrodes as a function of the molality of aqueous sulfuric acid
solutions at 25∘C, in the absence of a flow of current. Vertical distances at a given composition represent
open-circuit potential differences among these electrodes calculated according to the methods of Section
2.4, that is, for cells having essentially uniform composition of the solution. Potential differences on a
given curve between two points of different composition represent open-circuit potential differences
calculated according to the methods of Section 2.6, that is, for cells having identical electrodes but
different compositions of a single electrolyte. Recall that such junctions have potential differences
independent of the method of forming the junction but do depend on transport properties as well as the
composition dependence of the activity coefficient. Potential differences between points on different
curves at different compositions still represent meaningful values independent of the composition
profile in the junction. (Compare Problems 6.12 through 6.16.)

In probing the solution in different parts of a lead–acid cell one could imagine Φ to be measured
with any one of the three reference electrodes. Notice the opposite composition dependence of the
PbO2 electrode. The quasi-electrostatic potential, if we calculated and plotted it, would be expected
to have a much smaller composition dependence and to depend only slightly on the choice of the
reference ion n (see Section 6.7). In practical applications (see Chapter 22), it may be convenient to
imagine use of the Pb reference electrode to probe the solution in the porous Pb negative electrode
of the cell and to imagine use of the PbO2 reference electrode to probe the solution in the porous
PbO2 positive electrode of the cell. The overall electrode potentials might be measured relative to a
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Figure 12.1 Potentials of Pb, PbO2, and Hg/Hg2SO4 electrodes versus the molality of sulfuric acid, plotted in
such a way that vertical distances give the potenial differences between electrodes even if the composition is
different.

separate Hg/Hg2SO4 reference electrode located outside the cell in a vessel of fixed composition (like
the 1 mol/kg reference used for the figure).

The analysis of a system with a binary electrolyte can proceed expeditiously withΦ as defined in this
section (measured with a reference electrode immersed in the system) because the composition profile
in a junction always has the same effect, as shown in Figure 12.1, and potentials measured between
points of different composition have clear meaning. Use of a reference electrode with a different
electrolyte would only introduce complications and uncertainties. However, it must be emphasized that
this potential Φ and the quasi-electrostatic potential have different qualities and behavior.

The sodium/sulfur battery system permits a diagram similar to Figure 12.1 to be constructed. The
electrolyte is a sodium polysulfide melt of variable composition. The “sulfur” electrode can involve
reaction of different polysulfide species S2−

y on an inert electrode such as carbon or molybdenum.
The “sodium” electrode can consist of molten sodium separated from the polysulfide melt by a
sodium-ion-conducting membrane, such as β′′ -Al2O3 or certain glasses. The open-circuit potential dif-
ference between points of different polysulfide compositions will be substantially less if measured
with sodium electrodes rather than sulfur electrodes.
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12.5 CONNECTION WITH DILUTE-SOLUTION THEORY

The dilute-solution theory presented in Chapter 11 has many useful facets that are only slightly
modified by the more complete theory for concentrated solutions. Consequently, it is important to see
how the two theories are related. Let us apply equation 12.1 to one of the minor species in a dilute
solution. Then ci≪ c0, and only one of the terms on the right is important:

ci∇𝜇i =
RTc0

cT𝒟0i
(ci𝐯0 − ci𝐯i). (12.28)

Furthermore, the total concentration cT is approximately equal to the solvent concentration c0, and
equation 12.28 can be rewritten as

𝐍i = −
𝒟0i

RT
ci∇𝜇i + ci𝐯0. (12.29)

Equation 12.29 is only slightly different from equation 11.1. The driving forces for diffusion and
migration are both included in the gradient of the electrochemical potential in equation 12.29, and we
see that the applicability of the Nernst–Einstein equation 11.41 is thus implicit in this equation. The
further development of equation 12.29 is carried out in Section 11.9.

The 𝒟0i correspond to the Di of the dilute-solution theory, but the interactions of the minor
components with each other are not explicitly accounted for in the dilute-solution theory. A different
number of transport properties is defined in the two cases.

We have seen that the validity of the Nernst–Einstein relation rests primarily on the fact that the
driving force for both migration and diffusion is the gradient of the electrochemical potential, and
the decomposition of this into a concentration term and an electrostatic-potential term is without
basic physical significance. The Nernst–Einstein relation does not really fail in concentrated solutions;
rather, additional composition-dependent transport parameters besides the 𝒟0i become necessary to
describe the processes. It is not sufficient to allow the Di and ui to become concentration dependent,
even though one might be willing to relax the Nernst–Einstein relation.

We gain additional insight into the validity of the Nernst–Einstein relation from the Debye–Hückel
theory of interionic attraction (see Section 4.1) and the theory of the diffuse layer at an interface (see
Section 7.4). These both describe equilibrium situations where the ionic fluxes and the convective
velocity are zero. Under these conditions, and with the Nernst–Einstein relation, equation 11.1 becomes

𝐍i = −
ziDiF

RT
ci∇Φ − Di∇ci = 0. (12.30)

Integration gives the Boltzmann distribution for the ionic concentrations:

ci = ci∞ exp (−
ziFΦ
RT
) (12.31)

(see equations 4.1 and 7.30). The use of the Nernst–Einstein relation was necessary for the transport
properties to cancel in going from the transport equation 12.30 to the thermodynamic Boltzmann
distribution.

Table 12.1 shows, for binary electrolytes, a comparison of the results of the theories for dilute
solutions and concentrated solutions. To bring out the similarity, the Nernst–Einstein relation 11.41
has been used in the expression of the transport properties from Section 11.4. The three transport
properties𝒟0+,𝒟0−, and𝒟+− of the theory for concentrated solutions can be calculated as functions
of concentration from three independent measurements of D, 𝜅, and t0

+ (see Section 14.2).
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TABLE 12.1 Comparison of results for binary electrolytes

Dilute-solution theory Concentrated solutions

Equation 11.1 Equation 12.1

Equation 11.29 Equation 12.14

Equation 11.23 Equation 12.27

D =
D+D−(z+ − z−)
z+D+ − z−D−

𝒟 =
𝒟0+𝒟0−(z+ − z−)
z+𝒟0+ − z−𝒟0−

t+ =
z+D+

z+D+ − z−D−
t0
+ =

z+𝒟0+

z+𝒟0+ − z−𝒟0−

1
𝜅 =

−RT
c0z+z−F2

(
c0t−

c+D−
) 1

𝜅 =
−RT

cT z+z−F2
( 1
𝒟+−

+
c0t0
−

c+𝒟0−
)

12.6 EXAMPLE CALCULATION USING CONCENTRATED SOLUTION THEORY

We revisit a problem introduced in Section 11.8 where a binary electrolyte is placed in a cell where
the cation dissolves into the electrolyte at the anode and is deposited at the cathode under an applied
potential. There, dilute solution theory is used to derive the relationship between current and applied
potential and the salt concentration in the cell as a function of position and transport parameters. We
now examine these relationships using concentrated solution theory.

We take the potential at the cathode to be zero, the anode is located at x = 0, and surface
overpotentials are taken to be zero at the two electrodes. The current is applied at t= 0 in the x direction
across a symmetric cell containing a salt (Mz+)𝑣+(X

z−)𝑣− with electrodes of the pure metal M. The
applied external potential creates gradients in the solution in both the potential Φ and salt concentration
c. The reference electrode used to measure the potential at any location in the solution is a special case
of equation 12.20:

−Mz+ +M(s) ⇌ ne−. (12.32)

Our model is one-dimensional, and thus current density and flux can be treated as scalars. The rela-
tionship between electric current density i and potential Φ is given by equation 12.27, which simplifies
in cases where the solvent and the anion do not participate in the reference-electrode reaction to

i = −𝜅dΦ
dz
− 𝜅

F
(− 1

n𝜈+
+

t0
+

z+𝜈+
)

d𝜇e

dx
. (12.33)

Since the electrolyte is electrically neutral, 𝜇e depends only on local concentration, independent of
Φ. Charge balance implies that z+ = n. Equation 12.33 applies to the steady state wherein both terms
on the right contribute and to the initial state wherein the second term on the right is zero because the
solution is initially uniform in concentration. Thus, the initial current at t = 0 is

i0 = −𝜅
dΦ
dx
, (12.34)

and the anode potential ΦA is

ΦA =
i0L
𝜅 , (12.35)

where L is the distance between the electrodes.
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The anion flux through the solution, N−, is related to the current density as given below
(equation 12.9)

N− = −
𝒟cTc𝑣−
RTc0𝜈

d𝜇e

dx
+

it0
−

z−F
, (12.36)

where 𝒟 is the diffusion coefficient of the electrolyte based on a thermodynamic driving force, 𝜈
is the total number of moles of ions produced by dissociation of the salt (v = v+ + v−), c0 is the
solvent concentration, c is salt concentration (mol/cm3), and cT is the total solution concentration
(cT = c0 + vc). At steady state, the anion flux is zero for all x. Equation 12.36 then yields an expression
in terms of the steady-state current, iss:

d𝜇e

dx
= iss

t0
−

Fz−

RTc0𝜈
𝒟cTc𝜈−

. (12.37)

Combining equations 12.37 and 12.12, we get

d𝜇e

dx
= 𝑣RT

m
(1 +

d ln 𝛾±
d ln m

) dm
dx
= iss

t0
−

Fz−

RTc0𝜈
𝒟cTc𝜈−

. (12.38)

Combining equations 12.38 and 12.12, we get

dm
dx
=

iss
FM0z−𝜈−

t0
−

Dc0
. (12.39)

Collecting the molality-dependent terms and integration gives an implicit formula for the concentration
profile, m(x),

∫
m(x)

m(x=0)

D(m)c0(m)
t0
−(m)

dm =
iss

FM0z−𝜈−
x (12.40)

for given m(x = 0) and iss. In an experiment one controls the average salt molality of the electrolyte,
which is obtained by integrating m(x) from x = 0 to x = L. The spatial dependence of the molar salt
concentration, c(x), can then be readily obtained from m(x) using equation 2.17. Let

Ne = a
𝜅RT(t0

−)2

F2𝒟c
c0

cT
= a
𝜅RT(t0

−)2

F2Dc
(1 +

d ln 𝛾±
d ln m

) , (12.41)

where the parameter a is related to the stoichiometry of the salt,

a = 𝜈
(𝜈+z+)2

. (12.42)

Thus, at steady-state, equation 12.33 becomes,

iss = −𝜅
dΦ
dx
− issNe. (12.43)

Equation 12.43 can be integrated to obtain the spatial dependence of potential,[15]

Φ(x) − Φ(x = L) = Φ(x) = −iss ∫
m(x)

m(x=L)

1 + Ne(m)
𝜅(m)

(dm
dx
)
−1

dm (12.44)

where dm/dx determined above is used.
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If the concentration dependence of transport parameters is unimportant, then equations 12.40 and
12.17 can be used to obtain a linear relationship between c and x,

c(x) − c(x = 0) =
isst

0
−

FDz−𝜈−
x, (12.45)

which reduces to equation 11.56 for univalent salts. Equation 12.45 applies to dilute electrolytes or
concentrated electrolytes with small applied potentials. In this limit,

dΦ
dx
= −
ΦA

L
, (12.46)

which, when combined with equation 12.43, yields

Liss
ΦA
= 𝜅

1 + Ne. (12.47)

Here, it is assumed that the concentration gradient in the cell is small and thus the concentration
dependence of Ne can be ignored. Equations 12.35 and 12.47 then give

iss
i0
= 1

1 + Ne. (12.48)

Measurement of iss/i0 or iss versus ΦA at small applied potentials enables determination of Ne,
which, in turn, may be used to determine t0

−, if 𝜅, D, and d ln 𝛾± /d ln m are known from independent
experiments. In the dilute limit, expressions given in Table 12.1 can be used to simplify equations 12.41
and 12.48 to give

iss
i0
= t+,id, (12.49)

where we have used the fact that the activity coefficient is independent of concentration in this limit.
This equation has been used as an approximate method for measuring the transference number of
binary electrolytes.[16]

We return to steady ionic current in Chapter 14 to discuss measurement of transport properties,
𝜅, D, and t0

−, and their implication on concentration profiles under applied electric fields. Included
in Chapter 14 is a discussion of how the concentration dependence of transport and thermodynamic
properties affects ion transport.

12.7 MULTICOMPONENT TRANSPORT

Equation 12.1 expresses the driving forces in terms of the species velocities vi or the species flux
densities civi. For use in the material-balance equation 11.3, it is necessary to invert the set of
equations 12.1 so as to express the species fluxes in terms of the driving forces. This is carried out in
the present section (see references [17 to 19]).

It should first be noted that there are only n − 1 independent velocity differences and n− 1
independent gradients of electrochemical potentials in a solution with n species (see equation 12.5).
Therefore, equation 12.1 can be expressed as

ci∇𝜇i =
∑

j

Mij(𝐯j − 𝐯0), (12.50)
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where v0 is the velocity of any one of the species and where

Mij = Kij, i ≠ j

= Kij −
∑

k

Kik, i = j. (12.51)

It further follows that Mij = Mji. Bearing in mind that there are n− 1 independent equations of the
form of equation 12.50, one can invert this equation to read

𝐯j − 𝐯0 = −
∑

k≠0

L0
jkck∇𝜇k, j ≠ 0, (12.52)

where the matrix L0 is the negative of the inverse of the submatrix M0,

𝐋0 = −(𝐌0)−1, (12.53)

and where the submatrix M0 is obtained from the matrix M by deleting the row and the column
corresponding to the species 0. The inverse matrix L0 is also symmetric, that is,

L0
ij = L0

ji. (12.54)

Certain combinations of the L0
ij’s are related to measurable transport properties and have particular

significance in the treatment of cells with liquid junctions (see Section 12.8). The current density is
related to the fluxes of ionic species by equation 11.2, which can be rewritten as

𝐢 = F
∑

i

zici𝐯i = F
∑

i

zici(𝐯i − 𝐯0), (12.55)

the equivalence of the last two expressions being assured by the electroneutrality of the solution.
Substitution of equation 12.52 yields

𝐢 = −F
∑

i≠0

zici

∑

k≠0

L0
ikck∇𝜇k. (12.56)

In a solution of uniform composition,

∇𝜇k = zkF∇Φ, (12.57)

where ∇Φ is the gradient of the electric potential. Equation 12.56 becomes in this case

𝐢 = −F2∇Φ
∑

i≠0

zici

∑

k≠0

L0
ikzkck. (12.58)

Comparison with Ohm’s law (see equation 11.6), also applicable to a solution of uniform
composition,

𝐢 = −𝜅 ∇Φ, (12.59)

allows us to identify the conductivity

𝜅 = F2
∑

i≠0

∑

k≠0

L0
ikzicizkck. (12.60)

Although the L0
ik’s depend upon the reference velocity chosen, the conductivity 𝜅 is invariant with

respect to this choice.
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Next we can identify the transference numbers. Again, for a solution of uniform composition,
equation 12.57 is valid, and equation 12.52 becomes

𝐯j − 𝐯0 = −F∇Φ
∑

k≠0

L0
jkzkck. (12.61)

For this case of uniform composition, the species flux density is related to the current density and the
transference number by the expression

t0
j 𝐢 = zjFcj(𝐯j − 𝐯0) = −t0

j 𝜅 ∇Φ. (12.62)

Comparison of equations 12.61 and 12.62 shows that the transference number t0
j of species j with

respect to the velocity of species 0 is given by

t0
j =

zjcjF
2

𝜅
∑

k≠0

L0
jkzkck. (12.63)

It is to be noted that the transference number has been defined as the fraction of the current
carried by an ion in a solution of uniform composition. In a solution in which there are concentration
gradients, the transference number is still a transport property related to the L0

ij’s by equation 12.63,
but it no longer represents the fraction of current carried by an ion. (Compare with the remarks at the
end of Section 11.2.) A different choice of the reference species will change the Lij’s, and hence the
transference numbers with respect to the velocities of different reference species will be different (see
Problem 12.2).

Comparison of equation 12.63 with equation 12.60 or of equation 12.62 with equation 12.55 shows
that the transference numbers sum to unity:

∑

i

t0
i = 1. (12.64)

One could go on to describe diffusion of electrolytes in terms of the inverted transport equations.
However, this becomes cumbersome, and the symmetry of the coefficients becomes obscured if one
tries to eliminate the special place occupied by the species 0 in the inversion process. One of the
primary purposes of the present section is to lead to the development of equation 12.66 in the next
section. This equation was used as the basis to treat irreversible diffusion effects in electrochemical
cells in Chapters 2 and 6.

In general, the 1

2
n(n − 1) coefficients𝒟ij yield one conductivity and n− 2 transference numbers or

ratios t0
i ∕zi in the inverted formulation. The remainder of the coefficients generate diffusion coefficients

for neutral combinations of species. For example, for a solution containing a solvent and K+, Na+,
and Cl− ions, there is one conductivity, two independent transference numbers, and three diffusion
coefficients required to describe diffusion of NaCl and KCl in the solvent. These six transport properties
correspond to, and are derivable from, the six coefficients𝒟ij for the system.

The inversion of the multicomponent diffusion equation can be carried out on a digital com-
puter, in the course of solving a problem of interest.[20, 21] Such computer programs can deal
with one-dimensional systems characterized by an arbitrary number of homogeneous and het-
erogeneous reactions, transients, fluid flow, and multicomponent diffusion with composition or
temperature-dependent physical properties. Interesting applications include membranes and molten
salts. In Refs. [13] and [20], the velocity profile is computed at the same time with proper account
for the variation of viscosity and density with position. In reference [20], the temperature in this
gaseous system varied from 1200∘C on the surface to 20∘C in the bulk. Section C.6 has an example
of solving a problem in multicomponent diffusion with migration. Often data on physical properties
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are not available in the detail needed for multicomponent diffusion—in contrast to binary electrolytes
or gas systems—and reasonable estimates must be made or certain key properties regarded as fitting
parameters to be adjusted in the comparison of theory and experiment.

12.8 LIQUID-JUNCTION POTENTIALS

It is shown in Chapter 2 that many electrochemical cells involve junction regions where the composition
is nonuniform and diffusion therefore occurs. The evaluation of the open-circuit potentials of these
cells, and, in particular, the evaluation of the variation of the electrochemical potentials of ions in such
junctions, requires consideration of these transport processes.

Equation 12.56 is applicable even in a nonuniform solution, and it can now be rewritten in terms of
the conductivity and the transference numbers. Inversion of the order of summation in equation 12.56
gives

𝐢 = −F
∑

i≠0

ci∇𝜇i

∑

k≠0

L0
kizkck, (12.65)

where we have also relabeled the subscripts. Since L0
ik = L0

ki, substitution of equation 12.63 into
equation 12.65 yields

F
𝜅 𝐢 = −

∑

i

t0
i

zi
∇𝜇i. (12.66)

As already noted in Section 12.7, a different choice of the reference species will change the
transference numbers, but it is apparent from the derivation that equation 12.66 still applies. However,
equation 12.63 shows that the ratio t0

j ∕zj is not zero even for a neutral species. While the reference
velocity can be chosen arbitrarily to be that of any one of the species, charged or uncharged, it is
usually taken to be the velocity of the solvent. In this case there is no problem if there are no other
neutral components, since the ratio t0

i ∕zi, is always zero for the reference species.
It is shown in Problem 12.7 that equation 12.66 also has the same form if other reference velocities,

such as the mass-average velocity or the molar-average velocity, are used. Again, care should be
exercised since the ratio ti/zi is then not zero for neutral species.

Equation 12.66 is quite useful in the calculation of the potential of cells with liquid junctions. It was
presented and discussed in Section 2.5, and it was applied to the problem of liquid junctions in Chapters
2 and 6. In the cases of interest, the current density is supposed to be zero, but equation 12.66 also
allows one to estimate the effect of the passage of small amounts of current. Equation 12.66 is generally
useful only if the concentration profiles in the liquid junction are known. These are determined not
from equation 12.66 but from the laws of diffusion (equation 12.1 or 12.52) and the method of forming
the junction.

Substitution of equation 3.19 into equation 12.66 gives

F∇Φ = − F
𝜅 𝐢 − RT

∑

i

t0
i

zi
∇ ln ci

− RT
∑

i

t0
i

zi
∇(ln fi −

zi

zn
ln fn) , (12.67)

where Φ is the quasi-electrostatic potential referred to species n. This equation, which was used
in Chapter 6, can be compared with equation 11.44 or equation 11.11 and provides an additional
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connection with the dilute-solution theory. It also suggests the validity of the Nernst–Einstein relation
(see Section 12.5), since this relation was necessary in the derivation of equation 11.44.

PROBLEMS

12.1 Derive equations 12.8 and 12.9 from equations 12.1, 12.2, 11.2, and 12.3.

12.2 Let the transference number ti, of a species with respect to the velocity v be defined by the
equation

ti𝐢 = ziFci(𝐯i − 𝐯)

for a solution of uniform composition. This equation says that the flux of species i relative to
the velocity v accounts for the fraction ti, of the current density.
(a) Let t′i be the transference number of species i relative to the velocity v′. Show that the

transference numbers of two species i and j relative to the velocities v and v′ are related by

t′i − ti
zici

=
t′j − tj
zjcj

.

(b) For a binary electrolyte, show that

t+0
z0
= −

c0t0
+

z+c+
,

thus demonstrating that the ratio ti/zi is not always zero for a neutral species. Here t+0 is the
transference number of the solvent relative to the cation velocity.

(c) Show for a binary electrolytic solution that

𝐯 − 𝐯0 =
1
𝜌 [−

Me𝒟
𝜈RT

cT

c0
c∇𝜇e +

𝐢
F
(

M+t0
+

z+
+

M−t0
−

z−
)] ,

where v is the mass-average velocity, and derive the relation between t+ and t0
+ given

below equation 12.17.
(d) In a similar manner, derive the relation between t∗+ and t0

+ given below equation 12.17.

12.3 Derive equation 2.75 from equation 12.27.

12.4 Derive equation 12.27 from equation 12.49, bearing in mind that Φ represents different
quantities in the two equations.

12.5 For a binary electrolytic solution,
(a) State the form of the matrices M and M0.
(b) Invert M0 to obtain L0.
(c) By substitution of the result from part (b) into equations 12.60 and 12.62, verify

equation 12.11 for the transference number and equation 12.23 for the conductivity.
(d) By substitution of the result from part (b) into equation 12.52 and elimination of

the electrochemical potential of individual ions by means of equation 2.58, derive the
expressions 12.8 and 12.9 for the fluxes of the ions.
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12.6 Apply the development of Section 12.7 to a four-component system, 0, +, −, and 3. Take
species 3 to be charged. In subsequent applications, one can set z3 = 0 in order to treat mixed
solvents or membranes. One can set c0 equal to zero to treat fused salts.

12.7 Use the result of Problem 12.2(a) to show that t0
i in equation 12.66 can be replaced by the

transference numbers relative to any reference velocity; that is, show that

∑

i

ti
zi
∇𝜇i =

∑

i

t′i
zi
∇𝜇i.

12.8 Calculate the magnitude of a diffusion velocity Di∇ ln ci, and a migration velocity ziuiF∇Φ
and compare with the magnitude of a typical convective velocity.

12.9 Derive equation 12.17 from equation 12.14 using also the continuity equation

𝜕𝜌
𝜕t
+ ∇ ⋅ (𝜌𝐯) = 0

(see equation 15.2) and the expression for v− v0 in Problem 12.2(c).

12.10 Show that 1− d ln c0/d ln c appearing in equation 12.13 can also be written as

𝜌
c0M0

(1 −
d ln 𝜌
d ln c

) = 1

c0V0

.

Appendix A may be helpful here. (See also Problem 2.1.)

12.11 Develop the generalized form of Ohm’s law for a concentrated binary electrolyte using the
quasi-electrostatic potential rather than the potential of a reference electrode. You may use the
shorthand notation of fi,n, where fi,n is defined by

ln fi,n = ln fi −
zi

zn
ln fn,

but bear in mind that some simplicity might accrue because there are only two types of ions.
Does anything special happen when𝒟0+ = 𝒟0−, for which dilute-solution theory suggests the
absence of a diffusion potential?

12.12 On the basis of Figure 12.1, estimate the potential difference on interruption of the current in
a lead–acid cell when the PbO2 electrode finds itself at m2 = 2 mol/kg and the Pb electrode
finds itself at m1 = 4 mol/kg. Estimate the difference between the quasi-electrostatic potential
in a 5 mol/kg solution of H2SO4 and the value in a 1 mol/kg solution.

NOTATION

a parameter related to the stoichiometry of the salt
a𝜃+− property expressing secondary reference state, liter/mol
c molar concentration of a single electrolyte, mol/cm3

ci concentration of species i, mol/cm3

cT total solution concentration, mol/cm3

D measured diffusion coefficient of electrolyte, cm2/s
Di diffusion coefficient of species i, cm2/s
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𝒟 diffusion coefficient of electrolyte, based on a thermodynamic driving force, cm2/s
𝒟ij diffusion coefficient for interaction of species i and j, cm2/s
f+− mean molar activity coefficient of an electrolyte
F Faraday’s constant, 96,487 C/mol
i current density, A/cm2

iss the steady-state current
i0 the initial current
Kij friction coefficient for interaction of species i and j, J⋅s/cm5

L distance between electrodes
L0

ij inverted transport coefficient, cm5/J⋅s
m molality of a single electrolyte, mol/kg
Me molar mass of electrolyte, g/mol
Mi symbol for the chemical formula of species i
Mi molar mass of species i, g/mol
Mij modified friction coefficient, J⋅s/cm5

n number of electrons involved in electrode reaction
n number of species present in solution
Ne Newman number
Ni flux of species i, mol/cm2s
R universal gas constant, 8.3143 J/mol⋅K
si stoichiometric coefficient of species i in electrode reaction
t time, s
t+,id ratio of iss to i0
ti transference number of species i with respect to the mass-average velocity
t0
i transference number of species i with respect to the velocity of species 0

t∗i transference number of species i with respect to the molar-average velocity
T absolute temperature, K
ui mobility of species i, cm2⋅mol/J⋅s
v mass-average velocity, cm/s
𝑣i velocity of species i, cm/s
v* molar-average velocity, cm/s
xe mole fraction of electrolyte = c/cT
zi charge number of species i
𝛾+− mean molal activity coefficient of an electrolyte
𝜅 conductivity, S/cm
𝜇e chemical potential of an electrolyte, J/mol
𝜇i electrochemical potential of species i, J/mol
v number of moles of ions into which a mole of electrolyte dissociates
v+, v− numbers of cations and anions into which a molecule of electrolyte dissociates
𝜌 density, g/cm3

𝜌i mass of species i per unit volume, g/cm3

Φ electric potential, V
ΦA anode potential
𝜔e mass fraction of electrolyte

Subscript

0 species 0, generally the solvent
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CHAPTER 13

THERMAL EFFECTS

Electrochemical systems have a complicated interplay of mass-transfer and chemical reactions, as
described in previous chapters. But situations are seldom isothermal. Heat is generated and carried out
of the system, and temperatures are also modified by evaporation, condensation, and precipitation. In
this chapter, we need to describe how mass transfer is modified in a nonuniform temperature field and
then discuss the basic relationship for heat transfer in regions of complex chemical composition. The
combined set of gradients and of heat- and mass-transfer rates is coupled so that heat transfer influences
mass transfer, and vice versa, within a given phase. Interphase mass transfer can also generate heat
in a way that is particularly important in electrochemical systems. In Section 13.3, reversible and
irreversible heat generation is addressed to show how it depends on current and surface overpotential.
Section 13.4 treats some aspects of quantifying the electrical state in these complex systems, a function
served by reference electrodes in isothermal systems. This section also shows an alternative and
perhaps easier method of calculating heat generation at an interface without using a calorimeter.
This entails measuring the open-circuit potentials of electrodes as a function of the temperature
of individual electrodes, allowing us to pinpoint at which electrode the heat is being generated. A
similar measurement of the temperature dependence of the open-circuit potential for a whole cell
permits the reversible heat generation in a complete cell to be related to the entropy change for the
cell reaction.

Hirschfelder et al.[1] have given a complete and rigorous description of the governing transport
laws. Our purpose here is to show how these equations apply also to electrochemical systems if we
treat 𝜇i as the electrochemical potential for an ionic species (instead of the chemical potential). Agar[2]

and Denbigh[3] give readable accounts of irreversible thermodynamics that find application here.

Electrochemical Systems, Fourth Edition. John Newman and Nitash P. Balsara.
© 2021 John Wiley & Sons, Inc. Published 2021 by John Wiley & Sons, Inc.
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13.1 THERMAL DIFFUSION

The multicomponent diffusion equation 12.1 relates the driving force for diffusion to resistive forces
due to the relative motion of the species. The generalization for cases where there are simultaneously
gradients of temperature and pressure would be[1]

ci (∇𝜇i + Si∇T −
Mi

𝜌 ∇p) − RT
∑

j

cicj

cT𝒟ij

⎛
⎜
⎝

DT
j

𝜌j
−

DT
i

𝜌i

⎞
⎟
⎠
∇ ln T

= RT
∑

j

cicj

cT𝒟ij
(𝐯j − 𝐯i), (13.1)

where Si and DT
i are the partial molar entropy and the thermal diffusion coefficient of species i. The

first modification is that the driving force for diffusion and migration is now written according to
the first term of this equation. These driving forces now sum to zero even when the temperature and
pressure vary. Furthermore, they describe properly equilibrium in a gravitational or centrifugal field
(see Problem 13.1). Also, ∇𝜇i by itself is meaningless if ∇T≠ 0 because primary reference states for
entropy do not then cancel.

The second modification is the inclusion of thermal diffusion, represented by the terms in ∇ ln T in
equation 13.1. The gradient of the temperature is a new driving force in the system, in addition to the
n− 1 driving forces ci[∇𝜇i + Si∇T − (Mi∕𝜌)∇p], which will be written for brevity occasionally as di.
The gradient of pressure is not really an independent driving force for heat and mass transfer; rather, it
is a driving force for fluid flow, as discussed in Chapter 15. The temperature gradient can contribute
to mass transport, as shown in equation 13.1. This process is called thermal diffusion, also known as
the Soret effect, whereby a temperature gradient maintained across a solution can lead to a variation in
composition. The converse process, called the Dufour effect, is mentioned in the next section. Thermal
diffusion is not, however, usually important in industrial systems. The thermal diffusion coefficients
DT

i are additional transport properties, of which only n − 1 are independent since they always appear
as differences as in equation 13.1. It would make more sense to call DT

i ∕𝜌i the thermal diffusion
coefficient since this quantity has the units of cm2/s and DT

A∕𝜌A − DT
B∕𝜌B is approximately constant

for a binary solution. Therefore, we define a redundant set of coefficients

Ai
j =

DT
j

𝜌j
−

DT
i

𝜌i
(13.2)

so as to achieve an economy of notation and so that Ai
j has the units of cm2/s.

For a binary electrolyte, we can combine equation 13.1 to yield

𝐍+ = −
𝜈+𝒟
𝜈RT

cT

c0
c (∇𝜇e + Se∇T −

Me

𝜌 ∇p) +
𝐢t0
+

z+F
+ c+𝐯0 + c+𝒟𝜎∇T . (13.3)

This is a generalization of equation 12.8, 𝒟 and t0
+ being defined by equations 12.10 and 12.11, and 𝜎,

called the Soret coefficient, is

𝜎 = 1
𝒟T

(t0
−A+

0 + t0
+A−

0 ). (13.4)
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With a mass-fraction driving force and a mass-average reference velocity, equation 12.19 now becomes

𝐍+ = − 𝜈+
𝜌D
Me

∇𝜔e +
𝐢t+
z+F

+ c+𝐯 −
𝜈+𝒟cTc

𝜈
M0

RT𝜌 (Ve −
Me

𝜌 )∇p

+ c+𝜔0𝜎𝒟∇T , (13.5)

where D is given by equation 12.12 and t+ is given below equation 12.17. Consequently, the differential
material balance 12.17 is replaced by

𝜌 (
𝜕𝜔e

𝜕t
+ 𝐯 ⋅ ∇𝜔e) =∇ ⋅ (𝜌D∇𝜔e) −

Me𝐢 ⋅ ∇t+
z+𝜈+F

+
M0

𝜈 ∇ ⋅ [𝒟cT𝜔e (Ve −
Me

𝜌 )
∇p
RT

]

− ∇ ⋅ (𝜔e𝜔0𝜌𝒟𝜎∇T). (13.6)

Consideration of entropy production and the second law of thermodynamics shows that 𝜎 is governed
by the inequality

𝜎2 ≤
cTk′

𝜈c0c𝒟RT2
, (13.7)

where k′ is the thermal conductivity (see Section 13.2). Thus, 𝜎 can be either positive or negative,
depending on whether the solvent or the electrolyte migrates toward the hot wall under the influence
of thermal diffusion.

By following the development in Sections 12.6 and 12.7, we can invert equation 13.1 and then
derive the result

𝐢 = − 𝜅
F

∑

i

t0
i

zi
(∇𝜇i + Si∇T −

Mi

𝜌 ∇p) − F
∑

i

ziciA
0
i ∇ ln T , (13.8)

where the transference numbers t0
i and the conductivity 𝜅 are given by equations 12.63 and 12.60,

respectively.
For a binary electrolyte, this equation becomes

𝐢 = −
𝜅t0

+
z+𝜈+F

(∇𝜇e + Se∇T −
Me

𝜌 ∇p) − z+𝜈+FcA−
+∇ ln T

− 𝜅
z−F

(∇𝜇− + S−∇T −
M−
𝜌 ∇p) . (13.9)

The total derivative of 𝜇e is

∇𝜇e = (
𝜕𝜇e

𝜕m
)

T ,p
∇m + (

𝜕𝜇e

𝜕T
)

m,p
∇T + (

𝜕𝜇e

𝜕p
)

m,T
∇p

= 𝜈RT(1 +
𝜕 ln 𝛾±
𝜕 ln m

)
T ,p

∇m
m

− Se∇T + Ve ∇p, (13.10)
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and, therefore, the first term in parentheses in equation 13.9 could also be written as

∇𝜇e + Se∇T −
Me

𝜌 ∇p = 𝜈RT
𝜔e𝜔0

(1 +
𝜕 ln 𝛾±
𝜕 ln m

)
T ,p

∇𝜔e + (Ve −
Me

𝜌 )∇p. (13.11)

Note that a different combination of thermal diffusion coefficients occurs in equation 13.9 from that
which occurs in equations 13.3, 13.4, and 13.6. In equation 13.9, the A−

+∇ ln T term is new and shows
how a temperature gradient influences current flow directly. Thus, we see that the fluxes of heat, mass,
and charge are all interrelated at some level.

It is even more difficult to define an electric potential in a solution of varying temperature than
in one of varying composition. Even with reference electrodes, thermoelectric effects between the
electrode leads and the potential-measuring device must be taken into account (see Section 13.4 and
Newman[4]). Equation 13.9 is the analogue of equation 11.23 or 12.27 representing conduction effects,
or the generalization of Ohm’s law. For the present, we shall let ∇𝜇− + S−∇T − (M−∕𝜌)∇p represent
the effect of a spatial variation of the electrical state of the solution.

Tyrrell[5] has summarized some measurements of Soret coefficients in electrolytic solutions. The
value of 𝜎 is about 2 to 5× 10−3 K−1.

13.2 HEAT GENERATION, CONSERVATION, AND TRANSFER

Electrolytic solutions are described by the same basic equations as nonelectrolytic solutions, caution
being used to regard the chemical potential 𝜇i as the electrochemical potential if it applies to an
ionic species. The first law of thermodynamics is used to deduce a differential energy balance, which
includes the kinetic energy of the flowing fluid. The momentum equation 15.4 is used to subtract this
mechanical energy, yielding a thermal energy balance. By means of the appropriate thermodynamic
relationships for mixtures, this can be put into the form[6]

𝜌Ĉp (
𝜕T
𝜕t

+ 𝐯 ⋅ ∇T) + (
𝜕 ln 𝜌
𝜕 ln T

)
p,𝜔i

(
𝜕p
𝜕t

+ 𝐯 ⋅ ∇p)

= −∇ ⋅ 𝐪 − 𝛕∶∇𝐯 +
∑

i

Hi(∇ ⋅ 𝐉i − Ri). (13.12)

The last term on the right represents thermal effects due to diffusion, migration, and chemical reaction.
Here, Ji is the flux density of species i relative to the mass-average velocity:

𝐉i = 𝐍i − ci𝐯. (13.13)

The second and third terms on the right and the last term on the left represent irreversible and reversible
conversion of mechanical energy into thermal energy, 𝝉 being the stress (see Section 15.2). The term
−𝝉 :∇ v is referred to as the viscous dissipation.

The heat flux q can be expressed as

𝐪 =
∑

i

Hi𝐉i − k∇T + 𝐪(x), (13.14)

the three terms being, respectively, heat carried by the interdiffusion of the species, heat transfer by
conduction with the thermal conductivity k, and the Dufour energy flux density given by

𝐪(x) = −
∑

i

DT
i

𝜌i
ci (∇𝜇i + Si∇T −

Mi

𝜌 ∇p) . (13.15)
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The Dufour effect is the converse of thermal diffusion, treated in Section 13.1, and accounts for the
balance of the heat induced by interdiffusion. The thermal diffusion coefficients DT

i are the same as
those introduced in the preceding section. Again, the Dufour effect is not usually important in industrial
systems. Substitution of equation 13.14 into equation 13.12 yields

𝜌Ĉp (
𝜕T
𝜕t

+ 𝐯 ⋅ ∇T) + (
𝜕 ln 𝜌
𝜕 ln T

)
p,𝜔i

(
𝜕p
𝜕t

+ 𝐯 ⋅ ∇p)

= ∇ ⋅ (k∇T) − ∇ ⋅ 𝐪(x) −
∑

i

𝐉i ⋅ ∇Hi − 𝛕∶∇𝐯 −
∑

i

HiRi. (13.16)

The thermal effect due to diffusion and migration now appears in a modified form.
For water at 20∘C, 𝜕 ln 𝜌/𝜕T= − 0.207× 10−3 K−1. Since Ĉp = 4.1819 J∕g ⋅ K, a change in pressure

of 1 bar in the last term on the left in equation 13.16 corresponds to a temperature change of only
0.00145 K in the first term. Consequently, the pressure term in equation 13.16 is usually negligible for
condensed phases. More generally, the pressure changes in a system would be calculated by solving
the fluid mechanics (Chapter 15).

For a binary electrolyte, the heat flux can be expressed as

−k∇T + 𝐪(x) = −k′∇T +𝒟T𝜎𝐝e +
z+c+F

𝜅 A−
+𝐢. (13.17)

Here the current density has been introduced from equation 13.9 to avoid using the potential in the
solution. This also means that a somewhat different thermal conductivity is measured if no current is
ever allowed to pass through the solution:

k′ = k −
(z+𝜈+Fc)2

𝜅T
(A+

−)2. (13.18)

If we go a step farther and require that all species fluxes be zero, then we have

𝐪 = −k′′∇T , (13.19)

where

k′′ = k′ −
𝒟Rc0c

cT
T2𝜎2. (13.20)

Thus, a measurement of the heat flux yields the thermal conductivity k
′′

rather than k
′

if no special
attention is given to the fact that the composition varies within the system and the system is allowed to
reach steady state with respect to thermal diffusion. A separate measurement of the Soret coefficient is
necessary to yield k′. Evidently caution needs to be used in reporting or using thermal conductivities in
the literature. However, the differences among k, k′, and k′′ are generally small (see Problem 13.11).
A multicomponent version of k′′ is given later in equation 13.26. In summary, k applies when di = 0,
k′ applies when i = 0, and k′′ is evidently the thermal conductivity that would naturally be measured if
mass-transfer rates were zero in an experiment, a situation that can be realized more easily than trying
to maintain all di equal to zero. (The second law of thermodynamics shows that k′′ is never negative;
cf. equation 13.7.)

An important difference between electrical and nonelectrical systems is the conversion of electrical
energy to thermal energy, called Joule heating, due to the passage of electric current. This arises from
the first term in the heat-flux equation 13.14. For example, the current density i can be related to the
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flux densities, i = F
∑

iziJi, and in a solution of uniform temperature, pressure, and composition, the
partial molar enthalpy is related to the electrochemical potential and hence to the electric potential

∇Hi = ∇𝜇i = ziF∇Φ, (13.21)

as used in this sense already in Section 2.2. Consequently,

−∇ ⋅
∑

i

Hi𝐉i = −
∑

i

𝐉i ⋅ ∇Hi = −𝐢 ⋅ ∇Φ = 𝐢 ⋅ 𝐢
𝜅 . (13.22)

Thus, we conclude that the first term in equation 13.14 is by no means negligible and that the third
term on the right in equation 13.16 can be associated in part with Joule heating.

For a constant value of k′ or for constant values of 𝜌 and Ĉp, it is appropriate to define a thermal
diffusivity as k′∕𝜌Ĉp. The thermal energy balance 13.16 then resembles the equation of convective
diffusion 11.21 but with source terms for generation of heat by Joule heating, viscous dissipation, and
chemical reaction. For water at 20∘C, the value of the thermal diffusivity is 1.43× 10−3 cm2/s, about
100 times larger than diffusion coefficients encountered in aqueous solutions.

13.3 HEAT GENERATION AT AN INTERFACE

Let us make an energy balance on an interface where a single electrode reaction
∑

i

siM
zi
i → 0 (13.23)

is occurring at a steady state (thereby excluding the storage of energy in a charged electric double
layer, see Chapter 7).∗ The total energy flux density must then be continuous:

Δ [(1
2
𝜌𝑣2 + 𝜌Û + p) 𝑣y + qy] = 0, (13.24)

where y is the distance from the electrode into the solution and 𝑣y is measured relative to the interface.
One can use equation 13.1 to replace driving forces di with flux densities Ni in the

thermal-flux-density equations 13.14 and 13.15. After substantial algebraic manipulation,[4] this can
be rearranged into the convenient or canonical form

𝐪 =
∑

i

Hi𝐉i − k′′∇T − RT
∑

i

𝐍i

∑

j

cjA
i
j

cT𝒟ij
, (13.25)

where
k′′ = k − R

2

∑

i

∑

j

cicj

cT𝒟ij
(Ai

j)
2. (13.26)

With neglect of the kinetic energy and the use of the relationship Hi = 𝜇i + TSi, the energy balance
13.24 becomes

−k′′
𝜕T
𝜕y

+ k′′I
𝜕TI
𝜕y

= iy𝜂s + iyΠ, (13.27)

∗We follow the methodology of Section 23.4, whereby electrons are not always mentioned explicitly but are lumped into the
sum. Equations 13.23 and 13.28 are thus different from what we are used to.
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where I denotes the electrode phase,

𝜂s =
1

nF

∑

i

si𝜇i (13.28)

is the surface overpotential (8.2 or 23.42) for the electrochemical reaction, and

Π = T
nF

∑

i

siSi −
RT
nF

⎛
⎜
⎝

∑

i

si

∑

j

cjA
i
j

cT𝒟ij

⎞
⎟
⎠soln

− RT
nF

⎛
⎜
⎝

∑

i

si

∑

j

cjA
i
j

cT𝒟ij

⎞
⎟
⎠I

(13.29)

is the Peltier coefficient. In this way, iy𝜂S represents irreversible heat generation at the interface, and
iyΠ is reversible heat generation. Π has two distinctly different kinds of terms. The sum of partial molar
entropies, even though it includes electrically charged species on either side of the interface, represents
the major contribution to the reversible heat generation at an interface and predominately quantifies
how much heat is generated at each electrode in a cell. The terms in thermal diffusion coefficients
represent a correction that would be zero if the Dufour energy were negligible. This is written as two
separate terms to remind us that the sums over j include only species in the phase that si represents.

The term Seebeck coefficient, or possibly galvanic Seebeck coefficient, is sometimes used
for −Π/T.

For a whole electrochemical cell, the reversible heat effects at the two electrodes subtract to yield
a quantity that is frequently measured. Then Qrev = I(Πneg −Πpos), where Qrev is the heat generated
in the cell and I is the current at the negative (or left) electrode, taken to be positive for an anodic
current at that electrode. For example, for cell 2.106, involving a silver–silver chloride electrode and a
hydrogen electrode, the reversible heat generated is

Qrev = IT
F

(S
𝛽
HCl + S

𝜆
Ag −

1
2S

𝛼
H2

− S
𝜀
AgCl) , (13.30)

the quantity in parentheses being the entropy change for the overall cell reaction:

1
2
H2 + AgCl ⇌ Ag + HCl. (13.31)

Here we have ignored the difference between phases 𝛽 and 𝛿. The entropy change for the overall
cell reaction can be obtained from the temperature coefficient of the reversible cell potential (see
equation 2.107):

S
𝛽
HCl + S

𝜆
Ag −

1
2S

𝛼
H2

− S
𝜀
AgCl = F(𝜕U

𝜕T
)

p
, (13.32)

so that equation 13.30 becomes

Qrev = IT(𝜕U
𝜕T

)
p
, (13.33)

U being the potential at the positive (or right) electrode, relative to the negative (or left) electrode. It
should be noted that the reversible heat for an electrochemical cell is not related to the enthalpy change
for the reaction but to the entropy change. The enthalpy change is appropriate for pressure–volume
systems but not to electrical systems. (Similarly, the Peltier heat can be related to the change of potential
when the temperature of one electrode is changed. This allows us to attribute the heat generation
locally, to one electrode or the other. See the next section.)
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Some texts use a quantity called the heat of transfer, Q∗
i , instead of thermal diffusion coefficients,

Ai
j. For a binary electrolyte, one can state the relationship, based on Denbigh,[3] pp. 78 ff, as

Q∗
+ = −

z+z−𝜈+𝜈−F2c
𝜈+𝜅

A−
+ −

𝜈RT2c0t0
−

𝜈+cT
𝜎. (13.34)

A symmetric form applies for Q∗
−. Diffusion of the electrolyte in the absence of current flow might be

expected to involve the quantity

Q∗
e = 𝜈+Q∗

+ + 𝜈−Q∗
− = −

𝜈RT2c0

cT
𝜎, (13.35)

without the appearance of the term A−
+.

A suitable multicomponent form for Q∗
i is

Q∗
i = −RT

∑

j

cjA
i
j

cT𝒟ij
, (13.36)

a form suggested by equation 13.25.

13.4 THERMOGALVANIC CELLS

Calculation of the heat generation at an interface requires knowledge of Π. In this section, we describe
how to use experimental data to calculate Πi for each electrode in a cell. This permits us to specify at
which electrode the reversible heat is being generated.

Figure 13.1 shows a simple thermogalvanic cell where an aqueous solution of copper sulfate is
confined between two horizontal copper electrodes, the upper of which is maintained at a higher
temperature than the lower. What will be the potential difference measured between the two copper
wires, which are brought to the same temperature at the potentiometer? In this experiment we consider
the steady state (after Soret diffusion has occurred) in the absence of current so that all the species
fluxes are zero. In addition, we neglect the pressure variation induced by the gravitational field.

Cu

Cu

CuSO4, H2O

Cu,T1

Φ1,T1

Φ2,T1

Cu,T2

Figure 13.1 Thermogalvanic cell.

In this situation, equation 13.3 or 13.5 reduces to

∇𝜇e + Se∇T =
𝜈c0RT𝜎

cT
∇T (13.37)
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or
∇ ln m =

∇𝜔e

𝜔e𝜔0
= 𝒟𝜎

D
∇T =

c0𝜎∇T

cT(1 +
𝜕 ln 𝛾±
𝜕 ln m

)
T ,p

, (13.38)

where the coefficient of ∇T in the last expression is called the practical Soret coefficient. These
equations thus describe how the variation in the solution composition is related to the Soret coefficient
𝜎 or how the Soret coefficient can be determined by measuring this variation in composition.
Equation 13.1 becomes

∇𝜇+ = −S+∇T + R(
c0A+

0

cT𝒟0+
+

c−A+
−

cT𝒟+−
)∇T (13.39)

or
∇𝜇+
z+F

= (
Rc0T𝜎𝒟

z+FcT𝒟0+
+ 𝜉+)∇T , (13.40)

where

𝜉+ =
z+c+F
𝜅T

A+
− −

S+
z+F

(13.41)

and might be called a thermoelectric coefficient (see Problem 13.2). Equation 13.40 is used to assess
the variation of the electrical state within the solution. We generalize the analysis to include different
reactions at the electrodes but still restrict it to a binary electrolyte. Thus, it can apply not only to the
CuSO4 thermocell but also to a hydrogen/oxygen fuel cell or to the hydrogen/silver–silver chloride
cell 2.106.

Just as in Chapter 2, we can write

FU = F(Φ2 − Φ1) = 𝜇(1)
e− (T1) − 𝜇(2)

e− (T1). (13.42)

Since the lower lead in Figure 13.1 is isothermal, there is no variation of 𝜇(1)
e− , but for the upper lead

(see Problem 13.2)

𝜇e−(T2) − 𝜇e−(T1) = F ∫
T2

T1

𝜉lead dT , (13.43)

where

𝜉lead = 1
F
[−Se− +

Rc+A−
+

cT𝒟+−
]

lead

. (13.44)

Substituting successively into the equation for FU, we have

FU = 𝜇(1)
e− (T1) − 𝜇(2)

e− (T2) + F ∫
T2

T1

𝜉(2)lead dT

=
∑

i ≠ e−
(

si,1

n1
−

si,2

n2
) 𝜇i(T1) +

∑

i ≠ e−

si,2

n2
[𝜇i(T1) − 𝜇i(T2)] + F ∫

T2

T1

𝜉(2)lead dT . (13.45)

The first term we recognize as FU2,1(T1), the open-circuit potential of an isothermal cell at T1.
Next we have to evaluate the differences between 𝜇i at the two temperatures, which generally

requires integration of a form like equation 13.39 or 13.40 across the solution from one temperature
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to the other. However, extraneous phases such as Ag, H2, and AgCl in cell 2.106 are not solution
components and require only integration of the molar entropy. Hence we have

FU = FU2,1(T1) +
∑

i ≠ e−

si,2

n2
∫

T2

T1

d𝜇i

dT
dT + F ∫

T2

T1

𝜉(2)lead dT

= FU2,1(T1) −
∑

i ≠ e−

si,2

n2
∫

T2

T1

Si dT − ∫
T2

T1

[
s+,2
n2

Q∗
+ +

s−,2
n2

Q∗
− +

s0,2

n2
Q∗

0]
dT
T

+ F ∫
T2

T1

𝜉(2)lead dT . (13.46)

Forms of Q∗
+,Q∗

−, and Q∗
0 can be found in equation 13.34 and in Problem 13.12. We now have, after a

little algebra,

FU = FU2,1(T1) −
∑

i ≠ e−

si,2

n2
∫

T2

T1

Si dT + ∫
T2

T1

z+𝜈+F2cA−
+

𝜅T
dT

+∫
T2

T1

𝜈RT2

cT
𝜎 (

c0t0
−

𝜈+

s+,2
n2

+
c0t0

+
𝜈−

s−,2
n2

−
cs0,2

n2
) dT

T
+ F ∫

T2

T1

𝜉(2)lead dT . (13.47)

Comparison with equation 13.29 shows that the open-circuit potential is

U = U2,1(T1) − ∫
T2

T1

Π2

T
dT . (13.48)

By modifying the derivation appropriately, this can also be written as

U = U2,1(T2) − ∫
T2

T1

Π1

T
dT . (13.49)

Hence,

( 𝜕U
𝜕T1

)
T2

=
Π1

T1
(13.50)

and
( 𝜕U
𝜕T2

)
T1

= −
Π2

T2
. (13.51)

A side problem is that Π1 −Π2 ≠ −TΔS/nF, but instead there is an extra term involving 𝜎 for a
lead–acid cell (see Ref. [4]) and possibly for cell 2.106, but not for the CuSO4 system or for the
hydrogen/oxygen fuel cell.

13.5 CONCLUDING STATEMENTS

The differential energy balance 13.16 is the basis for calculating the temperature profile across an
electrochemical cell. Heat conduction can carry thermal energy in or out or through the cell, and Joule
heating represents an irreversible source of thermal energy. The energy flux equations are given in
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Section 13.2. Reversible and irreversible heat sources at an electrode boundary are in equation 13.27.
Standard heat-transfer boundary conditions of conduction, convection, and/or radiation apply at the
periphery of the cell. In many cases, the electrochemical cell is thermally thin, so that temperature
gradients within the cell are not important, but one needs to calculate the temperature rise within
the cell, as heat is generated and carried out of the cell. In that case, the simplified energy balance
in equation 22.19 can be used, where I is positive on discharge (or when anodic at the negative
electrode). Measuring 𝜕U/𝜕T separately for each electrode, with respect to a second electrode at a
fixed temperature, yields the Peltier heat (see equation 13.50), which forms the basis for splitting the
reversible heat between the two electrodes. The simplified energy balance (22.19) does not include
heats of mixing; these heat effects observed on relaxation after the current is interrupted are discussed
in more detail in studies on a general energy balance (Bernardi et al.[7] and Thomas and Newman[8]).
U−T 𝜕U/𝜕T is the thermoneutral potential or enthalpy potential; when V is less than U− T 𝜕U/𝜕T and
I is positive, heat is exothermic, and the temperature will increase.

PROBLEMS

13.1 (a) Show that, for gravitational equilibrium in a region of uniform temperature, the variation
of the chemical potential of a species is given by

∇𝜇i =
Mi

𝜌 ∇p.

Do this by consideration of a reversible process of removing a mole of the species at one
point in the field, moving it against the force of gravity, and reintroducing it at another
point. If possible, avoid assuming that the gravitational field is uniform.

Consideration of the process gives some justification for the expression for the driving
force for diffusion, ci[∇𝜇i + Si∇T − (Mi∕𝜌)∇p], since this driving force should reduce to
zero in such an equilibrium situation.

(b) Consider whether this relation correctly describes the equilibrium distributions of concen-
tration in a centrifuge.

(c) The molar mass of NaCl is 58.44 g/mol, and that of H2O is 18.015. If sea water is 0.5 M in
NaCl and 55 M in H2O at the surface, would the equilibrium concentrations of both H2O
and NaCl be higher at a depth of 2000 m?

13.2 (a) A thermocouple consists of metal I and metal II, one junction being at temperature T
and the other junction being at temperature TR, at which temperature the measurement
of potential is made. With no current being passed, show that the potential difference
measured (see Figure 13.2) is

ΦΠ − ΦI = ∫
T

TR

(𝜉Π − 𝜉I) dT ,

where, for each metal,

𝜉 = (
DT
−

𝜌−
−

DT
+

𝜌+
)

z−c−F
𝜅T

+
S−

z−F
,

the metals being regarded as composed of electrons and metal ions. The electrons are
equilibrated between the two metals at the temperature T. This problem gives some insight
into what quantity 𝜉 can be determined from the properties of the thermocouple.
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I

I

II

Potentiometer

T

TR

ΦI ΦII

Figure 13.2 Thermocouple.

(b) For given sizes of the wires, what current would be passed through the thermocouple when
the ends are shorted together?

(c) It is desired to study the potential of a concentration cell in liquid ammonia at 223 K:

transition
region

NaSCN,
NH3, Pb2+

NaSCN,
NH3, Pb2+

PbPb

223223283 293

Cu.Cu WW

The tungsten rods coming from the cell make contact with copper wires, but through
inadvertence these contacts are made at slightly different temperatures, 283 and 293 K.
Show that the error introduced into the measurement of the cell potential at 223 K is

ΔΦ = ∫
293

283
(𝜉w − 𝜉Cu)dT .

13.3 Treat again the open-circuit potential of the thermogalvanic cell where it is assumed that a
temperature distribution is established rapidly so that the composition of the solution remains
equal to the initial (uniform) composition. Note that this might be a natural assumption for the
thermocouple system in Problem 13.1, where one of the leads is an alloy.

13.4 Another thermogalvanic cell with different electrode reactions might be

|T1
Pb|T1

PbSO4|T1
H2SO4, H2O|T2

PbSO4|T2
PbO2|T2

Pb|T1
.

The end leads are held at the same temperature, T1, to permit an unambiguous definition
of the potential. The two half-cells are at different temperatures, as shown. Temperature
gradients exist across the H2SO4 solution and one of the Pb leads. Obtain an expression for
the thermal-galvanic potential, and compare this with expressions you obtain for the Peltier
coefficient and the thermogalvanic coefficient.

13.5 How would the potential of the cell in Problem 13.4 change if the Pb lead were replaced by a
Cu lead, with another Cu lead also being added to the Pb lead on the other side of the cell?

13.6 Repeat the task of Problem 13.4, but with the hydrogen/silver–silver chloride cell 2.97. Write
out Π for each electrode of cell 2.97 and show that the thermal diffusion terms cancel to yield
Qrev according to equation 13.30.
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13.7 Take 𝜎 and A+
− to be two properties of a binary electrolytic solution. Show that any other

combination of DT
i , such as A0

+, can be expressed as a linear combination of these two.

13.8 Obtain a concentration profile of a binary solution at steady state with respect to the Soret
effect. Use equation 13.38 with the approximation 𝒟 = D.

13.9 For the copper sulfate solution of Section 13.4, show that equation 13.40 is replaced by
∇𝜇+/z+F = 𝜉+ ∇T, if the solution composition (m) is uniform. Also obtain a revised form for
equation 13.47 for this situation.

13.10 Estimate the magnitude of the correction term in equation 13.20. Compare this with the
magnitude of the thermal conductivity of water at 20∘C (0.60 W/m ⋅K).

13.11 Show that
∑

iciQ
∗
i = 0.

13.12 For a binary electrolyte, show that Q∗
0 = vcRT2𝜎∕cT .

NOTATION

Ai
j modified thermal diffusion coefficient, cm2/s

c molar concentration of a single electrolyte, mol/cm3

ci concentration of species i, mol/cm3

cT total solution concentration, mol/cm3

Ĉp heat capacity at constant pressure, J/g ⋅K
D measured diffusion coefficient of electrolyte, cm2/s
DT

i thermal diffusion coefficient of species i, g/cm⋅s
𝒟 diffusion coefficient of electrolyte, based on a thermodynamic driving force, cm2/s
𝒟ij diffusion coefficient for interaction of species i and j, cm2/s
e− symbol for the electron
F Faraday’s constant, 96,487 C/mol
Hi partial molar enthalpy of species i, J/mol
i current density, A/cm2

I cell current, A
Ji molar flux density of species i relative to the mass-average velocity, mol/cm2 ⋅ s
k thermal conductivity, J/cm ⋅ s ⋅K
k′ thermal conductivity, J/cm ⋅ s ⋅K
k′′ thermal conductivity, J/cm ⋅ s ⋅K
m molality of a single electrolyte, mol/kg
Mi symbol for the chemical formula of species i
Mi molar mass of species i, g/mol
n number of electrons involved in electrode reaction
n number of species present in the solution
Ni flux density of species i, mol/cm2 ⋅ s
p pressure, N/cm2

q heat-flux density, J/cm2 ⋅ s
q(x) Dufour energy flux density, J/cm2 ⋅ s
q′ conduction and Dufour energy flux density, J/cm2 ⋅ s
Qrev reversible heat-transfer rate, J/s
Q∗

i heat of transfer of species i, J/mol
R universal gas constant, 8.3143 J/mol ⋅K
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Ri rate of homogeneous production of species i, mol/cm3 ⋅ s
si stoichiometric coefficient of species i in electrode reaction
Si partial molar entropy of species i, J/mol ⋅K
t time, s
ti transference number of species i with respect to the mass-average velocity
t0
i transference number of species i with respect to the velocity of species 0

T absolute temperature, K
U reversible cell potential, V
Û internal energy per unit mass, J/g
v mass-average velocity, cm/s
vi velocity of species i, cm/s
Vi partial molar volume of species i, cm3/mol
y distance from electrode, cm
zi charge number of species i
𝛾+− mean molal activity coefficient of an electrolyte
𝜂s surface overpotential, V
𝜅 conductivity, S/cm
𝜇e chemical potential of an electrolyte, J/mol
𝜇i electrochemical potential of species i, J/mol
v number of moles of ions into which a mole of electrolyte dissociates
v+,v− numbers of cations and anions into which a molecule of electrolyte dissociates
𝜉 thermoelectric coefficient, V/K
Π Peltier coefficient, V
𝜌 density, g/cm3

𝜌i mass of species i per unit volume, g/cm3

𝜎 Soret coefficient, K−1

𝜏 stress, N/cm2

Φ electric potential, V
𝜔i mass fraction of species i

Subscripts

e electrolyte
0 solvent
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CHAPTER 14

TRANSPORT PROPERTIES

14.1 INFINITELY DILUTE SOLUTIONS

In infinitely dilute solutions, there is one diffusion coefficient Di for each solute species. This transport
property describes interaction between this species and the solvent. The properties of aqueous solutions
were reviewed in Section 11.7, where it was indicated that the mobility ui is related to the diffusion
coefficient by the Nernst–Einstein relation 11.41.

14.2 SOLUTIONS OF A SINGLE SALT

Sections 12.2 and 12.4 indicate that the solutions of a single salt are characterized by three transport
properties: the conductivity 𝜅, the diffusion coefficient D, and the transference number t0

+. These can
be measured as functions of the concentration as well as the temperature, as reviewed by Robinson
and Stokes.[1] The conductivity is commonly measured in terms of the alternating current resistance
between two electrodes placed in the solution. The Hittorf method of measuring transference numbers
involves the determination of the concentration changes near the anode and the cathode when a current
is passed. The moving-boundary method, generally regarded as being more accurate than the Hittorf
method, measures the rate of movement of the boundary between, say, solutions of NH4NO3 and
AgNO3 when a current is passed through that boundary.[2] Diffusion coefficients can be measured
by following the concentration changes across a porous glass diaphragm. Also, accurate results can
be obtained by measuring optically the concentration changes that take place when two solutions of
different concentration are placed in contact with each other. This can be done either at very short
times, in which case the initial boundary should be sharp, or at very long times[3] with the diffusion
taking place in a restricted space about 7 cm high.

Over the years, a surprisingly large amount of data has been taken on the transport properties of
solutions of single salts. Landolt–Börnstein[4] is a good source of conductivity data, and Kaimakov and
Varshavskaya[5] have searched the literature for transference numbers. Robinson and Stokes[1] have
compiled data on diffusion coefficients and activity coefficients, and Chapman and Newman[6] have
collected data for a number of systems.

Electrochemical Systems, Fourth Edition. John Newman and Nitash P. Balsara.
© 2021 John Wiley & Sons, Inc. Published 2021 by John Wiley & Sons, Inc.

283



�

� �

�

284 TRANSPORT PROPERTIES

The conductivity, diffusion coefficient, and transference number represent three quite different
transport properties. We might hope to find a more unified treatment by dealing with the equivalent
transport coefficients 𝒟0+, 𝒟0−, and 𝒟+− defined by equation 12.1. These can be obtained from the
measured values of 𝜅, D, and t0

+ by solving equations 12.10, 12.11, and 12.23:

𝒟0− =
z+

z+ − z−

𝒟
t0
+

, (14.1)

𝒟0+ =
−z−

z+ − z−

𝒟
1 − t0

+
, (14.2)

1
𝒟+−

=
z+z−cTF2

RT𝜅 −
z+ − z−

z+𝜈+

c0t0
+t0

−

c𝒟
. (14.3)

We see that first we need to determine 𝒟 from D according to equation 12.12:

D = 𝒟
cT

c0
(1 +

d ln 𝛾+−
d ln m

) , (14.4)

which requires a knowledge of the activity coefficient (see Problem 2.1).
These are more than 30 binary systems[3] with sufficient data to justify calculating values of 𝒟ij.

Figure 14.1 shows the multicomponent diffusion coefficients of KCl in water at 25∘C. We may note
that the coefficients for interactions of the ions with the solvent are reasonably constant, while that
for ion–ion interactions shows roughly a square-root-of-concentration dependence characteristic of the
Debye–Hückel–Onsager theory of ionic interactions in dilute solutions.
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Figure 14.1 Multicomponent diffusion coefficients of KC1–H2O at 25∘C.
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On this basis, we define a function G:

G =
z+𝒟0+ − z−𝒟0−

𝒟+−

√
c

c0

1 +
√

q

z2
+z2

−q
(

z+𝜈+
z+ − z−

)
1∕2

T3∕2, (14.5)

where

q =
−z+z−
z+ − z−

𝜆0
+ + 𝜆0

−

z+𝜆0
+ − z−𝜆0

−
, (14.6)

and 𝜆0
i is the ionic equivalent conductance at infinite dilution. The quantity G is essentially

√
c∕𝒟+−,

the other factors being based on the theory for dilute solutions. Figure 14.2 shows some calculated G
values for several chloride systems. For electrostatic ionic interactions, with neglect of electrophoresis,
the limiting value for dilute solutions would be about 2860. We see that this value appears to be more
characteristic of concentrated solutions.

Figure 14.3 shows 𝒟0− values for several chloride solutions and accentuates the concentration
dependence relative to the logarithmic scale used in Figure 14.1. The behavior definitely depends on
the nature of the counterion. We might think that multiplication by a viscosity factor would help (see
equation 11.51). The reader can judge from Figure 14.4.

Figures 14.5 and 14.6 show the dependence on temperature. To a first approximation, the temperature
dependence is given by the temperature dependence of the limiting value 𝒟0

0i as c approaches
zero.
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Figure 14.2 Empirical function G for various systems.
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Figure 14.3 Diffusion coefficient of chloride ion in various aqueous solutions at 25∘C.

14.3 MIXTURES OF POLYMERS AND SALTS

Salts dissolve in polymers such as poly(ethylene oxide) (PEO), as discussed in Section 2.9.[7, 8] One
can either mix the salt with a PEO homopolymer to get a homogeneous mixture that is analogous
to classical electrolytes or one could mix the salt with a block copolymer. A diblock copolymer is a
molecule wherein two chemically dissimilar chains are covalently bonded to each other. Polymers are
usually immiscible in each other. The presence of the covalent bond restricts the phase separation to
molecular length scales. An example of a block copolymer is a polystyrene-block-poly(ethylene oxide)
(SEO) copolymer.[9] If the molar masses of the polystyrene (PS) and PEO blocks are roughly equal,
one obtains alternating PS-rich and PEO-rich lamellae. Mixing salt into such copolymers results in
salt-free PS-rich lamellae that are nonconducting but mechanically rigid, and salt-containing PEO-rich
lamellae. Ion transport is facilitated by soft polymers such as PEO. In SEO-based electrolytes, the
PS-rich domains provide mechanical rigidity while the PEO-rich lamellae provide avenues for ion
transport. Schematics of homopolymer and block copolymer electrolytes are shown in Figure 14.7.
Also shown in the figure is an electron micrograph of a block copolymer electrolyte.

Sections 12.2 and 12.4 are applicable to these mixtures, and they are also characterized by a
thermodynamic factor and three transport properties, 𝜅, D, and t0

+. We first discuss characterization
of homogeneous electrolytes comprising mixtures of PEO (molar mass = 5 kg/mol) and lithium
bis(trifluoromethanesulfonyl) imide (LiTFSI). This is followed by a discussion of characterization
of composite electrolytes such as SEO mixed with LiTFSI. The dependence of 𝜅 and D on m is
shown in Figure 14.8a and b. The thermodynamic factor and t0

+ are measured using a combination of
experiments.[10, 11] One of these experiments comprises placing an electrolyte film between two lithium
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Figure 14.4 Diffusion coefficient of chloride ion with a viscosity factor.

0
Concentration (mol/liter)

1 2 3 4 5

50 °C

0

0.2

0.4

0.6

0.8

1.0

1.2

25 °C

35 °C

 / 
o H

2O
–L

i+
H

2O
–L

i+

Figure 14.5 Lithium ion diffusion coefficient in lithium chloride solutions at various temperatures.

foils, applying small constant potential, Φss, across the foils and measuring the time dependence of the
current density. The current density data can be used to determine t+,id, the approximate transference
number based on the assumption of an ideal, dilute electrolyte, using equation 12.49. The measured
dependence of t0

+, D, t+,id, and U on m (U versus m data are shown in Figure 2.2) can be used to
determine the transference number using the following equation,

t0
+ = 1 + ( 1

t+,id
− 1)

z+𝜈+FDc
𝜅 (d ln m

dU
) . (14.7)
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Figure 14.6 Chloride ion diffusion coefficient in lithium chloride solutions at various temperatures.
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Figure 14.7 Chemical formulae and schematic depictions of (a) homopolymer and (b) block copolymer
electrolytes. The arrows in (a) and (b) represent one of the possible pathways for salt diffusion in the homopolymer
and block copolymer electrolytes, respectively. In the block copolymer, diffusion is limited to the bright phase.
(c) An electron micrograph of a block copolymer electrolyte: polystyrene-b-poly(ethylene oxide) with a lithium
salt. The conducting domains appear bright in the micrograph.

Equation 14.7 is derived by combining equations 2.119, 12.41, 12.48, and 12.49. Properties of the
mixture are shown in Figure 14.8. The dependence of t+,id and t0

+ on m is shown in Figure 14.8c. There
is a marked difference between t0

+ and t+,id, indicating that the assumption of ideality does not apply
to PEO/LiTFSI mixtures. The dependence of t0

+ on m is characterized by two maxima separated by a
sharp minimum; t0

+ is even negative in the vicinity of the minimum. In contrast, the dependence of t+,id
on m is characterized by one shallow minimum with no negative values.

Knowledge of t0
+ enables determination of the thermodynamic factor with the equation

(1 +
d ln 𝛾±

d ln m
) = − F

2RT(1 − t0
+)

( dU
d ln m

) , (14.8)
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Figure 14.8 Complete characterization of ion transport in a polymer electrolyte (PEO/LiTFSI) at 90∘C.
(a) Conductivity, 𝜅; (b) salt diffusion coefficient, D; (c) cation transference number, t0

+; and (d) the thermodynamic
factor as a function of molality, m. The approximate transference number based on the assumption of an ideal
electrolyte, t+,id, is also shown in (c).

which is obtained by rewriting equation 2.119. Figure 14.8d is a plot of the thermodynamic factor
versus m. The fact that the thermodynamic factor of PEO/LiTFSI mixtures deviates from unity is
another indication that the system is nonideal.

The Stefan–Maxwell diffusion coefficients, 𝒟ij, of PEO/LiTFSI can be calculated from the data in
Figure 14.8 using equations 14.1 through 14.4, and the results are given in Figure 14.9. The data in this
figure should be contrasted with the 𝒟ij versus concentration curves for KCl/water solutions shown
in Figure 14.1. The simplest of the PEO/LiTFSI Stefan–Maxwell diffusion coefficients, 𝒟0+ is a
decaying function of salt concentration (or molality). This is qualitatively similar to the dependence of
𝒟0+ on salt concentration of KCl/water mixtures. The plots of 𝒟0− and 𝒟+− versus m of PEO/LiTFSI
are qualitatively different from the corresponding plots of KCl/water mixtures. In particular, there
are concentration ranges over which the diffusion coefficients are negative, separated from a range
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Figure 14.9 (a–c) Stefan–Maxwell diffusion coefficients of PEO/LiTFSI electrolytes as a function of molality.
(d) Reciprocal of the Stefan–Maxwell diffusion coefficients in (b) and (c) as a function of molality.

where the diffusion coefficients are positive. The singularities are poles: 𝒟0− approaches +∞ as
t0
+ approaches 0 from one side, and 𝒟0− approaches −∞ as t0

+ approaches 0 from the other side.
For example, 𝒟0− swings from +∞ to −∞ as salt concentration changes from m = (2.967 − 𝛿) to
(2.967 + 𝛿) mol/kg, where 𝛿 is infinitesimally small. Similar swings are seen in 𝒟+−. Singularities
in 𝒟ij occur when the denominators of equations 14.1 to 14.3 approach zero. In the vicinity of
singularities, when a particular 𝒟ij is large, transport is governed by the other relevant Stefan–Maxwell
diffusion coefficients; 𝒟ij appear in the denominator of the right side of equation 12.1. For example,
in the vicinity of m = 2.73 mol/kg where 𝒟0− approaches either +∞ or −∞, the flux of the anion is
entirely determined by the magnitude and sign of 𝒟+−. In Figure 14.9d, we plot 1/𝒟0− and 1/𝒟+−
versus m for PEO/LiTFSI. These plots are significantly simpler than plots of 𝒟0− and 𝒟+− versus
m (Figure 14.9b and c). In cases where poles are obtained in 𝒟ij versus salt concentration plots, it is
preferable to change the ordinate to 1/𝒟ij. Thus, in Figure 14.9d, the plotted quantities pass through
zero only when t0

+ passes through zero in Figure 14.8.
The inescapable physical implication of negative transference numbers is that LiTFSI does not

dissociate only into Li+ and TFSI− ions that migrate independently under the influence of the applied
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electric field. When t0
+ is negative, it implies that when a field is applied to an electrolyte with uniform

composition, both the Li+ and TFSI− are driven to the positive electrode. This, in turn, may imply
the presence of a multitude of charged clusters in the electrolyte. If, for example, there are three
species in solution, Li+, TFSI−, and [Li(TFSI)2]−, then a negative transference number would arise
if the dominant mobile species are TFSI− and [Li(TFSI)2]− (the Li+ ions are not as mobile due to
specific interactions between the ions and ether oxygens in the PEO). The Stefan–Maxwell diffusion
coefficient 𝒟ij quantifies the frictional interactions between all manifestations of species i and j in the
electrolyte, including free ions and clusters. A powerful attribute of the Stefan–Maxwell formalism is
that it averages over the interactions in the entire solution, regardless of the nature of the associations
that underlie the averaged behavior. A limitation of the Stefan–Maxwell formalism is that it does not
provide direct information on the nature of the associations that underlie the measured averages. For
example, the negative transference numbers in these electrolytes may arise due to the presence of
[Li(TFSI)2]− or [Li2(TFSI)3]− or some other negatively charged cluster. Such information must be
provided by other independent experiments (e.g., spectroscopic experiments like Raman or nuclear
magnetic resonance (NMR)). (Compare Section 4.7.)

Measurement of 𝜅, D, t0
+, and the thermodynamic factor of electrolytes enables predictions of

the kind shown in Figures 14.10 through 14.12 (taken from Ref. [12]). Consider the passage of a
steady current density iss through a PEO/LiTFSI electrolyte of a given average molality (mav) and
thickness L, placed between two lithium electrodes. This scenario is discussed in Section 12.6. The
salt concentration profile, m(x), in the electrolyte can be calculated using equation 12.40 since D(m),
t0
−(m), and c0(m) are known. Similarly, the potential profile, Φ(x), in the electrolyte can be calculated

using equation 12.44 since Ne(m) and 𝜅(m) are known. It is important to note that this potential is
not the electrostatic potential. It is the potential of an electrode at open-circuit relative to a similar
electrode at a fixed point in the electrolyte, as discussed in Sections 3.4 (see Figure 3.7) and 12.4. The
same reaction, Li(s) ⇌ Li+ + e−, occurs on both electrodes. Results for salt concentration and potential
profiles obtained for selected mav values as a function of increasing iss are shown in Figures 14.10 and
14.11. At low current densities, the variation of salt concentration is small, and the transport properties
are nearly constant. It is therefore not surprising that the concentration and potential profiles are linear
at issL = 0.001 mA/cm. In this case, the results are similar to the simple model described in Section
11.8. Deviations from linearity can be seen at the intermediate current density (issL = 0.01 mA/cm).
At high current density (issL = 0.04 mA/cm), the profiles are highly nonlinear. The steep molality and
potential gradients seen in Figures 14.10c and 14.11c occur in the range m = 3 to 4 mol/kg, where t0

+
is negative and 𝒟0− exhibits singularities.

The potential difference, Φss, required to maintain a steady dc current iss across an electrolyte of
thickness L can readily be measured for PEO/LiTFSI electrolytes using a potentiostat. Ordinarily Φss/L
is taken to be the potential gradient. Figure 14.11 shows that this is true only in the small-current limit
(issL = 0.001 mA/cm). At higher current densities, the potential gradient in the electrolyte deviates
significantly from Φss/L, as seen in Figure 14.11b and c. The dependence of the driving force for current,
Φss/L, in 500-μm thick PEO/LiTFSI electrolytes as a function of the average electrolyte molality mav is
shown in Figure 14.12 (molality is dependent on position under an electric field). The dashed curve in
Figure 14.12 compares experimental data and theoretical predictions (e.g., Figure 14.11). It is evident
that the nonmonotonic dependence of Φss/L on salt concentration seen in experiments is approximately
consistent with theoretical predictions. The agreement should be better if the curves in Figure 14.8
more accurately represented the actual data.

Many practical applications use composite electrolytes. In lithium-ion and lead-acid batteries,
the electrolyte is contained within a porous nonconducting film that separates the two electrodes.
The separator/electrolyte system is one example of a composite electrolyte. Here conduction occurs
exclusively through one of the phases of the composite. Hydrated Nafion, the electrolyte used in the
hydrogen fuel cell, is also a composite electrolyte. Here the proton transport occurs exclusively in
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Figure 14.10 Concentration profiles in PEO/LiTFSI electrolytes predicted using characterization data shown in
Figure 14.8. Curves depend on the product of steady-state current density (iss) and electrode separation (L), given
at the top of parts a–c. Same scale applies to all figures.

the hydrated channels that form by self-assembly in a tetrafluoroethylene matrix. The SEO/LiTFSI
electrolyte shown in Figure 14.7 is a similar composite wherein conduction occurs exclusively through
the PEO-rich lamellae. If the composite has only one conductive phase, then it can be completely
characterized by the same parameters discussed in Section 14.2. Treatment of transport through
composites dates back to Maxwell[13] and Brugeman[14] as discussed in Chapter 22.

A schematic of a composite block copolymer electrolyte is shown in Figure 14.13a. In this case, a
useful starting point is a model by Sax and Ottino.[15] In this model, the conductivity of the composite,
𝜅, is given by

𝜅(m) =
𝜀𝜅0(m)

𝜏 , (14.9)

where 𝜀 is the volume fraction of the conducting phase, 𝜏 is a tortuosity factor, and 𝜅0 is the
conductivity of the pure conducting phase. There are many ways to define salt concentration in a
composite electrolyte. In this treatment, m for a composite electrolyte refers to the salt concentration
in the conducting phase (not the “superficial” salt concentration based on the volume of the entire
electrolyte). For the example in Figure 14.13a, the pure conducting phase is PEO/LiTFSI with a
salt molality m. The model assumes that the presence of the nonconducting phase does not alter the
properties of the electrolyte. Effects such as changes in salt distribution at the boundary between the
two phases are ignored. Both 𝜀 and 𝜏 are assumed to be independent of salt concentration.

The importance of both 𝜀 and 𝜏 can be appreciated by considering transport through a single
coherently ordered grain, shown in Figure 14.13b. The conductivity through the single grain is equal
to 𝜀𝜅0 in the direction parallel to the lamellae, since one must account for the presence of the insulating
domains. The conductivity perpendicular to the lamella is zero. In order to model the composite
pictured in Figure 14.13a, however, one must account for the tortuous paths that the ions must take
to travel from one electrode to the other, which we do by introducing the tortuosity 𝜏. For randomly
oriented lamellae,[9, 16] 𝜏 = 3/2. For many other morphologies, 𝜏 is a function of 𝜀.[13, 14] This is
discussed in Chapter 22.
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Figure 14.12 Characteristics of lithium-polymer-lithium cells with L = 500 μm (thickness of the polymer
electrolyte) for a constant steady-state current, iss = 0.02 mA/cm2. The cell potential, ϕss, normalized by L, is
plotted as a function of average molality, mav. The circles represent experimental measurements. The solid curve
represents theoretical predictions based on the characterization data in Figure 14.8 and equations 12.40 and 12.44.

(a)

(b)

Figure 14.13 (a) Schematic of a composite electrolyte with a lamellar morphology with many randomly oriented
grains sandwiched between two electrodes. (b) Schematic of a grain showing the salt localized in one of the
lamellae.

Consider a relaxation experiment in the grain in Figure 14.13b, wherein a salt concentration gradient
is created by applying a field and is allowed to relax by turning the field off. The diffusion coefficient,
D, characterizing this relaxation process is equal to that obtained in the pure conducting phase. In other
words, D is independent of 𝜀. This is consistent with experiments on block copolymer electrolytes.[17]

However, the salt diffusion through a sample comprising multiple grains (Figure 14.13a) must depend
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on 𝜏. The relationship of the salt diffusion coefficient D in the composite to the salt diffusion coefficient
D0 of the conducting phase, is thus given by:[16]

D(m) =
D0(m)

𝜏 . (14.10)

This constitutes the definition of the effective diffusion coefficient D in a composite.
The transference number is a measure of the mobility of one ion relative to the other. Since the

effect of 𝜀 and 𝜏 on the motion of both ions is similar, t0
+ in the composite electrolyte is identical to that

in the pure electrolyte, t0
+,0.

t0
+(m) = t0

+,0(m). (14.11)

The open-circuit potential U of a cell containing a composite electrolyte is affected only by the
concentration of ions in the conducting domains next to the electrodes (see Chapter 6). Thus, U of
a composite electrolyte with molality m is identical to that in the pure electrolyte with the same
molality. Therefore, if one were to characterize a composite electrolyte by measuring 𝜅, D, t+,id, and
U as functions of m, then the transference number of the composite must be calculated using a slight
modification of equation 14.7,

t0
+ = 1 + ( 1

t+,id
− 1)

z+𝜈+FDc𝜀
𝜅 (d ln m

dU
) , (14.12)

while 14.8 applies without change. The parameter 𝜀 enters equation 14.12 because of the dependence
of 𝜅 and D on 𝜀. Note that the parameters in equation 14.12 correspond to the composite. Measurement
of 𝜅, D, t0

+, and the thermodynamic factor of composite electrolytes enables predictions of the kind
shown in Figures 14.10 to 14.12.

The treatment above is for a composite containing a concentrated electrolyte. For dilute electrolytes,
equation 11.49 can be used to relate conductivity to ion diffusivities. If a dilute electrolyte were
contained within a composite, then the analogous expression would be:

𝜅 =
F2z+c+𝜀(z+D+ − z−D−)

RT
, (14.13)

where 𝜅, D+, and D− refer to the conductivity and ion diffusion coefficients in the composite.

