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ABSTRACT 

 

Temperature-programmed desorption (TPD), reduction (TPR) and oxidation (TPO) are 

thermoanalytical techniques for characterising chemical interactions between gaseous 

reactants and solid substances. The data collected by these techniques are commonly 

interpreted on a qualitative basis or by utilising simple, approximate kinetic methods. 

However, temperature-programmed techniques can also be regarded as transient response 

techniques and the experimental data can be utilised for dynamic modelling. This work 

comprises case studies on kinetic analysis of TPR, TPD and TPO related to the 

characterisation of heterogeneous catalysts. The emphasis is on methodological aspects and 

on assessing the potential of temperature-programmed data as a source of kinetic 

information. 

 

Kinetic analysis was applied to the TPR results for series of alumina-supported chromium 

oxide and vanadium oxide catalysts. Hydrogen was used as the reducing agent. Different 

kinetic models were tested against the experimental data and parameters were estimated. The 

chromium oxide and vanadium oxide contents of the catalysts were clearly reflected in the 

reduction behaviour and in the best-fit kinetic models and their parameters. The kinetic 

results suggested that reduction takes place via a topochemical mechanism, as growing 

domains, on both supported chromium and supported vanadium oxide catalysts with close to 

monolayer content.   

 

The interaction of hydrogen with a commercial nickel catalyst was studied in TPD 

experiments under continuous flow and ambient pressure. A model to account for the 

heterogeneity in the chemisorption interaction and for the readsorption was formulated and 

tested against experimental data. The heterogeneity was described by introducing a sufficient 

number of different adsorption states. The rapid readsorption occurring during TPD was 

taken into account by describing the intrinsic dynamics of an adsorption state as a quasi-

equilibrium adsorption/desorption between the gas phase and the surface. A model with two 

adsorption states of hydrogen was able to describe the experimental data with physically 

acceptable parameters in the temperature range of 323–673 K.  
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The regeneration kinetics of a deactivated cracking catalyst was investigated on the basis of 

the experimental evolution rates of carbon monoxide and carbon dioxide during TPO. 

Different kinetic models were tested and kinetic parameters were estimated. A power-law 

kinetic expression with orders unity and 0.6 for coke and oxygen, respectively, was capable of 

describing the experimental data.  

 

In each case study, a phenomenological model was established and the kinetic parameters of 

the model were determined via nonlinear regression analysis in MATLAB® environment. 

The results demonstrate that common catalyst characterisation data on reduction, desorption 

and oxidation collected in the temperature-programmed mode can fruitfully be subjected to 

detailed kinetic analysis. Mechanism and parameter identifiability require diversity in the 

experimental data, which can be achieved, for example, by applying multiple heating rates in 

experiments. Kinetic analysis extends the interpretability of temperature-programmed 

reactions in catalyst characterisation and it is potentially useful for the elucidation of 

fundamental reaction mechanistic information and establishing kinetic models for 

engineering applications. 
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TIIVISTELMÄ 

 

Lämpötilaohjelmoitu desorptio (TPD), pelkistys (TPR), ja hapetus (TPO) kuuluvat termo-

analyyttisiin menetelmiin kaasu-kiinteä aine -vuorovaikutusten karakterisoimiseksi. Näillä 

menetelmillä kerättyä koeaineistoa on perinteisesti tulkittu kvalitatiivisesti tai yksinkertaisten 

likimääräisten kineettisten menetelmien avulla. Lämpötilaohjelmoituja karakterisointimene-

telmiä voidaan kuitenkin pitää transienttikineettisinä menetelminä, joiden koetuloksia 

voidaan hyödyntää dynaamisessa mallituksessa. Työ koostuu heterogeenisiin katalyytteihin 

liittyvien lämpötilaohjelmoitujen desorption, pelkistyksen, ja hapetuksen kineettisistä 

analyyseistä. Painopiste on menetelmällisissä näkökohdissa ja koetulosten kineettisen hyö-

dynnettävyyden arvioinnissa.  

 

TPR-osassa tutkittiin alumiinioksidikantajallisten kromi- ja vanadiinioksidien vety-

pelkistyksen kinetiikkaa. Erityyppisten kineettisten mallien yhteensopivuutta koetulosten 

kanssa testattiin ja kineettiset parametrit estimoitiin regressioanalyysillä. Katalyyttien kromi- 

ja vanadiinioksidipitoisuus olivat ratkaisevia pelkistysreaktiossa, ja tämä myös ilmeni reaktio-

nopeutta parhaiten kuvaavissa malleissa ja niiden parametrien arvoissa. Saadut tulokset 

viittasivat topokemialliseen pelkistysmekanismiin sekä kromi- että vanadiinioksidikatalyy-

teillä, joissa katalyyttistä ainetta oli likimain monokerros. Kineettisten tulosten perusteella 

oksidikerroksen pelkistys etenee tällöin tiettyjen alkukohtien ympärille kasvavina alueina. 

 

Vedyn vuorovaikutusta kaupallisen nikkelikatalyytin kanssa tutkittiin TPD-kokeilla virtaus-

systeemissä normaalipaineessa. Koetulosten analyysiä varten kehitettiin malli, joka ottaa 

huomioon heterogeenisuuden kemisorptiovuorovaikutuksessa ja desorboituneen vedyn 

takaisinadsorption TPD:ssä. Heterogeenisuus kuvattiin tarvittavalla määrällä erityyppisiä 

adsorptiotiloja. Nopea takaisinadsorptio otettiin huomioon kuvaamalla kunkin adsorptiotilan 

adsorptio-desorptio -dynamikka kvasitasapainona pinnan ja kaasufaasin välillä. Sovitettaessa 

mallia koeaineistoon todettiin kahden adsorptiotilan riittävän selittämään havainnot. 

Estimoidut adsorptioparametrit olivat fysikaalisesti järkevää suuruusluokkaa.   

 

Deaktivoituneen krakkauskatalyytin regeneroinnin kinetiikkaa tutkittiin TPO-koejärjestelyllä 

hiilidioksidin ja hiilimonoksidin muodostumisnopeuksien mittauksien perusteella. 

Erityyppisiä kineettisiä malleja testattiin ja niihin liittyvät parametrit kummankin oksidin 
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muodostukselle estimoitiin. Kertalukumalli, joka oli kertalukua yksi koksin ja kertalukua 0,6 

hapen suhteen, kuvasi hyvin koeaineistoa.       

  

Kaikkien tutkittujen lämpötilaohjelmoitujen kaasu-kiinteä aine -reaktioiden tapauksissa 

muodostettiin ilmiöpohjainen fysikaalis-kemiallinen malli, jonka kineettiset parametrit 

määritettiin epälineaarisella regressioanalyysillä MATLAB®-ympäristössä. Työ osoittaa, että 

tavanomaisesti karakterisointitarkoituksissa kerätty koedata lämpötilaohjelmoidusta pelkistyk-

sestä, desorptiosta ja hapetuksesta soveltuu myös kineettisen analyysin perustaksi. Mekanis-

mien ja parametrien identifioituvuus edellyttää monipuolista koeaineistoa, esim. useiden 

lämmitysnopeuksien käyttöä kokeissa. Lämpötilaohjelmoitujen reaktioiden kineettinen 

analyysi laajentaa koetulosten tulkittavuutta ja vertailtavuutta heterogeenisten katalyyttien 

karakterisoinnissa. Lisäksi se soveltuu suotuisissa tapauksissa reaktiomekanismien selvittä-

miseen ja prosessisuunnittelussa tarvittavan reaktiokinetiikan määrittämiseen. 
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1 INTRODUCTION 

 
1.1 Heterogeneous catalysis and chemical kinetics  
 

Catalysis plays a pivotal role in the physical and biological sciences, in the industrial 

production of chemicals, 90% of which are obtained via catalytic conversions [1]. Catalysis 

research covers both multidisciplinary science and engineering.  

 

Catalysis is a kinetic phenomenon and understanding the rates of the chemical steps in 

catalysis presents a profound challenge to chemists and engineers. The goal of kinetic 

investigations is to find a model that describes the rate of reaction as a function of state 

variables that define the chemical process. Chemical kinetics is investigated 1) to obtain 

fundamental insight into reaction mechanisms, 2) to assist catalyst design and 3) to aid 

reactor design, process development and optimisation.  

 

At present kinetic analysis of heterogeneous catalytic reactions mainly means fitting models 

to experimental data involving bulk concentrations of reactants and/or products. The 

required experiments are carried out in ideal laboratory reactors with as minimal mass and 

heat transfer limitations as possible. The reaction rate data are typically collected under well-

defined steady-state conditions. The kinetic models are of either empirical or mechanistic 

nature. A fully mechanistic model is established on the basis of elementary steps comprising 

the adsorption of reactants from the fluid phase to the catalyst surface, the reactions 

occurring on the surface and the desorption of products from the surface to the fluid phase. 

Rate equations for parameter estimation are formulated with the aid of rate-determining steps 

(RDS) and pseudo-steady-state assumptions. Complications may arise, however, in applying 

the steady-state approach to kinetic analysis. A rate measured under steady state provides 

information on the convoluted combination of elementary step reactivities. The observable 

behaviour of a chemical system under steady state can often be explained by more than one 

mechanistic pathway, which leads to difficult discrimination among rival kinetic models. 

Thus, conventional kinetic analysis is not always sensitive to the underlying reaction 

mechanism; it provides lumped kinetic parameters and does not provide predictions of the 

behaviour of the catalytic system under dynamically changing, i.e. transient conditions.          
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1.2 Transient kinetics   

 

Transient response methods offer several advantages for investigation of the kinetics of 

heterogeneous catalytic reactions. Instead of the reaction system being driven to a steady 

state, the system is perturbed in a controlled way. In principle, any system variable 

concentration, temperature, flow rate or pressure can be changed. The kinetic experiment 

can be designed to probe the physico-chemical system (a test reactor containing the catalyst) 

by appropriate dynamic inputs. The response of the system to the dynamic input is then 

measured and subjected to kinetic analysis. The most common perturbations for 

heterogeneous gas-phase reactions are concentration perturbations (concentration steps, 

pulses or forced periodic concentration oscillations) and temperature perturbations 

(temperature programming). While undergoing a dynamic change the system reveals more 

about the intrinsic mechanism: Reaction steps in the series do not necessarily proceed at the 

same rate and reactive intermediates may accumulate. Ideally, transient experiments allow 

interpretation of the response in terms of all elementary reactions, and the obtained model is 

capable of reliable dynamic predictions. The transient response techniques applied to 

heterogeneous catalysis have been reviewed by Kobayashi and Kobayashi [2], Furusawa et al. 

[3], Bennett [4, 5], Tamaru  [6], Mirodatos [19] and Mills and Lerou [7]. Enlightening 

modelling and simulation studies on aspects of transient kinetics have been published by 

Kobayashi [8], Müller and Hofmann [9], Salmi [10], Renken [11], Pekar and Koubek 

[12,13] and Belohlav and Zamotsny [14,15].         

 

The transient response methods in chemical kinetics place similar requirements on the 

experimental set-up to conventional methods of kinetic analysis, and some additional ones as 

well. The mass balances of the reactor should be well described by mathematical models and 

the mass and energy transfer limitations should be negligible or sufficiently modelled. 

Criteria for negligible inter- and intra-particle mass and heat transfer limitations have been 

designed specially for transient experimentation [16]. On-line monitoring of the reactor 

outlet with sufficient time resolution is necessary for transient kinetic analysis. In addition, 

the required time behaviour of the dynamic input and the sampling frequency of the output 

depend on the characteristic dynamics of the studied reaction system. If the dynamics of the 

transient input is too slow, all or part of the elementary reactions may proceed in quasi-

equilibrium. Individual rates of elementary reactions cannot then be properly elucidated. 
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Sometimes to fully exploit the potential of transient methods and to assess the rates of rapid 

elementary reactions, a sub-millisecond time resolution may be needed. The Temporal 

Analysis of Products (TAP) technique makes this possible [17]. In TAP a very narrow pulse of 

reactant is injected to a reactor system, which is evacuated at the other end. The mass 

transport takes place in the Knudsen diffusion regime and the output pulse reflects the mass 

transport and intrinsic reaction kinetics. The disadvantages of TAP are the costly equipment, 

challenging modelling of all mass transport phenomena in the reactor system and the 

pressure gap with respect to practical process conditions. 

 

Another special transient response technique is Steady State Transient Kinetic Analysis 

(SSITKA) [18, 19]. In SSITKA the system is first run to a steady state and then one of the 

reactants is abruptly changed to an isotopically labelled compound. The rate of exchange of 

the normal to labelled product compounds, monitored by mass spectrometry, reveals the 

intrinsic reaction kinetics. The thermodynamic state of the system remains essentially 

constant in experiments for SSITKA, and the reaction kinetics may be assessed close to a 

selected steady state. In SSITKA the effect of possible surface reactivity distribution is thus 

minimised.      

 

The kinetic analysis of transient response data is based on nonlinear regression analysis, 

which usually is more demanding than nonlinear regression analysis for steady state kinetic 

analysis. Pseudo-steady state and RDS assumptions are omitted. Dynamic continuity 

equations are established for each and every gas phase and surface species, which results in a 

set of coupled differential or partial differential equations [20]. Figure 1.1 presents a general 

computational scheme for nonlinear regression analysis.    

 

The transient response methods represent advanced kinetic analysis of heterogeneous 

catalytic reactions. Nevertheless, these methods are presently based on model fitting to 

experimental data of bulk concentrations, whereas the surface concentrations in catalytic 

reactions are typically unobservable quantities. Kinetic analysis based on bulk concentrations 

alone cannot conclusively verify a reaction mechanism. In the future, kinetic analysis can be 

expected to rely more on spectroscopic in-situ determinations with atomic resolution and on 

theoretical calculation of the rate constants of elementary steps [21, 22, 23]. 
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Figure 1.1. Elements of kinetic analysis by nonlinear regression. 