14.4 TYPES OF TRANSPORT PROPERTIES AND THEIR NUMBER

Complete characterization of a multicomponent solution with respect to its transport properties is
an ambitious project because there are so many of them and they vary in a complex fashion with
composition and temperature. Let us make sure that we can, at least, count them.

We characterize a solution by its number nC of thermodynamically independent components. This
means that the detailed speciation is not considered. In transport phenomena we follow the same
guidelines, although some speciation may be involved if we consider homogeneous chemical reactions.

Even though we do not consider detailed speciation, we generally regard an electrolytic solution to
have one more species than the number of thermodynamically independent components. Electroneu-
trality constrains the latter. For example, a binary electrolytic solution contains anions, cations, and
solvent.

The number of transport properties is determined by the number of species. Without considering
thermal effects, we have 1/2n(n − 1) transport properties of the type 𝒟ij for mass transfer, where
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TABLE 14.1 Transport properties and their numbera

nC n Example M MD ME T TS TE Total

1 1 Diamond 0 0 0 1 0 0 1
1 2 Cu wire 1 0 1 1 0 1 3
2 2 Sucrose, H2O 1 1 0 1 1 0 3
2 3 H2SO4, H2O 3 1 2 1 1 1 6
3 3 Ethanol, sucrose, H2O 3 3 0 1 2 0 6
3 4 CuSO4, H2SO4, H2O 6 3 3 1 2 1 10

aM = 1/2n(n − 1), mass transport; MD = 1/2nC(nC − 1), chemical diffusion; ME = nC if n > nC, electrolytic transport; T = 1,
thermal conductivity; TS = nC − 1, Soret-type coefficient; TE = 1 if n > nC, thermoelectric coefficient. Source: Newman.[18]

n is the number of species. For practical purposes we can split these into 1/2nC(nC − 1) transport
properties that characterize interdiffusion of chemical components even in the absence of an electric
current. For an electrolytic solution there are an additional nC transport properties that characterize
electrolytic conduction; these can be thought of as one electrical conductivity 𝜅 and nC − 1 independent
transference numbers t0

i relative to a suitable reference velocity. Since n = nC + 1, the total number of
mass-transport properties is 1/2nC(nC − 1) + nC = 1/2n(n − 1).

The addition of thermal effects adds n thermal transport properties. There is one thermal conductivity
k and n − 1 independent thermal diffusion coefficients DT

i . Of the latter, nC − 1 are of the Soret type
and describe steady-state concentration variations. For an electrolytic solution there is also one of the
thermoelectric type, and this can be measured only by difference with another electrically conducting
material.

Table 14.1 gives examples of systems with various numbers of components and species as well as the
number and classification of transport properties. These represent materials of increasing complexity,
adding one more species with each line and alternating between electrically neutral materials and
electrically conducting materials. For the second entry, in addition to a copper wire, one should
mention a molten salt like NaCl or a pure ionic liquid. In these three cases, there is no interdiffusion.
The cation transference number of molten NaCl is either unity or zero, depending on whether the
anion or the cation velocity is used as the reference. It carries no significance. Some controversy
was involved here in the past because people claimed to be able to measure the transference number
of a single molten salt, when they were really measuring a transference number relative to another
medium, such as a fritted disk. For the fourth entry in Table 14.1, a sulfuric acid solution, another
example is a molten mixture of two salts or ionic liquids with a common ion, such as a mixture of NaCl
and KCl.[19]

14.5 INTEGRAL DIFFUSION COEFFICIENTS FOR MASS TRANSFER

In practice, we are often interested in mass transfer to an electrode from a multicomponent solution,
such as deposition of copper from a solution of copper sulfate and sulfuric acid. However, all the
transport properties of such a solution may not be known. What solution property can we measure that
will allow us to predict accurately the behavior of the system?

Usually the process will obey approximately the equation of convective diffusion 11.31 with
an effective diffusion coefficient that we desire to predict. This will be called an integral diffusion
coefficient because it represents an average over the behavior and properties encountered in the diffusion
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layer near an electrode. The thesis is suggested that this diffusion coefficient should be measured in a
system with similar hydrodynamic conditions. For example, an integral diffusion coefficient measured
with a rotating disk electrode (see Section 17.2) should be applicable to mass transfer in an annulus
or pipe (see Section 17.4). This integral diffusion coefficient is different from the integral diffusion
coefficient measured with a diaphragm cell.[20] Similarly, the integral diffusion coefficient measured
in transient mass transfer to an electrode at the end of a stagnant diffusion cell should be applicable to a
growing mercury drop (see Section 17.9). These latter diffusion coefficients are called polarographic
diffusion coefficients.

The validity of the use of an integral diffusion coefficient is influenced by the following effects:
the value of the Schmidt number 𝜈/Di, the nonzero interfacial velocity, the effect of ionic migration,
and the variations of transport properties with composition. Each effect has been treated individually
by several workers, mostly in nonelectrolytic systems.

The treatment of mass transfer is simplified at the high Schmidt numbers that prevail in electrolytic
solutions (see Sections 17.5 and 17.6). The correction for the fact that the Schmidt number is not
infinite can differ among several hydrodynamic situations; the correction is usually no more than a few
percent. The high value of the Schmidt number allows justification for assuming that the other effects
are properly accounted for.

The effect of nonzero interfacial velocity due to the high mass-transfer rate can also be expressed
as a correction factor to the mass-transfer coefficient in the absence of an interfacial velocity. This
correction factor depends on the mass-flux ratio and, in the limit of large Schmidt numbers, has been
shown to be the same for arbitrary, two-dimensional boundary layers[21] and for the rotating disk.[20]

Similarly, the effect of ionic migration in the diffusion layer can also be expressed as a correction
factor for the mass-transfer rate in the absence of migration[22] (see also Chapter 19). For large Schmidt
numbers, one correction factor has been shown to apply to arbitrary two-dimensional and axisymmetric
diffusion layers,[23] including the rotating disk, and another to the transient processes of a growing
mercury drop and an electrode at the end of a stagnant diffusion cell.[22]

Acrivos[24] has shown that in the limit of high Schmidt numbers one effective diffusion coefficient
should apply to mass transfer at the limiting rate from a given solution for arbitrary boundary layer
flows, even though the physical properties vary with composition in the diffusion layer.

These considerations lead us to conclude that one effective or integral diffusion coefficient should
describe mass transfer at the limiting current from a given solution for arbitrary two-dimensional and
axisymmetric diffusion layers in laminar forced convection. This integral diffusion coefficient will
depend upon the bulk composition of the solution. Somewhat different integral diffusion coefficients
may apply to free convection, turbulent flow, or the transient processes cited above. However, these
diffusion coefficients should be closer to each other than to the value obtained with a diaphragm cell,
which is a completely different situation from mass transfer to an electrode with the flow of current.

Two electrode reactions have proved to be particularly popular for experimental mass-transfer
studies. These are deposition of copper,

Cu2+ + 2e− → Cu, (14.14)

from solutions of copper sulfate and sulfuric acid and the reduction of ferricyanide ions,

Fe(CN)3−
6 + e− → Fe(CN)4−

6 , (14.15)

from solutions using NaOH, KOH, or KNO3 as a supporting electrolyte. Selman[25] has analyzed the
available literature on integral diffusion coefficients for these solutions.
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PROBLEM

14.1 The simplest ternary ionic solution is one containing a single electrolyte, one of whose ions
is present in two isotopic forms. An example would be a sodium chloride solution containing
stable sodium ions and radioactive sodium ions. We assume that these ions are identical except
that the radioactive ions are tagged. Let the solvent be denoted by 0, the cations by 1 and 2, and
the anion by 3. There are six transport properties for this system, 𝒟01, 𝒟02, 𝒟03, 𝒟12, 𝒟13, and
𝒟23. On the assumption that there is no isotope effect, five of these can be predicted from the
values of 𝒟0+, 𝒟0−, and 𝒟+− of the binary untagged solutions, while the last can be obtained
from the value of the self-diffusion coefficient D* describing the diffusion of tagged electrolyte
in a solution whose total electrolyte concentration is uniform. This gives a way of getting at the
concentration dependence of 𝒟12 related to interactions of ions of the same charge, something
that cannot be ascertained from binary solutions of a single salt. In the following, assume that

f 𝜈+
1 f 𝜈−

3 = f 𝜈+
2 f 𝜈−

3 = f 𝜈
+−.

(a) Show that 𝒟01, 𝒟02, 𝒟03, 𝒟12, and 𝒟13 are given by

𝒟13 = 𝒟23 = 𝒟+−, 𝒟01 = 𝒟02 = 𝒟0+, and 𝒟03 = 𝒟0−,

where 𝒟+−, 𝒟0+, and 𝒟0− are to be evaluated at the total electrolyte concentration,
c = (c1 + c2)/𝜈+.

(b) Show that 𝒟12 can be obtained from measured values of D* according to the relation

𝒟12 =
c+

cT ∕D∗ − c0∕𝒟0+ − c−∕𝒟+−
.

(c) Show that as the total electrolyte concentration approaches zero, D* approaches 𝒟0+.

NOTATION

c concentration of a single electrolyte, mol/cm3

c0 concentration of solvent, mol/cm3

cT total solution concentration, mol/cm3

D measured diffusion coefficient of electrolyte, cm2/s
Di diffusion coefficient of species i, cm2/s
𝒟 diffusion coefficient of electrolyte, based on a thermodynamic driving force, cm2/s
𝒟ij diffusion coefficient for interaction of species i and j, cm2/s
F Faraday’s constant, 96,487 C/mol
G function related to 𝒟+−, K3/2⋅(liter/mol)1/2

m molality of a single electrolyte, mol/kg
q see equation 14.6
R universal gas constant, 8.3143 J/mol⋅K
t0
i transference number of species i relative to the solvent velocity

T absolute temperature, K
ui mobility of species i, cm2⋅mol/J⋅s
zi charge number of species i
𝛾+− mean molal activity coefficient of an electrolyte
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𝜅 conductivity, S/cm
𝜆0

i equivalent ionic conductance of species i at infinite dilution, S⋅cm2/mol
𝜇 viscosity, mPa⋅s
𝜈 kinematic viscosity, cm2/s
𝜈+ number of cations into which a molecule of electrolyte dissociates
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CHAPTER 15

FLUID MECHANICS

Since diffusion and migration fluxes are expressed relative to an average velocity of the fluid,
mass-transfer calculations require a previous or a simultaneous determination of the velocity. In many
systems, the velocity distribution is governed by momentum considerations. The mechanical behavior
of fluids is briefly described in this chapter. For more details, one should consult the literature.[1, 2] The
velocity profiles for various specific systems will be taken as a basis for determining mass-transfer
rates in Part D.

15.1 MASS AND MOMENTUM BALANCES

The mass-average velocity is defined as

𝐯 = 1
𝜌
∑

i

ciMi𝐯i, (15.1)

where civi is the molar flux density of species i, Mi is the molar mass, and 𝜌 is the density of the
medium. The mass-average velocity is useful in fluid mechanics because 𝜌v is both the mass-flux
density and the momentum density in the fluid. The law of conservation of mass can be expressed in a
differential form as

𝜕𝜌
𝜕t

= −∇ ⋅ (𝜌𝐯). (15.2)

This equation can be obtained from the species material balance, equation 11.3, by multiplying that
equation by the molar mass Mi and summing over species. When the density is constant in space and
time, equation 15.2 reduces to

∇ ⋅ 𝐯 = 0. (15.3)

This is frequently an adequate approximation for dilute liquid solutions.

Electrochemical Systems, Fourth Edition. John Newman and Nitash P. Balsara.
© 2021 John Wiley & Sons, Inc. Published 2021 by John Wiley & Sons, Inc.
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The law of conservation of momentum can be expressed in a differential form as

𝜕𝜌𝐯
𝜕t

+ ∇ ⋅ (𝜌𝐯𝐯) = 𝜌 (𝜕𝐯
𝜕t
+ 𝐯 ⋅ ∇𝐯) = −∇p − ∇ ⋅ 𝛕 + 𝜌𝐠, (15.4)

where p is the thermodynamic pressure, 𝝉 is the stress tensor, and g is the acceleration due to gravity.
This equation is an expression of Newton’s second law of motion; the rate of change of momentum
of a fluid element is equal to the force applied. Here, the forces are the pressure gradient, the stress
in the fluid, and the force of gravity. The divergence of the stress appears because one needs the net
force—the difference between the forces on opposite sides of the fluid element (compare Figure 11.1).
The stress tensor will be considered in the following section.

Other forces could be included in the momentum balance. If the fluid is not electrically neutral, we
should add to the right side of equation 15.4 the electrical force

𝜌e𝐄 = 𝜖(∇ ⋅ 𝐄)𝐄 = 𝜖(∇2Φ)∇Φ. (15.5)

This term is usually omitted because electrolytic solutions are electrically neutral to a very good
approximation. However, this conclusion was arrived at on the basis of the large magnitude of
electrical forces, and it is not immediately obvious that the electrical force can be omitted from the
momentum balance. This question will be reconsidered in Section 15.5. In some electrochemical
systems, the magnetic force

𝐢 × 𝐁

should also be included on the right side of equation 15.4. Here, i is the current density within the
solution, and B is the magnetic induction (Wb/m2). The magnetic field may itself be due to the flow of
current in the system.

For a fluid of constant density, it may be advantageous to define the dynamic pressure 𝒫 by

∇𝒫 = ∇p − 𝜌𝐠. (15.6)

Essentially, this equation subtracts the hydrostatic pressure from the thermodynamic pressure to yield
the dynamic pressure, changes in which are directly related to the fluid motion.

15.2 STRESS IN A NEWTONIAN FLUID

The stress 𝝉 is related to velocity gradients within the fluid. For Newtonian fluids, which include most
electrolytic solutions, the appropriate expression is

𝛕 = −𝜇[∇𝐯 + (∇𝐯)∗] + 2
3
𝜇𝐈∇ ⋅ 𝐯, (15.7)

where I is the unit tensor and 𝜇 is the viscosity, a transport property that depends on temperature,
pressure, and composition. A basic physical law requires the stress to be symmetric; this is assured by
the presence in equation 15.7 of the transpose (∇v)* of the velocity gradient.

To be specific, a diagonal element of the stress looks like

𝜏xx = −2𝜇
𝜕𝑣x

𝜕x
+ 2

3
𝜇∇ ⋅ 𝐯, (15.8)
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while an off-diagonal element looks like

𝜏xy = 𝜏yx = −𝜇 (
𝜕𝑣x

𝜕y
+
𝜕𝑣y

𝜕x
) . (15.9)

For a fluid of constant density and viscosity, substitution of equation 15.7 into equation 15.4 yields

𝜕𝐯
𝜕t
+ 𝐯 ⋅ ∇𝐯 = − 1

𝜌∇p + 𝜈∇2𝐯 + 𝐠, (15.10)

where 𝜈 = 𝜇/𝜌 is the kinematic viscosity of the fluid. This equation, known as the Navier–Stokes
equation, is written out in rectangular coordinates in Appendix B and in cylindrical coordinates in
Section 15.4.

15.3 BOUNDARY CONDITIONS

On solid surfaces the velocity v is zero, or, more generally, the velocity is continuous at an interface.
An exception to this was encountered in electrokinetic phenomena (see Section 9.1), where the
discontinuity in velocity was related to the tangential electric field. However, this was after taking
account of the behavior of the diffuse double layer, and in the details of the analysis the velocity was
continuous. Electrokinetic phenomena do not need to be considered in all processes.

For a fluid–fluid interface, the velocity at the surface may not be known in advance, and then
the relationship between the shear stress in the two phases must be considered. If the interface is
of negligible mass (see remark below equation 7.6), the forces at the interface must balance. In the
simplest case, this means that the tangential (shear) stress is continuous.

Let the two phases be denoted by superscripts 𝛼 and 𝛽, and let the force per unit area exerted by
these phases on the interface be f𝛼 and f𝛽 , respectively. These forces f are the product of the stress 𝝉
with the unit normal vector of the interface:

𝐟 𝛼 = 𝐧 ⋅ 𝛕𝛼 + 𝐧p𝛼 (15.11)

and
𝐟 𝛽 = −𝐧 ⋅ 𝛕𝛽 − 𝐧p𝛽, (15.12)

where n points into phase 𝛽. (The stress 𝝉 is expressed in various coordinate systems in Ref. [2].)
Figure 15.1 shows a surface element lying in the plane of the paper. A force balance in the x

direction yields
(f 𝛼x + f 𝛽x )Δx Δz + Δz(𝜎|x+Δx − 𝜎|x) = 0, (15.13)

where 𝜎 is the interfacial tension (mN/m). If we divide by Δx Δz and let Δx approach zero, we obtain

f 𝛼x + f 𝛽x +
𝜕𝜎
𝜕x

= 0. (15.14)

A similar equation applies in the z direction. Together, we have

𝐟 𝛼s + 𝐟
𝛽
s + ∇s𝜎 = 0, (15.15)

where 𝐟 𝛼s and 𝐟 𝛽s denote the components of f𝛼 and f𝛽 lying in the surface and ∇s denotes the surface
gradient.
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fβ

fαz

x

σ∣x

σ∣z

σ∣z +Δz

σ∣x +Δx

Figure 15.1 Tangential forces on an interfacial element lying in the x, z plane. Source: Newman.[3] Copyright
1967. Reprinted with permission from John Wiley & Sons, Inc.

The tangential parts of the forces f𝛼 and f𝛽 are viscous in nature, and, if the interfacial tension
is independent of position in the surface, equation 15.15 says that the tangential viscous stress is
continuous.

For the normal component of the force balance we have

f 𝛼n + f 𝛽n = 𝜎 ( 1
r1
+ 1

r2
) , (15.16)

where r1 and r2 are the principal radii of curvature of the surface. The normal components f 𝛼n and f 𝛽n
include the thermodynamic pressure p as well as the normal viscous stress. The appropriate signs on
the radii of curvature in equation 15.16 would be such that the pressure inside a drop or bubble is
greater than the pressure outside.

These elements of surface dynamics enter into the treatment of electrocapillary phenomena (see
Chapter 10).

Only the gradient of the pressure appears in equation 15.4 or 15.10. Consequently, it is sometimes
possible to solve a problem in terms of this gradient without ever requiring the pressure itself. Then it
is sufficient to specify the pressure at only one point.

15.4 FLUID FLOW TO A ROTATING DISK

The rotating-disk electrode is very popular in electrochemical studies, partly because the hydrodynamic
conditions are well known and partly because the experimental setup is small and simple. The rotating
disk is also one of the few systems for which a nontrivial solution of the equations of fluid mechanics
is possible.

We consider the steady flow of an incompressible fluid caused by the rotation of a large disk about
an axis through its center. For this purpose we use cylindrical coordinates r, 𝜃, and z, where z is the
perpendicular distance from the disk and r is the radial distance from the axis of rotation. The velocity
on the surface of the disk is

𝑣r = 0, 𝑣z = 0, 𝑣𝜃 = rΩ. (15.17)

The last condition expresses the fact that the rotating disk drags the adjacent fluid with it at an angular
velocity Ω (rad/s).

Because of the rotation, there is a centrifugal effect that tends to throw the fluid out in a radial
direction. This will result in a radial component of the velocity which is zero at the surface, has a
maximum value near the surface, and then goes to zero again at greater distances from the disk. In
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order to replace the liquid flowing out in the radial direction, it is necessary to have a z component of
the velocity, which brings fluid toward the disk from far away. This gives us a qualitative picture of
the flow field in which none of the velocity components is zero.

In cylindrical coordinates, the equation of continuity 15.3 is[2]

1
r
𝜕
𝜕r
(r𝑣r) +

1
r
𝜕𝑣𝜃
𝜕𝜃

+
𝜕𝑣z

𝜕z
= 0, (15.18)

and the components of the equation of motion 15.10 are[2]

(r component)

𝜕𝑣r

𝜕t
+ 𝑣r

𝜕𝑣r

𝜕r
+
𝑣𝜃
r
𝜕𝑣r

𝜕𝜃
−
𝑣2
𝜃
r
+ 𝑣z

𝜕𝑣r

𝜕z

= − 1
𝜌
𝜕𝒫
𝜕r

+ 𝜈 [ 𝜕𝜕r
(1

r
𝜕
𝜕r
(r𝑣r)) +

1
r2

𝜕2𝑣r

𝜕𝜃2
− 2

r2

𝜕𝑣𝜃
𝜕𝜃

+
𝜕2𝑣r

𝜕z2
] , (15.19)

(𝜃 component)

𝜕𝑣𝜃
𝜕t

+ 𝑣r
𝜕𝑣𝜃
𝜕r

+
𝑣𝜃
r
𝜕𝑣𝜃
𝜕𝜃

+
𝑣r𝑣𝜃

r
+ 𝑣z

𝜕𝑣𝜃
𝜕z

= − 1
𝜌
𝜕𝒫
𝜕𝜃

+ 𝜈 [ 𝜕𝜕r
(1

r
𝜕
𝜕r
(r𝑣𝜃)) +

1
r2

𝜕2𝑣𝜃
𝜕𝜃2

+ 2
r2

𝜕𝑣r

𝜕𝜃
+
𝜕2𝑣𝜃
𝜕z2

] , (15.20)

(z component)

𝜕𝑣z

𝜕t
+ 𝑣r

𝜕𝑣z

𝜕r
+
𝑣𝜃
r
𝜕𝑣z

𝜕𝜃
+ 𝑣z

𝜕𝑣z

𝜕z

= − 1
𝜌
𝜕𝒫
𝜕z

+ 𝜈 [1
r
𝜕
𝜕r
(r
𝜕𝑣z

𝜕r
) + 1

r2

𝜕2𝑣z

𝜕𝜃2
+
𝜕2𝑣z

𝜕z2
] , (15.21)

where we have used the dynamic pressure 𝒫 introduced in equation 15.6. In our problem with axial
symmetry and steady flow, the derivatives with respect to t and 𝜃 are zero in these equations.

In 1921, von Kármán[4] suggested that these partial differential equations could be reduced to
ordinary differential equations by seeking a solution of the form

𝑣𝜃 = rg(z), 𝑣r = rf (z), 𝑣z = h(z), 𝒫 = 𝒫(z), (15.22)

which is a separation of variables. If these expressions are substituted into equations 15.18 to 15.21,
one obtains

2f + h′ = 0,

f 2 − g2 + hf ′ = 𝜈f ′′,

2fg + hg′ = 𝜈g′′,

𝜌hh′ + 𝒫′ = 𝜇h′′, (15.23)

where the primes denote differentiation with respect to z.
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The boundary conditions are

h = f = 0, g = Ω at z = 0.

f = g = 0 at z = ∞. (15.24)

In addition, the value of 𝒫 needs to be specified at one point.
The von Kármán transformation is successful in reducing the problem to ordinary differential

equations. It should be noted, however, that this solution does not take into account the fact that the
radius of the disk might be finite. In practice, these edge effects can frequently be neglected, and the
resulting solution is quite useful.[5]

The remaining parameters, v, 𝜌, Ω, can be eliminated by introducing a dimensionless distance,
dimensionless velocities, and a dimensionless pressure as follows:

𝜁 = z

√
Ω
𝜈 , 𝒫 = 𝜇ΩP, 𝑣𝜃 = rΩG,

𝑣r = rΩF, 𝑣z =
√
𝜈ΩH. (15.25)

The differential equations 15.23 become

2F + H′ = 0,

F2 − G2 + HF′ = F′′,

2FG + HG′ = G′′,

HH′ + P′ = H′′, (15.26)

where the primes now denote differentiation with respect to 𝜁. The boundary conditions are

H = F = 0, G = 1 at 𝜁 = 0.

F = G = 0 at 𝜁 = ∞. (15.27)

Since these equations are nonlinear, it seems necessary to obtain the solution numerically. Cochran[6]

originally solved these equations by forming series expansions for small values of 𝜁 and for large
values of 𝜁 and then adjusting the unknown coefficients in the series until agreement between the
two sets of series was obtained at an intermediate value of 𝜁. However, it is fairly simple to solve
coupled, nonlinear, ordinary differential equations by direct numerical techniques (see Appendix C).
The solution to equations 15.26 subject to conditions 15.27 is shown in Figure 15.2. After the velocity
profiles have been determined, the pressure can be obtained by integrating the last of equations 15.26:

P = P(0) + H′ − 1
2

H2. (15.28)

The normal component 𝑣z of the velocity will be important for the calculation of rates of mass
transfer to the rotating disk (see Section 17.2). For small distances from the disk, the dimensionless
velocity can be expressed as a power series:

H = −a𝜁2 + 1
3
𝜁3 + b

6
𝜁4 + · · · , (15.29)
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Figure 15.2 Velocity profiles for a rotating disk.

with the coefficients[6, 7]

a = 0.51023 and b = −0.616. (15.30)

On the other hand, for large distances from the disk, the dimensionless velocity can be expressed as

H = −𝛼 + 2A
𝛼 e−𝛼𝜁 + · · · , (15.31)

where
𝛼 = 0.88447 and A = 0.934. (15.32)

The fact that the normal component of the velocity 𝑣z depends only on the normal distance z and
not on the radial distance r is another reason for the popularity of the rotating-disk electrode among
electrochemists.

The flow in the boundary layer remains laminar for a Reynolds number, Re = r2Ω/𝜈, up to about
2× 105. For larger radial distances, the flow becomes turbulent.

15.5 MAGNITUDE OF ELECTRICAL FORCES

Let us now include the electrical force, equation 15.5, in the momentum balance, equation 15.4. For a
rotating disk we might at first imagine that E lies in the z direction because of the uniform accessibility
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of the surface (see Section 17.2). Then

𝜖(∇ ⋅ 𝐄)Ez =
1
2
𝜖

dE2
z

dz
. (15.33)

This enters only into the z component of the equation of motion; that is, the last of equations 15.26
becomes

dP
d𝜁

= d2H
d𝜁2

− H
dH
d𝜁

+ 1
2
𝜖
𝜇Ω

dE2
z

d𝜁

= d
d𝜁

(dH
d𝜁

− 1
2

H2 + 1
2
𝜖
𝜇Ω

E2
z) . (15.34)

For Ω = 300 rpm, 𝜖 = 78.3𝜖0, and 𝜇 = 0.8903 mPa⋅s,
√
𝜇Ω∕𝜖 = 63.5 V∕cm. This gives us a basis for

evaluating the relative importance of electrical forces since, for example, H2 is of order unity. With
i = 0.1 A/cm2 and 𝜅 = 0.01 S/cm, we can expect electric fields of the order of i/𝜅 = 10 V/cm. If the
variation in the field were small compared to

√
𝜇Ω∕𝜖, we could neglect the electrical force altogether.

From equation 11.5, we can express the electric field as

𝐄 = 𝐢
𝜅 +

F
𝜅
∑

i

ziDi∇ci, (15.35)

and hence the electric charge density is

𝜌e

𝜖 = −(𝐢 + F
∑

i

ziDi∇ci) ⋅
∇𝜅
𝜅2

+ F
𝜅
∑

i

ziDi∇2ci. (15.36)

From these equations, we can make several observations. The electric charge density is different
from zero only in the thin diffusion layers near electrodes, since it is only in these regions that the
concentrations and conductivity vary. The charge density here is still small (see Section 11.8) since 𝜖
is small, but outside these regions it is identically zero. The electric effect will also be largest with a
binary electrolyte since, with a supporting electrolyte, 𝜅 will be large compared to the variations in 𝜅.

Furthermore, equation 15.35 shows that in the diffusion layers, where 𝜌e is different from zero, E
lies mainly in the direction perpendicular to the electrode. This means that the electric force enters
most dominantly into the normal component of the equation of motion, where it affects the pressure
distribution without altering the velocity distribution. This effect is relatively unimportant since it is
the velocity profiles that determine the mass-transfer rates. This we can see clearly in the case of the
rotating disk where, as formulated above, the entire electrical effect can be absorbed into the variation
of the dynamic pressure 𝒫, and the velocity profiles are not affected at all.

Any part of 𝜌eE that can be expressed as the gradient of some quantity can, in general, be absorbed
into 𝒫. This is the part of 𝜌eE whose curl is zero.

∇ × 𝜌e𝐄 = 𝜌e∇ × 𝐄 + (∇𝜌e) × 𝐄 = (∇𝜌e) × 𝐄. (15.37)

The curl of E is zero since E is minus the gradient of the potential (see entry 5b of Table B.1). In this
manner, we arrive at the conclusion that it is the quantity in equation 15.37 that affects the velocity
profiles. As observed above, 𝜌e is nonzero only in the diffusion layers, and here we can expect that
E and ∇𝜌e are nearly parallel to each other so that their cross product is small. This reinforces the
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conclusion that the electrical force will have most of its effect on the pressure and less effect on the
velocity.

Furthermore, the diffusion layer is much thinner than the hydrodynamic boundary layer at high
Schmidt numbers. Here the viscous forces are important, and the electric force might be expected to
have less effect on the velocity profile if exerted here than if exerted farther from the wall. On the
other hand, the velocities are much smaller here and are important in determining the mass-transfer
rate. Consequently, the effect could still be important.

The way to ascertain the effect of the electrical force on the velocity profiles, while excluding the
effect on the dynamic pressure, is to take the curl of the equation of motion 15.10. This eliminates
the pressure. We assume that the von Kármán transformation 15.25 is still valid and examine the
magnitude of the neglected electrical force. Taking the curl of the equation of motion now yields

2FG + H
𝜕G
𝜕𝜁

= 𝜕2G
𝜕𝜁2

, (15.38)

d
d𝜁

(F2 − G2 + H
dF
d𝜁

− d2F
d𝜁2

) rΩ2 =
Er

𝜌
𝜕𝜌e

𝜕𝜁
−

Ez

𝜌

√
𝜈
Ω
𝜕𝜌e

𝜕r
, (15.39)

and the continuity equation 15.3 becomes

2F + dH
d𝜁

= 0. (15.40)

The term on the right in equation 15.39 comes from the cross product of ∇𝜌e and E (see
equation 15.37). As observed before, Er should be much less than Ez and 𝜕𝜌e/𝜕r should be much less
than 𝜕𝜌e/𝜕z. This makes it difficult to assess the magnitude of these terms. In order to continue the
analysis, let us take 𝜌e to be independent of r and take Er to be independent of 𝜁 in the diffusion layer
and given by

Er = A
ir

𝜅∞r0
, (15.41)

where A is approximately equal to 0.73. This is an approximation to the radial dependence of the
tangential electric field just outside the diffusion layer when a uniform current density i prevails over
the surface of a disk electrode embedded in an insulating plane (see Figure 18.8). The importance of
the tangential electric field here finds analogy in the electrokinetic phenomena treated in Chapter 9.

Equation 15.39 can now be integrated to read

F2 − G2 + H
dF
d𝜁

= d2F
d𝜁2

+
Ai𝜌e

𝜌𝜅∞r0Ω2
, (15.42)

the integration constant being zero since F, G, and 𝜌e approach zero as 𝜁 approaches infinity.
For a binary electrolyte, equation 15.36 becomes

𝜌e

𝜖 = − 𝐢 ⋅ ∇c
z+𝜈+Λc2

+ RT
F
(

t+
z+
+

t−
z−
)∇2 ln c, (15.43)

where Λ is the equivalent conductance (see equation 11.48) and is taken to be constant. We can take
the solution of the equation of convective diffusion 11.21 to be

c = c0 +
c∞ − c0

Γ(4∕3)
∫
𝜉

0
e−x3

dx, (15.44)
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where

𝜉 = ( a𝜈
3D

)
1∕3

𝜁 (15.45)

and a is given by equation 15.30. This is the appropriate form of equation 17.10 for high Schmidt
numbers 𝜈/D, c0 and c∞ being the concentrations at the electrode surface and in the bulk solution,
respectively. We shall restrict ourselves to a metal deposition reaction where the current density is
given by equation 11.27.

With these assumptions, the last term in equation 15.42 becomes

Ai𝜌e

𝜌𝜅∞r0Ω2
= Ai𝜖

r0𝜅∞𝜇Ω
RT

−z+z−F
( a𝜈

3D
)

2∕3

[
c∞ − c0

cΓ(4∕3)
]

2

e−𝜉
3

× {z+ − (z+t− + z−t+) [1 + e−𝜉
3 + 3𝜉2 cΓ(4∕3)

c∞ − c0
]} . (15.46)

The coefficient in this expression can be estimated to be

Ai𝜖
r0𝜅∞𝜇Ω

RT
F
( a𝜈

3D
)

2∕3

= 0.0057, (15.47)

where we have used, in addition to the values below equation 15.34, r0 = 0.25 cm for the electrode
radius and Sc = 𝜈/D = 1000 for the Schmidt number.

The factor (a𝜈/3D)2/3 in equation 15.46 or 15.47 accounts for the fact that the electrical force is
applied only within the diffusion layer, which is much thinner than the hydrodynamic boundary layer.
The coefficient in equation 15.47 suggests that the neglected electrical force is only 0.6 percent as
large as the terms that were retained in equation 15.42 when it was solved in Section 15.4 (the retained
term G2 being equal to 1 at 𝜁 = 0). The factor involving (c∞ − c0)/c in equation 15.46 indicates that
the electrical effect becomes relatively more important near the limiting current since c then becomes
zero at the electrode. (This remark does not, of course, apply when a supporting electrolyte is present.)

15.6 TURBULENT FLOW

Turbulent flow is characterized by rapid and apparently random fluctuations of velocity, pressure,
and concentration about their average values. One usually is interested in these fluctuations only in a
statistical sense. Consequently, a first step in the study of turbulent flow usually involves an average
of the equations presumed to describe the flow. This yields differential equations for certain average
quantities, but with the involvement of higher order averages. This procedure thus does not lead to
any straightforward means of calculating any average quantities. The problem has a strong analogue
in the kinetic theory of gases, where one is not interested in the details of the random motion of the
molecules, but only in certain average, measurable quantities.

There are many situations for which a simple, laminar solution of the equation of motion 15.10 can
be found, but the actual flow is observed to be turbulent. This has led people to investigate the stability
of the laminar flow; if the flow is disturbed by an infinitesimal amount, will the disturbance grow in
time or distance or will the disturbance die away and leave the laminar flow? This analysis usually
proceeds by linearizing the problem about the basic laminar solution. Sometimes the results agree with
experimentally observed conditions of transition to turbulence or a more complex laminar flow, as in
the case of Taylor vortices in the flow between rotating cylinders (see Section 17.8); but sometimes
there is a considerable discrepancy, as in the case of Poiseuille flow in a pipe.
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Mean values in turbulent flow can be defined by a time average, for example,

𝑣z =
1
t0
∫

t+t0

t
𝑣z dt. (15.48)

The time t0 over which the average is taken should be long compared to the period of the fluctuations,
which might be estimated as 0.01 s.

In laminar flow, the stress is given by Newton’s law of viscosity, equation 15.7. However, in
turbulent flow there is an additional mechanism of momentum transfer. The random fluctuations of
velocity tend to carry momentum toward regions of lower momentum. Thus, the total mean stress or
momentum flux is the sum of a viscous stress and a turbulent momentum flux:

𝛕 = 𝛕(l) + 𝛕(t), (15.49)

where the viscous momentum flux 𝛕(l) is given by the time average of equation 15.7 and the turbulent
momentum flux 𝛕(t) will be derived later in this section.

Far from a solid wall, momentum transfer by the turbulent mechanism predominates. However,
near a solid wall the turbulent fluctuations are damped, and viscous momentum transfer predominates,
so that the shear stress at the wall is still given by

𝜏0 = −𝜇
𝜕𝑣z

𝜕r

||||||||r=R

(15.50)

for flow in a pipe of radius R. It seems reasonable that the turbulent fluctuations should be damped
near the wall since the fluid cannot penetrate the wall.

The origin of the turbulent momentum flux is revealed by taking the time average of the equation
of motion 15.4

𝜕𝜌𝐯
𝜕t

= −∇ ⋅ (𝜌𝐯𝐯) − ∇p − ∇ ⋅ 𝛕(l) + 𝜌𝐠. (15.51)

Here 𝝉(l) denotes the same stress tensor that had previously been called 𝝉 and is given by equation 15.7
for Newtonian fluids.

The deviation of a flow quantity from its time average is defined as follows for the velocity and
pressure:

𝐯 = 𝐯 + 𝐯′.

p = p + p′. (15.52)

We call v′ the velocity fluctuation or the fluctuating part of the velocity. Several rules of time averaging
follow simply from definition 15.48. The time average of a sum is equal to the sum of the time
averages:

A + B = A + B.

The time average of a derivative is equal to the derivative of the time average: dA∕dx = dA∕dx. In
general, the time average of a nonlinear term gives more than one term. For example, AB = A B + A′B′.
Of course, the time average of a fluctuation is zero, A′ = 0.

In this discussion, the fluid is assumed to have constant properties (𝜌, 𝜇, etc.) since, even with
this assumption, the turbulent-flow problem remains intractable and since incompressible fluids do
exhibit turbulent flow. In fact, a compressible, laminar boundary layer may be more stable than
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an incompressible one. With this assumption, the time average of the equation of motion 15.51
yields

𝜕𝜌𝐯
𝜕t

= −∇ ⋅ (𝜌𝐯 𝐯) − ∇p − ∇ ⋅ (𝛕(l) + 𝜌𝐯′𝐯′) + 𝜌𝐠. (15.53)

The time-averaged continuity equation 15.3 is

∇ ⋅ 𝐯 = 0. (15.54)

The mean viscous stress is given by the time average of equation 15.7:

𝛕(l) = −𝜇[∇𝐯 + (∇𝐯)∗]. (15.55)

These equations are the same as the equations before averaging, except for the appearance of the
term −∇ ⋅ (𝜌𝐯′𝐯′) in the equation of motion 15.53. If we identify the turbulent momentum flux as

𝛕(t) = 𝜌𝐯′𝐯′ (15.56)

and write the total mean stress according to equation 15.49, then the equation of motion becomes

𝜕𝜌𝐯
𝜕t

= −∇ ⋅ (𝜌𝐯 𝐯) − ∇p − ∇ ⋅ 𝛕 + 𝜌𝐠 (15.57)

and bears a strong resemblance to the equation before averaging.
These maneuvers illustrate the origin of the turbulent momentum flux, or so-called Reynolds stress,

given by equation 15.56. The turbulent mechanism of momentum transfer is somewhat similar to the
molecular mechanism in gases; one is due to random motion of molecules, and the other is due to
random motion of larger, coherent aggregations of molecules.

The averaging process provides no reliable route to the prediction of the Reynolds stress. In the
absence of a fundamental theory, many people have written empirical expressions for 𝛕(t) with various
degrees of success. It should, perhaps, be emphasized that there is no simple relationship between
turbulent stress and velocity derivatives, as there is for the viscous stress in a Newtonian fluid, where
𝜇 is a state property depending only on temperature, pressure, and composition.

Many practical problems of turbulence involve the region near a solid wall since this is, in a
sense, the origin of the turbulence and because it is in this region that we want to calculate shear
stresses and rates of mass transfer. Experimental data have been studied extensively in order to draw
some generalization about the behavior near the wall of the turbulent transport terms, these being the
higher-order averages, such as the Reynolds stress, resulting from the averaging of the equations of
motion and convective diffusion. This generalization takes the form of a universal law of velocity
distribution near the wall, and the results can also be expressed in terms of the eddy viscosity and the
eddy kinematic viscosity—coefficients relating the turbulent transport terms to gradients of velocity.
These coefficients are strong functions of the distance from the wall and, thus, are not fundamental
fluid properties. This type of information is frequently deduced from studies of fully developed pipe
flow or certain simple boundary layers.

In studying turbulent flow near the wall, it is found that a correlation called the universal velocity
profile results if the mean tangential velocity is plotted against the distance from the wall as shown in
Figure 15.3. This describes fully developed turbulent flow near a smooth wall and applies both to pipe
flow and to turbulent boundary layers. The information is correlated by means of the shear stress 𝜏0 at
the wall:

𝑣+ =
𝑣x

𝑣∗
, y+ =

y𝑣∗
𝜈 , 𝑣∗ =

√
𝜏0

𝜌 . (15.58)
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Figure 15.3 Universal velocity profile for fully developed turbulent flow.

Note that away from the wall the mean velocity depends linearly on the logarithm of the distance,
while near the wall it increases linearly with the distance. The essential features of the curve are
represented by the rough approximations

𝑣+ ≈ y+ for y+ < 20 (15.59)

and
𝑣+ ≈ 2.5 ln y+ + 5.5 for y+ > 20. (15.60)

In the logarithmic region,

𝑣x = 2.5
√
𝜏0

𝜌 ln y + (2.5 ln

√
𝜏0∕𝜌
𝜈 + 5.5)

√
𝜏0

𝜌 . (15.61)

Here, the term with the y dependence of the velocity profile is independent of the viscosity; the
viscosity of the fluid enters only into the additive constant.

From the data summarized in Figure 15.3, it should be apparent that the Reynolds stress depends
strongly on the distance from the wall. A common way to express this is to introduce an eddy viscosity
𝜇(t) by the relation

𝜏(t)xy = −𝜇(t)
𝜕𝑣x

𝜕y
. (15.62)

The empirical results for 𝜏(t)xy are then expressed in terms of the eddy viscosity. Since the turbulent
shear flow near a wall should not be expected to be isotropic, other components of the Reynolds stress
probably require different values of the eddy viscosity, even at the same distance from the wall.

The universal velocity profile of Figure 15.3 probably applies only to a region near the wall where
the shear stress is essentially constant but not to the region near the center of a pipe, say, where the
stress goes to zero. If we assume that the shear stress is constant over the region where the universal
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Figure 15.4 Representation of the eddy viscosity as a “universal” function of the distance from the wall.

velocity profile is applicable, then we can obtain an idea of the variation of 𝜇(t) with distance from the
wall.

𝜏xy ≈ −𝜏0 = −(𝜇 + 𝜇(t))
𝜕𝑣x

𝜕y
= −

𝜇 + 𝜇(t)

𝜇 𝜏0
𝜕𝑣+

𝜕y+

or

1 = [1 +
𝜇(t)

𝜇 ] 𝜕𝑣
+

dy+
. (15.63)

This result shows that the ratio 𝜇(t)/𝜇 should also be a universal function of the wall variable y+.
Figure 15.4 is obtained by differentiation of the universal velocity profile of Figure 15.3. It is not
possible to obtain accurate values near the wall by this method because in this region 𝜇(t) ≪𝜇.
However, this problem should not be of immediate concern since it is the sum 𝜇+𝜇(t) that enters into
problems of fluid mechanics.

The universal velocity profile is one of the few generalizations possible in turbulent shear flow,
and it is widely applied in the analysis of problems for which experimental observations are not
available. Thus, it is the basis of a semi-empirical theory of turbulent flow that can be applied to
the hydrodynamics of turbulent boundary layers, mass transfer in turbulent boundary layers, and the
beginning of a mass-transfer section in fully developed pipe flow.

15.7 MASS TRANSFER IN TURBULENT FLOW

For the consideration of mass transfer in turbulent flow, one can average the equation of convective
diffusion 11.31. The nonlinear term v⋅∇ci again yields a new term in the averaged equation:

𝜕ci

𝜕t
+ 𝐯 ⋅ ∇ci = Di∇2ci − ∇ ⋅ 𝐉

(t)
i , (15.64)

where
𝐉
(t)
i = 𝐯′c′i (15.65)
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represents the mean turbulent mass flux due to the fluctuations of the concentration and the velocity
about their mean values.

Next, one might address the problem of estimating mass-transfer rates in turbulent flow, but with
the use of as little additional information as possible. One usually starts with the assumption that the
eddy diffusivity D(t), defined by the relation

𝐉
(t)
iy = c′i𝑣

′
y = −D(t) 𝜕ci

𝜕y
, (15.66)

is related to or equal to the eddy kinematic viscosity

D(t) = 𝜈(t) =
𝜇(t)

𝜌 , (15.67)

although such a simple relation is disputed. This is based on the idea that transfer of momentum and
mass is similar, whether it is by a molecular or by a turbulent mechanism. Thus, Figure 15.4 can be
used to get information about the variation of the eddy diffusivity in fully developed, turbulent flow
near a wall. As stated earlier, 𝜈(t) is much smaller than 𝜈 very close to the wall, and Figure 15.4 gives
no information about it. But for mass transfer at large Schmidt numbers, it is necessary to know D(t)

closer to the wall. Thus, even if 𝜈(t) = D(t), we can have at some distance D(t) ≫Di even where 𝜈(t) ≪𝜈
if Sc = 𝜈/Di is large.

Thus, much of our information about D(t) and possibly 𝜈(t) near the wall comes from mass-transfer
experiments. Actually it probably results more from fitting average mass-transfer rates at the wall than
from examination in detail of actual concentration profiles. If, for mass transfer in a pipe, we measure
the rate by means of the Stanton number

St =
Di

⟨𝑣z⟩Δci

𝜕ci

𝜕r

||||||||r=R

, (15.68)

then the dependence of the Stanton number on the Schmidt number at large Schmidt numbers is
determined by the variation of the eddy diffusivity close to the wall as follows:

D(t) near the wall St for large Sc

D(t)∝ y2 St∝Sc−1/2

y3 Sc−2/3

y4 Sc−3/4

It is easy to show that 𝜈(t) must go to zero as y3 or a higher power of y but cannot vary as y2. If 𝑣′x and 𝑣′y
are expanded in power series near the wall, then 𝑣′x is proportional to y and, by the continuity equation,
𝑣′y is proportional to y2. Hence 𝛕(t)xy = 𝜌𝑣′x𝑣′y is proportional to y3, and the same must be true of 𝜈(t). A
controversy between y3 and y4 remains. Levich[8] had D(t) proportional to y3 but later[9] changed this
to y4. Murphee[10] preceded Levich by a decade and favored a y3 dependence.

Sherwood[11] has reviewed the attempts at describing D(t). The goal of such work is to determine how
the eddy diffusivity depends on distance from the wall, that is, to relate D(t)/v to y+, the dimensionless
distance from the wall. This is based on the universal velocity profile and on information gleaned from
mass-transfer experiments. Following Wasan et al.,[12] we write

𝑣+ = y+ − A1(y+)4 + A2(y+)5 for y+ ≤ 20,

𝑣+ = 2.5 ln y+ + 5.5 for y+ ≥ 20. (15.69)
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The constants A1 and A2 are selected so that 𝑣+ and its derivative are continuous at y+ = 20:

A1 = 1.0972 × 10−4 and A2 = 3.295 × 10−6. (15.70)

The corresponding expressions for the eddy diffusivity are

D(t)

𝜈 =
4A1(y+)3 − 5A2(y+)4

1 − 4A1(y+)3 + 5A2(y+)4
for y+ ≤ 20,

D(t)

𝜈 =
y+

2.5
− 1 for y+ ≥ 20. (15.71)

The concept of the universal velocity profile and the variation of eddy diffusivity with distance
from the wall as given in Figure 15.5 form the basis of a semiempirical theory widely used to calculate
mass-transfer rates in turbulent boundary layers, near the beginning of a mass-transfer section in a
pipe, and for similar problems (see, e.g., Ref. [13]).

15.8 DISSIPATION THEOREM FOR TURBULENT PIPE FLOW

It is proposed[14] that certain local statistical turbulent quantities, such as the Reynolds stress, the eddy
viscosity, the turbulent energy, and the volumetric dissipation are related to each other. We need to
find the relationships from experimental observations.
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Figure 15.5 Variation of the eddy diffusivity near a wall for fully developed turbulent flow.
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The volumetric dissipation 𝒟V is appealing in this regard because it can be related to the eddy
viscosity and because it is directly related to the losses in a system, such as the torque on rotating
cylinders and the pressure drop in pipe flow. 𝒟V is defined as

𝒟V = −𝛕 ∶ ∇𝐯, (15.72)

and it generally describes conversion of mechanical energy into thermal energy. With few approxima-
tions, it can be written as

𝒟V ≈ −𝛕 ∶ ∇𝐯 = 𝜏2∕(𝜇 + 𝜇(t)) = (𝜇 + 𝜇(t))(∇𝐯)2. (15.73)

This provides one relationship between 𝒟V and 𝜈(t).
It is postulated[14] that 𝒟V obeys an equation such as

𝜕𝒟V

𝜕t
+ 𝐯 ⋅ ∇𝒟V = ∇ ⋅ [(𝜈 + 𝜈(t))∇𝒟V ] − Decay, (15.74)

that is, the rate of change of𝒟V at a point is related to convection, diffusion with a diffusion coefficient
of 𝜈 + 𝜈(t), and decay as turbulence disappears eventually if left alone. A possible form for the Decay is

Decay = k(𝒟2
V + 𝜖𝒟V), (15.75)

saying that at high values of dissipation the decay is quadratic but at low levels the decay becomes
linear in 𝒟V . k and 𝜖 are constants.

Equation 15.74 does not have a solid basis, and one needs to study several systems experimentally
to establish empirical coefficients and even modify forms where necessary. Several systems are
appealing because of their simplicity and a wealth of available information on both friction and mass
transfer. These systems include steady rotation of disks and cylinders, flow in pipes, and flow along a
semiinfinite flat plate in a uniform stream at zero incidence. All these systems are operated at steady
state, but two of them involve flow developing along a flat plate or a rotating disk.

Nikuradse[15] gives us detailed experimental distributions of eddy viscosity in pipe flow at 16
Reynolds numbers from 4000 to 3.2× 106. These show a limiting form at very high Reynolds numbers.
Figure 15.6 shows data points for the four lowest Reynolds numbers as well as the limiting profile for
high Reynolds numbers as a dashed curve. At low Reynolds numbers, the data lie somewhat above
the limit curve, but they approach the limit curve as Re increases. To bring out this behavior, 𝜈(t)/𝜈 is
divided by R+, an independent parameter depending on the shear stress at the wall.

R+ = R
𝜈

√
𝜏0

𝜌 , (15.76)

where R is the inner radius of the pipe and 𝜏0 is the shear stress at the wall. In this geometry the stress
𝜏 decreases linearly from 𝜏 = 𝜏0 at r =R to 𝜏 = 0 at r = 0.

One can calculate the velocity profile and most flow properties from knowledge of 𝜈(t) by means of
the equations in Section 15.6, from the momentum equation 15.57 and the continuity equation 15.54
and suitable boundary conditions. The friction factor f can be calculated from the formula[16]

√
2
f
= R+ ∫

1

0

𝜉3d𝜉
1 + R+M(𝜉)

, (15.77)
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Figure 15.6 The eddy-viscosity profiles of Nikuradse for his lowest 4 Reynolds numbers. The dashed line is the
limit curve for large Reynolds numbers. Points for the lower Reynolds numbers generally lie slightly higher than
the limit curve. Here, the Reynolds numbers are 4000, 6100, 9200, and 16,700.

where

f =
2𝜏o

𝜌⟨𝑣2
z ⟩
, 𝜉 = r∕R, and M = 𝜈(t)

𝜈R+
. (15.78)

M is the quantity plotted in Figure 15.6.
The dissipation theorem equation 15.74 provide a means of recovering the eddy kinematic viscosity.

Then, the limit curve in Figure 15.6 is reproduced if the Decay is modified to read

decay =
𝜌R2

𝜏2
0

Decay =
Λ(D2 + 𝜖D∕R+)

𝜉2(R+)2
, (15.79)

where Λ = 0.17, 𝜖 = 0.3, and D = 𝜇𝒟V∕𝜏2
0.

Eisenberg[17] provides mass-transfer data at high Sc for systems of rotating cylinders with five
different values of 𝜅 = Ri/Ro, the ratio of the inner rotating cylinder to that of the outer stationary
cylinder. Mohr[18] provides additional mass-transfer data for four thinner gaps, with 𝜅 closer to 1. Some
of Eisenberg’s data are covered by equation 17.78. More information should be able to be extracted,
but the results of Eisenberg and of Mohr are not in adequate harmony.[14, 19]

PROBLEM

15.1 Show that equation 15.6 implies that
∇ × 𝐠 = 0.

This condition is satisfied by most gravitational fields.
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NOTATION

a constant = 0.51023
A constant
B magnetic induction, Wb/m2

c molar concentration of a single electrolyte, mol/cm3

ci concentration of species i, mol/cm3

D diffusion coefficient of electrolyte, cm2/s
D dimensionless volumetric dissipation
D(t) eddy diffusivity, cm2/s
Di diffusion coefficient of species i, cm2/s
𝒟V volumetric dissipation, J/cm3⋅s
E electric field, V/cm
f friction factor
f function for radial velocity, s−1

f force per unit area, N/cm2

F dimensionless radial velocity
F Faraday’s constant, 96,487 C/mol
g function for velocity in 𝜃 direction, s−1

g acceleration of gravity, cm/s2

G dimensionless velocity in 𝜃 direction
h axial velocity, cm/s
H dimensionless axial velocity
i uniform current density on disk electrode, A/cm2

i current density, A/cm2

I unit tensor
𝐉
(t)
i mean turbulent mass flux of species i, mol/cm2⋅s

k parameter in Decay, cm3/J
M v(t)/vR+

Mi molar mass of species i, g/mol
n unit vector normal to surface
p pressure, N/cm2

P dimensionless dynamic pressure
𝒫 dynamic pressure, N/cm2

r radial distance, cm
r0 radius of disk electrode, cm
r1, r2 principal radii of curvature of surface, cm
R universal gas constant, 8.3143 J/mol⋅K
R+ stress parameter
Re Reynolds number
Sc Schmidt number
St Stanton number
t time, s
t0 time over which quantities are averaged, s
ti transference number of species i
T absolute temperature, K



�

� �

�

320 FLUID MECHANICS

v mass-average velocity, cm/s
vi velocity of species i, cm/s
⟨𝑣z⟩ average velocity in a pipe, cm/s
x tangential distance, cm
y distance from surface, cm
z axial distance, cm
zi charge number of species i
Γ(4/3) 0.89298, the gamma function of 4/3
𝜖 permittivity, F/cm
𝜖 parameter in decay
𝜖 parameter in formula for decay of turbulence
𝜖0 permittivity of free space, 8.8542× 10−14 F/cm
𝜁 dimensionless axial distance from disk
𝜃 angle in cylindrical coordinates, rad
𝜅 ratio of cylinder radii
𝜅 conductivity, S/cm
Λ equivalent conductance of binary electrolyte, S⋅cm2/mol
Λ parameter in decay of turbulence
𝜇 viscosity, mPa⋅s
𝜇(t) eddy viscosity, mPa⋅s
𝜈 kinematic viscosity, cm2/s
𝜈(t) eddy kinematic viscosity, cm2/s
𝜈+, 𝜈− numbers of cations and anions into which a molecule of electrolyte dissociates
𝜉 dimensionless axial distance from disk
𝜉 r/R
𝜌 density, g/cm3

𝜌e electric charge density, C/cm3

𝜎 interfacial tension, mN/m
𝜏 stress, N/cm2

Φ electric potential, V
Ω rotation speed of disk, rad/s

Subscripts

0 at electrode surface
∞ in bulk solution
s surface

Superscripts

′ fluctuation or derivative
(l) viscous
(t) turbulent
+ related to universal velocity profile
overbar time average
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PART D

CURRENT DISTRIBUTION AND MASS
TRANSFER IN ELECTROCHEMICAL SYSTEMS

Electrochemical systems find widespread technical application. Industrial electrolytic processes include
electroplating and refining, electropolishing and machining, and the electrochemical production of
chlorine, caustic soda, aluminum, and other products. Energy conversion in fuel cells and in primary
and secondary batteries has received increasing attention. Electrochemical corrosion should not be
neglected, and some systems for desalting water involve electrochemical processes. Electrochemical
methods are used for qualitative and quantitative analysis. Idealized electrochemical systems are also
of interest for studies of mass-transfer processes and the mechanisms of electrode reactions and for the
determination of basic data on transport properties.

Engineering design procedures for electrochemical systems have not been developed as thoroughly
as for mass-transfer operations such as distillation. Nevertheless, the fundamental laws governing
electrochemical systems are known and have been developed in Parts A, B, and C of this book. The
purpose of Part D is to review the analysis of certain electrochemical systems in relation to these
fundamental laws. To a greater or lesser extent, one is concerned with fluid flow patterns, ohmic
potential drop in solutions, restricted rates of mass transfer, and the kinetics of electrode reactions. The
situation is complicated as well by the variety of specific chemical systems. These examples provide
some of the main tools of the electrochemical engineer.

Application of the fundamental laws has followed two main courses. There are systems where
the ohmic potential drop can be neglected. The current distribution is then determined by the same
principles that apply to heat transfer and nonelectrolytic mass transfer. This usually involves systems
operated at the limiting current with an excess of supporting electrolyte because, below the limiting
current, neglecting the ohmic potential drop is usually not justified and because the presence of
the supporting electrolyte allows the effect of ionic migration in the diffusion layer to be ignored.
Furthermore, the concentration of the limiting reactant is zero at the electrode surface, and the treatment
becomes simplified. Let us call these convective-transport problems, treated in Chapter 17.
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At currents much below the limiting current, it is possible to neglect concentration variations near the
electrodes. The current distribution is then determined by the ohmic potential drop in the solution and
by electrode overpotentials. Mathematically, this means that the potential satisfies Laplace’s equation,
and many results of potential theory, developed in electrostatics, the flow of inviscid fluids, and steady
heat conduction in solids are directly applicable. Let us call these potential-theory problems, treated in
Chapter 18. The electrode kinetics provides boundary conditions that are usually different from those
encountered in other applications of potential theory.

Existing work on current distribution and mass transfer in electrochemical systems is reviewed
here, with emphasis being placed on how each contribution is related to these limiting cases of
convective-transport problems and applications of potential theory. This framework can be compared
with Wagner’s discussion[1] of the scope of electrochemical engineering. Much work either fits into
the extreme cases or takes into account phenomena neglected in the extreme cases.

We also discuss problems that do not fall into either of these two classes. Some problems can
be regarded as an extension of the convective-transport problems. At the limiting current, the ohmic
potential drop in the bulk of the solution may still be negligible, but the electric field in the diffusion
layer near electrodes may lead to an enhancement of the limiting current. The current density is then
distributed along the electrode in the same manner as when migration is neglected, but the magnitude
of the current density at all points is increased or diminished by a constant factor that depends upon the
bulk composition of the solution (see Chapter 19). Free convection in a supported electrolytic solution
also involves this migration effect. In addition, the nonuniform concentration of the added electrolyte
affects the density distribution and hence the velocity profiles in the system. This effect, which does
not disappear with a large excess of supporting electrolyte, is treated in the last section of Chapter 19.

At currents below, but at an appreciable fraction of, the limiting current, diffusion and convective
transport are essential, but neither concentration variations near the electrode nor the ohmic potential
drop in the bulk solution can generally be neglected. These problems are complex because all the factors
are involved at once. They span the limiting cases of convective-transport problems and applications
of potential theory and are treated in Chapter 21. Prior to this, the concept of the concentration
overpotential is further developed in Chapter 20.

In technical electrochemical systems, the ohmic potential drop is of great importance, and
potential-theory problems find applications here. Nevertheless, concentration variations near elec-
trodes frequently provide limitations on reaction rates and current efficiencies in industrial operations.
In view of the complexity of simultaneously treating concentration variations and ohmic potential
drop, qualitative or semiquantitative application of these concepts may have to suffice for some time.
Thus, only a limited number of systems can be discussed in Chapter 21.

Many electrodes found in fuel cells and primary and secondary batteries are porous in order
to provide an extensive surface area for electrochemical reactions. In such electrodes, convection
may not be present, but it is usually necessary to consider the ohmic potential drop, concentration
variations, and electrode kinetics. Most treatments adopt a macroscopic model that does not take
account of the detailed, random geometry of the porous structure. Results of potential theory are then
not applicable since Laplace’s equation does not hold. Porous-electrode problems thus do not fall
within the framework of convective-transport problems and applications of potential theory. Flooded
porous electrodes are treated in Chapter 22.

Chapter 23 deals with semiconductor electrodes, including solar energy conversion, in a manner that
uses the fundamental principles as developed earlier in the book. Here we have macroscopic regions
where electroneutrality is not obeyed.

Impedance involves the application of alternating current or potential to electrochemical systems and
finds importance by providing a nondestructive diagnostic tool and an additional means to understand
the physics and chemistry. Chapter 24 gives specific examples of electrochemical impedance modeled
by application of the topics treated throughout the book, thereby going beyond equivalent circuits.
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Earlier reviews of current distribution and mass transfer in electrochemical systems are given in
Refs. [2–6]. Ref. [7] contains more mathematical development than is included here.

Significant parts of Chapter 22 are taken from Newman and Tiedemann,[8] reproduced by permission
of the American Institute of Chemical Engineers.
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CHAPTER 16

FUNDAMENTAL EQUATIONS

16.1 TRANSPORT IN DILUTE SOLUTIONS

The laws of transport in dilute solutions have been known for many years and have been developed in
Chapter 11. The four principal equations in dilute-solution theory are presented in Section 11.1. The
flux of a solute species is due to migration in an electric field, diffusion in a concentration gradient,
and convection with the fluid velocity.

𝐍i = −ziuiFci∇Φ − Di∇ci + 𝐯ci. (16.1)

A material balance for a small-volume element leads to the differential conservation law:

𝜕ci

𝜕t
= −∇⋅𝐍i + Ri. (16.2)

Since reactions are frequently restricted to the surfaces of electrodes, the bulk reaction term Ri is often
zero in electrochemical systems. To a very good approximation, the solution is electrically neutral,

∑

i

zici = 0, (16.3)

except in the diffuse part of the double layer very close to an interface. The current density in an
electrolytic solution is due to the motion of charged species:

𝐢 = F
∑

i

zi𝐍i. (16.4)

These laws provide the basis for the analysis of electrochemical systems. The flux relation,
equation 16.1, defines transport coefficients—the mobility ui and the diffusion coefficient Di of an
ion in a dilute solution. The dilute-solution theory has been applied fruitfully to many electrochemical
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systems. We furthermore assume that the physical properties are constant. The dominant factors are
then revealed in the simplest manner, and the results have the widest range of applicability.

Many electrochemical systems involve flow of the electrolytic solution. For a fluid of constant
density 𝜌 and viscosity 𝜇, the fluid velocity is to be determined from the Navier–Stokes equation (see
Chapter 15):

𝜌 ( 𝜕𝐯
𝜕t

+ 𝐯⋅∇𝐯) = −∇p + 𝜇∇2𝐯 + 𝜌𝐠 (16.5)

and the continuity equation
∇⋅𝐯 = 0. (16.6)

16.2 ELECTRODE KINETICS

The differential equations describing the electrolytic solution require boundary conditions for the
behavior of an electrochemical system to be predicted. The most complex of these concerns the kinetics
of electrode reactions, treated in Chapter 8. A single electrode reaction can be written in symbolic form
as ∑

i

siM
zi
i → ne−. (16.7)

Then the normal component of the flux of a species is related to the normal component of the current
density, that which contributes to the external current to the electrode.

Nin = −
si

nF
in. (16.8)

This equation is restricted not only to a single electrode reaction but also to the absence of an
appreciable charging of the double layer, a process that does not follow Faraday’s law.

Next, one needs an equation describing the kinetics of the electrode reaction, that is, an equation
that relates the normal component of the current density to the surface overpotential at that point and
the composition of the solution just outside the diffuse part of the double layer. The motivation of the
electrochemical engineer in this regard is basically different from that of an electrochemist. The object
is to predict the behavior of a complex electrochemical system rather than to elucidate the mechanism
of an electrode reaction. To accomplish this objective, one needs an equation that describes accurately
how the interface behaves during the passage of current, and, for this purpose, the interface includes
the diffuse part of the double layer.

The surface overpotential 𝜂s can be defined as the potential of the working electrode relative to a
reference electrode of the same kind located just outside the double layer. Then one seeks a kinetic
expression of the form

in = f (𝜂s, ci), (16.9)

where charging of the double layer is again ignored. The concentrations ci here refer to the point just
outside the double layer. Such an expression thus describes the interface since in, 𝜂s, and ci, are all
local quantities. In particular, the concentration variation between the interface and the bulk solution
and the ohmic potential drop in the solution have only an incidental bearing on events at the interface.
At the same time, no attempt is made to give a separate account of the diffuse part of the double layer.
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The function f in equation 16.9 is, in general, complicated. However, there is ample evidence that
there is a large class of electrode reactions for which the current density depends exponentially on the
surface overpotential in the following form:

in = i0 [exp (
𝛼aF
RT

𝜂s) − exp (−
𝛼cF
RT

𝜂s)] , (16.10)

where i0 is the exchange current density and depends on the concentrations ci. This latter dependence
can frequently be expressed as a product of powers of the concentrations (see Section 8.3). In this
equation, in and 𝜂s are positive for anodic processes, negative for cathodic processes. Both 𝛼a and 𝛼c
are kinetic parameters and must be determined to agree with experimental data. A rereading of Section
1.3 may be useful at this point.

NOTATION

ci concentration of species i, mol/cm3

Di diffusion coefficient of species i, cm2/s
e– symbol for the electron
f function in expression of electrode kinetics
F Faraday’s constant, 96,487 C/mol
g acceleration of gravity, cm/s2

i current density, A/cm2

i0 exchange current density, A/cm2

Mi symbol for the chemical formula of species i
n number of electrons transferred in electrode reaction
Ni flux density of species i, mol/cm2⋅s
p pressure, N/cm2

R universal gas constant, 8.3143 J/mol⋅K
Ri rate of homogeneous production of species, mol/cm3⋅s
si stoichiometric coefficient of species i in electrode reaction
t time, s
T absolute temperature, K
ui mobility of species i, cm2⋅mol/J⋅s
v fluid velocity, cm/s
zi charge number of species i
𝛼a, 𝛼c transfer coefficients
𝜂s surface overpotential, V
𝜇 viscosity, mPa⋅s
𝜌 density, g/cm3

Φ electric potential, V
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CHAPTER 17

CONVECTIVE-TRANSPORT PROBLEMS

17.1 SIMPLIFICATIONS FOR CONVECTIVE TRANSPORT

For the reaction of minor ionic species in a solution containing excess supporting electrolyte, it should
be permissible to neglect the contribution of ionic migration to the flux of the reacting ions (see
Section 11.5), so that equation 16.1 becomes

𝐍i = −Di∇ci + 𝐯ci, (17.1)

and substitution into equation 16.2 yields

𝜕ci

𝜕t
+ 𝐯⋅∇ci = Di∇2ci. (17.2)

This may be called the equation of convective diffusion. A similar equation applies to convective heat
transfer and convective mass transfer in nonelectrolytic solutions. Since these fields have been studied
in detail, it is possible to apply many results to electrochemical systems that obey equation 17.2. At
the same time, electrochemical systems sometimes provide the most convenient experimental means
of testing these results or of arriving at new results for systems too complex to analyze.

Essential to the understanding of convective-transport problems is the concept of the diffusion layer.
Frequently, due to the small value of the diffusion coefficient, the concentrations differ significantly
from their bulk values only in a thin region near the surface of an electrode. In this region, the velocity
is small, and diffusion is of primary importance to the transport process. The thinness of this region
permits a simplification in the analysis, but it is erroneous to treat the diffusion layer as a stagnant
region. Figure 17.1 shows the concentration profile in the diffusion layer, with the electrode surface at
the left. Far from the surface, convective transport dominates, while at the surface itself, there is only
diffusion.

The systems typically studied in heat and mass transfer involve laminar and turbulent flow with
various geometric arrangements. The flow may be due to some more or less well-characterized
stirring (forced convection) or may be the result of density differences created in the solution as
part of the transfer process (free convection). We discuss a few examples, although there is no need

Electrochemical Systems, Fourth Edition. John Newman and Nitash P. Balsara.
© 2021 John Wiley & Sons, Inc. Published 2021 by John Wiley & Sons, Inc.

331



�

� �

�

332 CONVECTIVE-TRANSPORT PROBLEMS
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Figure 17.1 Concentration profile in the diffusion layer.

to be exhaustive since convective heat and mass transfer are thoroughly treated in many texts and
monographs.[1–4] There are also several reviews of mass transfer in electrochemical systems.[5–7] The
examples selected are primarily those that have been studied with electrochemical systems. In addition,
certain theoretical results of general validity are included because they are particularly applicable to
electrolytic solutions, where the Schmidt numbers are invariably large.

17.2 THE ROTATING DISK

Our first example of a convective-transport problem, the rotating-disk electrode, is well-known to
electrochemists. Imagine a large, or infinite, disk rotating about its axis in an infinite fluid medium, so
that wall and end effects may be ignored. Actually, these edge effects can be neglected for a suitable
design of the disk. Thus, we consider the electrode shown in Figure 17.2, a disk electrode embedded
in a larger insulating plane that also rotates. This system has been reviewed by Riddiford.[8]

The rotation of the disk provides the stirring of the fluid. The hydrodynamic aspects of the problem
are presented in Section 15.4. The pertinent feature of those results is that the velocity normal to the
disk, which brings fresh reactant to the surface, depends on z but not on r:

𝑣z =
√
𝜈ΩH (z

√
Ω
𝜈 ) . (17.3)

Consequently, there is no reason for the concentration to depend on anything besides the normal
distance from the disk, and the equation of convective diffusion 17.2 reduces to

𝑣z
dci

dz
= Di

d2ci

dz2
, (17.4)

with boundary conditions

ci = c0 at z = 0 and ci = c∞ at z = ∞. (17.5)

At the limiting current, c0 = 0. Thus, the fact that the convective velocity bringing fresh reactant to the
electrode is the same over the entire surface of the disk has the mathematical advantage of reducing
the equation of convective diffusion to an ordinary differential equation and the practical advantage
that the reaction rate at the electrode will be everywhere the same, independent of the distance from
the axis of rotation.
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Ω

Figure 17.2 Rotating-disk electrode.

Levich[9] has analyzed the mass transfer to a rotating disk with the fluid motion described above.
The analogous heat-transfer problem was not treated by Wagner[10] until 1948.

Equation 17.4 is a first-order differential equation for dci/dz and can be integrated to give

ln
dci

dz
= 1

Di
∫

z

0
𝑣zdz + ln K (17.6)

or
dci

dz
= K exp ( 1

Di
∫

z

0
𝑣zdz) . (17.7)

A second integration gives

ci = c0 + K ∫
z

0
exp (∫

z

0

𝑣z

Di
dz) dz. (17.8)

The constant K is determined now from boundary condition 17.5:

c∞ − c0

K
= ∫

∞

0
exp (∫

z

0

𝑣z

Di
dz) dz

=
√

𝜈
Ω

∫
∞

0
exp [Sc ∫

𝜂

0
H(𝜁)d𝜁] d𝜂, (17.9)

where the last expression is obtained with the use of equation 17.3 and the definition of the Schmidt
number Sc = v/Di. The solution thus can be expressed as

Θ =
∫z

0 exp (∫z
0
𝑣z

Di
dz) dz

∫∞0 exp (∫z
0
𝑣z

Di
dz) dz

, (17.10)

where
Θ =

ci − c0

c∞ − c0
(17.11)

is a dimensionless concentration.
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The flux density from the disk surface is

Nin = −Di
dci

dz

|||||||z=0
= −DiK, (17.12)

and by means of equation 16.8, the current density can be expressed as

insi

nF(c∞ − c0)
√
𝜈Ω

= 1
ScΘ

′(0), (17.13)

where the prime denotes the derivative with respect to 𝜁 and

1
ScΘ

′(0) = 1

Sc ∫∞0 exp
[
Sc ∫𝜂0 H(𝜁)d𝜁

]
d𝜂

. (17.14)

The dimensionless mass-transfer rate in equation 17.14 is seen to depend only on the Schmidt
number Sc = v/Di and is plotted in Figure 17.3 (see Sparrow and Gregg[11]). If the mass flux or current
density is known, then the ordinate is independent of the diffusion coefficient (see equation 17.13).
Hence, this method of plotting is advantageous for the determination of diffusion coefficients by the
rotating-disk method. From the limiting-current density, the ordinate can be calculated directly. The
Schmidt number can then be obtained from the graph without a trial-and-error calculation, and the
diffusion coefficient is then given by Di = v/Sc.

The asymptote for large Schmidt numbers was first derived by Levich in 1942. In this case, the
diffusion coefficient Di is very small, and the concentration variation occurs very close to the surface
of the disk (at small values of 𝜁 in Figure 15.2). Therefore, it is appropriate to use in equation 17.14, the
first term of the velocity profile for small values of 𝜁 as given in equation 15.29. The behavior for large
Schmidt numbers is particularly important for diffusion in liquids since here the Schmidt number is on
the order of 1000. Corrections to this asymptote can be obtained by expansion of the mass-transfer rate
for large Schmidt numbers, with the result[12]

1
ScΘ

′(0) = 0.62045Sc−2∕3

1 + 0.2980Sc−1∕3 + 0.14514Sc−2∕3 + O(Sc−1)
. (17.15)

1
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0.10.01 1 103

0.1

10 102
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Sc′
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c

Θ
′ (

0)

0.88447, asymptote for small Sc

0.62045 Sc–2/3, asymptote for
large Sc

Figure 17.3 Dimensionless mass-transfer rates for a rotating disk. Source: Newman.[13] Copyright 1967.
Reprinted with permission from John Wiley & Sons, Inc.
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This expression adequately represents the curve in Figure 17.3 for Sc> 100 (in this region, the
maximum error is about 0.1%). See also Ref. [14].

On the other hand, for very low Schmidt numbers, the diffusion layer extends a large distance
from the disk, and it is appropriate to use the velocity profile of equation 15.31. At very low Schmidt
numbers, equation 17.14 becomes

1
ScΘ

′(0) = 0.88447e−1.611Sc[1 + 1.961Sc2 + O(Sc3)]. (17.16)

The first term of equation 17.16 tells us that the maximum flux to the disk for very large diffusion
coefficients is completely determined by the rate of convection of material from infinity:

Nimax = −(c∞ − c0)
√
𝜈ΩH(∞) = 0.88447(c∞ − c0)

√
𝜈Ω. (17.17)

Because of the well-defined fluid motion, the rotating-disk electrode has been used extensively for
the determination of diffusion coefficients and the parameters of electrode kinetics. It can also be used
for quantitative analysis (polarography) in electrolytic solutions. The edge effect for the rotating disk
is treated in Ref. [15].

The rotating ring–disk system is popular because active intermediates produced on the disk
electrode can be detected with the ring electrode.[16, 17] The amount so detected can be compared with
the theoretical collection efficiency[18, 19] for the system.

17.3 THE GRAETZ PROBLEM

An important problem that received early analytic treatment is that of mass transfer to the wall of a
tube in which Poiseuille flow is presumed to prevail:

𝑣z = 2⟨𝑣z⟩ (1 − r2

R2
) , (17.18)

𝑣r = 𝑣𝜃 = 0. (17.19)

Here r, 𝜃, and z refer to cylindrical coordinates, with z measured along the tube and r being the radial
distance from the center of the tube. Although the Reynolds number can attain values of 2000 before
the flow becomes turbulent, this is not a boundary-layer flow.

The equation of convective diffusion is

𝑣z
𝜕ci

𝜕z
= Di [

1
r
𝜕
𝜕r

(r
𝜕ci

𝜕r
) +

𝜕2ci

𝜕z2
] . (17.20)

We treat this for mass transfer to a section with a constant wall concentration,

ci = c0 at r = R, (17.21)

beginning at z = 0 after the Poiseuille flow is fully developed. At the limiting current, c0 = 0. For other
boundary conditions, we may state

ci = cb at z = 0 and
𝜕ci

𝜕r
= 0 at r = 0. (17.22)
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The inlet concentration is cb, and symmetry dictates that the derivative should be zero at the center of
the tube. The condition at z = 0 applies only after we have neglected axial diffusion when we reach
equation 17.26.

Let us introduce dimensionless variables

𝜉 = r
R
, Θ =

ci − c0

cb − c0
, 𝜁 =

zDi

2⟨𝑣z⟩R2
. (17.23)

The equation of convective diffusion becomes

(1 − 𝜉2)𝜕Θ
𝜕𝜁

= 1
𝜉

𝜕
𝜕𝜉

(𝜉 𝜕Θ
𝜕𝜉

) + 1

Pe2

𝜕2Θ
𝜕𝜁2

, (17.24)

where

Pe = Re⋅Sc =
2R⟨𝑣z⟩

Di
=

2R⟨𝑣z⟩
𝜈

𝜈
Di

(17.25)

is the Péclet number. On the assumption that the Péclet number is large, we discard the second
derivative with respect to 𝜁:

(1 − 𝜉2)𝜕Θ
𝜕𝜁

= 𝜕2Θ
𝜕𝜉2

+ 1
𝜉
𝜕Θ
𝜕𝜉

,

Θ = 1 at 𝜁 = 0

Θ = 0 at 𝜉 = 1

𝜕Θ
𝜕𝜉

= 0 at 𝜉 = 0. (17.26)

The total amount of material transferred to the wall in a length z is

J = −∫
z

0
Di

𝜕ci

𝜕r

|||||||r=R
2𝜋R dz (17.27)

or
J

𝜋R2(cb − c0)⟨𝑣z⟩
= 2

Nuavg
Pe

z
R
= −4∫

𝜁

0

𝜕Θ
𝜕𝜉

|||||||𝜉=1
d𝜁, (17.28)

where Nuavg is the average Nusselt number based on the concentration difference at the inlet.
The Nusselt number is a dimensionless mass-transfer rate:

Nu = −
Nin2R
DiΔci

, (17.29)

where the flux Ni is made dimensionless with a characteristic length, here 2R, the diffusion coefficient
Di, and a concentration difference Δci, here equal to the value at the inlet, cb − c0. For the local
Nusselt number, the local flux is used; for the average Nusselt number, the average flux is used.
For convective-transport problems where the contribution of ionic migration is negligible, the flux is
related to the concentration derivative at the wall. For a single electrode reaction following equation
16.7, equation 16.8 allows the local Nusselt number to be related to the current density:

Nu =
si2R

DiΔci

in
nF

. (17.30)
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Solution by Separation of Variables

Graetz,[20] followed by Nusselt,[21] treated this problem by the method of separation of variables:

Θ =
∞∑

k=1

Cke−𝜆
2
k𝜁Rk(𝜉), (17.31)

in which the Rk satisfy the equation

1
𝜉

d
d𝜉

(𝜉
dRk

d𝜉
) + 𝜆2

k (1 − 𝜉2)Rk = 0, (17.32)

with the boundary conditions

Rk = 0 at 𝜉 = 1.

Rk = 1,
dRk

d𝜉
= 0 at 𝜉 = 0. (17.33)

The solution of this Sturm–Liouville system has been calculated, and R1, R2 and R3 are reproduced in
Figure 17.4.

The total amount of material transferred to the wall can be calculated from the expression:

1 − J
𝜋R2(cb − c0)⟨𝑣z⟩

=
∞∑

k=1

4Cke−𝜆
2
k𝜁 ∫

1

0
𝜉(1 − 𝜉2)Rk(𝜉)d𝜉

=
∞∑

k=1

Mke−𝜆
2
k𝜁, (17.34)
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Figure 17.4 Graetz functions.
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TABLE 17.1 Eigenvalues and coefficients for
the Graetz series

k 𝜆k Mk

1 2.7043644 0.8190504
2 6.6790315 0.0975269
3 10.6733795 0.0325040
4 14.6710785 0.0154402
5 18.6698719 0.0087885
6 22.6691434 0.0055838
7 26.6686620 0.0038202
8 30.6683233 0.0027564
9 34.6680738 0.0020702

10 38.6678834 0.0016043

where the values of Mk and 𝜆k are given for 10 terms in Table 17.1 (see Brown[22]).

Solution for Very Short Distances

For small values of 𝜁, Lévêque[23] recognized that there is a diffusion layer near the wall, and derivatives
with respect to 𝜉 become large. Within the diffusion layer, the following approximations apply:

1 − 𝜉2 = (1 − 𝜉)(1 + 𝜉) ≈ 2(1 − 𝜉) (17.35)

and
1
𝜉
𝜕Θ
𝜕𝜉

≪ 𝜕2Θ
𝜕𝜉2

, (17.36)

and the diffusion equation becomes

2(1 − 𝜉)𝜕Θ
𝜕𝜁

= 𝜕2Θ
𝜕𝜉2

(17.37)

with boundary conditions

Θ = 0 at 𝜉 = 1 and Θ = 1 at 𝜁 = 0. (17.38)

In addition, Θ approaches 1 outside the diffusion layer.
The similarity transformation

𝜂 = (1 − 𝜉)(2∕9𝜁)1∕3 (17.39)

reduces the diffusion equation to an ordinary differential equation

Θ′′ + 3𝜂2Θ′ = 0, (17.40)

with the solution

Θ = 1
Γ(4∕3)

∫
𝜂

0
e−x3

dx. (17.41)
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In terms of the physical variables, the similarity variable 𝜂 is

𝜂 = y(
4⟨𝑣z⟩
9zDiR

)
1∕3

, (17.42)

where
y = R − r (17.43)

is the distance from the wall. The function given by equation 17.41 is plotted in Figure 17.1, where 𝜂
is rendered as 𝜉 on the abscissa.

The total amount of material transferred to the wall is given by

J
𝜋R2(cb − c0)⟨𝑣z⟩

=
(48)1∕3

Γ(4∕3)
𝜁2∕3 = 4.070𝜁2∕3. (17.44)

This result shows more clearly than the Graetz series how the mass-transfer rate becomes infinite near
the beginning of the mass-transfer section.

Extension of the Lévêque Solution

With an approximate solution for short distances, it should be possible[24] to obtain correction terms
that account for approximations 17.35 and 17.36 and justify their validity. On this basis, the average
Nusselt number referred to the concentration difference at the inlet can be expressed as

Nuavg = 1.6151(ScRe
z∕2R

)
1∕3

− 1.2

− 0.28057(
z∕2R
ScRe

)
1∕3

+ O(
z∕2R
ScRe

)
2∕3

, (17.45)

and the local Nusselt number is

Nu(𝜁) = −2
𝜕Θ
𝜕𝜉

|||||||𝜉=1

= 1.3566𝜁−1∕3 − 1.2 − 0.296919𝜁1∕3 + O(𝜁2∕3). (17.46)

In contrast to the Graetz series, the Lévêque series cannot be expected to converge for all values of z.
It is useful for small values of z.