 

1.3 Analysis of reaction systems under a temperature program 

 

Thermoanalytical techniques 

Thermoanalytical techniques can be considered as transient response techniques, in which 

some characteristic property of a solid sample is related to its temperature in a process of 

programmed heating. Exchanges of matter and/or energy between the sample and its 

surroundings provide means to detect and follow physical or chemical transformations. The 

measured response as a function of temperature, the thermogram, reflects the nature of the 

system under study and the experimental conditions. Thermal analysis is used as a tool for 

quantitative and qualitative analysis for evaluating the influence of different factors on the 

reactivity. The most common thermoanalytical techniques are summarised in Table 1.1. A 

number of methods exist to extract the kinetics of the occurring chemical reactions from 

thermoanalytical data. An extensive review of the study of heterogeneous processes by 

thermal analysis, including kinetics and mechanisms of non-catalytic reactions, has been 
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optimum met ? Yes 

 

No 
 

Calculation of object 
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Experimental data  

Solver algorithms  
 
for simulating the 
physico-chemical model 

Initial parameters 
Optimal parameters 

Input data for 
independent 
variables  

Simulated data  Parameters 

Value of object 
function  Parameters 
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published by Sestak et al. [24]. In the field of heterogeneous catalysis, thermal analysis is 

used as tool for investigating the influence of composition, preparation method and pre-

treatment on the reactivity of the surface or bulk with gases. 

 

Table 1.1. Thermal analysis techniques. 

Abbrev. Name Characteristic factor monitored 

DTA, 

DSC 

Differential thermal analysis 

Differential scanning calorimetry 

Temperature difference between sample and 

reference 

TG Thermogravimetry Weight of sample 

DTG Differential thermogravimetry Rate of weight changes 

TMA Thermomechanical analysis, 

Dilatometry 

Specific volume of solid sample 

TMA Thermomagnetic analysis Magnetic susceptibility 

DMC Differential microcalorimetry Enthalpy difference between sample and reference 

TPx Temperature-programmed reaction (x = 

Reduction, Oxidation, Desorption, 

Sulphidation or Surface Reaction)  

Gas composition at the reactor outlet 

 

 

Temperature-programmed reaction techniques 

Although thermal analysis is most frequently applied to the decomposition of solid materials, 

it also constitutes a suitable methodology to assess the kinetics of other thermally stimulated 

processes. Among the thermoanalytical techniques, temperature-programmed desorption 

(TPD) and temperature-programmed reduction (TPR) are the most commonly used tools for 

characterising heterogeneous catalysts. TPD was reported by Amonomiya and Cvetanovic 

[25] in 1963 and effectively was an extension to powdered solids of the flash desorption 

technique (developed by Redhead [26]) for the study of the desorption of gases from heated 

metallic filaments in high vacuum. In TPD studies a solid previously equilibrated with an 

adsorbing gas is submitted to a programmed temperature rise and the amount of desorbing 

gas is continuously monitored. TPR was inspired by the TPD technique and proposed in its 

present form by Robertson et al. [27] in 1975. In TPR the oxidic catalyst precursor is 

submitted to a programmed temperature rise under a flow of reducing gas mixture and the 

consumption of the reducing agent is continuously monitored. The temperature-

programmed techniques have also been extended to cover oxidation, sulphidation, 

methanation, hydrogenation, gasification, carburisation and other catalytic surface reactions 
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(TPO, TPS, TPM, TPH, TPG, TPC, and TPSR, respectively). Alongside catalyst 

characterisation, temperature-programmed (TPx) techniques can be applied to mimic pre-

treatment procedures related to the operation of catalytic processes [28]. The types of 

information obtainable from the most common TPx techniques are summarised in Table 

1.2.  

 

The application of TPD, TPR and related techniques was reviewed by Cvetanovic and 

Amenomiya in 1972 [29] and by Falconer and Schwarz [30] in 1983, Hurst et al. [31] in 

1982 (TPR), Lemaitre [32] in 1984 (TPR), and Jones and McNicol [33] in 1986 (TPR). 

Bhatia et al. [34] reviewed several temperature-programmed analysis methods and their 

applications in catalytic systems, covering the years 1983-1990. Their review contains 

information on the experimental techniques, the theoretical aspects of the analysis and a 

wide selection of TPx case studies.   

 

Table 1.2. Types of information obtainable from TPx techniques. 

TPD, Temperature-programmed desorption 

• Characterisation of adsorptive properties of materials  

• Characterisation of surface acidity 

• Temperature range of adsorbate release, temperatures of rate maxima 

• Total desorbed amount, adsorption capacity, metal surface area and dispersion 

• Surface energetic heterogeneity, binding states and energies of adsorbed molecules 

• Mechanism and kinetics of adsorption and desorption 

TPR, Temperature-programmed reduction 

• Characterisation of redox properties of materials, ‘fingerprint’ of sample  

• Temperature range of consumption of reducing agent, temperatures of rate maxima 

• Total consumption of reducing agent, valence states of metal atoms in zeolites and metal oxides 

• Interaction between metal oxide and support 

• Indication of alloy formation in bimetallic catalysts 

• Mechanism and kinetics of reduction 

TPO, Temperature-programmed oxidation 

• Characterisation of redox properties of metals and metal oxides 

• Characterisation of coke species in deactivated catalysts 

• Total coke content in deactivated catalysts 

• Mechanism and kinetics of oxidation reactions 
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In TPx techniques a small catalyst sample (typically 10-500 mg) is placed in a reactor system 

equipped with a programmable furnace. The reactor is a quartz tube fixed bed (i.d. typically 

2-6 mm). In TPx runs the pretreated sample is exposed to continuous flow of inert or reactive 

gas mixture, while the temperature is raised according to a predetermined program. The 

sample temperature and the outlet gas composition are continuously monitored. Typical 

detectors for TPx are the thermal conductivity detector (TCD) and mass spectrometer (MS). 

Use and calibration of the TCD is straightforward, but it is applicable only for binary 

mixtures of gases. MS provides total monitoring of the outlet gas composition.   

 

Typical experimental conditions [34] applied in TPD, TPR and TPO, together with the 

experimental conditions used in this work, are listed in Table 1.3. Careful selection of the 

experimental conditions is essential for novel samples to ensure sufficient detector sensitivity 

and well-defined mass and heat transfer. Intraparticle diffusion limitations are avoided if 

possible, the reactor is preferably operated in differential reactor mode and gas-phase reactant 

exhaustion is prevented. Typically the total pressure and molar flow rate remain practically 

constant during the TPx run. Experimental configurations have been described for TPD 

[30], TPR [33] and both together [32]. Figure 1.2 shows the experimental arrangement used 

in this work (I-IV) [35]. The set-up was a commercial catalyst characterisation system (Zeton 

Instruments Altamira AMI-100) with a micro catalytic reactor, which is typically operated in 

differential reactor mode under a well-controlled linear temperature program. 

 

Table 1.3. Typical experimental conditions for TPx [34] and conditions applied in this work.  

 TPD TPR TPO 

Gas composition He or N2 or Ar 5% H2/N2 5% O2/N2 

   This work Ar 10% H2/Ar 0.5-2.0 % O2/He 

Flow rate cm3/min 15-60 15-30 30-90 

   This work 30 30-50 30 

Heating rate K/min  10-60 4-60 10-60 

   This work 6-17 6-17 5-10 

Detector TCD or MS TCD TCD or MS 

   This work TCD TCD FID 

Measured quantity in this work H2 evolved H2 consumed CO, CO2 evolved 
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Figure 1.2. TPR/TPD equipment [35]: (1) filter, (2) mass flow controller, (3) gas saturator, (4) injection port, 
(5) 6-ways-valve with gas dosage, (6) reference reactor, (7) 6-ways-valve, (8) safety valve and (9) trap.  
 

1.4 Kinetic analysis of temperature-programmed reactions 

 

Kinetic analysis for TPx and other thermoanalytical experiments has been carried out by 

various methods, but it is best established on phenomenological basis. Bhatia et al. [34] list 

kinetic modelling approaches that have been used for the analysis of TPx experiments. 

Modelling of TPD data is based on theories on adsorption and desorption, while TPR and 

TPO call for an understanding of gas–solid reaction mechanisms, which may include 

topochemical characteristics. In contrast to a homogeneous reaction a topochemical reaction 

takes place at the interface between solid substrate and solid product. The rate of a 

topochemical reaction can be divided into two parts: (a) the intrinsic rate of reaction per area 

of reaction interface and (b) the change in the reaction interface in the course of the reaction 

[36]. Reduction and oxidation reactions of solids may well exhibit topochemical dynamics, 

whereas adsorption and desorption on the catalytic surfaces are typically homogeneous 
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reactions. Despite the differences in intrinsic reaction mechanisms associated with the 

various TPx techniques, the kinetic analyses largely share the same methodical basis.    

 

Kinetic analysis of thermoanalytical data where there is a linear temperature rise (β) has most 

often been based on the rate equation 

 )(exp ααβ f
RT

E
A

dT

d





 −= ,                  (1.1) 

which states that the rate of the reaction is proportional to the rate coefficient with Arrhenius 

temperature-dependence (A=pre-exponential factor, E=activation energy) and a function of 

the degree of conversion, f(α). Concentration of a solid is not usually a meaningful term for 

solid-state reactions. If gaseous reactants or products are involved in the reaction, a function 

of their concentrations f2(Ci) is included in eq. 1.1. The functions f(α) and f2(C) originate 

from physico-geometric considerations and/or the law of mass action. Table 1.4 collects 

alternative reaction models f(α) for solid-state kinetics and g(α), i.e. integrals of 1/f(α) [37]. 

 

Table 1.4. Common physico-geometric kinetic model functions for solid-state reactions [37]. 

 Model name f(α) g(α) 

A Random nucleation, 

Deceleratory first-order 

(1-α) -ln(1-α) 

B Generalised nth order (1-α)n 1/n(1-(1-α)-(n –1)) 

C 1D or 2D Avrami- Erofeyev 2(1-α)(-ln(1-α))1/2 (-ln(1-α))1/2 

D 2D or 3D Avrami- Erofeyev 3(1-α)(-ln(1-α))2/3 (-ln(1-α))1/3 

E 3D Avrami- Erofeyev 4(1-α)(-ln(1-α))3/4 (-ln(1-α))1/4 

F Generalised Avrami- Erofeyev n(1-α)(-ln(1-α))(n -1)/n (-ln(1-α))1/n 

G Contracting area 

Sharp interface controlled reaction 

(1-α)1/2 2(1-(1-α)1/2) 

H Contracting volume 

Sharp interface controlled reaction 

(1-α)1/3 3(1-(1-α)1/3) 

I Generalised model by Sestak αm(1-α)n(-ln(1-α))p  

J Prout-Tompkins model α (1-α) ln(α/(1-α)) 

K One-dimensional diffusion ½ α    α2 

L Two-dimensional diffusion -ln(1-α)-1 (1-α)ln(1-α)+α 

M Three-dimensional diffusion, 

Jander 

3(1-α)2/3/(2(1-(1-

α)1/3)) 

(1-(1-α)1/3)2 

N Three-dimensional diffusion, 

Ginstling-Brounshtein 

3/2((1-α)-1/3-1) (1-(2α/3)-(1-α)2/3) 
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The Arrhenius-type temperature dependence for homogeneous gas-phase reactions is 

theoretically based on the Maxwell–Boltzmann energy distribution function. The Arrhenius 

equation has also been generally accepted and successfully applied to numerous reactions 

involving solids, but its application is justified by different arguments than those for 

homogeneous gas-phase system [37, 38].  

 

The application of equation 1.1 is confined to the description of one intrinsic forward 

reaction or a set of consecutive reactions with one clearly rate-determining step that 

dominates over the whole range of conditions. The single-step model (eq. 1.1) often appears 

insufficient to describe the observed transformations. In addition, certain topochemical 

models cannot be presented in the functional form of eq. 1.1 even though the intrinsic 

reaction is assumed to take place as a single-step forward reaction. The overall rate process 

may be of convoluted nature, such as are nucleation and subsequent nuclei growth. 

 

Isoconversional methods 

Some simple methods exist for extracting activation energies from thermoanalytical data, 

assuming that eq. 1.1 provides a sufficient description of the dynamics (condition 1). 

Kissinger [39] presented one such method for evaluating the activation energy from DTA 

data. The Kissinger method is based on on eq. 1.1, the second derivative with respect to 

temperature of which is assigned to zero at the rate maximum: 
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The Kissinger method relates the temperatures of the rate maxima (Tmax) obtained with 

different heating rates (β) to the activation energy (E): 
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Thus, if the plot of ln(β / Tmax
2) versus 1/Tmax results in a straight line, the slope of the line 

equals –E/R, provided that the last term of eq. 1.7 is constant (condition 2). Kissinger 

presented the method for a first-order reaction, but the method is indifferent towards the 

reaction mechanism f(α) if conditions 1 & 2 are satisfied. Condition 2 is precisely valid for 

models where f(α) is linear in α (random nucleation model in  Table 1.4), but it holds 

approximately for many models around typical conversion level at the rate maximum 

(α ∼ 0.6), as illustrated in Figure 1.3.  
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Figure 1.3. Some common functions f(α) and their derivative functions. Letters refer to Table 1.4. 

 

There are other methods, in which the activation energy is calculated at desired degrees of 

conversion. Friedman [40] introduced the first such method for DTA patterns of polymer 

degradation. This method is based on transforming eq. 1.1 by taking natural logarithms on 

both sides of the equation 

( )
RT

E
fA

dT

d −=




 )(lnln ααβ                   (1.8) 

If the plot of ln(β dα/dT) versus 1/T results in a straight line at a selected conversion level, the 

slope of the line equals –E/R at that conversion level. Again, the Friedman method does not 

assume more of the reaction mechanism than the functional form of eq. 1.1. On the other 
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hand, if variable activation energy E=E(α) results from the Friedman analysis, it indicates 

that no model of the form of eq. 1.1 with a normal physico-chemical interpretation describes 

the reaction kinetics.  