Figure 17.5 shows the local Nusselt number, divided by the first term of the Lévêque series so that
this ratio approaches one as 𝜁 approaches zero. The dashed lines indicate how well the Lévêque series
approximates the exact solution. The dimensionless cup-mixing concentration difference Θm, related
to the average Nusselt number by

Θm = 1 − 2
Nuavg
Pe

z
R
, (17.47)

is also shown.
It is occasionally stated that the Lévêque solution should be good for 𝜁 < 0.01. At this value of

𝜁, where 16% of the possible mass transfer has already occurred, the Lévêque solution predicts an
average rate of mass transfer that is too high by 15.4%, while the three-term Lévêque series is accurate
to 0.1%.

For a more detailed discussion of the Graetz problem, see Ref. [25].
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Figure 17.5 Dimensionless cup-mixing concentration difference Θm and the local Nusselt number (divided by
Lévêque’s solution). For comparison with the latter, the corresponding form of the Lévêque series is shown for
two and three terms.

17.4 THE ANNULUS

Axial flow in the annular space between two concentric cylinders provides a convenient situation for
experimental studies of mass transfer. In the work of Lin et al.,[26] the electrode of interest formed part
of the inner cylinder, and the outer cylinder formed the counterelectrode. However, their experimental
results and theoretical treatment have been severely criticized by Friend and Metzner.[27] Ross and
Wragg[28] reviewed the problem and performed additional experiments with a similar arrangement. A
circular tube with no inner cylinder is a limiting case of the annular geometry and has been studied by
Van Shaw et al.[29] The theoretical treatment of this geometry in laminar flow constitutes the Graetz
problem (see Section 17.3). Another limiting case investigated by Tobias and Hickman[30] is the flow
between two plane electrodes.

Let the radius of the outer cylinder be R, and the radius of the inner cylinder be 𝜅R. The electrode of
interest is of length L and is located far enough downstream in the annulus that the velocity distribution
is fully developed before this electrode is reached. A limiting current is reached at this electrode when
the concentration of the reactant drops to zero over the entire surface.

For laminar flow in the annulus, the local, limiting current density should follow the theoretical
expression

in = 0.8546
nFDic∞

si
[

⟨𝑣⟩𝜙
(1 − 𝜅)RDix

]
1∕3

, (17.48)

where c∞ is the bulk concentration, ⟨𝑣⟩ is the average velocity in the annulus, x is the distance from
the upstream edge of the electrode, and 𝜙1/3 is a function of the geometric parameter 𝜅 and is shown in
Figure 17.6 for both the inner and the outer electrode.[27, 28]

Mass transfer in laminar flow in annuli is very similar to the classical Graetz problem, discussed in
Section 17.3. Equation 17.48 is analogous to the Lévêque solution, being useful for electrode lengths
such that L/2R≪Sc ⋅Re. Frequently, this covers the entire range of interest, particularly for electrolytic
solutions where the Schmidt number is large. It is straightforward to apply the method of Lévêque to
mass transfer in annular spaces by using the velocity derivative at the walls of the annulus instead of
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Figure 17.6 Coefficient for mass transfer in annuli.

that for the tube. Thus,

𝜙0 = 1 − 𝜅
2

1 − 𝜅2 − 2 ln(1∕𝜅)
1 − 𝜅2 − (1 + 𝜅2) ln(1∕𝜅)

(17.49)

for the outer electrode, and

𝜙i =
𝜅 − 1

2𝜅
1 − 𝜅2 − 2𝜅2 ln(1∕𝜅)

1 − 𝜅2 − (1 + 𝜅2) ln(1∕𝜅)
(17.50)

for the inner electrode (see also Problem 17.1).
It might be estimated[28] that equation 17.48 is valid for

x < 0.005ReScde, (17.51)

where de = 2(1−𝜅)R is the equivalent diameter of the annulus, Re = de⟨𝑣⟩/v is the Reynolds number,
and Sc = v/Di is the Schmidt number (see the remark below equation 17.47). For Sc = 2000 and
Re = 500, this condition yields

x < 5000de, (17.52)

and is usually satisfied in experiments.
To facilitate comparison of results for different systems and with the standard correlations of heat

and mass transfer, equation 17.48 is frequently written in dimensionless form:

Nu(x) = 1.0767(
𝜙ReScde

x
)

1∕3

, (17.53)

where the Nusselt number is a dimensionless mass-transfer rate:

Nu(x) = −
Nide

c∞Di
. (17.54)

The average value of the Nusselt number, corresponding to the average mass-transfer rate over the
length L, is

Nuavg = 1.6151(
𝜙ReScde

L
)

1∕3

. (17.55)



�

� �

�

342 CONVECTIVE-TRANSPORT PROBLEMS

As 𝜅→ 1, these results apply to the flow between two flat plates, parts of which form plane
electrodes. Then 𝜙 = 1.5, and equations 17.48, 17.53, and 17.55 become

in = 0.9783
nFDic∞

si
( ⟨𝑣⟩

hDix
)

1∕3

, (17.56)

where h = (1−𝜅)R is the distance between the planes,

Nu(x) = 1.2325(
ReScde

x
)

1∕3

, (17.57)

Nuavg = 1.8488(
ReScde

L
)

1∕3

. (17.58)

In Figure 17.7, the curve denoted limited by convection and diffusion depicts the local current density as
a function of position along the electrode. The geometric arrangement, the electrodes, and the diffusion
layer near the cathode are shown in Figure 17.8. The mass-transfer rate is infinite at the upstream edge
of the electrode where fresh solution is brought in contact with the electrode. The current decreases
with increasing x, since the solution in the diffusion layer has already been depleted by the electrode
reaction farther upstream. Later, it will be instructive to compare this current distribution with that
which would be obtained when the ohmic potential drop in the solution is controlling.
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Figure 17.7 Current distribution on planar electrodes.
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Figure 17.8 Plane electrodes in the walls of a flow channel.

The results of Lin et al. [26] for laminar flow fall roughly 17% below the values predicted by
equation 17.55. Part of this discrepancy can be attributed to the fact that some of the diffusion
coefficients were determined by fitting the experimental results to an erroneous equation. Ross and
Wragg’s[28] laminar results are 9 to 13% below those predicted, while those of Tobias and Hickman[30]

scatter within 7% of the values predicted by equation 17.58.
Turbulent flow is characterized by rapid and apparently random fluctuations of the velocity and

pressure about their average values. The turbulence is greater at a distance from solid walls, and
the fluctuations gradually go to zero as the wall is approached. The fluctuations in velocity result in
fluctuations in concentration and also in enhanced rates of mass transfer. Near the wall the fluctuations
go to zero, and mass transfer at the wall is by diffusion. The details of the nature of the fluctuations
are important in the region near the wall where diffusion and turbulent transport contribute roughly
equally to the mass-transfer rate.

In the mass-transfer entry region in turbulent flow, Van Shaw et al. [29] expect the average Nusselt
number in circular tubes to be given by

Nuavg = 0.276Re0.58Sc1∕3(
de

L
)

1∕3

. (17.59)

The experimental results fall 7% below these values but exhibit the same dependence upon the
Reynolds number and the electrode length. The data of Ross and Wragg[28] for the inner cylinder of
an annulus with 𝜅 = 0.5 are correlated by equation 17.59. However, in this geometry, those authors
expect the coefficient to be 9% higher.

The mass-transfer entry region where equation 17.59 applies is much shorter in turbulent flow than
in laminar flow. The results of Van Shaw et al. [29] indicate that this length ranges from 2 diameters to
0.5 diameter as the Reynolds number ranges from 5000 to 75,000.

Beyond this short entry region, the Nusselt number rapidly approaches a constant value, corre-
sponding to fully developed mass transfer. It is surprising that fully developed mass transfer has not
been studied more extensively with electrochemical systems. The results of Lin et al.[26] agree well
with the equation of Chilton and Colburn[31] for heat transfer:

Nuavg = 0.023Re0.8Sc1∕3. (17.60)

Friend and Metzner[27] discuss critically the applicability of such an equation for Schmidt numbers
as large as those encountered in electrochemical systems. However, Hubbard and Lightfoot[32] also
obtained agreement with this equation. The concentration difference Δci (see equation 17.29 or 17.30)
used for this average Nusselt number is the logarithmic average rather than the value at the inlet.
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17.5 TWO-DIMENSIONAL DIFFUSION LAYERS IN LAMINAR FORCED CONVECTION

In 1942, Levich,[9] in treating electrolytic mass transfer to a rotating disk, remarked that in the case of
diffusion, particularly the diffusion of ions, the Schmidt number reaches the value of several thousands.
“Thus, in this case we deal with a peculiar limiting case of hydrodynamics, which may be called the
hydrodynamics of Prandtl’s (or Schmidt’s) large numbers.” Lighthill[33] developed a solution for the
heat-transfer rate applicable when the region of temperature variation is thin compared to the region
of velocity variation. Acrivos[34] realized that this method is applicable to a wide range of problems
when the Schmidt number is large. Thus, for electrochemical systems where the Schmidt number is
generally large, it is frequently possible to obtain the concentration distribution and the rate of mass
transfer for steady problems when the velocity distribution near the electrode is known in advance.
Many results for electrolytic mass transfer can be regarded as special cases of the application of this
method.

The concentration distribution in a thin diffusion layer near an electrode is governed by the equation

𝑣x
𝜕ci

𝜕x
+ 𝑣y

𝜕ci

𝜕y
= Di

𝜕2ci

𝜕y2
. (17.61)

This equation applies to two-dimensional flow past an electrode, with x measured along the electrode
from its upstream end and y measured perpendicularly from the surface into the solution.

Due to the thinness of the diffusion layer compared to the region of variation of the velocity, it is
permissible to approximate the velocity components by their first terms in Taylor’s expansions in the
distance y from the wall:

𝑣x = y𝛽(x) and 𝑣y = −1
2

y2𝛽′(x), (17.62)

where 𝛽(x) is the velocity derivative 𝜕𝑣x/𝜕y evaluated at the wall (y = 0). These expressions for the
velocity, thus, satisfy the applicable form of equation 16.6:

𝜕𝑣x

𝜕x
+

𝜕𝑣y

𝜕y
= 0, (17.63)

as well as the boundary conditions 𝑣x = 𝑣y = 0 at y = 0. With this approximation, equation 17.61
becomes

y𝛽
𝜕ci

𝜕x
− 1

2
y2𝛽′

𝜕ci

𝜕y
= Di

𝜕2ci

𝜕y2
. (17.64)

If the concentration at the surface is a constant c0, then the concentration profiles at different values
of x are similar and depend only on the combined variable

𝜉 =
y
√
𝛽

(
9Di ∫

x
0

√
𝛽dx

)1∕3
. (17.65)

In terms of this similarity variable, the concentration profile is given by

Θ =
ci − c0

c∞ − c0
= 1

Γ(4∕3)
∫
𝜉

0
e−x3

dx, (17.66)

where Γ(4/3) = 0.89298. This function is plotted in Figure 17.1 and has been tabulated.[35]
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The limiting current density (for c0 = 0) is thus

in =
nFDic∞

√
𝛽∕siΓ(4∕3)

(
9Di ∫

x
0

√
𝛽dx

)1∕3
. (17.67)

Equation 17.56 for flow between two plates is a special case of equation 17.67 for which 𝛽 is
independent of x and has the value 6⟨𝑣⟩/h. Equation 17.67 gives the rate of mass transfer if 𝛽 is already
known.

17.6 AXISYMMETRIC DIFFUSION LAYERS IN LAMINAR FORCED CONVECTION

Equation 17.61 also applies to steady mass transfer in axisymmetric diffusion layers, that is, where the
electrode forms part of a body of revolution. Examples would be the annulus and the disk electrode
considered earlier and a sphere. The coordinates x and y have the same meaning; x is measured
along the electrode from its upstream end, and y is measured perpendicularly from the surface into
the solution. It is also necessary to specify the normal distance ℛ(x) of the surface from the axis of
symmetry. An axisymmetric body is sketched in Figure 17.9.

The applicable form of equation 16.6 now is[36]

𝜕(ℛ𝑣x)
𝜕x

+ ℛ
𝜕𝑣y

𝜕y
= 0. (17.68)

Due to the thinness of the diffusion layer, it is still permissible to approximate the velocity components
by their first terms in Taylor’s expansions in y. However, in view of equation 17.68, these now take
the form

𝑣x = y𝛽(x) and 𝑣y = −1
2

y2 (ℛ 𝛽)′

ℛ
, (17.69)

and equation 17.61 becomes

y𝛽
𝜕ci

𝜕x
− 1

2
y2 (ℛ𝛽)′

ℛ
𝜕ci

𝜕y
= Di

𝜕2ci

𝜕y2
. (17.70)

The concentration profile is again given by equation 17.66, now in terms of the similarity variable

𝜉 =
y
√
ℛ𝛽

(
9Di ∫

x
0

√
ℛ𝛽dx

)1∕3
, (17.71)

and the limiting current density is

in =

nFDic∞
√
ℛ𝛽

siΓ(4∕3)
(
9Di ∫

x
0 ℛ

√
ℛ𝛽 dx

)1∕3
. (17.72)

The Lévêque solution for a pipe in Section 17.3 is an example of the application of this similarity
transformation, and equation 17.48 for the annulus is a special case of equation 17.72 in which ℛ and 𝛽
are independent of x and 𝛽 is equal to 4⟨𝑣⟩𝜙/(1−𝜅)R. For the rotating disk in Section 17.2, ℛ = r = x,
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Figure 17.9 Electrode on an axisymmetric body with axisymmetric flow.

and the value of the velocity derivative at the surface is (see equation 15.29 and the first of equations
15.26)

𝛽 = aΩx

√
Ω
𝜈 . (17.73)

Substitution into equation 17.72 yields

in = 0.62045
nFc∞

si

√
Ω𝜈(

Di

𝜈 )
2∕3

, (17.74)

which is seen to be the high-Schmidt-number limit obtained from Figure 17.3 or equation 17.15.

17.7 A FLAT PLATE IN A FREE STREAM

The steady, laminar hydrodynamic flow parallel to a flat plate, beginning at x = 0 and extending along
the positive x axis, has been treated extensively. The value of the velocity derivative at the surface is[37]

𝛽 = 0.33206𝑣∞

√
𝑣∞
𝜈x

, (17.75)

where 𝑣∞ is the value of 𝑣x far from the plate. Substitution into equation 17.67 yields

in = 0.3387
nFDic∞

si
(
𝑣∞
𝜈x

)
1∕2

( 𝜈
Di

)
1∕3

. (17.76)

The average Nusselt number for an electrode of length L is

Nuavg =
siLiavg

nFDic∞
= 0.6774Re1∕2

L Sc1∕3, (17.77)

where ReL = L𝑣∞/v. These results apply for laminar flow. The flow becomes turbulent at a Reynolds
number of about 105.

Electrochemical systems for which these results are directly applicable are not frequently encoun-
tered. Unfortunately, the analysis for a flat plate in a free stream has been applied to annular geometries
and the flow between two flat plates,[38–40] which should follow equations 17.48 and 17.56.
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Figure 17.10 Sketch of Taylor vortices. Source: After H. Schlichting,[41] with permission of McGraw-Hill Book
Company.

17.8 ROTATING CYLINDERS

Mass transfer between concentric cylinders, the inner of which is rotating with an angular speed Ω, has
been studied by Eisenberg et al.[42] and by Arvia and Carrozza.[43] If the flow between the electrodes
is tangential and laminar, it does not contribute to the rate of mass transfer since the flow velocity
is perpendicular to the mass flux. At higher rotation speeds, the flow is still laminar but no longer
tangential, and so-called Taylor vortices are formed. Superimposed on the tangential motion is a radial
and axial motion, outward at one point and inward at a different axial position (see Figures 17.10 and
17.11). At still higher rotation speeds, the flow becomes turbulent. Mass transfer in this turbulent flow,
which is achieved at lower rotation speeds if the inner cylinder rotates rather than the outer, has been
studied and is reported in the above-mentioned works.

By the nature of the geometric arrangement, the current distribution is uniform. The results have
been correlated by the equation

in = 0.0791
nFDic∞

sidR
(
Ωd3

R

2𝜈dL
)

0.70

( 𝜈
Di

)
0.356

, (17.78)

or, in dimensionless form,

Nu = 0.0791(
Re dR

dL
)

0.70

Sc0.356, (17.79)
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Figure 17.11 Photograph of Taylor vortices at a Reynolds number of 143 with r0/ri = 1.144. Source: From
Donald Coles,[44] with permission of the author and of Cambridge University Press.

where dR is the diameter of the inner, rotating cylinder, dL is the diameter of the cylinder with the
limiting current, Nu = insidR/nFDic∞ is the Nusselt number, and Re = Ωd2

R∕2𝜈 is the Reynolds
number.

In the work of Eisenberg et al.,[42] the limiting electrode was the inner, rotating electrode, and
dR = dL. The results, for which the Reynolds number ranged from 112 to 162,000 and the Schmidt
number from 2230 to 3650, agree with equations 17.78 and 17.79 within 8.3%. Arvia and Carrozza[43]

measured the limiting rates of mass transfer at the stationary, outer electrode.
Rotating cylinders were chosen to illustrate the behavior of electrochemical systems in Chapter 1.
The behavior of the interface, particularly the electrode kinetics, is important in determining the

behavior of an electrochemical system. In selecting a system for the study of electrode kinetics, care
should be used to avoid complications not essential to the electrode kinetics.

The rotating-disk electrode has been popular for the study of moderately fast electrode reactions
because the hydrodynamic flow is well defined, concentration variations can be calculated, and the
surface is uniformly accessible from the standpoint of diffusion and convection (see Sections 15.4
and 17.2). However, it should be realized that the primary current distribution is not uniform; and
this problem becomes more serious for faster reactions, larger current densities, and larger disks (see
Sections 18.2 and 18.3 and Chapter 21).

Perhaps more attention should be devoted to the possibility of using rotating cylindrical electrodes.
Here, both the primary and mass-transfer-limited current distributions are uniform on the electrodes,
and both the ohmic potential drop and the concentration change at the electrodes can be accurately
calculated even though the flow is turbulent. It might be more difficult to maintain cleanliness in such
a system than with a rotating-disk electrode.
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Another way to avoid concentration variations in studies of the kinetics of moderately fast electrode
reactions is to use a step change in current and follow the change in electrode potential in the time
before the concentration can change significantly. For studies of the electrodeposition of copper by
this method, Mattsson and Bockris[45] used small spherical electrodes, where the primary current
distribution should be uniform and the ohmic potential drop can be calculated. Current-step methods
should not be used if the primary current distribution is not uniform.

17.9 GROWING MERCURY DROPS

The limiting diffusion current to a dropping mercury electrode finds important applications in the
quantitative analysis of electrolytic solutions. Let the mercury flow at a constant rate from the capillary
tube to the drop growing at the tip, so that the radius increases as

r0 = 𝛾t1∕3. (17.80)

The diffusion layer on the drop has a thickness proportional to
√

t. Ilkovič[46, 47] and also Mac Gillavry
and Rideal[48] treated the problem with the assumption that the diffusion layer is thin compared to the
radius of the drop.

For radial growth of the drop, without tangential surface motion, the limiting-current density is

in =
nFc∞

si
(

7Di

3𝜋t
)

1∕2 ⎛
⎜
⎝
1 + 1.0302

D1∕2
i t1∕6

𝛾
⎞
⎟
⎠
. (17.81)

This equation, without the correction term, was first derived by Ilkovič. The correction term, which
accounts for the greater thickness of the diffusion layer and for which at least three different values
of the coefficient can be found in the literature, was first derived correctly by Koutecký.[49] We have
carried this slightly further[50] to express the coefficient in terms of gamma functions:

1.0302 = 16
11

(3
7
)

1∕2Γ(15∕14)
Γ(11∕7)

. (17.82)

The total current to the drop, averaged over the lifetime T of the drop, then takes the form

Iavg = 3.5723
nFc∞

si
D1∕2

i m2∕3T1∕6
⎡
⎢
⎢
⎣

1 + 1.4530(
D3

i T

m2
)

1∕6⎤
⎥
⎥
⎦

, (17.83)

where m is the volumetric flow rate of the mercury (cm3/s).
Since, in the absence of tangential surface motion, the convective flow is well defined, the dropping

mercury electrode has frequently been used for the determination of diffusion coefficients.

17.10 FREE CONVECTION

Free convection is a hydrodynamic flow that results from density variations in the solutions produced,
in the cases of interest here, by concentration variations near the electrode. Free convection at a vertical
plate electrode has been studied extensively. For deposition of a metal, the solution density is lower
near the electrode than in the bulk, and an upward flow near the electrode occurs. This upward flow
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provides convective transport of the reactant to the electrode diffusion layer. Ibl[51] has reviewed the
experimental work on this problem and reports the limiting current density to an electrode of length L.

iavg = 0.66
nFDic∞

si
[

g(𝜌∞ − 𝜌0)
𝜌∞Di𝑣L

]
1∕4

(17.84)

or

Nuavg =
siLiavg

nFDic∞
= 0.66(ScGr)1∕4, (17.85)

where

Gr =
g(𝜌∞ − 𝜌0)L3

𝜌∞𝜈2
(17.86)

is the Grashof number. These results apply to values of ScGr between 104 and 1012.
The problem of free convection in a binary solution for a vertical plate has been treated theoretically.

The coefficient in equation 17.85 is expressed as a function of the Schmidt number in Table 17.2.
Since the Schmidt number for electrolytic solutions is on the order of 1000, the agreement with
equation 17.85 is good.

Free convection in solutions with an excess of supporting electrolyte is complicated by the fact
that the concentration of the supporting electrolyte also varies in the diffusion layer and, therefore,
contributes to the variation of the density. Approximate methods of estimating the interfacial density
difference in the Grashof number consequently have been introduced, a popular method being that of
Wilke et al.[52] This subject is considered further in Section 19.6.

For turbulent natural convection at a vertical plate, Fouad and Ibl[53] obtained the relation

Nuavg = 0.31(ScGr)0.28, (17.87)

applicable in the range 4× 1013 < ScGr< 1015.
Schütz[54] investigated experimentally free-convection mass transfer to spheres and horizontal

cylinders and obtained for the average Nusselt number for spheres

Nuavg = 2 + 0.59(ScGr)1∕4 (17.88)

in the range 2× 108 <ScGr< 2× 1010 and for cylinders

Nuavg = 0.53(ScGr)1∕4 (17.89)

TABLE 17.2 Coefficient C expressing the rate of mass transfer for free convection at a vertical
plate from a binary fluid with a uniform density difference between the vertical surface and the
bulk solution

Sc C Sc C Sc C

0.003 0.1816 0.72 0.5165 10 0.6200

0.01 0.2421 0.733 0.5176 100 0.6532

0.03 0.3049 1 0.5347 1000 0.6649

∞ 0.670327

Source: Refs. [55–57].
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for ScGr< 109. In forming these dimensionless groups, L = d, the diameter of the sphere or cylinder.
Schütz also measured local Nusselt numbers using a sectioned-electrode technique.

Acrivos[58] has obtained a solution of the laminar free-convection boundary-layer equations for
arbitrary two-dimensional and axisymmetric surfaces in the asymptotic limit Sc→∞. These results
should be of some interest here since the Schmidt number is large for electrolytic solutions. The local
limiting current density for two-dimensional surfaces is predicted to be

in = 0.5029
nFDic∞

si
[

g(𝜌∞ − 𝜌0)
𝜌∞Di𝜈

]
1∕4

(sin 𝜖)1∕3

[
∫x

0(sin 𝜖1∕3dx)
]1∕4

, (17.90)

and the average limiting current density from x = 0 to x = L is

iavg = 0.6705
nFDic∞

Lsi
(ScGr)1∕4[1

L
∫

L

0
(sin 𝜖)1∕3dx]

3∕4

, (17.91)

where 𝜖(x) is the angle between the normal to the surface and the vertical. For a vertical electrode, sin
𝜖 = 1, and the coefficient 0.6705 of equation 17.91 can be compared directly with the experimental
coefficient of equation 17.84 (or with the theoretical value 0.670327 in Table 17.2).

For an axisymmetric surface, where ℛ(x) is again the distance of the surface from the axis of
symmetry, the local limiting current density is

in = 0.5029
nFDic∞

si
[

g(𝜌∞ − 𝜌0)
𝜌∞Di𝜈

]
1∕4

(ℛ sin 𝜖)1∕3

[
∫x

0 (ℛ4 sin 𝜖)1∕3dx
]1∕4

. (17.92)

The axis of symmetry should coincide with the direction of the gravitational acceleration in order to
assure an axisymmetric velocity distribution.

From the results of Acrivos, the predicted coefficients of (ScGr)1/4, in the expressions for the
average Nusselt number for the sphere and the horizontal cylinder, are 0.58 and 0.50, respectively,
which can be compared with the experimental coefficients in equations 17.88 and 17.89.

Free convection at a horizontal plate is essentially different from that discussed above since there is
no chance for a laminar boundary layer to form and sweep fresh solution past the plate. At a horizontal
electrode with a small density gradient, the solution at first remains stratified. With a higher density
difference, a cellular flow pattern results; and for still higher density differences, the flow is turbulent.
In the turbulent region, Fenech and Tobias[59] proposed the relation

in = 0.19
nFDic∞

si
[

g(𝜌∞ − 𝜌0)
𝜌∞𝜈Di

]
1∕3

, (17.93)

for electrodes with a minimum dimension greater than 2 cm.

17.11 COMBINED FREE AND FORCED CONVECTION

When there is the possibility of effects of free convection superimposed on forced convection, the
situation becomes essentially more complicated. Fortunately, it appears that one effect or the other
predominates in the mass-transfer process, depending upon the values of the Reynolds and Grashof
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numbers. At horizontal electrodes, Tobias and Hickman[30] found that free convection predominates
and the average rate of mass transfer is given by equation 17.93 if

Ldeg(𝜌∞ − 𝜌0)
⟨𝑣⟩𝜈𝜌∞

> 923, (17.94)

where L is the electrode length and de is the equivalent diameter of the channel. Otherwise, forced
convection predominates, and the average rate of mass transfer is given by equation 17.58. These
results apply to laminar flow (Re< 2100). For turbulent flow, Tobias and Hickman found that forced
convection predominates.

Acrivos[60] has analyzed the combined effect of free and forced convection for surfaces that are
not horizontal and also found that the transition region between predominance of free convection and
predominance of forced convection is usually narrow.

The rule to follow is to calculate the mass-transfer rate separately for free convection and again for
forced convection and to assume that the higher value applies.

17.12 LIMITATIONS OF SURFACE REACTIONS

The work described above is restricted to processes at the limiting current where the concentration
of the reactant at the surface has a constant value of zero. Most industrial processes are operated
below the limiting current, and the kinetics of the surface reaction then influences the distribution of
current. In this chapter on convective-transport problems, the ohmic potential drop is not considered.
Thus, we must assume here that the ohmic potential drop is either negligible or constant for all parts
of the electrode in question. The sum of the surface overpotential and the concentration overpotential
is then constant, and the current distribution is determined by a balance of these overpotentials. The
concentration and the current density at the surface vary with position on the electrode and must adjust
themselves so that the total overpotential is constant. The more general problem involving the ohmic
potential drop is discussed in Chapter 21.

Under these conditions, the reaction rate at the electrode can be expressed in terms of the
concentration at the surface, and the problem is similar to nonelectrolytic catalytic problems.[61–64]

The convective-transport problem can then be reduced to an integral equation relating the reaction
rate to an integral over the surface concentration at points upstream in the diffusion layer. Other,
approximate methods have also been developed for calculating the surface concentration and reaction
rate as a function of position on the electrode. These methods, including the integral-equation method,
should also provide a useful starting point for attacking the more general problem involving the ohmic
potential drop.

On the basis of the Lighthill transformation (see Sections 17.5 and 17.6), one can express[19] the
flux to the surface in terms of the (unknown) surface concentration

𝜕ci

𝜕y

|||||||y=0
= −

√
ℛ𝛽

Γ(4∕3)
∫

x

0

dc0

dx

|||||||x=x0

dx0
(
9Di ∫

x
x0
ℛ
√
ℛ𝛽dx

)1∕3
(17.95)

c0(x) − c∞ = −
(Di∕3)1∕3

Γ(2∕3)
∫

x

0

𝜕ci

𝜕y

||||||| y = 0
x = x0

ℛ(x0)dx0
(
∫x

x0
ℛ
√
ℛ 𝛽dx

)2∕3
. (17.96)

In these equations, one can set ℛ = 1 for a two-dimensional surface. These integrals contain the
important part of the appropriate solutions of the diffusion-layer equations 17.64 and 17.70 since they
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relate the reaction rate and the surface concentration. The solution of the integral equation resulting
from the introduction of the rate expression can then be carried out without further reference to the
original partial differential equation.

17.13 BINARY AND CONCENTRATED SOLUTIONS

It was shown in Section 11.4 that the concentration of a binary electrolyte also obeys the equation of
convective diffusion, even during the passage of current. The diffusion coefficient D of the electrolyte
then is to be used (see equations 11.21 and 11.22). This means that many of the results of this chapter
should be applicable to binary electrolytes. Two differences must be kept in mind. The first is that D
appears in the equation of convective diffusion, as noted above. The second is that migration makes
a substantial contribution to the current density even at the limiting current. For deposition of the
cation, this fact is reflected in the relationship 11.27 between the current density and the concentration
derivative at the electrode (see also Problems 11.2 and 11.3).

Furthermore, the ohmic potential drop is much more important in a binary solution than in a solution
with supporting electrolyte. This means that decomposition of the solvent may begin at one point on
the electrode before a limiting current has been reached over all the remainder of the electrode. The
limiting-current plateau on a current–potential plot is then difficult or impossible to discern.

Levich[9] originally treated the rotating disk for cation deposition from a binary electrolyte, his
equation being

in = −0.62
z+𝜈+Fc∞

1 − t+

D2∕3Ω1∕2

𝜈1∕6
. (17.97)

The Ilkovič equation for a growing mercury drop has been extended to a binary electrolyte by Lingane
and Kolthoff,[65] with the result

in = −
z+𝜈+Fc∞

1 − t+
( 7D

3𝜋t
)

1∕2

, (17.98)

again for deposition of the cation.∗ For deposition of the cation from a binary electrolyte to a vertical
electrode in free convection, the average limiting current density would be given by

iavg = −C
z+𝜈+FDc∞

1 − t+
[

g(𝜌∞ − 𝜌0)
𝜌∞D𝜈L

]
1∕4

, (17.99)

where C is to be taken from Table 17.2 with Sc = v/D. In all these equations, c∞ refers to the bulk
concentration of the electrolyte, v+c∞ being the bulk concentration of the reacting cation.

Transport theory valid for dilute solutions has been applied fruitfully to electrochemical systems. It
should be pointed out, however, that equations valid for concentrated solutions and multicomponent
transport are available and have been developed in Chapter 12. Transport theory for solutions of a single
salt is moderately simple and has been applied to electrodeposition on a rotating-disk electrode[66, 67]

∗Note, however, that the formula given by Lingane and Kolthoff for anion reduction is not correct. For reduction of iodate
ions from a solution of KIO3 according to the reaction IO−

3 + 3H2O + 6e− → I− + 6OH−, we calculate (by the methods in
Chapter 19) the value IL/ID = 0.6489 for the ratio of the limiting current IL to the value ID prevailing in the absence of migration.
This compares favorably with the experimental value of 0.65 reported by Lingane and Kolthoff. Neither their formula (yielding
0.84) nor one due to Heyrovsky (yielding 0.74) works nearly as well.

For anion reduction, there is never a binary solution of KIO3 near the electrode since the product ions I− and OH− are always
present. Consequently, the calculations are more complex and must be treated according to the development in Chapter 19.
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and deposition from a stagnant solution.[68] Furthermore, transport properties for such solutions are
frequently available in the literature (see Chapter 14).

Multicomponent transport theory could be applied to certain simple geometries that would involve
numerical solution of ordinary differential equations for the concentration profiles. However, in most
cases, data for all the necessary transport properties are incomplete,[69] and a rigorous treatment is
precluded.

The properties of the solution (𝜌, v, Di, etc.) have been treated largely as constant in this chapter.
This is not completely valid since they depend on the composition. However, there is something to
be said for such constant-property solutions. As soon as one accounts for variations of properties, one
is faced with numerical solutions for each particular case; this means each particular concentration
difference and temperature for each electrolytic system. One could produce an encyclopedia of results
that would be of little general interest. The constant-property solutions, on the other hand, are much
simpler, have approximately the correct behavior, and show more clearly the consequences of the
physical phenomena. They illustrate the analogy between heat and mass transfer and allow the results
to be used in both fields. On the whole, the constant-property solutions are superior from a pedagogic
point of view. Empirical or theoretical corrections to constant-property solutions will have to be fairly
simple in order to have any permanent value. (Of course, the determination and explanation of how
the properties vary with composition are important matters of great interest.)

One then uses the constant-property solutions with the best average properties available. Fortunately,
there is reason to believe that integral diffusion coefficients measured, say, with a rotating-disk electrode
at the limiting current, would also be applicable to other geometries even though there is migration
in the diffusion layer[70] and the transport properties vary with composition in the diffusion layer.[34]

Similarly, integral diffusion coefficients for polarography with growing mercury drops should be the
same as those measured with an electrode at the limiting current at the end of a stagnant capillary. This
possibility is discussed in Section 14.4.

PROBLEMS

17.1 The equation of convective diffusion for mass transfer in laminar flow in an annulus is given
by equation 17.20. Neglect the axial diffusion term in the following analysis. The velocity
profile is given by

𝑣z = Cr2 + B ln r + A.

The constants A and B can be selected so that the velocity vanishes at r =𝜅R and r =R:

B = −CR2 ( 1 − 𝜅2

ln(1∕𝜅)
) , A = CR2 (−1 + 1 − 𝜅2

ln(1∕𝜅)
ln R) .

The average velocity in the annulus is then given by

⟨𝑣⟩ = CR2

2
( 1 − 𝜅2

ln(1∕𝜅)
− 1 − 𝜅2) .

(a) Show that the velocity profile near the outer wall r =R can be expressed as

𝑣z = 𝛽0y [1 − 𝛾0
y
R
+ O (

y2

R2
)]
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where
y = R − r

is the distance from the wall, and

𝛽0 = 4⟨𝑣⟩
(1 − 𝜅)R

𝜙0, 𝜙0 = 1 − 𝜅
2

1 − 𝜅2 − 2 ln(1∕𝜅)
1 − 𝜅2 − (1 + 𝜅2) ln(1∕𝜅)

,

2𝛾0 = −
1 − 𝜅2 + 2 ln(1∕𝜅)
1 − 𝜅2 − 2 ln(1∕𝜅)

.

(b) Show that the velocity profile near the inner wall r =𝜅R can be expressed as

𝑣z = 𝛽iy [1 − 𝛾i
y
R
+ O (

y2

R2
)]

where
y = r − 𝜅R

is the distance from the wall, and

𝛽i =
4⟨𝑣⟩

(1 − 𝜅)R
𝜙i, 𝜙i =

𝜅 − 1
2𝜅

1 − 𝜅2 − 2𝜅2 ln(1∕𝜅)
1 − 𝜅2 − (1 + 𝜅2) ln(1∕𝜅)

,

2𝜅𝛾i =
1 − 𝜅2 + 2𝜅2 ln(1∕𝜅)
1 − 𝜅2 − 2𝜅2 ln(1∕𝜅)

.

(c) By the substitution

𝜂 = y(
𝛽i

9Diz
)

1∕3

, Z = (
9zDi

𝛽iR3
)

1∕3

, Θ =
ci − c0

cb − c0
,

transform the equation of convective diffusion for the diffusion layer near the inner
electrode to

3𝜂[1 − 𝛾i𝜂Z + O(𝜂2Z2)] (Z
𝜕Θ
𝜕Z

− 𝜂𝜕Θ
𝜕𝜂

) = 𝜕2Θ
𝜕𝜂2

+ Z
𝜅 + 𝜂Z

𝜕Θ
𝜕𝜂

.

The boundary conditions for this equation are

Θ = 0 at 𝜂 = 0, Θ = 1 at 𝜂 = ∞

(d) Assume a solution of the form

Θ = Θ0(𝜂) + ZΘ1(𝜂) + O(Z2).

By substituting this form into the equation of part (c), expanding for small values of Z, and
setting the coefficient of each power of Z equal to zero, show that Θ0 and Θ1 satisfy the
equations

Θ′′
0 + 3𝜂2Θ′

0 = 0.

Θ′′
1 + 3𝜂2Θ′

1 − 3𝜂Θ1 = (3𝛾i𝜂3 − 1
𝜅)Θ

′
0.
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(e) Show that the appropriate solutions of the equations of part (d) are

Θ0 = 1
Γ(4∕3)

∫
𝜂

0
e−x3

dx,

Θ1 =
𝛾i∕5

Γ(4∕3)
𝜂2e−𝜂

3 −
2𝛾i − 5∕𝜅
10Γ(4∕3)

𝜂 ∫
∞

𝜂
e−x3

dx,

so that

Θ′
0(0) =

1
Γ(4∕3)

and Θ′
1(0) = −

2𝛾i − 5∕𝜅
10

.

(f) Show that the average Nusselt number for the inner electrode is

Nuavg = 1.6151(
𝜙iReScde

L
)

1∕3

− (1 − 𝜅)
2𝛾i − 5∕𝜅

5
− O( L

deReSc
)

1∕3

.

(g) In a similar manner, show that the average Nusselt number for the outer electrode is

Nuavg = 1.6151(
𝜙0ReScde

L
)

1∕3

− (1 − 𝜅)
2𝛾0 + 5

5
+ O( L

deReSc
)

1∕3

.

(h) Show that as 𝜅 approaches 1, both 𝛾i, and 𝛾0 approach 1/(1−𝜅) and the average Nusselt
number for flow between two plane electrodes can be expressed as

Nuavg = 1.8488(
ReScde

L
)

1∕3

− 0.4 + O( L
deReSc

)
1∕3

.

Estimate the error in equation 17.58 when L = 0.005ReScde.

(i) Show that 𝛾0 approaches 1

2
as 𝜅 approaches zero and that the average Nusselt number for

a circular pipe can be expressed as

Nuavg = 1.6151(
ReScde

L
)

1∕3

− 1.2 + O( L
deReSc

)
1∕3

.

(Compare equation 17.45.)
(j) Show that as 𝜅 approaches zero, 𝛾i approaches 1/2𝜅 and 𝜙i approaches 1/2𝜅 ln(1/𝜅).

Discuss how the error in equation 17.55 behaves for small values of 𝜅.

17.2 Derive equation 17.15 by means of the velocity profile for distances close to the disk. Note
that Γ(4/3) = 0.89298 and Γ(5/3) = 0.90275.

17.3 Show that the concentration profile in the diffusion layer near a rotating disk is given, at high
Schmidt numbers, by Figure 17.1 when the dimensionless variable 𝜉 is given by

𝜉 = z( a𝜈
3Di

)
1∕3√Ω

𝜈 = 𝜁(aSc
3

)
1∕3

.

Figure 17.1 is a plot of equation 17.66.
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17.4 It is shown in Section 11.4 that a binary electrolyte also obeys the equation of convective
diffusion with the diffusion coefficient D of the electrolyte. Show that Figure 17.3 applies
to metal ion deposition on a rotating disk from such a solution (see equation 11.27), if the
ordinate is taken to represent

−int−

z+𝜈+F(c∞ − c0)
√
𝜈Ω

and the abscissa is taken to represent v/D. The concentration c of the electrolyte is taken to be
c0 at the electrode surface and c∞, in the bulk solution.

17.5 Use the development in Section 17.6 to show that the limiting current density to a ring
electrode, of inner radius r1, embedded in a rotating, insulating disk is given by

in = 0.62045
nFc∞

si

√
Ω𝜈(

Di

𝜈 )
2∕3

r

(r3 − r3
1)1∕3

.

17.6 (a) Show that the average current density to a two-dimensional electrode of length L and
obeying equation 17.67 is

ia𝑣g =
nFc∞

6LsiΓ(4∕3)
[9Di ∫

L

0

√
𝛽dx]

2∕3

.

Use this equation and 𝛽 = 6⟨𝑣⟩/h to obtain equation 17.58.
(b) Show that the total current to an axisymmetric electrode obeying equation 17.72 is

I =
nFc∞

siΓ(4∕3)
𝜋
3
[9Di ∫

L

0
ℛ
√
ℛ𝛽dx]

2∕3

.

(c) Show that the total current to an axisymmetric electrode obeying equation 17.92 is

I = 1.341
nFDic∞

si
[

g(𝜌∞ − 𝜌0)
𝜌∞Di𝑣

]
1∕4

𝜋[∫
L

0
(ℛ4 sin 𝜖)1∕3dx]

3∕4

.

17.7 One can derive limiting-current expressions for the binary electrolyte by writing (1/c∞)𝜕ci/𝜕y
at y = 0 from the results given for solutions with supporting electrolyte. With Di replaced by
D, the same expression must apply to (1/c∞)𝜕c/𝜕y at y = 0 for the binary electrolyte. Use this
procedure to show that equation 17.99 is the correct expression for free convection from a
binary electrolyte to a vertical electrode and to show that the limiting current density for cation
deposition from a binary electrolyte in the rotating-cylinder system is

in = −
z+𝜈+FDc∞

1 − t+

0.0791
dR

(
Ωd3

R

2𝜈dL
)

0.70( 𝜈
D

)0.356
.

17.8 Equation 17.95 involves a Stieltjes integral and should perhaps be written as

𝜕ci

𝜕y

|||||||y=0
= −

√
ℛ𝛽

Γ(4∕3)
∫

x0=x

x0=0

dc0
(
9Di ∫

x
x0
ℛ
√
ℛ𝛽dx

)1∕3
.
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Derive the Levich formula for the rotating disk by pretending that c0 changes discontinuously
from c∞, to 0 at r = 0. (For the rotating disk, ℛ = r and 𝛽 = aΩr

√
Ω∕𝜈.) Derive the result of

Problem 17.5 by assuming that c0 changes discontinuously from c∞ to 0 at r = r1 and that
dc0/dx = 0 elsewhere.

17.9 A flat-blade impeller is used to stir the solution above a stationary plane and thereby creates
a cyclone flow. This flow is rotating at a distance above the plane and therefore has a radial
(centrifugal) pressure gradient, the pressure being lower in the center. Adjacent to the stationary
plane, the fluid cannot rotate as fast. Consequently, the pressure gradient causes the fluid to
flow inward near the plane. An axial flow, away from the stationary plane, is also generated
by the radial flow. The velocity derivatives at the surface of the plane can be expressed as

𝜕𝑣r

𝜕z

|||||||z=0
= −Ar,

𝜕𝑣𝜃
𝜕z

|||||||z=0
= Br,

where A is a positive constant, related to the kinematic viscosity and the rotation speed of the
fluid above the plane. A disk electrode of radius r0 is embedded in the plane and is centered
with the centrifugal flow described above. The remainder of the stationary plane is insulating.
We wish to investigate the limiting-current distribution for a species that reacts at the disk
electrode.
(a) Write down the governing differential equation that we should wish to solve for the

diffusion layer on the disk electrode in an electrolytic solution. Be sure to specify the
coordinate system you are using, and make relevant substitutions for the velocity profiles.

(b) What boundary conditions should be applied to the differential equation of part (a)?
(c) Obtain a quantitative expression for the distribution of limiting current density on the disk

electrode.
(d) Describe qualitatively the distribution of limiting current density on the disk electrode. Is

it uniform or nonuniform?

17.10 In connection with Figure 17.3, it is stated that the diffusion coefficient can be obtained graph-
ically from the limiting current density on a rotating-disk electrode without a trial-and-error
calculation. Following Bruckenstein,[71] show how the diffusion coefficient can be obtained
analytically from the limiting current density when equation 17.15 (valid for high Schmidt
numbers) is applicable.

17.11 Small amounts of mercuric ions are to be removed from a sodium chloride solution by plating
at the limiting current on the inside of tubes 0.05 cm in diameter. The mercury concentration
is to be reduced from 5 to 0.002 ppm. The average velocity in each tube is 0.15 cm/s, and the
counterelectrode is located upstream of the tubular electrode. The molar mass of mercury is
200.59 g/mol.
(a) Should fully developed, laminar flow within the tubes be expected in this particular

situation?
(b) How long should the tubes be in order to meet the design specifications? The diffusion

coefficient of mercuric ions can be taken to be 8.5× 10−6 cm2/s.
(c) How much current flows to each tube, assuming no side reactions, and what is the current

density per unit of cross-sectional area of the tube? In principle, does one need to know
the answer to part (b) in order to answer part (c)?

(d) Discuss the likelihood of side reactions in this electrode.
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17.12 In a pulsed plating apparatus, the diffusion layer can be approximated as a stagnant region
of thickness 𝛿. The reactant moves in this region by diffusion alone (migration is negligible).
Successive durations of time 𝜏1 = 1 second with no current flow are interspersed with durations
of time 𝜏2 = 0.1 second, where plating is carried out at a limiting-current condition. Sketch
the current density that you would expect as a function of time, and indicate also on the sketch
the magnitude of the steady limiting current density that would result if the electrode were
maintained at a limiting current all the time. Suggest a formula for this steady limiting current
density. Under conditions of pulsed plating, compare the magnitude of the limiting current
density averaged over all time with the steady limiting current density. Also compare the
limiting current density averaged over the time of 𝜏2 of the pulse to the steady limiting current
density. (Qualitative comparisons only.)

17.13 An aqueous solution contains 0.02 M potassium ferricyanide and 0.05 M potassium ferro-
cyanide, K4Fe(CN)6, and the supporting electrolyte is 1 M sodium hydroxide.
(a) Estimate the limiting current density for cathodic reduction of the ferricyanide ion on a

disk electrode rotating in this solution at 600 rpm (10 Hz).
(b) Estimate the value of the concentration of ferrocyanide ion at the electrode surface under

the limiting-current conditions of part (a).
For this problem, assume that dilute-solution theory applies, that the temperature is 25∘C,
and that the kinematic viscosity of the solution is 0.01 cm2/s.

17.14 Describe the principles and methods by which you would estimate the rate of corrosion of a
copper disk rotating in sea water that is saturated with oxygen.

NOTATION

a 0.51023
ci concentration of species i, mol/cm3

de equivalent diameter of annulus, cm
D diffusion coefficient of electrolyte, cm2/s
Di diffusion coefficient of species i, cm2/s
F Faraday’s constant, 96,487 C/mol
g acceleration of gravity, cm/s2

Gr Grashof number
h distance between walls of a flow channel, cm
H dimensionless normal velocity for rotating disk
in normal component of current density at an electrode, A/cm2

J amount of material transferred to the wall, mol/s
L length of electrode, cm
m volumetric flow rate of mercury, cm3/s
Mk coefficient in Graetz series
n number of electrons transferred in electrode reaction
Ni flux density of species i, mol/cm2⋅s
Nu Nusselt number
O of order
Pe Péclet number
r radial position coordinate, cm
r0 radius of growing mercury drop, cm
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R radius of outer cylindrical electrode, cm
Rk Graetz function
Re Reynolds number
ℛ defines position of surface for an axisymmetric body, cm

si stoichiometric coefficient of species i in electrode reaction
Sc Schmidt number
t time, s
t+ cation transference number
T life time of drop, s
v fluid velocity, cm/s
⟨𝑣⟩ average velocity, cm/s
x distance measured along an electrode surface, cm
y normal distance from surface, cm
z axial distance in cylindrical coordinates, cm
zi charge number of species i
𝛽 velocity derivative at the solid electrode, s−1

𝛾 constant in rate of growth of mercury drops, cm/s1/3

Γ(4/3) 0.89298, the gamma function of 4/3
𝜖 angle between the normal to a surface and vertical, rad
𝜁 dimensionless axial distance for rotating disk or Graetz problem (see equation 15.25 or

17.23)
𝜂 similarity variable for Lévêque solution
Θ dimensionless concentration
𝜅 ratio of radii of inner to outer cylinder
𝜆k eigenvalues for Graetz problem
v kinematic viscosity, cm2/s
v+ number of cations produced by dissociation of one molecule of electrolyte
𝜉 dimensionless radial distance
𝜉 dimensionless similarity variable (see equations 17.65 and 17.71)
𝜌 density, g/cm3

𝜙 dimensionless velocity derivative at the surface
Ω rotation speed, rad/s

Subscripts

avg average
b inlet
0 at the electrode surface
∞ in the bulk solution
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CHAPTER 18

APPLICATIONS OF POTENTIAL THEORY

The formulation of governing relations for electrochemical systems leads to complex coupled nonlinear
problems that are not generally amenable to analytic solutions except with stringent restrictions and
approximations and a loss of generality. The last chapter developed the situation when migration can
be ignored and similar solutions and methodology can be adopted from heat transfer and nonionic mass
transfer. Another classic approach is to consider current and potential distributions when concentration
gradients can be ignored and the potential is governed by Laplace’s equation. The motivation could
be to achieve a uniform metal distribution in electrodeposition. Solutions of Laplace’s equation are
developed in the present chapter.

Intermediate cases between the extremes of Chapters 17 and 18 can be developed. Chapter 19
extends Chapter 17 by showing how the limiting current is modified when the solution is between a
binary electrolyte and a well-supported solution, and Chapter 21 shows how to treat situations where
it is not possible to assure either the lack of migration (as in Chapter 17) or the lack of concentration
gradients (as in this chapter).

In this chapter on solutions of Laplace’s equation, we first treat the approximation of neglecting the
surface overpotential 𝜂s. This leads to the so-called primary distribution (of current or potential) where
the potential in solution adjacent to an electrode is uniform along the surface of the electrode. One
becomes interested in the current distributions on electrodes and the resistances of electrochemical
cells.

The primary current distribution is the most nonuniform approximation to an actual current
distribution. One wants to relax this approximation by next considering the effects of electrode
polarization. This requires us to adopt an explicit form of the electrode kinetics, and it leads to greater
complexity, both in how to solve the problem and how to deal with a large number of physical
parameters. However, it could still be regarded as simple in that the geometry and use of Laplace’s
equation remain. Some solution methods are still valid or can be extended to cover the modification of
the boundary conditions. We should also realize that the concept of the potential remains well defined
because the solution is of uniform composition.

Electrochemical Systems, Fourth Edition. John Newman and Nitash P. Balsara.
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One last case deserves mention in this chapter, that of a uniform current density. This case focuses
us on the maximum potential variation that can occur along the surface of an electrode. This can be
expanded into an important principle of electrochemical engineering. Although the primary distribution
focuses on nonuniform current density and cell resistance, the relative current density distribution is
independent of the scale (size) of the system and of the conductivity of the solution. But at uniform
current density, the maximum potential variation over the surface of an electrode is proportional to the
size L of the system and inversely proportional to the conductivity 𝜅 of the solution.

18.1 SIMPLIFICATIONS FOR POTENTIAL-THEORY PROBLEMS

When concentration gradients in the solution can be ignored, substitution of equation 16.1 into equation
16.4 yields

𝐢 = −𝜅∇Φ, (18.1)

where
𝜅 = F2

∑

i

z2
i uici (18.2)

is the conductivity of the solution and where the convective transport terms sum to zero by the
electroneutrality relation 16.3. Equation 16.2 when multiplied by zi and summed over i yields

∇2Φ = 0, (18.3)

that is, the potential satisfies Laplace’s equation.
The boundary conditions are determined with equation 18.1. On insulators

𝜕Φ
𝜕y

= 0, (18.4)

where y is the normal distance from the surface. On electrodes, equation 18.1 relates this potential
derivative to the surface overpotential through equation 16.9 or 16.10. If the potential Φ in the solution
is measured with a reference electrode of the same kind as the working electrode,∗ then the surface
overpotential is given by

𝜂s = V − Φ at y = 0, (18.5)

where V is the potential of the metal electrode. The resulting boundary condition is a nonlinear
relationship between the potential and the potential derivative not commonly encountered in other
applications of potential theory.

As formulated above, the potential-distribution problem is similar to the problem of the steady
temperature distribution in solids, with the potential playing the role of the temperature, the current
density that of the heat flux density, and the electrical conductivity that of the thermal conductivity.
Consequently, it is useful to be familiar with treatises on heat conduction, such as that of Carslaw and
Jaeger.[1] A knowledge of electrostatics[2] and of the flow of inviscid fluids[3] is helpful since they are
also involved with the solution of Laplace’s equation.

Rousselot[4] presents an interesting discussion of potential-distribution problems. Kronsbein[5]

gives a historical account of the literature, and Fleck[6] reviews the available analytic solutions of such
problems. Recent reviews include that of West and Newman.[7]

∗Otherwise, an equilibrium potential difference must be included in equation 18.5. This difference is a constant here.
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x
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h

Figure 18.1 Two plane electrodes opposite each other in the walls of an insulating flow channel, showing
equipotential surfaces (- - -) and current lines (—).

18.2 PRIMARY CURRENT DISTRIBUTION

The primary current and potential distributions are defined as the ideal situation in which the surface
overpotential can be neglected altogether. The solution adjacent to an electrode is then taken to be an
equipotential surface. Laplace’s equation is not trivial to solve, even for relatively simple geometries.

Moulton[8] gives a classical solution for the primary current distribution for two electrodes placed
arbitrarily on the boundary of a rectangle. This is an example of one way to solve Laplace’s equation,
that of conformal mapping,[9] using in this case the Schwarz–Christoffel transformation.

Consider a special case of this geometry, two plane electrodes placed opposite each other in the
walls of a flow channel (see Figure 17.8). The potential distribution is sketched in Figure 18.1 for
L = 2h. Here, current lines are represented by solid curves and equipotential surfaces by dashed curves.
These two sets of curves are perpendicular to each other everywhere in the solution. The equipotential
lines are close together near the edge of the electrode, and, at this point, the primary current density is
infinite.

The primary current distribution on the electrode is shown in Figure 18.2 for L = 2h and is given by
the equation

in
iavg

=
𝜖 cosh 𝜖∕K(tanh2𝜖)

√
sinh2𝜖 − sinh2(2x𝜖∕L)

, (18.6)

where 𝜖 = 𝜋L/2h, x is measured from the center of the electrode, and K(m) is the complete elliptic
integral of the first kind, tabulated in Ref. [10]. From the complexity of this expression for the current
density, one can perhaps appreciate the difficulty involved in obtaining the potential distribution. For
contrast, the mass-transfer limiting current distribution for laminar flow is also shown in Figure 18.2
(see Section 17.4).

The primary current distribution shown in Figure 18.2 is independent of the flow rate since convection
is great enough to eliminate concentration variations, and hence the distribution is symmetric. The
current density is infinite at the ends of the electrodes since the current can flow through the solution
beyond the ends of the electrodes (see Figure 18.1). This is a general characteristic of primary current
distributions. The current density where an electrode meets an insulator is either infinite or zero unless
they form a right angle (see Figure 18.3 and Problem 18.5). When the electrode and the insulator lie in
the same plane, the primary current density is inversely proportional to the square root of the distance
from the edge for positions sufficiently close to the edge. This behavior is exhibited by equation 18.6
for the current density. Generally, the primary current distribution shows that the more inaccessible
parts of an electrode receive a lower current density.

The primary current distribution is determined by geometric factors alone. Thus, only the geometric
ratios of the cell enter into the parameter 𝜖, but the conductivity of the solution does not enter. The
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Figure 18.2 Current distribution on planar electrodes. Here x is measured from the edge of the electrode, not the
center.

i finitei = ∞
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Figure 18.3 Behavior of the primary current distribution near the edge of an electrode.

resistance for this cell is

R = 1
𝜅W

K(1∕cosh2𝜖)

K(tanh2𝜖)
, (18.7)

where W is the width of electrodes perpendicular to the length of the channel.
Kasper[11] gives the primary current distribution for a point electrode and a plane electrode, for line

electrodes parallel to plane electrodes and plane insulators, and for cylindrical electrodes in various
configurations. These systems illustrate the application of the method of images. Hine et al.[12] describe
the primary current distribution for two plane electrodes of infinite length and finite width confined
between two infinite, insulating planes perpendicular to, but not touching, the electrodes. Wagner[13]

gives the primary current distribution for a two-dimensional slot in a plane electrode. These are
further examples of the Schwarz–Christoffel transformation. Kojima[14] collected various expressions
for the resistance between two electrodes in various configurations. The primary current distribution
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is analogous to calculations of heat-transfer resistance with fixed temperatures at some boundaries[15]

and to calculations of dielectric capacitance.
For a disk electrode of radius r0 embedded in an infinite insulating plane and with the counterelectrode

far away, the primary current distribution is given by[16]

in
iavg

= 0.5
√

1 − r2∕r2
0

, (18.8)

and the equipotential and current lines in the solution are shown in Figure 18.4. Again, the equipotential
lines are close together near the edge of the electrode; and, at this point, the current density is infinite,
being proportional to the reciprocal of the square root of the distance from the edge near this point.
Only geometric factors enter into the current distribution, and the resistance to a hemispherical
counterelectrode at infinity is

R = 1
4𝜅r0

. (18.9)
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Figure 18.4 Current (- - -) and potential (—) lines for a disk electrode. Source: John Newman 1966.[16]

Reproduced with permission of The Electrochemical Society, Inc.
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This is a simple example of the application of the method of separation of variables leading to Fourier
series and integrals.[17, 18]

For two electrodes embedded in an insulating plane, the inverse-square-root law applies near the
edges of the electrodes. However, the coefficient becomes infinite, as the width of the separator
approaches zero, in such a way that the total current flowing between the electrodes is infinite with
no separation. Consequently, the solution for the primary distribution when two electrodes of different
potentials meet has no physical meaning.

18.3 SECONDARY CURRENT DISTRIBUTION

When slow electrode kinetics is taken into account, the electrolytic solution near the electrode is no
longer an equipotential surface, and the result of the calculations is the so-called secondary current
distribution. The general effect of electrode polarization is to make the secondary current distribution
more nearly uniform than the primary distribution and to restrict infinite current densities at electrode
edges to finite values. This can be regarded as the result of imposing an additional resistance at the
electrode interface. The mathematical problem now involves the solution of Laplace’s equation, subject
to a more complicated, perhaps even nonlinear, boundary condition.

A variety of expressions for the electrode polarization has been used, which reflects the variety of
electrode kinetics as well as a variety of approximations. In practice, the electrode kinetic equation is
frequently replaced by a linear or a logarithmic (Tafel) relation between the surface overpotential and
the potential derivative at the electrode. In any case, additional parameters besides geometric ratios are
required to specify the current distribution. The advantage of the linear and logarithmic approximations
is that they add only one new parameter. Thus, fairly realistic cases can be treated without excessive
complication.

For sufficiently small surface overpotentials, equation 16.10 can be linearized to read

in = 𝜂s
din
d𝜂s

|||||||𝜂s=0
= (𝛼a + 𝛼c)

i0F
RT

𝜂s = −𝜅 𝜕Φ
𝜕y

at y = 0. (18.10)

This provides a linear boundary condition for Laplace’s equation and has been popular in the literature
since there is some hope of solving the resulting linear problem. Furthermore, if the range of current
densities at the electrode is sufficiently narrow, as one wants to achieve in electroplating, it is, of
course, justified to linearize the polarization equation about some other, nonzero value of the surface
overpotential. Finally, with linear polarization, one achieves an economy of parameters needed to
determine the current distribution, and the calculation of a family of curves representing the current
distribution for a particular geometry is justified.

The secondary current distribution in/iavg depends upon the same geometric ratios as the primary
distribution and, in addition, for linear polarization, depends on the parameter (L/𝜅)din/d𝜂s, where L
is a length characteristic of the system. This parameter has been identified by Hoar and Agar[19] for
the characterization of the influence of electrolytic resistance, polarization, and cell size on current
distribution. When both electrodes are polarized, there are two such parameters involving the slope of
the polarization curve on both the anode and the cathode.

For a disk electrode, the additional parameter for linear polarization is[20]

J = (𝛼a + 𝛼c)
i0Fr0

RT𝜅 . (18.11)

The secondary current distribution for linear polarization on a disk electrode is shown in Figure 18.5,
where N = ∞ means that the rotation speed is so high that concentration variations can be ignored.
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Figure 18.5 Secondary current distribution for linear polarization at a disk electrode. Source: John Newman
1966.[20] Reproduced with permission of The Electrochemical Society, Inc.

For J → ∞, one obtains the primary current distribution. Then, the ohmic resistance dominates over
the kinetic resistance at the interface. For any finite value of J, the distribution is more nearly uniform
and is finite at the edge of the disk. For J → 0, the distribution is uniform, but the average current
must then be small for the linear law still to apply. Except for this, the current distribution in/iavg is
independent of the magnitude of the current.

The Tafel polarization law, where one of the exponential terms in equation 16.10 is negligible, is
also popular in the literature. For a cathodic reaction, we have

𝜂s = − RT
𝛼cF

[ln(−in) − ln i0]. (18.12)

This is popular because, while being a fairly realistic polarization law, Tafel’s equation introduces a
minimum of additional parameters into the problem. In addition to depending on the same geometric
ratios as the primary current distribution, the current distribution in/iavg now depends on the parameter
|iavg|𝛼cFL/RT𝜅. The current distribution now depends on the magnitude of the current, but it is
independent of the value of the exchange current density i0, insofar as Tafel polarization is applicable
only for current densities appreciably above the exchange current density.

The secondary current distribution for Tafel polarization on a disk electrode[20] is shown in
Figure 18.6. This is similar to the secondary current distribution with linear polarization, but the
parameter |iavg|𝛼cFr0/RT𝜅 now plays the role of the parameter J (the characteristic length r0 being
appropriate for the disk electrode). In particular, the primary current distribution is still approached as
this parameter approaches infinity.
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Figure 18.6 Secondary current distribution for Tafel polarization at a disk electrode. Source: John Newman
1966.[20] Reproduced with permission of The Electrochemical Society, Inc.

The parameter for polarization is always proportional to a characteristic length and inversely
proportional to the conductivity 𝜅 and involves the nature of the polarization. Therefore, we may state
as a general rule that for large systems and small conductivities the primary current distribution will be
approached, independent of the nature of the polarization law.

If we are unwilling to make either the linear or the Tafel approximation to the full Butler–Volmer
equations, then the secondary current distribution on a disk electrode depends on the parameters 𝛼a/𝛼c,
J (defined by equation 18.11), and

𝛿 =
(𝛼a + 𝛼c)Fr0

RT𝜅 iavg. (18.13)

General plots of the current distribution now become unwieldy. Consequently, we select as a measure
of the nonuniformity the ratio of the current density at the center of the disk to the average current
density. This ratio has the value 1 for the uniform distribution and the value 0.5 for the extremely
nonuniform primary distribution.

To illustrate how J and 𝛿 jointly affect the nonuniformity,[20] we plot this ratio in Figure 18.7 for
𝛼a = 𝛼c. For large currents (|𝛿| ≫ J), the Tafel results apply. As the current is decreased, the distribution
becomes more nearly uniform but approaches at low currents the linear results for the given value of
J rather than a completely uniform current density. For larger values of J, the linear results apply to
larger current densities.

The quantity 𝜅/(Ldin/d𝜂s), recognized to be important by Hoar and Agar,[19] has come to be called
the Wagner number Wa as an honor to a researcher who has refined its use and understanding.[21]
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Historically, its use may have been restricted to situations of linearization of the electrode kinetics
(see remark below equation 18.10), but both J and |iavg|𝛼cFL/RT𝜅 can be regarded as recipro-
cals of Wagner numbers. As the Wagner number approaches zero, the primary distribution is
approached.

Kasper[11] has treated the effect of linear polarization on some line-plane systems and for cylindrical
electrodes. Wagner has treated the secondary current distribution for a plane electrode with a
two-dimensional slot,[13] two cases of plane electrodes in the walls of an insulating channel, and
a nonplanar electrode with a triangular profile.[21] One of the cases treated by Wagner for linear
polarization, that of a plane electrode of finite width embedded in an insulating plane and with the
counterelectrode at infinity, has been treated by Gnusin et al.[22] for Tafel polarization. Parrish and
Newman[23, 24] discuss this case and the case of two plane electrodes opposite each other in the walls
of a flow channel (see Figure 17.8).

Some of these cases illustrate the use of current sources distributed along the electrode surface as
a method of reducing the problem to an integral equation. This integral equation, which may be linear
or nonlinear depending on the polarization law used, frequently requires a numerical solution.

The primary current distribution for a disk electrode, shown again in Figure 18.8, can be contrasted
with the uniform distribution found in Section 17.2 when convection and diffusion are governing. The
nonuniform ohmic potential drop to the disk spoils the uniform accessibility from the mass-transfer
standpoint. The polarization of the electrode promotes a uniform distribution to a degree determined
by the parameters 𝛿 and J. How the resistive, diffusive, and convective factors interact is treated
in Chapter 21. The potential distribution near the disk for a uniform current distribution[20] is
also shown in Figure 18.8 (see also Nanis and Kesselman[25]). This curve is normalized in such
a way that it can be compared conveniently with the value Φ04𝜅r0/I = 1 for the primary current
distribution. These extreme cases of uniform potential and uniform current density are clearly
incompatible.

The uniform current density represents the extreme case of the variation of potential in the solution
adjacent to the disk. The maximum potential difference between the center of the disk and the
edge is

ΔΦ0 =
0.363r0iavg

𝜅 . (18.14)
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This formula has important implications in regard to the shape of limiting-current curves,[26] the
sizes of disks that can be protected from corrosion anodically or cathodically,[27] the conditions for
controlled-potential electrolysis,[28] and the determination of electrode kinetic parameters.[29] In each
case, there is a maximum permissible variation of potential that governs the allowable values of r0
and iavg for a solution of given conductivity (see also equation 22.56). Cathodic protection of a metal
surface, to keep it from corroding, is a useful application of the concept of a uniform current distribution
and consequently is treated separately in Section 18.5.

18.4 NUMERICAL SOLUTION BY FINITE DIFFERENCES

Analytic solutions of current-distribution problems are usually restricted to simple geometric arrange-
ments and to no polarization or linear polarization. The use of some analytic solutions is facilitated
by computer evaluation of certain integrals and infinite series. Some methods, such as Wagner’s
integral-equation method or solutions in infinite series with undetermined coefficients, require numer-
ical evaluation of the current distribution on the electrodes or of the coefficients. When such methods
can be used, the labor is less and the results are more accurate than a numerical solution of Laplace’s
equation by finite-difference methods.

Finite-difference and finite-element methods have been developed for heat-conduction problems, for
example, and extended to electrolytic cells. The widespread availability of commercial finite-element
packages makes this technique convenient for analyzing the current distribution on complex geometries.
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18.5 PRINCIPLES OF CATHODIC PROTECTION

Corrosion of iron occurs by electrochemical dissolution:

Fe → Fe2+ + 2e−. (18.15)

The ferrous ions have a tendency to precipitate as ferrous hydroxide:

Fe2+ + 2H2O → Fe(OH)2 + 2H+. (18.16)

Thus, the soil or medium near the corroding surface tends to become more acidic. Or the soil becomes
less basic if hydroxyl ions are consumed:

Fe2+ + 2OH− → Fe(OH)2. (18.17)

The dissolution of iron is an anodic process. In corrosion, where the electrons do not flow to
an external electrical circuit, the electrons must be consumed in another electrochemical process,
frequently occurring on the same metal surface. A common oxidizing agent is oxygen, and we can
write

O2 + 4e− + 2H2O → 4OH− (18.18)

or
O2 + 4e− + 4H+ → 2H2O. (18.19)

In this process, the medium becomes more basic or less acidic. Thus, if the reactions 18.15, 18.16, and
18.19 or 18.15, 18.17, and 18.18 occur together on the same surface, the metal corrodes,

2Fe + O2 + 2H2O → 2Fe(OH)2, (18.20)

without an imbalance in acid or base and without the external flow of an electric current.
For a metal as active as iron, acid can also appear as an oxidizing agent. The cathodic reaction can

be written as
2H+ + 2e− → H2. (18.21)

The overall corrosion reaction could be written as

Fe + 2H+ → Fe2+ + H2 (18.22)

or
Fe + 2H2O → Fe(OH)2 + H2. (18.23)

The relationship of these reactions can be visualized with a Pourbaix diagram, or potential-pH
diagram; see Figure 18.9. Such diagrams are also discussed in the text related to Figure 2.2. On such
diagrams, it is convenient to indicate, by the dashed lines, the stability window for water.

At electrode potentials above the line labeled O2, there is a tendency to evolve oxygen by the reverse
of reaction 18.18 or 18.19. The potential depends on pH because H+ and OH− ions are involved, but
the two reactions merge into one line on the diagram. One thinks of reaction 18.18 occurring toward
the right on the diagram where hydroxyl ions predominate, while reaction 18.19 is a natural way to
write the reaction toward the left where hydrogen ions predominate. Below the line, oxygen tends to
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Figure 18.9 Simplified Pourbaix diagram for iron in water at 25∘C. The oxide phases Fe2O3 and Fe3O4 are not
shown.

be consumed by the electrochemical reactions 18.18 and 18.19 proceeding in the direction in which
they are written. The potential line also depends on the partial pressure or fugacity of oxygen; it is
customary to draw the curve for a value of 1 bar or 1 atm. Thus, bubbles of O2 could not form unless
the electrode potential is above this line (when the solution is maintained at a total pressure of 1 bar).

It may be necessary to hold the electrode potential substantially above the O2 line before bubbles
appear because a significant thermodynamic driving force then exists to drive the reaction. The vertical
distance from the O2 line is the overpotential for the reaction, a positive (or anodic) overpotential
for points above the line and a negative (or cathodic) overpotential for points below the line.
The relationship of the rate of the electrochemical reaction to the overpotential is the subject of
electrochemical kinetics. The oxygen reaction is relatively slow, and its degree of slowness will be
different on different metals and at different temperatures.

Similarly, the line labeled H2 describes the equilibrium potentials for reaction 18.21. Hydrogen
tends to be evolved at electrode potentials below this line and consumed at potentials above the line. Just
like the oxygen reaction, there is a pH dependence and partial-pressure (of hydrogen) dependence of
the equilibrium potential, and a nonzero overpotential is necessary to drive the reaction at appreciable
rates.

Thus, one can say that water is stable between the O2 and H2 lines on the Pourbaix diagram. It is
susceptible to O2 evolution above the upper line and susceptible to H2 evolution below the lower line.



�

� �

�

PRINCIPLES OF CATHODIC PROTECTION 377

The thermodynamic equilibrium potential for iron dissolution according to equation 18.15 is the
horizontal line at about −0.409 V (for many years the standard electrode potential was taken to be
−0.440 V). To the right of a pH of 5.84, the ferrous ions precipitate according to reaction 18.16. To the
right of this value, we would logically write the reaction as

Fe + 2OH− → Fe(OH)2 + 2e−. (18.24)

A separate equilibrium potential is shown on the diagram for this reaction; it has the same slope as the
lines labeled O2 and H2 because these reactions all have one electron per OH− or H+ ion involved in
the reaction. Thus, we can conclude that an electrode reaction, like equation 18.15, involving no H+

or OH− ions is a horizontal line on the diagram, whereas a reaction, like equation 18.16, involving no
electrons is a vertical line. Other reactions will have a slope depending on the number of hydrogen or
hydroxyl ions involved per electron transferred.

The oxidation of ferrous ions to ferric ions,

Fe2+ → Fe3+ + e−, (18.25)

is represented on the diagram by a horizontal line at U = 0.770 V. This line depends also on the
concentrations of the two ions; it is drawn for equal concentrations. The line moves up for an increase
in the concentration of ferric ions and moves down for an increase in the concentration of ferrous ions.
The line for reaction 18.15 also depends on the ferrous ion concentration; it is drawn for an “ideal 1 m
solution.”

The Pourbaix diagram indicates that iron is unstable with respect to oxidation by H+ and that this
is particularly true at the left side of the diagram. There is a strong driving force for oxygen to oxidize
iron at any pH, and the reaction in aqueous medium is generally limited only by the rate of transport
of O2 to the iron surface. We also see that O2 is strong enough to oxidize ferrous ions to ferric ions. A
lot of chemistry is represented on this diagram.

The strategy for cathodic protection can now be stated very simply. We want to hold, by means
of an external power supply, the electrode potential of iron low enough so that reactions 18.15 and
18.24 are suppressed. Then the iron will not corrode, but electrons will need to be supplied so that
any oxygen transported to the surface will be reduced according to reaction 18.18 and any hydrogen
ions will be reduced according to reaction 18.21. This leads to an interesting design problem for the
placement of anodes to supply the ionic component of the current, while the negative terminal of the
power supply is directly connected to the iron to be cathodically protected (see Figure 18.10).

Anions and cations migrate in the soil to balance the current flow required to reduce the O2. This
might at first appear to lower the pH near the protected cathode. However, the cathodic reactions 18.18
or 18.19 or 18.21 counteract this tendency and actually cause the pH to rise near the iron cathode. In
fact, this change in chemical environment may be as important to the protection process as the direct
flow of charge.

Figure 18.9 is drawn with the potentials referred to a hydrogen electrode in an ideal 1 m solution. For
soil applications, the saturated Cu/CuSO4 reference electrode, lying at a potential of 0.316 V relative to
the hydrogen electrode, is generally used. Figure 18.11 shows some relevant potentials relative to the
Cu/CuSO4 electrode on a Pourbaix diagram. On this figure are some possible positions for the anode
and the cathode of a cathodic-protection system, both shown at a nominal pH of 7. (The meaning
of near and far sides will be explained shortly. The meaning of x = 0 and x = L is explained in
Figure 18.15; x is the axial distance from the power-supply lead along the pipe.)

A specific example is a long, cylindrical, buried pipeline, to be protected by means of a smaller,
cylindrical anode that runs parallel to the pipe, sketched in Figure 18.12. The design problem involves
determining how far away to place the anode. We might proceed as follows:
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1. Calculate or estimate the rate of transport of oxygen to the surface. Since oxygen is not ionic,
only diffusion and convection through the soil are involved. Convert this mass-transfer rate, by
Faraday’s law, to a current density that must be supplied through the soil from the anode(s) to
reduce the oxygen and prevent the dissolution of iron. We know that this can be stated as the
current density flowing to a properly protected surface because
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Ref. 30. Reproduced with permission of The Electrochemical Society, Inc.

(a) Virtually all oxygen will be reduced (at the limiting current) at any potential near the
iron potential. Figure 18.13 describes the current-potential characteristics for three possible
electrode reactions and the sum of these currents.

(b) The current density for the iron dissolution reaction should be negligible because this is the
purpose of the cathodic protection.

(c) The current density for hydrogen evolution should be maintained at a low value because
any hydrogen evolution permitted is a waste of current, can lead to undesired hydrogen
embrittlement of the steel, and distorts the current flow so that insufficient current flows to
the more distant parts of the steel surface.

The required current density for oxygen reduction may frequently be stated as a uniform value iavg
for the entire surface, unless more detailed transport calculations have led to a specified distribution.
The total current required is given by the analysis of oxygen transport.

2. Place one or more anodes in the soil to supply the total current without overprotecting the steel
surface near the anode, resulting in hydrogen evolution there and necessarily leaving some more
remote part of the surface underprotected. On the basis of Figure 18.13, one requires that the
potential of any part of the cathode be maintained more negative than −0.850 V relative to an
adjacent Cu/CuSO4 reference electrode in order to provide adequate protection while at the
same time maintaining all parts of the surface more positive than −1.20 V to prevent excessive
hydrogen evolution. Consequently, the potential in the soil next to the cathode can vary by no
more than 350 mV, and this becomes an important design criterion for the placement of the
anodes and for determining how large a surface can be cathodically protected.

3. Determine the potential drop in the soil between the anode and the near part of the cathode,
since it is an important component of the cell potential that must be provided by the rectifier. (A
sacrificial anode such as Zn or Mg can also provide only a limited potential.)

4. Calculate the potential variation in the anode and the cathode and in lead wires connecting the
electrodes to the power supply. These considerations have an impact on whether the cathode
surface relative to the adjacent soil is maintained within the 350-mV window.

Figure 18.11 also shows some hypothetical electrode potentials (relative to the adjacent soil). The
anode evolves oxygen and is shown with a 0.5 V overpotential. The electrochemical reaction tends to
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lower the pH, as indicated by the horizontal arrow. The “near” side of the cathode at x = 0 (opposite a
point where the power supply is connected to the anode) is shown at −1.20 V, as negative as possible
subject to the limitation on hydrogen evolution. The “far” side at x = 0 is shown at −0.907 V. Thus,
in this example, there are 293 mV of potential variation in the soil between the near side and the
far side.

In Figure 18.12 one can see the near and far sides of the cathode pipeline. How do we get the
required current density to the far side without overprotecting the near side? Qualitatively, placement
of the anode at a great distance means that the current can flow out in all directions from the anode
and eventually approach the cathode from all directions, producing only a small potential variation
in the soil next to the cathode. However, a large value of d will require a high overall cell potential.
Furthermore, it will produce an electric field in the soil at some distance from the cathode, and this
can interfere with other steel structures and cathodic protection systems in the area. This can be quite
detrimental because another structure can provide an alternative path so that current flows in the soil
to a near part of the third structure, through the third structure to a point near the cathode, and thence
through the soil to the cathode. However, when the current leaves the third structure, there will be
an anodic reaction that will lead to augmented corrosion and eventually failure of the third structure.
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Finally, there is a limited right-of-way for placement of the anode, and it would be desirable to have
uniform conductivity everywhere the current flows in the soil.

We can also ask how the proper distance d depends on the parameters of the problem. As formulated
in the preceding discussion, these parameters include the current density iavg required for protection,
the size of the structure to be protected (here rc), and the soil conductivity 𝜅. In addition, there is the
allowed window for proper protection, ΔΦmax = 350 mV, and the radius ra of the anode. Some results
of dimensional analysis will emerge as we treat the problem.

When concentration variations and nonuniformity in the soil can be ignored, the potential in
the soil satisfies Laplace’s equation 18.3. This is a nice equation because it is homogeneous and
introduces no characteristic length or potential, and there is a wealth of experience in solving it by both
analytic and numerical methods. For boundary conditions, we can say that the potential approaches
zero at infinity. More particularly, we should say that no current flows to infinity (or to distant
ground) from the anode–cathode system. The reduction of oxygen on the cathode has led us to the
uniform-current-density condition there,

𝜅 𝜕Φ
𝜕n

= iavg on the cathode, (18.26)

where n is the normal distance pointing from the protected surface into the soil and iavg is taken to be
a positive number (see step 1 above). If the anode is relatively small, the current density will be fairly
uniform on it while at the same time the potential in the soil is little dependent on the angle. We shall
take

Φ = constant on the anode, (18.27)

where the constant is a value we wish to find in order to determine the rectifier voltage.
We now have a well-defined problem. The values of rc, ra, and d enter through the specification

of “on the cathode” and “on the anode.” If we use 𝜅Φ/iavg rc as a dimensionless potential, then 𝜅 and
iavg will disappear as separate parameters in the problem. If we make lengths and position coordinates
dimensionless with the cathode radius rc, then only geometric length ratios will remain in the problem.
One of these is d/rc, whose value we need to find so that the constraint ΔΦ < 0.350 V is satisfied,
where ΔΦ is the magnitude of the potential variation in the soil adjacent to the protected surface. This
condition is, of course, applied with the potentials made dimensionless with 𝜅, iavg, and rc as described
above. The remaining length ratio is ra/rc. Since this quantity is small, it will have a barely noticeable
effect on ΔΦ, but it will still have a significant effect on the potential drop in the soil between the
anode and the near part of the cathode because the resistance becomes very large for a very small
anode radius.

Figure 18.14 shows equipotential contours in the soil for the geometric lengths depicted in
Figure 18.12. The anode is the small dot toward the left, the cathode is the smallest semicircle toward
the right, and the contour for Φ = 0 extends to infinity. Current is being driven through the soil from
the anode to the cathode, and thus the potentials, which satisfy Laplace’s equation, decrease in this
direction. The dimensionless normal potential gradient on the cathode is unity.

Laplace’s equation was solved[30] by separation of variables in a coordinate system of bipolar circles
in which the anode and cathode surfaces form natural boundaries. We can see that the potential on the
cathode is not uniform because the contour for 𝜅Φ/iavgrc = − 2 does not coincide with the surface.
The equipotential contours are approximately circles in this problem. The student can sketch in current
lines going from the anode to the cathode by making them perpendicular to the potential contours. The
current lines are approximately circles also.
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In this problem, iavg was set at 1.1 mA/m2, and 𝜅 = 10−3 S/m. Consequently, the dimensionless
potentials depicted in Figure 18.14 must be multiplied by

iavgrc∕𝜅 = 1.1 × 10−3 × 0.6∕10−3 = 0.66 V (18.28)

to obtain the actual potentials in the soil. This produces the potentials in the last column of Table 18.1
(with the exception of the value for the Mg anode). Thus, the potential variation in the soil between the
near and far sides (from Figure 18.14) is (2.412 − 1.967) × 0.66 = 0.293 V, and that between the anode
and the near side of the cathode is (5.392 + 1.967) × 0.66 = 4.856 V. Figure 18.11 explains the first two
entries in column 2 of Table 18.1; based on other experiments, we add a 0.5 V kinetic overpotential to
the anode, yielding a potential of 0.999 V, and the near part of the cathode is set at −1.2 V, the extreme
limit defined earlier for proper cathodic protection. The values in the first column follow from those
in columns 2 and 3. Thus, a potential difference of 7.056 V needs to be applied between the anode
and the cathode at x = 0. About 2.2 V of “back EMF” (electromotive force) needs to be added to the
potential difference in the soil between the anode and the near side of the cathode.

To understand the values at x = L, one needs to look at the method of powering the anode as shown
in Figure 18.15. The anode has a resistance per unit length of 𝜌′ = 1.07 mΩ/m, and the potential drop
over a length L is

ΔV = 𝜌′𝜋rc iavgL2. (18.29)

Because the current is flowing from the anode to the cathode all along the length L, this value ΔV is
half the value obtained if the total current flowed the entire length L along the anode. Figure 18.15
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TABLE 18.1 Supplemental potential map for the base case

Location Metal to ∞ Metal to soil Soil to ∞

Anode 4.558 0.999 3.558
Cathode, near side, x = 0 −2.498 −1.2 −1.298
Cathode, far side, x = 0 −2.498 −0.907 −1.592
Cathode, near side, x = L −2.448a −1.15 −1.298
Cathode, far side, x = L −2.448a −0.857 −1.592
Mg anode (1.0 V overpotential) −2.498 −1.686 −0.812

aThe anode potential and the soil at the ∞ have changed by 50 mV from the value near the anode
connector. The cathode itself is assumed to be of uniform potential.