 

Methods based on model fitting 

More general approach exists for kinetic analysis than extraction of activation energy values 

using the above simple methods. The kinetic analysis of TPx profiles can be performed with 

the use of model fitting and nonlinear regression analysis. This approach allows testing of 

alternative reaction mechanisms. Kinetic analysis based on model fitting can be divided into 

several sub-tasks, such as 

• mathematical description of the relevant physico-chemical phenomena, 

• establishment of a simulation model incorporating numerical algorithms 

implemented in a programming language, 

• iterative computational determination of optimal parameter estimates, 

• evaluation of the goodness of the model and the statistical confidence of the 

parameters 

Typically, in the field of thermal analysis eq. 1.1 is numerically solved for α and the kinetic 

parameters are adjusted until the model solution fits the experiments. Eq. 1.1 is a separable 

differential equation and the integral of 1/f(α) = g(α) is readily found for common reaction 

models (Table 1.4). The integral of the rate coefficient with respect to temperature is 

evaluated with approximate formulas [41] or by using numerical integration.  

 

In TPx experiments, the conversion of the solid is not usually a directly observable quantity, 

but it needs to be related to the observable consumption of a gaseous reactant or to the 

evolution of gaseous products. Furthermore, models of type eq. 1.1 for the intrinsic rate may 

be too limiting. The kinetic analysis of TPx experiments is thus better established on a 

general methodology of transient kinetics that starts with a consideration of the dynamic 

balance equations for all the relevant gaseous and solid species. Once the intrinsic rate 

expressions for solid species have been postulated, the reactor model is selected. Formally, 

the reactor is a packed bed reactor, which can be modelled as such or applying simpler 

reactor models: an ideal continuous stirred tank reactor (CSTR) or a differential reactor 

model. The application of simpler reactor models is often well justified. If the concentration 

of the gaseous reactant remains practically constant along the reactor in the course of the 
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reaction and if evolved gaseous products do not influence the intrinsic reaction rates, the 

dynamic CSTR or differential reactor model is an appropriate choice. Furthermore, if the 

space-time of reactor is very small, as is often the case with the TPx set-up, there is practically 

no accumulation of species in the gas phase and the accumulation term can be left out of the 

balance equation. In this case, the conversion of solid is assumed to follow directly the 

observed rate of reaction. Typical treatment of TPx data inherently contains the differential 

reactor assumption with negligible accumulation of species in the gas phase. Examples of 

transient reactor models (balances) can be found in refs. [4, 5, 9, 10, 20].   

 

Even though the reactor dynamics are often adequately described with the differential 

reactor model, complicating conditions may arise that do not allow the differential reactor 

assumption. If the conversion of gaseous reactant is non-negligible, that reactant may require 

its own dynamic balance equation, which is coupled with the equations of the solid species. 

Considerable consumption of gaseous reactant induces rate differences and thus 

concentration gradients along the reactor axis. Another factor inducing concentration 

gradients along the reactor axis is the occurrence of a backward reaction, the rate of which is 

a function of the concentration of the gaseous product. These situations, or the occurrence 

of reactions with multiple rate controlling steps, may require the application of a complete 

packed bed reactor model. Selection of the correct reactor model depends on the 

characteristics of the particular physico-chemical system.       

 

After the mathematical description of the physico-chemical system of TPx is complete, a 

simulation model of the system is implemented with suitable numerical algorithms. The 

parameter estimation with model fitting to the experimental data is conducted according to 

the principles of Fig. 1.1 and it is accompanied by sensitivity analysis. Reference textbooks on 

nonlinear regression analysis have been authored, for example, by Bard (1974) [42], Bates 

and Watts (1988) [43], Seber and Wild (1989) [44], Walter and Pronzato (1997) [45]. 

Kinetic analysis of TPx data can be considered as a general task of transient kinetics with 

iterative testing and rejection or acceptance of mechanistic model hypotheses. Like all 

successful kinetic modelling, the kinetic modelling of TPx requires experimental data with 

sufficient information content to allow mechanism and parameter identification.   
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1.5 Scope of the work 

 

Temperature-programmed techniques are valued for providing catalyst characterisation of a 

chemical nature, under conditions that do not necessarily differ much from real operating 

conditions of the catalyst. The interpretation of temperature-programmed reduction, 

oxidation and desorption spectra is usually confined to a discussion of rate maximum 

temperatures, the number of more or less resolved peaks or determination of the total 

consumption of reactant or evolution of product. This work focused on quantitative kinetic 

analysis of reactions under temperature programming. The objectives were to evaluate, 

develop and apply methods of kinetic analysis and models for a selection of gas–solid 

reactions. The work aimed to demonstrate that a moderate number of temperature-

programmed experiments, carried out with multi-purpose characterisation equipment, can 

be utilised to test mechanistic models and to determine kinetic parameters, which together 

describe the rates of reactions. The thesis comprises the present summary and four published 

case studies. The case studies deal with the temperature-programmed reduction of alumina-

supported chromium oxide (I-II) and vanadium oxide (III) catalysts, the temperature-

programmed desorption of hydrogen from an alumina-supported nickel catalyst (IV) and the 

temperature-programmed oxidation of coke from a deactivated cracking catalyst (V). Kinetic 

analyses of reduction and desorption can serve as tools for assisted catalyst design, whereas 

kinetic modelling of the regeneration is of interest for process engineering.  

 

Understanding reduction behaviour is essential for catalyst development. In many cases it is 

the reduction treatment that creates the active sites of catalyst. Studies on kinetics of 

reduction can aid the selection of pre-treatment conditions for oxidic catalyst precursors and 

aid the understanding of reactions occurring via redox mechanism. In addition, kinetic 

modelling of reduction provides, in favourable cases, fundamental information on the 

underlying gas–solid reaction mechanisms.  

 

Kinetic models for catalysed reactions typically contain a large number of parameters. Thus a 

separate determination of adsorption and desorption kinetics and energetics of participating 

species would be welcome. Kinetic analysis of temperature-programmed desorption (TPD) 

spectra was applied to obtain information on these phenomena. Understanding of hydrogen 

adsorption on the metal catalyst is expected to benefit the understanding of hydrogen transfer 
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reactions on this catalyst. In addition, temperature-programmed desorption may provide a 

means to quantitatively characterise possible surface energetic heterogeneity.  

 

An understanding of regeneration kinetics is required for the development of an optimal 

catalyst regeneration unit in which the catalyst activity can be restored in a controlled 

manner. Since the regenerator often produces the heat required for the endothermic 

catalytic process, the kinetics of regeneration is intricately involved in the mass and energy 

balances of the coupled process unit. The case study on temperature-programmed oxidation 

was included in the work to assess the suitability of TPO for elucidating the kinetics of coke 

oxidation. The methodical foundation is the same as that for the other temperature-

programmed techniques.  

 

The following chapters 2–4 summarise the main findings of publications I–V. Characteristics 

of the kinetic analysis of temperature-programmed gas–solid reactions are discussed in 

chapter 5.   
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2 KINETIC ANALYSIS OF TPR  

 

2.1 Temperature-programmed reduction and kinetic analysis  

 
Temperature-programmed reduction (TPR), proposed in its present flow set-up by Robertson 

et al. [27] in 1975, is one of the most important techniques for catalyst characterisation. The 

catalytic material on a support is commonly present after preparation as oxidic precursors 

and the catalyst is activated by reductive pre-treatment. TPR provides essential information 

on the reducibility of these oxidic precursors. Reducibility is also of key importance for 

catalysts working via Mars–van Krevelen redox mechanism [46], in which the oxidation of 

the hydrocarbons proceeds by reduction of an oxidised surface site, which is subsequently re-

oxidised by gas-phase molecular oxygen. The average oxidation state during the catalytic 

operation depends on the relative rates of the reduction and reoxidation. For catalysts 

working via redox mechanism, TPR consequently characterises one aspect of the catalytic 

activity.    

     
The TPR experiment results in the consumption of the reducing agent as a function of 

temperature, generally termed a ‘thermogram’. Theory and applications of the TPR 

technique have been comprehensively reviewed by Hurst et al. [31], Jones and McNicol 

[33], Lemaitre [32], Bhatia at al. [34] and Knözinger [47]. TPR has been applied to study the 

influence of support materials, preparation and pre-treatment procedures, and the influence 

of additives on the reduction behaviour of a catalytic material. TPR also reveals possible alloy 

formation in bi-metallic catalysts. TPR provides a fingerprint of the redox properties of a 

catalyst, which can be compared with reference thermograms, and it provides the total 

consumption of the reducing agent, which can be correlated with the change in the valence 

state of the reducible substance. Multiple reduction rate maxima appearing in a thermogram 

are commonly attributed to complexity in the underlying chemical reactions: to occurrence 

of a multi-step reduction mechanism or to multiple reducing species. Alongside this 

conventional interpretation of thermograms, the results of well-controlled TPR experiments 

can be regarded as a source of kinetic data on reduction. 

 
Methods to extract activation energies with the use of other thermoanalytical techniques 

(DTA, TPD, etc.) have been adapted to TPR studies. The Kissinger [39] and Friedman [40] 

methods were introduced to TPR studies by Wimmers et al. [48] and Tarfaoui [49], 
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respectively. The kinetic analysis of TPR data based model fitting allows more profound 

characterisation of the reduction process than the above-mentioned methods, since reaction 

mechanisms can be tested while estimating the kinetic parameters, and the data in 

thermograms are utilised completely. In early work, parameter estimation by model fitting 

applied first-order rate expressions with a differential reactor model [50,51,52]. The selection 

of experimental conditions, parametric sensitivity and estimation of kinetic parameters have 

been dealt with by Monti and Baiker [50] and Malet and Caballero [51], who aided in 

establishing the quantitative basis of the TPR technique. Wimmers et al. [48] have suggested 

the utilisation of a wider set of gas–solid reaction mechanisms. Tarfaoui [49] review models 

for describing kinetics of gas–solid reactions and report case studies on the kinetic analysis of 

reduction of copper oxide, manganese oxides and alumina-supported vanadium oxide. 

Despite the widespread use of TPR for catalyst characterisation, kinetic modelling of TPR 

data has attracted relatively little attention.  

 
In this work, kinetic modelling of TPR data was applied to elucidate the reduction kinetics of 

supported chromium and vanadium oxide catalysts (I, III). The main method in the kinetic 

analysis was nonlinear regression analysis. The TPR studies on supported vanadia catalysts 

were supplemented by X-ray diffraction (XRD) and Raman spectroscopy (III) investigations. 

Chromium and vanadium oxides are important catalytic materials. Chromium oxide 

catalysts are applied in polymerisation, hydrogenation/dehydrogenation, oxidation, 

isomerisation, aromatisation and deNOx reactions [53], while supported vanadium oxides 

catalyse selectively numerous partial oxidation reactions, oxidative dehydrogenation and 

deNOx reactions [54]. Both oxide systems have been extensively investigated previously. 

Vanadium oxide catalysts have been characterised, for example, by IR and Raman 

spectroscopy, UV-VIS DRS, XPS, ESR, XRD, XANES/EXAFS, solid state 51V NMR, TPR, 

TPO, chemisorption and isotopic labelling [54]. There remain unanswered questions related 

to the factors influencing the catalytic activity and the structure of active sites in different 

environments.    

 
The following sections summarise the main findings of publications I-III. First the 

characteristics of a nucleation and nuclei growth reduction model (I) that proved useful in 

the interpretation of reduction kinetics of supported oxide catalysts are reviewed. Then the 

main results of TPR case studies involving chromium and vanadium oxide catalysts (II, III) 

are presented and discussed.  
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2.2 Results and discussion 

 

2.2.1 Reaction mechanism of nucleation and nuclei growth  

 

Nucleation and nuclei growth (N/NG) mechanisms are an important class of reaction 

mechanisms for gas–solid and solid-state reactions. Nucleation occurs as a transformation is 

initiated at specific locations (so-called germ nuclei) in an old phase and is followed by the 

growth of nuclei, i.e. domains of new phase, in the surroundings of the starting points. The 

transformation is complete when the growing domains of the new phase reach the 

boundaries of the converting material and the boundaries of one another. Together these 

dynamic processes determine the macroscopically observable conversion–time behaviour. 

Various phase transformations such as crystallisation, polymerisation and decomposition take 

place as N/NG processes.  

  

Rates of reactions occurring via N/NG mechanisms can be described in various ways. A well-

known approach within gas–solid and solid-state reaction kinetics to account for N/NG 

behaviour is the Avrami–Erofeyev model, which in other contexts is called the Johnson–

Mehl–Avrami–Kolmogorov model. Modifications of the model (derived by Avrami in 1939–

1941 [55,56,57]) are widely applied to regress kinetic data of various transformations, and 

papers on the theoretical aspects are still being published [58,59,60].  

 

In the following the most important characteristics of Avrami kinetics are summarised and 

interpreted for a system where the transformation is driven by a chemical reaction. The 

converted volume at time t is given by 
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a law of nuclei growth: v(t,y,)                  (2.3) 

 
and N denotes the number of active (growing) nuclei and v(t,y) gives the volume at time t for 

a nucleus that became activated at time y. A nucleus radius grows proportionately to a rate 

constant and the nuclei volume is expressed as a function of the rate constant. For 
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conversions of chemical nature, the rate constant can be assigned the Arrhenius temperature 

dependence with the parameters Ag and Eg: 
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Other parameters are m, the dimensionality of nuclei growth and Kg, the shape factor. Here 

temperature is assumed to rise as a linear function of time: tTT β+= 0  

  

The law of nucleation is commonly described as the first-order decay of germ nuclei (N0): 
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Again the rate coefficient k2 is temperature dependent according to the Arrhenius law.  