Rectifier

Cable

Anode

Cathode soil front

Cathode soil back

5V
0.05 V

0.293 V

300 m
= 2L

28.2 V

Figure 18.15 Potentials in the conductors of the system. Variable resistors are suggested between the anode and
the power supply cable. Source: Ref. 30. Reproduced with permission of The Electrochemical Society, Inc.

calls for an anode connection every 300 m, selected so that the potential variation within the anode is
about 50 mV. With L = 150 m and the values already given for the other parameters, ΔV = 0.050 V.
The consequence of the potential drop along the anode is that the cathode is less well protected at
x = L than at x = 0. Note that the 50 mV drop in the anode is not added to the rectifier requirement;
that remains 7.056 V. The potential applied between the anode and the cathode at x = L is reduced to
7.006 V, but the pipe is still adequately protected there because the cathode to far-side soil potential
is still −0.857 V, less than the required −0.85 V. When designing the system, we must assure that the
sum of the potential drop in the anode and the variation in the soil around the cathode remains less than
350 mV, the allowable potential window to prevent both iron dissolution and hydrogen evolution. This
rule carries over to other geometries for cathodic protection.

Figure 18.16 presents the basis for design as a function of the geometric ratio d/rc. The lower
curve shows the dimensionless potential variation in the soil around the cathode. While shown for a
particular value of rc/ra, this curve is not particularly sensitive to the value of the anode radius ra. The
upper curve for the dimensionless potential difference in the soil between the anode and the cathode
is more sensitive to ra because the current and potential lines are concentrated near a small anode.
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Figure 18.16 Variation of potential in the soil around the cathode and the average potential drop in the soil
between the anode and the cathode. Note the logarithmic scales. For comparison, the points show the potential
difference between the anode and the cathode when the soil potential near the cathode is uniform (corresponding
to the primary current distribution in this system). Source: Ref. 30. Reproduced with permission of The
Electrochemical Society, Inc.

(It would be somewhat more useful if the near point on the cathode were used instead of the average
of the near and far points because then we could get the necessary applied potential by adding 2.2 V.
See Figure 18.20.)

How do we use this design graph? First calculate 𝜅ΔΦmax/iavgrc to find the allowed dimensionless
potential variation around the cathode. You might want to use 300 mV for ΔΦmax instead of
350 mV to permit some potential variation within the anode itself. The calculated value constitutes
the ordinate in Figure 18.16. Read across to the lower curve to find the distance d necessary
to place the anode from the cathode. Then, read up to the appropriate upper curve to get the
potential drop in the soil between the anode and the cathode as part of finding the required rectifier
potential. A more difficult job, as governed by a larger value of the required current density iavg
or pipeline size rc or soil resistivity 1/𝜅 (or a smaller allowed potential variation ΔΦmax), requires
a greater distance of separation and correspondingly a larger rectifier potential. In the opposite
extreme (of low soil resistivity, etc.), the anode could be placed very near the protected pipeline
with little concern. There can be no rule of thumb for how many pipe diameters away to place
the anode.

In some cases, it may be necessary or desirable to use two anodes instead of one. For example, the
life of the anode may be longer if it carries less current. Or it may be desirable to reduce the rectifier
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Figure 18.17 Equipotential contours for two symmetrically placed anodes, with rc/ra = 24 and d/rc = 1. Source:
Ref. 30. Reproduced with permission of The Electrochemical Society, Inc.

potential or reduce the spacing to confine the electric field to a region closer to the protected pipeline.
If we ignore the interaction of the anodes, we can superpose the current and potential distributions due
to single anodes placed at different positions.

Let us illustrate this with the two anodes placed symmetrically on opposite sides of the pipeline
to be protected. Figure 18.17 shows potential contours for a spacing of d/rc = 1. The potential
distribution due to a single anode at this distance, shown in Figure 18.18, is reflected about a vertical
plane through the center of the cathode to get the distribution due to the second anode placed to
the right of the cathode. To get the distribution due to the two anodes, add the two distributions
and divide by 2, since each anode now carries half the current of the cathode. The dimensionless
potential at the near position of the cathode, thus, is (0.6329 − 1.5109)/2 = − 0.439, as shown in
Figure 18.17. The top of the pipeline now becomes the “far” point, with a dimensionless potential
of −0.929.

With the same values of iavg, rc, and 𝜅 as before, the potential variation in the soil around the
cathode at this anode spacing is (0.929 − 0.439) × 0.66 = 0.323 V, still within the window for proper
protection. At the same time, the potential difference in the soil from the anode to the near part of
the cathode is (1.629 + 0.439) × 0.66 = 1.365 V (and the required applied potential has dropped from
7.056 V for one anode to 3.564 V for two anodes).

In this manner, one can construct a design diagram for two anodes placed symmetrically on either
side of the pipeline. This is shown in Figure 18.19 along with the potential variation for a single
anode and asymptotic forms. For two anodes, the potential variation is less and decreases more
rapidly with separation distance than for one anode. Similar plots could be developed for more anodes
symmetrically, or perhaps even unsymmetrically, placed by paying more attention to the details of the
potential distribution, for example, in Figure 18.18, for a single anode. The superposition method is
approximate in the sense that the anodes do not remain equipotential surfaces, but the approximation
is good for small anodes. The cathode does retain its uniform current density since two solutions are
being superposed and each has a uniform current density on the cathode.

The potential difference in the soil between the anode and the near part of the cathode, which
enters directly into the potential required of the rectifier, depends logarithmically on the anode radius.
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Figure 18.18 Equipotential contours for one anode, rc/ra = 24 and d/rc = 1. Source: Ref. 30. Reproduced with
permission of The Electrochemical Society, Inc.

By subtracting logarithmic terms, one can develop a method of plotting that shows predominantly a
dependence on d/rc. This is shown in Figure 18.20 for one anode and in Figure 18.21 for two anodes
symmetrically placed. (𝜅(Φa − Φnear)/iavgrc is the desired quantity and in Figure 18.20 is approximately
equal to ln(D2/rarc). The correction to this approximation is what is actually plotted in the figure, and
similarly for Figure 18.21.)

It is a simple matter to develop a design spreadsheet based on the asymptotes in Figures 18.19
to 18.21; see Table 18.2. The first column is supposed to emphasize the one-anode case shown in
Figures 18.12, 18.14, and 18.16; column 2 treats the two-anode case illustrated in Figures 18.17,
18.19, and 18.21. The first block of rows shows the input design parameters for each case; the only
difference here is the distance of the anode from the pipeline, d being 4.8 and 0.6 m in these two
columns.

The second block of rows shows aspects of the one-anode design, including key potential differences
in the soil. Column 1 is fine, but column 2 shows that the anode spacing of 0.6 m is too small and the
potential window is exceeded (1320 mV), although the required anode-to-cathode potential is reduced
(to 4.58 V).

The third block of rows has the same results but for the two-anode design. Here, the anode spacing
of 0.6 m yields a potential variation near the cathode (330 mV) that is within the specification.

The bottom five rows summarize the rectifier requirements, showing that most of the ohmic potential
drop occurs in the anode leads (see Figure 18.15). Fortunately, all of this drop does not appear as
potential variation in the soil around the protected cathode.

The dashed lines in Figures 18.19 to 18.21 are used to obtain Φnear − Φfar and Φanode − Φnear. The
potential drop in the anode comes from equation 18.29, and that in the anode leads comes from a
similar equation.
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Figure 18.19 Variation of potential in the soil around the cathode for one or two anodes. Asymptotes of values
of 𝜅ΔΦ/iavgrc for large d/rc are also shown (dashed lines). Source: Ref. 30. Reproduced with permission of The
Electrochemical Society, Inc.

Sacrificial Anodes

Instead of using an anode and an external power source, it is sometimes possible to use a metal that
tends to be very negative by its own chemical nature. Zinc and magnesium are commonly used in
this role.

Zinc finds itself at about −1.15 V relative to a Cu/CuSO4 electrode in the adjacent soil. Directly
connecting it electrically to a steel surface will protect the steel without any danger of overprotection.
Hence, it is frequently used as a covering layer on the surface, for example by dipping in molten zinc,
electroplating steel with zinc, or otherwise coating (galvanized steel). Even though there are small
holes in the coating, the exposed steel is still cathodically protected. Zinc dissolves in preference to
iron when electrons are required to reduce oxygen molecules arriving at the surface.

Because it is so negative, zinc would be expected to dissolve in water, with the liberation of
hydrogen. However, the overpotential for H2 evolution on pure Zn is quite high, and the intended
application of zinc is practical.

Because zinc is only as negative as −1.15 V, it is limited in how large a surface can be protected by
a remote zinc anode. It could not be used in the above pipeline example because there was required a
1.365 V potential drop in the soil between the anode and the near part of the pipe even in the two-anode
system.
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Figure 18.20 Correction for the potential difference in the soil between the anode and the near part of the
cathode, for a cylindrical cathode with a single anode.

Magnesium has a theoretical open-circuit potential of about −2.7 V relative to a Cu/CuSO4 reference
electrode, but because of spontaneous reaction (producing hydrogen) it instead finds itself at about
−1.7 V.[31] This means that the Mg has a limited life even if there is no additional current flow to
protect a surface.

The more negative (than Zn) potential means that Mg could overprotect a surface. On the other
hand, there is a greater possibility to place the anodes at a small distance in the soil from the surface to
be protected. It is estimated[30] that the pipe treated above could be protected with 6 Mg anode wires
(1.5 cm diameter) symmetrically placed around the pipe at a distance of 30 cm.

Passivation and Localized Corrosion

Figure 18.13 sketched the passivation of iron at a potential of about −0.4 V relative to a Cu/CuSO4
reference electrode. The rate of dissolution drops to a negligible value because of the formation at this
potential of a protective oxide film.

This passivation means that anodic protection could be used; apply a potential to the steel structure
so that all parts stay within, say, −0.3 and +0.5 V relative to a Cu/CuSO4 reference electrode by
means of a power supply and an auxiliary cathode. In addition, the current density under passivation
conditions may be small, for example, 1 mA/cm2. These two factors combined yield a larger value of
the design parameter 𝜅ΔΦmax/iavgrc. However, failure to achieve proper protection on all parts of the
surface could lead to catastrophic failure.

The phenomenon of passivation also leads to localized corrosion, of which pitting corrosion is a good
example to discuss. A tiny fracture of the protective oxide can occur on a stochastic basis. Subsequently,
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Figure 18.21 Correction for the potential difference in the soil between the anode and the near part of the
cathode, for a cylindrical cathode with two anodes symmetrically placed.

an approximately hemispherical pit can form. Oxygen transport continues to the surrounding surface,
which remains passivated. The anodic current required to balance this oxygen reduction is concentrated
on the growing pit surface, and the resulting corrosion can be much more devastating than one might
expect for conditions of uniform corrosion. Ionic migration into the anodic pit increases the chloride
ion concentration, which enhances the instability of the passive oxide beyond that due to the lack of
oxygen transport in this region.

Water-line corrosion and crevice corrosion are other forms of localized corrosion resulting from
differential aeration of the surface.

Stainless steels achieve greater corrosion resistance by passivating more easily—that is, by being
able to sustain only a small anodic current density before the passive oxide film appears.

PROBLEMS

18.1 The inner radius of a capillary tube is r0, and its length is L. An electrode entirely fills the cross
section at one end. The outer radius of the capillary tube can be taken to be very large, and the
counterelectrode is placed a great distance from the open mouth of the capillary tube.
(a) Describe in words or with a sketch the primary distribution of current on the electrode at

the end of the capillary. Consider explicitly the cases where L is very large or very small.
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TABLE 18.2 Design spreadsheet

Protection of one pipeline with parallel cylindrical anodes

4.8 0.6 m, distance of anode from pipeline, d
100,000 100,000 Ω cm, soil resistivity
0.00107 0.00107 Ω/m, anode resistance per unit length

1.1 1.1 mA/m2, pipe current density
26 26 mA/m, maximum allowed anode current per unit length

150 150 m, half the distance between anode connections, L
2.5 2.5 cm, anode radius, ra
0.6 0.6 m, pipe radius, rc

One-anode design

0.44444 2 dimensionless potential, near-far
7.35952 3.60559 dimensionless potential, anode-near
293.33 1320 mV, soil potential difference, near-far

4.86 2.38 V, soil potential difference, anode-near
4.15 4.15 mA/m, anode current per unit length

49.92 49.92 mV, ohmic drop in anode
1.24 1.24 A, required current per anode connection
7.06 4.58 V, applied potential at x = 0

Two-anode design

0.02469 0.5 dimensionless potential, near-far
4.53287 2.0631 dimensionless potential, anode-near

16.30 330.00 mV, soil potential difference, near-far
2.99 1.36 V, soil potential difference, anode-near
2.07 2.07 mA/m, anode current per unit length

24.96 24.96 mV, ohmic drop in anode
0.62 0.62 A, required current per anode connection
5.19 3.56 V, applied potential at x = 0

3600.00 3600.00 m, pipe length to be protected with one rectifier
0.0042 0.0042 Ω/m, lead wire resistance per unit length
28.22 28.22 V, lead wire potential drop
14.93 14.93 A, rectifier current
35.27 32.80 V, rectifier potential (one anode)

Bold numbers call attention to critical numbers in the design with respect to the allowed potential variation of
350 mV in the soil adjacent to the protected structure.

(b) Tell how the secondary current distribution on the electrode might be different from that
described in part (a).

(c) For a capillary length several times the capillary diameter, the resistance of the system
can be approximated by the value L∕𝜋r2

0𝜅, where 𝜅 is the conductivity of the electrolytic
solution. This expression does not include an end effect corresponding to the gathering
together of the current lines as they enter the capillary tube from the bulk solution.
To assess this end effect, what differential equation should be solved to determine
the potential distribution in the region near the mouth of the capillary tube? Ignore
concentration variations. Write out the equation and state its name. If you write out the
equation in a particular coordinate system, be sure to define that coordinate system.

(d) Indicate carefully the boundary conditions to be satisfied by the solution of the differential
equation of part (c). Phrase the problem so that the length L of the capillary tube will
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Figure 18.22 Ring–disk electrode, frequently rotated to provide a known hydrodynamic flow.

not be involved in the determination of the end-effect correction. That is, take L to be so
large that its value does not affect the potential distribution in the region near the open
mouth of the tube. Be sure to state enough boundary conditions to determine the potential
distribution in this region, but do not state any extra boundary conditions.

(e) If you had before you the solution to the problem posed in parts (c) and (d), how would
you evaluate the end-effect correction to the resistance?

(f) From dimensional considerations state the order of magnitude of the end-effect correction
as a resistance to be added to the value stated in part (c).

18.2 A sectioned electrode is to be used to test the efficacy of plating baths. In an insulating plane,
there is a disk electrode of radius r0 surrounded by an insulated surface from r = r0 to r = r1,
which in turn is surrounded by a ring electrode from r = r1 to r = r2 (see Figure 18.22). This
device is rotated just like a conventional rotating-disk electrode. The ring and disk electrodes
are maintained at the same potential (with a distant counterelectrode), but the current can be
measured separately to each.
(a) Describe the limiting-current distribution on this two-electrode system. What happens as

the gap distance r1 − r0 goes to zero?
(b) If the exchange current density is about 10−3 A/cm2 and the solution conductivity is about

0.01 S/cm at 35∘C, how large should the ring–disk system be for the ring electrode to
have an average current density about 1.5 times that of the disk electrode? Assume that
the areas of the ring and disk are about equal and that the gap is of negligible width. To
measure approximately the exchange current density by this technique, it is desirable to
operate under conditions such that linear electrode kinetics applies.

(c) What is the maximum current that should be passed to ensure that the system is operated in
the linear range and not in the Tafel range? State your criterion clearly before calculating
the result.

(d) At this current, estimate the difference in ohmic potential drop to the ring and disk
electrodes. State clearly the assumptions you make as you arrive at a numerical value.

(e) At this current, it is desired to operate at 10% (or less) of limiting current. What minimum
rotation speed does this imply if the gold reactant (in the form of KAu(CN)2) is at a
concentration of 0.02 mol/liter in the bulk? Assume values of any other physical properties
you need.
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Figure 18.23 A section of a plate of thickness L with a two-dimensional slot of width h through its thickness.

18.3 It is desired to copper plate the faces of printed-circuit boards that are 20 cm long, 10 cm wide,
and 0.02 cm thick. Not only are the faces to be plated, but also the holes, which are 0.004 cm
in diameter, are to have a thin coating of copper. A circuit board is in a well-stirred plating
bath between two counterelectrodes placed 3 cm from each face.
(a) Sketch the primary distribution of the current across the entire face of the circuit board.

Sketch also the primary distribution within a hole and on the adjacent part of the face.
(b) Describe how the secondary current distribution would be expected to differ from the

primary distribution.
(c) Set up, but do not solve, the equations and boundary conditions for the secondary

distribution on the face of the circuit board. For this purpose, ignore the holes in the board.
Polypropylene holders position the board in the middle of the tank, but at the same time
they mask off 0.5 cm on two opposite edges of the board. Otherwise, the boards fill the
entire cross section of the cell.

18.4 A plate of thickness L has a two-dimensional slot of width h through its thickness (see
Figure 18.23). The origin of rectangular coordinates is at the centerline of the plate and the
centerline of the slot. Two counterelectrodes are equally spaced on either side of the plate. We
want to consider the possibility that deep within the slot the potential distribution is given by

Φ = A cosh
𝜆z
h

cos
𝜆y
h

,

where A is a constant.
(a) Does this potential distribution satisfy Laplace’s equation?
(b) What boundary condition would be satisfied along the centerline of the plate (z = 0)?

Is this reasonable from the point of view of the symmetry conditions prevailing for this
system? Is this reasonable from the point of view of the suggested analytic form for the
potential?

(c) What boundary condition would be satisfied along the centerline of the slot (y = 0)? Is this
reasonable from the point of view of the symmetry conditions prevailing for this system?
Is this reasonable from the point of view of the suggested analytic form for the potential?

(d) Is there a saddle point in the potential at the origin?
(e) Along the electrode surface (within the slot), what is the distribution of the current density

that contributes to the overall electrode current?
(f) For a deep slot, what is the penetration depth according to the suggested analytic solution?

(When quantities vary exponentially with distance, the penetration depth is the distance
over which such quantities vary by a factor of e.)
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(g) For the primary current and potential distribution, determine the parameter 𝜆 and a
numerical value for the penetration depth. (The plate potential is zero.)

(h) For the secondary distribution, where linear electrode kinetics is obeyed with an exchange
current density of i0 = 5 × 10−4 A/cm2, discuss how to determine the parameter 𝜆 and a
numerical value for the penetration depth. A clear graphical method for determining 𝜆 and
an indication of how its value depends on the magnitude of i0 would be sufficient.

Insulator

Electrode

Angle α

Figure 18.24 An electrode at angle 𝜃 = 0 meets an insulator at angle 𝜃 = 𝛼.

18.5 An electrode at angle 𝜃 = 0 meets an insulator at angle 𝜃 = 𝛼 (see Figure 18.24). Show how
the primary current and potential distributions vary in this corner region by solving Laplace’s
equation in an appropriate coordinate system with appropriate boundary conditions. Assume
that the potential shows a power dependence on the distance r from the corner itself.

18.6 Pitting corrosion involves the growth of a hemispherical pit in a ferrous alloy. The hemispherical
surface dissolves in the active region at a current density of 5 A/cm2, while the surrounding
plane is passivated and can be approximated as an insulator (with the counterelectrode far
away, at infinity). When the pit has grown to a diameter of 0.2 mm, estimate the potential in the
solution at two positions—the lip of the pit and the base of the pit—both relative to the solution
far away. Use an order-of-magnitude estimate. The electrolytic solution has a conductivity of
0.07 S/cm.

18.7 The Hull cell (see Figure 18.25) is used to test the “throwing power” of plating baths by
assessing how nonuniform a deposit will form on an electrode, all parts of which are not
equally accessible. There are two planar electrodes at opposite ends of the cell; one electrode
is perpendicular to four insulating boundaries of the cell, but the other is at an angle 𝛼 with
one of the insulating walls, as shown. The cell also reveals the nature of the deposit that will
form at the different current densities that occur along its surface.

Insulator

Cathode

Anode

Insulator

α

Figure 18.25 Top view of the Hull cell.
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As an extreme case, it is desired to calculate the maximum potential variation that can occur
in the solution adjacent to each electrode, and it is assumed that this occurs when there is
a uniform current density on each electrode. Determine this distribution of potential in the
solution under this condition and evaluate the maximum potential variation in the solution
adjacent to each electrode. Further assume for this calculation that the solution is very well
stirred and that the metal of each electrode is a very good electrical conductor.

Obtain numerical values for the case where the anode is 10 cm by 10 cm and is 10 cm
from the cathode at the nearest point, the angle 𝛼 is 45∘, the current density on the anode is
20 mA/cm2, and the solution conductivity is 0.06 S/cm.

18.8 The primary current distribution frequently represents the opposite extreme of being
nonuniform on electrodes. Sketch the primary distributions on the two electrodes of the Hull
cell and discuss any salient features shown on the sketch.

18.9 The solution placed in the Hull cell has 0.1 mol/liter of AgNO3 with more or less supporting
electrolyte of HNO3, and the electrodes are both silver. In the absence of any overt stirring in
the cell, which electrode would be expected to reach a limiting current first? Cite formulas,
principles, and methods by which you would estimate the average limiting-current density on
this electrode.

18.10 A copper disk rotated in seawater is observed to corrode preferentially near the periphery.
An iron disk, on the other hand, is observed to corrode preferentially near the center. Discuss
qualitatively these observations.

18.11 Two plane insulators meet at an angle 𝛼. It is desired to ascertain the distributions of current
and potential near such a corner. In particular, how much current penetrates into an acute
corner, and might current densities reach infinity for some large angles? Write down Laplace’s
equation in cylindrical coordinates, where the z axis is the line of intersection of the insulating
planes. Seek the simplest, nontrivial solution for the potential Φ with no z dependence and
satisfaction of the correct boundary conditions on the insulators.

18.12 In Problem 18.5, the primary potential distribution near an electrode edge was determined. This
distribution is strictly valid only when the polarization parameter (J or 𝛿) is infinite. For large,
finite values of the polarization parameter, this distribution is a good approximation for large r,
where for linear kinetics r = r(𝛼a + 𝛼c)Fi0∕RT𝜅 and for Tafel kinetics r = r(𝛼aFP0∕RT𝜅)2𝛽∕𝜋

and where 𝛽 is the angle between the insulator and the electrode (written as 𝛼 in Problem 18.5).
Near the corner, the primary current density on the electrode varies as in → P0r𝛽 , where P0 is
a parameter which depends on the overall geometry and current.
(a) Substitute r and a stretched potential,

𝜑 =
𝛼aF
RT

(V − Φ) −
2𝛽
𝜋 ln

𝛼aFP0

RT𝜅 + ln
𝛼aFi0
RT𝜅 ,

into a Tafel kinetics boundary condition and a matching condition,

Φ(r → ∞) = −
2𝛽
𝜋𝜅 P0r𝜋∕2𝛽 sin

𝜋𝜃
2𝛽

,

to show that the resulting problem statement, in terms of the stretched variables, is free of
parameters. (Assume that V = 0.) Use the stretched variables to predict how the current
density at the electrode edge depends on P0 for large P0.
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(b) For linear kinetics, how must the potential be stretched for the problem statement to be
free of parameters? How does iedge/iavg depend on i0 for large exchange current densities?
In both cases, the results should show that iedge/iavg approaches an infinite value for obtuse
angles and a zero value for acute angles.

18.13 Calculate the potential and pH values in Figure 18.9 from the following thermodynamic data
(at 25∘C):

Substance State 𝜇0
i (kJ∕mol)

Fe Solid 0
Fe2+ Dilute −78.90
Fe(OH)2 Solid −486.5
OH− Dilute −157.244
Fe3+ Dilute −4.7
H+ Dilute 0
H2 Gas 0
O2 Gas 0
H2 Liquid −237.129

18.14 What is the pO2
value at the position of the H2 line on Figure 18.9?

Answer: exp(−1.229 × 96487/2 × 8.3143 × 298.15) = 4.1 × 10−11 bar.

18.15 Compare and contrast the parameter analysis below equation 18.27 with the dimensional
analysis in Sections 18.2 and 18.3 for primary and secondary current distribution problems.

18.16 A large horizontal steel surface (the bottom of a storage tank) is to be cathodically protected
by a series of horizontal anodes of radius ra buried at a depth h below the protected surface
and spaced (center to center) at a distance d from each other.
(a) Draw a clear sketch of the geometric situation. Emphasize a repeating section. Label

clearly the “near” point and the “far” point on the protected surface.
(b) Define the dimensionless design correlation that should be put together to cover this

situation, if the protected surface can be assumed to require a uniform cathodic protection
current density iavg (taken to be positive for convenience), the soil can be assumed to have
a uniform conductivity 𝜅, and the protected surface is required to be maintained between
−0.85 and −1.20 V relative to an adjacent Cu/CuSO4 reference electrode. What geometric
ratios govern the problem?

(c) What differential equation and boundary conditions should govern the potential distribution
in this problem? Make liberal use of the sketch developed in part (a).

(d) Discuss qualitatively how the design criteria would depend on a critical geometric ratio.
Use a sketch to illustrate this result.

18.17 Discuss using 𝜅ΔΦmax/iavg as a length characteristic of how large a cathode can be protected
cathodically.

18.18 Derive equation 18.29.

18.19 The cathode current density shown in Figure 18.13 is not strictly constant in the range
from −0.85 to −1.20 V relative to a saturated Cu/CuSO4 reference electrode. Discuss as
quantitatively as possible whether the design procedure using the constant oxygen reduction
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current density is conservative if the criterion for proper design remains as stated in terms of
the cathode potential relative to the adjacent soil.

18.20 Develop Problem 18.19 more fully and discuss the greater complexity, not in terms of
computation but in terms of expressing the results in simple design plots.

18.21 The criterion of potential range is frequently applied in a current-off or interruption method.
Is this the same as looking at the potential with the current on? (See Ref. [32].) Do ohmic
drops really disappear when the current is interrupted, or should the same care be exercised to
extrapolate the soil potential to the surface of the cathode? Estimate a time constant, based on
the double-layer capacity (rcC/𝜅).

18.22 Interpret the Pourbaix diagram (Figure 18.9) to determine whether reaction 18.23 occurs
spontaneously. Indicate your reasoning.

18.23 Sketch current lines on an equipotential diagram such as Figure 18.14 or 18.17.

NOTATION

ci concentration of species i, mol/cm3

F Faraday’s constant, 96,487 C/mol
h distance between walls of flow channel, cm
in normal component of current density at an electrode, A/cm2

i0 exchange current density, A/cm2

I total current, A
J dimensionless exchange current density
K complete elliptic integral of the first kind
L length of electrodes, cm
L characteristic length, cm
r radial position coordinate, cm
r0 radius of disk electrode, cm
R universal gas constant, 8.3143 J/mol⋅K
R resistance, Ω
T absolute temperature, K
ui mobility of species i, cm2 mol/J⋅s
V potential of an electrode, V
W width of electrodes, cm
Wa Wagner number
x distance measured along an electrode surface, cm
y normal distance from the surface, cm
zi charge number of species i
𝛼a, 𝛼c transfer coefficients
𝛿 dimensionless average current density
𝜖 𝜋L/2h
𝜂s surface overpotential, V
𝜅 conductivity, S/cm
Φ electric potential, V
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Subscripts

avg average
0 at the electrode surface
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CHAPTER 19

EFFECT OF MIGRATION ON LIMITING
CURRENTS

Chapter 17 treated convective-transport problems, mostly at the limiting current and with an excess
of supporting electrolyte. A relatively simple problem results if the current is maintained at a limiting
value, but the concentration of supporting electrolyte is reduced relative to the concentration of the
reacting ions. Since the current is at its limiting value, the ohmic potential drop in the bulk of the
solution is still negligible,∗ and the current distribution is determined by mass transfer in the diffusion
layer. However, the presence of an electric field in the diffusion layer can lead to an increase or a
decrease in the limiting current due to migration of the reacting ions.

Let us regard Figure 17.1 as the concentration profile of CuSO4 for deposition at the limiting
current. Within the diffusion layer, migration and diffusion contribute to mass transfer. The electric
field is then very high at the electrode surface because the concentration is zero there. If we now add
an inert electrolyte, such as H2SO4, the electric field will be greatly diminished, particularly at the
electrode surface. The contribution of migration decreases, and the limiting current is reduced.

Because of the electroneutrality condition 16.3, solutions of only two ions also satisfy the equation
of convective diffusion 17.2 but with Di, replaced by the diffusion coefficient D of the electrolyte
(see Section 11.4). Consequently, it is relatively simple to solve convective-transport problems at the
limiting current for these solutions (see Section 17.13). These results indicate an enhancement of the
limiting current compared to the same discharging ions in a solution with excess inert electrolyte, and
this can be attributed to the effect of migration in the diffusion layer.

There is some interest in calculating the limiting current for intermediate cases where there is some
inert electrolyte but not a large excess. Eucken[1] gave the solution for three ion types in systems
that could be represented by a stagnant Nernst diffusion layer (see also reference [2]). Because
experimental data[3] for the discharge of hydrogen ions on growing mercury drops did not agree
with Eucken’s formula, Heyrovský[4] rejected his method and introduced a correction factor involving

∗However, a nonuniform ohmic potential drop can lead to a secondary reaction, such as decomposition of the solvent, on
one part of the electrode before the limiting current can be attained on another part of the same electrode.

Electrochemical Systems, Fourth Edition. John Newman and Nitash P. Balsara.
© 2021 John Wiley & Sons, Inc. Published 2021 by John Wiley & Sons, Inc.
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the transference number of the discharging ion. This transference-number correction is not based on
quantitative arguments, but it has become entrenched in the electrochemical literature.

Okada et al.[5] have considered the effect of ionic migration on limiting currents for a growing
mercury drop, and Gordon et al.[6] for a rotating-disk electrode. Newman[7] has treated the effect for
four cases: the rotating disk, the growing mercury drop, penetration into a semi-infinite medium, and the
stagnant Nernst diffusion layer. The ratio IL/ID of the limiting current to the limiting diffusion current,
calculated as in Chapter 17 on convective-transport problems with excess supporting electrolyte, is a
convenient measure of the effect of migration and depends on the ratios of concentrations in the bulk
solution.

The effect of migration on limiting currents is a simple example of a phenomenon that does not
occur in nonelectrolytic systems, in contrast to the convective-transport problems that have direct
analogs in heat transfer and nonelectrolytic mass transfer.

19.1 ANALYSIS

For the rotating disk, the normal component of the velocity depends only on y, the distance from the
disk (see Section 15.4). Consequently, ci, and Φ also depend only on y in the diffusion layer, and
the limiting-current density is uniform over the surface of the disk. Equations 16.1 and 16.2 can be
combined to yield

Di
d2ci

dy2
− 𝑣y

dci

dy
+ ziuiF (ci

d2Φ
dy2

+
dci

dy
dΦ
dy

) = 0. (19.1)

We further approximate the velocity by the first term of its power series expansion in y:

𝑣y = −aΩ
√

Ω
𝜈 y2, (19.2)

where a = 0.51023. This approximation should be valid within the diffusion layer at high Schmidt
numbers. With the new variable

𝜉 = y( a𝜈
3DR

)
1∕3√Ω

𝜈 , (19.3)

where DR is the diffusion coefficient of the limiting reactant, equation 19.1 becomes

Di

DR
c′′

i + 3𝜉2c′
i +

ziuiF
DR

(ciΦ′′ + c′
iΦ

′) = 0, (19.4)

where primes denote differentiation with respect to 𝜉.
There is one equation of the form of equation 19.4 for each solute species. These equations are to

be solved in conjunction with the electroneutrality equation 16.3 for the solute concentrations ci and
the potential Φ.

For boundary conditions we can state

ci = ci∞ at 𝜉 = ∞, Φ = 0 at 𝜉 = 𝜉max, (19.5)

where 𝜉max, the zero of potential, can be chosen arbitrarily. Let the electrode reaction be represented
by equation 16.7. Then, the normal component of the flux density of a species at the electrode is related
to the normal component of the current density by equation 16.8. Since we do not know the current
density in advance, we instead relate the flux density of a species to the flux of the limiting reactant:

ziu̇iFci
𝜕Φ
𝜕y

+ Di
𝜕ci

𝜕y
=

si

sR
(zRuRFcR

𝜕Φ
𝜕y

+ DR
𝜕cR

𝜕y
) (19.6)
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at y = 0. In terms of the variable 𝜉, this becomes

ziuiFciΦ′ + Dic
′
i =

si

sR
(zRuRFcRΦ′ + DRc′

R) at 𝜉 = 0. (19.7)

The boundary condition for the limiting reactant at the limiting current is

cR = 0 at 𝜉 = 0. (19.8)

These boundary conditions should be sufficient for the problem at hand. Equations 19.4 and 16.3
constitute a set of coupled, nonlinear, ordinary differential equations with boundary conditions at zero
and infinity. These can be solved readily by the numerical method described in Appendix C. In fact,
the computer program for this particular problem is reproduced there. The results are discussed in the
next few sections. After the concentration and potential profiles are calculated, the limiting current
density can be obtained from the flux of the limiting reactant. The ratio IL/ID of the limiting current to
the limiting diffusion current is a convenient measure of the effect of migration.

The problem is similar for the effect of migration in other hydrodynamic situations. For a mercury
drop growing in a solution that initially had a uniform composition, the transient transport equations
can be reduced to

Di

DR
c′′

i + 2𝜉c′
i +

ziuiF
DR

(ciΦ′′ + c′
iΦ

′) = 0, (19.9)

if we make the same approximations as are used in the derivation of the Ilkovič equation 17.81 (without
the correction term). Equation 19.9 replaces equation 19.4 for the disk. For a mercury drop growing at
a constant volumetric rate, 𝜉 has the meaning

𝜉 = y( 7
12DRt

)
1∕2

, (19.10)

although the analysis is not restricted to this case.
For mass transfer to a plane electrode from an infinite, stagnant medium, the transient transport

equations also reduce to equation 19.9, where 𝜉 now has the meaning

𝜉 =
y

√
4DRt

. (19.11)

For steady mass transfer in a fictitious, stagnant, Nernst diffusion layer of thickness 𝛿, the transport
equations are

Di

DR
c′′

i +
ziuiF
DR

(ciΦ′′ + c′
iΦ

′) = 0, (19.12)

where
𝜉 =

y
𝛿

. (19.13)

These several cases are very similar and can all be handled by the same computer program,
particularly since the boundary conditions 19.5, 19.7, and 19.8 apply to all cases at the limiting current
(except that condition 19.5 is applied at 𝜉 = 1 for the Nernst diffusion layer).

Since the mathematical problems are identical for the growing mercury drops and penetration into
an infinite stagnant medium, the correction factor IL/ID is exactly the same for these two transient
processes. One can also use the Lighthill transformation (see Sections 17.5 and 17.6) to show[8] that
the correction factor for steady transfer in arbitrary two-dimensional and axisymmetric diffusion layers
is exactly the same as that calculated for the rotating disk. This means that the current density is
distributed along the electrode in the same manner as when migration is neglected (see Chapter 17),
but the magnitude of the current density at all points is increased or diminished by a constant factor,
IL/ID, which depends upon the bulk composition of the solution.
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19.2 CORRECTION FACTOR FOR LIMITING CURRENTS

Figure 19.1 shows[7] the ratio IL/ID for metal deposition on a rotating disk electrode. Consider the solid
curve for the CuSO4–H2SO4 system. The so-called diffusion limiting current is that which exists when
there is a small amount of CuSO4 in a great excess of H2SO4, since migration should then make no
contribution. Hence, the abscissa is the square root of the ratio of the normality of the added ion to
that of the counterion, and the ordinate shows how the limiting current is enhanced by the effect of
migration. For r = 0, we have a solution of the single salt CuSO4. We see that it makes little difference
whether we add MgSO4 or H2SO4. A curve for the deposition of silver from solutions of AgNO3 and
HNO3 is also shown.

The square-root scale is used on the abscissa since the addition of only a small amount of supporting
electrolyte to the solution of a single salt causes a considerable reduction of the limiting current
because it strongly affects the electric field at the electrode surface where the reactant concentration
goes to zero.

We have also been able to calculate this effect of migration for several other hydrodynamic
situations; a growing mercury drop as encountered in polarography; a fictitious, stagnant, Nernst
diffusion layer; and penetration into a semi-infinite stagnant medium. The differences in the effect
of migration, among these situations, are pronounced only when the reactant ion has a diffusion
coefficient considerably different from the other ions present, as shown in Figure 19.2 for hydrogen
ion discharge from HCl–KCl solutions. Here, the polarographic data of Šlendyk[3] are shown for
comparison. Theory and experiment agree well for the 0.001 N HCl solutions. The discrepancy for the
0.01 N HCl solutions can be attributed[9] to the fact that the solubility limit for the hydrogen produced
in the electrode reaction is exceeded and the gas bubbles stir the solution in a way not accounted for in
the theory.

The effect of migration does not always enhance the limiting current. For cathodic reduction of
an anion, such as ferricyanide in KOH solutions, migration reduces the limiting current because the

I L
/I D

2.0

1.4

1.2

1.0
0.20 0.4

CuSO4 – H2SO4, r = cH+/2cSO4
2–

CuSO4 – MgSO4, r = cMg2+/cSO4
2–

AgNO3 – HNO3, r = cH+/cNO3
–

1.0

1.6

1.8

0.6 0.8

√r

Figure 19.1 Effect of migration on limiting currents for metal deposition on a disk electrode. Source: Newman
1966.[7] Reproduced with permission of the American Chemical Society.
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0.01  N HCI Šlendyk (1931) drop
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3.0

0.6 0.8

√r

Figure 19.2 Effect of migration on limiting currents in discharge of hydrogen ions from KCl solutions. Lines
represent values calculated with the present theory. Source: Newman 1966.[7] Reproduced with permission of the
American Chemical Society.

direction of the electric field is then such as to tend to drive the anions away from the electrode. This is
shown in Figure 19.3 for equimolar bulk concentrations of ferricyanide and ferrocyanide. The effect of
ionic migration is always relatively small in redox systems because the product ion is always present
at the electrode surface. Thus, in the absence of both the supporting electrolyte and the product ion in
the bulk solution, IL/ID = 0.866 for the cathodic process,† and IL/ID = 1.169 for the anodic process on
a rotating-disk electrode.

We find that the correction factor for the effect of migration on limiting currents for unsteady
transfer from a stagnant, semi-infinite fluid to a plane electrode follows exactly the curve for unsteady
transfer to a growing mercury drop. Also, the effect is exactly the same[8] for steady transfer in
arbitrary two-dimensional and axisymmetric diffusion layers as that shown for the rotating disk. The
quasi-potential transformation[10] permits many interesting problems with one electrode reaction and
stagnant conditions to be treated like the Nernst stagnant diffusion layer. The geometry-dependent part
of the problem reduces to Laplace’s equation for the quasi-potential in the given geometry (solved by
the methods described in Chapter 18), and the chemical part is identical to treating a Nernst diffusion
layer, with even the possibility of variation of physical properties and any number of equilibrated
homogeneous reactions.[11–13] Microelectrodes can also fall into this category.

†See also footnote on page 353
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I L
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1.1
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Cathode reduction
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Anodic oxidation
of ferrocyanide

r = cOH–/cK+

0.95

0.92
0.20 0.4 1.0

1.05

0.6 0.8

r

Figure 19.3 Effect of migration on limiting currents for a redox reaction. Equimolar potassium ferrocyanide and
ferricyanide in KOH, for a disk electrode. Source: Newman 1966.[7] Reproduced with permission of the American
Chemical Society.

19.3 CONCENTRATION VARIATION OF SUPPORTING ELECTROLYTE

For many of the discharge reactions, the concentration of supporting electrolyte is higher at the electrode
surface than in the bulk solution. This difference is calculated as a by-product in the calculations
of the effect of migration on limiting currents. The value, however, is of considerable interest in
free-convection problems since the convective velocity is due to the density differences in the solution
produced by the electrode reaction, and these density differences are affected by the concentration
of the supporting electrolyte to roughly the same extent as by the concentration of the reactant (see
Section 17.10).

Figure 19.4 shows some of these concentrations at the electrode surface for two systems (discharge
of Ag+ from AgNO3–HNO3 solutions and H+ discharge from HCl–KCl solutions) and for several
hydrodynamic situations. For these ions of valence 1, the concentration difference for the added ion is
roughly half that of the reactant ion when an excess of supporting electrolyte is present. The difference,
of course, goes to zero when there is no supporting electrolyte, but it rises rapidly for even small
amounts of impurities (note the square-root scale on the abscissa).

For the redox systems, one must be concerned with both the added ion and the product ion.
Figure 19.5 shows these concentration differences for the anodic oxidation of ferrocyanide ions,
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Figure 19.4 Concentration difference of the added ion divided by that of the reactant. The abscissa scale is
defined in Figures 19.1 and 19.2.

and Figure 19.6 for the cathodic reduction of ferricyanide. In the latter case, the added hydroxide
ion is depleted near the electrode. For these graphs, the ferrocyanide and ferricyanide ions have
equal concentrations in the bulk solution, and the counterion is K+. The abscissa scale is defined in
Figure 19.3. Results for the copper sulfate–sulfuric acid system are reserved for the next section.

In Section 11.5 we treated systems with supporting electrolyte, showing how one can calculate the
concentration profile of the supporting electrolyte as well as those of the minor species. Let us now
use this method to calculate the surface concentration of the added ion and a product ion in the limit
r → 1, that is, with a large excess of supporting electrolyte. This procedure should yield the ordinate
values in Figures 19.4 to 19.6 for r = 1.

With the use of the Nernst–Einstein relation 11.41, equation 19.4 for the rotating disk becomes

3𝜉2 dci

d𝜉
+

Di

DR
[

d2ci

d𝜉2
+ zi

d
d𝜉

(ci
d𝜙
d𝜉

)] = 0, (19.14)

where 𝜙 = FΦ/RT. Let the added ions and counterions be species 1 and 2, the reactant be R = 3, and
the product be species 4, also present in small amount.

For the reactant, we can neglect ionic migration in the limit r → 1, and the concentration profile is
given by

cR =
c∞

R

Γ(4∕3)
∫

𝜉

0
e−x3

dx. (19.15)

For the product, migration can also be neglected, and equation 19.14 becomes

3𝜉2 dc4

d𝜉
+

D4

DR

d2c4

d𝜉2
= 0, (19.16)
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Figure 19.5 Surface concentrations for the anodic reaction in the K3Fe(CN)6–K4Fe(CN)6–KOH system.

and the boundary condition 19.7 at the electrode reduces to

D4
dc4

d𝜉
=

s4

sR
DR

dcR

d𝜉
at 𝜉 = 0. (19.17)

The solution therefore is

c4 = c∞
4 +

s4

sR

DR

D4

c∞
R

Γ(4∕3)
∫

𝜉

∞
e−x3DR∕D4 dx, (19.18)

from which we obtain
c0

4 − c∞
4

c∞
R

= −
s4

sR
(

DR

D4
)

2∕3

. (19.19)

After linearization, the equations for the counterion and the added ion are

3𝜉2 dc1

d𝜉
+

D1

DR
[

d2c1

d𝜉2
+ z1

d
d𝜉

(c0
1

d𝜙
d𝜉

)] = 0, (19.20)

3𝜉2 dc2

d𝜉
+

D2

DR
[

d2c2

d𝜉2
+ z2

d
d𝜉

(c0
2

d𝜙
d𝜉

)] = 0, (19.21)



�

� �

�

CONCENTRATION VARIATION OF SUPPORTING ELECTROLYTE 407

0.9 1.3

1.2

1.1

1.0

0.9

0.8

Ferricyanide
reacting

Disk

Disk

Disk

Product ion
Fe(CN) 6

4–

Drop

Drop

Added ion OH–

(depteted near
electrode)

0.1

0.2

0.3

0.4

0.5

0.6

0
0.20 0.4 1.00.6 0.8

r

–
c 1

0  
– 

c 1
∞

c R
∞

c 4
0  

– 
c 4

∞

c R
∞

0.7

0.8

Figure 19.6 Surface concentrations for the cathodic reaction in the K3Fe(CN)6–K4Fe(CN)6–KOH system.

where c0
1 and c0

2 are the uniform concentrations of these ions that prevail in the absence of the reactant
and product species (see Section 11.5).

The concentrations satisfy the electroneutrality relation in the forms

z1c1 + z2c2 + z3c3 + z4c4 = 0, (19.22)

z1c0
1 + z2c0

2 = 0. (19.23)

Elimination of 𝜙 and c2 from equations 19.20 and 19.21 therefore yields

(1 −
z1

z2
) (

d2c1

d𝜉2
+ 3𝜉2 DR

De

dc1

d𝜉
) =

z3

z2
(1 −

DR

D2
)

d2c3

d𝜉2

+
z4

z2
(1 −

D4

D2
)

d2c4

d𝜉2
, (19.24)

where

De =
D1D2(z1 − z2)
z1D1 − z2D2

. (19.25)
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This is a generalization of equation 11.34 for the case where there are two minor species. Substitution
of equations 19.15 and 19.18 gives

(1 −
z1

z2
) (

d2c1

d𝜉2
+ 3𝜉2 DR

De

dc1

d𝜉
) = 3𝜉2 zR

z2
(

DR

D2
− 1)

c∞
R

Γ(4∕3)
e−𝜉3

− 3𝜉2 z4

z2

s4

sR

DR

D4
(

DR

D4
−

DR

D2
)

c∞
R

Γ(4∕3)
e−𝜉3DR∕D4 . (19.26)

The solution of this equation satisfying the boundary condition at infinity is

c1 = c∞
1 +

zR

z2 − z1

(DR∕D2) − 1
(DR∕De) − 1

c∞
R

Γ(4∕3)
∫

𝜉

∞
e−x3

dx + B ∫
𝜉

∞
e−x3DR∕De dx

+
z4

z2 − z1

s4

sR

DR

D4

(D4∕D2) − 1
(D4∕De) − 1

c∞
R

Γ(4∕3)
∫

𝜉

∞
e−x3DR∕D4 dx. (19.27)

The boundary condition at the electrode is that the flux density of ions 1 and 2 is zero and takes the
form

dc1

d𝜉
+ z1c0

1

d𝜙
d𝜉

= 0 and
dc2

d𝜉
+ z2c0

2

d𝜙
d𝜉

= 0. (19.28)

With equation 19.23 this becomes
dc1

d𝜉
+

dc2

d𝜉
= 0, (19.29)

and with equation 19.22 we have

dc1

d𝜉
(1 −

z1

z2
) =

z3

z2

dc3

d𝜉
+

z4

z2

dc4

d𝜉

=
zR

z2

c∞
R

Γ(4∕3)
+

z4

z2

s4

sR

DR

D4

c∞
R

Γ(4∕3)
(19.30)

at 𝜉 = 0. This allows the determination of the constant B in equation 19.27:

B =
c∞

R

Γ(4∕3)
(DR∕De) − (DR∕D2)

z2 − z1
[

zR

(DR∕De) − 1
+

s4

sR

z4

(D4∕De) − 1
] . (19.31)

Finally, we can calculate the concentration change of species 1 between the bulk and the electrode
surface:

c0
1 − c∞

1

c∞
R

=
−zR

z2 − z1
{
(DR∕D2) − 1
(DR∕De) − 1

[1 − (
De

DR
)

1∕3

] + (
De

DR
)

1∕3

}

−
z4

z2 − z1

s4

sR
{
(D4∕D2) − 1
(D4∕De) − 1

[1 − (
De

D4
)

1∕3

] + (
De

D4
)

1∕3

} (
DR

D4
)

2∕3

. (19.32)

The case where there is no product ion can be treated by setting s4 = 0 or z4 = 0. The corresponding
equation for c2 can be obtained from equation 19.32 by reversing the subscripts 1 and 2.
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For a growing mercury drop, the expressions for the concentration differences should become

c0
1 − c∞

1

c∞
R

=
−zR

z2 − z1
{
(DR∕D2) − 1
(DR∕De) − 1

[1 − (
De

DR
)

1∕2

] + (
De

DR
)

1∕2

}

−
z4

z2 − z1

s4

sR
{
(D4∕D2) − 1
(D4∕De) − 1

[1 − (
De

D4
)

1∕2

] + (
De

D4
)

1∕2

} (
DR

D4
)

1∕2

(19.33)

and
c0

4 − c∞
4

c∞
R

= −
s4

sR
(

DR

D4
)

1∕2

. (19.34)

Hauser and Newman[14] extended this analysis to include the case where one ion of the supporting
electrolyte is involved in the electrode reaction.

Over the years we have discovered a number of cases in which the potential gradient has the
opposite sign at the electrode from what we should expect on the basis of the direction of current. It is
a lot of fun to sketch concentration profiles of reactants, products, and supporting electrolyte, as called
for in Problem 11.4. The reversal of the potential gradient leads to unexpected minima or maxima in
the concentration profiles and can be traced to the diffusion potential term (see, e.g., equation 11.11).
Hauser and Newman[14] have investigated this phenomenon in more detail and find that a prediction of
reversal of potential gradient can be made solely on the basis of the stoichiometry of the reaction as well
as the charge numbers, diffusion coefficients, and mobilities of the species present (see Problem 19.7).
Reversal occurs only when more than one ionic species is involved in the reaction. Reversal occurs for
reduction of Zn(OH)2−

4 and CuCl−2 to the metal, but not for reduction of AuCl−4 .

19.4 ROLE OF BISULFATE IONS

Bisulfate ions do not completely dissociate in sulfuric acid solutions (see Section 4.7). A simple,
dramatic example is found in the conductivity of solutions of copper sulfate and sulfuric acid, as shown
in Figure 19.7. When copper sulfate is added to a solution of sulfuric acid, the conductivity is found
to decrease. If the conductivity is predicted from limiting ionic mobilities (see Table 11.1), the result
is in accord with this observation if bisulfate ions are assumed to be undissociated. Predictions based
on sulfate and hydrogen ions are, on the other hand, in qualitative and quantitative discord with the
experimental values.

The incomplete dissociation of bisulfate ions should also have dramatic consequences for the effect
of ionic migration on limiting currents. When copper sulfate is added to sulfuric acid solutions, the
electric field increases not only because the current increases but also because hydrogen ions combine
to form bisulfate ions and the conductivity decreases. This is shown in Figure 19.8. The parameter r in
the abscissa is still based on the ratio of the stoichiometric concentrations of sulfuric acid and copper
sulfate.

The partial dissociation of bisulfate ions can also be taken into account.[2] As in Section 19.1,
material-balance equations are written for the hydrogen, sulfate, bisulfate, and copper ions, the
equations including, where appropriate, the rate of production in the homogeneous reaction

HSO−
4 ⇌ H+ + SO2−

4 (19.35)
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Figure 19.7 Conductivity of aqueous solutions of copper sulfate and sulfuric acid at 25∘C. Source: Data from
Kern and Chang 1923.[15]
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Figure 19.8 Effect of migration in the CuSO4–H2SO4 system with no dissociation and with complete dissociation
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(see equation 16.2). The reaction is assumed to be fast, so that the concentrations also satisfy the
relation (see equation 4.64)

K′ =
c∗
H+c∗

SO2−
4

c∗
HSO−

4

, (19.36)

where K′ is taken to be independent of position. Asterisks denote the fact that these quantities refer to
a view of the solution as composed of water molecules and hydrogen, bisulfate, sulfate, and copper
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ions. The material-balance equations are then added to obtain three equations that do not include the
reaction rate. These three equations, equation 19.36, and the electroneutrality relation are then used to
determine the concentration distributions of the four ions and the potential distribution by the numerical
method described in Appendix C.

Let c∞
A and c∞

B be the bulk stoichiometric concentrations of copper sulfate and sulfuric acid, and let
I be the bulk ionic strength based on a convention of complete dissociation:

I = 4c∞
A + 3c∞

B . (19.37)

The two important parameters will then be the relative amounts of reactant and supporting electrolyte,
expressed as

r =
c∞

B

c∞
A + c∞

B
, (19.38)

and the ratio I/K′ of the ionic strength to the dissociation constant.
The effect of migration on limiting current is shown in Figures 19.9 and 19.10 for the rotating-disk

electrode and the growing mercury drop. The ordinate, IL/ID, is the ratio of the limiting current to
the limiting diffusion current of a well-supported solution when the effect of viscosity variations is
excluded. The abscissa is the ratio r of equation 19.38, and values of I/K′ are given as a parameter. The
two solid lines indicate the two extreme cases of complete (I/K

′ = 0) and no dissociation (I/K
′ = ∞)

of bisulfate ions.
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Figure 19.9 Effect of migration for a rotating-disk electrode. Source: Hsueh and Newman 1971.[2] Reproduced
with permission of the American Chemical Society.
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Figure 19.10 Effect of migration for a growing mercury drop or in a stagnant diffusion cell. Source: Hsueh and
Newman 1971.[2] Reproduced with permission of the American Chemical Society.

The concentration difference of sulfuric acid between the electrode surface and the bulk solution
is shown in Figures 19.11 and 19.12 for the two electrochemical systems. One may notice that the
concentration of sulfuric acid would even decrease near the electrode surface for some values of r when
bisulfate ions are not completely dissociated. Qualitatively speaking, the bisulfate ions, containing
hydrogen, are driven away from the electrode because of their negative charge. For no dissociation,
one should consider that r = 0.5 corresponds to a binary solution of copper bisulfate.

An analytic solution can be obtained for a stagnant Nernst diffusion layer, and the results shown
in Figures 19.13 and 19.14 serve to complete the picture presented in Figures 19.9 to 19.12. The
quasipotential extends the physical situation covered here to include microelectrodes and pitting
corrosion under stagnant conditions.

In practical applications, the dissociation constant K′ can be related to the true ionic strength Ir of
the bulk solution

Ir = 1
2

∑

i

z2
i c∗∞

i , (19.39)

the correlation having been given in Figure 4.4 and equation 4.66.
Figure 19.15 shows the wide range of concentration differences that are conceivable in the copper

sulfate, sulfuric acid system. Results for free convection, from Section 19.6, are shown in addition to
the rotating disk, the growing mercury drop, and the stagnant Nernst diffusion layer. For comparison,
the values calculated by Wilke et al.[16] and by Fenech and Tobias[17] are also shown. For the
quantity plotted on Figure 19.15, the value 0.71 can be deduced from the results of one of Brenner’s
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Figure 19.11 Surface concentration change for a rotating-disk electrode. Source: Hsueh and Newman 1971.[2]

Reproduced with permission of the American Chemical Society.

experiments.[18] Hsueh and Newman[2] obtained four values in the range from 0.50 to 0.57 and one
value of 0.75.

19.5 PARADOXES WITH SUPPORTING ELECTROLYTE

The use of a supporting electrolyte raises a number of questions, such as:

1. Which species is carrying the current?
2. If the reactant is carrying the current in the diffusion layer, how does the supporting electrolyte

have an effect?
3. If the supporting electrolyte is motionless in the diffusion layer, is it also motionless in the bulk

of the solution? Again, what species is carrying the current?

We shall endeavor to answer such questions in this section.
The nature of the problem can perhaps be seen more clearly from the fundamental transport relations.

If there are no concentration gradients, then equation 18.1 applies:

𝐢 = −𝜅∇Φ, (19.40)
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Figure 19.12 Surface concentration change for a growing mercury drop or in a stagnant diffusion cell. Source:
Hsueh and Newman 1971.[2] Reproduced with permission of the American Chemical Society.

where
𝜅 = F2

∑

i

z2
i uici. (19.41)

This is the conductivity we measure with a conductivity cell, using alternating current, and is the
usual basis for defining transference numbers (equation 11.9) and deciding how the various species
contribute to the current. These concepts sometimes clash with what we find on more detailed analysis
of the effect of supporting electrolyte.

Consider an electrolytic cell with two electrodes and a solution between. Near each electrode there
is a stagnant diffusion layer in which mass-transfer effects are important, and the bulk of the solution
is well mixed.

At the electrode, the flux of all species is zero except for a reactant. In a stagnant diffusion layer,
this implies that the added ions and the counterions are motionless, having adopted concentration
distributions so that the forces of migration and diffusion cancel. How then can the supporting
electrolyte act to reduce the electric field strength when it carries no current? In this regard, the effect
of adding supporting electrolyte is essentially no different from adding more reacting electrolyte. This
excess electrolyte is not moving either. Problem 19.7 may give additional insight into how addition
of supporting electrolyte can reduce the potential gradient even though concentration gradients are
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present and equations 19.40 and 19.41 are not applicable unless we replace the conductivity 𝜅 with 𝜅′:

𝜅′ = −F2

∑
i

z2
i uici∕Di

∑
i

zisi∕nDi
.

There are several reasons why we might use a supporting electrolyte instead of adding more reacting
electrolyte. Without the supporting electrolyte, the conductivity of the solution may be limited by the
solubility of the reacting electrolyte. The current distribution is likely to be more uniform with a higher
conductivity (see Section 18.3), and the ohmic potential drop will be smaller. We may want to keep
the inventory of working material down and use a cheaper material that we can discard when it gets
dirty. We may want to adjust the pH (see also Section 1.6).
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Figure 19.14 Surface concentration change in a Nernst diffusion layer. Source: Hsueh and Newman 1971.[2]

Reproduced with permission of the American Chemical Society.

Now suppose that the region outside the stagnant diffusion layer is well stirred so that there are no
concentration gradients. (It may be useful to consider the rotating-cylinder system treated in Chapter 1.
A concentration profile was shown in Figures 1.7 and 1.10.) In this region, equation 19.40 should
apply, so that the supporting electrolyte is apparently moving and carrying a current. How can we have
a flux that suddenly becomes zero at the edge of the diffusion layer? Actually, the net flux of supporting
electrolyte must be zero throughout the solution. The velocity of stirring cannot be one dimensional.
A sufficient concentration gradient exists across the bulk solution so that convection cancels the
migration flux of the supporting electrolyte and augments that of the reactant; this is the purpose of
stirring in the first place. (Compare with the description of the turbulent transport mechanism and
the eddy diffusivity in Section 15.7.) The faster the stirring, the lower the gradients; but the fluid
motion carries no current since the solution is electrically neutral. However, the potential drop in the
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Figure 19.15 Concentration differences of sulfuric acid possible in the copper sulfate, sulfuric acid system with
complete and with no dissociation of bisulfate ions and for several hydrodynamic situations.

bulk is still given by equation 19.40 and can be considerably reduced by the addition of supporting
electrolyte.

A statement of how much current each ionic species is carrying thus depends upon one’s reference
frame. Some people base their answer on the net flux. Others prefer to ignore the convective flux,
saying that it does not contribute to the current. Still others give an answer based only on migration
fluxes and transference numbers.

Finally, one may be puzzled by the fact that the addition of a supporting electrolyte reduces the
ohmic potential drop and yet can lead to a reduction of the limiting current by a factor of 2. The reason
is that the potential drop in the bulk solution is not relevant at the limiting current. By lowering the
electric field in the diffusion layer, so that migration makes no contribution to the flux of the reactant,
the supporting electrolyte reduces the limiting current density. At this point one can contrast Figure
1.13 with Figure 1.12. To pass 5 A with no supporting electrolyte requires about 0.6 V, whereas with
supporting electrolyte only about 0.26 V is required. At higher potentials, mass-transfer in the diffusion
layer becomes a more severe restriction with the supporting electrolyte.

19.6 LIMITING CURRENTS FOR FREE CONVECTION

The addition of supporting electrolyte to a solution does not make the free-convection problem directly
comparable to that of heat transfer and nonelectrolytic mass transfer in a binary fluid because, while
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it does reduce the effect of ionic migration, the concentration variation of the supporting electrolyte
affects the density variation to roughly the same extent as the reactant and thus influences the velocity
profile. Since the mass-transfer rate depends upon the velocity profile, the limiting current density is
also affected.

The quantities of practical interest are the mass transfer to the wall and the shear stress at the wall.
For laminar free convection from a solution to a vertical electrode with a constant density difference
Δ𝜌 between the surface and the bulk solution, the results can be expressed in dimensionless form as

Nuavg =
sRiavgL

nFDRcR∞
= C(ScGr)1∕4 (19.42)

and 𝜏0

LgΔ𝜌 = B(ScGr)−1∕4, (19.43)

where 𝜏0 is the shear stress at the wall averaged over the length L, g is the magnitude of the gravitational
acceleration, Sc = v/DR is the Schmidt number, Gr is the Grashof number

Gr =
gL3Δ𝜌
𝜌∞𝜈2

, (19.44)

and Δ𝜌 = |𝜌∞ − 𝜌0| is the magnitude of the density difference between the bulk solution and the
electrode surface. C and B are dimensionless coefficients that depend on the Schmidt number and the
composition of the bulk solution. Values of C for a binary fluid were given in Table 17.2. For free
convection to a vertical surface with a constant density difference Δ𝜌, the local rate of mass transfer is
inversely proportional to x1/4, and the local shear stress is proportional to x1/4, where x is the vertical
distance along the surface measured from the beginning of the boundary layer.

We treat[19] this problem in the limit of infinite Schmidt number and express the results in the form
of C/Cb and B/Bb, where Cb and Bb are the values appropriate to a binary fluid and have the values
Cb = 0.670327 and Bb = 0.932835.

The copper sulfate/sulfuric acid system was treated first. In view of the low value of the dissociation
constant of bisulfate ions, the calculations were carried out for no dissociation of bisulfate ions as
well as for complete dissociation to sulfate and hydrogen ions (see also Section 19.4). Results are
shown in Figure 19.16 for B/Bb for complete dissociation of bisulfate ions and the ratio C/Cb for both
no dissociation and complete dissociation. Dashed lines show the corresponding values of IL/ID for a
rotating disk.

For metal deposition from a binary electrolytic solution, one can show that

C =
(D∕DR)3∕4

1 − tR
Cb(Sce) (19.45)

and

B = ( D
DR

)
1∕4

Bb(Sce) (19.46)

(see equation 17.99 and Problem 17.7), where Sce = v/D is based on the diffusion coefficient D of the
salt and tR is the transference number of the reacting cation (see equations 11.22 and 11.28).

As r approaches unity, one would expect C/Cb and B/Bb to approach unity if the appearance of Δ𝜌
in the Grashof number were sufficient to correlate the effect of the supporting electrolyte. The contrary
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Figure 19.16 Coefficients for shear stress (complete dissociation only) and mass transfer in the CuSO4–H2SO4
system. Dashed curves show for comparison values of IL/ID for the rotating disk. Source: [14]. Reproduced with
permission of the American Chemical Society.

behavior emphasizes the fact that these ratios express not only the effect of ionic migration but also
the effect of the density profile not being similar to that for a binary fluid.

To be specific, the diffusion layer thickness is greater for H2SO4 than for CuSO4 because of the
larger value of the diffusion coefficient of hydrogen ions. Thus, the density difference in the outer part
of the diffusion layer is positive while it is negative near the electrode. Consequently, the value of Δ𝜌
does not, by itself, give sufficient information about the density profile. In fact, with added H2SO4, the
velocity profile shows a maximum within the diffusion layer. This is shown for excess sulfuric acid in
Figure 19.17. Since these phenomena occur in a more drastic fashion in some redox systems, we shall
postpone their further discussion. In Figure 19.17, the abscissa is the similarity variable

𝜂 = y(
3gΔ𝜌

4𝜈DR𝜌∞x
)

1∕4

, (19.47)

and the velocity profile is related to dF/d𝜂 by

dF
d𝜂 = (

3𝜈𝜌∞
4gΔ𝜌DRx

)
1∕2

𝑣x. (19.48)

The redox reaction
Fe(CN)3−

6 + e− ⇌ Fe(CN)4−
6 (19.49)

is popular in mass-transfer studies and has been used in free convection, although it is not common.
The densification in this system is much weaker than in copper sulfate solutions since the excess of
product ion largely compensates for the deficit of the reactant.
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Figure 19.17 Velocity profiles for binary salt solution (CuSO4) and for CuSO4 with excess H2SO4 (r = 0.99998)
completely dissociated and undissociated. Source: Hauser and Newman 1989.[14] Reproduced with permission of
the American Chemical Society.
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Figure 19.18 Coefficient for mass-transfer rate in the supported ferricyanide–ferrocyanide systems, for equal
bulk concentrations of K3Fe(CN)6 and K4Fe(CN)6. Source: Hauser and Newman 1989.[14] Reproduced with
permission of the American Chemical Society.
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The ratio C/Cb is shown in Figure 19.18 as a function of

r =
c∞
OH−

c∞
K+ + c∞

Na+
. (19.50)

The solutions have equal bulk concentrations of potassium ferrocyanide and potassium ferri-
cyanide, with either sodium hydroxide or potassium hydroxide added as a supporting electrolyte.
On Figure 19.18, values of IL/ID for the rotating disk with KOH supporting electrolyte are plotted for
comparison.

Figure 19.18 shows a conspicuous deviation of the values of C/Cb from the values of IL/ID for the
rotating disk. In contrast, the concentration ratios shown in Figure 19.19 are essentially independent
of the hydrodynamic situation, almost coinciding with the results for the rotating disk (which are not
shown). Figure 19.18 reflects the strong dissimilarity of the density profile in the supported solutions
compared to that in a binary solution. A dramatic consequence of this is shown in the velocity profiles
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Figure 19.19 Surface concentrations in the supported ferricyanide–ferrocyanide systems, for equal bulk con-
centrations of K3Fe(CN)6 and K4Fe(CN)6. Source: Hauser and Newman 1989.[14] Reproduced with permission of
the American Chemical Society.
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in Figure 19.20. There is a velocity maximum that becomes more pronounced as KOH is added, and the
magnitude of the velocities becomes smaller. The profile for r = 0.95 yields a converged but physically
unreasonable solution since the velocity far from the electrode has reversed sign. Reasonable solutions
were not obtained in the cathodic case for r greater than 0.85 for KOH, and 0.75 for NaOH, supporting
electrolyte.

The situation is different only in degree from the one encountered in the case of supported CuSO4.
Normalized density profiles for the two cases are compared in Figure 19.21. The ferricyanide–
ferrocyanide system has a weaker densification than CuSO4, and, consequently, the addition of
supporting electrolyte can have relatively a much greater effect on the density profile, as we see in
Figure 19.21.
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Figure 19.20 Velocity profiles for various values of r for cathodic reduction of ferricyanide ions with KOH
supporting electrolyte. Source: Hauser and Newman 1989.[14] Reproduced with permission of the American
Chemical Society.
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Figure 19.21 Normalized density profiles for binary salt solution (CuSO4), for CuSO4 with excess H2SO4
(r = 0.99998), and for equimolar ferricyanide–ferrocyanide with excess KOH (cathodic reaction, cOH−∕cK+ =
0.95). Source: Hauser and Newman 1989.[14] Reproduced with permission of the American Chemical Society.
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Many of the phenomena reported here can be attributed to the large diffusion coefficient of the
supporting electrolyte used. For a system where the diffusion coefficients of the solutes are roughly
the same, one could estimate the value of IL/ID from calculations for other hydrodynamic situations
and then assume that this is equal to the value of C/Cb, for free convection with little error.

The analysis applies to large Schmidt numbers. In this limit, the present results can be applied
to other geometries by using the transformation of Acrivos (see Section 17.10). This means that the
coefficient 0.6705 in equation 17.91 is replaced by C or that the coefficient 0.5029 in equations 17.90
and 17.92 is replaced by 3C/4.

PROBLEMS

19.1 Use the results of Section 17.13 to show that the correction factor for migration for the discharge
of cations from a binary salt solution is

IL

ID
=

(D∕DR)2∕3

1 − tR

for a disk electrode and
IL

ID
=

(D∕DR)1∕2

1 − tR

for a growing mercury drop. Show that the corresponding expression for a stagnant Nernst
diffusion layer is

IL

ID
=

D∕DR

1 − tR
.

19.2 Verify equations 19.33 and 19.34.

19.3 Show that, for a stagnant Nernst diffusion layer, equations 19.33 and 19.34 should be replaced
by

c0
4 − c∞

4

c∞
R

= −
s4

sR

DR

D4

and
c0

1 − c∞
1

c∞
R

=
−zR

z2 − z1
−

z4

z2 − z1

s4

sR

DR

D4
.

19.4 The latter part of Section 19.3 deals with concentration profiles at the limiting current with a
large excess of supporting electrolyte. Use these results to reexamine the questions raised in
Problem 11.4.

19.5 It is desired to obtain a numerical value for IL/ID for hydrogen ion discharge in turbulent flow.
For this purpose, we shall use the rotating-cylinder system with the limiting current on the inner,
rotating cylinder. Assume that no gas bubbles are formed on either electrode.
(a) State the electrochemical reaction occurring at the cathode.
(b) For a very dilute aqueous solution of hydrochloric acid with a large excess of potassium

chloride as a supporting electrolyte, state a formula for the total limiting current at a rotating
electrode.
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(c) For the same very dilute aqueous solution of hydrochloric acid, but in the absence of
potassium chloride (i.e., for a binary electrolyte), obtain an expression for the total limiting
current at the rotating electrode.

(d) Obtain an expression and a numerical value for IL/ID for this particular turbulent-flow
system. Use transport properties in Table 11.1.

19.6 Problem 2.18 dealt with a cell for producing chlorate ions. Sketch profiles of the ionic
compositions as functions of distance from the anode (where chlorate is produced). Try to
satisfy the electroneutrality condition and indicate how diffusion and migration contributions
are to be reconciled with the net flux density of each ionic species.

19.7 Because of the diffusion potential, it is sometimes possible for the electric field in the solution to
be reversed near an electrode, that is, for 𝜕Φ/𝜕y at y = 0 to be positive for an anode or negative
for a cathode. Here, Φ represents the electrostatic potential and y is the position measured from
the electrode surface into the solution. Assume that a steady state prevails.
(a) Show that this reversal of electric field can never occur in the solution outside the diffusion

layer where ∇ci = 0.
(b) For a single electrode reaction ∑

i

siM
zi
i → ne−,

write Faraday’s law so as to express the flux density Niy at the electrode in terms of the
normal component in of the current density.

(c) On the basis of part (b), express the normal component of the concentration gradient of
species i in terms of the current density and the potential gradient.

(d) Sum over i the concentration gradients multiplied by charge number and, thus, relate the
normal component of the potential gradient to the current density at an electrode in an
expression not involving the concentration gradients.

(e) Test this expression for the reaction

Cu + 2Cl− → CuCl−2 + e−.

Use the Nernst–Einstein relation, and take the composition near the electrode to be
cKCl = 1 M, cKCuCl2 = 0.001 M, and take the diffusion coefficient of CuCl−2 to be
0.54 × 10−5 cm2/s.

NOTATION

a 0.51023
B coefficient for shear stress in free convection
Bb 0.932835
ci concentration of species i, mol/cm3

C coefficient for mass transfer in free convection
Cb 0.670327
D diffusion coefficient for a binary electrolyte, cm2/s
De diffusion coefficient of supporting electrolyte, cm2/s
Di diffusion coefficient of species i, cm2/s
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F Faraday’s constant, 96,487 C/mol
F dimensionless stream function for free convection
g magnitude of the gravitational acceleration, cm/s2

Gr Grashof number
i current density, A/cm2

I ionic strength, mol/liter
ID limiting diffusion current
IL limiting current
Ir true ionic strength, mol/liter
K′ dissociation constant, mol/liter
L height of vertical electrode, cm
n number of electrons transferred in electrode reaction
Nu Nusselt number
r ratio of supporting electrolyte to total electrolyte
R universal gas constant, 8.3143 J/mol⋅K
si stoichiometric coefficient of species i in electrode reaction
Sc Schmidt number
t time, s
ti transference number of species i
T absolute temperature, K
ui mobility of species i, cm2⋅mol/J⋅s
𝑣x velocity component parallel to the electrode, cm/s
𝑣y velocity component perpendicular to the electrode, cm/s
x distance along the electrode measured from the beginning of the boundary layer, cm
y normal distance from the electrode, cm
zi charge number of species i
Γ(4/3) 0.89298, the gamma function of 4/3
𝛿 thickness of Nernst stagnant diffusion layer, cm
𝜂 similarity variable for free convection
𝜅 conductivity, S/cm
𝜈 kinematic viscosity, cm2/s
𝜉 dimensionless distance from the electrode
𝜌 density, g/cm3

Δ𝜌 |𝜌∞ − 𝜌0|
𝜏0 shear stress averaged over the electrode, N/cm2

𝜙 FΦ/RT
Φ electric potential, V
Ω rotation speed, rad/s

Subscripts and Superscripts

avg average
R limiting reactant
0 at the electrode surface
0 zero-order concentration of supporting ions
∞ in the bulk solution
* see equation 19.36
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CHAPTER 20

CONCENTRATION OVERPOTENTIAL

20.1 DEFINITION

The concentration overpotential was defined in Section 1.5 as the potential difference between a
reference electrode adjacent to the surface, just outside the diffuse double layer, and another reference
electrode in the bulk of the solution, minus the potential difference that would exist between these
reference electrodes if the current distribution were unchanged but there were no concentration
variations between the electrode surface and the bulk solution. These reference electrodes were to
involve the same electrode reaction as that under consideration at the working electrode.

This idealized definition is based on the concept of a diffusion layer near the electrode, where the
concentration variations occur, and a bulk solution, where the composition is uniform. The ohmic
potential is subtracted from the measurement, so that the resulting concentration overpotential is
independent of the precise placement of the reference electrode in the bulk solution. The ohmic
potential that is subtracted is not the actual ohmic potential drop but is that which would prevail in a
solution of uniform composition (with the same current distribution). This has the advantage that this
ohmic potential drop can be calculated by solving Laplace’s equation, as in Chapter 18, without explicit
consideration of the concentration variations near the electrode, which would destroy the validity of
Laplace’s equation in this region. We shall see how this works in the next chapter, where we want to
treat the current distribution below, but at an appreciable fraction of, the limiting current.

In Section 1.5, we also considered another possible decomposition of the potential variation in the
solution, in which the ohmic portion is that which would disappear immediately if the current density
were to become zero everywhere. This decomposition has the practical disadvantage that in most
geometries interruption of the external current to an electrode does not automatically ensure that the
local current density is everywhere equal to zero,[1] even in the absence of concentration variations
near electrodes. It has the theoretical disadvantage that the calculation of the ohmic potential drop
would then include directly some of the effect of the variation of composition.

Electrochemical Systems, Fourth Edition. John Newman and Nitash P. Balsara.
© 2021 John Wiley & Sons, Inc. Published 2021 by John Wiley & Sons, Inc.
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According to the development in Chapter 2, the potential Vr of a movable reference electrode
(relative to a fixed reference electrode) varies with position as

∇Vr = −
∑

i

si

nF
∇𝜇i, (20.1)

where the electrode reaction for the reference electrode is given by equation 2.6. By selecting an ionic
species n, we can write this as

∇Vr = 1
znF

∇𝜇n −
∑

i

si

nF
(∇𝜇i −

zi

zn
∇𝜇n) , (20.2)

since ∑

i

zisi = −n. (20.3)

Substitution of equation 2.68 yields

∇Vr = − 𝐢
𝜅 −

∑

i

si

nF
(∇𝜇i −

zi

zn
∇𝜇n) −

∑

j

t0
j

zjF
(∇𝜇j −

zj

zn
∇𝜇n) . (20.4)

The first two terms on the right are the ohmic potential drop and the terms relating to the specific
electrode reaction. The last two terms are expressed in terms of the gradients of the electrochemical
potentials of neutral combinations of ions and are zero in the absence of concentration variations, in
which case 𝜅 is a constant.

Let us introduce the concentrations into equation 20.4 by means of equation 11.69. Then we have

∇Vr = − 𝐢
𝜅 − RT

nF

∑

i

si∇ ln cifi,n − RT
F

∑

j

t0
j

zj
∇ ln cjfj,n, (20.5)

where fi,n is the molar activity coefficient of species i referred to the ionic species n (see equation
11.71). The last term represents the diffusion potential (see equation 11.11).

If we subtract the ohmic drop that would exist in the absence of concentration variations and
integrate across the diffusion layer, we obtain the concentration overpotential as defined above

𝜂c = ∫
∞

0
iy ( 1

𝜅 − 1
𝜅∞

) dy + RT
nF

∑

i

si ln
(cifi,n)∞

(cifi,n)0
+ RT

F
∫

∞

0

∑

j

t0
j

zj

𝜕 ln cjfj,n
𝜕y

dy, (20.6)

where ∞ denotes the bulk solution and 0 denotes the electrode surface (outside the diffuse double
layer). The current density iy is approximately constant in the diffusion layer and can be taken to be
equal to in, the value at the electrode. For dilute solutions, we can neglect the activity coefficients and
let the transference numbers be given by equation 11.9, with the result

𝜂c = in ∫
∞

0
( 1

𝜅 − 1
𝜅∞

) dy + RT
nF

∑

i

si ln
ci∞
ci0

+ F ∫
∞

0

∑

j

zjDj

𝜅
𝜕cj

𝜕y
dy, (20.7)

where the Nernst–Einstein relation 11.41 has been used. Equation 20.7 can be compared with equation
30 of Ref. [2].
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Subtraction of iy/𝜅∞ in the integrals in equations 20.6 and 20.7 corresponds to subtracting the
ohmic contribution that would exist in the absence of concentration variations. The concentration
overpotential is, thus, the potential difference of a concentration cell plus an ohmic contribution due
to the variation of conductivity within the diffusion layer, which can logically be associated with
concentration variations near electrodes.

20.2 BINARY ELECTROLYTE

The potentials of concentration cells involving solutions of a single electrolyte were treated in Section
2.6. On the basis of equation 2.85, the concentration overpotential in this case can be expressed as

𝜂c = in ∫
∞

0
( 1

𝜅 − 1
𝜅∞

) dy − 𝜈RT
F

∫
∞

0
(

t0
−

z+𝜈+
−

s−
n𝜈−

+
s0c
nc0

)
𝜕 ln cf+−

𝜕y
dy. (20.8)

For dilute solutions, this reduces to

𝜂c =
in

z+𝜈+F2(z+u+ − z−u−)
∫

∞

0
(1

c
− 1

c∞
) dy

+
z+ − z−

z+

RT
F

(
t0
−

z−
+

s−
n

) ln
c∞
c0

. (20.9)

(In equation 20.8, c0 is the solvent concentration; in equation 20.9, it is the value of c at the electrode.)
It is tempting to try to simplify this expression for the concentration overpotential even further. For

the purpose of evaluating the integral in equation 20.9, the concentration profile could be approximated
as (compare Figure 17.1)

c = c0 + (c∞ − c0)
y
𝛿

for y < 𝛿

= c∞ for y > 𝛿, (20.10)

where 𝛿 is given by

𝜕c
𝜕y

=
c∞ − c0

𝛿
at y = 0. (20.11)

Then

∫
∞

0
(1

c
− 1

c∞
) dy = 𝛿

c∞ − c0
ln

c∞
c0

− 𝛿
c∞

=
ln(c∞∕c0) − (c∞ − c0)∕c∞

𝜕c∕𝜕y|y=0
. (20.12)

Now
in
F

(
s−
n

+
t0
−

z−
) = 𝜈−D

𝜕c
𝜕y

|||||||||y=0

. (20.13)

Consequently, with the Nernst–Einstein relation 11.41, the concentration overpotential becomes

𝜂c = RT
z+z−F

z+ − z−

1 + (z−s−∕nt0
−)

× {[1 +
z−s−

n
(2 +

z−s−

nt0
−

)] ln
c∞
c0

− t0
+ (1 −

c0

c∞
)} , (20.14)
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and, for a metal deposition reaction (s− = 0), this reduces to

𝜂c =
(z+ − z−)RT

z+z−F
[ln

c∞
c0

− t0
+ (1 −

c0

c∞
)] . (20.15)

This is the basis for Problem 1.1.

20.3 SUPPORTING ELECTROLYTE

For solutions with an excess of supporting electrolyte, it should be possible to neglect conductivity
variations in the diffusion layer. Then equation 20.7 for the concentration overpotential becomes

𝜂c = RT
nF

∑

i

si ln
ci∞
ci0

+ F
𝜅∞

∑

j

zjDj(cj∞ − cj0). (20.16)

Now, the last term is also on the order of the reactant concentration divided by the supporting electrolyte
concentration and can be neglected, with the result

𝜂c = RT
nF

∑

i

si ln
ci∞
ci0

. (20.17)

20.4 CALCULATED VALUES

The most salient feature of the concentration overpotential is that it becomes infinite when the
concentration of one of the reactants becomes zero at the electrode, corresponding to the limiting
current. The concentration overpotential also allows us to calculate the current–potential relationship
for a complete cell, as presented in Figures 1.12 and 1.13. (There we see that the surface overpotential
also becomes infinite at the limiting current because the exchange current density goes to zero.) For
many cell geometries, the calculations are more difficult. This is treated in Chapter 21.

The nature of concentration overpotentials can be revealed by some examples. Figure 1.11 was
calculated for a rotating disk electrode[3] by using equation 20.6 or 20.8, that is, without approximations
for dilute solutions. The values of i and 𝜂c are those for the center of the disk, in case the current
distribution is nonuniform.

Tables 20.1 and 20.2 give values of 𝜂c calculated according to equation 20.7 for a rotating-disk
electrode. The concentration profiles were calculated with the computer program in Appendix C for
the effect of migration on limiting currents, but with a nonzero value for the reactant concentration at
the electrode. Thus, approximations for dilute solutions are already introduced: Variations of activity
coefficients are neglected, equations 11.7 and 11.9 are used for the conductivity and transference
numbers, and the Nernst–Einstein relation 11.41 is used.

In Table 20.1 for copper deposition, comparison with equations 20.15 and 20.17 is made, thus
providing a check on the error involved in the additional approximations used to derive these equations.
The presence of the diffusion potential shows up in this table. For example, the value −6.69 mV for
cR0/cR∞ = 0.7 and r = 0.25 is greater in magnitude than the corresponding values for r = 0 and r = 1.
In Table 20.2 for the reduction of ferricyanide ions, equation 20.17 works well throughout the range
of the table, being exact for r = 1.
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TABLE 20.1 Values of concentration overpotential 𝜼c (in mV) for copper deposition on a rotating disk
from solutions of copper sulfate and sulfuric acid, with complete dissociation of bisulfate ions

cR0/cR∞

ra 0.1 0.25 0.5 0.7 0.9 0.95

0b −49.84 −27.85 −12.63 −6.06 −1.67 −0.800
0 −50.52 −28.27 −12.79 −6.10 −1.67 −0.798
0.25 −37.35 −23.94 −12.65 −6.69 −2.01 −0.984
0.5 −34.23 −21.62 −11.38 −6.04 −1.83 −0.897
0.7 −32.18 −19.96 −10.33 −5.43 −1.63 −0.799
0.9 −30.39 −18.48 −9.35 −4.85 −1.44 −0.704
0.99 −29.66 −17.87 −8.95 −4.61 −1.36 −0.663
1c −29.58 −17.81 −8.90 −4.58 −1.35 −0.659

ar = c∞
H+∕2c∞

SO2−
4

.
bEquation 20.15.
cEquation 20.17.

TABLE 20.2 Values of concentration overpotential 𝜼c (in mV) for reduction of ferricyanide ions on a
rotating disk from solutions equimolar in potassium ferricyanide and potassium ferrocyanide and with
various amounts of added potassium hydroxide

cR0/cR∞

ra 0.1 0.25 0.5 0.7 0.9 0.95

0 −74.22 −48.67 −27.15 −15.14 −4.84 −2.41
0.25 −74.85 −49.22 −27.57 −15.42 −4.95 −2.46
0.5 −75.47 −49.79 −28.02 −15.73 −5.08 −2.53
0.7 −76.04 −50.32 −28.44 −16.03 −5.20 −2.59
0.9 −76.78 −51.01 −29.00 −16.44 −5.36 −2.68
0.99 −77.21 −51.41 −29.34 −16.68 −5.46 −2.73
1 −77.27 −51.47 −29.38 −16.71 −5.47 −2.74

ar = c∞
OH− ∕c∞

K+ .

PROBLEMS

20.1 For the electrode reaction

Pb(s) + SO2−
4 ⇌ PbSO4(s) + 2e−

in a sulfuric acid solution supposed to be dissociated into hydrogen and sulfate ions, show that
the concentration overpotential can be approximated as

𝜂c = −
(z+ − z−)RT

z+z−F
[ln

c∞
c0

− t0
− (1 −

c0

c∞
)] .
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20.2 For the electrode reaction

PbO2(s) + SO2−
4 + 4H+ + 2e− ⇌ PbSO4(s) + 2H2O

in a sulfuric acid solution supposed to be dissociated into hydrogen and sulfate ions, show that
the concentration overpotential can be approximated as

𝜂c =
(z+ − z−)RT

z+z−F
[

1 + 3t0
−

1 + t0
−

ln
c∞
c0

−
t0
+t0

−

1 + t0
−

(1 −
c0

c∞
)] .

20.3 For an anode, equation 20.15 can give negative values for 𝜂c. Explain how this situation arises
and discuss whether any basic physical laws are violated by having a negative overpotential at
an anode.

20.4 Using the ferrous–ferric redox reaction

Fe2+ ⇌ Fe3+ + e−

in an excess of supporting electrolyte as an example, show that equations 8.23 and 8.24 can be
rearranged to yield the rate equation

i = i∞
0 {

c10

c1∞
exp [

(1 − 𝛽)nF
RT

𝜂] −
c20

c2∞
exp [−

𝛽nF
RT

𝜂]} ,

where species 1 is the ferrous ion, species 2 is the ferric ion, 𝜂 is the total overpotential
𝜂s + 𝜂c, and i∞

0 is the exchange current density at the bulk composition, having the composition
dependence

i∞
0 = nFk1−𝛽

c k𝛽
a c𝛽

1∞c1−𝛽
2∞

if the rules for reaction orders after equation 8.28 are followed.

NOTATION

c concentration of binary electrolyte, mol/cm3

ci concentration of species i, mol/cm3

D diffusion coefficient of binary electrolyte, cm2/s
Di diffusion coefficient of species i, cm2/s
fi,n molar activity coefficient of species i referred to species n
f+− mean molar activity coefficient of binary electrolyte
F Faraday’s constant, 96,487 C/mol
i current density, A/cm2

n number of electrons involved in the electrode reaction
R universal gas constant, 8.3143 J/mol⋅K
si stoichiometric coefficient of species i in electrode reaction
t0
i transference number of species i with respect to the velocity of species 0

T absolute temperature, K
ui mobility of species i, cm2 mol/J⋅s
Vr potential of a reference electrode, V
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y normal distance from an electrode, cm
zi charge number of species i
𝛿 equivalent diffusion-layer thickness, cm
𝜂c concentration overpotential, V
𝜅 conductivity, S/cm
𝜇i electrochemical potential of species i, J/mol
𝜈 𝜈+ + 𝜈−
𝜈+, 𝜈− numbers of cations and anions produced by dissociation of one molecule of electrolyte

Subscripts

0 at the electrode surface
∞ in the bulk solution
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CHAPTER 21

CURRENTS BELOW THE LIMITING CURRENT

At currents below, but at an appreciable fraction of, the limiting current, it is necessary to consider
concentration variations near electrodes, the surface overpotential associated with the electrode reaction,
and the ohmic potential drop in the bulk of the solution. These problems are inherently of greater
complexity than either the convective-transport problems or the potential-theory problems, treated in
Chapters 17 and 18, in which one or more of these factors could be ignored.

In many electrolytic cells, the concentration variations are still restricted to thin diffusion layers near
the electrodes, and Laplace’s equation still applies to the bulk of the solution outside these diffusion
layers. This means that one can devote separate attention to these different regions. Since the diffusion
layers are thin, the bulk region essentially fills the region of the electrolytic solution bounded by the
walls of the cell and the electrodes. In this region, the potential is determined so as to satisfy Laplace’s
equation and agree with the current density distribution on the boundaries of the region. In the diffusion
layers, the concentrations are determined so as to satisfy the appropriate form of the transport equations,
with a mass flux at the wall appropriate to the current density distribution on the electrodes and with
the concentration approaching the bulk concentrations far from the electrode. The current distribution
and concentrations at the electrode surface must adjust themselves so as to agree with the overpotential
variation determined from the calculation of the potential in the bulk region. We are thus faced with a
singular-perturbation problem, and the treatment of the two regions is coupled through the boundary
conditions.

The thinness of the diffusion layers also allows one to separate the irreversible part of the cell
potential into the sum of the surface overpotentials, the concentration overpotentials, and the ohmic
potential drop in the solution (see Section 1.6). The surface overpotential has been defined and
discussed in Sections 1.3 and 16.2 and Chapter 8. It is related to the concentrations and current
density at the electrode surface by the polarization equation 16.9. The surface overpotential varies with
position on the electrode unless the concentrations and current density are uniform on the electrode. The
concentration overpotential was discussed in Section 1.5 and Chapter 20. In general, the concentration
overpotential also depends upon position along the electrode surface.

Electrochemical Systems, Fourth Edition. John Newman and Nitash P. Balsara.
© 2021 John Wiley & Sons, Inc. Published 2021 by John Wiley & Sons, Inc.
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Asada et al.[1] have used a separate treatment of the diffusion layers and the bulk solution to treat
free convection in a rectangular cell with a vertical electrode at each end for currents below the limiting
current. Newman has given a detailed justification for such a procedure for systems with laminar,
forced convection[2] and has applied the method to the rotating-disk electrode.[3–5] References [6–12]
reflect on the experimental verification of the results. The problem for two electrodes of length L
placed opposite each other at a distance h, embedded in the walls of a flow channel with steady,
laminar flow, is formulated in Ref. [13] and has been worked out by Parrish and Newman.[5, 14] Alkire
and Mirarefi[15] treated an interior, tubular electrode with a downstream or upstream counterelectrode.
Simultaneous reactions have been treated for the rotating disk by White and Newman[16] and for
the channel flow geometry by Edwards and Newman[17] and by White et al.[18] Pierini and Newman
applied these methods to a ring-disk geometry,[19] and Pierini et al. applied them to a redox reaction
on a disk electrode,[20] while Nişancioǧlu and Newman dealt with a rotating spherical electrode.[21]

21.1 THE BULK MEDIUM

We deal here with forced-convection systems where the hydrodynamic velocity distribution can be
assumed to be known. When the Péclet number Pe = UL/DR (where U is a characteristic velocity and
L is a characteristic length) is large, mass transfer by convection predominates over diffusion except in
a thin diffusion layer near an electrode surface. Outside these diffusion layers, in the bulk solution, the
concentrations are uniform; and the potential satisfies Laplace’s equation (see Section 18.1). We use a
tilde to denote the potential and current distributions in this region. Thus, we have

∇2Φ̃ = 0. (21.1)

In the bulk medium, the current density is related to the potential gradient by Ohm’s law

�̃� = −𝜅∞∇Φ̃. (21.2)

In this singular-perturbation problem, the diffusion layers approach zero thickness as the Péclet
number approaches infinity. Consequently, we solve Laplace’s equation in the region confined by the
electrodes and the insulating walls of the cell, as though the diffusion layers were not present. At the
walls, the current density in the bulk region must match with the current density in the outer limit of
the diffusion layer. In Section 21.3, we argue that the normal component of the current density changes
very little in the thin diffusion layer and is essentially equal to the value at the wall. Therefore, the
boundary condition for Laplace’s equation is

𝜕Φ̃
𝜕y

= −
in
𝜅∞

at y = 0, (21.3)

where y is the distance from the wall and in is the y component of i at the wall. Thus, in represents
the contribution to the external current flowing to an electrode and is zero on insulating surfaces. On
electrodes, in is not known until we have solved simultaneously for the bulk medium and the diffusion
layers.

Laplace’s equation is to be solved for the bulk medium in much the same way as in Chapter
18, where there were no concentration variations; the same methods can be used, and geometric
arrangements that proved intractable there would be equally difficult to treat here. For plane electrodes
in the walls of a flow channel,[5, 13, 14] an integral equation can be used to relate the potential and the
normal component of the potential gradient at the wall, for the solution of Laplace’s equation. For the
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disk electrode, the same thing can be accomplished by using the coefficients of an infinite series[3]

obtained by the method of separation of variables, although an integral equation could also be used.[22]

Where these methods can be used, they are superior, in terms of computational effort and accuracy, to
a numerical solution of Laplace’s equation in the bulk medium by finite differences.

If Vmet is the potential of the electrode metal and Φ̃ in the bulk solution is that measured by a
reference electrode of the same kind as the working electrode, then the total overpotential at the
electrode is

𝜂 = Vmet(x) − Φ̃0(x), (21.4)

where x is distance measured along the electrode and Φ̃0 is the value of Φ̃ evaluated at y = 0. This is
the sum of the concentration overpotential 𝜂c, associated with concentration changes in the diffusion
layer, and the surface overpotential 𝜂s, associated with the heterogeneous electrode reaction,

𝜂 = 𝜂c + 𝜂s. (21.5)

We can see that this conforms to our previous definitions of 𝜂c and 𝜂s in terms of reference electrodes
located outside the diffuse double layer and in the bulk solution. Since Φ̃0 is the value of Φ̃ at y = 0,
subtracting it from Vmet in equation 21.4 corresponds to subtracting the ohmic potential drop in the bulk
solution, calculated with the actual current distribution but extrapolated to the electrode surface with
a constant conductivity 𝜅∞, as though there were no concentration variations in the diffusion layer.
Hence 𝜂, and 𝜂c in particular, includes only the ohmic potential drop associated with concentration
variations in the diffusion layer.

21.2 THE DIFFUSION LAYERS

Because of the thinness of the diffusion layer, effects of curvature can be neglected, and we adopt the
usual boundary layer coordinates: x, measured along the electrode from its upstream end, and y, the
normal distance from the surface. In the diffusion layer, the transport equation simplifies to

𝜕ci

𝜕t
+ 𝑣x

𝜕ci

𝜕x
+ 𝑣y

𝜕ci

𝜕y
= Di

𝜕2ci

𝜕y2
+ ziuiF (ci

𝜕2Φ
𝜕y2

+
𝜕ci

𝜕y
𝜕Φ
𝜕y

) . (21.6)

On the right side, derivatives with respect to x have been ignored compared to the derivatives with
respect to y.

We also assume that the Schmidt number Sc = 𝜈/DR is large. This means that the diffusion layer is
thin even when compared with any hydrodynamic boundary layer that may be present, and, within the
diffusion layer, the velocity components can be represented as (see equations 17.62 and 17.69)

𝑣x = y𝛽(x) and 𝑣y = −1
2

y2 (ℛ𝛽)′

ℛ
, (21.7)

where 𝛽(x) is the velocity derivative at the solid wall, 𝛽 = 𝜕𝑣x/𝜕y at y = 0, and the prime denotes the
derivative with respect to x. These equations apply to two-dimensional and axisymmetric diffusion
layers; for a two-dimensional diffusion layer, ℛ(x) is to be set equal to 1.

In equations 21.6 for mass transfer in the diffusion layer, only derivatives of potential with respect
to y appear and not Φ itself or the x derivative of Φ. Consequently, we can introduce a new potential 𝜙
in the diffusion layer, defined as

𝜙 = Φ(x, y) − Φ̃0(x), (21.8)
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or we can even assign the zero of 𝜙 arbitrarily at each value of x. Then, Φ̃0(x) is important only in the
determination of the total overpotential 𝜂.

Matters are simplified considerably if we are further willing to neglect migration in the diffusion
layer, so that equation 21.6 becomes

𝜕ci

𝜕t
+ y𝛽

𝜕ci

𝜕x
−

y2(ℛ 𝛽)′

2ℛ
𝜕ci

𝜕y
= Di

𝜕2ci

𝜕y2
. (21.9)

Even though the ohmic potential drop in the bulk solution has an important effect on the variation of
the total overpotential along the electrode surface, migration within the diffusion layer does not have
a crucial effect on the current distribution. We have seen that, at the limiting current, the effect of
migration is to change the magnitude but not the distribution of the current.

Equation 21.9 applies if there is an excess of supporting electrolyte (see Section 11.5). However,
the importance of the ohmic drop in the bulk solution depends on the ratio of a characteristic length
to the conductivity 𝜅∞, as brought out in Chapter 18, and this ratio can be large even in the presence
of supporting electrolyte. Equation 21.9 also applies to the other extreme case, solutions of a binary
electrolyte (see Section 11.4), where Di is to be replaced by D, the diffusion coefficient of the
electrolyte.

Equations 21.6, one for each species, are to be solved along with the electroneutrality equation 16.3
for the concentrations and the potential. For the simplified case, equation 21.9 need be solved only for
those species that participate in the electrode reaction.

The concentrations approach their bulk values as y approaches infinity. At the electrode surface, the
fluxes are related to the current density by equation 16.8:

Nin = −
si

nF
in at y = 0. (21.10)

When migration can be ignored, this becomes

𝜕ci

𝜕y
=

siin
nFDi

at y = 0. (21.11)

The equations of Section 17.12 then allow us to solve the diffusion-layer equations 21.9 (in the steady
state) and to relate the surface concentration to the concentration derivative at the surface. Further
reference to the diffusion-layer equations is then unnecessary. Substitution of equation 21.11 into
equation 17.95 gives

siin(x)
nFDi

= −
√
ℛ𝛽

Γ(4∕3)
∫

x

0

dci0

dx

|||||||x=x0

dx0
(
9Di ∫

x
x0

ℛ
√
ℛ𝛽dx

)1∕3
, (21.12)

where ci0(x) is the surface concentration of species i. In applications, the fact that this is a Stieltjes
integral should be borne in mind (see Problem 17.8).

21.3 BOUNDARY CONDITIONS AND METHOD OF SOLUTION

Certain boundary conditions have already been discussed in connection with the diffusion layers and
the bulk medium. The solution for the potential Φ̃ in the bulk solution must satisfy the condition 21.3,
relating the potential derivative to the external current density. It also provides the total overpotential
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through equation 21.4. The solution in the diffusion layer requires matching the fluxes and the current
density through equation 21.10. This is already incorporated into equation 21.12.

The current densities for the diffusion layer and the bulk medium must match. The current density
satisfies equation 11.14:

∇⋅𝐢 = 0. (21.13)

In a two-dimensional diffusion layer, this can be written as

𝜕ix
𝜕x

+
𝜕iy
𝜕y

= 0 (21.14)

or

iy = in − ∫
y

0

𝜕ix
𝜕x

dy. (21.15)

Since the diffusion layer is thin, iy is approximately constant throughout the thickness of the diffusion
layer, and, therefore, the value at the wall is appropriate to use in the boundary condition 21.3 for the
solution of Laplace’s equation in the bulk medium.

It remains to adopt expressions for the concentration overpotential 𝜂c and the surface overpotential
𝜂s. The former can be calculated from equation 20.7. However, equations 20.15 and 20.17 have the
advantage of involving only the concentrations at the surface and not the concentration profiles in the
diffusion layer. They are therefore appropriate to use if equation 21.12 has been adopted. For many
electrodes, the surface overpotential can be related to the current density through equation 16.10:

in = i0 [exp (
𝛼aF
RT

𝜂s) − exp (−
𝛼cF
RT

𝜂s)] , (21.16)

where the exchange current density i0 depends on the composition of the solution adjacent to the
electrode.

The situation at this point may be confusing, particularly with regard to the diffusion layer, because
we have presented several alternative equations. Let us suppose that we have only one reactant species
and that we have adopted equation 21.12 as the diffusion-layer equation and either equation 20.15 or
20.17 for the concentration overpotential. The principal unknowns then are the current density and
the concentration at the electrode surface. These must adjust themselves so as to agree with the total
overpotential 𝜂 available after subtracting the ohmic potential drop from the electrode potential.

Suppose we know the distribution of 𝜂 along the electrode. Then 𝜂s in equation 21.16 can be replaced
by 𝜂 −𝜂c, where 𝜂c is related to the surface concentration by equation 20.15 or 20.17. Substitution
of equation 21.16 into equation 21.12 then gives an integral equation for the surface concentration.
The numerical solution of this integral equation is actually fairly simple since there is no upstream
propagation of effects in the diffusion layer, and a nonlinear equation for ci0 need be solved only once
at each value of x.

The following procedure might be suggested for solving the problem:

1. Assume a distribution of in(x) along the surfaces of the electrodes.
2. Calculate the potential in the bulk medium from Laplace’s equation and boundary condition 21.3.

There is an arbitrary, additive constant in the solution.
3. Calculate the distribution of total overpotential 𝜂 along an electrode.
4. Solve the integral equation for the surface concentration along this electrode. This integral

equation is formed as described above from equations 21.12, 21.16, 20.15 or 20.17, and 21.5. In
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addition to the surface concentration, this calculation also yields the current distribution in and
the split of the total overpotential into 𝜂c and 𝜂s.

5. In calculating the total overpotential in step 3, there is an uncertainty in the additive constant that
is removed by specifying the electrode potential and the additive constant in step 2. In the case
of a single electrode whose behavior is not influenced by the placement of the counterelectrode,
a trial-and-error calculation can be avoided at this point by specifying the electrode potential
relative to a suitably placed reference electrode, or the current density or total overpotential at
the beginning of the diffusion layer. However, if the total current to the electrode is specified,
it is now necessary to adjust the constant in step 3 until this current is reached. Thus, steps 3
and 4 must be repeated until this condition is satisfied. If there are two electrodes that directly
influence each other, it is necessary to specify the total current (so that it will be the same on
both electrodes), and repetition of steps 3 and 4 is necessary.

6. If there are two electrodes, steps 3 to 5 must now be carried out for the second electrode.
7. Steps 3 to 6 yield a new current distribution in on the electrodes, which may be different from

that used in step 2. Steps 2 to 6 must be repeated with a new current density distribution, and
this must be continued until the distribution obtained from steps 3 to 6 agrees sufficiently well
with that used in step 2. Convergence of this procedure can usually be accomplished if the new
current distribution chosen is some average of the previous distribution used in step 2 and that
produced by steps 3 to 6.

Other convergence methods have proved useful, including a multidimensional Newton–Raphson.

21.4 RESULTS FOR THE ROTATING DISK

Let us look at the current distribution on a rotating disk electrode[3, 5] (see Figure 17.2) embedded
in a larger insulating disk, both of which rotate about their axis in an electrolytic solution. The
counterelectrode is supposed to be far enough away that it does not affect the current distribution on
the disk electrode. The limiting current was treated in Sections 17.2, 17.13, and 19.2 and is distributed
uniformly over the surface of the electrode. The primary and secondary current distributions were
discussed in Sections 18.2 and 18.3.

It is assumed that there is one reactant whose concentration is important, and this concentration in
the diffusion layer obeys the equation

ayΩ
√

Ω
𝜈 (r

𝜕cR

𝜕r
− y

𝜕cR

𝜕y
) = D

𝜕2cR

𝜕y2
, (21.17)

a form of equation 21.9. For a solution of a single salt, D is the diffusion coefficient of the salt. For
reaction of a minor component in a solution with excess supporting electrolyte, D denotes the diffusion
coefficient of the reactant. In both cases, the normal current density at the electrode surface is given by

sRin
nF

= D
1 − t

𝜕cR

𝜕y
at y = 0, (21.18)

where t is the transference number of the reactant.
For the concentration overpotential we used the expression

𝜂c = −RT
ZF

[ln (
c∞
c0

) − t (1 −
c0

c∞
)] . (21.19)
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This corresponds to metal deposition from a solution of a single salt (see equation 20.15) if we take t
to be the transference number of the reacting cation and set

Z = −
z+z−

z+ − z−
. (21.20)

Equation 21.19 applies approximately to the reaction of a minor component from a solution with excess
indifferent electrolyte (see equation 20.17) if we set t = 0 and Z = − n/sR.

The electrode kinetics is expressed by equation 16.10 where we have set 𝛼a = 𝛼Z and 𝛼c = 𝛽Z and
have given the concentration dependence of the exchange current density the form

i0(c0) = (
c0

c∞
)
𝛾
i0(c∞). (21.21)

The current distribution is then determined by seven dimensionless parameters. These are a
dimensionless exchange current density J, a dimensionless average current density 𝛿, a dimensionless
limiting current density N, the transference number t, the exponent 𝛾 in the concentration dependence
of the exchange current density, and 𝛼 and 𝛽 in the kinetic equation. J, 𝛿, and N are given by

J =
ZFr0

RT𝜅∞
i0(c∞), 𝛿 =

ZFr0

RT𝜅∞
iavg, (21.22)

and

N = −(
r2

0Ω
𝜈 )

1∕2

( a𝜈
3D

)
1∕3 nZF2Dc∞

sRRT(1 − t)𝜅∞
, (21.23)

where r0 is the radius of the disk electrode.
Figure 21.1 shows the distribution of the reactant concentration at the electrode surface. Due to

the ohmic potential drop, there tends to be a higher current density near the edge of the disk, and
this produces a decrease in the concentration. The distribution is more nonuniform for higher rotation
speeds N2, but the concentration cannot become negative. The disk becomes mass-transfer limited first
near the edge. Figure 21.2 shows the corresponding current distribution, expressed as in/ilim. The local
current density can rise above the average limiting current density because of the nonuniform potential
drop, but it is likely to decrease again toward the edge due to the limited rate of mass transfer by
convection and diffusion. Higher values of N lead again to a more nonuniform distribution.

The corresponding curves in Figures 21.1 and 21.2 can be identified by the fact that

in
ilim

= 1 −
c0

c∞
(21.24)

at the center of the disk.
Figure 21.3 shows how the parameters of the system affect the nonuniformity of the current

distribution (compare Figure 18.7), but this time the effect of concentration variations is included (N)
along with the current level (𝛿), while J is restricted to the reversible and Tafel cases. Notice that
the mass-transfer limitations do not ensure a uniform current density except very close to the limiting
current.

Figure 21.4 shows the polarization curve for copper deposition from a 0.1 M cupric sulfate
solution.[23] The concentration and surface overpotentials at the center of the disk contribute relatively
little compared to the ohmic potential drop in this solution of low conductivity. The ohmic potential
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Figure 21.1 Surface concentration for Tafel kinetics. Source: John Newman 1966.[3] Reproduced with permission
of The Electrochemical Society, Inc.
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Figure 21.2 Current distribution for Tafel kinetics with an appreciable fraction of the limiting current. Source:
W. R. Parrish and John Newman 1969.[5] Reproduced with permission of The Electrochemical Society, Inc.
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Figure 21.3 Current density at the center of the disk. Source: John Newman 1966.[3] Reproduced with permission
of The Electrochemical Society, Inc.
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Figure 21.4 Overpotentials for copper deposition on a rotating disk. Dashed line is ohmic drop for the primary
current distribution; Φ̃0, 𝜂c, and 𝜂s are evaluated at the center of the disk. Source: John Newman 1966.[3]

Reproduced with permission of The Electrochemical Society, Inc.

is not linear since the current distribution changes near the limiting current. Additional parameters for
this system are i0 = 1 mA/cm2 and 𝜅∞ = 0.00872 S/cm for a 0.1 M CuSO4 solution at 25∘C.

Figure 21.5 shows the total overpotential 𝜂 at the center of the disk, at the edge of the disk, and
at r = 0.898r0. The ohmic drop Φ̃0 also depends on radial position in such a way that the electrode
potential V = Φ̃0 + 𝜂 is uniform. Figure 21.5 shows that the overpotential at the edge can be 0.8 V,
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Figure 21.5 Total overpotential at several positions on the disk.

while that at the center is only 0.25 V. Thus, hydrogen may begin to be evolved at the edge before the
center has reached the limiting current.

PROBLEMS

21.1 Suppose that we wish to treat the current distribution in an electrochemical system involving
a redox reaction and an excess of supporting electrolyte. Use equation 17.96 to show that the
product concentration at the surface can be related to that of the reactant according to

c40 − c4∞
cR0 − cR∞

=
s4

sR
(

DR

D4
)

2∕3

(compare equation 19.19), where the product of the reaction is labeled as species 4. Use this
result to show that the concentration overpotential according to equation 20.17 can be expressed,
for ferricyanide reduction from a solution equimolar in ferricyanide and ferrocyanide, as

𝜂c = −RT
F

ln [
cR∞
cR0

+ (
DR

D4
)

2∕3

(
cR∞
cR0

− 1)] .

These results mean that only one diffusion-layer equation of the form 21.12 need be solved for
each diffusion layer.
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21.2 For the rotating-disk electrode, show that the parameter N can be given as

N = −Γ(4
3
)

ZFr0

RT𝜅∞
ilim,

thus substantiating that it is a dimensionless limiting-current density.

21.3 Consider here in more detail the plating of the inside of the holes of the circuit board of Problem
18.3. The convection in the bath is such that the flow through the holes is well approximated by
Poiseuille flow:

𝑣z = 2⟨𝑣z⟩ (1 − r2

R2
) , 𝑣r = 𝑣𝜃 = 0,

with an average velocity of 5 cm/s. The solution contains 0.5 M CuSO4 and 1.5 M H2SO4.
(a) Ignoring the effect of migration, calculate a numerical value for the limiting current for a

single hole.
(b) Obtain a numerical correction to the limiting-current result in part (a) to account for the

effect of migration.
(c) For the problem at an appreciable fraction of, but still below, the limiting current, set up

but do not solve the governing equations for the current and potential distribution within a
hole. For this purpose, assume that the concentration of copper has not been diminished by
the reaction on the face.

21.4 An electrochemical reactor is to be designed to oxidize A to B at the anode while reducing
A to C at the cathode. C is insoluble, but B is soluble and can eventually be trans-
ported from the anode, where it is produced, to the cathode surface where it would be
reduced and thereby decrease the current efficiency and possibly the yield of the reactor.
To be specific, you can think of A as ferrous ions, B as ferric ions, and C as metallic
iron plated on the cathode—although examples in organic electrosynthesis may be equally
important.

The reactor involves two plane electrodes embedded in the walls of a flow channel with fully
developed laminar flow (see Figure 21.6). For this geometry and velocity profile, a student in
a transport phenomena course suggests that it would be relatively easy to obtain the solution to

x

y

L

h

Anode, Fe2+ Fe3+ + e–

Cathode, Fe2+ + 2e– Fe3+ + e– Fe2+Fe, also

Figure 21.6 Channel flow cell, with diffusion layers shown for the two electrodes.
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the following problem:

𝑣x
𝜕ci

𝜕x
= Di

𝜕2ci

𝜕y2
,

ci = 0 at x = 0,

= 1 at y = 0, x > 0.

= 0 at y = h, x > 0.

Discuss how this mathematical solution might be useful in the design of the electrochemical
reactor, including the assessment of how much of the product is reacted back to A at the cathode.

NOTATION

a 0.51023
ci concentration of species i, mol/cm3

D diffusion coefficient of reactant or of binary electrolyte, cm2/s
Di diffusion coefficient of species i, cm2/s
F Faraday’s constant, 96,487 C/mol
h distance between walls of a flow channel, cm
i current density, A/cm2

in normal current density at electrode surface, A/cm2

i0 exchange current density, A/cm2

J dimensionless exchange current density
L electrode length, cm
L characteristic length, cm
n number of electrons transferred in electrode reaction
N dimensionless limiting current density
Nin normal component of the flux of species i, mol/cm2⋅s
Pe Péclet number
r radial distance, cm
r0 radius of disk electrode, cm
R universal gas constant, 8.3143 J/mol⋅K
ℛ distance of axisymmetric surface from axis of symmetry, cm
si stoichiometric coefficient of species i in electrode reaction
Sc Schmidt number
t time, s
t transference number of reactant
T absolute temperature, K
ui, mobility of species i, cm2⋅mol/J⋅s
U characteristic velocity, cm/s
v fluid velocity, cm/s
V, Vmet electrode potential, V
x distance along electrode from its upstream edge, cm
y distance from electrode surface, cm
zi charge number of species i
Z −z+z−/(z+ − z−) for binary electrolyte
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Z −n/sR for excess supporting electrolyte
𝛼a, 𝛼c transfer coefficients
𝛼, 𝛽 transfer coefficients
𝛽(x) velocity derivative 𝜕𝑣x/𝜕y at the wall, s−1

𝛾 exponent in concentration dependence of i0
Γ(4/3) 0.89298, the gamma function of 4/3
𝛿 dimensionless average current density
𝜂 total overpotential, V
𝜂c concentration overpotential, V
𝜂s surface overpotential, V
𝜅 conductivity, S/cm
𝜈 kinematic viscosity, cm2/s
𝜙 potential (see equation 21.8), V
Φ electric potential, V
Ω rotation speed, rad/s

Subscripts and Superscripts

∼ in the bulk medium
0 at the electrode surface
∞ in the bulk solution
R reactant
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CHAPTER 22

POROUS ELECTRODES

Porous electrodes have numerous industrial applications primarily because they promote intimate
contact of the electrode material with the solution and possibly a gaseous phase. Advantages are:

1. The intrinsic rate of the heterogeneous electrochemical reaction may be slow. A porous electrode
can compensate for this by providing a large interfacial area per unit volume (e.g., 104 cm−1).

2. Double-layer adsorption constitutes the basis for novel separation processes involving cycling of
the electrode potential. Just as in conventional fluid–solid adsorption, a high specific interfacial
area is desirable.

3. Important reactants may be stored in the solution in close proximity to the electrode surface.
This permits sustained high-rate discharge of the lead–acid cell.

4. A dilute contaminant can be removed effectively with a flow-through porous electrode. The
proximity of the flowing stream to the electrode surface is again important.

5. Nonconducting reactants of low solubility can also be stored close to the electrode surface. For
example, another solid phase (as in batteries) or a gas phase (as in fuel cells) may be incorporated
into the system, or the reactants may be dissolved and forced through a porous electrode.

6. The compactness of porous electrodes can reduce the ohmic potential drop by reducing the
distance through which current must flow. This has obvious advantages in reducing the losses in
batteries and fuel cells. It may also permit operation without side reactions by providing potential
control for the desired process.

If porous electrodes were trivially different from plane electrodes, there would be no motivation
for their separate study. But here inherent complications arise because of the intimate contact between
electrode and solution—the ohmic potential drop and the mass transfer occur both in series and in
parallel with the electrode processes, with no way to separate them. One needs to develop an intuitive
feeling for how and why the electrode processes occur nonuniformly through the depth of the electrode.
Finally, we seek methods for designing a porous electrode for a particular application in such a way as
to maximize the efficiency.

Electrochemical Systems, Fourth Edition. John Newman and Nitash P. Balsara.
© 2021 John Wiley & Sons, Inc. Published 2021 by John Wiley & Sons, Inc.
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Even if we restrict ourselves to flooded porous electrodes (without a separate gaseous phase),
a broad subject area remains. Battery electrodes illustrate an industrially important application of
porous-electrode theory. Flow-through porous electrodes can be used for recovery and removal of
electropositive metals (Ag, Au, Cu, Hg) from dilute solutions, for electro-organic synthesis, and
for oxidation of unwanted organic pollutants and surfactants. Transient double-layer charging and
adsorption are of interest in the determination of the internal area of porous electrodes, in some
separation processes, and in the interpretation of impedance measurements on porous electrodes.

This chapter draws heavily on the reviews of Newman and Tiedemann.[1, 2] These sources contain
additional details and historical information.

22.1 MACROSCOPIC DESCRIPTION OF POROUS ELECTRODES

Porous electrodes consist of porous matrices of a single reactive electronic conductor or mixtures of
solids that include essentially nonconducting, reactive materials in addition to electronic conductors.
An electrolytic solution fills the void spaces of the porous matrix. At a given time, there may be a
large range of reaction rates within the pores. The distribution of these rates will depend on physical
structure, conductivity of the matrix and of the electrolyte, and on parameters characterizing the
electrode processes themselves.

To perform a theoretical analysis of such a complex problem, it is necessary to establish a model
that accounts for the essential features of an actual electrode without going into exact geometric
detail. Furthermore, the model should be described by parameters that can be obtained by suitably
simple physical measurements. For example, a porous material of arbitrary, random structure can
be characterized by its porosity (void volume fraction), average surface area per unit volume,
volume-average resistivity, and so forth. Similarly, one can use a volume-average resistivity to
describe the electrolytic phase in the voids. A suitable model would involve averages of various
variables over a region of the electrode small with respect to the overall dimensions but large compared
to the pore structure. In such a model, rates of reactions and double-layer charging in the pores will
have to be defined in terms of transferred current per unit volume.

Some authors represent the structure with straight pores, perpendicular to the external face of the
electrode, and a one-dimensional approximation is introduced and justified on the basis of the small
diameter of the pore compared to its length. As de Levie[3] points out, the mathematical equations
are then essentially identical with those of the macroscopic model, although a parameter such as the
diffusion coefficient has a different interpretation. We prefer to speak in terms of the macroscopic
model.

Average Quantities

In this macroscopic treatment, we disregard the actual geometric detail of the pores. Thus, we can
define a potentialΦ1 in the solid, conducting matrix material and another potentialΦ2 in the pore-filling
electrolyte. These quantities, and others to be defined shortly, are assumed to be continuous functions
of time and space coordinates. In effect, the electrode is treated as the superposition of two continua,
one representing the solution and another representing the matrix. In the model, both are present at any
point in space.

Averaging is to be performed in a volume element within the electrode. The porosity is the void
volume fraction 𝜖 within the element, and this is taken here to be filled with electrolytic solution. The
element also contains representative volumes of the several solid phases that may be present. Let ci be
the solution-phase concentration of species i, averaged over the pores. The superficial concentration is
thus 𝜖ci. For flow-through electrodes, ci is the preferred average concentration because it is continuous
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as the stream leaves the electrode. Furthermore, ci, rather than 𝜖ci, is likely to be used to correlate
the composition dependence of diffusion coefficients, activity coefficients, and the conductivity of the
solution phase.

The specific interfacial area a is the surface area of the pore walls per unit volume of the total
electrode. Let jin be the pore-wall flux density of species i averaged over this same interfacial area. The
pore-wall flux density to be averaged is the normal component of the flux density of species i at the
pore wall, relative to the velocity of the pore wall, and in the direction pointing into the solution. The
pore wall may be moving slightly because of a dissolution process. Thus, ajin represents the rate of
transfer of the species from the solid phases to the pore solution (per unit volume of the total electrode).

Next, let Ni be the average flux density of species i in the pore solution when averaged over the
cross-sectional area of the electrode. Thus, for a plane surface, of normal unit vector n, cutting the
porous solid, n⋅Ni represents the amount of species i crossing this plane in the solution phase, but
referred to the projected area of the whole plane rather than to the area of an individual phase.

The superficial current density i2 in the pore phase is due to the movement of charged species
(compare equation 16.4):

𝐢2 = F
∑

i

zi𝐍i. (22.1)

Similarly, the current density i1 in the matrix phase is defined to refer to the superficial area and not
to the area of an individual phase.

Material Balance for Solutes

Within a pore, in the absence of homogeneous chemical reactions, a differential material balance can
be written for a species i. This equation can be integrated over the volume of the pores in an element
of the electrode, and surface integrals can be introduced by means of the divergence theorem. Careful
use of the definitions of average quantities yields[4] the material balance for species i:

𝜕𝜖ci

𝜕t
= ajin − ∇⋅𝐍i. (22.2)

This result applies to the solvent as well as the solutes.
Three different averages are represented in equation 22.2: ci is an average over the volume of the

solution in the pores; jin is an average over the interfacial area between the matrix and the pore solution;
and Ni is an average over a cross section through the electrode, cutting matrix and pore. It should be
borne in mind that the averages ideally involve a volume that is large compared to the pore structure
and small compared to the regions over which considerable macroscopic variations occur.

Equation 22.2 states that the concentration can change at a point within the porous electrode because
the species moves away from the point (divergence of the flux density Ni) or because the species is
involved in electrode processes (faradaic electrochemical reactions or double-layer charging) or simple
dissolution of a solid material. This latter term, ajin resembles the term that would describe the bulk
production of a species by homogeneous chemical reactions. In the macroscopic model, the transfer or
creation from the matrix phases appears to occur throughout the bulk of the electrode because of the
averaging process.

Material Balance for Insertion Electrodes

A significant class of electrodes involves insertion or intercalation in which an ion from the solution
enters into the crystal lattice of a solid. At the same time, electrons enter or leave the crystal to maintain
electroneutrality. This process represents an oxidation or reduction of the crystal. The open-circuit
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potential of the crystal, relative to a reference electrode, will depend on the concentration cs of
intercalating ions. The nickel (NiOOH)/metal hydride (MH) battery is an example of a system with
two insertion electrodes, whose reactions can be written as

NiOOHHy+𝛿 + 𝛿OH− → NiOOHHy + 𝛿H2O + 𝛿e−

and
MHx+𝛿 + 𝛿OH− → MHx + 𝛿H2O + 𝛿e−.

As written, an inserted proton (H) and a hydroxyl ion (OH−) react to yield water.
With no volume changes in the insertion material and constant transference number, a mass balance

on the inserted species is
𝜕cs

𝜕t
= ∇⋅D∇cs (22.3)

with a boundary condition that the flux density at the surface is equal to the rate of the electrochemical
reaction.

The material (MHx or NiOOHHy) has a well-defined potential relative to a reference electrode,
such as mercury/mercuric oxide (Hg/HgO) in an aqueous KOH solution. This potential increases
continuously as more protons are extracted from the solid. There are many more examples in lithium
batteries.

Electroneutrality and Conservation of Charge

A volume element within the porous electrode will be, in essence, electrically neutral because it requires
a large electric force to create an appreciable separation of charge over an appreciable distance. We
shall also take each phase separately to be electrically neutral. For the solution phase, this takes the
form of equation 16.3. Our assumption here means that the interfacial region that comprises the electric
double layer (where departures from electroneutrality are significant) constitutes only a small volume
compared to any of the phases or the electrode itself. This will not be true for finely porous media
and very dilute solutions, where the diffuse layer may be more than 10 nm thick. Furthermore, we
make no attempt here to treat electrokinetic effects like electro-osmosis and the streaming potential
(see Chapter 9).

It is a consequence of the assumption of electroneutrality that the divergence of the total current
density is zero. For the macroscopic model, this is expressed as (compare equation 11.14)

∇⋅𝐢1 + ∇⋅𝐢2 = 0; (22.4)

charge that leaves the matrix phases must enter the pore solution. In fact, combination of equations 22.1,
22.2, and 16.3 gives

∇⋅𝐢2 = aF
∑

i

zijin = ain, (22.5)

where in is the average transfer current density (positive in the direction from the matrix phase into the
solution phase); ∇ ⋅ i2 is the transfer current per unit volume of the electrode (A/cm3) and is positive
for an anodic current.
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Faradaic Processes

For a single electrode reaction, as represented in equation 16.7, Faraday’s law is expressed as (compare
equation 16.8)

ajin = −
asi

nF
in = −

si

nF
∇⋅𝐢2 (22.6)

if the electrode is operating in a steady state or a pseudo-steady-state where double-layer charging can
be ignored. Equation 22.2 becomes

𝜕𝜖ci

𝜕t
= −∇⋅𝐍i −

si

nF
∇⋅𝐢2. (22.7)

The polarization equation describes the faradaic transfer of charge from the matrix to the solution.
This can be written in the general Butler–Volmer form (compare equation 16.10):

∇⋅𝐢2 = ai0 [exp (
𝛼aF𝜂s

RT
) − exp (−

𝛼cF𝜂s

RT
)] , (22.8)

with the surface overpotential 𝜂s = Φ1 −Φ2 −U, where U is the open-circuit value of Φ1 −Φ2 at the
prevailing composition at the surface of the pores. The open-circuit cell potential U can be taken to be
zero if Φ2 is assessed with a reference electrode of the same kind as the working electrode, which we
shall assume to be the case in Section 22.2. However, for insertion electrodes, U is also a function of
the amount of intercalation that has occurred, that is, it is a function of the concentration cs in the solid
material.

Capacitive Processes

In addition to faradaic reactions, electrode processes can involve charging of the electric double layer
at the interface between the pore solution and the conducting phases of the matrix. For dependent
variables we may choose q, the surface charge density on the electrode side of the double layer,
and Γi, the surface excess or surface concentration of a solute species i. Here, we mean averages
over the surface of the pores. These surface quantities can be taken to depend on the solution-phase
composition, as represented by ci and on the electrode potential Φ1 −Φ2, where Φ2 is measured with
a given reference electrode. Since the interface as a whole is electrically neutral and the charge on
the solution side of the double layer is comprised of the contributions of adsorbed solute species, the
surface charge is related to the species surface excesses:

q = −F
∑

i

ziΓi. (22.9)

A separate material balance can be written for a solute species at the interface (see Problem 9.5).
In the absence of electrokinetic effects, that is, ignoring translation of the solution side of the double
layer in a direction parallel to the surface, this becomes

𝜕aΓi

𝜕t
= ajin,faradaic − ajin = −

asi

nF
in,faradaic − ajin, (22.10)

where the subscript faradaic refers to charge or mass that is actually transported through the interface
or is involved in a charge-transfer reaction. It is assumed in the last form that only a single electrode
reaction is involved.
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Addition of equation 22.10 according to equation 22.5 gives

∇⋅𝐢2 = ain,faradaic +
𝜕aq
𝜕t

; (22.11)

the current transferred from the matrix to the solution is involved either in double-layer charging or
in faradaic electrode reactions. One can use equation 7.27 to introduce the double-layer capacitance C
into this equation.

Treatment of the concentration dependence of the surface excesses is just as complicated as it was
for a nonporous electrode, and fundamental data are just as incomplete. The differential double-layer
capacity is relatively easy to measure, and data are available over a wider range of concentrations than
for Γi.

Transport Processes

In the matrix phase, the movement of electrons is governed by Ohm’s law:

𝐢1 = −𝜎∇Φ1, (22.12)

where 𝜎 is the effective conductivity of the matrix. This quantity will be affected by the volume
fraction of the conducting phase or phases, the inherent conductivity of each conducting solid phase,
and the manner in which granules of conducting phases are connected together.

In a dilute electrolytic solution within the pores, the flux density of mobile solutes can be attributed
to diffusion, dispersion, migration, and convection (compare equation 16.1):

𝐍i

𝜖 = −(Di + Da)∇ci − ziuiFci∇Φ2 +
𝐯ci

𝜖 . (22.13)

Since Ni is the superficial flux density based on the area of both matrix and pore, one can think of Ni/𝜖
as the flux density in the solution phase. Similarly, v/𝜖 will be roughly the velocity in the solution phase
if we take v to be the superficial bulk fluid velocity, for example, the volumetric flow rate entering the
electrode divided by its superficial area.

The ionic diffusion coefficient and mobility of a free solution require a correction for the tortuosity
of the pores in order to yield Di and ui. A porosity factor has already been taken out; that is, 𝜖Di might
logically be regarded to be the effective diffusion coefficient of the species in the pore solution in the
same way that 𝜎 is the effective conductivity of the matrix. The effective conductivity 𝜅 of the pore
solution, introduced later in equations 22.20 and 22.21, is frequently expressed as

𝜅 = 𝜅0𝜖1.5, (22.14)

where 𝜅0 is the conductivity the solution would have outside any porous structure. In a similar manner,
the bulk values of diffusion coefficients and mobilities would be multiplied (in the whole chapter)
by 𝜖0.5 to yield Di and ui values corrected for tortuosity. Equation 22.14 is simple and reasonably
accurate; it is generally credited to Bruggeman.[5] Efforts to treat this dependence can be traced back
to Maxwell.[6]

The dispersion coefficient Da represents the effect of axial dispersion—the attenuation of concen-
tration gradients as a fluid flows through a porous medium. Plug flow does not prevail in the pores;
fluid near the wall moves more slowly than fluid toward the center of the void space. The compensation
for this convective nonideality appears as a diffusive phenomenon. However, the dispersion coefficient
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is not a fundamental transport property—it depends on the fluid mixing and vanishes in the absence of
convective fluid motion. A correlation is referred to in Section 22.6 on flow-through porous electrodes.

When equation 22.13 is substituted into equation 22.1, an equation similar to equation 11.11 is
obtained—Ohm’s law for solutions is modified by the presence of concentration gradients.

Limiting cases of transport laws are likely to receive special treatment. For example, migration can
be neglected for the reaction of a minor component from a solution with excess supporting electrolyte
(see Chapter 19). On the other hand, the more sophisticated concentrated-solution theory (see Chapter
12 and below) can replace the dilute-solution approximation.

Concentrated Binary Electrolyte

Many battery systems involve solutions of a single electrolyte. Consequently, it is desirable to develop
the theory with all possible exactness, particularly since the equations to use are not overly complicated
and thermodynamic and transport data are frequently available for binary solutions. Flux densities
relative to the mass-average, molar-average, and solvent velocities are stated in Chapter 12. Newman
and Chapman[7] showed how the volume-average velocity v◽ can be used.

For the binary system, there are three material balances, equation 22.2, one for each species. These
three material balances can be rearranged to yield three equivalent expressions that emphasize one
physical feature or another. The simplest form is the charge-conservation equation, which takes the
form of equation 22.4 for porous electrodes. The second and third forms are

𝜖 𝜕c
𝜕t

+ 𝐯◽⋅∇c = ∇ ⋅ [𝜖(D + Da)∇c]

+ ac0V0 (
t0
−
𝜈+

j+n +
t0
+
𝜈−

j−n) − acV0j0n

− c0V0
𝐢2⋅∇t0

+
z+𝜈+F

+
c𝜖(D + Da)

c0V0

(∇c)⋅∇Ve (22.15)

and

𝜕𝜖
𝜕t

+ ∇⋅𝐯◽ = a[V0j0n +
Vet0

−
𝜈+

j+n +
Vet0

+
𝜈−

j−n]

− Ve
𝐢2⋅∇t0

+
z+𝜈+F

− 𝜖
D + Da

c0V0

(∇c)⋅∇Ve. (22.16)

Remember that these three equations have been manipulated substantially from the original material
balances. Equation 22.15 can be regarded as an equation for the concentration of the electrolyte, a
variant of equation 12.14. It is complicated because no approximations have been made. Note that,
if the partial molar volume Ve of the electrolyte and the transference number t0

+ are constant, this
reduces to

𝜖 𝜕c
𝜕t

+ 𝐯◽⋅∇c =∇⋅[𝜖(D + Da)∇c] + ac0V0 (
t0
−
𝜈+

j+n +
t0
+
𝜈−

j−n)

− acV0j0n, (22.17)
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a form very similar to the idealized equation 17.2 of convective diffusion. Equation 22.16 similarly
simplifies to

𝜕𝜖
𝜕t

+ ∇⋅𝐯◽ = a [V0j0n +
Vet0

−
𝜈+

j+n +
Vet0

+
𝜈−

j−n] . (22.18)

This can be regarded as an idealized equation of continuity (cf. equation 15.3). The reason for
mentioning these equations is that we may wish frequently to approximate Ve and t0

+ as constant
while still retaining the composition dependence of D and 𝜅. The volume-average velocity v◽ has
the advantage that its divergence becomes close to zero if Ve is constant. From these equations one
can see explicitly how production or consumption of species +, −, and 0 as well as porosity changes
and volume changes on mixing influence the concentration of the solution and the fluid velocity.
Equation 22.32 (see Section 22.4) can be used to eliminate 𝜕𝜖/𝜕t from equations 22.16 or 22.18.

Equation 12.27 is used to describe the potential variation in a concentrated binary electrolyte as
measured by a reference electrode directly immersed in the solution. (∇𝜇e can be replaced by a
concentration gradient according to equation 2.32.) There is a problem keeping straight what potential
is being used. See the discussion in the latter part of Section 12.4. Is the potential measured with an
electrode of the same kind as the working electrode, immersed in the same solution, or is it assessed
with a reference electrode of a given kind? See Section 5.7. In the former case, the stoichiometric
coefficients of the reference electrode should appear in the modified Ohm’s law equation (see equation
12.27); in the latter case, the potential is more like an electrostatic or quasi-electrostatic potential or
the potential relative to a given reference electrode. We want to follow the first approach so that liquid
junction potentials do not need to be introduced into a discussion where they are otherwise absent.
Such questions are raised in Problem 7.4 and answered in Section 5.7.

Thermal Behavior

An electrochemical cell frequently changes temperature during operation. As a first approximation,
the central part of the cell, containing the electrodes and separator, can be taken to be at a uniform
temperature, but one that changes with time. A simple energy balance yields

Cp
dT
dt

= (U − V − T
𝜕U
𝜕T

) I + h0(Ta − T). (22.19)

The irreversible heat generation term (per unit of separator area) is (U−V)I, where V is the cell
potential, U is the open-circuit value of V, and I is the current density; U−V can be regarded as
the potential loss due to overpotentials and ohmic potential drop, although they may result from
complicated processes in both series and parallel connection. The product (U−V)I is always positive
because U −V changes sign when I changes sign. The reversible heat-generation term is −TI (𝜕U/𝜕T)
and is directly related to the entropy change due to the electrochemical reaction. It changes sign when
the current density I changes sign. The heat entering the cell (W/cm2) is described by the heat-transfer
coefficient h0 (based on a unit area of the separator) and the temperature difference Ta − T, where Ta is
the ambient temperature. The energy related to the temperature rise is given by Cp(dT/dt), where Cp is
the heat capacity of the cell per unit of separator area. This heat balance and the resulting temperature
rise are necessarily simplified, and one may wish to calculate detailed temperature distributions.
Bernardi et al.[8] discuss a more general energy balance. The simplified balance ignores heat-of-mixing
effects, but these are estimated by Thomas and Newman[9] to be quite modest. See also Chapter 13.
Rao and Newman[10] include the local generation of heat in insertion electrodes.
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Summary

The equations governing porous electrodes are diverse, but they build upon the material in the
earlier chapters of the text. Transport in the matrix phase (equation 22.12) and in the solution phase
(equation 22.13) enters into material balances (equation 22.2 or 22.17) and involves coupling through
polarization relations (equation 22.8) and capacitative effects in such a way that the electrolytic
processes may look like a homogeneous term in the material balances (compare equation 16.3). There
are several unknowns, such as concentration, potentials, flux densities, and temperature, that are closely
coupled and are likely to satisfy nonlinear partial differential equations. Succeeding sections show how
some of this works in terms of specific systems, approximations, and boundary conditions.

22.2 NONUNIFORM REACTION RATES

This section is designed to illustrate, by means of examples that can be solved analytically, how
transport and electrode processes interact to produce nonuniform reaction rates and to set the stage
for later developments where many processes are still coupled and where computer solutions may be
required to reveal the essential behavior of systems.

Many special cases are treated in the literature. The simplest assume that the solution phase is
uniform in composition—either because the current has just been switched on and the concentrations
have not had time to change or because there is forced convection through the electrode so as to
maintain the composition uniform. Double-layer charging is also to be ignored. One can still vary the
relative electric conductivities of the two phases, the thickness of the electrode, and the form of the
polarization equation expressing the electrochemical kinetics.

Consider a porous electrode in the form of a slab of thickness L, as sketched in Figure 22.1. The
electrode is in contact with an equipotential metal surface (a so-called current collector) on one side
at x =L and in contact with an electrolytic solution on the other at x = 0. In such problems, it is
convenient to specify the superficial current density I flowing through the electrode rather than the
potential difference across it. Positive values of I will correspond to anodic currents. The structure of
the electrode will be taken to be uniform.

The four governing differential equations take on a one-dimensional form. Equation 22.4 expresses
conservation of charge. Equation 22.13 can be added over species according to equation 22.1 to yield
Ohm’s law for the pore solution

𝐢2 = −𝜅∇Φ2, (22.20)

Metal
backing

x = 0 x = L

L

x

I

Porous
electrode

Porous
electrode

Free
solution

Metal
backing

Figure 22.1 Schematic of a one-dimensional porous electrode. Source: Newman and Tobias 1962.[11] Repro-
duced with permission of The Electrochemical Society, Inc.
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where
𝜅 = 𝜖F2

∑

i

z2
i uici, (22.21)

and equation 22.12 is the same law for the matrix. The polarization equation 22.8 describes the transfer
of charge from the matrix to the solution.

Sufficient boundary conditions include

i2 = −I, i1 = 0, Φ2 = 0 at x = 0, (22.22)

i2 = 0 at x = L. (22.23)

These say that at the electrode–solution interface (x = 0) the current is carried entirely by the pore
electrolyte, while at the metal backing the current is carried entirely by the matrix. As an arbitrary
reference of potential, we choose Φ2 = 0 at x = 0. Somewhere within the electrode, between x = 0 and
x = L, the current is transferred from the solution to the matrix, and the rate of reaction is proportional
to di2/dx.

The reaction distribution is generally nonuniform within the electrode. To minimize the ohmic
potential drop, the current tends to divide between the solution and the matrix in proportion to their
effective conductivities. However, this requires high reaction rates near x = 0 and/or x = L. Slow
electrode reaction kinetics forces the reaction to be more uniformly distributed in order to reduce the
transfer current density. These competing effects of ohmic potential drop and slow reaction kinetics
determine the resulting distribution. Figure 22.2 shows an equivalent circuit of the porous electrode
(under conditions of a linear polarization equation) illustrating the current flowing through the matrix
and solution resistances and the transfer from one phase to the other.

For the problem as formulated above, four dimensionless ratios govern the current distribution.
These can be stated as a dimensionless current density (compare equation 18.13)

𝛿 =
𝛼aFIL

RT
(1
𝜅 + 1

𝜎) , (22.24)

a dimensionless exchange current for the electrode (compare equation 18.11)

𝜈2 = (𝛼a + 𝛼c)
Fai0L2

RT
(1
𝜅 + 1

𝜎) , (22.25)

i

Figure 22.2 Electric analog of a porous electrode with ohmic resistances representing matrix and pore solution
(upper and lower horizontal resistors) and kinetic resistance (vertical elements). The vertical branches also have
elements representing a cell of potential U.
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the ratio 𝛼a/𝛼c of the transfer coefficients in the polarization equation 22.8, and the ratio 𝜅/𝜎 of the
effective conductivities of the solution and matrix phases.

The first two, 𝛿 and 𝜈2, are ratios of the competing effects of ohmic potential drop and slow electrode
kinetics. For large values of either 𝛿 or 𝜈2, the ohmic effect dominates, and the reaction distribution is
nonuniform. The ratio 𝛼a/𝛼c seems to be unavoidable, but its role is more difficult to discern. For small
values of κ/𝜎, the reaction occurs preferentially near the electrode–solution boundary at the expense of
the region near the backing plate.

The description of a porous electrode in the absence of concentration variations is similar to that
of the secondary current distribution at a disk electrode, discussed in Section 18.3. It is customary to
introduce one of two approximations to the polarization equation 22.8. For very low overpotentials,
this can be linearized to read

di2
dx

= (𝛼a + 𝛼c)
ai0F
RT

(Φ1 − Φ2). (22.26)

On the other hand, at very high overpotentials, one or the other of the terms on the right in equation 22.8
can be neglected. The first term is neglected for a cathode, the last term for an anode. This is the Tafel
approximation.

For systems with a finite conductivity of each phase, the solution of these equations with the
linear electrode kinetics has been given by Euler and Nonnenmacher[12] and restated by Newman and
Tobias.[11] These last workers also obtained the solution for Tafel polarization.

Reference [1] reviews in more detail the many special cases that were treated in the early years.
One feature of the results is the nonuniformity of the reaction rate within the electrode. Figure 22.3

shows the distribution of reaction rate for Tafel kinetics and for 𝜎 = 𝜅. As in the classical
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Figure 22.3 Reduced current distribution for Tafel polarization with 𝜎 = 𝜅. Source: Newman and Tobias
1962.[11] Reproduced with permission of The Electrochemical Society, Inc.
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secondary-current-distribution problem, the value of ai0 is unimportant as long as the backward
reaction can truly be neglected. In the Tafel case, the current distribution depends only on the parameter
𝛿 and on the ratio 𝜅/𝜎. (For cathodic polarization in the Tafel range, replace 𝛼a by−𝛼c in equation 22.24
in order to use these results.) For a small value of 𝛿, the reaction is uniform; but for large values of 𝛿,
the reaction takes place mainly at the electrode interfaces. The ratio 𝜅/𝜎 serves to shift the reaction from
one face to the other so that the reaction is somewhat more uniform as 𝜅 approaches 𝜎 at constant 𝛿.

Curves for the linear-polarization equation would have the same general appearance as Figure 22.3.
In analogy with the classical problem of the secondary current distribution, the reduced distribution
depends only on the parameter 𝜈 and on the ratio 𝜅/𝜎 and is independent of the magnitude of the
current. The distribution becomes nonuniform for large values of 𝜈, that is, for large values of the
exchange current density, the specific interfacial area, or the electrode thickness or for small values of
the conductivities. The ratio 𝜅/𝜎 still shifts the reaction from one face to the other.

Potential distributions for Tafel kinetics are illustrated in Figure 22.4 for

𝛼a
Fai0L2

RT
(1
𝜅 + 1

𝜎) = 0.1. (22.27)

(For Tafel kinetics, with a given value of I, changes in ai0 merely add a constant to Φ1 −Φ2 without
affecting the current or potential distributions in any other way. Remember also that U, taken here

36

30

20

10

0 0.2 0.4 0.6 0.8 1.0
y = x/L

0

β Φ2 for
δ = 100

β Φ1 for δ = 10

β 
Φ

1 
or

  β
 Φ

2

β Φ2 for δ = 10

β Φ1 for
δ = 100

Figure 22.4 Potential distributions for Tafel polarization with 𝜎 = 𝜅. Here 𝛽 = 𝛼aF/RT (or −𝛼cF/RT for cathodic
currents). Source: Newman and Tiedemann 1975.[1] Reproduced with permission of the American Institute of
Chemical Engineers.
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to be zero, would also add a constant to Φ1 −Φ2.) The slope of the curves gives the current density
flowing in either the matrix or the pore solution, according to Ohm’s law. Consequently, the second
derivative of either Φ1 or Φ2 is related to the local reaction rate, that is, the rate at which current is
transferred from one phase to the other. The difference Φ1 −Φ2 also gives this reaction rate through
the polarization equation.

The total potential loss in the electrode, a combination of kinetic or surface overpotential and ohmic
potential drop, is given by the difference between the potential Φ1 in the matrix at the current collector
and the potential Φ2 in the pore solution at the pore mouth (where Φ2 was actually taken to be zero in
equation 22.22). For linear polarization, this loss can be expressed as

Φ1(L) − Φ2(0)
I

= L
𝜅 + 𝜎 [1 +

2 + (𝜎∕𝜅 + 𝜅∕𝜎) cosh 𝜈
𝜈 sinh 𝜈 ] . (22.28)

This formula can be broadened in applicability to include capacitive,[13] intercalation, and impedance[14]

effects if one is still willing to ignore concentration changes in the pore electrolyte.
The potential loss for Tafel polarization is plotted in Figure 22.5 under the condition of

equation 22.27. This Tafel plot has a slope of 2.303 for low values of 𝛿. As 𝛿 increases, the
potential drop due to resistance becomes important. For a high conductivity of one phase, a double
Tafel slope results, as pointed out by Ksenzhek and Stender[15] and by Winsel[16] among others. Thus,
the lower curve in Figure 22.5 attains a slope of 4.605 for large 𝛿. If both conductivities are nonzero, the
ohmic contribution to the potential loss will eventually dominate. Thus, the upper curve in Figure 22.5
becomes linear in 𝛿, not linear in the logarithm of 𝛿. The behavior of both curves for large 𝛿 illustrates
the general rule that the ohmic potential drop becomes more important at large currents.

The Tafel approximation becomes poor at low currents. One cannot extrapolate Figure 22.5 since
𝛽Φ1(L) should approach zero as 𝛿 approaches zero. The backward reaction should be accounted
for, and eventually the linear approximation becomes applicable at very low values of 𝛿. With the
restrictions of a semi-infinite electrode and a high conductivity of one phase, the current–potential
relation for an electrode with the general electrode kinetics (equation 22.8) is

I2 2ai0𝜅RT
𝛼a𝛼cF

[𝛼c exp (
𝛼aFV

RT
) + 𝛼a exp (−

𝛼cFV
RT

) − 𝛼a − 𝛼c] , (22.29)
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Figure 22.5 Potential of the metal backing plate as it depends on 𝛿. Here 𝛽 =𝛼aF/RT (or −𝛼cF/RT for cathodic
currents). Source: Newman and Tobias 1962.[11] Reproduced with permission of The Electrochemical Society,
Inc.



�

� �

�

462 POROUS ELECTRODES

where V = Φ1 −Φ2 −U with Φ1 measured in the metal at the backing plate and Φ2 measured at
x = 0, the solution side of the electrode. On the other hand, equation 22.28 is the result without these
restrictions but instead restricted to the linear approximation.

22.3 MASS TRANSFER

Steady Mass Transfer

A solution-phase reactant will be depleted during the operation of a porous electrode, and diffusion
of this species from a reservoir at the face of the electrode represents a loss, in addition to the ohmic
potential drop and surface overpotential considered in the previous section.

Two special problems might be defined in this area. The first involves a redox reaction obeying the
equation (compare Problem 20.4)

∇⋅𝐢2 = ai0 [
c1

c0
1

exp (
𝛼aF𝜂
RT

) −
c2

c0
2

exp (−
𝛼cF𝜂
RT

)] , (22.30)

where 𝜂 = Φ1 −Φ2 −U
′
; U

′
is the open-circuit value of Φ1 −Φ2 when the concentrations of the

reactant and product are c0
1 and c0

2 and i0 is a constant representing the corresponding exchange current
density at the composition c0

1, c0
2, which might conveniently be taken to be the initial concentrations

of the reactants or the concentrations prevailing external to the electrode. (The prime is put on U′ to
emphasize that here we are dealing with potentials relative to a given reference electrode, as defined in
Section 5.7.) The reaction is taken to be first order with respect to the reactant and product, at a given
electrode potential. Alternatively, Φ2 could be measured with a reference electrode of the same kind as
the working electrode, with the local composition. Then equation 22.8 could be used, with the exchange
current density depending on the composition as given in equation 8.23. Thus, in equation 22.8 we
have 𝜂s = Φ1 −Φ2 −U with U evaluated at the local composition, but in equation 22.30 we have
𝜂 = 𝜂s +𝜂c = Φ1 −Φ2 −U

′
with U′ evaluated relative to a given reference electrode. See also

Chapter 21.
The reactant and product species, whose stoichiometric coefficients are taken to be+1 and−1, move

by molecular diffusion alone, since convection is assumed to be absent and migration is negligible if
an excess of supporting electrolyte is presumed to be present. This excess of supporting electrolyte
is also used to justify the approximation of a constant solution-phase conductivity 𝜅 and neglect
of the diffusion potential,∗ so that Ohm’s law (equation 22.20) can still be used for the solution
phase.

The second special case involves a binary electrolyte, where the solution-phase conductivity can be
taken to be proportional to the concentration.*

For the first special case, for each species two new parameters are introduced—a diffusion coefficient
and a bulk or characteristic concentration c0

i . These can be combined into the dimensionless group
𝛾i = siIL∕nF𝜖Dic

0
i .

Early analytic and computer solutions for steady mass transfer are reviewed in reference [1].
Noteworthy among them is the occurrence of a double Tafel slope at high polarization. This

∗In the steady state, the diffusion potential can be included, without a separate term, by using a modified conductivity:

𝜅′ = −n𝜖F2

∑
iz

2
i uici∕Di∑
izisi∕Di

.
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phenomenon is due to a mass-transfer effect and can be contrasted with the double Tafel slope,
mentioned below equation 22.28, due to an ohmic effect. Also of interest is the concept of the
penetration depth, characterizing the region in which reaction rates are appreciable, and thereby related
directly to the nonuniform reaction rate that characterizes porous electrodes. In Section 22.2 for the
case with no concentration gradients and with linear kinetics, this penetration depth is of the magnitude

L
𝜈 = ( RT𝜅𝜎

(𝛼a + 𝛼c)ai0F(𝜅 + 𝜎)
)

1∕2

. (22.31)

At high current levels (with Tafel kinetics), L/𝛿 is a length that is more characteristic of the penetration
of the reaction.

For diffusive transport of reactants or consumption of reactants stored in the matrix or the pore
solution, other factors will enter into the optimization of the electrode thickness. For large anodic
polarization the penetration depth becomes equal to L/𝛾i. The distance to which the reaction can
penetrate the electrode determines how thick an electrode can be effectively utilized. Electrodes
much thinner than the penetration depth behave like plane electrodes with an enhanced surface area.
Electrodes much thicker are not fully utilized.

Transient Mass Transfer

To follow the course of the discharge of a porous electrode, beginning with a uniform solution
composition and following the development toward a steady state, requires a consideration of the
time derivative in equation 22.7. The difficulty and complexity of analytic solutions to the coupled
governing equations lead us toward computer solutions where drastic assumptions can be avoided and
there can be fidelity with the physically based governing equations.

Stein[17] treated the change of sulfuric acid concentration in the pores of a lead–acid battery. The
performance during a very-high-rate discharge is limited by a severe depletion of acid directly at the
mouth of the pores of the positive plate. To study this effect, Stein was able to avoid consideration
of structural changes, and he assumed that the electrode reaction itself occurred reversibly. Doyle and
Newman have reviewed some other analytic solutions for transient mass transfer.[18]

A characteristic time for diffusion processes is L2/Di. For an electrode thickness of 1 mm and
an effective diffusion coefficient of 10−5 cm2/s, this leads to diffusion times of the order of 1000 s.
However, for thick electrodes, the presence of a reservoir of unreacted species in the depth has little
effect on the dominant processes occurring near the solution side of the electrode. The penetration
depth (e.g., L/𝛾i) can then be used rather than L in forming the characteristic time for diffusion. Thus,
90% of the electrode potential change can occur in a time as short as 30 s. (The characteristic time for
charging the double-layer capacity is usually much less. The ratio of the double-layer charging time to
the diffusion time is DiaC/𝜅. This ratio is greater than one only for very high interfacial areas and low
conductivities.)

22.4 BATTERY SIMULATION

Porous electrodes used in primary and secondary batteries frequently involve solid reactants and
products, and the matrix is changed during discharge. Consequently, no steady-state operation is
strictly possible. Such systems are complex, and their simulation on the computer will continue to be
refined.

For the purposes of modeling, batteries can be grouped under the following types of reaction
mechanisms:



�

� �

�

464 POROUS ELECTRODES

1. Solution, Precipitation Electrodes Products (or reactants) can end up in the solution phase
and subsequently precipitate on crystals. If these materials are reasonably soluble, they may
precipitate at some distance from their original location and such shape change can constitute
a failure mechanism.[19] Sparingly soluble products (or reactants) may end up closer to where
they started and may be able to be cycled more times. The lead sulfate in a lead–acid system
is more benign in this regard, but prolonged standing in a partially discharged state can lead to
the growth of larger particles of PbSO4, thereby making recharge difficult or impossible on a
reasonable time scale.

2. Electrodes with Films The idea is that product species would form a coherent film on the
electrode surface, and subsequent reaction might require species involved in the reaction to move
or migrate through this film. The solid electrolyte interphase (SEI) on lithium metal in many
organic solvents (or even polymers) is an example of this situation. The Li+ ions are supposed to
migrate through this film and thereby permit charge and discharge of the system and protect the
underlying Li. A nonzero transference number for electrons (or holes) may permit reduction of
solvent or anion species on the outer surface of the film, thereby constituting a side reaction. On
the other hand, the film probably is never perfectly compact and bonded to the Li. Then some
buckling and cracking is likely, and there will be a more or less continuous and steady discharge
of Li by means of new cracks on the surface. Variations in the compactness and durability of this
film would lead to variabilities in the usefulness of different solvents and anions in Li batteries.

3. Intercalation Electrodes Next, there are intercalation materials in which an ion from the
solution enters the crystal structure of the active materials, its charge being counterbalanced by
electrons (or holes) from the current collector. Examples in the aqueous arena include nickel
hydroxide and metal hydride, mentioned in Section 22.1. Lithium-ion batteries rely on having
positive and negative electrodes both operating on this principle.[20] Ideally, this insertion of
ions is not supposed to change the lattice spacing of the crystal, so that there are no stresses to
cause fragmentation and no changes in volume of each phase. In these systems, in contrast to a
two-phase electrode like PbO2/PbSO4, the open-circuit potential depends on the state of charge
or degree of filling of the lattice by ions. Palladium is a metal particularly known for taking
H+ ions into its lattice (along with counterbalancing electrons). Some of these materials (like
NiOOH) show an interesting hysteresis of potential as they are cycled.

4. Alloy Electrodes Alloying the reactive metal can lower its chemical potential and promote the
deposition of metal more in the depth of the electrode, in an attempt to avoid dendrites and
consequent shorting of the cell. Pollard[21] modeled LiAl porous electrodes.

Structural Changes

For a single electrode reaction, a material balance on the solid phases shows how the porosity changes
with the extent of reaction at each location within the electrode:

𝜕𝜖
𝜕t

= −A0∇⋅𝐢2, (22.32)

where
A0 = −

∑

solid phases

siMi

𝜌inF
, (22.33)

Mi being the molar mass and 𝜌i the density of the solid phase (taken here to be a pure substance). This
formula does not allow for expansion and compression of individual electrodes. Rigorous treatment of
volume change of electrodes requires knowledge of the mechanical properties of the battery materials,
including the container.
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Winsel[16] allowed for the consumption of a solid reactant by setting the transfer current equal to
zero at any point in the electrode where the charge passed was equal to that which this fuel could
supply. Because of the nonuniform current distribution, the solid fuel is exhausted first at the side of
the electrode adjacent to the solution. Cutting off the reaction in this region forces a higher average
reaction rate in the remainder of the porous structure (for a constant-current discharge), yielding a higher
electrode overpotential. The ohmic potential drop in the solution in the depleted part of the electrode
also contributes significantly to the overpotential. This can be compared with the reaction-zone model
in the next section.

Alkire et al.[22] treated the change in pore size and solution composition and the attendant fluid flow
for dissolution of porous copper in sulfuric acid solution. The treatment of a straight-pore system is
particularly appropriate here since they were able to wind copper wire carefully and sinter the coil to
produce a uniform pore structure.[23]

Dunning and Bennion[24] developed a battery-electrode model that described mass transfer of
sparingly soluble fuel from nonconducting crystallites to electrochemical reaction sites. They obtained
an analytic solution exhibiting a limiting current due to internal mass-transfer limitations, and they
discussed acceptable limits of the solubility of the sparingly soluble reactant. Self-discharge can impose
an upper limit, and adequate power density, a lower limit. The movement of species during the cycling
of a secondary cell can impose a perhaps more stringent upper limit to reactant solubility.

Later, Dunning et al.[25] analyzed discharge and cycling, with the internal mass-transfer coefficient
dependent on the local state of charge. Their next work[26] included discharge and cycling of
silver–silver chloride and cadmium–cadmium hydroxide electrodes in binary electrolytes of NaCl and
KOH, respectively. The mechanism of discharge included, in series, the kinetics of dissolution or
precipitation of the sparingly soluble fuel, the diffusion to the reaction site, and the electrochemical
kinetics of the reaction—with regard for the changes in the areas available for these processes. Also
accounted for were porosity changes according to equations 22.32 and 22.33, fluid flow due to the
volume changes associated with the electrochemical reaction, concentrated-solution transport theory,
and variations in physical properties of the solution.

Thus, a number of factors can affect the extent of utilization of a battery as a function of rate of
discharge:

1. Higher current densities yield higher overpotentials, and thus a given cutoff potential is reached
sooner.

2. Electrolyte depletion at the pore mouth[17] hastens the end of discharge, particularly at high
current densities.

3. Concentration changes in the solid insertion materials lead to higher overpotentials.
4. The pores may become constricted or even plugged with solid reaction products. A nonuniform

reaction distribution will accentuate this problem at the mouth of the pores.
5. The reaction surface can become covered with reaction products.
6. Rates of mass transfer between crystallites and the reaction surface may become more limiting

as the discharge exhausts the front part of the electrode. This could account for changes in the
apparent limit of utilization with current density.

Optimization of Electrode Thickness and Porosity

We want to design a battery for optimum cost and energy efficiency. To do this, we could take a
battery model that handles consumption of active material, ohmic potential drop, and concentration
variations and vary the design, including variation of electrode thickness and porosity, until we obtain
the best result. To illustrate the principles we seek to use a very simple model, and leave the actual
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battery design to more sophisticated programs, which, however, still might follow the methodology
illustrated here.

An important characteristic of batteries is that their potential declines through discharge and
eventually reaches a voltage cutoff, and the battery is discharged. To simulate this behavior in a
simple system, we ignore concentration variations, take the electrode kinetics to be very fast, and take
the matrix conductivity to be very high. These conditions create a very nonuniform reaction rate, as
demonstrated in Section 22.2, and the sharp reaction zone moves through the electrode, leaving behind
a reacted region.[27] This moving reaction zone is depicted in Figure 22.6.

The equivalent circuit shown in Figure 22.7 shows a separator resistance, a pore-electrolyte
resistance inside the porous electrode, and a series of exhausted battery elements in the region behind
the reaction zone.

Before we can optimize anything, we need to have a mathematical description of the discharge.
With a uniform discharge current density, the reaction zone moves at a uniform velocity away from the
separator. When it reaches the distant end, at the current collector, the active material is fully exhausted.
This is the end of discharge unless the cell potential has already dropped below the cutoff potential. At
the cutoff potential, determined by the application, the battery is deemed unable to perform its mission.
With a constant-current discharge, it is a valid design point for the cell to run out of active material
exactly when the potential hits the cutoff.

Narrow
reaction zone

Current
collector

UnreactedReacted

Separator

Positive electrode

Li foil
electrode

Figure 22.6 Pictorial of the battery system. Source: Newman 1995.[27] Reproduced with permission of The
Electrochemical Society, Inc.

ElectrolyteSeparator

Active material

Figure 22.7 Equivalent-circuit representation for the reaction-zone model. Source: Newman 1995.[27] Repro-
duced with permission of The Electrochemical Society, Inc.
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But how do we determine the current density, as well as the electrode thickness and porosity, the
time of discharge, and the separator thickness? The time of discharge td is taken to be specified by the
battery’s mission. We also take the separator thickness Ls to be specified on the basis that it should
be as thin as possible consistent with its purpose of preventing shorts. Thus, it cannot be optimized
simply to maximize the specific energy (J or W⋅h per unit mass of the battery). This conclusion may
not apply to the lead–acid cells or sodium/sulfur cells, where an important reactant is contained in the
electrolytic solution. However, it does apply to many alkaline cells and lithium batteries where the
main reacting ion, OH−or Li+, is produced at one electrode at the same rate that it is consumed at the
other, leaving the average concentration of the solution unchanged.

Optimizing the current density is equivalent to optimizing the size of the cell (i.e., separator area)
to perform a given duty. To optimize the current density, and eventually the electrode thickness and
porosity, we need expressions for the cell potential and energy delivered during discharge. The reaction
zone at a position xr moves through the electrode; a material balance shows that

xr =
It

(1 − 𝜖)q+
, (22.34)

where I is the current density (taken to be constant with time), t is the time since the beginning of the
discharge, 𝜖 is the porosity of the positive electrode, and q+ is the capacity per unit volume of solid
material (active material, conductive additives, and binder). The cell potential V at any given time is
the open-circuit potential U minus the ohmic drop required for the ionic current to flow across the
separator and through the pores in the positive electrode up to the region xr where the reaction is taking
place:

V = U − I (
Ls

𝜅s
+

xr

𝜅 ) = U −
Ls

𝜅s
I − I2t

𝜅(1 − 𝜖)q+
. (22.35)

The energy E (per unit of separator area) delivered is the integral of the instantaneous power;

E = ∫
td

0
VI dt = (U −

Ls

𝜅s
I) Itd −

I3t2
d

2k(1 − 𝜖)q+
. (22.36)

Finally, the mass M per unit of separator area can be expressed as

M = 𝜌rLr + 𝜌sLs + [𝜌−q+(1 − 𝜖)∕q− + 𝜖𝜌s + (1 − 𝜖)𝜌+]L+. (22.37)

The first term on the right represents the remainder of the system, such as any current collector or other
sheets between the cells. The second term is the mass of the separator. Here, it is assumed that the
negative electrode, with density 𝜌− and capacity density q−, is proportional to the positive electrode
in thickness and capacity. If this is not the case, the mass of the negative electrode should be lumped
in with the residual mass 𝜌rLr, taken to be constant. The remaining terms are the mass of the positive
electrode, including the electrolyte within the pores.

The effective conductivity 𝜅 of the electrolytic phase in the positive electrode is assumed to be
given by the Bruggeman equation 22.14.[5] Here we can take 𝜖s = 1, and hence 𝜅s =𝜅0.

We wish to maximize the value of the energy per unit mass, E/M, for a given discharge time td,
open-circuit potential U, separator thickness Ls, positive-electrode capacity density q+, and separator
conductivity 𝜅s. The other parameters, such as 𝜌r, Lr, 𝜌s, and 𝜌+, are supposed to be fixed. The
parameters that are free to be varied to attain the maximum are the discharge current density I, the
thickness L+ of the positive electrode, and the porosity 𝜖, representing the volume fraction of the
electrolyte in the positive electrode.
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It is easiest to maximize first with respect to the discharge current for given L+ and 𝜖 because the
value obtained is then independent of the mass parameters. This yields

Iopt =
𝜅sU∕Ls

1 + (1 +
3Utd𝜅2

s

2𝜅(1 − 𝜖)q+L3
s
)

1∕2
. (22.38)

However, there are two constraints to consider. At the end of discharge, the cell potential V must be
greater than the cutoff potential Vc. This requires that

Iopt ≤
𝜅sU
Ls

2(1 − Vc∕U)
1 + (1 + 4(U − Vc)td𝜅2

s∕𝜅(1 − 𝜖)q+L2
s )1∕2

. (22.39)

Furthermore, the capacity of the positive electrode must not be exhausted, and this is expressed as

Iopt ≤
𝜅sU
Ls

L+Ls(1 − 𝜖)q+
Utd𝜅s

. (22.40)

The smallest of these three values must be used. The last condition can be replaced by an equality,
since otherwise there would remain unused capacity and the situation could be improved by reducing
L+ until the equality held.

The dimensionless specific energy to be maximized now takes the form

E𝜌s

MUq+
=

(1 − U)I0T − I3
0T2∕2𝜖1.5(1 − 𝜖)

𝜌rLr∕𝜌sLs + 1 + (L+∕Ls)[𝜖 + (1 − 𝜖)(𝜌+∕𝜌s)]
, (22.41)

where I0 is the minimum value of IoptLs/𝜅sU governed by equations 22.38 to 22.40 and

T =
U𝜅std
q+L2

s
. (22.42)

This can be regarded as a discharge time td made dimensionless with the other parameters, which
thereby achieve increased importance in the design.

Figure 22.8 shows how the dimensionless specific energy depends on electrode thickness and
porosity for T = 100. The mass in the denominator of equation 22.41 contributes an additional penalty
for increasing the thickness of the electrode. At the optimum, 𝜖 = 0.227 and L+/Ls = 1.95 (at this value
of T = 100).

Figure 22.9 shows the optimum electrode thickness, and Figure 22.10 shows the optimum
positive-electrode porosity, both as functions of the dimensionless discharge time T. For these
calculations, the ratio of the cutoff potential to the open-circuit potential is taken to be 2

3
. Also, 𝜌+ = 𝜌s,

and 𝜌rLr = 0.
Toward the left on these figures (for high-rate discharges), the ohmic potential drop is important,

and the inequality in equation 22.39 becomes an equality. That is, the cell reaches the voltage cutoff
at the end of discharge. Above about T = 50, the voltage cutoff is no longer reached (for 𝜌+ = 𝜌s and
𝜌rLr = 0); weight considerations become more important.