 

The application of eqs. (2.4) and (2.5) to (2.1) completes the description of conversion by 

extended (unlimited) growth of nuclei. The actual volume (V) is extracted from the 

extended volume (Vex) by the relation given by Avrami [55,56]: 

 
)1ln( VVex −−=                   (2.6) 

 
The formulation of eq. (2.6) originates from statistical considerations. It is only approximate, 

however, and requires, among other things, a random distribution of germ nuclei. 

 

The convolution integral (2.1) can be analytically solved (for example, by using Laplace 

transformation) for isothermal and so-called isokinetic phase transformations. Commonly, 

the conversion as a function of time, obtained as the exact solution of (2.1.) combined with 

(2.6.), is further simplified to various limiting cases that are customarily used in applications. 

These simplifications may be easily abandoned (I).         

 

The nucleation and nuclei growth model for two-dimensional transformation appeared 

promising for the reduction of supported chromium oxide. For that reason the foundations of 

the model were investigated in publication I, and an equation for a more general non-

isothermal chemical transformation was formulated.     
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2.2.2 Kinetics of the reduction of chromium and vanadium oxide catalysts 

 

Experimental results and investigation of the kinetics  

Reduction of six chromia and three vanadia catalysts with hydrogen was investigated by H2-

TPR (I-III). Table 2.1 lists the studied catalysts. The chromia catalysts labelled with ‘ALD’ 

were prepared by atomic layer deposition (ALD) gas-phase technique, and a commercial 

fluidised bed chromia catalyst ‘FB’ was included in the studies as a reference. Vanadium 

oxide catalysts (V2, V5 and V11) were prepared by incipient wetness impregnation. 

Approximately 10% hydrogen in argon was used as reducing agent in the TPR experiments. 

Experimental details can be found in publications II and III.  

 

Table 2.1. Catalyst samples investigated by TPR (I-III). 

Sample Cr or V wt-%  Cr or V atoms/ 
nm2 support 

AOS* 

ALD1 1.2 0.7 +2.6 

ALD2 4.7 2.9 +2.7 

ALD3 7.5 4.6 +2.9 

ALD4 11.9 7.3 +2.8 

ALD5 13.5 8.2 +2.5 C
rO

x/A
l 2O

3 

FB 12-14 - +2.5 

V2 2.0 1.4 +4.0 

V5 5.2 3.7 +3.7 

V
O

x/A
l 2O

3 

V11 11.4 9.4 +3.6 

* AOS = average oxidation state after reduction based on total hydrogen  
consumption assuming initial valence states Cr6+ and V5+. 
 

Results of TPR experiments with the chromium (ALD1-ALD5) and vanadium (V2, V5 and 

V11) oxide catalysts are presented in Figure 2.1. All chromium oxide catalysts and the 

vanadium oxide catalyst V2 produced a single-peak TPR pattern. The vanadium oxide 

catalyst V11 produced two peaks and clearly reduced at two separate stages, and the 

vanadium oxide catalyst V5 produced a single but broadened TPR peak. The average 

oxidation states of chromium and vanadium after the reduction, calculated from total 

hydrogen consumption, are listed in Table 2.1. The chromium appeared to reduce 

predominantly from Cr6+ to Cr3+ or Cr2+, and the vanadium from V5+ to V4+ or V3+.   

 

For chromium oxide catalysts the reduction process shifted to lower temperatures with 

increasing chromium loading (See Fig. 2.1. a). For samples ALD2–ALD5 the shape of the 
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TPR pattern was preserved with increasing loading, but for ALD1 the TPR pattern was 

distinctly different. Increased loading also shifted the reduction of supported vanadium oxide 

surface species to lower temperature (Fig 2.1. b). The shift was more evident in the TPR 

patterns reported by Stobbe-Kreemers at al. [61], which clearly showed the temperature of 

maximum reduction rate to decrease as a function of vanadium oxide coverage on alumina 

(1.0 – 3.1 V/nm2) and respectively by Blasco et al. [62] (1.2 – 4.4 V/nm2). Application of 

XRD (III, Figure 2) at different temperatures conclusively demonstrated a relationship 

between the high-temperature reduction process of V11 and the reduction of crystalline 

AlVO4. 

          

The increase in the reduction rates of supported vanadium and chromium oxides with 

loading has commonly been attributed to the increase in the degree of polymerisation [53, 

54]: isolated monomeric surface oxide species on alumina are assumed to reduce more 

slowly than polymeric species. It is noteworthy that, for titania-supported vanadia catalysts, 

the reduction rates of the monomeric and polymeric species are reversed, as was recently 

found by Bulushev et al. [63]. Evidently, the reduction behaviour depends notably on the 

support material.   
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Figure 2.1. TPR patterns of the a) CrOx/Al2O3 and b) VOx/Al2O3 catalysts. 

 

Figure 2.2 shows the temperature-programmed (TP) Raman spectroscopy results for the 

sample V5. There is a clear gradual decrease in the Raman bands for V=O and V-O-V 

stretching modes with temperature. The Raman spectroscopy results (III) indicated the 
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presence of both monomeric and polymeric surface vanadium oxide species on the catalysts 

V2 and V5, but the ratio of polymeric to isolated species was higher on V5 than V2. For the 

catalyst V11, intense Raman bands for AlVO4 emerged in the spectra (III, Figure 4). 
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Figure 2.2. TP-Raman spectra of the catalyst V5 under hydrogen. 

  

The Kissinger and Friedman methods were applied to extract the apparent activation 

energies of reduction for the chromium oxide catalysts (II). The Friedman analysis for 

ALD3, ALD4, ALD5 and FB gave an approximately constant apparent activation energy up 

to a reduction degree of 0.5 and a slightly rising trend from there on (II). This implies that, 

despite the well-controlled preparation and ideal TPR patterns of chromia catalysts, the 

reduction involved some heterogeneous features. The TPR patterns of the vanadium oxide 

catalysts (III) were too non-ideal for use of the Kissinger and Friedman methods. Tarfaoui 

[49] nevertheless applied Friedman analysis to TPR data of an alumina-supported vanadia 

catalyst (3.11 V/nm2) and reports three regions of activation energies as a function of degree 

of reduction. Again this reveals the composite nature of apparently single peak reduction 

data. 
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The primary kinetic analysis was carried out with the use of model-fitting based nonlinear 

regression analysis in MATLAB® 6 environment. The measured hydrogen consumption was 

directly related to the rate of reduction; consequently the treatment inherently involved the 

differential reactor assumption. The observed rates of reduction were several orders of 

magnitude slower than the diffusion rates of gases in the catalyst pores, which means that 

rates of reduction were kinetically controlled. In addition, the maximum instantaneous 

conversion of hydrogen was less than 7 %, so that the partial pressure of hydrogen was 

virtually constant during the whole reaction. The formed water was assumed to have a 

negligible effect on the observed rate of reaction owing to the low H2O concentration. 

Various gas–solid reaction models were tested for the TPR experiments.  

 

As is commonly the case, several models could be fitted to the single scan TPR data of the 

chromia catalysts. Model discrimination required simultaneous use of experimental data 

obtained at different heating rates. Three heating rates were sufficient to discriminate kinetic 

models. The TPR data of each chromium oxide catalyst were described by a single reduction 

process, whereas the TPR data of the samples V5 and V11 required interpretation in terms of 

multiple processes. The best-fit kinetic models for the reduction of the chromium oxide 

catalysts are reported in Table 2.2 and those for the vanadium oxide catalysts in Table 2.3. 

Figure 2.3 shows the best-fit model solutions and the experimental data of the catalysts FB 

and V5 with different heating rates. 
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Figure 2.3. TPR data of the catalysts a) FB and b) V5 and the best-fit model solutions. 

 

The kinetics of reduction of the catalysts was best described by the random nucleation (RN) 

model, the model of two-dimensional nuclei growth (2D N/NG) or a combination of these 
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(Tables 2.2 and 2.3). When the loading was sufficient, the reduction appeared to take place 

as a topochemical process on both supported oxide systems. For chromium catalysts the 2D 

N/NG mechanism was predominant for the samples ALD3, ALD4, ALD5 and FB. For 

vanadium catalysts the N/NG characteristics were exhibited in the reduction of the samples 

V5 and V11. The reduction of low-loaded samples (ALD1 and V2) was best described in 

terms of the homogeneous random nucleation model (RN).  The TPR pattern reported by 

Koranne et al. [64] for a very low loaded vanadia on alumina catalyst (0.33 V/nm2) showed 

two reduction peaks that seemed to merge for higher loaded samples (0.8–1.6 V/nm2). This 

implies that differently reducing species may exist, despite the apparent single-process RN 

behaviour. Possibly, the reduction of the catalysts ALD2 and V5 formed an intermediate case 

between topochemical and homogeneous reduction. The 2D N/NG model provided a 

compromise fit for the TPR of the catalyst ALD2, and the main peak of V5 was best 

described by a combination of RN and 2D N/NG models.   

 

Table 2.2. Best-fit kinetic models and Arrhenius parameters for the chromium oxide catalysts.  

Sample Model E kJ/mol A 1/s k2 

ALD 1 RN 74.8 ± 0.6 (5.0 ± 0.6)*103 

ALD2 2D N/NG 81.0 ± 1.0 (6.6 ± 1.3)*104 

ALD3 2D N/NG 98.4 ± 0.8 (3.5 ± 0.6)*106 

ALD4 2D N/NG 94.2 ± 0.8 (2.4 ± 0.4)*106 

ALD5 2D N/NG 84.9 ± 0.9 (4.1 ± 0.7)*105 

 

FB *) 2D N/NG 78 ± 2 (1.8 ± 0.7)*104 (3.6 ± 1.5)*10-3 

*) TPR of the catalyst FB was best described by the 3-parameter form of the N/NG model (II). 

 

Table 2.3. Best-fit kinetic models and Arrhenius parameters for the vanadium oxide catalysts. 

Sample Process 1 Process 2 Process 3 

V2 RN 

 kref 
*) 1/s E   kJ/mol 

 (6.8 ± 0.2)*10-2 146 ± 3 

  

V5 2D N/NG RN RN  (correction for the tailing) 

 kref  1/s E   kJ/mol kref  1/s E   kJ/mol kref  1/s E   kJ/mol 

 (7.2 ± 0.1)*10-2 90 ± 2 (9.5 ± 0.3)*10-2 100 ± 2 (10.5 ± 0.2)*10-3 74 ± 3 

V11 2D N/NG 2D N/NG 

 kref  1/s E   kJ/mol kref  1/s E   kJ/mol 

 (6.3 ± 0.1)*10-2 87 ± 2 (3.9 ± 0.2)*10-3 119 ± 2 

 

*) The centred rate coefficient: k(T) = kref exp[E/R(1/Tref-1/T)],  where Tref was 750 K.  
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Interpretation of the kinetic results 

Molecular level factors that may allow the N/NG mechanism are now discussed. The model 

of two-dimensional nuclei growth implies that the reduction is initiated somewhere in the 

surface oxide layer, and the conversion proceeds to the surroundings as growing domains. 

Preconditions for the reduction mechanism assuming two-dimensional nuclei growth are 

that 1) supported oxide species interact with surrounding species and form a ‘contiguous 

overlayer’ and 2) the reactivity of the overlayer toward hydrogen is clearly higher at the 

boundary of the reduced and the non-reduced phase than at random locations inside non-

reduced phase.  

 

Both vanadium and chromium oxides are present as surface isolated or surface polymerised 

species with increasing degree of polymerisation as a function of loading, and they tend to 

form a two-dimensional overlayer on alumina [53,54]. A catalyst with close to monolayer 

content of active component can be envisaged as having an extensive polymeric network of 

oxide species on the support and the precondition (1) is thus satisfied. Low loaded catalysts 

(ALD1, V2) carry mainly isolated species, the precondition (1) is not fulfilled and the 

reduction takes place as a random process. For catalysts with intermediate 

chromium/vanadium content (ALD2, V5) the reduction likely takes place as an N/NG 

process in well-interconnected oxide domains, but any isolated species need to go through 

individual nucleation. Furthermore, the N/NG model fails to describe the situation where 

there is wide variability in the size of the reducible domains and the reaction is not allowed 

to advance freely owing to the abundant smaller domains. There is an obvious need for a 

kinetic model to properly account for this situation.     

 

The greater propensity for reduction at the boundary of the reduced and non-reduced 

domains of the overlayer (precondition 2) could be adsorption-related. In the course of the 

reduction reaction, the reduced metal oxide sites might trap the gas phase hydrogen better 

than the oxidised sites and the reduction occurring next to the reduced sites would then be 

considerably favoured over the reduction at arbitrary locations in the old phase. Steric factors 

might also be involved: reduction leads to elimination of the short and rigid V=O bond 

present in dehydrated surface oxide species, which may improve the sticking probability of a 

hydrogen molecule to the neighbouring sites.  
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Initiation (nucleation) of the N/NG-based reduction could involve random nucleation 

events, which might be exceedingly rare at the temperature at which nuclei growth 

commences. Homogeneous nucleation could be so slow at these temperatures that the 

conversion caused by these events alone would not yet be measurable. Another possibility for 

initiation of the reduction is the existence of defective oxide species (such as non-redox Cr3+, 

indicated in refs. [65, 66]) in the overlayer, which could trap hydrogen and act as starting 

points for the nuclei growth. This latter possibility excludes nucleation as a kinetic process 

and the overall reduction rate would be solely limited by the growth kinetics. The reduction 

of the catalysts ALD3- ALD5 appeared to be limited only by the nuclei growth, whereas the 

reduction of the catalyst FB may have been limited by both nucleation and nuclei growth 

(II).            