Other values of 𝜌+/𝜌s, and 𝜌rLr/𝜌sLs are explored by Newman.[27] A larger value of residual
mass pushes the optimum porosity up toward the value of 0.6 corresponding to the capacity
maximization.[27, 28] At the same time, this permits an increase in the optimum electrode thickness
because of the more open electrode.
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Figure 22.8 Specific energy for various electrode thicknesses and porosities. The optimum is 𝜖 = 0.227
and L+/Ls = 1.95. Source: Newman 1995.[27] Reproduced with permission of The Electrochemical
Society, Inc.
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Figure 22.9 Optimum electrode thickness as it depends on the parameter determined by discharge time, electrode
capacity density, open-circuit potential, and separator parameters. Source: Newman 1995.[27] Reproduced with
permission of The Electrochemical Society, Inc.

On the other hand, an increase in the density of the positive electrode material increases the optimum
porosity but reduces the optimum electrode thickness since these changes can compensate for the
increased mass.

The approximations invoked of fast reactions and no concentration variations are more restrictive
than we would like. More complicated computer models, such as those described in the next section,
can be used, with the simpler reaction-zone model serving to illustrate the nature of the results and the
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Figure 22.10 Optimum porosity as it depends on the parameter determined by discharge time, electrode capacity
density, open-circuit potential, and separator parameters. Source: Newman 1995.[27] Reproduced with permission
of The Electrochemical Society, Inc.

method of optimizing over first current density and then battery design parameters such as porosity
and electrode thickness.

Another caveat relates to the difficulty of manufacturing electrodes with the porosity specified by
the optimization procedures. One then should wish to optimize current density and electrode thickness
with the porosity constrained by manufacturability. One can also explore the breadth of the optimization
maxima to ascertain the consequences of manufacturing variability as well as those of the inability to
produce the optimum porosity.

Figure 22.11 shows a Ragone plot of specific energy versus average specific power; the ratio of
these two quantities is the parameter td or, in dimensionless form, T. The three lower curves are
calculated with fixed values of electrode thickness and porosity, those selected as optimum values
from Figures 22.9 and 22.10 for the three values of T = 2, 100, and 5000. These curves illustrate
how the compromise between energy and power shifts as one optimizes for different discharge
times.

Also shown in Figure 22.11 is a curve where the electrode thickness and porosity are optimized
for each point (which corresponds to a given value of T). This curve provides an envelope of the best
performance attainable and gives some perspective to the compromises represented in the other curves.
The system will have a natural minimum practical discharge time corresponding to a T of about 2 or 5.
That is to say, selection of a value of T significantly less than 2 makes it impossible to use very much
of the capability of the battery to store energy.

In conclusion, the most significant factor affecting the design of a battery is its discharge time.
(The next most important is its capacity.) It is shown here how the electrode thickness and porosity
are determined by this discharge time for a particularly simple battery model. Shorter discharge
times (high-power applications) require thinner electrodes because of the significant ohmic potential
drop within the electrode. Longer discharge times permit thicker electrodes. They also allow smaller
porosities to get more capacity into a given volume without incurring a large ohmic penalty.

Further examples of optimization are given by Fuller et al.,[29] Thomas et al.,[30] and Fellner and
Newman.[31]
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Figure 22.11 Specific energy versus average specific power. For three of the curves, the electrode thickness
and porosity are optimized at the values of T given. For the envelope curve, the electrode thickness and porosity
are optimized for each point on the curve. Here 𝜌+/𝜌s = b = 1. Source: Newman 1995.[27] Reproduced with
permission of The Electrochemical Society, Inc.

Cell-Sandwich Model

The complexity of the factors involved in the analysis of the behavior of porous electrodes leads to the
use of a computer. The models of single battery electrodes discussed in the previous sections can be
extended to treat both electrodes of a cell simultaneously and thereby give a more realistic treatment
without artificial boundary conditions where the other electrode is supposed to be. In the next section,
we illustrate the cell-sandwich model with the example of lithium alloy, iron sulfide cells used with
a molten electrolyte, but in general we are interested in the spatial distributions of potentials and
composition and the overall transient behavior of cell potential and temperature. Figure 22.12 shows
a picture of the cell sandwich, with the negative electrode on the left, the separator in the middle, and
the positive on the right.

This model was developed first for the lead–acid cell.[32] However, it is much more general
and has been applied, with changes in details, to the molten-salt cells (to the FeS electrode with a
straightforward reaction sequence[33] or with a more complicated set of reactions[34] or to the FeS2
electrode[35]) and to other systems. We mention in particular lithium and lithium-ion batteries with one
or two insertion electrodes.[36]

The modeling of porous electrodes involves establishing a number of unknowns which one needs
to determine and a set of governing equations. In this application, these equations are likely to include
transport processes, such as Ohm’s law in the matrix and the description of migration, diffusion, and
convection in the solution, material balances on liquid and solid phases, and kinetics for electrochemical
reactions.

For unknowns, as functions of time and position in Figure 22.12, we may cite the following:
composition as given by the mole fraction of LiCl in the electrolyte, the potential Φ1 and Φ2 in the
matrix of each electrode and in the electrolyte, the superficial current densities in the same phases,
the porosity, and the velocity of the electrolyte. There are also the volume fractions of each of
the solid phases and the local composition of the alloy in the negative. For overall variables that
are functions of time, one may mention the cell potential and the average temperature of the cell
sandwich.
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Figure 22.12 Schematic diagram of the LiAl–FeS cell, as an example of the cell-sandwich model. Source:
Pollard and Newman 1981.[33] Reproduced with permission of The Electrochemical Society, Inc.

In many battery systems, the electrolyte can be considered to be a binary mixture, and this makes
it possible to apply concentrated-solution transport theory as developed in Chapter 12 (Sections 12.2
through 12.6) or more general equations for a binary molten electrolyte.[37] A single composition
variable is sufficient for the electrolyte. For example, a lead–acid battery has an aqueous solution of
sulfuric acid, and the concentration of PbSO4 can be ignored. The three relevant transport properties are
the conductivity, diffusion coefficient, and one transference number, and these are known reasonably
well as functions of composition and temperature. A number of batteries use an aqueous KOH solution.
Hydrogen, cadmium, iron, and zinc are used for negative electrodes, and the positive can be Ag/Ag2O,
Ag/AgO, NiOOH, MnO2, or air. The solubility of ZnO is high enough in concentrated KOH that one
might not want to treat the solution as binary in that case. The sodium/sulfur battery uses sodium
polysulfides in the positive electrode compartment, and these can probably be treated as a binary
system because the polysulfides are in equilibrium with each other (compare Section 4.7).

Overall, one may then program four to six equations for simultaneous solution as coupled, ordinary,
nonlinear, differential equations at each time step, with boundary conditions at two values of x (see
Appendix C for some discussion of numerical methods for coupled differential equations). The velocity
may be able to be eliminated because of its similarity to the current density i2, and the porosity is
related to the transfer current density and the time step by equation 22.32 (and the solid-phase volume
fractions by similar equations). The polarization equation, relating the transfer current ∇⋅i2 to the
concentration and overpotential, can include complexing and mass transfer of a sparingly soluble
reactant and electrochemical kinetics on a surface area that changes with the local state of charge.

The polarization equation is the principal point where the macroscopic theory of porous electrodes
will be subject to further refinement, as one tries to account not only for the mechanism of the
charge-transfer process but also for the morphology of the electrode, the formation of covering layers
or of crystallites of sparingly soluble species, and the transport from such sparingly soluble phases to
the site of the charge-transfer process.

The boundary conditions can be made to include a limited reservoir of solution adjacent to the
electrode and perhaps even a remote reservoir, connected to the adjacent reservoir by a mass-transfer
coefficient. This will allow simulation of the recovery of the electrode potential with time as the
electrolyte concentration is restored.
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The cell-sandwich model or a summary of its results can be incorporated into a model of grid
resistances for battery plates where the current from the reaction sites must be gathered into one
conductor for transmission to a subsequent cell in series connection.[38, 39] This can be used to optimize
current collector thickness and shape.

Lithium Alloy, Iron Sulfide Cells

Figure 22.12 shows the cell sandwich that represents a molten-salt cell designed to form part of a
high-power battery. The current flows as in the single-electrode system in Figure 22.1, but it now
continues through the separator in ionic form and reacts in the counterelectrode. Electrode reactions
are indicated for a negative made of LiAl and for one of the reactions of an iron sulfide positive
electrode. At the temperatures of molten salts, the electrode kinetics tends to be relatively fast. As
an alternative to the reaction of FeS to Li2FeS2 (also called X phase), the reaction can go through a
complex compound called J phase (which is LiK6Fe24S26Cl) according to the following scheme:

26FeS + Li+ + Cl− + 6K+ + 6e− → LiK6Fe24S26Cl + 2Fe (22.43)

followed by the reaction of J phase to other compounds, such as

J + 25Li+ + 20e− → 13Li2FeS2 + 11Fe + 6K+ + Cl−. (22.44)

Figure 22.13 shows concentration profiles of LiCl in the LiCl/KCl molten electrolyte for a LiAl/FeS
cell discharging through the Li2FeS2 (X phase) mechanism. At short times, the concentration profiles
reflect the stoichiometry of the electrode reactions. In the negative, Li+ ions are injected into the
electrolyte, thus raising the mole fraction of LiCl; while in the positive, Li+ ions are extracted from the
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Figure 22.13 Position dependence of mole fraction of LiCl at different discharge times, for X-phase mechanism.
Dashed line represents saturation limit for LiCl at 450∘C. Source: Bernardi et al. 1981.[34] Reproduced with
permission of The Electrochemical Society, Inc.
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melt, thus lowering the mole fraction of LiCl. The figure shows that the reactions occur relatively close
to the separator since the locations of injection and extraction occur close to the separator, and one
can see the regions moving into the depth of the electrodes as time progresses. The negative electrode
is opening up as the reaction occurs, and the concentration profiles are not very sharp there, while in
the positive electrode, the porosity is small after the first reaction, and the progress of the reaction
front through the electrode is clearly visible. The reaction zone is also less distinct in the negative
electrode because this is an alloy electrode, and changes in the composition of the LiAl alloy result
in concentration overpotentials that tend to spread the reaction region over the depth of the electrode.
After 2.5 hours, a second reaction front is visible in the positive, before the first reaction front has
reached the back of the electrode. The second reaction of Li2FeS2 to Fe and Li2S reduces the porosity
further, and concentration gradients become even more pronounced in the positive. This eventually
leads to precipitation of KCl in the positive, and in the model this causes the cell potential to drop
drastically if the precipitate blocks the pore cross section.

Figure 22.14 shows contrasting concentration profiles predicted for the reaction through the J
phase. Here, the mole fraction rises in the positive as well as the negative in the early stages of
discharge because K+ ions are extracted in greater numbers than the Li+ ions. However, the subsequent
reaction in the positive brings the mole fraction down again, and more drastically than in the X-phase
mechanism, because no Li+ ions were transferred during the early stages of the discharge.

Figure 22.15 shows predicted discharge curves (for the X-phase mechanism) contrasted with
experimental cell-potential data. The model results follow the experimental results reasonably well in
the latter part of the discharge if precipitation of KCl is precluded in the model. The curves labeled
A and B indicate the early termination of the discharge if precipitation is allowed to occur. The
discharge curve calculated for the J-phase mechanism is shown in Figure 22.16. The first reaction
(equation 22.43) occurs during the first 11% of utilization of the positive electrode, according to this
mechanism, and comparison with Figure 22.15 suggests that the high potentials during the early part
of discharge may be due to discharge by the J-phase mechanism.

Figure 22.17 shows predicted and experimental results for the discharge of the LiAl/FeS2 cell.
The top curve, with several line segments, corresponds to a reversible discharge and is based on
thermodynamic cell potentials. The model calculations lie slightly below the reversible curve, and
the experimental results lie below that. All three curves reflect the reaction sequence believed to
apply to the FeS2 electrode. In the early stages of discharge, the model results do not show as much
polarization as the experimental curve, indicating that the resistances within the electrodes are not
properly accounted for. Also, the model results show an end of discharge, due to precipitation, much
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Figure 22.15 Comparison of theoretical and experimental discharge curves for the X-phase mechanism. Source:
Bernardi et al. 1981.[34] Reproduced with permission of The Electrochemical Society, Inc.
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Figure 22.16 Discharge curve with J-phase mechanism.

earlier than the experimental curve. This illustrates the two major discrepancies between the model
and the experiment: there is too little voltage loss and too much precipitation.

Figure 22.18 shows volume fractions of various phases at a point in the discharge of the FeS
electrode by means of the X-phase mechanism. Here both reaction fronts can be seen; the front for
the first reaction is at about 0.077 cm, and that for the second reaction is at about 0.01 cm. The initial
porosity is about 0.5, and this is reduced to about 0.29 after the first reaction and to about 0.06 after
the second reaction. However, at the reaction front for the first reaction, the porosity drops sharply
to a small value over a very small distance. This is due to the calculated precipitation of KCl in the
positive electrode, and this causes the discharge potential to drop considerably, eventually leading to
the prediction of the end of discharge.
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Figure 22.17 Comparison of model and experimental results for the potential of the FeS2 electrode in a
LiAl–FeS2 cell, relative to a LiAl (𝛼 −𝛽) reference electrode (450∘C, 50 mA/cm2, x0

LiCl = 0.68). The reversible,
thermodynamic potential is also shown in order to display more clearly the losses of the system. Source: Bernardi
and Newman 1987.[35] Reproduced with permission of The Electrochemical Society, Inc.
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Figure 22.18 Volume fraction of solid phases and electrolyte in the positive electrode of LiAl–FeS cell
discharging by the X-phase mechanism. Source: Bernardi et al. 1981.[33] Reproduced with permission of The
Electrochemical Society, Inc.

In summary, let us emphasize that models of batteries with porous electrodes can predict polarization
characteristics, as well as temperature changes. They can also give details of what is going on inside,
such as composition profiles, precipitation of electrolyte, and reaction and porosity distributions, which
would be difficult to determine experimentally. These details, as well as attempts to reconcile results
with experiments, can enhance our understanding of how such systems operate.
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22.5 DOUBLE-LAYER CHARGING AND ADSORPTION

A measurement of the double-layer capacity of a porous electrode most directly reflects the active
surface area coherently connected electrically and therefore accessible for electrochemical reactions.
Changes in the nature of the solid-phase composition, surface crystal structure, adsorbed materials,
solution composition, temperature, and electrode potential also influence the measured value. Such
results should be useful for the characterization of battery electrodes and may be especially valuable
since the electrode is not destroyed, and indeed need not be removed from the cell in which it is being
studied.

Johnson and Newman[40] have shown that the current response of a porous electrode to a step
change in the potential yields, under certain circumstances, a nearly constant value of i

√
t, the product

of the current density and the square root of time (also indicated by Ksenzhek and Stender[41] and
Posey and Morozumi[42]). A value of the double-layer capacity can be inferred from this constant value
of i

√
t. However, most porous electrodes have nonzero resistances that prevent the attainment of a

constant value of i
√

t at short times, and the capacity begins to saturate at long times. Tiedemann and
Newman[43] used the same technique to study the PbO2 and Pb electrodes in H2SO4 solution. A plot of
i
√

t versus
√

t yields a maximum in i
√

t, and this value was used to obtain a value for the double-layer
capacity. Figure 22.19 shows the comparison between theory and experiment for the charging curve
of PbO2 in H2SO4 solution. Emphasis on the maximum of this charging curve minimizes the ohmic
effects at short times as well as the faradaic effects at long times. As faradaic reactions become more
important, a positive displacement of the experimental curve from the theoretical curve is observed at
long times. However, the shape of the curve near the maximum remains relatively unchanged.

Johnson and Newman also demonstrated that specific adsorption of ions on a porous
high-surface-area carbon electrode can be used to bring about a separation or concentration of soluble
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Figure 22.19 Comparison of experimental and theoretical results for potentiostatic double layer charging of
porous PbO2 electrodes. Area = 241 cm2, L = 0.095 cm, temperature = 28∘C. ◾: freshly prepared PbO2 electrode,
ΔV = 2.51 mV, 𝜆 = 1.33, aC = 23.33 F/cm3; •: cycled PbO2 electrode, ΔV = 1.52 mV, 𝜆 = 0.768, aC = 26 F/cm3.
(𝜆 is a ratio of the external resistance, Ω cm2, to L/𝜅.) Solid curves are theoretical. Source: Tiedemann and
Newman 1975.[43] Reproduced with permission of The Electrochemical Society, Inc.
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species. By alternating the applied potential at specified time intervals, a NaCl solution could be
desalted during the adsorption cycle and concentrated during the desorption cycle. This technique
constitutes a novel means of separation. It can also be used with hard-to-plate ions such as Zn2+ and
Pb2+.

Double-layer capacitors are also used for energy storage. They have a fast response time and are
not degraded much by the adsorption process, but the energy-storage capability is limited compared to
many batteries.

22.6 FLOW-THROUGH ELECTROCHEMICAL REACTORS

Flow-through porous electrodes possess inherent advantages over nonporous electrodes with flowing
solutions or porous electrodes without flow. This has been well demonstrated by Kalnoki-Kis and
Brodd,[44] who showed increases in current by factors of 102 to 104 at a given overpotential. High
specific interfacial area allows the attainment of relatively high volumetric rates of reaction, and the
flowing solution eliminates or reduces mass-transport problems. Thick electrodes and low flow rates
produce relatively long contact times for treatment of very dilute solutions.

Liebenow[45] showed how mass-transport limitations could be diminished by flowing a solution
through an electrode. Heise[46] discussed in great detail the usefulness of flow-through porous electrodes
for a number of processes of industrial interest: (i) conversion of manganate to permanganate, ferrous to
ferric, nitrate to nitrite, and arsenite to arsenate; (ii) electrowinning of copper; and (iii) electro-organic
oxidation and reduction. The advantages and limitations of such electrode systems are also discussed.

In modeling of the system for design purposes, a number of factors might be included in the analysis.
Many of these are already relevant for porous electrodes without flow and can be reviewed here:

1. Should a straight-pore model or a homogeneous macroscopic model be used?
2. Should transport processes be described by dilute or concentrated electrolyte theory? How are

conductivities and other transport properties to be estimated for porous media? Should ohmic
losses in the solid matrix be included?

3. What are the kinetics of the reactions and the effects of side reactions?
4. Is the system isothermal?
5. Is operation steady or transient?

New factors are also introduced specifically for flow-through electrodes. These include:

1. Is the flow uniform through the electrode, or is there channeling?
2. What is the direction of flowing solution with respect to the counterelectrode? The counterelec-

trode can be upstream or downstream (a flow-through electrode), or it can be beside the working
electrode (a so-called flow-by system). Two, rather than one, dimensional consideration of the
distributions of concentration, current, and potential may be necessary.

3. How fast can reactants be transported from the flowing solution to the solid surface?
Chemical-engineering correlations of mass-transfer coefficients in packed beds (Bird et al.,[47]

Wilson and Geankoplis[48]) have been extended to electrochemical situations by Yip,[49]

Gracon,[50] and Appel.[51]

4. Do the flow patterns promote significant axial mixing? This dispersion effect is mathematically
similar to diffusion and can be characterized by a dispersion coefficient Da. Sherwood et al.[52]

correlated available data on dispersion in packed beds and expressed their results in a figure by
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plotting a Péclet number proportional to 𝑣/a(D+Da) against a Reynolds number proportional to
𝑣/a𝜈, with the Schmidt number† 𝜈/D as a parameter. At low flow rates, axial mixing becomes
less important than molecular diffusion, but the Reynolds number at which this occurs decreases
as the Schmidt number becomes larger.

5. What is the approach to limiting current and the degree of conversion?

The extent to which any or all of the above are incorporated into the analysis is dependent on
the specific system and given design and optimization requirements. Equations 22.7 (Faraday’s law),
22.30 (the polarization equation), 22.12 (Ohm’s law in the matrix), and 22.13 (the flux density in
the solution) facilitate the formulation of the problem, but to effect a solution may require various
assumptions.

Design and optimization are specific to the given system and have been discussed by Bennion and
Newman[53] and by Gurevich et al.[54] To illustrate the design principles outlined by Bennion and
Newman, we examine the removal of Cu2+ and Pb2+, for example, from a waste stream. The Pb2+

turns out to be difficult to remove in a porous electrode[55] and is included in order to show how the
design is influenced by the concentration of the feed.

1. We want to promote intimate contact between the electrode and the solution in order to carry out
reactions to a high degree of completion. This calls for small flow channels (pores) and hence
for a flow-through (or flow-by) porous electrode.

2. Carrying reactions to a high degree of completion also calls for operation at the limiting current,
so that the concentration at the walls of the pores is close to zero. This also brings about
considerable simplification in the design calculations since it decouples the potential distribution
from the mass-transfer rates and current distribution.

3. We want to avoid side reactions. These could range from unwanted evolution of hydrogen
or oxygen to competing reactions or subsequent reactions in electro-organic synthesis. Conse-
quently, the potential variation in the solution phase should not exceed a certain limit, one or
two tenths of a volt in moderately sensitive cases. This is an application of the principle of
electrochemical engineering discussed in Chapter 18 that potentials need to be maintained in
certain bounds, a principle that applies in a number of situations ranging from cathodic protection
to controlled-potential electrolysis.

To effect this simple design, we begin with the concentration distribution along the length of the
pores. With assumptions of negligible migration, appropriate to a dilute solution of Cu2+ ions in H2SO4
or Na2SO4 solution or Hg2+ ions in NaCl solution, equation 22.13 becomes

𝐍ix

𝜖 = −(Di + Da)
𝜕ci

𝜕x
+
𝑣xci

𝜖 . (22.45)

We take Di, Da, 𝜖, and 𝑣x to be constants, independent of x. Equation 22.2 gives the material balance.
For a steady process, the time derivative vanishes, and jin, the flux density from the wall to the pore
solution, is described by a mass-transfer coefficient[2, 53] km as

jin = km(ci,0 − ci), (22.46)

where ci,0 is the concentration at the surface and ci is the average concentration in the pores.

†The Schmidt number being based on the true molecular diffusion coefficient without any tortuosity factor.
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How km depends on velocity 𝑣x and diffusion coefficient Di is reviewed by Newman and
Tiedemann.[2] When equations 22.45 and 22.46 are substituted into the material-balance equation 22.2,
we obtain

𝑣x
𝜕ci

𝜕x
= (Di + Da)

𝜕2ci

𝜕x2
+ akm(ci,0 − ci). (22.47)

In a flow-through electrode with significant flow, the diffusion term can be neglected with respect to
the convective term on the left. This is discussed more extensively by Newman and Tiedemann.[2] The
mass transfer is decoupled from the electrode kinetics by assuming that limiting-current conditions
prevail. (Relaxation of this assumption is discussed more extensively by Trainham and Newman.[56])
The equation reduces to

𝑣x
𝜕ci

𝜕x
= −akmci (22.48)

with the solution
ci = cf exp (−

akmx
𝑣x

) = cf e−ax, (22.49)

where 𝛼 = akm/𝑣x and cf is the feed concentration to the porous electrode.
If we specify also the effluent concentration cL, this yields a design equation

L =
𝑣x

akm
ln

cf

cL
(22.50)

showing how thick the electrode should be made or how slow the fluid velocity 𝑣x should be made in
order to achieve a specified removal of the solute. One can see that tightening this specification by an
additional factor of 10 does not increase the electrode thickness by very much.

Generally one would want to use as high a velocity as possible in order to reduce the capital costs.
How large can we make 𝑣x? This is determined by the ohmic potential drop in the x direction; we
want to maintain the limiting-current condition (ci,0 ≈ 0) along the length without generating too much
side reaction at one end or the other. We express this, approximately, as a certain allowed variation
of potential drop Δ(Φ1 −Φ2) along x. Figure 22.4 shows potential profiles for one porous-electrode
model, where the minimum value of (Φ1 −Φ2) occurs in the interior of the porous electrode. The
maximum value usually occurs at one end or the other. (This assumption of a given value of Δ|Φ1 −Φ2|
is relaxed by Trainham and Newman,[56] but then one needs to account for the side reaction, necessarily
encountered as one approaches the limiting current, solve coupled equations for the potential, current
density, and concentration, and state an optimization criterion to permit one to decide how much side
reaction is permissible.) From a current–potential curve for copper deposition, like that in Figure 1.13,
we make the subjective judgment that ΔΦmax might be about 0.2 V to assure that we are close enough
to the limiting current but not permitting much side reaction. One should appreciate that this value
depends on the chemical system involved. We use 0.1 V for Pb deposition because it is a less noble
metal than Cu, but even this value may be too large. By assuming that 𝜎≫𝜅, we can apply ΔΦmax as
a limit for ΔΦ2 within the electrode.

Equations 22.7 and 22.45 form the basis for writing Faraday’s law

di2
dx

= −nF
si
𝑣x

dci

dx
, (22.51)

where axial diffusion is again neglected. For the configuration in Figure 22.20a, the boundary conditions
are

i2 = I at x = 0, i2 = 0 at x = L. (22.52)
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Figure 22.20 Two configurations of a flow-through porous electrode showing the placement of the counterelec-
trode (CE) and the current collector (CC). A desirable configuration is to have the CE upstream, as in (a), but the
downstream CE in (b) may keep reaction products from the CE out of the working electrode. A third possibility
(not shown) is to place the CE along the working electrode.

Integration with these boundary conditions gives

i2 = nF𝑣xcf (e−ax − cL∕cf ), (22.53)

where we have also chosen si to be −1, so that n is the number of electrons transferred when one
molecule or ion reacts. The integration constant implies an upstream counterelectrode; this would be
modified substantially for a downstream counterelectrode, where i2 = 0 at x = 0. (See Problem 22.7.)

We use equation 22.20 for Ohm’s law because we assume the presence of supporting electrolyte.
Integration of i2 according to this equation gives the potential distribution

Φ2 = 𝛽 [e−𝛼x − 1 − 𝛼x
cL

cf
] , (22.54)

where 𝛽 = nF𝑣2
x cf∕akm𝜅 and we have taken Φ2 = 0 at x = 0. Then

ΔΦ2 = 𝛽[1 − (𝛼L − 1)e−𝛼L]. (22.55)

In the common case where 𝜎≫𝜅, ΔΦ2 is essentially the same as ΔΦmax because the potential drop in
the matrix is negligible. See also Problem 22.7.

When we carry a reaction (or separation) to a high degree of completion, e−𝛼L is very small, and
ΔΦ2 ≈𝛽. This yields our second design equation

|ΔΦmax| =
nF𝑣xcf

𝜅
𝑣x

akm
, (22.56)
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TABLE 22.1 Operating conditions, design results, and costs for removal of lead and
copper ions from given solutions

Pb system Cu system

Feed concentration, mg/liter 1.45 667
Product concentration, mg/liter 0.05 1
Solution conductivity, S/cm 0.8 0.17
Allowable potential variation, V 0.1 0.2
Specific electrode area, cm−1 25 25
Superficial velocity, cm/s 0.64 0.0036
Electrode thickness, cm 60 5
Time to plug, days 377 5

$/m3 $/kg $/m3 $/kg

Electrode capital cost 0.2133 1.472 25.4 0.424
Operating labor 0.0173 0.144 4.0 0.067
Electrical energy 0.0020 0.014 3.2 0.053
Pumping energy 0.1267 0.87 0.013 0.0002
Total 0.36 2.49 33 0.544

which can be regarded as the product of a superficial current density (nF𝑣xcf) with the reciprocal of
the effective conductivity (1/𝜅) and an effective depth of penetration of the reaction into the electrode
(𝑣x/akm). The mass-transfer coefficient km itself depends on the velocity, so that |ΔΦmax| is proportional
to the velocity to about the 1.5 power.

In practice, we would use this equation to determine the maximum permissible velocity or
throughput that can be achieved while avoiding side reactions and yet operating near limiting current.
Note how the difficulty of the problem (or separation process) is governed by the ratio cf/𝜅 of the
reactant concentration to the conductivity and by the specific interfacial area a of the electrode. (After
allowance for the dependence of km on a, |ΔΦmax| is proportional to a to about the −1.5 power.)

The thickness of the electrode is now determined by the required degree of reaction, given by
equation 22.50.

Costs, of course, depend on how c0, cL
b , 𝜅, and a affect 𝑣 and L. Comparisons are given in Table 22.1

for the lead and copper systems. As the feed concentration is increased by a factor of 415, the cost
per unit volume of solution goes up by a factor of 90 while the cost per unit mass of dissolved metal
goes down by a factor of 4.6. (Costs are in 2002 dollars, approximately.) The pumping power makes a
dramatic increase in importance for dilute solutions.

PROBLEMS

22.1 A porous electrode system with an open-circuit potential U of 2.0 V is to be designed to produce
electric power of 25 kW. The porous electrode is separated from a highly reversible plane
electrode by a porous fiber material of thickness Ls and effective electrolytic conductivity 𝜅s.
The porous electrode of thickness L can be attributed an infinite matrix conductivity 𝜎, linear
polarization characteristics, an absence of concentration gradients, and an inexhaustable supply
of fuel. Under these conditions, the cell potential can be expressed as

V = U − IR, (22.57)
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where I is the superficial current density and R (Ω cm2) is the internal resistance of the system,
including the porous electrode and the separator. You are to design the system to minimize the
capital cost, which is given by

Capital cost = A(a + bL), (22.58)

where A is the superficial area of the electrode system, a = $8/m2 and b = $0.2/m3.
(a) Show that the optimum superficial current density is given by

Iopt = U∕2R. (22.59)

(b) Show how to optimize the electrode thickness L with the system always operated at the
optimum current density of part (a).

(c) Obtain a numerical value for the optimum electrode thickness when the following design
data apply:

Ls = 0.02 cm, 𝜅s = 0.1 S∕cm,

𝛼a + 𝛼c = 1, 𝜅 = 0.1 S∕cm,

a = 105 cm−1, i0 = 10−5 A∕cm2,

F∕RT = 40 V−1.

22.2 A flow-through, porous-electrode, electrochemical reactor is to be used for the recovery of
silver from a photographic fixing solution where the silver is present at low concentrations
as the complex ion Ag(S2O3)3−2 , that is, it is complexed with thiosulfate. The solution is well
supported, and one of the principal ions, the thiosulfate, undergoes a side reaction:

S2O2−
3 + 8e− + 8H+ ⇌ 2HS− + 3H2O. (22.60)

To design this reactor to operate below the limiting current, you are asked to develop the
equations for subsequent computer modeling. The desired computer program is to involve only
two unknown functions that are determined simultaneously throughout the thickness of the
porous electrode. You should assume that the reactor operates in a steady state with an excess of
supporting electrolyte and with no gas phase present. The counterelectrode is upstream. Derive
and state the differential equations and boundary conditions that should be programmed for the
computer.

22.3 A cylindrical configuration is fairly common for porous battery electrodes, particularly those in
Leclanché cells and in alkaline–manganese dioxide cells. You are assigned to set up a simple
model of such an electrode. Use a macrohomogeneous model with no concentration variations,
uniform properties, and linear electrode kinetics. Double-layer charging can also be ignored.
Formulate an ordinary differential equation for a single variable of your choice and specify
appropriate boundary conditions for one of the following situations (specify clearly which):
(a) Counterelectrode is outside the electrode of interest, and the current collector is a carbon

core at the center of the electrode of interest.
(b) Counterelectrode is inside the electrode of interest, and the current collector is outside.
(c) Counterelectrode is inside the electrode of interest, and the current collector is a perforated,

highly conducting, inert sheet at the inner side of the electrode of interest.
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The inner radius of the porous electrode is ri, and the outer radius is ro. Assuming that you
have the results of the model you developed above, specify how one is to obtain the following
quantities:

i. Distribution of Φ1, the potential in the solid matrix, as a function of radial position.
ii. Distribution of Φ2, the potential in the pore solution.

iii. Distribution of i2, the superficial current density for the pore solution.
iv. Distribution of i1, the superficial current density for the solid matrix.
v. Distribution of the reaction rate (A/cm3).

vi. Overall potential difference across the porous electrode (minus any open-circuit value).

22.4 A porous electrode is claimed to show a double Tafel slope under two disparate conditions.
The condition of uniform composition and Tafel kinetics is not of interest here. Instead look at
the situation where ohmic drop is negligible in both the matrix and solution phases and there
is a large excess of supporting electrolyte and a small concentration of the critical reactant,
which is maintained at a concentration cb at the electrode face at x = 0. Formulate a problem
(differential equation with complete boundary conditions) for the concentration distribution
of this reactant. The geometry is one dimensional, not cylindrical. The diffusion potential is
negligible, and the composition dependence of the exchange current density is given by the
rules formulated in Section 8.3. This means that the electrode reaction turns out to be first order
(in the forward rate for the critical reactant) at a fixed value of the electrode potential Φ1 −Φ2
(compare Problem 20.4).

Solve this problem for the concentration distribution ci(x). You may assume the electrode to
be infinitely thick if you wish. Determine whether this solution corresponds to a double Tafel
slope at large electrode potentials.

22.5 Discuss what type of reference electrode is imagined to ascertain the solution-phase potential
Φ2 in Problem 22.4.

22.6 Derive the “general” porous-electrode equation ∇2𝜂s = a(1/𝜅 + 1/𝜎)f(𝜂s), where f(𝜂s) represents
the rate function, as in equation 8.5, and 𝜂s =Φ1 −Φ2 −U. In this problem, take the composition
to be uniform, as in Section 22.2.

22.7 For flow-through porous electrodes, there are several combinations of placement of the
counterelectrode and of the current collector, relative to the porous electrode itself. The text
treats an upstream counterelectrode. For a system with a downstream counterelectrode and an
upstream current collector, but still with the approximation of a limiting-current distribution,
derive equations for ci, i2,Φ2, andΦ1 as functions of x, the distance through the porous electrode.
Sketch the results, or use a spreadsheet to obtain more quantitative results. Include the cases of
𝜎≫𝜅 and 𝜎 = 2𝜅. See Figure 22.20b.

NOTATION

a specific interfacial area, cm−1

A0 constant defined by equation 22.33
ci concentration of species i per unit volume of solution, mol/cm3

c0
i reference or bulk concentration, mol/cm3

C differential double-layer capacity, F/cm2

Cp cell heat capacity per unit of separator area, J/cm2⋅K
Da dispersion coefficient, cm2/s
Di diffusion coefficient of species i, cm2/s
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F Faraday’s constant, 96,487 C/mol
h0 heat-transfer coefficient, based on separator area, W/cm2⋅K
i0 exchange current density, A/cm2

i1 superficial current density in the matrix, A/cm2

i2 superficial current density in pore phase, A/cm2

in transfer current per unit of interfacial area, A/cm2

I superficial current density to an electrode, A/cm2

jin pore-wall flux density of species i, mol/cm2⋅s
km coefficient of mass transfer between flowing solution and electrode surface, cm/s
L thickness of porous electrode, cm
Mi molar mass of species i, g/mol
n number of electrons transferred in electrode reaction
n normal unit vector
Ni superficial flux density of species i, mol/cm2⋅s
q surface charge density on solid side of double layer, C/cm2

R universal gas constant, 8.3143 J/mol⋅K
si stoichiometric coefficient of species i in electrode reaction
Sc Schmidt number, 𝜈/D
t time, s
T absolute temperature, K
T0 initial temperature, K
Ta ambient temperature, K
ui mobility of species i, cm2⋅mol/J⋅s
U open-circuit cell potential, V
U′ open-circuit value of Φ1 −Φ2, V
𝑣 superficial fluid velocity, cm/s
V electrode or cell potential, V
x distance through porous electrode, cm
zi valence or charge number of species i
𝛼a, 𝛼c transfer coefficients
𝛽 𝛼aF/RT or −𝛼cF/RT
𝛾i dimensionless diffusion parameter
Γi surface concentration of species i, mol/cm2

𝛿 dimensionless current density defined in equation 22.24
𝜖 porosity or void volume fraction
𝜂 overpotential, V
𝜂s surface overpotential, V
𝜅 effective conductivity of solution, S/cm
𝜅0 free solution conductivity, S/cm
𝜅′ modified solution conductivity, S/cm
𝜆 resistance ratio (see Figure 22.19)
𝜈 square root of dimensionless exchange current (see equation 22.25) or kinematic viscosity,

cm2/s
𝜌i density of a solid phase of species i, g/cm3

𝜎 effective conductivity of the solid matrix, S/cm
Φ1 electric potential in the matrix, V
Φ2 electric potential in the solution, V
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CHAPTER 23

SEMICONDUCTOR ELECTRODES

Solid-state semiconductors have very low concentrations of mobile charge carriers, and the use of a
semiconductor electrode can move the region with limitations of diffusion and migration from the
solution side of the interface to the electrode side, with the creation of spatially large double-layer
or space-charge regions. Illumination of such semiconductor electrodes can create additional charge
carriers in the very region where interesting things are happening and provides an additional way to
investigate the system.

Semiconductor electrodes can also have practical applications in sensors or perhaps solar energy
conversion to:

1. Decompose water and provide a fuel for later use.
2. Operate on redox couples and store chemical energy within the cell or in auxiliary tanks.
3. Produce electrical energy directly.

At one time there was hope that a liquid, solid interface with a polycrystalline semiconductor would
provide an inexpensive junction. Formation of a solid junction by diffusion of a dopant gave best
results with single crystals because diffusion rates are much higher along grain boundaries. However,
newer technologies of vapor or plasma deposition of thin films allow construction of solar cells
with polycrystalline materials and remove this disadvantage of solid-state devices. At the same time,
additional research with liquid-junction solar cells showed that corrosion is hard to avoid because of
the necessity of matching band gaps to the energy of redox couples and the stability limitations of
available materials.

Semiconductor electrodes are developed here as an extension of conventional systems governed by
thermodynamic, transport, and kinetic considerations. Included is a tutorial on the mechanism of cell
operation, including descriptions of band bending and straightening, interfacial phenomena, and current
flow. Electrons and holes can be treated as chemical species, with activity-coefficient corrections if
necessary. The semiconductor is then similar to a dilute electrolytic solution, but with homogeneous
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reactions involving generation and recombination of electrons and holes and with a fixed background
charge due to the dopant atoms (in analogy to ion-exchange membranes).

Recent reviews include those of Uosaki and Kita[1] and Orazem and Newman.[2]

23.1 NATURE OF SEMICONDUCTORS

Conduction and Valence Bands in Solids

The inner shells of electrons in an atom are associated with the corresponding nucleus and are not free
to move in a solid. The outer shell of electrons may be involved in covalent bonding with adjacent
atoms, or they may be associated with the crystal structure as a whole.

The quantum mechanical energy states associated with isolated atoms become merged in a solid.
The states of a given energy in the isolated atoms then form, in the solid, a band of energies closely
spaced within a narrow range. If an energy band is full, that is, the number of electrons matches the
number of energy states available, then the electrons are not free to move within the solid because
there are no adjacent sites of equal or nearly equal energy. This situation would correspond to a pure
insulator at low temperatures, but it can be modified by one of three situations.

1. At low temperatures the electrons occupy the lowest available energy states. The highest-energy
occupied band is called the valence band, and the lowest-energy unoccupied band is called the
conduction band. As the temperature is increased, a larger proportion of electrons will have
the energy to occupy states in the conduction band, and this will leave unoccupied states in
the valence band. If the energy gap between the bands is modest, this effect will occur at modest
temperatures, and the material is called a semiconductor rather than an insulator.

2. Impurity atoms in the lattice may have a different number of outer-shell electrons from the rest
of the atoms. An extra electron will occupy a state in the conduction band, while a deficiency of
an electron will create an unoccupied state in the valence band. Again, the situation will depend
on temperature with the excess or deficient electron being localized with the impurity atom at
very low temperatures. Such an impurity atom is said to be nonionized.

3. Two bands at the margin of occupied and unoccupied states may overlap in energies to form
what is, in essence, a half-filled band. Here the electrons are free to move because there are
always adjacent sites of nearly equal energy, and metallic conduction prevails, even down to
very low temperatures.

Defects in the lattice structure of the solid can lead to electron energy states that do not match with
energies of the bands. These are called trap states or simply traps and are of greater interest if the
energy level lies between the valence and conduction bands. More nearly perfect crystals will have
a lower density of trap states. Surfaces involve a discontinuity in the lattice structure and therefore
a higher concentration of trap states, which are commonly called surface states. Again, more nearly
perfect surfaces, perhaps those formed by etching, will have fewer surface states than less perfect
surfaces such as those formed by machining. Trap states, both in the bulk and at a surface, can have a
significant role in facilitating transfer of electrons between the conduction and valence bands.

Electrons have a spin of 1

2
and therefore obey Fermi–Dirac statistics. This means that the probability

of occupancy of a state of energy E is

f (E) = 1

1 + exp
(E−Ef

kT

) , (23.1)
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where Ef, called the Fermi energy (or Fermi level), is the energy level at which a state has a 50%
probability of being occupied. For a semiconductor, the Fermi level is generally in the gap between
the bands, and therefore the state with a 50% probability of being occupied would have to be a trap.

Electrons and Holes as Species

The number of electrons in the conduction band can be expressed as an integral over the occupied
states:

n = ∫
∞

Ec

f (E)N(E)dE, (23.2)

where n is the concentration, in moles per unit volume, or the number density of electrons per unit
volume of solid; N(E) is the density of states, per unit volume and per unit of energy, or by dividing by
Avogadro’s number it is in moles per unit volume and per unit energy. The upper limit of integration
could be taken as the upper energy of the conduction band since N(E) would become zero at the
band edge.

Figure 23.1 illustrates the density of states in the relevant regions near the band edges, where N(E)
is proportional to the square root of the distance from the band edge (see Problem 23.1). Also indicated
are the lower edge Ec of the conduction band, the upper edge E𝑣 of the valence band, the band gap Eg,
and the Fermi energy Ef.

We restrict ourselves to temperatures such that all the electrons in the conduction band have energies
very close to the lower edge Ec of the band. Then all these occupied electronic states have nearly
identical properties, and these electrons can be treated as one species. Integration of equation 23.2
allows the Fermi level to be related to the concentration of conduction band electrons, leading to the
definition of the activity coefficient fe− of electrons according to

exp (
Ef − Ec

kT
) = n

Nc
fe− , (23.3)

where Nc is the effective density of states for the bottom of the conduction band. Because of the way
in which the integration is carried out, Nc depends on the temperature. Higher energies can effectively

N (E), number density of states

E
le
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n 
en

er
gy

Ef

Eυ
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Eg

Figure 23.1 Density of states N(E) versus energy level near the band edges. More, unfilled bands would lie
above the energies shown, and more, filled bands would lie below.
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Figure 23.2 Activity coefficients of holes and electrons.

be occupied at higher temperatures, and Nc increases with T (see Problem 23.1). The integration gives
the composition dependence of fe− shown in Figure 23.2 or approximately by

ln fe− = 0.334
n

Nc
. (23.4)

See also Problem 23.5.
On the other hand, the valence band is mostly occupied, and it is convenient to place emphasis on

the unoccupied states, which are termed holes since an electron can be put into them and they become
occupied. The unoccupied states, at ordinary temperatures, are concentrated near the top of the valence
band, and they can be treated collectively as the species, holes. Integration over unoccupied states in
the valence band is similar to integration over occupied states in the conduction band and leads to

exp (
E𝑣 − Ef

kT
) =

p
N𝑣

fh+, (23.5)

where p is the concentration of holes, N𝑣 is the effective density of states for the top of the valence
band, E𝑣 is the energy of the top of the valence band, and the activity coefficient fh+ is also given by
Figure 23.2. It follows that the gap energy mentioned earlier is related to Ec and E𝑣:

Eg = Ec − E𝑣. (23.6)

The Fermi–Dirac distribution has some interesting properties. We can see that f(E), the probability
of occupancy, and 1− f(E), the probability of vacancy, have symmetric forms. The distribution goes
properly from 1 at low energies to 0 at high energies, is sharp at low temperatures and more diffuse
at high temperatures, and forces, even at low temperatures, occupancy of successively higher energy
states until all the electrons have been accounted for.

When the Fermi energy is not close to the band edges, it frequently becomes convenient to adopt
the Boltzmann approximation, whereby the 1 in the denominator is neglected and we have

n ≈ Nc exp (
Ef − Ec

kT
) (23.7)
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and

p ≈ N𝑣 exp (
E𝑣 − Ef

kT
) . (23.8)

The product of the electron and hole concentrations then becomes independent of the Fermi level:

np ≈ NcN𝑣 exp (
−Eg

kT
) , (23.9)

a formula that reminds us of the mass-action law of chemical thermodynamics. We should keep in mind,
however, that replacement of the original Fermi–Dirac distribution in equation 23.1 by a Boltzmann
distribution could imply probabilities of occupancy greater than 1 or accumulation of electrons into
low energy states.

Doping

Values of Nc and N𝑣 can be quite low at least in comparison with aqueous electrolytic solutions.
For a gallium arsenide semiconductor at 300 K, we use the values Nc = 7.80× 10−7 mol/cm3 or
4.7× 1017/cm3 and N𝑣 = 1.16× 10−5 mol/cm3 or 7× 1018/cm3. Furthermore, with Eg = 1.4 J/C, one
can estimate a further reduction in the concentration of mobile charges according to equation 23.9:

√
np ≈ (NcN𝑣)1∕2 exp (

−Eg

2kT
) = 5.228 × 10−18 mol∕cm3. (23.10)

An important characteristic of semiconductors is that their properties can be modified greatly by
adding small concentrations of dopant atoms to the intrinsic semiconductor. Atoms that can ionize to
yield an additional electron are called donors, and their use produces n-doped semiconductors. Atoms
that ionize by consuming or localizing an electron are called acceptors, and their use produces p-doped
semiconductors. In the case of a compound semiconductor like CdS, a slight deficiency of S atoms
constitutes n-doping. For a group IV semiconductor such as germanium or silicon, an element such as
arsenic will be a donor while indium will be an acceptor.

In reality, the ionization level of acceptors and donors will depend on the temperature and the local
Fermi level. We shall simplify the situation by assuming complete ionization under the conditions of
interest. Thus, the concentrations Na and Nd of acceptors and donors will imply a level of fixed charge
in the semiconductor, positive if Nd >Na, and vice versa. The charge is fixed because the acceptor and
donor atoms are assumed to be immobile. Thus the electric charge density within the semiconductor is
taken to be

𝜌e = F(p − n + Nd − Na). (23.11)

An appropriate level of doping would be between the intrinsic carrier concentration given by
equation 23.10 and a value on the order of Nc or N𝑣. Smaller values would have negligible effect,
and larger values would promote metallic properties. In the given range, the conductivity of the
semiconductor can be varied by many orders of magnitude. The dopant level can vary with position.
Furthermore, at different positions within the semiconductor with a given dopant level, the carrier
concentrations can be reduced below |Nd −Na| and toward the value given by equation 23.10 (a situation
called depletion) or increased toward a value of Nc or N𝑣 (a situation called degeneracy, where the
Fermi–Dirac distribution is not well approximated by the Boltzmann distribution). For GaAs we shall
consider dopant levels in the range from 1013 to 1018/cm3.
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Electrical State Variable

The numerical values given above for intrinsic concentrations of holes and electrons and for common
dopant levels emphasize the fact that we are dealing with a very dilute solution, in fact, a very good
approximation to the ideal-dilute solution mentioned in the last part of Section 3.5. Consequently,
although the conductivity and the concentrations of charge carriers can change by many orders of
magnitude, the basic character and composition remain fixed, and other properties such as mobilities
or the band-gap energy are largely independent of dopant and charge carrier concentrations. Of course,
extremely large dopant concentrations would change the basic character of the semiconductor, giving a
variation of band-gap energy and perhaps a change of crystal structure. The environment of individual
electrons and holes would change, much as the environment of individual ions changes in concentrated
electrolytic solutions.

But let us stress the dilute nature of the semiconductor. Different regions of the semiconductor have
nearly identical chemical composition, and the concept of the electrostatic potential loses some of the
ambiguity associated with it in more concentrated solutions. To be specific, we can think of Φ as the
cavity potential in this chapter. Figure 23.3 sketches the energy levels in the junction between two
metals. The work function is the energy required to be imparted to electrons in order to free them from
the metal. As the sketch suggests, the electron when free of the metal is at the cavity potential, and this
is pictured as an electron in a cavity near the surface of the metal so that stray, external electric fields
will not act on the electron or cause charge to accumulate at the metal–vacuum interface (see Figure
3.5). The Fermi level characterizes the energy of electrons in the metal, and as the sketch suggests, the
work function is the difference between −eΦ and Ef.

The Fermi level itself can be associated with the electrochemical potential of electrons in the metals.
In fact, the relationship is

𝜇e− = LEf + constant, (23.12)

where L is Avogadro’s number. The Fermi level is the same in the two metals in Figure 23.3, so that the
electrons can be equilibrated between them. Since the work functions are different, the cavity potential
must vary across the metal junction, as sketched in the figure. Consideration of Poisson’s equation
3.8 or Gauss’s law 3.11 suggests that there must be a double layer of charge at the junction between
the two metals. Because of the high concentrations of electrons in the metals, the charge layer is very
narrow.

The situation at a metal junction can be contrasted with the semiconductor junction in Figure 23.4.
Here the junction is formed in one material by doping the left region with an excess of acceptor atoms

Electron
energy

Distance

Ef

Work
function (I)

Work
function (II)

< 1 nm

Metal IIMetal I

Fermi level

– eΦ, cavity
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βα

Figure 23.3 Junction between two metals.
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Figure 23.4 Junction between semiconductors of different doping levels.

and the right region with an excess of donor atoms. The Fermi level lies closer to the conduction band
in the n-doped region. Since the Fermi level or electrochemical potential is uniform at equilibrium, the
bands must bend from one region to the other. The work function is seen to depend upon the doping
level. Because the concentration of charge carriers is much less than in the metals, the double charge
layer is much thicker, perhaps 10 to 200 nm. The energies E𝑣, Ec, and −eΦ all bend together, and it is
convenient to use a single variable to characterize the electrical state. Thus, we can write

E𝑣 = E∗
𝑣 − eΦ (23.13)

and
Ec = E∗

𝑣 + Eg − eΦ, (23.14)

where E∗
𝑣 is a fixed value, independent of the electrical state, and equal to the valence band energy

relative to vacuum. The relationship of band bending to the concentrations of holes and electrons is
given by Poisson’s equation 3.8, which takes the form

d2Φ
dx2

= −F
𝝐 (p − n + Nd − Na). (23.15)

In the bulk of the n-doped region, electroneutrality prevails, and the electron concentration is higher than
in the p-doped region. The converse statement is true for holes. While the dopant concentration might
change somewhat abruptly at the junction, the concentrations of holes and electrons change gradually,
while preserving the equilibrium relationship given by equation 23.9. The fixed dopant charges are not
balanced by the carrier concentrations in the junction region, and a net charge distribution or double
charge layer results. One can visualize this by taking the second derivative of the potential distribution
in Figure 23.4 (see Figure 23.5).
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Figure 23.5 Potential, field, and charge density. Dopant levels are 2× 1016 and 6× 1016/cm3 in the p- and
n-doped regions, respectively. T = 300 K, and Eg = 1.4 J/C.

The nature of the semiconductor in the region of band bending is similar to that of the diffuse layer
in an electrolytic solution at an electrode (Section 7.4). The approximations of ideal-dilute solutions
hold better because of the lower concentrations, and the greater thickness of the region permits a greater
opportunity to probe it. (Recall that the Debye length for electrolytic solutions is typically 0.1 to 1 nm.)
One way to probe this region is to shine light on it and to study the behavior of holes and electrons
generated by the illumination. This also provides the concept for direct conversion of solar energy
into electrical energy. The greater thickness allows substantial variation in the potential across the
region of band bending (such as that depicted in Figure 23.4), even though the electric field is smaller
than that in the electrolytic double layer. The fixed charge associated with the dopant atoms is also
important because it can force an even greater thickness to the region of space charge or departure from
electroneutrality. The depletion region can be thicker than the Debye length for the semiconductor.

Band bending in semiconductors can also occur near the boundary of the semiconductor with a
metal, a gas, or an electrolytic solution. Such a boundary can be expected to have a higher density
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of defects than the junction depicted in Figure 23.4, where the dopant level varies from left to right.
These surface states or surface traps, alluded to earlier, are analogous to specifically adsorbed ions
in the inner Helmholtz plane on the solution side of an interface. These states can number from 1010

to 1016 /cm2 (corresponding to 0.0016 to 1600 μC/cm2) and are most important when their energy
levels lie between E𝑣 and Ec. Attraction or repulsion of electrons by these surface states can also
lead to a space-charge region within the semiconductor near the surface, like specific adsorption at an
electrode–solution interface. The magnitude of the space charge can also be modified by polarizing
the interface, like an ideally polarizable electrode. Similarly, electrode reactions, including corrosion
of the semiconductor, can spoil the ideally polarizable nature of an interface.

Electrochemical Potentials

It is particularly auspicious to treat the electrochemical potentials of electrons and holes by relating
them to the concentrations and the electrostatic potential (see equation 3.16)

𝜇i = 𝜇𝜃i + RT ln(cifi) + ziFΦ. (23.16)

The very low concentrations would suggest that the activity coefficients could be taken to be unity
(see Figure 23.2 and equation 23.4). The condition where fi = 1 (infinite dilution) basically determines
the value of the secondary-reference-state quantity 𝜇𝜃i .

The use of the Boltzmann approximation to the Fermi–Dirac statistics is equivalent to setting the
activity coefficients to unity, and both approximations break down together when the concentration of
holes or electrons approaches the effective density of states in the appropriate electron band.

In the semiconductor, the combination of holes and electrons is a possible homogeneous reaction

e− + h+ ⇌ 0. (23.17)

If this reaction is equilibrated, then
𝜇e− + 𝜇h+ = 0, (23.18)

and a single Fermi level is adequate. In nonequilibrium situations, perhaps produced by electrochemical
reaction or by illumination, this relationship does not hold, and one should use separate values for
the electrochemical potentials. This is equivalent to using separate quasi-Fermi levels for the holes
and electrons. The departure from equation 23.18 provides the driving force for the reaction of holes
and electrons—perhaps thermal generation in a depletion region or recombination of excess holes and
electrons created by illumination.

Within the semiconductor there are three unknowns or variables, n, p, and Φ, whose values need
to be determined as functions of position and time, a situation comparable to the binary electrolyte
(see Section 11.4). Additional variables, such as the electrochemical potentials, are to be expressed
in terms of n, p, and Φ. Material balances on electrons and holes constitute two governing equations.
Since the semiconductor is not electrically neutral, Poisson’s equation 23.15 prevails instead of the
electroneutrality relation (see Section 11.8). The semiconductor material, including any dopants, plays
the role of a solvent. The presence of the immobile dopant charges leads to behavior different from the
binary electrolyte studied earlier.

The “nearly identical composition” of the semiconductor allows us to avoid certain philosophical
questions that arise in somewhat more concentrated solutions. We have not heretofore inquired into the
meaning of activity coefficients in a region of nonzero electric charge density nor have we sought to
measure physical properties like diffusion coefficients in such regions. Notice that a theoretical model
is used here to provide numerical values of activity coefficients, and there is no treatment of effects like
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variations of the composition of the medium. Any composition dependence of diffusion coefficients is
also likely to be ignored.

Diffusion, Migration, and Homogeneous Reaction

Equation 11.64 describes the flux densities of electrons and holes in terms of the gradient of the
electrochemical potential. Within the solid semiconductor, the convective velocity can be taken to be
zero, and with equation 23.16 for the chemical potential, we have

𝐍i = −Di∇ci − Dici∇ ln fi −
ziDiF

RT
ci∇Φ. (23.19)

The activity-coefficient term can frequently be neglected.
The diffusion coefficients themselves are much larger than we might expect from values for

aqueous solutions, and this can compensate partially for the small charge carrier concentrations when
the conductivity is computed. For GaAs at 300 K, we shall use the values 220 and 6.46 cm2/s for the
diffusion coefficients of electrons and holes, respectively.

Electrons and holes can recombine according to equation 23.17 and thereby annihilate each other.
Physically, an electron is transferred from the conduction band to the valence band. The reverse
reaction is the thermal generation of electrons and holes, whereby electrons are transferred from the
valence band to the conduction band. At equilibrium, the rates of these two processes are equal, and
equation 23.18 relates the electrochemical potentials of the species. This leads, in turn, to a relationship
between the concentrations of holes and electrons (see equation 23.10)

np =
n2

i

fe− fh+
=

NcN𝑣 exp(−Eg∕kT)
fe− fh+

. (23.20)

Let us take the activity coefficients to be unity. When the electron is transferred directly from band to
band, the net rate of the thermal generation–recombination reaction can be written

r = kth − krecnp = krec(n2
i − np), (23.21)

whereby the recombination partial reaction is taken to be first order in both electrons and holes and
the thermal generation to be independent of these concentrations. More complicated mechanisms have
also been envisioned. Specifically, the processes can occur through intermediate trap states whose
energy level lies within the band gap. Analysis of this mechanism can lead to the rate expression

r =
Ntk2k4(n2

i − np)
k1 + k2p + k3 + k4n

, (23.22)

where Nt is the density of traps (mol/cm3) and k1, k2, k3, and k4 are rate constants for processes of
transfer of an electron between the valence band and the trap states, the trap states and the valence
band, the trap states and the conduction band, and the conduction band and the trap states, respectively.
The latter rate expression shows how the kinetics of the process is facilitated by an increase in the
density of traps, which we can equate to a lack of perfection of the crystal structure. In principle, the
band-to-band process and the trap-facilitated process can proceed in parallel.

For a doped semiconductor it is convenient to use the term minority carrier to refer to the species,
electrons or holes, inherently reduced to a low level by the doping process. Departures from equilibrium
concentrations would be more noticeable for the minority carrier. If excess minority carriers are injected



�

� �

�

ELECTRIC CAPACITANCE AT THE SEMICONDUCTOR–SOLUTION INTERFACE 499

into an electrically neutral, bulk semiconductor, they will recombine with pseudo-first-order kinetics.
The lifetime 𝜏 of such minority carriers (the time required for decay by a factor of 1/e) would be

𝜏 = 1
krec|Nd − Na|

(23.23)

for the band-to-band kinetic mechanism and

𝜏 =
k1 + k2p + k3 + k4n

Ntk2k4|Nd − Na|
(23.24)

for the trap-intermediate mechanism. In the latter expression, the majority concentration, n or p, would
be replaced by |Nd −Na| and the minority concentration by zero. The diffusion length Li of minority
carriers, characteristic of the distances over which an excess over the equilibrium concentration can
exist, is then given by

Li = (Di𝜏)1∕2. (23.25)

The photoresponse is an important aspect of semiconductor electrodes. Light, with photons
having energy greater than the band-gap energy Eg, shining on the material generates electrons and
holes independently of the thermal generation–recombination process described above. The rate is
proportional to the light intensity, and the semiconductor is more or less transparent to the light.
Consequently, we shall express the rate of generation of holes and electrons as

r = 𝜂mq0e−my, (23.26)

where q0 is the incident flux density (mol/cm2⋅s), 𝜂 is the fraction of the incident photons with energy
greater than the band-gap energy, m is the absorption coefficient (cm−1), and y is the distance in the
direction of the light in the semiconductor. A photon must have an energy of Eg in order to transfer an
electron from the valence band to the conduction band. It is a challenge to recover as large a fraction
of the energy Eg as possible in the form of electrical or chemical energy. We investigate this in more
detail in Section 23.3.

23.2 ELECTRIC CAPACITANCE AT THE SEMICONDUCTOR–SOLUTION INTERFACE

Let the system now consist of a doped semiconductor in contact with an electrolytic solution. We
can think in terms of Figures 23.4 and 23.5 with the p-doped semiconductor region replaced by an
electrolytic solution, and at first let us imagine that no electrochemical reactions occur at the interface
and we have the analogue of the ideally polarizable electrode of Chapter 7. The profiles of potential,
electric field, and charge density depicted in Figure 23.5 for distances greater than zero could still
apply to the semiconductor region, at least under certain external conditions. If the potential of the
semiconductor is changed relative to a reference electrode in the solution and the electrode remains
ideally polarizable, the potential and charge distributions within the semiconductor will also change.
The analysis of these changes leads to the electric capacitance of the semiconductor in a manner similar
to that in Section 7.4 for the electrolytic solution. In fact, in the situation discussed here, there will also
be a double layer in the solution since the charge must balance between the semiconductor and the
solution in such a way that the interface as a whole remains electrically neutral—where the interface
is defined to include any region of nonzero charge density even though this may extend 1000 nm into
the semiconductor.
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At steady-state, equilibrium conditions, the charge density will depend on the local value of the
electric potential. Let

𝜙 =
eΦ − E∗

𝑣 + Ef

kT
. (23.27)

The Fermi level will be uniform within the semiconductor at equilibrium, and one can solve for the
value of 𝜙 in the bulk of the semiconductor by the requirement that the charge density be zero. Let this
value be denoted 𝜙fb, where “fb” denotes “flat band,” the condition where the potential is uniform.

The charge density of equation 23.11 becomes

𝜌e(𝜙) = F(N𝑣e−𝜙 − Nce𝜙−Eg∕kT + Nd − Na) (23.28)

with the use of the Boltzmann approximation of equations 23.7 and 23.8. When the activity coefficients
are included, the expression is more complicated, but 𝜌e is still a function of 𝜙. The electric field,
E = − dΦ/dy, also becomes a function of 𝜙, and Poisson’s equation 3.8 takes the form

d2Φ
dy2

= −dE
dy

= − dE
dΦ

dΦ
dy

= E
dE
d𝜙

e
kT

= −
𝜌e

𝝐 (23.29)

or
dE2

d𝜙
= −2kT

𝝐e
𝜌e(𝜙) (23.30)

(compare equation 7.35). Integration gives

E2 = −2kT
𝝐e

∫
𝜙

𝜙fb
𝜌e(𝜙)d𝜙. (23.31)

The surface charge density in the space-charge region of the semiconductor is given by

qsc = ∫
∞

0
𝜌edy = −∫

∞

0
𝝐 d2Φ

dy2
dy = 𝝐 dΦ

dy
|y=0 = −𝝐E(𝜙0), (23.32)

where 𝜙0 is the value of 𝜙 at y = 0 (compare equation 7.33). One could go on to get the spatial
distribution of 𝜌e, 𝜙, and E by means of an equation like 7.39; in fact, this was done to construct
Figure 23.5. However, this is not necessary in order to obtain the capacitance Csc of the space-charge
region in the semiconductor since Csc is related to qsc:

Csc = −
dqsc
dΦ0

= 𝝐F
RT

dE(𝜙0)
d𝜙0

. (23.33)

Since E is given by equation 23.31, the differentiation can be carried out to yield

Csc = −
𝜌e(𝜙0)
E(𝜙0)

. (23.34)

Figure 23.6 shows the semiconductor capacitance. (This is plotted versus Φfb −Φ0 because of the
custom in electrochemistry to use the potential of the electrode relative to the solution, rather than the
reverse.) In contrast to the capacitance given by equation 7.48 or 7.49 for the diffuse double layer in
an electrolytic solution, the minimum in Csc does not occur at the flat-band potential. The presence of
the dopant and the immobile charge has made the capacitance asymmetric with respect to 𝜙fb. Already
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Figure 23.6 Capacity of the space-charge region.

at 𝜙fb there are very few holes in the n-doped material, and this situation prevails for most of the
potential range. Displacement of the potential such that 𝜙fb <𝜙0 draws even more electrons toward the
interface, and the excess charge is relatively closer to the interface because of the exponential nature
of the Boltzmann relation. Consequently, Csc increases, just as in the case of Cd, because the effective
distance of separation in the capacitor decreases. Eventually, Csc levels off somewhat because fe−
increases, reflecting some saturation of the occupancy of states near the interface.

Displacement of the potential such that 𝜙fb >𝜙0 drives the electrons away from the interface,
so that the excess charge is due to the immobile dopant atoms. Increasing 𝜙fb −𝜙0 causes more
immobile charge to be exposed, thereby increasing the effective separation distance of the capacitor
and decreasing the value of Csc. Eventually, the polarization becomes so extreme that the hole
concentration becomes significant near the interface. Now the increase in charge occurs at a small
effective separation distance, and Csc increases. When the inherent minority carrier concentration (p in
this case) rises and becomes significant compared to |Nd −Na|, inversion is said to have occurred.

The Mott–Schottky plot in Figure 23.7 produces a straight line of 1∕C2
sc versus potential over a

significant range of potential. This can be understood by a rearrangement of equation 23.34:

1
C2
sc
=

E2(𝜙0)
𝜌2

e(𝜙0)
= −2RT

𝝐F𝜌2
e(𝜙0)

∫
𝜙0

𝜙fb
𝜌e(𝜙)d𝜙. (23.35)

For 𝜙0 somewhat below 𝜙fb, 𝜌e(𝜙0) becomes essentially equal to F(Nd −Na), due to the dopant atoms,
and the slope of the Mott–Schottky plot becomes

d(1∕C2
sc)

d(Φfb − Φ0)
= 2

𝝐F(Nd − Na)
. (23.36)

The straight-line plot fails in the vicinity of 𝜙fb ≤𝜙0 because the majority carriers are now accumulating
at the interface. Csc increases (or 1∕C2

sc decreases) as 𝜙fb −𝜙0 decreases, but not as fast as required
by equation 23.36. The straight-line plot also fails for significantly large values of 𝜙fb −𝜙0, where
inversion eventually occurs, the effective separation distance of the capacitor decreases, and Csc
increases (or 1∕C2

sc decreases). Reference to Figure 23.6 suggests that the straight-line behavior in
Figure 23.7 would extend out to about 𝜙fb −𝜙0 = 1.1 V.



�

� �

�

502 SEMICONDUCTOR ELECTRODES

–0.2 –0.1 0 0.1

14

12

10

8

6

4

2

0

1/
C

2 sc
 (

cm
2 /

μF
)2

Φfb – Φ0 (V)

Figure 23.7 Capacity in a Mott–Schottky plot.

The Mott–Schottky plot has a significant place in the study of semiconductor electrodes and yields
information on the flat-band potential (from the intercept at 1∕C2

sc = 0) and the effective dopant level
near the interface (from the slope). The intercept is displaced from the flat-band potential by an amount
RT/F for n-doping and −RT/F for p-doping if the Boltzmann approximation can be applied. Of course,
significant potentials can lead to decomposition of the semiconductor or to electrochemical reaction of
species in the solution, and the condition of an ideally polarizable electrode is violated.

Other parts of the interface, such as the inner region and the diffuse layer in the solution, have
their own capacitances that can be regarded as being in series with the capacitance of the space-charge
region (see, e.g., equation 7.53).

23.3 LIQUID-JUNCTION SOLAR CELL

Let us now add explicitly the possibility of an electrochemical reaction and of generation of electrons
and holes by means of illumination (see Figure 23.8). Figure 23.9 shows potential profiles under three
conditions: (a) at open circuit in the dark, (b) at open circuit with illumination at an intensity that
approximates solar radiation that, because of the angle of the sun, has passed through twice as much
air as when the sun is directly overhead (atmospheric mass 2, or AM-2), and (c) with illumination and
passing current in the anodic direction such that the semiconductor electrode potential, relative to a
reference electrode, is almost the same as it was in case (a). These examples are taken from the work
of Orazem.[3, 4]

More details need to be specified. The semiconductor is n-GaAs doped to a level of 6× 1016/cm3.
The electrolytic solution concentrations are 1 M KOH, 0.8 M K2Se, and 0.1 M K2Se2, and the electrode
reaction is

2Se2− → Se2−
2 + 2e−. (23.37)

The Debye length is about 17 nm for the semiconductor and 0.2 nm for the solution. With a band gap
of 1.4 J/C, the band bending for curve (a) is substantial. In fact, the electron and hole concentrations,
as shown in Figure 23.10, vary so that electrons are the major charge carriers at the right while holes
are in excess at the semiconductor–solution interface (inversion), and the intervening region is largely
depleted.

Curves (a) in Figures 23.9 and 23.10 show band bending in the dark. This must result from an
equilibrium distribution of charge among the space-charge region, the diffuse layer, the inner Helmholtz
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Figure 23.8 Sketch of the liquid-junction photovoltaic cell, showing assumed interfacial reactions. Source: Mark
E. Orazem and John Newman 1984.[5] Reproduced with permission of The Electrochemical Society, Inc.
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Figure 23.9 Potential distribution for the photoelectrochemical cell with no interfacial kinetic limitations. Curve
(a), open circuit in the dark; curve (b), open circuit under 882 W/m2 illumination; and curve (c), near short circuit
(i = −23.1 mA/cm2) under illumination. The semiconductor is n-GaAs, and the solution contains 0.8 M K2Se,
0.1 M K2Se2, and 1 M KOH.
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Figure 23.10 Concentration distributions for the photoelectrochemical cell with no interfacial kinetic limitations.
Curves and conditions are as in Figure 23.9. Concentrations are made dimensionless with the net dopant
concentration Nd −Na. Source: Mark E. Orazem and John Newman 1984.[4] Reproduced with permission of The
Electrochemical Society, Inc.

plane, and the inner surface states. The affinity of different regions for the various species is built into
the system model through various equilibrium constants associated with possible chemical reactions.
The 13 interfacial reactions depicted in Figure 23.8 include three major classes:

1. Reactions of electrons (reactions 1, 10, and 11) or holes (reactions 2, 12, and 13) with surface
states or the transfer (reactions 3 and 4) of electrons between surface states of different energy.
These are all reactions involving transfer of an electron from one energy level to another and are
similar to the thermal generation–recombination reactions that can occur within the bulk of the
semiconductor, although the densities of states and inherent rate constants can be quite different
in the interfacial region.

2. Adsorption–desorption reactions (8 and 9) of Se2− and Se2−
2 ions between the outer and inner

Helmholtz planes.
3. The charge-transfer process (reactions 5, 6, and 7) where an adsorbed ion reacts with electrons

from the surface states to produce the other ion of the redox couple.

While the values could be different from those built into this model, it is the parameters of the
interfacial reactions that determine the amount of band bending. Even with current flowing and with
illumination, the overall behavior of the system must be the composite result of the interaction of
factors that we should understand and describe separately. A somewhat more general discussion of
interfacial reactions is included in the next section.

Illumination of the semiconductor generates electrons and holes, generally tending to increase their
concentrations relative to those prevailing at equilibrium. The potential gradient already established
tends to drive the holes toward the semiconductor–solution interface and the electrons in the opposite
direction.
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In the absence of current flow, the electrons and holes accumulate in different regions and establish
an electric field opposing that originally present in the dark. Thereby, the band bending in Figure 23.9
is decreased. If the counterelectrode is equilibrated with the same redox reaction, then the open-circuit
cell potential was zero in the dark, and the decreased band bending under illumination causes the
semiconductor electrode to become negative relative to the counterelectrode (or a redox reference
electrode). Equilibrium no longer prevails; charge carriers are being generated by the photons and are
recombining with a dissipation of energy. When the illuminated cell is shorted, this situation causes
current to flow in the external circuit from the counterelectrode to the semiconductor electrode, thereby
making the latter carry out an anodic reaction, such as that expressed in equation 23.37. Since the holes
are regarded as a separate species and have accumulated near the interface, the anodic reaction could
also be written as

2Se2− + 2h+ → Se2−
2 . (23.38)

Mechanistically, this is regarded as different from equation 23.37. The occurrence of the anodic reaction
or reactions allows the generated holes and electrons to pass out of the semiconductor, permitting their
concentrations to drop and the band bending to increase toward that which had prevailed at equilibrium
in the dark.

Figure 23.11 shows several current–potential curves for the system, with the doping level as a
parameter. The curve labeled 0.896× 10−7 equiv/cm3 corresponds most closely to the parameters of
Figures 23.9 and 23.10. The curves show an open-circuit potential and a limiting current. The former

0
–200

0

200C
el

l p
ot

en
tia

l (
m

V
)

–10 –20 –30
Current density (mA/cm2)

400

600

800

0.0896 × 10–7 equiv/cm3

0.896 × 10–7

1.096 × 10–7

1.296 × 10–7

1.496 × 10–7

2.50× 10–7

0.0396 × 10–7

Figure 23.11 Computed current–potential curves for an n-type GaAs anode with dopant concentration as a
parameter. The semiconductor is 10 Debye lengths thick in each case. Source: Mark E. Orazem and John Newman
1984.[4] Reproduced with permission of The Electrochemical Society, Inc.
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is determined by the degree of band bending in the dark and unbending under illumination (see
Figure 23.9). This is affected, in turn, by the generation of holes and electrons by the light and by the
rate of recombination, which occurs primarily at the boundary of the semiconductor and is affected by
the rate constants for reactions of electrons. Thus, a semiconductor material with fewer defects at the
surface will exhibit a higher open-circuit potential.

The observed limiting current is due to limitations of mass transfer and generation of holes in the
semiconductor. An increase in the rate constants for reactions of electrons also decreases the limiting
current by encouraging recombination at the interface rather than reaction with ions of the solution.
The strength of the illumination, after correction for reflection losses, has a major effect on the limiting
current since the illumination produces the charge carriers.

Other losses in the system, such as low rate constants for the ion-adsorption or charge-transfer
reactions or the solution resistance, lower the cell potential in the range of intermediate currents,
between open circuit and the limiting value, producing current–potential curves with a point of
inflection.[4] This adversely affects the power performance of the cell.

Figure 23.11 emphasizes the effect of dopant level, a parameter subject to control in design
and manufacture. One should like to optimize the dopant level, semiconductor thickness, and solar
absorption coefficient in relation to each other so that the light is absorbed in the region of band bending
and the generated charge carriers can be driven to the surface and the current collector. In Figure 23.11
a high open-circuit potential is observed with a low dopant concentration because the semiconductor is
thicker and the band bending occurs over a greater distance. At higher dopant levels, the band bending
is confined to a smaller region near the surface and is not matched with the absorption coefficient.
Very low doping levels require the holes to diffuse farther to the interface, and recombination can
occur leading to lower limiting currents.

The effect of varying the semiconductor thickness at constant doping level is described in Ref. [4],
where other factors are also explored. Optimization of cell design with respect to shadowing and cell
resistance due to placement of the counterelectrode has been investigated.[6]

23.4 GENERALIZED INTERFACIAL KINETICS

Often we wish to treat the kinetics of interfacial reactions. Sometimes we wish to recognize the
overall reaction, which represents a boundary condition on adjacent phases; sometimes we wish to
treat a detailed and complex reaction mechanism in which there may be both consecutive and parallel
reactions and a number of intermediate species that do not appear in the overall reaction. Sometimes
the interface is broken down to include at least one surface phase, or adsorbed layer, and perhaps
several regions, as in Figure 23.8, where one sees an inner Helmholtz plane and a plane of inner surface
states, as well as a diffuse layer in the solution and a space-charge region within the semiconductor.
At times, these diffuse regions are treated like the adjacent bulk phases, having spatial extent but not
being electrically neutral, and at other times one seeks a treatment that lumps these regions into a
simpler, overall treatment. The purpose of the detailed treatment of complex mechanisms is to show
the processes involved and to yield a suitable mathematical approximation to kinetic behavior, but it
is also necessary to ensure that the kinetic treatment yields the correct thermodynamic behavior under
equilibrium conditions.

Let us treat a reaction involving species at two planes, 𝛼 and 𝛿 (see Figure 23.12). Electrons should
have no special role; they constitute just one of several species—in fact, they may be a species present
at both planes 𝛼 and 𝛿. In order to have a defined direction, let 𝛼 be closer to the “electrode terminal”
and 𝛿 be closer to the “electrolytic solution” so that there is a specific direction for anodic charge
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α δ

Figure 23.12 Planes in the interfacial region between an electrode and a solution. Species at plane 𝛼, which is
closer to the electrode terminal, can react with species at plane 𝛿, which is closer to the solution. Reaction can
include transfer of an ion or molecule from plane 𝛿 to plane 𝛼.

transfer. In some examples the distinction may be arbitrary. Some examples of possible meanings for
𝛼 and 𝛿 are:

1. 𝛼 = m and 𝛿 = 0 for the overall reaction between metal and solution, where 0 denotes the
solution “just outside the diffuse part of the double layer.”

2. 𝛼 = m and 𝛿 = 1 for charge transfer between a metal and the inner Helmholtz plane.
3. 𝛼 = 1 and 𝛿 = 2 for ion adsorption between the inner Helmholtz plane (𝛼) and the outer

Helmholtz plane (𝛿).
4. Examples with the semiconductor electrode, for example, 𝛼 representing the inner surface states

and 𝛿 representing the inner Helmholtz plane (see Figure 23.8).

With no explicit mention of electrons, the electrode reaction is written as
∑

i

siM
zi
i → 0. (23.39)

The amount of charge transferred still allows n to be defined:

n = −
∑

𝛿
sizi =

∑

𝛼
sizi, (23.40)

and we shall write the reaction so that n is positive. This means that si > 0 for anodic reactants and
si < 0 for cathodic reactants, just as in Section 8.3.

The condition for equilibrium is (compare equation 2.7)
∑

i

si𝜇i = 0, (23.41)

and departures from this relationship provide the driving force for the reaction. Consequently the
surface overpotential 𝜂s can be defined by a reinterpretation of equation 8.2:

nF𝜂s =
∑

i

si𝜇i. (23.42)

We probably should reserve the term surface overpotential for an overall electrode reaction; here 𝜂s
is the overpotential of a partial reaction or elementary step. Eventually, one needs to add a subscript,
such as l, to all quantities referring to a particular reaction. This would include 𝜂s, n, and si, as well as
𝛽, kf, kb, and K, introduced later, and the rate rl of the reaction itself.
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Following the general dictates of Section 8.2, we should express the kinetics of the rate of reaction as

rl =
il

nF
=

i0
nF

[exp (
𝛼aF
RT

𝜂s) − exp (−
𝛼cF
RT

𝜂s)] . (23.43)

According to the model construction of Section 8.3, we should write

rl = kf

⎛
⎜
⎝

∏

si>0

asi
i

⎞
⎟
⎠

exp [
(1 − 𝛽)nF

RT
(Φ𝛼 − Φ𝛿)]

− kb

⎛
⎜
⎝

∏

si<0

ai
−si
⎞
⎟
⎠

exp [
−𝛽nF

RT
(Φ𝛼 − Φ𝛿)] . (23.44)

(The subscripts f and b for forward and backward may be more general than a and c for anodic and
cathodic.)

The concentration ci in equation 8.26 has been replaced by the activity ai here so that it can be
expressed as either ci or Γi as appropriate to the treatment of the phases or planes 𝛼 and 𝛿. For a metal
electrode, ai for electrons may be taken to be unity and then not appear explicitly in the equation. For
a plane or for surface trap states, it is appropriate to treat vacant sites explicitly as a species, with a
stoichiometric coefficient and a place as one of the reactants or products in equation 23.44. This is the
basis of the kinetic derivation of the Langmuir adsorption isotherm.

With the electrochemical potentials in phases 𝛼 and 𝛿 written as

𝜇𝛼i = 𝜇A
i + RT ln a𝛼i + ziFΦ𝛼 (23.45)

and
𝜇𝛿i = 𝜇Δi + RT ln a𝛿i + ziFΦ𝛿, (23.46)

where 𝜇A
i and 𝜇Δi represent secondary-reference-state quantities for the two regions, substitution into

equation 23.41 yields a Nernst relation

Φ𝛼 − Φ𝛿 = −RT
nF

ln (K
∏

i

asi
i ) , (23.47)

where
K = e−ΔG∘∕RT (23.48)

and
ΔG∘ = −

∑

𝛿
si𝜇Δi −

∑

𝛼
si𝜇A

i . (23.49)

Comparison with the rate equation 23.44 at equilibrium shows that

K =
kf

kb
. (23.50)

Equations 23.48 and 23.50 show that forward and backward rate constants for a complex reaction
sequence cannot both be selected arbitrarily; they must be in harmony with the requirements of thermo-
dynamics. Even if chemical thermodynamic data are not available for all the secondary-reference-state
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quantities for all species in all phases, particularly adsorption planes, calculation of equilibrium con-
stants by means of equation 23.48 provides a convenient way of assuring thermodynamic consistency.
It is equivalent to the determination of a set of independent chemical reactions and relating equilibrium
constants of dependent reactions to those for the chosen set of independent reactions. Examples of
dependent reactions can be found in the text associated with equations 2.129 through 2.137.

In establishing a table of chemical thermodynamic data (secondary-reference-state quantities) one
is free to choose arbitrarily the values of the molar enthalpy and entropy of each element in a standard
state (primary reference state)—usually the stable form of the element at 298.15 K. One is also free to
choose the values for one charged species, due to the arbitrary zero of potential used in defining the
electrical state. If one has no interest in relating the definitions of electrical state in phases of different
composition, one can choose a charged species in each phase for an arbitrary reference. However, if one
wishes the potential difference in equation 23.47 to have some clear meaning, the arbitrary choice is
limited to one charged species in one phase. This would be the case if equation 23.47 were to represent
the difference of cavity potentials between two phases, but then such cavity-potential measurements
would have had to form part of the database used in establishing the secondary-reference-state quantities
for charged species in one phase in harmony with those for another phase.

We have emphasized in Chapters 2 and 6 how one can avoid such difficult measurements if one
sought the usual thermodynamic and kinetic quantities, such as the open-circuit potentials of cells or
overall kinetic relationships. The quasi-electrostatic potential allowed one to do detailed computations
accounting for the composition dependence of activity coefficients and transport properties. However,
the microscopic model of kinetics among interfacial planes, and in particular the use of Gauss’s law,
implies that one would like to use cavity potentials and perhaps be able to discover the seat of the
electromotive force of an electrochemical power source.

For (empty) sites in an adsorption plane, the secondary-reference-state quantity 𝜇A
i can also be taken

to be zero. Notice that activity coefficients are not generally used when ai in equation 23.44 is replaced
by ci or Γi, but activity coefficients are implied to belong in equations 23.45 through 23.47, which
are more strict, thermodynamically. This is consistent with the way the problem was approached in
Chapter 8. In the macroscopic approach, the exchange current density i0 depends in an unspecified
way on the composition at planes 𝛼 and 𝛽. This takes care of any thermodynamic requirements but
provides no clues about this composition dependence itself. The microscopic model predicts such
a dependence in a nonrigorous way and provides a basis for testing the applicability of alternative
reaction mechanisms. The formal procedure described here applies also to nonelectrochemical reactions,
where n = 0.

In the electrochemical case, it should be emphasized that Gauss’s law may need to be included in
the set of governing equations in order to relate the potential distribution to the charge distribution
that develops at the reaction planes. The use of Gauss’s law here is analogous to the use of Poisson’s
equation 23.15 in the semiconductor, together with material balances and transport relations. In the
diffuse charge layer in the solution another form of Poisson’s equation is needed, and, in the solution
outside the diffuse layer, this reduces to the electroneutrality relation as an additional equation that
permits the potential distribution to be determined.

23.5 ADDITIONAL ASPECTS

Semiconductor Electrode Kinetics

Gerischer[7] has developed a quantum mechanical theory of electrode kinetics and applied it to
redox reactions at semiconductor electrodes. Summaries of this work have been given by Vetter,[8]

Erdey-Grúz,[9] and Hamnett.[10]
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The theory shows:

1. Reaction of redox species in solution with holes is distinguished from that with electrons; that is,
reaction 23.38 is different from reaction 23.37.

2. For redox couples with a positive potential, the exchange rate (i0) at equilibrium will be higher
for the reaction with holes (e.g., reaction 23.38). Conversely, for redox couples with a more
negative potential, i0 will be higher for the electron reaction.

3. Exponential or Tafel expressions are adequate approximations to the potential dependence of the
four partial reactions defined above.

4. Other things being equal, the hole reactions are more favored in the anodic direction while
electrons dominate in the cathodic direction. This can be related to the tendency to increase
the appropriate charge-carrier concentration at the interface under the direction of polarization
indicated. It also means that the symmetry factor 𝛽 is apparently closer to 1 (smaller anodic
transfer coefficient) for the electron reactions and closer to zero (large anodic transfer coefficient)
for the hole reactions. This can be stated equivalently in terms of Tafel slopes. These conclusions
apparently describe the interaction of the semiconductor space-charge region with the interface
and not just the kinetics of the interfacial reactions.

5. It is necessary to deal with the space-charge region separately, as discussed in the preceding
sections, so that the electron and hole concentrations used are those near the interface (see
Figure 23.10) and the potential difference applied to interfacial reactions is not just the applied
(or easily measured) potential but is corrected for the potential variation within the space-charge
region of the semiconductor, similar to the Frumkin correction in Section 8.4.

Fermi Level in the Solution

Gerischer[7] regarded a redox species in solution, such as a Fe(CN)3−6 ion, as a possible site for an
electron. The occupied site becomes Fe(CN)4−6 , which we know and regard as a separate ionic species.
Gerischer introduced the term Fermi level in the solution to denote a quantity perceived to relate to the
electrochemical potential of electrons in the solution. Thus, one might write

𝜇e− = 𝜇Fe(CN)4−6
− 𝜇Fe(CN)3−6

. (23.51)

Uosaki and Kita[1] summarized criticisms of this approach.
The Fermi level in solution really represents a definition for a redox couple. One excludes

reactions that involve either dissolution of the semiconductor or plating of some material on the
semiconductor, both to preserve the structure of the electrode and to allow the Fermi level to refer
only to the charge transfer of an electron. Plating and dissolution involve other species in or on the
solid surface. If several redox couples are involved, different results would be obtained unless the
several species (say, Fe3+, Fe2+, Cu2+, Cu+) were equilibrated. Rapid redox equilibration in the bulk
can be expected with many couples, but there may be slow couples, and in principle one should go
back to a general formulation where an 𝜂s value can be assigned to each reaction at the surface (see
equation 23.42). This nonequilibrium concept should be extended to the semiconductor as well, where
the holes and electrons are not in general in equilibrium with each other. Thus, the more general
approach, outlined in the preceding sections, ascribes separate electrochemical potentials to each
species—electrons and holes in the semiconductor and ionic species in the solution—and describes
transport in bulk phases according to the gradient of the electrochemical potential (equation 23.19)
and describes reactions between phases or planes by the departures from equilibrium as represented
by 𝜂s (equation 23.42).
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A motivation for using the Fermi level in the solution may come from a need to relate energy states
in adjacent planes in an absolute manner, a procedure that would aid in the a priori estimation of rate
constants for heterogeneous reactions.

In computations, the diffusion and migration terms in equation 23.19 may each be large but
nearly cancel to produce a modest flux density Ni. Under the equilibrium circumstances discussed in
Sections 23.2 and 23.3, the canceling is exact, and Ni = 0. Numerical accuracy can be enhanced by
using the defined quantity

Ai = ci exp (
ziF
RT

Φ) , (23.52)

which has many of the properties of the absolute activity (see λi in Section 2.3). Equation 23.19 then
becomes

𝐍i = −Dici∇ ln Ai. (23.53)

Potential Distribution across Phases

In earlier chapters, potential distributions are described only within a given phase, and potential
differences between phases are understood to have an unspecified additive constant included because
of the difficulty of defining and ascertaining the difference in electrical state between phases or
regions of different composition. Thus the macroscopically defined surface overpotential 𝜂s is quickly
introduced, and otherwise one focuses on the overall potential of complete cells, with both leads made
of the same material. The quasi-electrostatic potential and the potentials of reference electrodes are
introduced to probe the potential variation within a solution in a manner that can be related to the
customary experimental measurements, which rely on a reference electrode.

This general approach leaves the student unclear about the seat, or exact location, of the electromotive
force in a lead–acid battery or a hydrogen, oxygen fuel cell, where the positive electrode is the cathode
on discharge. It is appropriate to retain this uncertainty because the equilibrium, open-circuit potential
of the cell is determined largely by thermodynamic principles, and thus it involves reactions at both
electrodes.

In idealized models one uses an electrostatic potential that is usually defined more vaguely. This
occurs notably in Debye–Ḧuckel theory of the distribution of ions around a central ion (Section 4.1),
in the diffuse-layer structure (Section 7.4), and in models of electrode kinetics (Section 8.3). The
semiconductors studied in this chapter conform well to the conditions of ideal-dilute solutions and
prompt us to regard the potential being discussed to be the cavity potential. Another factor favoring this
approach is the spatial extent of the charge region in the semiconductor, which allows us to imagine a
macroscopic cavity being placed in the region. Such a cavity is too large to place at the inner Helmholtz
plane or other planes directly at an interface. The general difficulty of making a cavity potential
measurement and the eventual cancellation of the numerical value in most experiments governed by
thermodynamics, interfacial kinetics, and transport phenomena discourage us from using the cavity
potential extensively as an aid in treating electrochemical systems. The semiconductor system, with the
important effects of light absorption in the region of band bending, prompts us to make more extensive
use of the cavity potential in this application.

Figure 23.13 is a sketch of the variation of the cavity potential across the cell

Pt
|||||||||

K2Se, K2Se2,
KOH, H2O

|||||||||
n-GaAs

||||| Pt (23.54)

at equilibrium in the dark. We should obtain zero for the overall open-circuit potential independently
of whether the electrode is Pt, C, or n-GaAs (in the absence of side reactions) and independent of
whether we write the electrode reaction according to equation 23.37 or 23.38.
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Pt

Distance

K2Se, K2Se2,
KOH, H2O

Φ

Pt

n-GaAs

Figure 23.13 Variation of cavity potential Φ from a platinum counterelectrode, through an electrolytic solution
and a semiconductor electrode, and into a platinum current collector. Potential jumps occur at the phase boundaries,
but the overall cell potential is zero at open circuit in the dark.

With reference to Figure 23.9 one should be able to redraw Figure 23.13 to show the potential
distribution with illumination. Unbending of the bands produces a nonzero open-circuit potential, and
this is the source of the electromotive force of the cell. With passage of current in the illuminated cell,
the bands bend again, and the cell potential decreases toward zero, but now with a current produced by
the illumination.

Corrosion

A semiconductor corrodes if it becomes unstable and decomposes under the operating conditions.
At any electrode, oxidation or reduction reactions can be expected to occur, and consideration must
be given to finding a stable electrode material and a compatible electrolytic environment without
compromising the original purpose of the system. For example, GaAs could react anodically:

GaAs + 6h+ + 2H2O → Ga3+ + AsO−
2 + 4H+. (23.55)

According to the methods of Section 2.9, and with the help of tables of chemical thermodynamic data,
U𝜃 = 0.057 V for this reaction. Thus, GaAs would be expected to be unstable in the presence of a more
positive redox couple, such as Fe(CN)4−6 ∕Fe(CN)3−6 for which U𝜃 = 0.36 V. Similarly, a ferrous–ferric
couple will corrode iron and many other metals.

Some semiconductors, such as CdS, will be subject to both anodic decomposition, such as

CdS + 2h+ → Cd2+ + S, (23.56)

or cathodic decomposition, such as

CdS + 2e− → Cd + S2−. (23.57)

A semiconductor stable at open-circuit in the dark may decompose under illumination or upon
passage of current. In this case one must be able to evaluate 𝜂s for a decomposition reaction like
equation 23.55, but this evaluation must be made under conditions prevailing at the interface. In
particular, one must keep track of the variation of 𝜇h+ (or, equivalently, the quasi-Fermi level for
holes or ln Ah+ ) through the semiconductor, perhaps with a detailed model such as that used to obtain
Figures 23.9 and 23.10. For assessing whether a given reaction can occur, one needs a combination of the
potential and the hole concentration, which may be varying in an offsetting manner. (See the discussion
preceding equation 23.52.) As a challenge, the student can try to sketch the variation of ln Ai for holes
and electrons under conditions of open-circuit illumination [curves (b) on Figures 23.9 and 23.10].
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PROBLEMS

23.1 If N(E) = Ac(E−Ec)1/2 near the band edge and if this form can be used effectively for all states
with a significant probability of being occupied and if Ec −Ef is large compared to kT, show
that

Nc =
√
𝜋

2
(kT)3∕2Ac.

This value of Nc corresponds to filling the conduction band to what level, expressed in units
of kT, above the bottom of the band?

23.2 (a) What value of the activity coefficient would be obtained from Debye–Hückel theory
(equation 4.21) for the intrinsic GaAs semiconductor? What value would be obtained
with a doping level of 6× 1016/cm3? Assume that the permittivity of the material is
1.06× 10−12 C/V⋅cm.

(b) Calculate also the Debye length for these two cases, using equation 4.9. Remember to
include the dopant in the sums over ionic species, even though they are not mobile.

23.3 (a) Estimate the Fermi-level position within the gap of GaAs for an n-doping level of
6× 1016/cm3 and for a p-doping level of 2× 1016. How much is the work function changed
by doping? Use the Boltzmann approximations for hole and electron concentrations, and
set the electric charge density to zero in the bulk of the semiconductor.

(b) Calculate n and p for the two doping levels. If these two doping levels correspond to the
regions in Figure 23.4, relate the overall band bending to a formula such as

ΔΦ = RT
F

ln
nright

nleft
= RT

F
ln

pleft

pright
.

23.4 Analyze the kinetics of the ferricyanide reduction if it is assumed to occur in the following
three steps:
1. Adsorption of ferricyanide ion (from the outer Helmholtz plane to the inner Helmholtz

plane):
Fe(CN)3−6 ⇌ [Fe(CN)3−6 ]ads.

2. Transfer of an electron from the metal to the adsorbed ion:

e− + [Fe(CN)3−6 ]ads ⇌ [Fe(CN)4−6 ]ads.

3. Desorption of ferrocyanide ion (from the inner Helmholtz plane to the outer Helmholtz
plane):

[Fe(CN)4−6 ]ads ⇌ [Fe(CN)4−6 ].

You need not treat the diffuse part of the double layer or the diffusion layer. Three potentials
are involved: Φm of the metal, Φ1 of the inner Helmholtz plane, and Φ2 of the outer Helmholtz
plane. Two volume concentrations, c3 and c4 of the ferricyanide and ferrocyanide ions at the
outer Helmholtz plane, are involved. Surface concentrations Γ3 and Γ4 of the adsorbed species
at the inner Helmholtz plane will eventually need to be eliminated from an overall kinetic
expression. The potential ΦI should also be eliminated. The total concentration of sites in the
inner Helmholtz plane can be represented as 𝚪max. Ferricyanide ions and ferrocyanide ions are
the only charged adsorbed species.
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You will need to formulate Butler–Volmer kinetic rate expressions for each of the three
processes. You will need to formulate additional applications of Gauss’s law. Assume steady
state, and take the current density to be specified.

Obtain a clear statement of the governing equations and independent variables before
undertaking to eliminate the dependent variables. You are seeking an overall kinetic relation
showing how the current density depends on the potential difference Φm −Φ2 and the
concentrations at the outer Helmholtz plane:

i = f (Φm − Φ2, c3, c4).

23.5 (a) By substitution of N(E) and Nc from Problem 23.1 and f(E) from equation 23.1 into
equation 23.2, show that the electron concentration can be expressed as

n
Nc

= 2
√
𝜋
∫
∞

0

√
x dx

1 + Bex ,

where B = exp[(Ec −Ef)/kT] and hence (from the definition 23.3 of fe− ) that[11]

fe− =
Nc

nB
=

√
𝜋

2B∫
∞

0

√
x dx

1+Bex

.

(b) Show that fe− → 1 as B→∞. Discuss whether this is the limit of infinite dilution of
electrons in the semiconductor.

Note that evaluation of the above integral[12] gives n/Nc as a function of Ec −Ef and
hence gives fe− as a function of either n/Nc (plotted in Figure 23.2) or as a function of
(Ec −Ef)/kT. Some curve fitting leads to the approximate equation 23.4 or to

fe− =
0.75

√
𝜋 + B−1[ln(B + 25)]1.5

B[ln(B + 25)]1.5

for fe− as a function of (Ec −Ef)/kT. The latter expression is convenient to use when
computing the capacity of the space-charge region, leading to Figure 23.6.

NOTATION

ai ci or 𝚪i
Ac parameter related to Nc (see Problem 23.1)
Ai electrically dependent activity, mol/cm3

ci concentration of species i, mol/cm3

Csc capacity of space-charge region, F/cm2

Di diffusion coefficient of species i, cm2/s
e magnitude of electronic charge, 1.602× 10−19 C
E energy, J
E electric field, V/cm
Ec energy at lower edge of conduction band, J
Ef Fermi energy, J
Eg band-gap energy, J
E𝑣 energy at upper edge of valence band, J
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E∗
𝑣 value independent of electrical state, J

f probability of occupancy of a state
fi activity coefficient of species i
F Faraday’s constant, 96,487 C/mol
ΔG∘ “standard” Gibbs energy change for a reaction, J/mol
i0 exchange current density, A/cm2

il current density for reaction l, A/cm2

k Boltzmann constant, 1.38× 10−23 J/K
kb rate constant in the backward direction
kf rate constant in the forward direction
krec recombination rate constant
kth thermal-generation rate constant
k1, k2, k3, k4 rate constants for trap processes
K equilibrium constant = kf /kb
L Avogadro’s number, 6.0225× 1023/mol
Li diffusion length, cm
m absorption coefficient, cm−1

Mi symbol for the chemical formula of species i
n concentration of electrons, mol/cm3

n number of electronic charges transferred in reaction
ni intrinsic concentration, mol/cm3

Na acceptor concentration, mol/cm3

Nc effective density of states for the bottom of the conduction band, mol/cm3

Nd donor concentration, mol/cm3

N(E) density of states, mol/cm3⋅J
Ni flux density of species i, mol/cm2⋅s
Nt density of trap states, mol/cm3

N𝑣 effective density of states for the top of the valence band, mol/cm3

p concentration of holes, mol/cm3

q0 incident photon flux density, mol/cm2⋅s
qsc charge in space-charge region, C/cm2

r rate of generation of holes and electrons, mol/cm3⋅s
rl net rate of reaction l, mol/cm2⋅s
R universal gas constant, 8.3143 J/mol⋅K
si stoichiometric coefficient
T absolute temperature, K
U𝜃 standard electrode or cell potential, V
x distance, cm
y distance in direction of light path, cm
zi charge number of species i
𝛼a, 𝛼c transfer coefficients
𝛽 symmetry factor
Γi surface concentration of species i, mol/cm2

𝜖 permittivity, F/cm
𝜂 fraction of incident light with energy>Eg
𝜂s surface overpotential, V
𝜇i electrochemical potential of species i, J/mol
𝜇A

i , 𝜇Δi , 𝜇𝜃i secondary-reference-state quantities, J/mol
𝜌e electric charge density, C/cm3
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𝜏 lifetime of minority carriers, s
𝜙 dimensionless potential
𝜙0 value of 𝜙 at interface of electrode with solution
𝜙fb flat-band value of 𝜙
Φ cavity potential, V
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CHAPTER 24

IMPEDANCE

One can learn a lot about a system at equilibrium by perturbing it slightly from equilibrium and
studying how it returns to equilibrium. The analysis becomes much simpler for a disturbance applied
steadily at a single frequency, with the experiment repeated at different frequencies ranging from very
low to very high. Different phenomena become important at different frequencies. Electrochemical
systems are easy to study because it is easy to vary the electrode potential in a sinusoidal manner and
electronic equipment is readily available to apply the signal and to analyze the system response.

The amplitude of the sine wave determines the smallness of the disturbance. At small amplitudes,
the system behaves linearly, and one frequency does not interfere with another.

One way to proceed is with equivalent circuits, studied in electronics. The principal elements are
resistors, capacitors, and inductors, although power sources can be added. Figure 24.1 is a rectifier
designed to convert an alternating power source into a direct-current source. The rectifier allows
current to flow only in the direction of the arrow. For the full-wave rectifier shown, the current flows
in one direction, but it has a ripple, made up of many frequencies, as shown in Figure 24.2.

Better filtering can be obtained by making a more complicated network of inductors, capacitors,
and resistors. However, the object here is not to design rectifier systems, but rather to introduce these
current elements and the concept of the equivalent circuit.

The imagination of the investigator can be applied to create an equivalent circuit which represents
the physical attributes of the system being studied. However, a better way to proceed is to write
down complicated governing physical and chemical laws which describe what is going on. These are
basically the laws of thermodynamics, electrochemical and chemical kinetics, and transport phenomena
which constitute Parts A, B, and C of this book. This is the way to construct a system model for steady
or transient processes based on physical principles. It is a straightforward process to construct an
impedance model by linearizing the more complete model. There is probably no limit to the complexity
of the physical model which can be treated. This chapter covers several systems, including:

1. A disk electrode like that shown in Figure 18.4 with an insulating plane surrounding the disk
electrode and with a counterelectrode far away. For the first example, it is assumed that the
electrolytic solution is so well stirred that it has no concentration gradients. This solution acts
like a resistor, but constitutes a distributed-parameter system–all parts of the electrode are not

Electrochemical Systems, Fourth Edition. John Newman and Nitash P. Balsara.
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Figure 24.1 Equivalent circuit with, from left to right, a power source, a rectifier, a capacitor, a resistor, an
inductor, another capacitor, and a DC output.
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Figure 24.2 Wave forms, with, from top to bottom, a 60-Hz sinusoidal alternating current (AC), direct current
(DC) after half-wave rectification, DC after full-wave rectification, and DC at the outlet after some filtering.

equivalent because some parts can send current more easily to the distant counterelectrode.
The surface phenomena (covered in Chapters 7 and 8) are simplified to linear kinetics with a
double-layer capacitance. An equivalent circuit for the interface is represented in Figure 24.3.
The resistor represents the electrode kinetics (by means of linear kinetics, see equation 8.7),
and the capacitor represents the double layer, with a constant capacitance. For very fast kinetics,
the resistance would be zero. The system is already linear, but the elements are not simply
connected. Current flows from all parts of the electrode, through the electrolytic solution, and to
the counterelectrode.[1]

2. A second example has a rotating disk electrode, but now with fluid flow and concentration
gradients added. Steady behavior is treated in Chapter 21. However, this example also treats the
situation where the rotation speed can vary sinusoidally, but with a small amplitude of variation.
There are three levels of complexity, treatment of the hydrodynamic velocity profile with AC
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Electrode Solution

Figure 24.3 Equivalent circuit of the interface, showing a resistor for electrochemical kinetics in parallel with a
capacitor for the double-layer capacity.

oscillation, treatment of the concentration profile(s) in this hydrodynamic flow, and treatment of
the interface with its kinetics and double-layer capacitance.[2]

3. Chapter 22 treats porous electrodes with various levels of complexity. This has major applications
in electrochemical energy storage (batteries). A complicated computer program (called dualfoil
on the website http://www.cchem.berkeley.edu/jsngrp/) is available to treat discharge and
cycling of lithium and lithium-ion and nickel/metal-hydride batteries. Again, it is straightforward
to convert this program (based on detailed physical laws) to an impedance program.[3] (This has
already been done, on the same website.)

To meet the requirements of starting with a steady state, the AC disturbance should be applied to the
battery at open-circuit. However, it is evident that the impedance results are meaningful at frequencies
where the battery, through its discharge process, does not change significantly during a single AC
cycle. Such limitations also apply to impedance modeling of corroding systems or any system which
eventually degrades.

The general procedure, or the key, for this form of impedance modeling is to represent all physical
quantities (appearing in the physical model) as a sum of a steady part and a sinusoidally varying part.
For the rotation speed Ω of the disk

Ω = Ω+ ΔΩ Re{exp(j𝜔t)}, (24.1)

where 𝜔 is the angular frequency of the variation which is superposed on the steady rotation speed Ω
and j is the square root of −1. Thus, there is a frequency of rotation and a frequency of the superposed
variation. Because the system is linear due to the small amplitude ΔΩ of the disturbance, all parts of
the system will vary with the same frequency 𝜔. Thus, for example, the potential at any point in the
solution is

Φ = Φ(r, z) + Re{Φ̃(r, z) exp(j𝜔t)}. (24.2)

Φ̃ is in general a complex quantity depending on position. This complex formulation is easier to handle
than an equally valid but more cumbersome treatment where the amplitude and phase angle for any
quantity are calculated as functions of position. A quantity like Φ remains real even though Φ̃ is
complex; that is the reason for taking the real part in equation 24.1.

Because the system is linear, only one frequency 𝜔 need be handled at a time. The amplitude ΔΩ of
the disturbance is kept small so that the system can be linearized around a steady state. In some cases,
one can have an applied potential that varies as well as a variation in the rotation speed. When both
disturbances are kept small, they do not interfere with each other.

24.1 FREQUENCY DISPERSION AT A DISK ELECTRODE

The physical model for the disk electrode embedded in an insulating plane is based on Chapters 7, 8,
and 18. The potential in the solution satisfies Laplace’s equation

∇2Φ = 0. (24.3)

http://www.cchem.berkeley.edu/jsngrp/
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Far from the disk electrode, the potential is taken to be zero.

Φ → 0 as r2 + z2 → ∞, (24.4)

where r and z are cylindrical coordinates. On the insulating plane, the normal component of the
potential gradient is zero.

𝜕Φ
𝜕z

= 0 at z = 0, r > r0. (24.5)

On the electrode itself, the normal component of the current density relates to the potential, with kinetic
and capacitive components.

in = −𝜅𝜕Φ
𝜕z

= C
d(V − Φ0)

dt
+ (𝛼a + 𝛼c)

i0F
RT

(V − Φ0) at z = 0, r < r0. (24.6)

The kinetic part is already linearized from a more general Butler–Volmer equation.
As stated in the preceding section, all variables, such as in, Φ, and V need to be regarded as the real

parts of complex variables, such as

V = V + Re{Ṽ exp(j𝜔t)}. (24.7)

To obtain the AC problem, substitute equation 24.2 into equations 24.3 through 24.6. Thus t is replaced
by 𝜔, and 𝜔 has only one value at a time. Each equation in the physical model produces three equations
in the impedance model, one for the steady problem (exemplified by Φ and treated in Section 18.3)
and one each for the real and imaginary parts of the transient equations. Cancel exp(j𝜔t) from the
latter.

For example, substitution into equation 24.6 gives (all at z = 0 and r < r0)

in = −𝜅𝜕Φ
𝜕z

= (𝛼a + 𝛼c)
i0F
RT

(V − Φ0), (24.8)

and

ĩn = −𝜅𝜕Φ̃
𝜕z

= j𝜔C(Ṽ − Φ̃0) + (𝛼a + 𝛼c)
i0F
RT

(Ṽ − Φ̃0). (24.9)

Time derivatives in the physical problem are replaced by j𝜔 times the complex parts of the variables.
The real and imaginary parts of the last equation show that the real part of C(Ṽ − Φ̃0) appears in the
imaginary equation, and the imaginary part of C(Ṽ − Φ̃0) appears in the real equation. Thus, these two
equations are coupled.

The steady part is just like the steady part solved already in Section 18.3, and the current distribution
on the disk is shown in Figure 18.5. With the original Butler–Volmer equation 16.10, the steady
problem would be nonlinear, and the current distributions on the disk electrode for Tafel kinetics are
in Figure 18.6. As an exercise for the student, formulate the impedance problem for Butler–Volmer
kinetics (but keeping equations 24.3 through 24.5), develop the treatment of Section 18.3 for the steady
part of the problem, but also linearize equation 24.6 or its generalization around the steady solution
and arrive at an AC problem that is still linear. (See Problem 24.1.)

Solving the AC problem is still relatively straightforward. The governing differential equation comes
from equation 24.3. For this geometry of the disk electrode there are three mathematical techniques
which apply.[4] Separation of variables is generally used. Hankel transforms and a superposition
integral are two other methods. Impedance problems usually yield to the same solution methods used
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in solving the steady part of the problem. Although the impedance problem is linear, it requires the
solution for the steady part of the problem.

The main result from this analysis is the impedance of the system comprising the disk electrode and
the solution. The problem does not usually require the detailed profiles of the real and imaginary parts
of the potential in the solution, and probably not even the complex distribution of ĩn on the electrode.
The complex impedance of the system can be defined as

Z = Ṽ∕Ĩ = Ref f +
1

j𝜔𝜋r2
0Cef f

, (24.10)

which can be thought of as a series connection of the resistance Reff and a capacitance of 𝜋r2
0Cef f .

Reff includes the solution resistance and also any contribution from the kinetics at the interface. Ceff
has the units (F/m2) of a double-layer capacitance. However, Reff and Ceff are best thought of as
effective values which reflect what is happening due to the kinetics, double-layer capacitance, and the
solution resistance, but taking into account the complex geometric relationship of the interface and
the electrolytic solution. To get the result requires the analysis. Reff and Ceff generally depend on the
frequency 𝜔. Therefore, they do not represent simple resistive and capacitive elements.

Dimensionless groups can express how 4𝜅r0Reff and C/Ceff depend on Ω = 𝜔Cr0/𝜅 and
J = (𝛼a +𝛼c)i0Fr0/RT𝜅. The first is the resistance of the system divided by the resistance 1/4𝜅r0 for
the primary current distribution (see equation 18.9). The second is the double-layer capacity C divided
by the effective value. These depend, for linear kinetics, on the parameter J defined in Section 18.3
and the dimensionless frequency Ω = 𝜔Cr0/𝜅.

When J is zero, there is no electrochemical reaction. Then, at low frequency the double-layer
capacity is the main impediment to current flow, there is a uniform, but capacitive current density,
C/Ceff = 1, and 4𝜅r0Reff is 1.081, the value corresponding to resistance with a uniform current
density. At high frequency, the current density on the disk approaches a primary distribution, 4𝜅r0Reff
becomes 1, and C/Ceff approaches infinity. With a primary distribution, any impediment to current
flow lies entirely within the solution.

When J is nonzero, the low-frequency behavior approaches that of the secondary current distribution
discussed in Section 18.3. The current distribution becomes that given in Figure 18.5. C/Ceff becomes
zero, and 4𝜅r0Reff approaches the value given by the appropriate value of J. At high frequencies, the
capacitive current density again approaches the primary distribution, 4𝜅r0Reff approaches 1, and C/Ceff
goes to infinity, much as it did when J was zero.

When the primary current distribution is approached, the current density becomes very large in a
small region near the edge of the disk, as given by equation 18.8 and shown as the limit on Figure
18.5 as J becomes infinite. Reference [1] carries out a singular-perturbation analysis for large values
of 𝜔Cr0/𝜅, treating separately the edge region of the disk and the region away from the edge. Thereby
it arrives at the asymptotic behavior

C∕Cef f → 0.563 + 0.25 ln(Ω) as Ω → ∞. (24.11)

This asymptote and some calculated values for finite values of 𝜔Cr0/𝜅 are shown in Figure 24.4.
A similar system is treated by Nişancioğlu and Newman[5] where a constant current or potential

is applied to the disk electrode. They show how the distributions change from a primary distribution,
particularly at short times. They also treat the steady problem at large exchange current densities. Smyrl
and Newman[6] look at high current densities where Tafel kinetics is a valid approximation to the
Butler–Volmer equation. Tribollet et al.[8] describe a method for measuring the diffusion coefficient
of a reacting species from impedance data in the low-frequency range.
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Figure 24.4 Frequency dependence of apparent capacity on a smooth disk in the absence of faradaic reactions.

24.2 MODULATED FLOW WITH A DISK ELECTRODE

Fluid flow to a rotating disk is treated in Section 15.4. It is a complex flow, having a swirling motion
somewhat like a tornado. The rotating disk drags adjacent layers of fluid with it, in an angular direction.
The centripetal force of this flow creates a radial flow away from the axis. An axial flow toward the
disk arises to replace the fluid flowing radially outward. This flow is of interest in many applications
because it can be calculated accurately and the flow toward the disk depends only on the distance from
the disk and is independent of the radial and angular directions. This provides a means for measuring
diffusion coefficients and for studying the kinetics of heterogeneous reactions.

Tokuda et al.[7] propose a then new impedance technique whereby the rotation speed of the disk is
driven with a small perturbation, as in equation 24.1. The variation in the angular velocity can cause
variations of the current or potential, which are also periodic and can be measured easily. The original
theory treats the flow as quasisteady at the instantaneous rotation speed, a procedure which gives good
results at low values of p = 𝜔∕Ω, but at higher values discrepancies between theory and experiment
become apparent. This problem can be addressed by the method describes so far in this chapter.

Fluid flow.–Section 15.4 describes how the von Kármán transformation permits the governing
hydrodynamic equations to be reduced to four ordinary differential equations in the distance z from the
disk. It turns out that the transient flow with a sinusoidal variation of the rotation speed Ω can still be
reduced to ordinary differential equations by the von Kármán transformation, but now with inclusion
of appropriate derivatives of the velocities with respect to time. Treatment of all variables, such as 𝑣r,
𝑣𝜃, 𝑣z, and the dynamic pressure 𝒫, demonstrates the power of the impedance approach. Expansion in
the parameter ΔΩ∕Ω gives, in addition to the four steady equations 15.26, four complex equations for
the perturbations in the velocity and the dynamic pressure. The latter equations yield eight equations
for the real and imaginary parts.

The boundary conditions 15.17 are treated the same way, with the replacement ofΩ by equation 24.1.
The resulting ordinary differential equations for the perturbation quantities are linear and coupled and
are solved by the technique detailed in Appendix C of this book. These equations also involve
the functions for the steady velocity which were obtained by solving the nonlinear equations
15.26 (with the boundary conditions 15.27) as discussed in Section 15.4. See also Figure 15.2 and
Problem 24.2.
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For the subsequent parts of the problem, it is most useful to have the velocity profiles, or particularly
that for 𝑣z, close to the disk, since the diffusion layer is generally thin for the systems at high Schmidt
numbers, Sc, encountered in electrochemical systems (see Sections 17.5 and 17.6). The necessary
information can be found in the original reference.[2]

Mass-transport application.–The concentration of the critical species in the diffusion layer is
governed by the unsteady equation of convective diffusion 17.2.

𝜕ci

𝜕t
+ 𝑣z

𝜕ci

𝜕z
= Di

𝜕2ci

𝜕z2
. (24.12)

This is appropriate for a solution with a lot of supporting electrolyte. It could also apply to a binary
electrolyte (see equation 11.21). 𝑣z is assumed to be known and given by the preceding analysis. It is
assumed that the disk is uniformly accessible, since 𝑣z is independent of r, and therefore in is uniform
and ci depends only on z. Thus the radial dependence of the potential Φ is ignored. See Chapter 21.

Equation 24.12 is linear in ci, but it is nonlinear in the amplitude of the perturbation since both 𝑣z
and ci have AC parts. Therefore, after linearization, the AC part of the problem reads

j𝜔c̃i + 𝑣z
𝜕c̃i

𝜕z
+ 𝑣z

𝜕ci

𝜕z
= Di

𝜕2c̃i

𝜕z2
. (24.13)

ci is determined as in Chapter 17. in can be between zero and the limiting current density. The boundary
conditions for c̃i are taken to be

c̃i = c̃i,0 at z = 0 and c̃i → 0 as z → ∞. (24.14)

The objective of this subsection is to relate c̃i,0 to 𝜕c̃i∕𝜕z|z=0, so that the next subsection can address
the interface and the hydrodynamic impedance.

The parameters involved have already been reduced by using the variable 𝜍 = z
√

Ω∕𝜈, which is
essentially the axial distance z divided by the thickness of the hydrodynamic boundary layer. The
differential equation introduces the diffusion coefficient, and therefore the Schmidt number Sc = 𝜈/Di
becomes a parameter. For the mass-transfer problem, it is convenient to replace 𝜁 with

𝜉 = 𝜍( a𝜈
3Di

)
1∕3

, (24.15)

which is in essence the ratio of z to the diffusion-layer thickness (compare Problem 17.3). Thus ci
depends on ci,∞ − ci,0, Sc, and 𝜉.

Since equation 24.13 is linear in c̃i, one can determine first the solution of the homogeneous
equation (i.e., without the term with ci). This is termed the convective Warburg problem, which has
been addressed in the literature. One homogeneous solution is called 𝜃(𝜉, Sc). Then one can obtain a
particular solution of the nonhomogeneous equation by reduction in order.

Reference [2] deals with these issues by expressing the result as

dc̃i

d𝜉

|||||||𝜉=0
= c̃i,0𝜃′(0) + ΔΩ

Ω

dci

d𝜉

||||||||𝜉=0

W, (24.16)

where 𝜃′
(𝜉) = d𝜃/d𝜉 and W is a defined quantity. Both 𝜃′

(0) and W depend on Sc and p = 𝜔∕Ω and
are tabulated in Ref. [2]. This relationship between c̃i,0 and dc̃i∕d𝜉|𝜉=0 is necessary for unravelling the
interfacial behavior, in the third part of the problem.
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Electrochemical application.–The specifics of the behavior at the interface have not yet been
introduced. Reference [2] utilizes an electrochemical redox reaction of ferricyanide and ferrocyanide

Fe(CN)−3
6 + e− → Fe(CN)−4

6 (24.17)

as well as a double-layer capacity. The reaction itself is reasonably facile, and the system is well
studied, including transport properties of the solution. The steady part of the current density could be
anywhere between the anodic and cathodic limiting currents.

To do the problem right at this point would require solving first for the steady concentration profiles
with the assumption of a large excess of supporting electrolyte. The concentration of the two minor
ions at the surface (z = 0) as well as the double-layer capacitance C would be determined for the steady
current.

These steady results provide the background for the hydrodynamic modulation. The boundary
condition on the surface could be written as

in = if + ic, (24.18)

where

if = i0 [
c4,0

c4,∞
exp (

𝛼aF𝜂
RT

) −
c3,0

c3,∞
exp (

−𝛼cF𝜂
RT

)] (24.19)

and

ic = C
d(V − Φ0)

dt
(24.20)

are the faradaic and capacitive parts of the total current density at the electrode surface. The total
overpotential 𝜂 is the sum of the surface and concentration overpotentials; see Problem 20.4 and
equation 21.4.

𝜂 = V − Φ0 − U∞, (24.21)

where U∞ is the open-circuit potential for the reaction at the bulk conditions and Φ0 is the potential in
the bulk of the solution extrapolated to the surface as though there were no concentration variations.
(Φ0 would have got a tilde over it, as in Chapter 21, but this would have caused confusion with the
tilde denoting AC quantities disturbed from steady values.) Equation 24.19 permits reaction orders of
the product and reactant ions to be shown explicitly and permits i0 and U∞ to be constants, because
they are evaluated at the (steady) bulk concentrations. Its use should be restricted to solutions with an
excess of supporting electrolyte. The authors of Ref. [2] include an inR term, in case there is some
solution resistance included in the measurement of V relative to Φ0.

The ability to distinguish between faradaic and capacitive current, as in equation 24.18, has been
questioned. See the discussion of Refs. [8 to 11] of Chapter 8, two paragraphs below equation 8.70.
This problem needs to be ignored here.

Also among the boundary conditions at the electrode surface is the relationship of the flux densities
of the reactant and product ions to the faradaic current density:

−Di
𝜕ci

𝜕z

|||||||z=0
= −

siif
nF

, (24.22)

where si and n are the stoichiometric coefficients and number of electrons involved in the single
electrode reaction (see equation 16.8).
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It is further assumed that Φ0 and in are uniform over the disk surface. Treating their variation,
as in Chapter 21, would be quite complicated. The migration contribution to the flux density in
equation 24.22 is also neglected, in harmony with the assumption that there is excess supporting
electrolyte, and double-layer adsorption of reactant and product is ignored.

Now that one has stated the boundary condition on the electrode surface and its assumptions, one
is ready to proceed in the manner of this chapter, namely to substitute equation 24.2 for any variables,
linearize all relevant equations, and identify the steady and AC parts of these equations. This involves
c̃i,0 and dc̃i∕dz|z=0; the relationship of these two quantities to each other and the hydrodynamic and
convective diffusion was developed in the preceding subsection (see equation 24.16).

There have been some essential approximations here, such as ignoring radial variation of Φ0. Some
other approximations have been adopted for experimental verification of the theory of hydrodynamic
modulation. These include use of a supporting electrolyte and adoption of a single electrochemical
reaction. A high level of complexity can still be included. To verify the theory and bring out some
of the essence, one can treat a facile reaction like the ferricyanide/ferrocyanide reaction so that the
surface overpotential is negligible compared to the concentration overpotential.

In this section, it is the disk rotation speed that is modulated. One could also modulate either
the electrode potential or the current (even at a different frequency). Here potentiostatic control is
taken to mean that Ṽ = 0 and one measures the response with ĩn. Galvanostatic control is taken to
mean that ĩn = 0 and one measures the response with Ṽ . Here, there are two species involved in
the electrochemical reaction. One can focus on one of these by operating with the steady electrode
potential set very positive or very negative. Figure 24.5 shows the measured response in galvanostatic
control at half the limiting current. Part A shows the phase angle of the response, and Part B shows
the amplitude of the response divided by that at a very low frequency. It is remarkable that the theory
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Figure 24.5 Comparison between the theoretical curve from equation 24.23 and the experimental data in
galvanostatic mode. The data were obtained with the Fe(CN)−3

6 ∕Fe(CN)−4
6 system at in = 0.5 ilim. Supporting

electrolyte is 1 M KCl, Sc = 1200, Ω = 120 rpm. (a) phase shift versus dimensionless frequency, (b) normalized
amplitude versus dimensionless frequency.
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and the experiment can follow each other through a decrease of the amplitude by a factor of 2000. The
equation used to represent the theory is

Ṽ
ΔΩ

= − i

Ω
ZDW, (24.23)

where

ZD = −RT
(nF)2

4∑

i=3

s2
i 𝛿i

ci,0Di𝜃′
i (0)

(24.24)

is the diffusion or convective Warburg impedance approximated for fast kinetics and W and ZD are
evaluated as though the two diffusion coefficients were equal.

𝛿i =
√

𝜈
Ω
(

3Di

a𝜈 )
1∕3

. (24.25)

24.3 POROUS ELECTRODES FOR BATTERIES

Battery systems typically utilize porous electrodes to facilitate contact between the solid phase and
the electrolytic solution (see Chapter 22). Electrochemical reactions provide the energy for battery
discharge but result in changes in the composition and possibly morphology. In addition, there can
be double-layer charging and temperature changes and heat transfer. Models of batteries range from
simple equivalent circuits to descriptions of the chemical and physical processes, including thermal
effects. The message of this chapter is that almost any model designed to describe battery discharge and
degradation can be modified slightly to handle impedance phenomena. (The impedance is frequently
done with a disturbance around open-circuit in order to avoid problems with the conditions for the
Kramers–Kronig relation, as developed in the next section.)

Impedance testing is relatively nonintrusive and can reveal a lot about the battery and its properties
without destroying the battery. Such data are best interpreted with a fairly complete physical and
chemical model because the changes in the response can be related to specific factors in the model.
Another use of impedance measurements is to detect and interpret changes in the battery with age,
and this applies to corroding and degrading systems in general. The changes can be detected from
the measurements themselves over time, but their interpretation is compromised by using a model of
resistors and capacitors which reflects poorly (or in an undefined manner) the actual system.

Models of lithium-ion, nickel/metal hydride, and lead/acid batteries have been developed in some
detail, and many features can be incorporated to describe diffusion in solid and solution phases, the
stoichiometry of the reactions, simultaneous reactions, etc. By these means the discharge behavior can
be reproduced more accurately, understanding is enhanced, and impedance methods can be used. The
steps for incorporating the impedance analysis into the model are straightforward. Express all quantities
in terms of a steady part and a small AC perturbation as in equation 24.2. Substitute these into the model
equations, including any transient terms which could reflect concentration changes, consumption of
active material, double-layer charging, and heat generation. Linearize the equations so that they are
expressed in terms of a (possibly nonlinear) steady part and a linear AC part. If the nonlinear problem
for discharge is solved by iteration over the nonlinearities by a properly quadratically convergent
method (see Appendix C), the matrix for the AC part is easily obtainable from the matrix used for
solving the discharge behavior. The matrix is made up of four submatrices because there are now real
and imaginary parts for each physical quantity treated. The upper left and lower right submatrices are
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identical to that used in iterating over the nonlinearities and can be thought of as describing how all the
real parts affect all the other real parts (the upper left submatrix) and how the imaginary parts affect all
the other imaginary parts. The time derivatives generate terms with j𝜔 as in going from equations 24.6
to 24.9 and populate the other two submatrices and describe how the imaginary parts affect all the real
parts, and vice versa.

In running the computer program, one would first solve for the steady part, iterating over
nonlinearities as necessary. This steady part is independent of the frequency 𝜔, but if the problem is
nonlinear, it will be necessary to use this steady part to solve the linear equations for the AC part.
Problem 24.1 should help you understand how this works. Then, always with the same steady part, run
through the entire desired frequency range with one frequency after another.

Reference [3] discusses this process in more detail, with examples from lithium-ion batteries.
The model treats a binary electrolyte with concentrated-solution theory (see Chapter 12), ohmic
potential drop, charge-transfer processes including double-layer charging, surface films, diffusion
within spherical particles of active material including multiple diameters and different materials (like
LiyCoO2 mixed with LiyMn2O4), conservation of charge, and radial diffusion in the pores. (It may
be that the impedance analysis has not been updated with respect to some of these features because
program modifications are made as the need arises and impedance may not be the focus.)

Figure 22.6 is a complex-impedance plot of the impedance response of a Li/PEO18LiCF3SO3/LiyTiS2
system (see Ref. [3] for details) for a number of different values of the solid-phase diffusion coefficient
for the LiyTiS2 material. The base case uses circles for symbols. Low frequencies start at the upper
right and increase toward the lower left, ending up on the real axis. Note the units (Ω-cm2) reflecting
the fact that the unit area of the system is what is important in modeling and scale up. Think of this as
the potential Ṽ divided by the current density ĩn.

There is a characteristic semicircle in the high-frequency region, related to the kinetics and the
capacitance of the interface (see Figure 24.3 and Problem 24.3). Toward the low frequencies, the
curves go off to the upper right, reflecting diffusion effects and also the limited capacity of the active
material over the potential range of the AC perturbation.

Impedance people learn to recognize certain features on such a complex-impedance plot. However,
the plot does not make clear what the frequency is as one follows along a curve. Some information
is lost. The alternative is the Bode plot, where the magnitude of the impedance is plotted against the
frequency 𝜔, both on a logarithmic scale. On an accompanying plot, the phase angle of the complex
number is plotted against the logarithm of the frequency. Figure 24.5 is an example of a Bode plot. All
information is clearly shown, but it should be remembered that the angle is the angle on the complex
plane of a line drawn from a point to the origin. It is not a tangent to the curve on a complex-impedance
plot (Figure 24.6).

Time constants, or characteristic frequencies for different processes (like double-layer capacity
versus diffusion), may occur at widely different frequencies; for this reason they may show up in
different parts of the diagram. Effects for the two electrodes may show up on top of each other, and it
may be difficult to put a reference electrode into a practical cell. The model can help greatly in this
regard because one can vary parameters to see where different effects show up on the plots.

Reference [3] looks in more detail at the interesting question of how well one can detect the value
of a solid-state diffusion coefficient by looking at the computed impedance spectrum. A specific value
is put into the model. Can it be recovered from the results? The paper examines three techniques
developed in the literature to test the accuracy one can expect from an experiment. As Ds increases, it
ceases to be a limiting factor and cannot be recovered accurately from impedance data. However, even
at lower values of Ds other factors like the finite capacity of the system may obscure the results.

Reference [9] examines how far one can go in representing complicated phenomena by analytic
models. The approach is to treat transient diffusion in a single spherical particle and then to add a
surface film. The impedance response of a single such particle can be regarded as a building block
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Figure 24.6 Dependence of the impedance response on the diffusion coefficient Ds in the positive-electrode
material LiyTiS2.

which is used to construct a porous electrode and eventually a system with two porous electrodes
and a separator. The authors find that they can build the complete system and include ohmic
potential drop within the pore solution and still retain an analytic solution, but they could not include
transient diffusion in the pore solution (a feature which was included in the computer analysis of
Ref. [3]).

de Levie[10] presents an early and complete treatment of dispersion effects at rough and porous
electrodes. One feature noted is that a porous electrode tends to cut the phase angle by a factor of 2.
Reference [3] observes that the computer model did not necessarily show this halving of the phase angle
because that model, while including axial diffusion, did not include diffusion in the radial direction or
in a direction perpendicular to the pores.

24.4 KRAMERS–KRONIG RELATION

Jakšić and Newman[11] aim to show the applicability of the Kramers–Kronig (K–K) relations for
describing the behavior of impedance, to use these relations for calculating both the effective resistance
(Reff) and the effective double-layer capacity (Ceff) in Section 24.1 as functions of frequency, and thus
to show the consistency of that theory and results with the K–K relations. The causality principle in
physics leads to the result that the impedance of an electrode system is analytic in the lower half of
the frequency plane. Consequently, if the simple pole point 𝜔0 = 𝜔 is excluded from the region of
integration, the function (Z(𝜔0)− Z∞)/(𝜔0 −𝜔) is analytic everywhere within any closed contour C,
and the contour integral along C is thereby zero. When part of the contour is a semicircle at infinity,
the integral along this semicircle is also zero. These basic features are the main prerequisite for the
application of the Kramers–Kronig (K–K) relation.[12–14]
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Thus, the effective double-layer capacity can be evaluated from the effective resistance, and vice
versa, by means of the K–K relations while avoiding difficulties due to the singularity in the integrand.

Integration around the entire contour C leads to[14]

∫
∞

−∞

Z(𝜔0) − Z∞ − j𝜎∕𝜔0

𝜔0 − 𝜔 d𝜔0 + 𝜋 j[Z(𝜔) − Z∞ − j𝜎∕𝜔] = 0, (24.26)

where the integral is the Cauchy principal value of the integral. The second term results from the
Cauchy integral formula for 𝜔 = 𝜔0. The terms in Z∞ and 𝜎 are included so that the integrand will be
well behaved at both zero and infinity. This is necessary even with simple elements like a resistor and
a capacitor.

The above equation splits into two Kramers–Kronig relations for the electrode impedance:

Zr(𝜔) − Z∞ = −1
𝜋 ∫

∞

−∞

Zi(𝜔0) − 𝜎∕𝜔0

𝜔0 − 𝜔 d𝜔0, (24.27)

and

Zi(𝜔) =
1
𝜋 ∫

∞

−∞

Zr(𝜔0) − Z∞
𝜔0 − 𝜔 d𝜔0 + 𝜎

𝜔, (24.28)

and recognition that the real and imaginary parts of the impedance are even and odd in the frequency,
respectively, allows expressions with integration over positive frequencies.

Zr(𝜔) − Z∞ = −2
𝜋 ∫

∞

0

𝜔0Zi(𝜔0)
𝜔2

0 − 𝜔2
d𝜔0, (24.29)

and

Zi(𝜔) =
2𝜔
𝜋 ∫

∞

0

Zr(𝜔0) − Z∞

𝜔2
0 − 𝜔2

d𝜔0 + 𝜎
𝜔. (24.30)

Since the real part of the impedance appears on the left and the imaginary part under the integral
in the first equation, this formula permits the real part at a given frequency 𝜔 to be calculated from
the imaginary part of the impedance over the entire frequency range. The reverse is true in the second
equation. This ability to calculate one quantity from knowledge of another is somewhat analogous to
the Gibbs–Duhem equation (see equation 2.36), where the osmotic coefficient can be calculated from
data on the activity coefficient (of a single solute), and vice versa. A difference is that the K–K relation
is inherently an integral relation, whereas the Gibbs–Duhem relation is a differential relation applying
at a point. The K–K relation can act as a consistency check on experimental impedance data, just as the
Gibbs–Duhem equation can act as a consistency check on the chemical potentials of two components
of a binary system. Similarly, from knowledge of just one of the quantities, you can calculate the other.
Both procedures find application in scientific work.

The K–K relation is quite general; it applies to any physical system as long as there is a steady state.
It can apply to a fuel cell when operated at a steady state, but a battery under discharge conditions has
no steady state. The K–K relation will automatically apply to any physically valid model perturbed
around a steady state. Therefore, the analysis in Section 24.1 is valid since it is based on a physical
model.

One of the main, hidden, reasons for using equivalent-circuit models may be that they assure that
the resulting impedance will satisfy the K–K relation. On the other hand, separate empirical fits of
the real and imaginary parts of the impedance would not generally be expected to obey the K–K
relation.
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There are times, as in the original work of Kramers and Kramer (who worked independently), when
one part of the impedance function is easier to measure than the other. Then the K–K relation provides
a means of calculating the missing function. The electrical conductivity and the dielectric constant
relate to the real and imaginary parts of the same quantity. One is easier to measure than the other.

The general conclusion is that impedance data should satisfy the K–K relation, and the latter can be
used as a check on consistency of data.

The remainder of Ref. [11] treats how to deal with the singularity in the integral in a straightforward
way. Since

∫
∞

0

d𝜔0

𝜔2
0 − 𝜔2

= 0, (24.31)

the relations can be rewritten to avoid the singularities at 𝜔0 = 𝜔.

Zr(𝜔) − Z∞ = −2
𝜋 ∫

∞

0

𝜔0Zi(𝜔0) − 𝜔Zi(𝜔)
𝜔2

0 − 𝜔2
d𝜔0, (24.32)

and

Zi(𝜔) =
2𝜔
𝜋 ∫

∞

0

Zr(𝜔0) − Zr(𝜔)
𝜔2

0 − 𝜔2
d𝜔0 + 𝜎

𝜔 . (24.33)

PROBLEMS

24.1 Formulate the impedance problem for the system of Section 24.1 but with the linear kinetics in
boundary condition 24.6 replaced by the Butler–Volmer equation 8.6. Discuss how this leads
to the steady nonlinear problem treated in Section 18.3 for the steady part of the problem but
still leads to a linear problem for the AC problem. How does the solution of the steady problem
enter into the AC problem?

24.2 Obtain a complete and well defined problem statement for the fluid flow to a rotating disk with
a modulated rotation speed as given by equation 24.1.
(a) What equations should you start with?

Answer: Equations 15.18 for the material balance and 15.19 through 15.21 for the momentum
balance.

(b) What coordinate system should you use? (Answer: cylindrical coordinates as used in Section
15.4.)

(c) What boundary conditions are appropriate? (Answer: Equation 15.17.)
(d) Outline the subsequent procedure. (Answer: Substitute equations 24.2 for all variables into

the equations and the boundary conditions. Expand these equations for small values of
the parameter ΔΩ∕Ω and linearize by dropping quadratic and higher terms. Separate these
equations into those for the steady part of the problem and those for the transient part of
the problem. You should have both differential equations and boundary conditions. It is
suggested to use the notation p = 𝜔∕Ω and

𝑣r = rΩF(𝜍) + rΔΩRe{f̃ (𝜍) exp(j𝜔t)},

𝑣𝜃 = rΩG(𝜍) + rΔΩRe{g̃(𝜍) exp(j𝜔t)},

𝑣z =
√

𝜈Ω(H(𝜍) + ΔΩ
Ω

Re{h̃(𝜍) exp(j𝜔t)}) ,
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and

𝒫 = 𝜇Ω(P(𝜍) + ΔΩ
Ω

Re{p̃(𝜍) exp(j𝜔t)}) ,

where 𝜍 = z
√

Ω∕𝜈. If you get into trouble, consult the original reference.[2])
(e) Propose a BAND map (see Appendix C) to indicate how all these equations and boundary

conditions are to be fitted into the BAND(j) computer program. Since the steady problem
can be solved, with iteration over nonlinearities, prior to addressing the AC problem, you
may want to make two BAND maps. You can choose to do only one of these, that for
the steady problem or that for the transient problem where the steady solution is already
available and where one or a number of values of 𝜔 (or p = 𝜔∕Ω) are to be chosen and run
sequentially.

24.3 Consider Figure 24.3 to be the entire system you want to analyze; that is, you want to place
emphasis on the impedance [(Ṽ − Φ̃0)∕ĩn] of the interface. Equations 24.6 through 24.9 provide
you all you need. Obtain an expression for the complex impedance and show that it would plot
as a semicircle on a complex-impedance plot. What is the diameter of the semicircle, and what
is the (characteristic) frequency at the top of the semicircle? In addition to expressions, give
numerical values for this diameter and frequency when C = 10 μF/cm2, i0 = 10−3 A/cm2, and
T = 298.15 K. Assume that 𝛼a +𝛼c = 1, r0 = 5 mm, and 𝜅 = 0.2 S/cm.

24.4 Use equations 24.32 and 24.33 to show that a resistor has no imaginary part of the impedance
and that a capacitor has no real part of the impedance. Are the terms Z∞ and 𝜎 important in the
analysis?
(a) Take the real part of the impedance of the resistor to be Reff. Use equation 24.32 to calculate

the imaginary part of the impedance.
(b) Take the imaginary part of the impedance of the capacitor to be 1∕j𝜔𝜋r2

0Cef f . Use
equation 24.33 to calculate the real part of the impedance.

NOTATION

ci concentration of species i, mol/cm3

C double-layer capacitance, F/m2

Ceff double-layer capacitance (effective), F
Di diffusion coefficient of species i, cm2/s
Ds diffusion coefficient in solid battery material, cm2/s
F Faraday’s constant, 96487 C/mol
F, G, H dimensionless velocity components
i current density, A/cm2

ic capacitive current density, A/cm2

if faradaic current density, A/cm2

ilim limiting current density, A/cm2

in normal current density, A/cm2

i0 exchange current density, A/cm2

I current or current density
j square root of -1
J (αa + αc)i0Fr0/RTκ, dimensionless exchange current density
n number of electrons involved in single electrode reaction
p 𝜔∕Ω
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𝒫 dynamic pressure, N/cm2

r radial distance, cm
r0 disk radius, cm
R universal gas constant, 8.3143 J/mol⋅K
Reff effective resistance, ohm
si stoichiometric coefficient of species i
Sc = 𝜈/Di, Schmidt number
t time, s
U∞ open-circuit potential at bulk composition, V
V potential of electrode, V
𝑣r, 𝑣𝜃, 𝑣z velocity components, cm/s
z axial distance, cm
Z impedance, ohm
𝛼a, 𝛼c transfer coefficients
𝛿 dimensionless average current density
𝛿i diffusion layer thickness, cm
𝜂 total overpotential, V
𝜃 dimensionless concentration
𝜅 conductivity, S/cm
𝜇 viscosity, mPa s
𝜈 kinematic viscosity, cm2/s
𝜉, 𝜁 dimensionless distance from electrode, see Eq. 24.15
𝜎 resistance term
Φ potential, V
Φ0 potential in the bulk extrapolated to surface, V
𝜔 frequency of superposed variation, rad/s
Ω rotation speed, rad/s

Subscripts, Superscripts, and Special symbols

AC alternating current
DC direct current
Re real
Im imaginary
overbar steady component
tilde oscillating component
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APPENDIX A

PARTIAL MOLAR VOLUMES

Partial molar volumes are occasionally used as properties of solutions. However, the density of the
solution is the quantity that is measured experimentally. For n components, the density is a function
of n − 1 independent concentrations ci at a given temperature and pressure. Let us suppose that the
density 𝜌 of the solution is given by the experimental correlation in terms of these n − 1 concentrations:

𝜌 = 𝜌(c1, c2, … , cn−1). (A.1)

We want to show here how to calculate the partial molar volumes of the components from the
experimental density data. However, we are not concerned here with the partial molar volumes of
individual ions, only with those of the neutral components of the solution. The method is thus equally
applicable to nonelectrolytic solutions.

The partial molar volume of component j is given by

Vj = ( 𝜕V
𝜕nj

)
T ,p,ni

i≠j

, (A.2)

where V is the volume of the solution and ni is the number of moles of component i in the solution.
The density of the solution is also given by

𝜌 =
n∑

i=1

ciMi = 1
V

n∑

i=1

niMi, (A.3)

where Mi is the molar mass of component i and ni = ciV.

Electrochemical Systems, Fourth Edition. John Newman and Nitash P. Balsara.
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From equations A.2 and A.3, the partial molar volume of component j is

Vj = 1
𝜌

𝜕
𝜕nj

n∑

i=1

niMi + (
n∑

i=1

niMi)
𝜕(1∕𝜌)

𝜕nj

=
Mj

𝜌 − V
𝜌

𝜕𝜌
𝜕nj

. (A.4)

From the density correlation A.1 we obtain

𝜕𝜌
𝜕nj

=
n−1∑

k=1

𝜕𝜌
𝜕ck

𝜕ck

𝜕nj
=

n−1∑

k=1

𝜕𝜌
𝜕ck

𝜕(nk∕V)
𝜕nj

=
n−1∑

k=1

𝜕𝜌
𝜕ck

( 1
V

𝜕nk

𝜕nj
−

nk

V2

𝜕V
𝜕nj

) =
n−1∑

k=1

𝜕𝜌
𝜕ck

(
𝛿jk

V
−

ck

V
Vj) , (A.5)

where 𝛿jk is the Kronecker delta, 𝛿jk = 1 for j = k, and 𝛿jk = 0 for j ≠ k.
Substitution of equation A.5 into equation A.4 yields

Vj =
Mj

𝜌 − 1
𝜌

n−1∑

k=1

𝜕𝜌
𝜕ck

𝛿jk +
Vj

𝜌

n−1∑

k=1

ck
𝜕𝜌
𝜕ck

. (A.6)

Solving for Vj, we obtain

Vj =

Mj −
n−1∑

k=1

𝜕𝜌
𝜕ck

𝛿jk

𝜌 −
n−1∑

k=1

ck
𝜕𝜌
𝜕ck

=
Mj −

𝜕𝜌
𝜕cj

(1 − 𝛿jn)

𝜌 −
n−1∑

k=1

ck
𝜕𝜌
𝜕ck

. (A.7)

In particular, for a single salt solution where the density is given by 𝜌 = 𝜌(c), c being the
concentration of the salt, the partial molar volume of the electrolyte is

Ve =
Me −

d𝜌
dc

𝜌 − c
d𝜌
dc

, (A.8)

and the partial molar volume of the solvent is

V0 =
M0

𝜌 − c
d𝜌
dc

. (A.9)

If the density is a linear function of the concentration, the partial molar volumes of the electrolyte and
the solvent are constant. Conversely, if the partial molar volume of one component is constant, the
partial molar volume of the other component is also constant, and the density is a linear function of
concentration.



�

� �

�

APPENDIX B

VECTORS AND TENSORS

Transport equations can become quite lengthy, and this frequently leads one to introduce vector
notation, which has several advantages:

1. The equations become considerably more compact when written in vector notation.
2. The equations have significance independent of any particular coordinate system.
3. It is easier to grasp the meaning of an equation (after the vector notation becomes familiar).

You may regard vector notation as a form of shorthand writing, but it would be a good idea for you
to develop an intuitive feel for the significance of some of the more common vector operations.

A vector has both magnitude and direction and can be decomposed into components in three
rectangular directions:

𝐯 = 𝐞x𝑣x + 𝐞y𝑣y + 𝐞z𝑣z. (B.1)

Here, ex, ey, and ez denote unit vectors in the x, y, and z directions, respectively.
The divergence of a vector field is

∇⋅𝐯 =
𝜕𝑣x

𝜕x
+
𝜕𝑣y

𝜕y
+
𝜕𝑣z

𝜕z
. (B.2)

(These operations have different forms in other coordinate systems; see Ref. [1], pp. 832–837).
This quantity is a scalar whose physical significance can be seen most easily from the continuity
equation 15.2:

𝜕𝜌
𝜕t

= −∇ ⋅ (𝜌𝐯). (B.3)

Electrochemical Systems, Fourth Edition. John Newman and Nitash P. Balsara.
© 2021 John Wiley & Sons, Inc. Published 2021 by John Wiley & Sons, Inc.
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The mass flux is 𝜌v, showing the direction and magnitude of mass transfer per unit area, and ∇ ⋅ (𝜌v)
represents the rate of mass flowing away from a point—hence the name divergence. We might call
−∇ ⋅ (𝜌v) the convergence of the mass flux 𝜌v. Then, the equation of continuity says

𝜕𝜌
𝜕t

= −∇ ⋅ (𝜌𝐯)

rate of accumulation = rate of convergence or net input.

Similar conservation or continuity equations have appeared in other places, for example, in equations
11.3 and 11.13.

The curl of a vector field yields another vector defined as

𝛀 = ∇ × 𝐯 =

|||||||||||||||

𝐞x 𝐞y 𝐞z

𝜕∕𝜕x 𝜕∕𝜕y 𝜕∕𝜕z

𝑣x 𝑣y 𝑣z

|||||||||||||||

= 𝐞x (
𝜕𝑣z

𝜕y
−
𝜕𝑣y

𝜕z
) + 𝐞y (

𝜕𝑣x

𝜕z
−
𝜕𝑣z

𝜕x
) + 𝐞z (

𝜕𝑣y

𝜕x
−
𝜕𝑣x

𝜕y
) . (B.4)

When v is the fluid velocity, 𝛀 is known as the vorticity, which can be regarded as proportional to the
angular velocity (rad/s) of a fluid element. This vector operation is encountered in fluid mechanics and
in electromagnetic theory (see equation 3.3), but electrochemists may find little use for it.

The gradient of a scalar field is a vector:

∇Φ = 𝐞x
𝜕Φ
𝜕x

+ 𝐞y
𝜕Φ
𝜕y

+ 𝐞z
𝜕Φ
𝜕z
. (B.5)

The gradient of Φ shows the change of electric potential with position and is the negative of the electric
field. The direction of the gradient shows the direction of the greatest change, and the magnitude is the
rate of change in this direction. The gradient of a vector field, on the other hand, is a tensor. It has nine
components because it is necessary to describe the rate of change of each component of the vector in
each of three directions:

∇𝐯 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝜕𝑣x

𝜕x

𝜕𝑣y

𝜕y
𝜕𝑣z

𝜕z

𝜕𝑣x

𝜕y

𝜕𝑣y

𝜕y
𝜕𝑣z

𝜕y

𝜕𝑣x

𝜕z

𝜕𝑣y

𝜕z
𝜕𝑣z

𝜕z

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (B.6)

A tensor is an operator for vectors. The result of a tensor operating on a vector is another vector:

𝛕 ⋅ 𝐚 = 𝐞x(𝜏xxax + 𝜏xyay + 𝜏xzaz)

+ 𝐞y(𝜏yxax + 𝜏yyay + 𝜏yzaz)

+ 𝐞z(𝜏zxax + 𝜏zyay + 𝜏zzaz). (B.7)

(The result of a tensor operating on a vector can also be written a⋅𝝉, but this is not the same as 𝝉⋅a; see
entry 1(d) of Table B.1.)
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TABLE B.1 Vector and tensor algebra and calculus

1. Definitions
(a) Dyadic product. (ac)ij = aicj. (ac is a tensor.)
(b) Double dot product.

𝛔 ∶ 𝛕 =
∑

i

∑

j

𝜎ij𝜏ij.

(c) A tensor operating on a vector from the right yields a vector.

𝐚 ⋅ 𝛕 =
∑

i

∑

j

𝐞iaj𝜏ji.

(d) Transpose of a tensor.
(𝛕∗)ij = 𝜏ij or 𝛕 ⋅ 𝐚 = 𝐚 ⋅ 𝛕∗.

(e) Product of two tensors.

(𝛕 ⋅ 𝛔) ⋅ 𝐯 = 𝛕 ⋅ (𝛔 ⋅ 𝐯) or (𝛕 ⋅ 𝛔)ij =
∑

k

𝜏ik𝜎kj.

(f) The divergence of a tensor is a vector.

∇ ⋅ 𝛕 =
∑

i

∑

j

𝐞i (
𝜕𝜏ji

𝜕xj
) .

(g) Laplacian of a scalar.

∇2Φ = ∇ ⋅ ∇Φ =
∑

i

(𝜕
2Φ
𝜕x2

i

) .

(h) Gradient of a vector. (∇v)ij = 𝜕vj/𝜕xi.

(i) Laplacian of a vector. ∇2v = ∇ ⋅ ∇ v = ∇ (∇ ⋅ v)− ∇ × ∇ × v.
2. Algebra

(a) 𝝉 : (ab) = b ⋅ (𝝉 ⋅ a).
(b) (uv) : (wz) = (uw) : (vz) = (u ⋅ z)(v ⋅w).
(c) a ⋅ (bc) = (a ⋅b)c.
(d) (ab) ⋅ c = a(b ⋅ c).
(e) a× (b× c) = b(a ⋅ c)− c(a ⋅b).
(f) u ⋅ (v×w) = v ⋅ (w× u).
(g) (u× v) ⋅ (w× z) = (u ⋅w)(v ⋅ z)− (u ⋅ z)(v ⋅w).
(h) v ⋅ (𝝉* ⋅w) = w ⋅ (𝝉 ⋅ v).

(continued)
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TABLE B.1 (continued)

3. Differentiation of products
(a) ∇𝜙𝜓 = 𝜙∇𝜓+𝜓∇𝜙 (a vector).
(b) ∇𝜙v = 𝜙∇ v+ (∇𝜙)v (a tensor).

(c)
∇(𝐚 ⋅ 𝐜) = 𝐚 ⋅ ∇𝐜 + 𝐜 ⋅ ∇𝐚 + 𝐚 × ∇ × 𝐜 + 𝐜 × ∇ × 𝐚

= (∇c) ⋅ 𝐚 + (∇a) ⋅ 𝐜 (a vector).
(d) ∇ ⋅ (𝜙v) = 𝜙∇ ⋅ v+ v ⋅ ∇ 𝜙 (a scalar).
(e) ∇ ⋅ (v×w) = w ⋅ (∇× v)− v ⋅ (∇×w) (a scalar).
(f) ∇× (𝜙v) = 𝜙∇ × v+ (∇𝜙)× v (a vector).
(g) ∇× (b× c) = b(∇ ⋅ c)− c(∇ ⋅b)+ c ⋅ ∇b− b ⋅ ∇ c (a vector).
(h) ∇ ⋅ (ab) = (∇ ⋅ a)b+ a ⋅ ∇ b (a vector).
(i) ∇ ⋅ (𝜙𝝉) = 𝜙∇ ⋅ 𝝉+ (∇𝜙) ⋅ 𝝉 (a vector).
(j) ∇ ⋅ (u ⋅ 𝝉) = 𝝉 : ∇ u+u ⋅ ∇ ⋅ 𝝉* (a scalar).

4. Various forms of Gauss’s law (divergence theorem) and Stokes’s law (dS = area element, d𝓵 = line
element, d𝑣 = volume element. Integration over a closed surface or a closed curve is denoted by a circle
through the integral sign. In the first case, dS is normally outward from the surface; in the second case,
d𝓵 and dS are related by a right-hand screw rule, that is, a right-hand screw turned in the direction of d𝓵
advances in the direction of dS.)

(a) ∮𝐝𝐒 ⋅ 𝐅 = ∫ d𝑣 ∇ ⋅ 𝐅.

(b) ∮𝐝𝐒𝜙 = ∫ d𝑣 ∇𝜙.

(c) ∮(𝐝𝐒 ⋅ 𝐆) ⋅ 𝐅 = ∫ d𝑣 𝐅∇ ⋅ 𝐆 + ∫ d𝑣 𝐆 ⋅ ∇𝐅.

(d) ∮𝐝𝐒 × 𝐅 = ∫ d𝑣 ∇ × 𝐅.

(e) ∮𝐝𝐒 ⋅ 𝜏 = ∫ d𝑣 ∇ ⋅ 𝜏.

(f) ∮𝐝𝐒 ⋅ (Ψ∇𝜙 − 𝜙∇Ψ) = ∫ d𝑣(Ψ∇2𝜙 − 𝜙∇2Ψ).

(g) ∮d𝓵 ⋅ 𝐅 = ∫𝐝𝐒 ⋅ ∇ × 𝐅.

(h) ∮d𝓵𝜙 = ∫𝐝𝐒 × ∇𝜙.

5. Miscellaneous
(a) ∇ ⋅ ∇ ×E = 0.
(b) ∇× ∇𝜙 = 0.

(c) 𝐰 ⋅ ∇𝐯 =
∑

i

∑
j𝐞i𝑤j

𝜕𝑣i

𝜕xj
.

(d) D∕Dt = 𝜕∕𝜕t + 𝐯 ⋅ ∇.

(e) D𝐯∕Dt = 𝜕𝐯∕𝜕t + 1
2
∇𝑣2 − 𝐯 × ∇ × 𝐯.

⎫

⎬
⎭

where 𝐯 is the mass-average velocity.
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The stress 𝝉 due to viscous forces is a tensor (see Section 15.2). Its nine components tell us the force
acting on surfaces with various orientations:

𝐟 = 𝐧 ⋅ 𝛕, (B.8)

where n is a unit vector normal to a surface and f is the stress on the surface. The equation of motion
for a Newtonian fluid of constant density and viscosity (equation 15.10) is a vector equation involving
the tensor ∇v. The components of this equation in rectangular coordinates are

𝜕𝑣x

𝜕t
+ 𝑣x

𝜕𝑣x

𝜕x
+ 𝑣y

𝜕𝑣x

𝜕y
+ 𝑣z

𝜕𝑣x

𝜕z
= − 1

𝜌
𝜕p
𝜕x

+ 𝑣 (
𝜕2𝑣x

𝜕x2
+
𝜕2𝑣x

𝜕y2
+
𝜕2𝑣x

𝜕z2
) + gx.

𝜕𝑣y

𝜕t
+ 𝑣x

𝜕𝑣y

𝜕x
+ 𝑣y

𝜕𝑣y

𝜕y
+ 𝑣z

𝜕𝑣y

𝜕z
= − 1

𝜌
𝜕p
𝜕y

+ 𝑣 (
𝜕2𝑣y

𝜕x2
+
𝜕2𝑣y

𝜕y2
+
𝜕2𝑣y

𝜕z2
) + gy.

𝜕𝑣z

𝜕t
+ 𝑣x

𝜕𝑣z

𝜕x
+ 𝑣y

𝜕𝑣z

𝜕y
+ 𝑣z

𝜕𝑣z

𝜕z
= − 1

𝜌
𝜕p
𝜕z

+ 𝑣 (
𝜕2𝑣z

𝜕x2
+
𝜕2𝑣z

𝜕y2
+
𝜕2𝑣z

𝜕z2
) + gz. (B.9)

This equation and others of frequent use to us can be found written out in several coordinate systems
in Ref. [1].

A few definitions and identities are given in Table B.1. Vectors are denoted by boldface; Latin
characters and tensors by boldface Greek characters. The directions x, y, and z in rectangular coordinates
are denoted 1, 2, and 3, so that x2 = y, e2 = ey, and so on, and sums extend over the indices 1, 2, and 3.

REFERENCE
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APPENDIX C

NUMERICAL SOLUTION OF COUPLED,
ORDINARY DIFFERENTIAL EQUATIONS

The mathematical modeling of physical phenomena usually finds expression in partial differential
equations. Often these reduce to ordinary differential equations, either because only one independent
variable is pertinent or because of the applicability of a special technique such as a similarity
transformation or the method of separation of variables. The availability of digital computers and a
generalized method of solution allows such problems to be treated without the drastic approximations
frequently needed to obtain analytic solutions. The original problems are often nonlinear and involve
several dependent variables, but by a proper linearization of such problems a convergent iteration
scheme usually results, although convergence cannot generally be assured. We discuss here the errors
involved in the finite-difference calculations, the linearization of nonlinear problems, the method of
solving the linearized equations, and an example by two different methods.
Since other, very different techniques (such as the Runge–Kutta method) work well with initial-value
problems, attention is restricted here to boundary-value problems—that is, with boundary conditions
at x = 0 and x = L or x =∞. The procedure used here has been found to be quite useful in a variety of
problems, and it seems appropriate to report it[1, 2] so that other workers can implement it with ease.

Boundary-value problems of interest in the present context arise, for example, in the following
situations:

1. Mass transfer into a semi-infinite, stagnant medium (penetration model).
2. Mass transfer in a stagnant film or a porous solid, as encountered with heterogeneous catalysis

or porous electrode.
3. Mass transfer in boundary layers possessing profiles similar in the distance along a surface. This

can include both free and forced convection, and for large Schmidt numbers the similarity of the
hydrodynamics ceases to be essential (see Sections 17.5 and 17.6).

4. Velocity distributions in self-similar boundary layers. (See, for example, the hydrodynamics of
a rotating disk in Section 15.4.)

Electrochemical Systems, Fourth Edition. John Newman and Nitash P. Balsara.
© 2021 John Wiley & Sons, Inc. Published 2021 by John Wiley & Sons, Inc.
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5. Distribution of charge and mass in diffuse, electric double layers.
6. Distributions of potential and of hole and electron concentrations in semiconductor electrodes.

The concentration distributions of several species may be coupled among themselves or with the
velocity and temperature fields for a number of reasons.

1. The diffusion coefficients, viscosity, and other physical properties depend upon the composition,
temperature, and pressure.

2. The interfacial velocity at the surface is related to the rate of mass transfer.
3. The species may be charged and interact with each other through the electric potential.
4. The components may be involved in heterogeneous or homogeneous reactions described by

equilibrium or rate expressions.
5. For free convection, the fluid motion results from density differences created by nonuniform

composition and temperature.

The calculation procedure was first generalized to an arbitrary number of coupled equations for
treating the effect of ionic migration on limiting currents (see Chapter 19), where an arbitrary number
of species may be involved.

C.1 ERRORS IN FINITE-DIFFERENCE CALCULATIONS

In simulation, we frequently use finite-difference approximations to the governing differential
equations. This necessarily involves an error, which, however, can be made smaller by using
more mesh nodes, characterized by the mesh interval h between nodes. For example, we can write, for
a first derivative,

dci

dx

|||||||j
=

ci(j + 1) − ci(j − 1)
2h

+ O(h2). (C.1)

Here the mesh points are at xj, where xj+1 − xj = h. By using a central difference, the error is of order
h2. This can be a test of our computer program; a calculated overall or local answer should yield a
straight line when plotted against h2 on linear scales. Using successively smaller values of h permits
us to extrapolate to the correct answer.

To obtain the error order, expand the unknown, ci, in a Taylor series around the mesh point j.
Express ci(j+ 1) and ci(j− 1) in terms of this series. Eliminate the value of ci(j) between the two
equations and divide by 2h.

For a first-order differential equation, jagged results are obtained when a central difference is used
because, in a sense, adjacent points are not connected to each other; in the calculation the point j− 1 is
connected to the point at j+ 1. However, the use of a backward (or forward) difference yields an error
of order h:

dci

dx

|||||||j
=

ci(j) − ci(j − 1)
h

+ O(h). (C.2)

At small values of h, this error is larger than an error of O(h2).
The situation can be redeemed by instead writing the equation half-way between mesh points:

dci

dx

|||||||j−1∕2
=

ci(j) − ci(j − 1)
h

+ O(h2). (C.3)
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Practically, this means that any other terms in the equation must also be evaluated at this half-mesh
point. For example, since Di(j – 1/2)≈ [Di(j)+Di(j – 1)]/2,

Di
dci

dx

|||||||j−1∕2
=

Di(j) + Di(j − 1)
2

ci(j) − ci(j − 1)
h

+ O(h2). (C.4)

For second-order differential equations, central differences are appropriate:

d2ci

dx2

||||||||j
=

ci(j + 1) + ci(j − 1) − 2ci(j)
h2

+ O(h2). (C.5)

Remember that these equations and their error orders can be verified by expanding quantities in Taylor
series about the appropriate point.

There is another forward-difference formula for first derivatives:

dci

dx

|||||||j
= −

ci(j + 2) − 4ci(j + 1) + 3ci(j)
2h

+ O(h2). (C.6)

This is useful for expressing boundary conditions involving a derivative while still fitting it into the
BAND structure. A similar backward-difference formula is useful when the derivative occurs at the
right side of the domain:

dci

dx

|||||||j
=

ci(j − 2) − 4ci(j − 1) + 3ci(j)
2h

+ O(h2). (C.7)

Internal boundaries between different regions, such as between a negative porous electrode and a
separator, can also be handled with the usual tridiagonal BAND structure by writing a material balance
for the half-element on each side of the boundary and then adding them together. Accuracy to order h2

can still be achieved by this control-volume approach.
Another approach to handling boundary conditions at the left or right side of a region is to use

an image point, which is outside the region by a distance h. Accuracy to order h2 is achieved by
programming the governing equations at the real boundary point, as at interior points, and programming
the derivative boundary condition with a central difference, using the image point and the point just
inside the region. This equation is stored at the image point and requires use of the X or Y array (see
equation C.16 or C.26). In effect, the unknown at the imaginary point is eliminated between these two
equations.

For third- and fourth-order differential equations, it is usually convenient to define an auxiliary
variable, such as ck = c′′i , and treat instead coupled first- or second-order equations.

A computer carries a limited number of significant figures, leading to a so-called round-off
(truncation) error. Taking derivatives leads to a loss of significant figures, and this is aggravated by
using a smaller mesh interval h and more mesh points. Consequently, finite-difference and round-off
errors work in opposite directions, one being larger at large h and the other at small h. The user should
be aware of the limitations of the computer and not push the calculations to too small a value of h in a
quest for very accurate results.

Another possible source of errors is convergence over nonlinearities, where the finite-difference
equations are not completely satisfied. Such errors can be made as small as wished, particularly by
using a method with quadratic convergence characteristics. Here, the error on the kth iteration is
proportional to the square of that at the (k− 1)th iteration (after these errors become small). This means
that the number of correct significant figures doubles with each iteration. See the next section for more
detailed discussion of how to achieve quadratic convergence.
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A final source of error may be time stepping. This can have similar principles to finite-difference
errors, with the time step Δt playing the role of the mesh interval h. For example, one can regard
battery simulation to involve coupled differential equations in distance, where what is to be solved at
time t looks like ordinary differential equations except that there is a dependence on the (now known)
answers at t−Δt.

C.2 CONVERGENCE OVER NONLINEARITIES

The Newton–Raphson method is frequently applied to a nonlinear governing equation with one
unknown, c. Seek the solution of

g(c) = 0. (C.8)

Let c∘ be an initial guess, and expand the function in a Taylor series about this point:

g(c) = g(c∘) +
dg
dc

|||||||∘
(c − c∘) + · · · . (C.9)

Let Δc = c− c∘, and call this a change variable. As an approximation, neglect higher (quadratic, cubic,
etc.) terms and set the result to zero:

Δc = −
g(c∘)

dg∕dc|∘
. (C.10)

Successive approximation, by setting c∘ to the old value of c∘ plus Δc, yields quadratic convergence.
This method can be extended to several unknowns. A multidimensional Taylor series is now used,

and a matrix inversion is needed to obtain values of Δck. In finite-difference calculations, we are likely
to be concerned with a more general problem of the form

gi(Ck,j,Ck,j+1,Ck,j−1) = 0, i = 1 to n, j = 1 to nj, k = 1 to n. (C.11)

We consider a number n of unknowns Ck designated by the subscript k and defined at the mesh points
j by means of n governing equations gi = 0, each of which can contain all the unknowns and is defined
at all the mesh points.

Again, each equation is expanded in a multidimensional Taylor series around C∘
k,j, terms beyond the

linear are dropped, and the result is set equal to zero:

0 = g∘i,j +
∑

k

𝜕gi,j

𝜕Ck,j−1

|||||||||∘
ΔCk,j−1 +

∑

k

𝜕gi,j

𝜕Ck,j

|||||||||∘
ΔCk,j +

∑

k

𝜕gi,j

𝜕Ck,j−1

|||||||||∘
ΔCk,j+1. (C.12)

This can be written in the general form

∑

k

A∘i,kΔCk,j−1 + B∘i,kΔCk,j + D∘
i,kΔCk,j+1 = g∘i,j, (C.13)

where

A∘i,k = −
𝜕g∘i,j

𝜕Ck,j−1

||||||||||∘
, B∘i,k = −

𝜕g∘i,j
𝜕Ck,j

||||||||||∘
, D∘

i,k = −
𝜕g∘i,j

𝜕Ck,j−1

||||||||||∘
. (C.14)



�

� �

�

APPENDIX C 547

Equation C.13 is still a matrix equation to solve for ΔCk,j, but all j must be considered at once. This
is a tridiagonal matrix with respect to j:

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

B(1) D(1)
A(2) B(2) D(2)

A(3) B(3) D(3) 0
⋅

⋅
⋅

0 A(nj − 1) B(nj − 1) D(nj − 1)
A(nj) B(nj)

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

ΔC = G,

where Gi = g∘i, j; A, B, and D represent (n× n) submatrices embedded in an otherwise zero matrix; G
and ΔC are n× nj matrices. The A, B, C tridiagonal matrix shown above is (n× nj)× (n× nj) if we count
all the subarrays as n× n. One wants to use an efficient matrix-inversion routine that takes advantage
of the many zero elements. This routine, BAND(j), is described in more detail in the next section. One
has here a convenient tool for handling coupled nonlinear differential equations, covering a variety of
interesting problems.