 

The overlayer of chromia or vanadia is exposed to the heterogeneities of the alumina 

support. The active species may have different ways of binding to the support and the 

reducibility may vary among the species. The N/NG mechanism tends to even out the 

heterogeneity, since the reduction proceeds at the reaction boundary. The resulting kinetic 

parameters of the 2D N/NG model represent combined chemical kinetics of reduction.  

 

Activation energies of reduction  

The literature on reduction kinetics is briefly reviewed in the following and the reported 

activation energies and those obtained in this work are compared. Chromium 

[52,67,68,69,70] oxide catalysts have often been characterised on the basis of TPR 

experiments, and vanadium oxide catalysts have been investigated by both TPR [71, 72, 73, 

74, 64, 75, 61, 49, 62, 63, 76] and isothermal reduction experiments [77, 78, 76]. However, 

reduction kinetics for these oxides, especially for chromium oxides, have seldom been 

investigated. It is known that both the support material [53, 75] and the loading [61, 62, 64, 

II, III] influence the reduction behaviour significantly, which further complicates 

comparisons. The support affects the reduction kinetics presumably through Cr–O–support 

and V–O–support bonds, while the loading affects the relative abundance of different species 

and their mode of organisation and thereby determines the predominant mechanism 

(topochemical or homogeneous). The activation energies of reduction for chromia and 

vanadia catalysts obtained in this work are compared not only with reported activation 

energies of reduction but with the activation energies of oxidative dehydrogenation (ODH) 
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of alkanes over the same catalysts. Comparison with ODH is meaningful because reduction 

is generally regarded as the rate-limiting step in ODH.     

 

CrOx/Al2O3 

For the most part, the reduction kinetics in this work were best described with the 2D N/NG 

models with the activation energies of reduction between 80 and 100 kJ/mol (Table 2.2). 

The only kinetic study based on H2-TPR data reported in the literature data concerns silica- 

supported chromia catalysts [52], so that the mechanisms and the activation energies cannot 

be compared. The reduction kinetics of chromia on alumina has been investigated under 

isothermal conditions with the use of carbon monoxide as the reducing agent and 

spectroscopic detection method (in-situ UV-vis- NIR spectroscopy) [79], and with the use of 

step-response method and mass spectrometric detection [80]. Both studies [79,80] postulated 

Langmuir–Hinshelwood-type multi-step kinetic models for the reduction reaction without 

topochemical characteristics. Bensalem et al. [79] report rate constants at different 

temperatures, but physically meaningful activation energy was not obtainable. Dekker et al. 

[80] report an activation energy of 95 kJ/mol for CO reduction of chromia on alumina (6.9 

wt-% Cr). The value (98 kJ/mol) found in this work for the catalyst ALD3 (7.5 wt-% Cr) is 

close to their value.  

 

The ODH of propane on chromia catalysts was recently investigated by Cherian et al. [81, 

82] and the influence of the support, precursors and loading on the catalytic activity was 

reported. The activation energy of ODH of propane on CrOx/Al2O3 catalysts, calculated from 

turnover frequencies (TOF) measured at several temperatures under differential conditions, 

was found to lie between 90 and 100 kJ/mol [82]. The energy appears to be of the same order 

of magnitude as the activation energies of reduction for the ALD series in this work. It would 

seem that the activation energy of reduction of CrOx/Al2O3 is relatively insensitive to the 

reducing agent (H2, CO, propane). Possibly then the activation energy reflects the breakage 

of the O–Cr bond in the rate-limiting step.     

 

VOx/Al2O3 

The reduction kinetics of most of the vanadia catalysts of this work was described with 

combined models (Table 2.3). The activation energy for surface vanadia species reducing via 

the N/NG mechanism was roughly 90 kJ/mol. Model-fitting based kinetic analysis of the 
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reduction of vanadium oxide has been conducted in a few instances, and the results are 

collected in Table 2.4. As can be seen, there is variability in both the suggested mechanisms 

and the obtained activation energies. In addition to model fitting based kinetic analysis, TPR 

patterns of supported vanadia catalysts were deconvoluted by Gaussian curves [64, 74] and by 

a combination of random nucleation models [75]. The drawback of these kinds of 

deconvolutions is that they do not provide a proper basis for comparisons.  

 

The only vanadia catalyst similar enough to those of this work to allow direct comparisons is 

that studied by Tarfaoui [49] (3.11 V/nm2 vs. 3.7 V/nm2 on V5). He [49] fitted various models 

based on gas–solid reaction mechanisms to the data of multiple TPR experiments. The 

smallest value of the object function was obtained for the model of two-dimensional nuclei 

growth with activation energy of 108 kJ/mol, but three other models were almost as good. 

The observations of the present work are thus in relatively good accord with his: two-

dimensional nuclei growth seems to play a role, but it is not alone able to explain the 

reduction behaviour of the catalyst V5. 

 

Table 2.4. Kinetic results for reduction of vanadium oxide catalysts.  

Catalyst Vanadium 
content 
V/nm2 

Reducing 
agent 

Method of kinetic analysis  Activation 
Energy 
kJ/mol 

Reference 

VOx/Al2O3 3.11 H2 Model fitting to TPR data, 2D 
NG 

108 Tarfaoui, [49] 

VOx/Al2O3

V-Mg-O 
2.7 
14.2 

H2 Model fitting to isothermal 
data, contracting sphere 

 
145 

Lopez Nieto et al. [76] 

VOx/TiO2 
V2O5 

9.8 H2 Model fitting to TPR data, 2D 
NG 

59 
 

Bosch and Sinot [83] 

VOx/TiO2 ~12 Propane Model fitting to isothermal 
data, empirical model 

82 Sloczynski [78] 

VOx/TiO2 2 H2 Kissinger, Random nucleation 98 Bulushev et al. [63] 
V2O5 - H2 Kissinger, 3D N/NG 83 Ballivet –Tkatchenko  and 

Delahay [73] 
 

Activation energies for ODH reaction over alumina-supported vanadia have been reported, 

as calculated from reaction rates determined at different temperatures under differential 

conditions [84, 85], and as estimated in mechanistic kinetic modelling [86]. Argyle et al. [84] 

recently reported apparent activation energies of approximately 115 kJ/mol for ODH of both 

propane and ethane. The mechanistic kinetic analysis carried out by the same group [86] 

resulted in a similar value, 110±15 kJ/mol, for ODH of ethane. In earlier studies of LeBars et 

al. [85], apparent activation energy values for ODH of ethane were slightly above 100 kJ/mol. 

Mindful of the accuracy and limitations of this kind of determinations [84,85], and the 
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reported error bounds [86], we can conclude that the activation energies of reduction and 

the ODH reaction roughly coincide. The activation barrier of reduction is much the same 

irrespective of the reactant that reduces the vanadium cation in the process.  

  
 
2.3 Conclusions  

 

TPR provided a means for quantitative characterisation of the reduction behaviour of a series 

of supported chromium and vanadium oxide catalysts. Parameter estimation based on model 

fitting gave information about the underlying gas–solid reaction mechanisms and values of 

the kinetic parameters. Nucleation and nuclei growth played a role in the reduction of the 

chromia and vanadia catalysts where the oxide formed close to a monolayer on the support, 

whereas homogeneous random reduction of individual supported oxide species took place on 

low-loaded samples. Kinetics thus indirectly provides information on the mode of 

organisation of the oxide species. 

 

In general, TPR technique might prove useful in understanding reactions taking place via 

redox mechanism. There seems to be an agreement between the activation energies of 

reduction of the chromia on alumina and vanadia on alumina catalysts and the activation 

energies of oxidative dehydrogenation on the same catalysts. Understanding of the reduction 

mechanism at microkinetic level might eventually lead to understanding of the decisive 

mechanistic step of ODH.   

 

The frequently applied forms of the Avrami model are acknowledged to contain 

approximations. Some of the approximations can easily be abandoned, while some remain 

inherent in the construction of the theory.  

 

Kinetic analysis of TPR data is valuable because the kinetic models 1) provide fundamental 

information on gas–solid interactions, 2) facilitate comparisons of TPR experiments carried 

out under different conditions by various research groups and 3) allow optimisation of pre-

treatment procedures for oxide catalysts.  
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3 KINETIC ANALYSIS OF TPD  

 

3.1 Temperature-programmed desorption and kinetic analysis 

 

Temperature-programmed desorption (TPD, also known as flash desorption or thermal 

desorption spectroscopy, TDS) is one of the most useful temperature-programmed methods 

for characterisation of solid catalysts. The adsorption of the reactants precedes and the 

desorption of products follows the reaction on the catalytic surface in heterogeneous 

catalysis. Knowledge of the kinetics and energetics of these elementary reactions facilitates 

understanding of the catalytic cycle taking place on the catalyst.  

 

In TPD studies a solid on which gas has been adsorbed is submitted to a programmed 

temperature rise and the amount of desorbing gas is continuously monitored. The 

temperature at which species are desorbed from the surface of a heated solid reflects the 

strength of the surface bonds. TPD (or flash desorption) was first described as a quantitative 

analytical tool for surface characterisation of low-surface-area samples in high vacuum by 

Redhead [26], who also showed the potential of the method to extract the adsorption 

energetics. TPD was proposed for the study of high-surface-area catalysts under carrier gas 

and ambient pressure by Amenomiya and Cvetanovic [25]. A vacuum set up is customarily 

used for surface science studies, whereas both flow and vacuum set-ups of TPD are used for 

catalysis studies. The dual nature of the TPD technique enables bridging of the material and 

pressure gaps in heterogeneous catalysis. Theory and applications of TPD have been 

reviewed by Cvetanovic and Amenomiya [29], Falconer and Schwarz [30,87], Lemaitre [32], 

Bhatia et al. [34], Tovbin [88] and Bennett [5].  

 

TPD provides information that is relevant to catalytic properties. TPD data help in 

unravelling the complexity of gas–solid interactions. They characterise chemisorption or 

acidic properties with indication of the surface energetic heterogeneity and can be compared 

qualitatively with reference TPD patterns. The total amount desorbed can be related to the 

adsorption capacity, to the metal surface area and dispersion of the metal on supported metal 

catalysts and to the acid capacity of solid acid catalysts. TPD has also been suggested to be a 

good tool for determining site densities and reaction pathways on oxide catalysts [89]. 

Alongside the usual qualitative uses of TPD, quantitative kinetic and energetic information 

has been sought from TPD data.  
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Early methods to extract kinetic parameters included the variable heating rate method 

(analogous to the Kissinger method), the desorption rate isotherm method [90] (the second 

step of which is analogous to the Friedman method) and others [30]. De Jong and 

Niemantsverdriet [91] reviewed and tested approximate analysis procedures for TPD data. 

Rudzinski et al. [92] addressed the applicability of the Arrhenius plot methods to determine 

the surface energetic heterogeneity and pointed out their limitations. A very general way to 

extract kinetic parameters from TPD data is nonlinear regression analysis based on model 

fitting. Technical aspects of the nonlinear regression technique applied to analyse TPD data 

have been presented by Russell and Ekerdt [93]. The main challenge in the nonlinear 

regression method is not, however, the technical aspects but an adequate mathematical 

description of the physico-chemical system of TPD. The description covers both the intrinsic 

reaction rates and the mass transfer in the system. 

 

In surface science studies the observed rate in TPD may directly reflect the intrinsic rate of 

unidirectional desorption and it is commonly described as the Polanyi–Wigner equation 

without readsorption [91]. Still, even in the most ideal desorption from single crystals, 

multipeak desorption patterns sometimes emerge as a manifestation of the intrinsic 

complexity of the system. Lateral interactions of the adsorbed species or different binding 

sites of the species may contribute to the multipeak TPD patterns. The extraction of kinetic 

parameters from TPD data obtained in UVH is reviewed by Niemantsverdriet [94].  

 

Mathematical description of desorption kinetics for porous samples in flow set-ups is 

complicated by the superposition of several physico-chemical phenomena. Important 

methodological aspects of TPD from porous catalysts were dealt with during the 1980’s 

[95,96,97,98,99]. Ibok and Ollis [95] developed a modified Weisz–Prater [100] criterion to 

assess the intraparticle diffusion limitations. Herz et al. [96] set up a more accurate 

mathematical description for kinetics of desorption from porous catalysts, which included 

rates of adsorption and desorption, rates of diffusion from the catalyst pellet and the CSTR 

reactor model. Both simulations and CO-TPD experiments on supported platinum indicated 

that adsorption equilibrium was closely approached in TPD and the significance of the 

readsorption was revealed. Rieck and Bell [97] established a simulation model with intrinsic 

adsorption and desorption kinetics, the catalyst particle balances with diffusion and a reactor 

model (CSTR or multiple CSTRs to account for packed bed behaviour). They studied the 
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influence of carrier gas flow rate and composition, the catalyst particle size, the length of the 

catalyst bed and spatially non-uniform adsorption for both first- and second-order desorption 

processes [97]. Their conclusions extended and confirmed the previous knowledge of TPD 

from porous catalysts. The physico-chemical models governing in TPD were 

nondimensionalised by Gorte [98] and Demmin and Gorte [99] and the effects of various 

experimental parameters were analysed. The analysis resulted in six dimensionless groups 

(ratios of characteristic rates of the system) for assessing the mass transfer phenomena in TPD 

[99]. Gorte’s criterion for internal mass transfer limitation has been validated experimentally 

[101] and in simulation [97]. The intraparticle diffusion in TPD has also been evaluated by 

Huang et al. [102] in terms of the magnitude of the effectiveness factor, which takes into 

account temperature-dependent transport properties and readsorption.    

 

Although models assuming intraparticle diffusion [103] and the integral reactor model 

[104,105] have occasionally been applied in the context of kinetic analysis of TPD, the 

CSTR model and the assumption of negligible intraparticle diffusion resistance are still 

customarily used in kinetic analysis of TPD data. The diffusional limitations and appropriate 

reactor model should be evaluated for each and every new TPD case.        

 

In this work, adsorption/desorption of hydrogen on a supported nickel catalyst was 

investigated by H2-TPD. The main objective was to set up methods and models applicable to 

investigation of the adsorption/desorption kinetics of this kind of system. As nickel is an active 

catalyst for hydrogenation, another objective was to provide information useful in 

microkinetic modelling of the hydrogenation of aromatics. An extensive review on nickel 

catalysts in the context of transient techniques has been provided by Falconer and Schwarz 

[87].      

 

The TPD experiments were supplemented by static and pulse chemisorption experiments. A 

kinetic model to describe the adsorption and desorption during the TPD was developed and 

tested using nonlinear regression analysis. Adsorption equilibrium parameters and adsorption 

capacities were obtained through the kinetic analysis. The following section summarises the 

findings of publication (IV) and describes further tests of the assumptions made in the 

kinetic analysis.  
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3.2. Results and discussion 

 

3.2.1 Experimental results 

 

A commercial Ni/Al2O3 catalyst with 17 wt-% of Ni was investigated. Each TPD experiment 

consisted of the pre-treatment and five successive TPD runs, four of which were stable and 

reproducible. The heating rates in the successive TPD runs were 12, 6, 12, 18 and 12 K/min. 

The exposure of the catalyst to hydrogen in between the runs was conducted according to 

two procedures. The catalyst was cooled from the end temperature to the initial temperature 

in argon flow and this was followed by 10 min hydrogen flow over the catalyst at the initial 

temperature (procedure TPD I), or the catalyst was subjected to hydrogen flow already 

during the cooling (procedure TPD II). Experimental details of TPD and static and pulse 

chemisorption experiments can be found in (IV). 

 

The TPD thermograms and total desorbed amounts of hydrogen were different for the 

procedures TPD I and TPD II. Figure 3.1, which depicts typical TPD patterns of the two 

procedures, clearly shows the differences in the qualitative characteristics of the thermo-

grams. As a rule, more hydrogen desorbed when TPD II was applied. In experiments carried 

out with the TPD I procedure, the desorbed amount of hydrogen was less after adsorption at 

303 K than at 323 K. Thus, for the TPD I series the amounts adsorbed did not follow the 

expected thermodynamic trend. Possibly this implies activated chemisorption. For the TPD 

II experiments, desorbed amounts of hydrogen increased with decreasing starting 

temperature. 
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Figure 3.1. TPD patterns for the procedures a) TPD I and b) TPD II. The heating rates are indicated.  
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3.2.2. Kinetic models for TPD 

 

The objective of the fourth study (IV) was to set up a kinetic model that would describe the 

observed desorption kinetics. To describe the qualitatively observed heterogeneity in the 

TPD patterns, n distinct types of adsorption sites were hypothesised. Re-adsorption was taken 

into account in the model.  

 

The intraparticle diffusion limitation was carefully evaluated according to the criterion of 

Gorte [99] and found negligible. The reactor was modelled as a differential reactor. The 

dimensions of the catalyst bed in relation to the flow rate and the observed desorption 

dynamics constituted the grounds for the reactor selection. Simulations of similar kind of 

TPD experiment [104] indicated uniform surface coverage for the major part of the catalyst 

bed. If deviation from the uniform coverage at the entrance to the catalyst bed represents 

only a minor part of the bed then kinetic analysis based on uniform surface coverage is 

justified.         

 

The main features of the model are summarised in the following. The differential reactor 

balance with hydrogen desorbing from n adsorption states becomes  

∑−=
n

i

i
im dT

d
vFx

θβ ,                            (3.1) 

where F stands for the total molar flow rate and x for the molar fraction of hydrogen, θ i 

represents the surface coverage and vmi the specific molar capacity of the ith adsorption state. In 

TPD the sample temperature is raised at a constant rate: 

β=
dt

dT
                             (3.2) 

Since x is the quantity observed in the TPD experiment and most conveniently compared 

with the model solution, the equation is further transformed by eliminating the system 

variables θ i, i=1…n.   

 

The adsorption/desorption related to each adsorption state i is assumed to be a second-order 

(dissociative) process with the distinct rate coefficients kai and kdi, respectively. If the re-

adsorption in TPD is rapid enough to maintain the adsorption equilibrium, the surface 

coverage of the ith adsorption state can be expressed as a function of the gas phase 

composition: 
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( )

( ) 2/1

2/1

1 xK

xK

i

i
i +

=θ                         (3.3) 

where Ki is the adsorption equilibrium constant for the ith adsorption state. All the adsorption 

states are in simultaneous equilibrium with the gas phase hydrogen, molar fraction x. The 

temperature dependence of Ki is expressed in line with the kinetic theory of gases: 
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where Ai is the pre-exponential constant, ∆Hi is the adsorption enthalpy and R is the gas 

constant.    

 

Equation (3.1) can now be expressed in the following form: 
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This becomes an ordinary first-order differential equation for x:  
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The surface coverage variables θ i are eliminated from (3.6) by assigning the derivatives 

( )22/1

2/12/1

)(1

21

xK

xK

K
i

i

i

i

+
=

∂
∂ −θ

                     (3.7) 






 ∆

+−




 ∆−

= −

RT

H

RT

H
TA

dT

dK ii
i

i 2/1exp2/3                  (3.8) 

( )22/1

2/12/1

)(1

21

xK

xK

x
i

ii

+
=

∂
∂ −θ

                                    (3.9) 

 

The numerical solution of model (3.6.) can be readily tested against experimental TPD data 

by model fitting, which results in estimates for Ai, ∆Hi and vmi for each adsorption state i. The 

initial value essential for the solution of (3.6.) is carefully assigned to match the experimental 

initial molar fraction.  

 

Multipeak characteristics in TPD patterns are sometimes attributed to lateral interactions 

between the adsorbed species, which are customarily accounted for by allowing the 
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adsorption energy and entropy to vary with coverage. The approach taken in this work 

ignores possible lateral interactions.  

 

The parameter estimation in this work, including numerical solution of (3.6.), was 

implemented in MATLAB®
�6. Multiple TPD curves with various starting temperatures and 

heating rates (related to both TPD I and II procedures) were used for the parameter 

estimation. The quasi-equilibrium adsorption model with two adsorption states provided an 

adequate fit for the data collected according to the procedures TPD I and TPD II. 

Parameters were well-identified and of physically reasonable order of magnitude. Tables 3.1 

and 3.2 report the estimated adsorption parameters and Figure 3.2 displays the best-fit model 

solution and the experimental data. For both TPD procedures (Tables 3.1 and 3.2) the 

adsorption state 2 can be related to one specific adsorption state, but state 1 appears to be 

different for the two TPD procedures. This conclusion is explained in (IV). 

 

 

Table 3. 1. Results of kinetic modelling with a two-state model for TPD I experiments with T0=323 
and 343 K and β = 6, 12, and17 K/min.  

Parameter estimates State  

index (i) Ai,ref (K
1/2) ∆Hi (kJ/mol) vmi (mmol/ gNi) 

1 (2.3 ± 0.2)e4 -122 ± 3 0.51 ± 0.03 

2 (3.6 ± 0.3)e5   -63 ± 1 1.07 ± 0.03 

Ki =Ai,ref*T-1/2*exp(∆Hi/R(1/Tref-1/T)), where Tref= 475 K 

 

Table 3.2.  Results of kinetic modelling with a two-state model for TPD II experiments with T0=323 
and 343 K and β = 6, 12, and17 K/min.  

Parameter estimates State  

index (i) Ai,ref  (K
1/2) ∆Hi (kJ/mol) vmi (mmol/ gNi)  

1 (2.2 ± 0.4)e3 -117 ± 4  0.29 ± 0.01 

2 (5.9 ± 0.4)e5   -72 ± 1 1.41 ± 0.02 
 
 

Validation and testing 

To further evaluate the kinetic analysis of the TPD data for the H2 - Ni/Al2O3 system (IV), the 

two most significant assumptions made in the analysis, namely the differential reactor 

assumption and the quasi-equilibrium adsorption assumption, were relaxed to see their 

influence on the results.  
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Integral reactor model and quasi-equilibrium adsorption 

TPD was simulated with the previously estimated adsorption parameters and quasi-

equilibrium adsorption but using an integral reactor model in order to see how the solution 

differed from that given by the differential reactor model. (The integral reactor model was 

implemented by connecting multiple differential reactor models in series and utilising the 

quasi-equilibrium assumption, eqs. 3.3, 3.7-3.9) A uniform molar fraction corresponding to 

the experimental value was assigned as the initial value for the solution. The difference 

between the simulated results obtained with the different reactor models was minor for some 

conditions but significant for others. The parameter estimation for the TPD data was 

consequently carried out with use of a complete integral reactor model. The agreement 

between these and earlier parameter estimates was good though not outstanding. While the 

simulations showed some deviations from uniform concentration, the order of magnitude 

and the interpretation of the results from original parameter estimation remained essentially 

the same.  
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Fig. 3.2. Experimental data and best-fit model solutions for a) TPD I and b) TPD II. (T0=343, β=6, 12, 18 

K/min) 

 

Integral reactor model and independent adsorption and desorption reactions 

The simulation was next carried out with adsorption and desorption processes but without 

the quasi-equilibrium assumption. Independent adsorption and desorption kinetics were 

applied with the integral reactor model in the parameter estimation to see whether this 

description of the model was closer to the experimental results than with the quasi-

equilibrium assumption. An evolutionary approach was necessary since the new model 
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contained ten degrees of freedom instead of the previous six. The convergence of the 

problem was poor and it was necessary to fully utilise the information obtained from the 

quasi-equilibrium model. First, the independent kinetics was applied with the gradientless 

reactor model to estimate reasonable initial guesses for the parameters. The ratios of pre-

exponentials of adsorption and desorption and the adsorption capacities were fixed on the 

basis of the previously estimated adsorption equilibrium parameters, the activation energies 

of desorption values were assigned the previous -∆H estimates, and adsorption was treated as 

non-activated at this stage. The initial value for the gas-phase composition was assigned to 

match the measured one and the surface coverage values were calculated from the previously 

modelled quasi-equilibrium. Finally, all ten parameters were adjusted freely in the model 

fitting. These parameter estimates were then assigned as initial guesses for the parameter 

estimation incorporating the integral reactor model. The new model did not provide a better 

description: the fit was essentially as good as with the quasi-equilibrium model. The 

estimated parameters were not unique: the adsorption and desorption cannot be identified as 

independent processes for this system.     

 

Model (3.6) appears to be suitable for describing the interaction between a gas and a 

macroporous supported metal catalyst during TPD provided that the re-adsorption is fast, and 

axial and intraparticle gradients are negligible. The application of the model may also be 

useful as an intermediate step in model development incorporating a more general reactor 

model.   

 

Consistency of the TPD results 

The experimental data and the results of kinetic analysis (IV) provided wide information on 

the adsorption behaviour of hydrogen on the nickel catalyst. The amounts desorbed in the 

TPD I experiments agreed with the irreversible adsorption capacity, and those desorbed in 

TPD II with the total adsorption capacity determined using the static chemisorption. The 

sum of the estimated capacities of the adsorption states was also meaningful in the light of 

these values. The TPD results suggested the existence of two adsorption states. Likewise, 

previous investigations on the nickel/hydrogen adsorption system carried out by different 

methods have indicated at least two adsorption states [106]. The adsorption enthalpies 

estimated on the basis of kinetic analysis of the TPD experiments (∆H= -63, -122 kJ/mol) are 
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in broad agreement with the adsorption enthalpy values for hydrogen on nickel reported in 

the literature (Table 3.3) and are of reasonable order of magnitude.  

 

Table 3.3. Adsorption enthalpies of hydrogen on nickel surfaces. 

Surface -∆Ha  kJ/mol Method Reference 

Ni(100) 96 TPD, UVH Christman et al. [107] 

Ni(110) 90 ‘’ ,, 

Ni(111) 96 ‘’ ,, 

24.3% Ni/SiO2 35.9, 48.0, 60.8, 85.4, 

123.4, 170 

TPD Konvalinka et al  [108] 

~50% Ni/SiO2 55–89 TPD Lee et al. [109] 

Ni/SiO2 82–84 TPD Weathterbee, 

Bartholomew [110] 

14% Ni/Al2O3 70, 125 TPD ‘’ 

17% Ni/Al2O3 124.3, 222.5, 413 TPD, UVH Smeds et al [111] 

Polycrystalline Ni 60–125 Calorimetric analysis Wedler [112] 

Ni/SiO2 50–110 Calorimetric analysis Prinsloo, Gravelle [113] 

Ni/kieselguhr 57.7 Pulse chromatographic 

analysis 

Padberg, Smith [114] 

Ni catalyst 58.5 ‘’ Damiani et al. [115] 

 

 

3.2.3. Pulse chemisorption 

The pulse chemisorption experiments provided complementary information on the 

adsorption and desorption kinetics. Fifteen hydrogen pulses were introduced into the argon 

carrier gas at three different temperatures and the response pulses after the reactor were 

measured. The catalyst adsorbed the first few pulses completely and subsequent response 

pulses increased one by one finally obtaining constant concentration behaviour as a function 

of time. Qualitative interpretations of the pulse chemisorption data showed that all 

adsorption was rapid, and reversible adsorption occurred at each temperature studied. In 

particular, the reversible adsorption observed at 305 K was related to weaker adsorption than 

was encountered in the TPD experiments. Preliminary parameter estimation by model 

fitting was also conducted for the pulse chemisorption data, but proper identifiability 

requires more experiments. The pulse chemisorption results independently supported the 

assumption of rapid readsorption to the medium and strong chemisorption states from the 
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temperature 338 K on, which further validates the quasi-equilibrium treatment of the TPD 

data.        