To get a little more generality, terms at j+ 2 and j− 2 are added at the ends to facilitate handling
boundary conditions with derivatives.

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

B D X
A B D

A B D 0
⋅

⋅
⋅

0 A B D
Y A B

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

ΔC = G,

where

X∘i,k = −
𝜕g∘i,j

𝜕Ck,j+2

||||||||||∘
and Y∘i,k = −

𝜕g∘i,j
𝜕Ck,j−2

||||||||||∘
. (C.15)

C.3 SOLUTION OF COUPLED, LINEAR, DIFFERENCE EQUATIONS

This section details the algorithm for solving for the unknowns. Because change variables ΔCk do not
need to be used, the program was written to solve a matrix equation where Gi need not be zero when
the program converges. Hence, the notation here uses Ck instead of ΔCk as the unknown.

The method is to start solving for the unknowns from left to right, but doing this requires a
more complicated system because the values at j+ 1 are not yet known. To handle this difficulty,
the unknowns are expressed in terms of trial values 𝜉k(j) and a matrix E that will allow later
back substitution. This form is contained in equations (C.17, C.22), although the former requires an
additional x array to handle the X array. When reaching the right (nj) mesh point, there is enough
information to calculate the unknowns Ck(nj). Finally, one goes back through the system, from right to
left, making back substitutions according to equation C.22 and lastly equation C.17. This procedure is
elaborated upon below.
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At j = 1, the equations are

n∑

k=1

Bi,k(1)Ck(1) + Di,k(1)Ck(2) + Xi,kCk(3) = Gi(1). (C.16)

There is no point for j = 0, so Ai,k does not appear. However, in order to allow for the treatment of
complex boundary conditions, the third term involving the unknowns at j = 3 has been added. For
j = 1, let Ck(j) take the form

Ck(1) = 𝜉k(1) +
n∑

l=1

Ek,l(1)Cl(2) + xk,lCl(3). (C.17)

The term in x permits the term in X in equation C.16 to be handled. Substitution into equation C.16
shows that 𝜉k, Ek,l, and xk,l satisfy the equations

n∑

k=1

Bi,k(1)𝜉k(1) = Gi(1), (C.18)

n∑

k=1

Bi,k(1)Ek,l(1) = −Di,l(1), (C.19)

n∑

k=1

Bi,k(1)xk,l(1) = −Xi,l, (C.20)

which all have the same matrix of coefficients Bi,k and which can be readily solved.
For the intermediate points, the governing equations are

n∑

k=1

Ai,k(j)Ck(j − 1) + Bi,k(j)Ck(j) + Di,k(j)Ck(j + 1) = Gi(j). (C.21)

For the intermediate points, except j = nj, the unknowns Ck assume the form

Ck(j) = 𝜉k(j) +
n∑

l=1

Ek,l(j)Cl(j + 1), (C.22)

a little simpler than equation C.17. Substitution of equation C.22 into equation C.21 to eliminate first
Ck(j− 1) and then Ck(j) and setting the remaining coefficient of each Ck(j+ 1) equal to zero yield a set
of equations for the determination of 𝜉k and Ek,l:

n∑

k=1

bi,k(j)𝜉k(j) = Gi(j) −
n∑

l=1

Ai,l(j)𝜉l(j − 1), (C.23)

n∑

k=1

bi,k(j)Ek,m(j) = −Di,m(j), (C.24)

where

bi,k(j) = Bi,k(j) +
n∑

l=1

Ai,l(j)El,k(j − 1). (C.25)
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The solution of these linear equations at each point j is again straightforward, but the point at j− 1
must be calculated first, since 𝜉k(j− 1) appears on the right side of equation C.23 and Ek,l(j− 1)
appears in the matrix of coefficients bi,k. The equations for j = 2 actually take a slightly differ-
ent form since equation C.17 should be used instead of equation C.22 to eliminate Ck(1) from
equation C.21.

Finally, for j = nj, one has

n∑

k=1

Yi,kCk(j − 2) + Ai,k(j)Ck(j − 1) + Bi,k(j)Ck(j) = Gi(j), (C.26)

where the coefficients Yi,k again allow the introduction of derivative boundary conditions at the upper
limit (x = L) of the domain of interest, in the same way that the coefficients Xi,k do at x = 0. If Ck(j− 2)
and Ck(j− 1) are eliminated by means of equation C.22, then the values of Ck(nj) can be determined
from the resulting equations:

n∑

k=1

bi,k(j)Ck(j) = Gi(j) −
n∑

l=1

Yi,l𝜉l(j − 2) −
n∑

l=1

ai,l(j)𝜉l(j − 1), (C.27)

where

ai,l(j) = Ai,l(j) +
n∑

m=1

Yi,mEm,l(j − 2)

bi,k(j) = Bi,k(j) +
n∑

l=1

ai,l(j)El,k(j − 1). (C.28)

Having in hand values for Ck(j) for j = nj, one is now in a position to determine Ck(j)
in reverse order in j from equation C.22 and finally to determine Ck(1) from equation C.17.
Such repetitive calculations are, of course, intended to be carried out with a digital
computer.

Because the boundary-value problem involves boundary conditions at both x = 0 and x = L, it is
not possible to start at either end and obtain final values of the unknowns; this is possible only for
initial-value problems. Instead, BAND makes two passes through the domain of interest, in opposite
directions. In equation C.22, Ek,l allows the effects of the boundary conditions at x = L to be propagated
back through the domain, the effect not being realized until the back substitution is complete.

C.4 PROGRAM FOR COUPLED, LINEAR DIFFERENCE EQUATIONS

All the steps for solving coupled, linear difference equations have been given above. However, to
program these complicated steps is a bit tricky, and it is easy to make a mistake. Consequently, we give
here subroutines, written in Fortran 77, for implementing the solution method. To solve a problem,
one then only needs to write a main program that supplies values of A, B, D, and G appropriate to
that problem. Remember that G represents the governing equations and A, B, and D are derivatives
according to equations C.14. An example of a main program that uses these subroutines is given in the
next section.
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To save storage space, the arrays A, B, D, and G are to be supplied by the main program for each
value of j, and the subroutine BAND(J) is to be called for each value of j. The values of X are to
be supplied for j = 1, and the values of Y are to be supplied for j = nj. The values of X are not to
be disturbed for any intermediate calculations between j = 1 and j = nj. The dimensions have been
selected for n = 6, the number of unknown variables at each mesh point, and nj = 402, the number
of mesh points including image points, if any. These can be changed appropriately for a particular
problem. The second dimension of the D array is to be 2n+ 1, to accommodate the 2n+ 1 unknowns
represented in equations C.18, C.19, and C.20, although values need to be supplied only for the original
n by n array. The second dimension of the E array is n+ 1 since 𝜉k is stored there.

SUBROUTINE BAND(J)
IMPLICIT REAL*8(A-H,O-Z)
DIMENSION E(6,7,402)
COMMON A(6,6),B(6,6),C(6,402),D(6,13),G(6),X(6,6),Y(6,6),N,NJ
SAVE E,NP1

101 FORMAT (/15H DETERM=0 AT J=,I4)
IF (J.GT.1) GO TO 6
NP1= N + 1
DO 2 I=1,N
D(I,2*N+1)= G(I)
DO 2 L=1,N
LPN= L + N

2 D(I,LPN)= X(I,L)
CALL MATINV (N,2*N+1,DETERM)
IF (DETERM.EQ.0.0) PRINT 101, J
DO 5 K=1,N
E(K,NP1,1)= D(K,2*N+1)
DO 5 L=1,N
E(K,L,1)= - D(K,L)
LPN= L + N

5 X(K,L)= - D(K,LPN)
RETURN

6 IF(J.GT.2) GO TO 8
DO 7 I=1,N
DO 7 K=1,N
DO 7 L=1,N

7 D(I,K)= D(I,K) + A(I,L)*X(L,K)
8 IF (J.LT.NJ) GO TO 11

DO 10 I=1,N
DO 10 L=1,N
G(I)= G(I) - Y(I,L)*E(L,NP1,J-2)
DO 10 M=1,N

10 A(I,L)= A(I,L) + Y(I,M)*E(M,L,J-2)
11 DO 12 I=1,N

D(I,NP1)= - G(I)
DO 12 L=1,N
D(I,NP1)= D(I,NP1) + A(I,L)*E(L,NP1,J-l)
DO 12 K=1,N

12 B(I,K)= B(I,K) + A(I,L)*E(L,K,J-1)
CALL MATINV (N,NP1,DETERM)
IF (DETERM.EQ.0.0) PRINT 101, J
DO 15 K=1,N
DO 15 M=1,NP1

15 E(K,M,J)= - D(K,M)
IF (J.LT.NJ) RETURN
DO 17 K=1,N
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17 C(K,J)= E(K,NP1,J)
DO 18 JJ=2,NJ
M= NJ - JJ + 1
DO 18 K=1,N
C(K,M)= E(K,NP1,M)
DO 18 L=1,N

18 C(K,M)= C(K,M) + E(K,L,M)*C(L,M+1)
DO 19 L=1,N
DO 19 K=1,N

19 C(K,1)= C(K,1) + X(K,L)*C(L,3)
RETURN
END

The subroutine MATINV is used to solve the linear equations C.19, C.23, C.24, and C.27,
which arise at each value of j. If, at any value of j, the determinant of the matrix of these
equations is found to be zero, this fact is reported in the output. This usually indicates that all the
equations have not been programmed or that they are not all independent. It can also indicate that
the equations for j = 1 are not sufficient to determine the image points, although the equations
for j = 1 and j = 2 would be sufficient to determine both the boundary point and the image
point. In rare instances, it may indicate that the trial solution is inadequate and gives a zero
determinant.

SUBROUTINE MATINV (N,M,DETERM)
IMPLICIT REAL*8(A-H,O-Z)
COMMON A(6,6),B(6,6),C(6,402),D(6,13)
DIMENSION ID(6)
DETERM=1.0
DO 1 I=1,N

1 ID(I)=0
DO 18 NN=1,N
BMAX=1.1
DO 6 1=1,N
IF(ID(I).NE.0) GO TO 6
BNEXT=0.0
BTRY=0.0
DO 5 J=1,N
IF(ID(J).NE.0) GO TO 5
IF(DABS(B(I,J)).LE.BNEXT) GO TO 5
BNEXT=DABS(B(I,J))
IF(BNEXT.LE.BTRY) GO TO 5
BNEXT=BTRY
BTRY=DABS(B(I,J))
JC=J

5 CONTINUE
IF(BNEXT.GE.BMAX*BTRY) GO TO 6
BMAX=BNEXT/BTRY
IROW=I
JCOL=JC

6 CONTINUE
IF(ID(JC).EQ.O) GO TO 8
DETERM=0.0
RETURN

8 ID(JCOL)=1
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IF(JCOL.EQ.IROW) GO TO 12
DO 10 J=1,N
SAVE=B(IROW, J)
B(IROW,J)=B(JCOL,J)

10 B(JCOL,J)=SAVE
DO 11 K=1,M
SAVE=D(IROW,K)
D(IROW,K)=D(JCOL,K)

11 D(JCOL,K)=SAVE
12 F=1.0/B(JCOL,JCOL)

DO 13 J=1,N
13 B(JCOL,J)=B(JCOL,J)*F

DO 14 K=1,M
14 D(JCOL,K)=D(JCOL,K)*F

DO 18 I=1,N
IF(I.EQ.JCOL) GO TO 18
F=B(I,JCOL)
DO 16 J=1,N

16 B(I,J)=B(I,J)-F*B(JCOL,J)
DO 17 K=1,M

17 D(I,K)=D(I,K)-F*D(JCOL,K)
18 CONTINUE

RETURN
END

Experience suggests that there are distinct advantages in solving for the change variables Δck, as
developed in Section C.2. Some advantages of this procedure are:

1. The right side of the equation, which becomes Gi(j), has a simple relationship to the original
equation, thereby facilitating the checking of the computer program.

2. Gi(j) will vanish when the iteration process converges. This provides a clear convergence
criterion and ensures that if an answer is obtained it is correct, if Gi(j) has been programmed
correctly, even if Ai,k, Bi,k, and Di,k are in error. This iteration procedure might even help with
the inversion of certain linear equations.

3. Ai,k, Bi,k, and Di,k can be calculated with greater ease because of the relationships represented
by equation C.14. This can help obtain an analytic form for the coefficients because they are
derivatives of Gi(j), which is itself related back to the original equation. Furthermore, one
can develop an AUTOBAND program in which the coefficients are calculated by numerical
derivatives. This greatly speeds the programming, but there are two difficulties. The increment
used for the numerical derivatives can lead to errors if it is too small, because of round-off error,
or if it is too large, because it yields a poor approximation to the derivative. (See, however,
item 2.) The numerical derivative must also be evaluated many times, and this significantly
increases the computation time.

A sample of such an AUTOBAND program is given below. This is stated as a subroutine
that would be called by a main program, and it succeeds in providing the information necessary for
BAND by repeatedly calling the subroutine EQN(J,EQ,JP,K,DC), which in turn evaluates the governing
equations (EQ(I)), written so as to equal zero when the correct answer has been obtained, with unknown
C(K,JP) incremented by an amount DC.



�

� �

�

APPENDIX C 553

7

SUBROUTINE AUTOBAND
IMPLICIT REAL*8 (A-H,O-Z)
DIMENSION CC(6,402),DC(6),EQ(6)
COMMON A(6,6),B(6,6),C(6,402),D(6,13),G(6),X(6,6),Y(6,6),N,NJ
JCOUNT=0
DC(1)=2.E-7
DC(2)=0.00002
DC(4)=0.01*DABS(AMP)
IF(DC(4).LT.1.d-5) DC(4)=1.d-5
DC(3)=DC(4)/0.1
DC(5)=0.00001
DC(6)=0.00002
JCOUNT=JCOUNT+1

8

DO 8 J=1,NJ
DO 8 I=1,N
CC(I,J)=C(I,J)

9

J=0
DO 9 I=1,N
DO 9 K=1,N
Y(I,K)=0.0D0
X(I,K)=0.0D0

10 J=J+1

11

DO 11 I=1,N
G(I)=0.0D0
DO 11 K=1,N
A(I,K)=0.0D0
B(I,K)=0.0D0
D(I,K)=0.0D0
CALL EQN(J,EQ,1,1,0.0D0)
G(1)=EQ(1)
G(2)=EQ(2)
G(3)=EQ(3)
G(4)=EQ(4)
G(5)=EQ(5)
G(6)=EQ(6)
DO 20 K=1,N
CALL EQN(J,EQ,J,K,DC(K))
DO 12 I=1,N

12 B(I,K)=-(EQ(I)-G(I))/DC(K)
IF(J.EQ.l) GO TO 14
CALL EQN(J,EQ,J-l,K,DC(K))
DO 13 I=1,N

13 A(I,K)=-(EQ(I)-G(I))/DC(K)
14 IF(J.EQ.NJ) GO TO 16

15

CALL EQN(J,EQ,J+1,K,DC(K))
DO 15 I=1,N
D(I,K)=-(EQ(I)-G(I))/DC(K)
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16 IF(J.NE.1) GO TO 18
CALL EQN(J,EQ,J+2,K,DC(K))
DO 17 I=1,N

17 X(I,K)=-(EQ(I)-G(I))/DC(K)
18 IF(J.NE.NJ) GO TO 20

CALL EQN(J,EQ,J-2,K,DC(K))
DO 19 I=1,N

19 Y(I,K)=-(EQ(I)-G(I))/DC(K)
20 CONTINUE

CALL BAND(J)
IF(J.LT.NJ) GO TO 10
DO 21 J=1,NJ
IF(C(1,J).LT.-0.99*CC(1,J)) C(1,J)=-0.99*CC(1,J)
IF(C(N,J).GT.0.05) C(N,J)=0.05
IF(C(N,J).LT.-0.05) C(N,J)=-0.05
DO 21 1=1,N

21 C(I,J)=CC(I,J)+C(I,J)
IF(JCOUNT.GT.1l) GO TO 22
IF(DABS(C(N,NJ)-CC(N,NJ)).GT.1.0D-11*DABS(CC(N,NJ))) GO TO 7
IF(DABS(C(1,NJ)-CC(1,NJ)).GT.1.OD-11*DABS(CC(1,NJ))) GO TO 7

22 RETURN
END

SUBROUTINE EQN(J,EQ,JP,K,DC)
IMPLICIT REAL*8 (A-H.O-Z)
COMMON A(6,6),B(6,6),C(6,402),D(6,13),G(6),X(6,6),Y(6,6),N,NJ
DIMENSION EQ(6)
CSAVE=C(K,JP)
C(K,JP)=C(K,JP)+DC

C EQUATION 1 . . .
1 EQ(1)=0.0 ! insert appropriate equation here

C EQUATION 2 . . .
2 EQ(2)=0.0 ! insert appropriate equation here

C EQUATION 3 . . .
3 EQ(3)=0.0 ! insert appropriate equation here

C EQUATION 4 . . .
4 EQ(4)=0.0 ! insert appropriate equation here

C and similarly for the other equations.
C(K,JP)=CSAVE
RETURN
END

C.5 PROGRAM FOR THE EFFECT OF IONIC MIGRATION ON LIMITING CURRENTS

This program gives an example of the use of the subroutines presented earlier to solve a particular
problem, that of the effect of ionic migration on limiting currents (see Chapter 19). Each iteration
begins at statement 5 and involves setting up the coefficients A, B, D, and G for each value of j
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Bulk

Electroneutrality

E  Faraday’s law

R  Limiting reactant at electrode

B  Set bulk values of all variables

Electrode

BOH–

Cl–

O2

Φ

Na+

B

B

B

E

E

E

R

B

Material balances with

flux densities substituted

Central differences

Figure C.1 BANDmap for migration program set up for oxygen reduction from a solution of NaCl. An
alternative would be to use bulk boundary conditions only for the first four equations (for the potential and three
concentrations) and to let one ion concentration in the bulk, say Cl−, to be determined by electroneutrality.

followed by calling subroutine BAND(J) for each value of j. In the program, U(I) is proportional to
ziui, and the electric potential is the nth unknown variable, the other unknowns being the n− 1 species
concentrations. MODE is 1 for a Nernst stagnant diffusion layer, 2 for a growing mercury drop or
unsteady diffusion into a stagnant fluid, and 3 for a rotating disk. The mesh size is H, and CR0 is the
concentration of the reactant at the electrode (equal to zero at the limiting current). For cases below
the limiting current, the concentration overpotential is also calculated according to the dilute solution
development in Section 20.1 (see equation 20.7).

The heart and core of the program lies between the dashed lines, and the really important statements,
which define values of G, are underlined. This program is written with change variables ΔCk. You can
follow the various values of j and equation numbers i which determine which equations or boundary
conditions are specified.

Figure C.1 gives a BANDmap. This is an aid that shows explicitly what equations are being solved
and how they fit in with the boundary equations. Here there is a material-balance equation for each
solute species (equation 19.4 for the rotating disk and other boundary-layer flows, 19.9 for the growing
mercury drop and other transient or penetration-type problems, or 19.12 for the Nernst stagnant
diffusion layer and other quasi-potential problems), and electroneutrality (equation 16.3) constitutes
the last equation so that the number of equations agrees with the number of unknowns. Equation 19.5
states the boundary conditions in the bulk solution. Equation 19.8 sets the concentration of the limiting
reactant at the electrode, and equation 19.7 relates the flux densities at the electrode of the other species
to that of the limiting reactant.

C PROGRAM MIGR
IMPLICIT REAL*8 (A-H,O-Z)
COMMON A(6,6),B(6,6),C(6,402),D(6,13),G(6),X(6,6),Y(6,6),N,NJ

C Program for effect of migration on limiting current
DIMENSION U(6),V(402),DIF(6),Z(6),S(6),CIN(6),REF(6),cold(6,402)

102 FORMAT (4F8.4.A6)
103 FORMAT (/4H NJ=,I4,5H, H=,F6.4//34H SPECIES U DIF Z

1 S/(1X,A6,2X,F8.3,F8.5,2F5.1))
106 FORMAT (28H ROTATING DISK, Sc**(-1/3)=,F7.4)
109 FORMAT (27X.F10.6/(1X,A6,2X, 2E12.5))
110 FORMAT (/35H SPECIES CINF CZERO AMP)
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111 FORMAT (8X,’ETA=’,F9.4,’ mV, ETA0=’,F9.4,’ mV’)
112 FORMAT (5f12.8)
113 FORMAT ( 6H AMP2=,F10.6,5X,2HV=,F10.6,2X,7HJC0UNT=,I4)

F = 0.96487
FRT=96487.0/8.3143/298.15
AA=0.51023262 ! constant a for flow to a rotating disk
BB=-0.61592201 ! constant b for flow to a rotating disk

C N is the number of unknowns = number of species + 1
C CR0 is thev concentration of the limiting reactant at the electrode.

99 READ *, N,CR0
IF(N.LE.0) STOP

C IR is the number of the limiting reactant.
IR=N-1
NM1=N-1

C D(I) is multiplied by 1.E5 before reading as DIF(I).
C Equivalent ionic conductances (with a sign) are read as
C U(I). These must be divided by F to get z(i)u(i)F.
C We divide by F/1.E5 so that the correct ratio of U(I)/DIF(I)
C will be maintained. Then C(N,J) = PHI will be in volts.

READ 102, (U(I),DIF(I),Z(I),S(I),REF(I),I=1,NM1)
DIFMAX=0.0
DO 98 1=1,NM1
IF(DIF(I).GT.DIFMAX) DIFMAX=DIF(I)

98 U(I) = U(I)/F
C Scm3 is the Schmidt number to the -1/3 power. A zero value
C corresponds to the infinite-Schmidt-number approximation.

READ *, MODE,NJ,Scm3
if(mode.eq.1) then
CONST=0.0
PRINT *, ’ Nernst stagnant diffusion layer’
AMPD=1.0
XIMAX=1.0
elseif(mode.eq.2) then
CONST= 2.0
PRINT *, ’ growing drop or plane electrode’
AMPD=1.128379167
XIMAX=3.3*(DIFMAX/DIF(IR))**0.5
elseif(mode.eq.3) then
CONST= 3.0
PRINT 106, Scm3 ! rotating disk
AMPD=1.119846522 ! 1/GAMMA(4/3)
XIMAX=2.0*(DIFMAX/DIF(IR))**(1.0/3.0)
endif
H= XIMAX/dble(NJ-1)
PRINT 103, NJ,H,(REF(I),U(I)*F,DIF(I),2(1),S(I),I=1,NM1)
PRINT 110
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96 READ *, (CIN(I),I=1,NM1) ! concentrations in the bulk
CIN(N)=0.0 ! potential in the bulk
IF(CIN(1).LT.0.0) GO TO 99
DO 4 J=1,NJ
V(J)=CONST*H*dble(NJ-J)*DIF(IR)

C ZE is zeta in the Von Karman transformation for the
C rotating disk, see section 15.4.

ZE=H*dble(NJ-J)*(3./AA)**(1./3.)*Scm3
IF(MODE.EQ.3) V(J)=V(J)*H*dble(NJ-J)
1*(1.0-ZE/AA*(1./3.+BB/6.*ZE+(BB*ZE)**2/30.
1+AA*ZE**3/180.-(1.-4.*AA*BB)*ZE**4/1260.))
C(IR,J)= CR0 + (CIN(IR) -CR0)*dble(NJ-J)/dble(NJ-1)
C(N,J)= 0.0 ! initialization
DO 4 I=1,NM1

4 IF(I.NE.IR) C(I,J)= CIN(I)
JCOUNT=0
AMP=0.0

5 JCOUNT=JCOUNT+1
J=0
DO 6 I=1,N
DO 6 K=1,N
Y(I,K)=0.0

6 X(I,K)=0.0
7 J=J+1
DO 8 1=1,N
G(I)=0.0
cold(i,j)=c(i,j)
DO 8 K=1,N
A(I,K)=0.0
B(I,K)=0.0

8 D(I,K)=0.0
--------------------------------------------------------------------

if(j.eq.1) then
C Boundary condition away from electrode

DO 9 I=1,N
G(I)= CIN(I)-c(i,j)

9 B(I,I)=1.0
else

C Electroneutrality
DO 11 K=1,NM1
g(n)=g(n)-z(k)*c(k,j)

11 B(N,K)= Z(K)
if(j.lt.nj) then

C Material balance at an interior point
DO 12 I=1,NM1
PP= U(I)/DIF(I)*(C(N,J+1)-C(N,J-1))/2.0
PPP= U(I)/DIF(I)*(C(N,J+1)+C(N,J-1)-2.0*C(N,J))
CP= (C(I,J+1) - C(I,J-1))/2.0
G(I)= PPP*C(I,J) + PP*CP - H*V(J)/DIF(I)*CP



�

� �

�

558 NUMERICAL SOLUTION OF COUPLED, ORDINARY DIFFERENTIAL EQUATIONS

%+c(i,i+1)+c(i,i-1)-2.0*c(i,j)
A(I,I)= - 1.0 + PP/2.0 - H*V(J)/2.0/DIF(I)
B(I,I)= 2.0 - PPP
D(I,I)= - 1.0 - PP/2.0 + H*V(J)/2.0/DIF(I)
A(I,N)= U(I)/DIF(I)*(CP/2.0 - C(I,J))
B(I,N)= 2.0*U(I)/DIF(I)*C(I,J)

12 D(I,N)= - U(I)/DIF(I)*(CP/2.0 + C(I,J))
elseif(j.eq.nj) then

C Boundary condition at electrode.
C Each flux is related to the flux of the principal reactant
C for a single electrode reaction.

DO 14 I=1,NM1
IF(I.EQ.IR) GO TO 14
Q=S(I)*DIF(IR)/S(IR)/DIF(I)
Q2=(S(I)/S(IR)*U(IR)*CR0-U(I)*C(I,NJ))/DIF(I)
PP=U(I)/DIF(I)*(3.0*C(N,J)-4.0*C(N,J-1)+C(N,J-2))
G(I)=Q*(3.0*c(ir,j)-4.0*c(ir,j-1)+c(ir,j-2))
%+Q2*(3.0*c(n,j)-4.0*c(n,j-1)+c(n,j-2))
%-(3.0*c(i,j)-4.0*c(i,j-l)+c(i,j-2))
Y(I,IR)=-Q
A(I,IR)=4.0*Q
B(I,IR)=-3.0*Q
Y(I,N)=-Q2
A(I,N)=4.0*Q2
B(I,N)=-3.0*Q2
Y(I,I)=1.0
A(I,I)=-4.0
B(I,I)=3.0+PP

14 continue
G(IR)=CR0-c(ir,j) ! Set concentration of principal reactant.
B(IR,IR)=1.0
endif
endif
CALL BAND(J)
if(j.lt.nj) go to 7
do i=1,n
do j=1,nj
c(i,j)=cold(i,j)+c(i,j) ! add corrections
enddo
enddo

--------------------------------------------------------------------
AMPO=AMP
I=IR
j=nj
CP=(2.5*C(I,J)-4.8*C(I,J-1)+3.6*C(I,J-2)-1.6*C(I,J-3)+0.3*C(I,J-4)

1)/1.2/H
PP=(2.5*C(N,J)-4.8*C(N,J-1)+3.6*C(N,J-2)-1.6*C(N,J-3)+0.3*C(N,J-4)

1)/1.2/H
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AMP=-H*(U(I)*CR0*PP/DIF(I)+CP)/(CIN(I)-CR0)/AMPD
if(dabs(amp-ampo).gt.1.e-5*dabs(amp). and. JCOUNT.le.10) go to 5
if(dabs(amp-ampo).gt.1.e-5*dabs(amp))

:PRINT *, ’ The next run did not converge’
PRINT 109, AMP,(REF(I),C(I,1),C(I,NJ),I=1,NM1)

c print 112, (h*(nj-j),(c(i,j),i=1,nm1),j=nj,1,-1)
IF(CR0.EQ.0.0) GO TO 96

C Calculation of concentration overpotential.
AN=0.0
ETAO=0.0
CAPINF=0.0
DO 16 I=1,NM1
AN=AN-S(I)*Z(I)
IF(S(I).EQ.0.0 .OR. CIN(I).EQ.0.0) GO TO 16
ETA0=ETA0+S(I)*DLOG(CIN(I)/C(I,NJ))

16 CAPINF=CAPINF+Z(I)*U(I)*CIN(I)
ETA0=ETA0/AN/FRT*1000.0
ETA=-AN/S(IR)*AMP/CAPINF*DIF(IR)*(CIN(IR)-CR0)*XIMAX*AMPD
ETA=(ETA+C(N,NJ)-C(N,1))*1000.0 + ETA0
PRINT 111, ETA,ETA0
GO TO 96
END

A sample data file follows:
5 0 ! N, CR0

-197.600 5.26000 -1.00000-4.00000 OH- !U(I), DIF(I), Z(I), REF(I)
-76.340 2.03200 -1.00000 0.00000 Cl-
50.110 1.33400 1.00000 0.00000 Na+
0.000 2.00000 0.00000 1.00000 O2

3 101 0.032 ! MODE, NJ, Scm3
0.0 1.0 1.0 2.E—4 ! CIN (I) for I = 1 to NM1

—1.0 0.0 0.0 0.0 ! another set of bulk composition (or not)
—5 0 0.0 ! another problem (or not)

C.6 SECOND EXAMPLE: MULTICOMPONENT DIFFUSION

Programming for concentrated solutions is recorded in the study by Tribollet and Newman.[3] However,
that procedure is rather complicated. The process is made much more simple by programming directly
the ordinary differential equations, setting forth separately the material balances and the multicomponent
diffusion equations.

We choose an example very similar to the preceding one—the effect of migration on limiting
currents. The basic problem is the same as that developed in Chapter 19, and it is still possible to
identify three subcases: (i) a stagnant Nernst diffusion layer, (ii) a similarity transformation for transient
problems such as the growing mercury drop and diffusion into a semi-infinite stagnant medium, and
(iii) boundary-layer problems, as exemplified by the rotating-disk electrode.

The transport problem for case 2 is developed explicitly here. The material balance

𝜕ci

𝜕t
= −∇⋅𝐍i, (C.29)
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without any homogeneous chemical reactions, transforms to

d𝒩i

d𝜂 =
2𝜂
c0

T

dci

d𝜂 , (C.30)

where
𝜂 =

y

2
√
𝒟0Rt

(C.31)

and

𝒩i =
2
c0

T

√
t

𝒟0R
Ni. (C.32)

The term c0
T is the bulk (constant) value of cT, which equals

∑
ci and 𝒟0R is the value of the diffusion

coefficient for interaction between the limiting reactant R and the solvent.
To put a specific problem in our minds, let us treat reduction of O2 in a NaCl solution at the limiting

current; see Problem 11.4. The species are H2O, OH−, Cl−, Na+, and O2. The first 5 (or nm) variables
are the values of 𝒩k. The next five variables are the particle fractions ck/cT, numbered from k = nm+ 1
to k = 2nm (or k = 6 to 10). The last variable is Φ, which becomes Cn or C11.

Only nm− 1 (or 4) multicomponent diffusion equations are independent. Equation 12.1 becomes

ci∇𝜇i = RT
∑

k

1
cT𝒟ik

(ci𝐍k − ck𝐍i). (C.33)

We approximate the electrochemical potential term according to

∇𝜇k = RT∇ ln (
ck

cT
) + zkF∇Φ. (C.34)

Activity coefficients can be introduced if desired and if data are available.
After transformation, the multicomponent diffusion equation becomes

dci

d𝜂 +
ziFci

RT
dΦ
d𝜂 =

∑

k

𝒟0R

𝒟ik
(ci𝒩k − ck𝒩i). (C.35)

The multicomponent diffusion coefficients can also be dependent on composition if data are available.
But in the sample program we take 𝒟i0 = 𝒟0i = 𝒟i for solutes where 𝒟0i refers to the solute/solvent
interaction and Di is the dilute solution diffusion coefficient (see, e.g., Table 11.1), and 𝒟ij = a
large number otherwise, so that these solute/solute interactions are negligible (recall the reciprocal
relationship between Kij and 𝒟ij).

How these fit into the BAND(J) program is shown in the BANDmap in Figure C.2. Before looking
at boundary conditions, note that equation 10 (or 2nm) relates to the fact that all concentrations add to
cT or ∑

k

xi = 1, (C.36)

and equation C.11 (or 2nm+ 1) is the electroneutrality equation.
The first-order equations each provide room for one boundary condition. For some equations,

backward differences are used to leave room for a boundary condition at the left. In the BANDmap
this is done for the material balances. The last of these, labeled R, calls for setting the concentration
of the limiting reactant (O2 in this example) at the electrode. (Here the electrode is at the left, and
the bulk solution is at the right. This is the reverse of that in the preceding example and Figure C.1.)
E represents a flux boundary condition for the other species, wherein this flux density is related by
Faraday’s law to that of the limiting reactant (which is still unknown at the beginning of the problem):

Ni =
si

sR
NR at x = 0. (C.37)
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Electrode Bulk

E1
2
3
4
5
6
7
8
9
10
11

Φ

Concentrations

Flux densities

Potential

H2O, OH–, CI–, Na+, O2

E
E
E

B
B
B

Φ

R

Material balances

Multicomponent diffusion

Backward differences

Forward differences

Electroneutrality
Particle fractions sum to 1

E Faraday’s law

R Limiting reactant at electrode

B Set bulk values of Cl–, Na+, O2

Φ Set bulk value of Φ 

Figure C.2 BANDmap for the effect of migration, using multicomponent diffusion equations. Reduction of O2
from a solution of NaCl.

The next four (or nm− 1) equations are written with forward differences. This provides room for
conditions of the concentrations of three species and the potential in the bulk. The other two bulk
values can be regarded as being set by the last two equations. (This could be a problem if one tries to
set the bulk concentration of a neutral species by electroneutrality. An alternative, like that used in the
preceding example, would be to specify all six values with the last six equations. This requires care to
make sure that the set values do actually satisfy equation C.36 and electroneutrality.)

The following computer program shows the heart of the program between the dashed lines, and
the really important equations, those which define values for G, are underlined. You can follow the
various values of j and equation numbers i, which determine which equations or boundary conditions
are specified.

c Transient, multicomponent migration and diffusion.
IMPLICIT REAL*8 (A-H,O-Z)
COMMON A(11,11),B(11,11),C(11,402),D(11,23),G(11),X(11,11)
:,Y(11,11),N,NJ
dimension cold(11,402),dif(7,7),z(7),s(7),ref(7),u(7),cin(7)

101 format (i4,a6,2el5.5,2f6.1)
102 format (4f8.4,A6)
99 READ *, n,cr0

if(n.le.0) stop
read 102, (U(i),dif(1,i),z(i),s(i),ref(i),i=2,n)
read *, mode,nj,Scm3

96 read *, (cin(i),i=2,n)
IF(CIN(2).LT.0.0) STOP
cin(n+1)=0.0
nm=n ! number of species, including the solvent
n=2*n+1 ! number of unknowns, including the potential
ctot=55.5d-3 ! mol/cm3
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cin(1)=ctot*1000.
do i=2,nm
Dif(1,i)=dif(1,i)*ctot ! mol/cm-s, Dli times total
concentration

Dif(i,1)=Dif(1,i)
cin(1)=cin(1)-cin(i) ! solvent concentration
enddo
do i=1,nm
do k=1,nm
if(dif(i,k).eq.0.0) dif(i,k)=1.d6 ! large value for solutes
enddo
enddo

c

h=6.0/dble(nj-1)
do j=1,nj ! initial values
do i=1,nm

c(i,j)=0.0 ! flux densities
c(nm+i,j)=cin(i)/ctot/1000. ! mole fractions

enddo
c(n,j)=0.0 ! potential

enddo
ref(1)=’ H20’

5

7

z(1)=0.0
s(1)=0.0
do i=1,nm
print 101, i,ref(i),dif(1,i)/ctot,cin(i),z(i),s(i)
enddo

jcount=0
jcount=jcount+1
j=0
do i=1,n

do k=1,n
x(i,k)=0.0
y(i,k)=0.0

enddo
enddo
j=j+l
do i=1,n

g(i)=0.0
cold(i,j)=c(i,j)
do k=1,n
a(i,k)=0.0
b(i,k)=0.0
d(i,k)=0.0

enddo
enddo

--------------------------------------------------------------------
g(n-1)=1.0 ! sum of mole fractions = 1
g(n)=0.0 ! electroneutrality
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do i=1,nm
g(n-1)=g(n-1)-c(nm+i,j)
b(n-1,nm+i)=1.0
g(n)=g(n)-z(i)*c(nm+i,j)
b(n,nm+i)=z (i)

enddo
if(j.gt.1) then ! material balances
do i=1,nm

g(i)=c(i,j)-c(i,j-1)
: -2.0*h*dble(j-1+j-2)/2.0*(c(nm+i,j)-c(nm+i,j-1))

b(i,i)=-1.0
a(i,i)= 1.0
b(i,nm+i)= 2.0*h*dble(j-1+j-2)/2.0
a(i,nm+i)= -2.0*h*dble(j-1+j-2)/2.0

enddo
else ! boundary conditions at electrode

g(nm)=0.0-c(nm+nm,j) ! zero concentration of limiting reactant
b(nm,nm+nm)=1.0

do i=1,nm-1
g(i)=s(i)/s(nm)*c(nm,j) -c(i,j) ! relate flux density
b(i,i)=1.0 ! to that of limiting reactant
b(i,nm)=-s(i)/s(nm)

enddo
endif

if(j.lt.nj) then ! multicomponent-diffusion equations
do i=1,nm-1
g(nm+i)=-(c(nm+i,j+1)-c(nm+i,j))/h

: -z(i)*(c(nm+i,j+1)+c(nm+i,j))/2.0*(c(n,j+1)-c(n,j))/h
d(nm+i,nm+i)= 1.0/h+z(i)/2.0*(c(n,j+1)-c(n,j))/h
b(nm+i,nm+i)=-1.0/h+z(i)/2.0*(c(n,j+1)-c(n,j))/h
b(nm+i,n)=-z(i)*(c(nm+i,j+1)+c(nm+i,j))/2.0/h
d(nm+i,n)= z(i)*(c(nm+i,j+1)+c(nm+i,j))/2.0/h
do k=1,nm
if (k.ne.i) then

g(nm+i)=q(nm+i)+(c(nm+i,j)*c(k,j)+c(nm+i,j+1)*c(k,j+1)
: -c(nm+k,j)*c(i,j)-c(nm+k,j+1)*c(i,j+1))*dif(1,3)/dif(i,k)/2.

b(nm+i,nm+i)=b(nm+i,nm+i)-c(k,j )*dif(1,3)/dif(i,k)/2.0
d(nm+i,nm+i)=d(nm+i,nm+i)-c(k,j+1)*dif(1,3)/dif(i,k)/2.0
b(nm+i,nm+k)=b(nm+i,nm+k)+c(i,j )*dif(1,3)/dif(i,k)/2.0
d(nm+i,nm+k)=d(nm+i,nm+k)+c(i,j+1)*dif(1,3)/dif(i,k)/2.0
b(nm+i,k)=-c(nm+i,j )*dif(1,3)/dif(i,k)/2.0
d(nm+i,k)=-c(nm+i,j+1)*dif(1,3)/dif(i,k)/2.0
b(nm+i,i)= b(nm+i,i)+c(nm+k,j )*dif(1,3)/dif(i,k)/2.0
d(nm+i,i)= d(nm+i,i)+c(nm+k,j+1)*dif(l,3)/dif(i,k)/2.0

endif
enddo

enddo
else ! boundary conditions at bulk
do i=3,nm+1

g(nm+i-2)=c(nm+i,j)-c(nm+i,j) ! set concentration or potential
b(nm+i-2,nm+i)=1.0

enddo
endif
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c
call band(j)
if(j.lt.nj) go to 7
nerr=0
do j=l,nj

do i=1,n
if(dabs(c(i,j)).gt.1.d-10*dabs(cold(i,j))

:.and. dabs(c(i,j)).gt.1.d-18) nerr=nerr+1
c(i,j)=cold(i,j)+c(i,j)

enddo
enddo

--------------------------------------------------------------------------
print *, nerr,’fluxes ’,(c(i,1),i=1,nm)
if(nerr.gt.0 .and. jcount.lt.30) go to 5
print *, ’ z OH- Cl- ’

:,’ Na+ O2’
print 999, (h*dble(j-1),ctot*1000.*c(7,j),ctot*1000.*c (8,j)

:,ctot*1000.*c(9,j),Ctot*1000.*c(10,j), j=1,nj
print *, ’solution number ’,jcount

999 format (fl0.3, 4fl5.6)
997 format (fl0.3, Ip3el5.7)

end

Figure C.2 gives a BANDmap showing how the governing equations and boundary conditions fit
into a BAND structure. This can be contrasted with that in Figure C.1. Here first-order equations are
programmed directly, with forward or backward differences being used so that the boundary conditions
can be fit in where appropriate.

Figure C.3 gives concentration profiles calculated by the program. This can be considered a solution
to Problem 11.4(b), and the student can see how the profiles relate to electroneutrality, migration and
diffusion of each species, and production or consumption, if any, in the electrode reaction.
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Figure C.3 Concentration profiles for reduction of O2 from a solution of NaCl, as calculated by the transient
multicomponent-diffusion program.
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C.7 DISCUSSION AND CONCLUSIONS

The procedure outlined here for solving coupled, nonlinear, difference equations by linearization and
subsequent iteration is quite general and flexible and has proved useful for a number of problems. For
special problems it may be possible to devise more efficient methods, but with a loss of generality and
an expense of effort.

Two other methods might occur to one faced with a problem of the type treated here. One is to
linearize and decouple the equations by taking the coefficients of the derivatives to be given by a trial
solution, for example, approximate c1dc2/dx by c∘1dc2∕dx. Then, the decoupled equations are solved
one after another in a cyclic process, producing new functions to be used as a trial solution. In general,
the convergence behavior is poorer than for the present method, although there are special problems
where the coupling is not strong and the method works.

A second method would be to treat the problem as an initial-value problem and to fabricate the
needed initial conditions. This method requires little storage space, but the adjustment of the added
initial conditions so as to satisfy the boundary conditions at x = L can be tricky or impossible.

The errors in the present method arise from three sources, as discussed earlier: convergence
errors for the nonlinear problem (which can be made negligibly small here), errors in the difference
approximations to the differential equations (which decrease with the mesh interval h), and round-off
errors in the computer (which increase as the mesh distance is decreased). Convergence may not
be possible if there are sharp variations of the unknowns in some region of x; in such a case a
singular-perturbation method may be appropriate.
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absorption coefficient, 499, 506
acceptor atom, 493, 494
activation energy, 172–173
activity

in a kinetic expression, 508
relative, 51

activity, absolute, 30, 55, 511
of an alloy, 35, 122

activity coefficient, 30–35, 41, 43–45, 47, 48, 50–59, 61,
66, 76, 78, 79, 81–104, 116, 118, 121–124, 127,
128–131, 133, 134, 156, 178, 283, 451, 489, 492,
509

of binary solution, 87, 91
composition dependence, 85
Debye–Hückel limiting law, 86–89
from Debye–Hückel theory, 45, 86–87, 135
effect of dissociation, 33–34, 61, 81, 97–98, 102
of electrons, 491, 491
of holes, 491, 492
ionic, 94, 121–122, 227, 244
mean ionic, 58
mean molal, 33–35, 89, 251
mean molar, 33, 34, 61, 102, 133, 251
measurement of, 52, 94–96
molar and molal relationships, 31, 34, 99
of multicomponent solution, 92–94
pressure dependence of, 58–59
and standard cell potential, 50–57

adsorption, 143, 148–151, 160–164, 203, 449, 477–478
adsorption-desorption reactions, 196, 449, 513
alloy, 37, 51, 122, 474

see also electrodes, alloy
alternating current, 518–519

Electrochemical Systems, Fourth Edition. John Newman and Nitash P. Balsara.
© 2021 John Wiley & Sons, Inc. Published 2021 by John Wiley & Sons, Inc.

amalgam, 37–38, 51, 108
annulus, 9, 9–20, 340–343, 345, 354–356
anode, 5

sacrificial, 379, 387–388
anodic protection, 193, 374, 388
apparent transfer coefficient, 6, 458–459
arsenic, 111, 478
AUTOBAND, 552–554

see also BAND(J)
Avogadro’s number, 84, 491, 494

backward-difference formula, 545
band, 490

bending, 495, 502–506, 513
conduction, 490–491, 498–499
valence, 490–491, 498–499

BAND(J), 545, 547, 550–551
see also coupled, linear, difference equations

battery, 1, 63, 65, 67, 245, 449–450, 452, 455, 465, 470,
472, 511

optimization, 465–471
reaction mechanisms, 463–464
simulation, 463–476

binary electrolyte, see electrolyte, binary
bisulfate ions, 96–98, 102, 409–413

see also dissociation
Boltzmann approximation, 492, 497
Boltzmann distribution, 81, 156, 256, 493, 500–501
boundary layer, 543
boundary-value problem, 543
Brønsted’s principle, 90, 93
Bruggeman equation, 467

567
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Butler–Volmer equation, 6, 169, 174, 183, 372, 453
see also kinetics

cadmium sulfide, 493, 512
calomel electrode, see reference electrode
capacitance at semiconductor-solution interface,

499–502
see also double-layer capacity

capacity, 467, 470
see also double-layer capacity

capillary action, 113
capillary tube, 146, 147, 205, 349, 354
carbon dioxide, 109, 111
catalyst, 352

for hydrogen dissociation, 110–111
poisoning, 111

cathode, 5, 18–20
cathodic protection, 377, 378, 379–380, 382, 382, 479

design graphs for, 383–384, 384, 385, 387
design spreadsheet for, 390
principles of, 375–389

cavity potential, see potential, cavity
cell, see electrochemical cell
cell potential, 18–20, 27, 36–37, 39, 43–44, 47, 62, 121,

128, 131, 273, 380, 467, 474
calculation of, 54–55
computation without transference, 36–38
computation with transference, 39–44
and equilibrium constants, 55–56
relationship to electrochemical potential, 36
single electrolyte with transference, 43
temperature dependence, 59–61
two electrolytes, 44–49

cell-sandwich model, 471–473
central difference formula, 544
central ion, 81
centrifugal field, 268
channel flow cell, 445
charge density, 72, 82, 144, 177, 205, 207, 241–242,

308–310
in a semiconductor, 493, 496, 500

charged membranes, 131–135
charge number, 3, 26

see also valence
charge separation, 3
charging processes, 84–85, 88–89, 99, 477–478
chemical formula, 27, 42
chemical potential, 27–29, 39, 47, 55, 58, 121–122,

136
of a component species, 93
of an electrolyte, 32–33, 42, 251
of a gaseous species, 35
relationship to electrochemical potential, 26, 32
thermodynamic definition of, 28
see also electrochemical potential

colligative properties, 31
collision, 75
complexes, 109, 113, 116
concentrated solution theory, 15, 249–263, 353–354,

472
binary electrolyte, 251–252

connection to dilute-solution theory, 256–257
example calculation, 257–259
in porous electrodes, 455
transport laws, 249–250

concentration cell, 15, 16, 40–44, 49–50, 62, 122–123,
253–255

see also transference, cell with
concentration profile, 40–45, 47–49, 124, 138, 257–259,

291, 292, 332, 344, 345, 356, 399, 405, 409,
473–474, 504, 124138

concentration, superficial, 450–451
conduction band, see band, conduction
conductivity, 39, 206, 232–233, 240, 253, 283, 289, 366,

372, 391, 410, 414, 451, 467
effective, 454, 458–459, 467, 482
electronic, 2, 8
ionic, 2, 9
metallic, 490, 493
mixed, 2
in multicomponent solution, 260
semiconductor, 490–491, 493
surface, 212, 216

conductor, see conductivity
conformal mapping, 367
conservation of charge, 233

in a porous electrode, 452, 455, 457
conservation of mass, 301

see also continuity equation
conservation of momentum, 302
continuity equation, 213, 264, 309, 312, 328

see also conservation of mass
continuous-mixture junction, 123, 124, 125–126
control-volume approach, 545
convection, 8, 12–15, 171, 229, 245, 327, 331–360, 367,

416, 471, 478–482
forced, 436, 543
free, 349–351, 353, 357, 404, 412
free and forced, 351–352
free, limiting currents for, 417–423
see also convective-diffusion equation
see also convective-transport problem
see also convective transport, simplifications for

convective-diffusion equation, 235, 272, 314, 331, 335,
352, 354, 357, 399

in porous electrodes, 456
see also convection

convective-transport problem, 323, 331–360, 399–400
see also convection

convective transport, simplifications for, 331–332,
352

convective velocity, 231
copper electrode, 9, 53, 168, 170–171, 175–176, 192, 195,

431, 441
corrosion, 167, 168, 193, 375, 377, 489, 512
corrosion, localized, 388–389
corrosion, pitting, 388, 412
corrosion potential, see potential, corrosion
coulombic forces, 28

and electroneutrality, 75
see also electric forces

Coulomb’s law, 71, 74
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coupled, 544
coupled, linear, difference equations

program for, 549–554
solution of, 547–549
see also BAND(J)

covalent forces, see specific interactions
cupric sulfate, 177, 275, 297, 402, 409–413, 418–422,

441, 443
curl, 308, 538
current, 1

anodic, 5
cathodic, 5
diffusion limiting, 402, 411
electric, 3
see also current density

current collector, 457, 467
current density, 3, 39, 41, 176, 206, 230, 327, 352, 366,

381, 388, 400, 439, 458, 467, 477
anodic, 119
and electrochemical potential gradient, 39, 260
steady state, 258–259, 291, 292
superficial, 451
surface, 212–213, 221–222
and surface overpotential, 6, 7, 119, 169–170

current distribution, 10, 352, 365–366, 368, 415, 441, 442,
458

below limiting, 435–446
limiting, 332–335, 340, 358, 399–424
and mass transfer, 348, 367
porous electrodes, 458
see also primary current distribution
see also secondary current distribution

current efficiency, 20
current, limiting, 242, 340, 345, 349, 351, 353, 357, 358,

359, 374, 379, 380, 399, 430, 441, 465, 480, 482,
505

correction factor for, 402–404
currents below, 435–447
effect of migration on, 399–425
effect of migration on, program for, 554–559
for free convection, 417–423

cylinder, rotating, 8–20, 192, 310, 347–349, 357, 416, 417

Debye charging process, 85, 99
Debye–Hückel approximation, 82, 163, 205, 206, 212,

213, 216
Debye–Hückel limiting law, 45, 86

substantiation by singular-perturbation, 88, 99
Debye–Hückel parameters, 86
Debye–Hückel theory, 76, 79, 81–83, 155, 256, 284, 511

activity coefficient from, 45, 86
ionic distributions from, 83
osmotic coefficient from, 87
potential due to central ion from, 83
shortcomings of, 87–89

Debye length, 82, 144, 159, 207, 496, 502
decomposition, 512
defects, 497, see also trap states
degeneracy, 493
density of states, 491, 491
density profile, 421, 422, 422

depletion, 493
diaphragm cell, 283, 297
dielectric constant, 71, 205
differential equations, 124
diffuse double layer, see double layer, diffuse
diffuse layer, see double layer, diffuse
diffuse layer capacity, 160, 163
diffusion, 8, 10–12, 38, 40, 61, 122, 124, 171, 229, 262,

342, 463, 471
multicomponent, 237–238
in semiconductors, 498–499
thermal, 268–270

diffusion coefficient, 234, 251, 286, 289, 353, 399, 400,
438, 450, 497

Stefan-Maxwell, 284–286, 289–290
see also Stefan-Maxwell equation
in a composite electrolyte, 295
binary electrolyte diffusion coefficient, 12, 235, 251
correction in porous electrodes, 454
integral, 296–297
measurement of, 283, 334, 349, 358
and mobility, 238–240
multicomponent, 284
polarographic, 297
species diffusion coefficient, 11, 230, 238, 286, 287
of supporting electrolyte, 236
thermal, 268
with thermodynamic driving force, 61–62, 251
see also friction coefficient

diffusion layer, 13, 67, 146, 146, 171, 193, 310, 331, 332,
338, 350, 352, 354, 356, 400, 403, 413–414, 419,
436–438

axisymmetric, 345–346, 437
in cylindrical geometries, 338, 342
equations, 438
in laminar forced convection, 344–345
two-dimensional, 344–345, 437, 439
see also Nernst diffusion layer

diffusion limiting current, see current, diffusion limiting
diffusion potential, see potential, diffusion
diffusivity

ionic, 12
thermal, 272

dilute solution theory, 15, 45, 79, 227, 229–231, 283, 327,
353, 429, 430, 494

connection to concentrated-solution theory, 256–257
in semiconductors, 494–498, 511
see also transport laws, dilute

dipole moment, 144, 163
discharge curve, 474, 475
discharge time, see time of discharge
disk electrode, 369, 369, 370–373, 423, 517, 519–526

see also rotating disk electrode
dispersion, axial, 454
dispersion coefficient, 454, 478
disproportionation reaction, 56, 113, 171
dissipation, 316–318
dissociation, 33, 61, 97, 234, 409, 420

see also bisulfate ions
divergence, 302, 537–539
divergence theorem, 73, 539
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Donnan equilibrium, 132
donor atom, 493
dopant, 493, 495, 501, 506
doping, 493, 502, 505
double layer, 143, 167, 230, 463, 494–495, 499, 544

effect on kinetics, 185–186
in porous electrodes, 449–450, 453, 477–478
potential difference due to, 171
qualitative description of, 143–148
structure of, 143–164

double-layer capacitor, 478
double-layer capacity, 152, 156–157, 160–161, 185, 396,

454, 477–478
in absence of specific adsorption, 160–161

double layer, diffuse, 143, 146, 146, 155–160, 167, 171,
186, 203–205, 215, 256, 502, 506

dropping mercury electrode, see growing mercury drops
Dufour effect, 268, 271
dust trap, 111
dyadic, 539

eddy diffusivity, 315, 316
eddy kinematic viscosity, 315
eddy viscosity, 312–313, 318
efficiency, see energy efficiency
electrical state, 28, 40, 76, 78–79, 494–497, 509, 511

variable, 494–497
electric field, 8, 72, 158, 204–205, 229, 308, 399, 402, 505
electric force, 71–73, 81–83, 144, 148, 203–204, 221,

240, 302, 307–310
magnitude of, 307–310

electrocapillary curve, 119, 153, 160
electrocapillary maximum, 155

see also potential, of zero charge
electrocapillary phenomena, 141, 221–225, 304
electrochemical cell, 2, 44, 48, 68, 137
electrochemical potential, 4, 25–69, 75, 78, 121, 128, 136,

167, 242, 249, 267, 494
of an ion in a junction region, 42, 48
of a component species, 39, 48, 78, 243
of electrons and holes, 497–498, 510
of electrons in cell leads, 37
of electrons in metals, 494
gradient of, as driving force, 242, 249, 498–499
Guggenheim definition of, 28
in quantum mechanical terms, 27
relationships for chemical reactions, 36–37
relationship to chemical potential, 26, 32
in a semiconductor, 499
thermodynamics in terms of, 25–69
variation in a junction region, 40
see also chemical potential

electrochemical reaction, 2
electrodes, 2, 36, 37, 39, 43, 365, 367, 414

alloy, 464
see also alloy

with films, 464
intercalation, 464

see also intercalation

porous, see porous electrode
of the second kind, 108, 114, 123, 125
semiconductor, 489–514
semiconductor, overview and applications of, 489–490

see also semiconductor
solution, precipitation, 464
see also ideally polarizable electrode
see also reference electrodes

electrodialysis, 131
electrokinetic phenomena, 203–218, 303, 309

see also kinetics
electrolyte, 2, 32, 39, 50, 81

chemical potential of an, 32
concentrated, 353–354
potential of cell with single, 36–44
potential of cell with two, 44–50
weak, 96–98

electrolyte, binary, 8, 41, 50, 271, 274, 309, 438, 472
activity coefficient of, 89–92
analogy to semiconductors, 497–498
concentration overpotential in, 429–430
thermal effects, 268, 277–278
thermodynamics, 32–35, 40–44, 89–92
transport, concentrated, 251–252, 353–354
transport, dilute, 233–235, 357, 418, 440
see also solution of a single salt

electrolyte, indifferent, see electrolyte, supporting
electrolyte, supporting, 14, 62, 135, 236–237, 350, 357,

416, 438, 481
concentration overpotential with, 430
concentration variation of, 404–409
paradoxes with, 413–417
reasons for use, 415

electrolytic cell, 5
electrolytic solution, 37
electromotive force, 511
electron, 490, 495, 498, 502, 510

as species, 491–493, 506
electroneutrality, 3, 75, 92, 100, 152, 161, 234, 238,

242, 249, 260, 302, 327, 366, 400, 407, 411, 438,
495

accuracy of, 230
and Laplace’s equation, 240–242
in a porous electrode, 452
see also electric forces, magnitude of

electro-osmosis, 205, 208, 209
electrophoresis, 204, 213–215, 217, 221–223
electrophoretic velocity, 215, 217, 221, 223
electroplating, 358, 370, 391
electropolishing, 109
electrostatic potential, see potential, electrostatic
elementary step, 170, 173, 175
energy, 27

see also free energy
see also internal energy
see also thermal energy

energy efficiency, 20
energy gap, 490–491, 499
energy states, 490–493
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enthalpy, 52, 60, 509
and chemical potential, 28
of mixing, 94
partial molar, 95, 272

enthalpy potential, see potential, enthalpy
entropy, 28, 52, 59–60, 150–151, 509

partial molar, 268, 273
equation of motion, 305, 312

see also Navier–Stokes equation
equation of state, 64
equilibrium, see phase equilibrium
equilibrium constant, 55–57, 97, 180, 509
equilibrium potential, see potential, equilibrium
equivalent conductance, 239, 239, 285
exchange current density, 6, 169, 174–175, 371, 391, 439,

441, 460, 462, 484

faradaic, 453
faradaic reaction, 167, 185
Faraday’s constant, 3
Faraday’s law, 3, 167, 328, 378, 479, 480

in a porous electrode, 453
Fermi–Dirac distribution, 490, 492–493, 497

in solution, 510
Fermi energy, see Fermi level
Fermi level, 491–494, 500
ferricyanide-ferrocyanide, see redox couple
finite-difference methods, 374

convergence over nonlinearities, 546–547
errors in, 544–546

fixed charge, 493, 496
flat band potential, 500–502
flat plate, see plane electrode
flow-by system, 478
flowing junction, 123
flow-through electrochemical reactors, 478–482

design concerns and principles, 478–479
design equation, 480, 481
schematic, 481
see also electrode, porous, flow-through

fluctuations, 311, 315, 343
fluid mechanics, 214, 249, 301–325, 522, 538
flux, 8, 229
flux density, 9, 11–13, 229, 251, 301, 400, 479

of a dilute solute in a pore, 454
due to convection, 12
due to diffusion, 11, 229
due to migration, 9
net flux density, 12, 229
pore-wall, 451
superficial, 454

forced convection, see convection, forced
forward-difference formula, 545
free and forced convection, see convection, free and

forced
free convection, see convection, free
free diffusion, 124
free-diffusion junction, 122, 125–127
free energy, 27

electrical contribution to, 84–87
Gibbs, 4, 28, 60, 79
Gibbs, for multicomponent dilute solutions, 92,

100–102
Gibbs, of formation, 59
Helmholtz, 28, 84
relationship to chemical potential, 85
standard Gibbs, 508

freezing-point depression, 33–34, 94
friction coefficient, 249

see also interaction coefficient
Frumkin correction, 195, 510
fuel cell, 59–61, 449, 511
fugacity, 35, 52, 64, 121, 128, 376
fundamental equations, 327–329

gallium arsenide, 493, 498, 511–512
galvanic cell, 5
Galvani potential, see inner potential
galvanized steel, 387
galvanostat, 4
gap energy, see energy gap
gaseous species, 35, 121–122
Gauss’s law, 73, 82, 494, 509, 540
generation, 498–499, 504, 506
Gibbs adsorption isotherm, 148–151
Gibbs–Duhem equation, 31, 35, 42, 86, 102, 150, 250, 254
Gibbs free energy, see free energy
Gibbs interface, 164

see also Gibbs surface
Gibbs invariant, 149
Gibbs surface, 149

see also Gibbs interface
Goldman constant-field equation, 124
Graetz functions, 337
Graetz problem, 335–340
Graetz problem, Lévêque solution, 338–340, 345
Grashof number, 350–352, 418
growing mercury drops, 349, 353–354, 399–401, 409,

412, 414, 423
see also polarography
see also reference electrode, mercury-containing

Guggenheim condition, 32
Güntelberg charging process, 85

half-cell, 2, 55
heat capacity, 60
heat conduction, 270–272, 366
heat conservation, 270–272
heat flux, 270–271, 366

see also thermal flux
heat generation, 60, 270–272

at an interface, 272–274
irreversible, 456
reversible, 456

heat of transfer, 274, 279
heat transfer, 267, 270–272
Helmholtz free energy, see free energy
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Helmholtz plane
inner, 146, 146, 171, 497, 502, 503, 504, 506–507
outer, 146, 146, 164, 171, 503, 504, 507

Henderson formula, 124
heterogeneous reaction, 3, 167–168
Heyrovský reaction, 178, 184
Heyrovský–Volmer mechanism, 180–185
Hittorf measurement, 50–51, 283
hole, 489, 492, 495, 498, 502, 510

as species, 491–493
homogeneous reaction, 230, 409, 498–499
Hull cell, 393–394
hydrodynamic flow, 203
hydrogen electrode, see Heyrovský reaction

see Heyrovský–Volmer mechanism
see reference electrodes
see Tafel reaction
see Volmer reaction

hydrogen evolution, 193, 402, 444
hydrogen fluoride, 114

ideal-gas state, 64
ideally polarizable electrode, 117, 145, 146, 151–155,

204, 213, 221, 222, 497, 499, 502
see also Lippmann equation

Ilkovič equation, 349, 401
illumination, 496, 502, 504
image point, 545
immobile charge, 500
impedance, 517–533
impedance spectroscopy, 527
impurities, 52, 108, 111, 115, 187, 404, 490
indifferent electrolyte, see electrolyte, supporting
infinite dilution, 96, 497
inner potential, 76

see also potential, inner
inner shell electrons, 490
insertion, 451–452

see also intercalation
insulator, 366, 367, 436, 490
interaction coefficient, 249

see also friction coefficient
intercalation, 451–452

see also electrode, intercalation
see also insertion

interface dynamics, 221–222
interfacial force balance, 303–304
interfacial tension, 148–151, 153, 221–222, 303

see also surface tension
interfacial velocity, 297, 544
intermolecular forces, 74–76
internal energy, 28
interrupter, 17, 192, 427
inversion, 501–502
iodate, reduction of, 353
ion cloud, 83, 88
ionic distributions in dilute solutions, 81–83

from Debye–Hückel theory, 83
ionic size, 81–83, 89, 158

ionic species, 30
see also species

ionic strength, 45, 85, 411
“true,” 98, 412

ionization level, 493
isopiestic measurement, 95

Joule heating, 271–272
junction region, 38, 41, 121–139, 262

electrochemical potential gradient of an ion in a, 40, 42
between metals, 494
potentials of cells with a, 121–139
semiconductor-electrolyte, 499
between semiconductors, 495
transport processes in, 39–40
types of, 122–123
see also liquid junction
see also transition region

kinetics, 6, 141, 167–201, 376
anodic and cathodic rate, 6, 172
Butler–Volmer, 6, 169

see also Butler–Volmer equation
generalized interfacial, 506–509
linear, 169, 370, 461
models for, 170–185

see also polarization
of semiconductor electrodes, 509–510
Tafel, 6, 7, 169, 370–371, 394, 442, 459–461

see also Tafel approximation
see also Tafel plot
see also Tafel slope

see also kinetics, electrode
see also polarization equation

kinetics, electrode, 328–329, 370, 461
see also kinetics
Kramers-Kronig, 528–530

laminar flow, 310, 346, 352
Laplace’s equation, 73, 213–214, 222, 233, 365–367, 370,

374, 381, 403, 427, 435–437
and electroneutrality, 240–242

Laplacian, 539
lead-acid cell, 254–255, 449, 464, 471, 511

see also battery
lead sulfate, 62, 117–118, 245, 431
Lévêque solution, see Graetz problem, Lévêque solution
Lighthill transformation, 352, 401
limitations of surface reactions, 352–353
limiting current, see current, limiting
Lippmann equation, 151–155, 156, 161, 223
liquid junction, cells with, 40, 46, 77, 96, 108, 119, 122,

128–129, 137, 260
see also junction region
see also potential, liquid-junction
see also transition region

liquid-junction photovoltaic cell, 503
see also solar cell
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liquid-junction potential, 40–41, 108, 116, 119, 121–139,
227, 238, 262, 456

correction for in reference electrodes, 116
error due to neglect of, 108
formulas for, 123–124
see also potential, of a cell with liquid junction

lithium alloy, iron sulfide cell, 471, 472, 473–476
lithium cell, 49, 294, 452, 464, 467, 471–476
lithium-ion cell, 464, 471

macroscopic theory, 79, 148, 167, 186, 204, 231, 450
magnetic force, 73, 302
majority charge carrier, 501
Marangoni effect, 222
mass and momentum balances, 301–302
mass transfer, 236, 296–297

and current distribution, 349–350
in turbulent flow, 314–316

mass-transfer coefficient, 479
mass transfer rates, 193, 314–316, 331–354

see also current, limiting
material balance, 230, 249, 252, 479

for a solute species at an interface, 453
Maxwell relations, 161
Maxwell’s equations, 72
membranes, 116, 131, 264
mercuric oxide, 44, 62, 96, 114
mercurous salts, 112–114
mercury-containing electrodes, see reference electrodes
microscopic theory, 79, 148, 167, 186, 231
migration, 8–12, 229–233, 353–354, 365, 399–426, 471

effect on limiting currents, 399–426, 438
effect on limiting currents, program for, 554–559
migration velocity, 229
in semiconductors, 498–499

minority charge carrier, 498–499, 501
mixed potential, see potential, mixed
mobility, 9, 229, 327

and diffusion coefficient, 238–240
models for, 170–185
moderately dilute solutions, 242–244
molal ionic strength, see ionic strength
molality, 30, 251
molar ionic strength, see ionic strength
molarity, 31
momentum density, 301
Mott–Schottky plot, 501, 502
moving boundary measurement, 50, 283
multicomponent diffusion, see multicomponent transport
multicomponent diffusion equation, 249, 268
multicomponent solution

activity coefficients in, 92–94
Gibbs free energy of, 92

multicomponent transport, 259–262, 295
program for, 559–564

Navier–Stokes equation, 203, 213–214, 223, 303, 328
see also equation of motion

n-doped semiconductor, 493, 495
Nernst diffusion layer, 193, 241, 401, 413–417, 423

see also diffusion layer
Nernst–Einstein relation, 21, 238, 239, 250, 256, 263,

405, 429
Nernst equation, 4, 47, 63, 65, 121–122, 135, 174–175,

177–179, 182, 508
error in, 129–131

nerve impulses, 131
Newman number, 258
Newton–Raphson method, 546
Newton’s law of viscosity, 311
nickel/metal hydride cell, 452
nonaqueous solutions, 37, 45, 107, 112, 114, 116
numerical solution of differential equations, 543–565

see also finite-difference methods
Nusselt number, 336, 339, 340, 341–343, 346, 348,

350–351, 356, 418

ohmic drop, 15–16, 342, 352–353, 399, 415, 427–429,
435, 437–439, 441, 449, 459, 465, 480

Ohm’s law, 8, 10, 39, 232, 241, 270, 436, 454, 457, 461,
462, 479, 481

Onsager reciprocal relation, 206, 250
open-circuit potential, 4, 39, 66–67, 136, 168, 178, 193,

276, 388, 453, 464, 467, 505, 509, 511
and activity coefficient, 95–96
and current density, 39
see also potential, equilibrium

osmotic coefficient, 34, 61
of binary solution, 89
from Debye–Hückel theory, 87
measurement of, by vapor pressure, 95
of multicomponent solution, 92–93
of single electrolyte solution, 34–35

outer potential, see potential, outer
outer shell electrons, 490
overpotential, 3, 376, 387, 443
overpotential, concentration, 15–17, 18, 352, 427–433,

435, 474
of a binary salt, 20
calculated values of, 430, 431
definition of, 427–429

overpotential, surface, 6, 7, 108, 119, 168–170, 174–180,
181, 182, 183, 273, 328, 352, 366, 370, 435, 453,
511

and Gibbs energy change, 79
sign of, 18, 168

overpotential, total, 177, 352, 438–439, 444
oxidation, 2, 377
oxidizing agent, 375
oxygen, 108, 111, 113, 115, 170, 193–195, 245
oxygen electrode, 57, 62, 170, 187–191, 375–380, 380

surface species, 190

partial molar volume, 58–59
of electrolyte in infinitely dilute solution, 100
relationship to density, 535–536
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passivation, 170, 196, 388–389
p-doped semiconductor, 493, 495
Péclet number, 336, 436, 479
Peltier coefficient, 273, 278
Peltier heat, 273, 277
penetration depth, 463, 482
penetration model, 400, 543
permittivity, 71, 240
perturbation, 88, 99, 237, 241, 435–436, 521–523,

526–527, 565
pH, 57, 68, 131, 194, 375–377, 378, 380, 415

and hydrogen electrodes, 111
and reference electrodes, 109

phase equilibrium, 25–27, 36, 38–40
general mathematical description of, 42

photoresponse, 499
pill box, 73
pipe, 335–340, 345, 356

see also Graetz problem
see also Poiseuille flow

pitting corrosion, see corrosion, pitting
plane electrode

effect of migration, 399–404
forced convection, 340–343, 346–347, 354–356
free convection, 349–351, 353, 417–423

point of zero charge, 147, 147, 162
see also potential, of zero charge

Poiseuille flow, 210, 310, 335, 445
Poisson–Boltzmann equation, 88, 99
Poisson’s equation, 72, 82, 89, 156, 204–205, 240–241,

494–495, 500
polarization, 3, 365, 370–373, 435, 463, 475
polarization equation

in a porous electrode, 452, 458, 472, 479
see also kinetics

polarography, 195, 354, 402
see also growing mercury drops

polymer electrolytes, 49–50, 286–295
pore-wall flux density, see flux density, pore-wall
porosity, 450, 464–466, 470, 471–475
porous electrode, 449–488

advantages of, 449
capacitive processes in, 453–454
continuity equation, 456
convective-diffusion equation, 456
double-layer charging and adsorption, 477–478
flow-through, 450, 478–482

see also flow-through electrochemical reactors
impedance, 519, 526–528
macroscopic description of, 450–457
mass transfer, steady, 462–463
mass transfer, transient, 463
material balance for insertion electrodes, 451–452
material balance for solutes in, 451
nonuniform reaction rates, 457–462
structural changes, 464–465
thermal behavior of, 456
thickness and porosity optimization, 465–466
transport processes in, 454–455

potential, 3, 9, 50, 124, 167, 234, 253–255, 255, 365
see also overpotential
of batteries, 466
cavity, 494, 509, 512

see also potential, outer
cell, see cell potential

see also chemical potential
of a cell with liquid junction, 41–50
of cells with junction regions, 41–50, 121–139
chemical, see chemical potential
corrosion, 193
cutoff, 466, 468
diffusion, 15, 16, 232–234, 237, 409, 424, 428, 430,

462
due to central ion, from Debye–Hückel theory, 82
electric, 25–29, 71–80, 270, 272
electrochemical, see electrochemical potential
electrostatic, 71–73, 137, 138, 148, 497, 511
electrostatic, measurability of, 78
enthalpy, 59, 277
equilibrium, 4, 119, 168, 174, 193, 377, 474

see also open circuit potential
equilibrium, and reference electrodes, 107
Galvani, see potential, inner
half-wave, 194
inner, 76
liquid-junction, see liquid-junction potential
of mean force, 88
mixed, 193
outer, 76, 116
in a porous electrode, 456, 461
profile of a lithium symmetric cell, 291, 293
proper definition of, 78, 509
quasi-electrostatic, 78, 122, 123, 128, 162, 243, 254,

262, 511
reference electrode, 77, 107, 116–119, 253–255
relative to a given reference electrode, 116–119
sedimentation, 215–217, 221, 224
standard cell, 45, 51–54, 62–63, 66, 96, 122, 135, 179
standard cell, and activity coefficients, 50–57
standard electrode, 53, 54, 68, 118, 136
streaming, 205, 210, 212, 217
surface, 76
thermal neutral, 60, 277
thermodynamic, see potential, equilibrium
Volta, see potential, cavity
of zero charge, 147, 147, 153, 162
zeta, 204, 204, 211, 215

potential distribution, 241, 365–389, 461
across ideally polarizable electrodes, 145
across phases, 511–512
metal-metal, 494
n–p semiconductor, 495, 511–512
semiconductor under illumination, 502, 511–512

potential theory, applications of, 365–398
potential-theory problem, 324

simplifications for, 366–367
potentiostat, 4
Pourbaix diagram, 57, 68, 375, 376, 376–377
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pressure, 302
dynamic, 302, 308
effective pressure of hydrogen gas, 112
hydrostatic, 302
thermodynamic, 302

primary current distribution, 192, 348, 365–373
see also current distribution
see also primary potential distribution

primary distribution, 367–369
secondary distribution, 373
stagnant solution, 400–403

primary potential distribution, 365, 367–371
see also primary current distribution

primary reference state, 30, 32, 509
probability of occupancy, 492
pulsed plating, 359

quantum-mechanical energy states, 490
quasielectrostatic potential, see potential,

quasielectrostatic
quasi-Fermi level, 497, 512

Ragone plot, 470, 471
Raman spectra, 97
rate constant, 172, 183, 508
reaction, 27, 42, 175

see also elementary step
see also simple reaction

reaction order, 172, 175
reaction rate, see kinetics
reaction zone, 465–466, 466, 469, 474
reactions, simultaneous, 57, 193–195
recombination, 498, 506
rectifier, 379, 381, 383–386
redox couple

Fermi-level, 510
ferricyanide-ferrocyanide, 54, 239, 404, 404–405, 420,

422, 510, 512
semiconductor kinetics, 509–510

redox reaction, 172, 402–409, 419–423, 432, 444
reduction, 5
reference electrode, 5, 19, 36, 42, 107–120, 168, 253, 366,

427
calomel, 112–114, 135, 162
calomel, role of dissolved oxygen in, 113
copper/copper sulfate, 377, 380
criteria for, 107–109
experimental factors affecting selection of, 109
of a given kind, 196, 456
hydrogen electrode, 43, 52, 57, 110–112, 137, 178
impurities in, 108
liquid-junction potentials and, 108
mercury-containing, 44, 62, 96, 112–114, 143, 222,

255, 297
see also growing mercury drops
see also reference electrode, calomel

non-idealities in, 107–109
potential of, 77, 253

potentials relative to, 116–120
of the second kind, 108, 114, 123, 124
silver–silver halide, 43, 114–116, 137
reference state, 28, 45, 51
see also primary reference state
see also secondary reference state

resistance, 368
kinetic, 18
ohmic, 10

resistivity, 8
resistivity, volume-average, 450
restricted diffusion, 126
restricted-diffusion junction, 122–123, 125–127
reversible heat, 273
Reynolds number, 307, 335, 341, 343, 346, 348, 351, 479
Reynolds stress, 312–313

see also turbulent momentum flux
rotating cylinder, see cylinder, rotating
rotating disk electrode, 297, 304–307, 332–335, 345, 353,

357–358, 395, 400, 402, 405, 411, 412, 413, 430,
440–444, 518

dimensionless mass-transfer rates, 334
see also disk electrode

rotating ring-disk electrode, 391
roundoff error, 545

sacrificial anode, see anode, sacrificial
Schmidt number, 297, 310, 332, 334, 340, 343, 346, 348,

350–351, 356, 400, 418, 437, 479
Schwarz–Christoffel transformation, 367, 368
second virial coefficient, 64
secondary current distribution, 370–374

see also current distribution
secondary reference state, 30, 51, 58, 64, 96, 497

for an alloy, 35–37
relationship between molar and molal, 31, 118
for a single electrolyte, 32–33
for a species in solution, 31, 52, 58

sedimentation potential, see potential, sedimentation
Seebeck coefficient, 273
semiconductor, 490–491, 494

analogy to binary electrolyte, 497
nature of, 490–499

semiconductor electrodes, see electrodes, semiconductor
shear stress, 221, 418
short-range specific interaction force, 75
side reaction, 168, 464, 479, 480, 482
similarity transformation, 124
simple reaction, 170–171, 175–178
simultaneous reactions, see reactions, simultaneous
slip velocity, 203–205, 204, 216
sodium/sulfur cell, 467
solar cell, 489, 502–506
solid electrolyte interphase, 464
solubility product, 44, 46, 56, 64, 125
solution of a single salt, 283–286

see also electrolyte, binary
Soret coefficient, 268, 296, 271
Soret coefficient, practical, 275
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Soret effect, 268
space charge

due to surface states, 497
modified by polarization, 497
in a solar cell, 502

sparingly soluble salt, 37, 44, 46
species, 2, 26, 491

chemical potential of a, 93
electrochemical potential of a, 78
electrons and holes as, 491–493
ionic, 33

specific adsorption, 161
see also Gibbs adsorption isotherm

specific energy, 467–468, 469
specific interactions, 148

see also specific adsorption
specific interfacial area, 451
specific power, 471
sphere, 345, 349
stability, hydrodynamic, 310
standard cell potential, see potential, standard cell
standard electrode potential, see potential, standard

electrode
Stanton number, 315
Stefan–Maxwell equation, 250
stoichiometric coefficient, 3, 27, 42
Stokes–Einstein relationship, 240
Stokes’s law, 224
Stokes’s theorem, 540
streaming current, 211–212, 217
streaming potential, see potential, streaming
stress, 302

boundary conditions on, 303–304
in a Newtonian fluid, 302–303
see also Reynolds stress
see also shear stress

Sturm–Liouville system, 337
sulfate electrodes, 55, 62, 113, 117, 245, 255, 255, 432
sulfur compounds, 111, 115
superficial concentration, see concentration, superficial
supporting electrolyte, see electrolyte, supporting
surface charge density, 73, 152, 186, 453
surface concentration, 148, 153, 162, 405, 406, 407, 413,

414, 416, 421, 439, 442, 453
see also surface excess

surface conductivity, see conductivity
surface current density, see current density, surface
surface excess, 163, 453

see also surface concentration
surface state, 490, 504, 506, 507
surface tension, 143, 149, 151, 153, 164, 222

see also interfacial tension
surface transport properties, 212
surface treatment, 109
surface viscosity, 222
symmetry factor, 172, 510

Tafel approximation, 459–461
Tafel kinetics, see kinetics, Tafel

Tafel plot, 7, 8, 176, 180, 181, 183, 461
Tafel reaction, 178, 184
Tafel slope, 8, 180, 195, 461, 462, 510

double, 461, 462, 484
Taylor vortices, 347, 347, 348
tensors, see vectors and tensors
thermal conductivity, 271, 366
thermal diffusion, see diffusion, thermal
thermal energy balance, 272

in a porous electrode, 457
thermal flux, 272

see also heat flux
thermal generation-recombination, 498
thermocouple, 277–278
thermodynamic data, 395
thermodynamic functions, definition of, 30–35
thermodynamic measurement, see activity coefficient,

measurement of
thermodynamics, 3, 27–28, 30, 508–509

electric potential in, 78–80
of interfaces, 148–151
in terms of electrochemical potential, 25–70, 121

thermoelectric coefficient, 275
thermoelectric effect, 270, 275
thermogalvanic cells, 274–276
time of discharge, 467, 470
tortuosity, 454

of a composite electrolyte, 292
transfer coefficient, see apparent transfer coefficient
transference, 36

cell with, 40
see also concentration cell

cell without, 25, 36–39
transference number, 11, 38–45, 50, 129, 131, 232–233,

283, 414, 441
binary electrolyte, 12, 235, 238, 251
dependence on reference velocity, 252, 263
multicomponent, 261
polymer electrolyte, 286–290

in a composite electrolyte, 295
ideal, 259, 287–289, 295
negative, 290–291

transition region, 38, 40, 44, 47, 130
see also junction region
see also liquid junction

transpassive region, 170, 170
transport, 8–15, 31, 39–40, 51, 227–321
transport laws, dilute, 229–231, 327–328
transport number, 39
transport properties, 250, 283–300, 354

number of, 295–296
types of, 295–296
see also conductivity
see also diffusion coefficient
see also diffusivity
see also mobility
see also Soret coefficient
see also surface transport properties
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see also transference number
see also viscosity

trap state, 490, 497, 498, 508
tridiagonal matrices, 124, 547
turbulent flow, 310–314, 343, 347, 352
turbulent momentum flux, 311

see also Reynolds stress
turbulent natural convection, 350

universal velocity profile, 312, 313

vacant sites, 508
valence, 84

see also charge number
valence band, see band, valence
vapor pressure, 33, 50, 54, 60, 95
varying concentration, cell with, 40–49
vectors and tensors, 537–541
velocity fluctuation, 311
velocity, mass-average, 252–253
velocity, molar-average, 252–253
velocity, reference, 252–253
velocity, slip, 204

velocity, volume-average, 253, 455–456
viscosity, 205, 240, 285, 302, 541, 544

kinematic, 303
viscous dissipation, 270, 272
viscous momentum flux, 311
Volmer reaction, 178–179, 184
Volmer–Tafel mechanism, 178–180, 185
Volta pile, 1–2
Volta potential, see potential, outer
volumetric flow rate, 205, 212
von Kármán transformation, 306, 309
vorticity, 538

Wagner number, 372–373
Warburg impedance, 526
wedge effect, 113
work function, 494–495
work to move charge, 28, 84
working electrode, 36, 167, 196, 366

zero charge, point of, 147, 153
see also potential, of zero charge

zeta potential, see potential, zeta
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