 

3.3. Conclusions 

 

Wide experimental data on the adsorption properties of a commercial Ni/Al2O3 catalyst were 

collected by H2-TPD, static chemisorption and pulse chemisorption. Kinetic analysis of the 

TPD data was carried out by nonlinear regression analysis. TPD data were analysed in terms 

of a kinetic model assuming quasi-equilibrium adsorption to multiple adsorption states. 

Multiple-state quasi-equilibrium adsorption combined with the differential reactor model 

resulted in a first-order nonlinear differential equation, the numerical solution of which can 

be directly applied in model-fitting based nonlinear regression analysis.  

 

The temperature at which the catalyst was exposed to hydrogen had an influence on the 

amounts adsorbed and on the nature of TPD patterns. Two adsorption states were sufficient 

to describe the surface heterogeneity in the temperature range 323-673 K. The estimated 

enthalpies for adsorption ranged from -63 to -122 kJ/mol. The adsorption capacities of TPD 

agreed with the ones determined by static chemisorption.    

 

This case study demonstrates that adsorption energetics for porous catalyst samples can be 

consistently extracted from TPD experiments. With the existing computing resources the 

possible superposition of different physico-chemical phenomena should not constitute a 

problem, so long as relevant phenomena are properly accounted for in the model. This kind 

of kinetic analysis of TPD could precede a microkinetic modelling of a heterogeneously 

catalysed reaction. The results of this study are potentially useful in the study of 

hydrogenation kinetics on this particular catalyst.  
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4 KINETIC ANALYSIS OF TPO  

 

4.1 Kinetic analysis of coke combustion  

 

Coke refers to undefined hydrogen-deficient organic compounds that deposit on catalysts 

during hydrocarbon conversions. The coke causes catalyst deactivation by occupying the 

active sites and blocking the catalyst pores. The process of deactivation is especially rapid in 

fluid catalytic cracking (FCC), making catalyst regeneration an essential part of the 

operation of FCC units [116]. In FCC, regeneration restores the catalyst activity and 

provides the heat required for feed evaporation and for compensating for the endothermic 

cracking reactions. In the regeneration coke oxidises to form carbon dioxide, along with 

carbon monoxide and water. 

 

The design and optimisation of a regeneration unit requires an extensive simulation model, 

which includes a kinetic model of regeneration providing predictions of the intrinsic rates of 

oxidation reactions as a function of the process conditions. The simulation model provides a 

means to reduce operational and investment costs of the process and to optimise the 

operation so that it is safe and environmentally acceptable. The conditions of interest for the 

regenerator of an FCC unit cover oxygen concentrations of 1–21% and temperatures of 500–

800 ºC. These are the conditions in which the kinetic model should adequately describe the 

rates of oxidation reactions.    

 

Publication V deals with the regeneration kinetics of the commercial FCC catalyst being 

used in the pilot unit for the new FCC technology NExCCTM[117]. The nature of coke is 

affected by the cracking conditions [118], type of catalyst, feed composition and ageing 

[119], which necessitates process-specific kinetic models of regeneration. The feed type of 

the cracking unit (light gas oil with boiling point 300-400 °C) and the cracking conditions 

(higher temperature, shorter contact time than in conventional FCC) resulted in low coke 

content (0.18 wt-%). The oxidation of the coke was performed in a fixed bed reactor in 

temperature-programmed mode (TPO). The evolved CO2 and CO were detected separately 

with a procedure, first suggested by Fung and Querini [120]. The detection was based on 

separating CO2 from total carbon oxides (CO+CO2) by absorbing CO2 into an ascarite filter, 

converting the resulting CO and the by-passed CO+CO2 streams to methane and by 
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analysing the two streams using flame ionisation detector (FID). The validity of the detection 

method naturally requires that 1) no other volatile carbon species are present, 2) the 

retention of CO2 on the filter is quantitative and 3) the methanator kinetics is more rapid 

than the coke oxidation kinetics. For experimental details the reader is referred to (V). 

 

Various thermoanalytical techniques have been utilised to characterise coke [121]. The 

application of temperature-programmed oxidation (TPO) experiments for the determination 

of the kinetics has been described by Querini and Fung [121, 122]. TPO continues to be an 

important tool for qualitative characterisation of coke [123]. Kinetic analysis of TPO data 

requires consideration of the aspects discussed in section 1.4. In the ideal case, the intrinsic 

coke combustion kinetics is directly reflected in the experimental results of oxidation and 

can be extracted as such. The coke burn-off kinetics may, however, be limited by the 

diffusion of oxygen into the catalyst pores [124]. The effective diffusivity of gases in the 

catalyst customarily decreases with coke deposition [125].  

 

The rate of coke oxidation is also be affected by topochemical characteristics. The reaction 

can take place as a shell-progressive process in the catalyst pellet [124] or on the exposed 

surface of larger three-dimensional or layered coke structures [122]. In these cases the 

intrinsic kinetics needs to be combined with the dynamics of the reactive surface. In some 

cases, different pore models can be combined with intrinsic kinetics and used in the kinetic 

analysis of catalyst regeneration [126]. If there is wide variability in the shapes, sizes and 

porosities of the deposited coke particles (heterogeneous coke morphology), complex TPO 

patterns arise and resolution of the intrinsic kinetics and the topochemical features may not 

be possible. A non-ideal TPO pattern due to the heterogeneous morphology (changing order 

with respect to coke) was demonstrated in a simulation of Querini and Fung [122].  

 

In most studies on regeneration kinetics the intrinsic kinetics is still directly assessed under 

the assumption that topochemical and diffusional restrictions are negligible. The global 

kinetics is commonly described by applying homogeneous power-law rate expressions, in 

which the reaction orders with respect to the coke content, and the partial pressure (or 

concentration) of oxygen, are either equal to one or they are adjusted between zero and one 

[122,127,128,129,130]. Complex TPO spectra have commonly been interpreted as 

representing the oxidation of several types of coke with different reactivities, and the 
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thermograms have been deconvoluted by a linear combination of power-law expressions 

[122]. This approach can result in a good prediction for the coke combustion kinetics if 

adjustable parameters are determined from an informative set of experimental data [122]. 

However, a physico-chemical interpretation is not easily assigned to the combined power-law 

models with fractional reaction orders for coke or oxygen.          

 

Even chemically homogeneous coke can generate complex TPO patterns if multiple 

reaction steps are contributing to overall rate. Homogeneous semi-mechanistic approaches 

with multistep reaction pathways have been introduced to interpret the complex TPO 

spectra of coked cracking catalysts [131,132,133,134] and charcoal and graphite [135]. 

Brown and co-workers [131,132,133,134,135] introduced a five-step kinetic scheme with a 

metastable dioxygen surface complex and a dissociated stable surface oxygen species as 

intermediates between the coke and the gaseous carbon oxides. There were two pathways for 

both CO and CO2 evolution. The proposed mechanism provided a good simulation for the 

formation of CO and CO2 during TPO. Both CO evolution rates were independent of the 

partial pressure of oxygen, while CO2 evolution rates indicated 0.75-order O2-dependence 

[133].    

  

4.2 Results and discussion 

 

The thermograms for our experiments, the evolutions of CO and CO2 as a function of 

temperature, are shown in Figure 4.1. Smooth single-peak thermograms were obtained in 

every measurement. The formations of CO and CO2 appeared to be highly correlated, with 

almost concurrent rate maxima. The apparent activation energies (E) were extracted from 

the experimental data by the Kissinger method [39]. This was done separately for the three 

oxygen concentrations and resulted values of activation energies of about 145 kJ/mol for the 

formation of CO and between 120 and 180 kJ/mol for the formation of CO2. The 

prerequisites for a correct Kissinger analysis possibly are not fulfilled for this system.  

 

Kinetic analysis of the results (V) was established on the following assumptions: 1) the TPO 

experiments took place in a kinetically controlled regime, 2) the sample temperature was 

well-controlled, and 3) the coke constituted a carbon reserve of uniform nature (one ‘type of 

coke’). Assumptions 1 and 2 were supported by observations and additional calculations (V) 
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and assumption 3 was supported by the fact that the coke content of the samples was 

exceedingly low and the measured TPO patterns showed ideal characteristics.  
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Figure 4.1. TPO thermograms: concentrations (in ppm) as a function of temperature a) 2.0% O2,  
5 K/min, b) 1.0 % O2, 5 K/min, c) 0.5% O2, 5 K/min, d) 2.0% O2, 10 K/min, e) 1.0% O2, 10 K/min,  
f) 0.5% O2, 10 K/min. Upper curves in each figure represent CO and lower ones CO2. 
 

 

The dynamic CSTR reactor model was introduced for the nonlinear-regression-based kinetic 

analysis. The consumption of oxygen was minimal (instantaneous maximum conversion < 2 

% in all experiments) and thus the reactor operated gradientlessly. Different kinetic 

expressions were embedded in the reactor model and parameter estimation was carried out 

in MATLAB® environment.  

 

The kinetic analysis concentrated on homogeneous semi-mechanistic reaction models, three 

of which are collected in Table 4.1 (V). S denotes the molar amount of coke, S* the molar 

amount of stable surface oxide, [O2] the bulk concentration of oxygen, A the pre-exponential 

factor, E the activation energy, K(T) the equilibrium constant of oxygen adsorption, and n 

the reaction order with respect to oxygen. Each of the reaction steps in schemes I-III might 

be composed of several elementary steps. 
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Table 4.1. Kinetic models for coke oxidation. 
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Model I represents the simplest power-law kinetics. The two reactions share a common 

reserve of coke, but they are otherwise independent. The Arrhenius parameters and the 

reaction orders with respect to oxygen were estimated, and the reaction order with respect to 

the coke was assigned as one. Model I gave a good description of the experimental data 

(Figure 4.2, root mean square error, rmse ~ 1.60 ppm) and the parameters were well-

identified. Table 4.2 reports the parameter estimates with their 95% confidence intervals. 

The reaction order with respect to oxygen was close to 0.6 for both reactions, but, as 

expected, was slightly higher for the formation of CO2. The activation energy of the CO 

formation was close to the result of the Kissinger analysis (146 kJ/mol). Additional tests were 

carried out by using first-order dependence for both oxygen and coke in Model I. This model 

did not perform as well as the model with fractional orders for oxygen (rmse ~ 3.27 ppm). 

Additional calculations also indicated that the first-order dependence on coke was optimal. 

The direct proportionality of the rate of reaction to the remaining amount of coke supports 

the assumption that the coke was well dispersed on the samples. 
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             Figure 4.2.  Best-fit solution of Model I (continuous line) and experimental TPO data.  

 

Table 4.2. Parameter estimates for Model I. 

A1 [µmol/dm3]-n1 min-1 (1.1 � 0.1) *106 
E1  kJ/mol 146.2� 0.8 
n1 0.58 ��0.02 
A2 [µmol/dm3]-n2min-1 (3.4 � 0.6) *103 
E2   kJ/mol 112 � 1 
n2 0.64� 0.02 

 

Model II (Table 4.1) introduced an additional reaction step. Since the reactions of CO and 

CO2 formation were apparently highly correlated in the experimental data and the reaction 

orders of O2 were closely similar for CO and CO2 formation in Model I, the reaction was 

described to proceed via an intermediate surface oxide that could transform to either gaseous 

CO or gaseous CO2. This model performed equally as well as Model I (rmse ~ 1.59 ppm). 

However some parameters, especially the Arrhenius parameters for CO2 formation, were not 

properly identified. The full parametric model contained too many degrees of freedom and 

thus loose, unnecessary dynamics. The reaction orders with respect to oxygen (n1 and n2 ~0, 

(V)) suggested that the rate-determining steps of CO and CO2 evolution from the 

intermediate oxide were practically independent of oxygen concentration, whereas the 
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formation rate of surface oxide was of order 0.6 with respect to oxygen in accordance with 

Model I. Model II was thus simplified by omitting n1 and n2 from the parameter estimation 

and by presenting the rate coefficient for formation of CO2 as a constant, k2. The revision of 

Model II did not cause deterioration in the fit (rmse ~ 1.59 ppm). The estimated parameters 

for the revised Model II are reported in Table 4.3. Model II represents a reaction with a rate-

determining surface oxide formation step and subsequent low-activated formation of gaseous 

products. The rate determining steps related to the release of CO and CO2 from the surface 

intermediate do not require more oxygen.  

 

  Table 4.3. Parameter estimates for Model II. 

A0 [µmol/dm3]-n0min-1 (3.0 � 0.3 ) * 105 
E0  kJ/mol 134.9� 0.8 
n0 0.60 � 0.1 
A1  1/min 2.0 * 102 � l.c 
E1   kJ/mol 37 � 2 
K2  1/min 28 � l.c  

  Table 4.4. Parameter estimates for Model III. 

A1 dm3/(µmol min) 3.1 *1010 � l.c. 
E1   kJ/mol 145.1 � 0.8 
A2 dm3/(µmol min) 9.5 *107  �  l.c. 
E2   kJ/mol 109 � 1 
K3 dm3/µmol 2.3 *10-9 � l.c. 

l.c. = large confidence interval 

 

Model III was formulated in an attempt to explain the reaction order of 0.6 obtained for 

oxygen. Model III assumed that ‘an intermediate surface oxide’ formed in a fast equilibrium 

reaction and then further transformed to gas-phase CO and CO2. The surface oxide 

formation was described with the Langmuir model for dissociative adsorption of oxygen on 

the carbon sites. The degrees of freedom of Model III were reduced to minimum by omitting 

the temperature dependence of the equilibrium constant. The reaction order with respect to 

oxygen became insignificant for the evolution of gaseous CO2 from the surface intermediate 

and it was also left out of the parameter estimation. Surprisingly, the reduced five-parameter 

model was still able to describe the experimental TPO data (rmse ~ 1.79 ppm). The 

parameters are reported in Table 4.4. The activation energy values were almost the same as 

those for Model I.  

 

Comparison of the obtained kinetic results with literature values is not straightforward 

because of the case-specific nature of coke. Moreover, most reports do not distinguish 

between the formations of CO and CO2 but treat them together. Published apparent activat-

ion energy values for the overall coke combustion over a cracking catalyst or similar catalysts, 

without distinction of CO and CO2, are reported in Table 4.5. The orders of magnitude of 

the activation energies (Table 4.5) and of those obtained in this work are the same. 
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Table 4.5. Activation energies for coke combustion on silica-alumina catalysts. 
 E      kJ/mol Catalyst 

 
Reference 

130-143 Silica-alumina catalyst for isomeration 127 
156-158 Laboratory coked FCC catalyst 136 
119 Commercial FCC equilibrium catalyst 136 
157 Different oxides e.g. silica-alumina 137 
161 FCC catalyst 138 
125 FCC catalyst 129 
 

Li and co-workers [133, 134] have reported results of kinetic modelling of TPO data for 

cracking catalysts. Their five-step reaction scheme included steps corresponding to the 

reactions of Model I, so that our activation energies can be compared with theirs. Their 

activation energy values for the regeneration of a spent FCC catalyst were 131 � 5 and 98 ��

5 kJ/mol for the formation of CO and CO2, respectively [133]. The values are fairly close to 

the values of Models I and III. Li et al. [134] also investigated laboratory-coked catalysts with 

TPO. The catalysts were deactivated by cracking 1-octene at different temperatures (200–600 

ºC). They found that the cracking temperature clearly affected the coke formation and 

consequently the kinetic parameters obtained by analysing the TPO data. The kinetic 

analysis of the TPO data of the catalyst deactivated at 600 ºC resulted in activation energy 

values of 138 ± 3 and 101 ±�4 kJ/mol for the formation of CO and CO2, respectively [134]. 

Both values are just barely below those obtained with Models I and III. It is noteworthy that 

1) the reaction scheme in refs. 133 and 134 also includes other reactions, 2) the oxygen 

dependence of the reaction rate is expressed as partial pressure, which is not fully equivalent 

to the molar concentration unit used in this work and 3) the reaction orders with respect to 

oxygen appear to be different.   

 
The kinetic analysis of this work (V) can be summarised as follows: The experimental TPO 

data could be regressed by three homogeneous kinetic models. Even two independent 

power-law-type kinetic models adequately described the rate of formation of CO and CO2. 

This suggests that the coke is indeed of uniform nature and it is likely that the rates of 

formation of CO and CO2 are mainly controlled by a single rate-determining step each. A 

common intermediate surface oxide species might explain the observed concurrence of the 

evolution of CO and CO2, even though the introduction of a third independent reaction 

describing the formation of the intermediate did not substantially improve the fit and tended 

to add unnecessary dynamics. A fractional reaction order (0.6) for oxygen was obtained with 

Models I and II. An explanation for the fractional order of oxygen could be dissociative 
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coordination of oxygen on the carbon sites to form an intermediate that is subsequently 

involved in the rate-determining steps for the evolution of gaseous CO and CO2 (Model III). 

The present observations on the coke combustion reaction did not encourage the 

introduction of further mechanistic complexity.  

 

The TPO method appears to be a useful tool for kinetic determinations of oxidation 

reactions. Two observations may be made on the application of TPO for engineering 

purposes: 1) A wider set of oxygen concentrations in experiments is desirable for predictions 

that will be reliable under the whole range of practical conditions, and 2) thermograms of 

water should also be measured and analysed in terms of a kinetic model, since the oxidation 

of hydrogen is of importance in the heat balance. Application of TPO for fundamental 

understanding of oxidation reactions is challenging since coke is not one specific substance 

but comprises different compounds and in some cases different morphologies. Chemical and 

physical characterisation of the catalyst and the coke could provide additional insight. 

Elucidation of intrinsic mechanistic details would greatly benefit from measurement of the 

thermograms of oxygen and water during TPO to establish the complete oxygen balance.         

 

4.3 Conclusions 

 

Kinetic analysis of coke combustion in low oxygen concentrations was conducted with the 

aid of TPO experiments. The formation of both CO and CO2 was found to likely involve a 

single rate-determining step. Power-law models with first-order for coke and approximately 

0.6-order for oxygen accurately described the rates of CO and CO2 evolution. The obtained 

activation energies were 146 and 112 kJ/mol, respectively. The fractional reaction order for 

oxygen could result from dissociative adsorption of oxygen on the carbon sites. The estimated 

values of kinetic parameters are process-specific and closely related to the type of feed, the 

catalyst type and the cracking conditions.  

 

TPO experiments provide overall evolution rates of gaseous products and enable a 

description of the main dynamics of coke combustion as a function of process conditions.  

This case study suggests that TPO is a useful tool to extract the kinetics of catalyst 

regeneration for engineering purposes. 
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5 ASSESSMENT OF KINETIC ANALYSIS OF TEMPERATURE-PROGRAMMED 

REACTIONS 

 

There is a common methodological basis for kinetic analysis applied to temperature-

programmed reactions, even though the intrinsic phenomena differ. In this chapter, 

characteristics of the kinetic analysis of temperature-programmed reactions are discussed on 

the basis of the findings of the case studies I-V. The special characteristics of kinetic analysis 

originating of the properties of gas–solid reactions and the methods to extract kinetic 

information about these reactions are reported and discussed with reference to the relevant 

literature.   

 

5.1. Level of information obtainable from TPD, TPR and TPO 

 

The bulk concentrations, which reflect the intrinsic kinetics of gas–solid interactions, are 

equivalently measured for the three temperature-programmed techniques. Even though the 

temperature-programmed techniques are equivalent in many respects, kinetic analyses of 

TPD, TPR and TPO data have the potential to provide information at different levels of 

detail. The complexity of gas–solid interactions in the systems increases in the order TPD, 

TPR and TPO, as measured by the nature of the reactive solid, the number of gaseous 

components and the number of reactions involved. The complexity reduces the chances of 

tracing back the underlying intrinsic phenomena and correctly assigning them. The utility of 

TPx methods can be enhanced by monitoring as many as possible of the species involved in 

the reactions. Interpretation of TPx data is also greatly assisted by the availability of 

complementary catalyst characterisation information. 

 

TPD allows assessment of intrinsic gas–solid interaction: either desorption or both adsorption 

and desorption. This information is directly usable in the microkinetic modelling of 

heterogeneously catalysed reactions. Alternatively the kinetic analysis provides a detailed 

adsorptive fingerprint of the material independent of process conditions.  

 

Analysis of the TPR of oxides provides at least the global reduction kinetics. If the 

topochemistry is adequately described, TPR gives information on the intrinsic rate-

determining step(s) of a gas–solid reaction. The rate-determining step may even be identified 
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by comparing the activation energy of reduction with the bond energies of candidate bonds 

to be broken in the reduction.  

 

TPO allows assessment of global coke oxidation kinetics, valuable for engineering designs. 

The kinetic parameters cannot be related to elementary reactions of microkinetic 

significance unless the identity of the coke compounds is revealed. 

 

 

5.2 Challenges in kinetic analysis of TPx data  

 

Thermoanalytical data is often complex due to the heterogeneity and non-uniformity of real 

materials. At best, the simplified kinetic models presently available capture the major system 

dynamics. Simplifying assumptions do not necessarily worsen the ability of a model to 

describe experimental results, so long as the material heterogeneities do not manifest 

themselves in the experimental data or the averaged situation represents well the overall 

dynamics. A well-known example of this is the application of the Langmuir–Hinshelwood 

models to describe the chemical kinetics of heterogeneous catalytic reactions: even though 

the catalytic material is characterised by structural heterogeneities, the actual surface 

reaction may still take place on a relatively limited and uniform group of surface sites [139]. 

Furthermore, in a heterogeneously catalysed reaction, the surface coverages of the reactants 

may not change dramatically even though the macroscopic process parameters are varied. A 

TPx experiment differs essentially from this: in the course of the reaction the conversion of 

solid increases from zero to complete (TPR/TPO etc) or the surface coverage evolves from 

complete to zero (TPD). The kinetic model thus needs to cover, in addition to a wide 

temperature range, all degrees of conversion. Under these circumstances, it is clear that 

relatively minor amounts of species of different reactivity may undermine the fit of the 

model. Furthermore, the available kinetic models (such as the ones in Table 1.1) may prove 

insufficient to describe the conversions of real materials. Models derived for certain limiting 

cases, which can reasonably describe isothermal data or a portion of the conversion range, 

may run into problems in describing complete thermograms.        

 

Another issue in kinetic analysis of TPx data is related to the topochemical characteristics, 

which are common among reactions involving solids. Kinetic analysis of a topochemical 
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reaction requires, alongside the intrinsic rate law, consideration of the dynamics of the area 

of the active interface [36]. This means that the initial size and shape of the reactant may 

play a role in topochemical reactions. In particular, a wide variability in the particle size 

distribution of the reactant influences the overall kinetics appearing in the thermogram and 

undermines the utility of an analysis performed with models typically assuming constant 

particle size. If variability is moderate, on the other hand, models relying on average particle 

size may be sufficient. Particle size effects are illustrated by Tonge [140], who simulated, for 

example, the TPR profiles of bimodally distributed powders. Nucleation and nuclei growth 

models encounter similar difficulties if the reactive material exists in variable size scale.           

 

There is still another special feature related to the kinetic analysis of typical temperature-

programmed reactions. The balance equations of the physico–chemical system of TPx 

assume the conservation of matter. Thus the total amount of solid reactant in the simulation 

model must match the value of experiments; that is, in practical terms the simulated and 

measured thermograms must be equal in area. Consequently, if the model does not fit the 

data in a certain temperature range, it is destined to fail at a later stage, too. The best-fit 

model solution is obtained as a compromise over the whole range of degrees of conversion. 

The differences between a model and experimental TPx data expressed as a function of 

temperature often display undesired systematic trends.   

 

5.3. Methodological remarks 

 

Isoconversional and model-free methods 

Methodological aspects of kinetic analysis of solid-state and gas–solid reactions have been a 

subject of considerable interest during recent years [141-164]. General distrust of some 

traditional as well as some model-fitting based methods of kinetic analysis has inspired a 

search for alternative methods that could give consistent results even for complicated solid- 

state reactions [159, 149, 152, 153]. The isoconversional ‘model-free’ methods have gained 

attention in the field of kinetic analysis of thermoanalytical data as a means of determining 

the activation energy. Isoconversional methods are classified into differential isoconversional 

methods (the Friedman method [40]) and integral isoconversional methods (the Ozawa–

Flynn–Wall method [150] and the Vyazovkin method [148, 149]). The Friedman and 

Vyazovkin methods are otherwise equal [145], but the latter is more robust to signal noise 

[161]. While the isoconversional methods do not require an assumption about the reaction 
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mechanism to produce the activation energies, the NPK (non-parametric kinetics) method, 

introduced by Serra et al. [152], assumes even less and aims only at providing predictions of 

the reaction rates. The NPK method regresses experimental data by assuming that a reaction 

rate is a product of a temperature-dependent and a conversion dependent function [152]. 

The NPK method has been discussed by Sempere et al [153], Sewry et al. [154] and 

Opfermann et al. [155,156], but has not yet been introduced for many applications.            

 

The isoconversional model-free methods are advocated for their ability to provide estimates 

of activation energy independent of reaction mechanisms [147]. The essence of the 

isoconversional methods is acknowledgment of the complex nature of an overall solid-phase 

reaction and the inexpressibility of the activation energy as a single constant [147]. There are 

some controversial aspects in regard to the utility of these methods, however. Vyazovkin 

[147,165,157] suggests accepting the concept of effective activation energy, which could vary 

with the degree of conversion or temperature or both. The effective activation energy is the 

‘combined’ activation energy for the overall process possibly comprising multiple chemical 

(or physical) rate processes. However, this effective activation energy does not represent the 

fundamental activation barrier of the reaction, related to the redistribution of the chemical 

bonds [158,159].  

 

The isoconversional methods typically produce the activation energy as a function of degree 

of conversion. The interpretation of possible variable activation energy in physico-chemical 

terms poses serious difficulties. The overall reaction may involve one composite serial 

reaction, where the rate-controlling steps change with the reaction conditions. Or it may 

involve multiple parallel reactions with different reacting species or multiple parallel 

mechanisms for one reacting species. There are numerous other examples of overlapping 

chemical and/or physical elementary processes contributing to the overall dynamics. While 

the results of the isoconversional methods surely indicate possible complexity, they give no 

information regarding the origins of that complexity. Isoconversional methods also ignore the 

influence of the pre-exponential factor and give absolutely no information on the reaction 

mechanism. The resulting activation energy values as a function of degree of conversion may 

also be confusing, since they are not directly related to the microkinetic activation barriers of 

the individual steps. Furthermore, it may not be sufficient to report the effective activation 

energy as a function of conversion since the effective activation energy as obtained from the 
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isoconversional methods generally is also a function of temperature. This can be illustrated 

with a simple example.  

 

Consider a hypothetical reaction that involves decomposition of one reactant via two 

independent parallel mechanisms, where the rate of decomposition is expressed as 

)()()()( 2211 ααα
fTkfTk

dt

d += ,                 (5.1) 

The effective activation energy, as understood in isoconversional methods, is analytically: 
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α                            (5.2.) 

Let us now assign parameters and mechanisms for eq. (5.1): f1(α)=1- α, f2(α)=(1- α)2, 

A1=1*1016 1/min, A2=1*108 1/min, E1=200 kJ/mol and E2=100 kJ/mol, as in ref. [145]. Model 

(5.1) with these mechanism and parameter selections represents a composite process with 

two highly overlapping subprocesses. Figure 5.1 a) illustrates the effective activation energy 

(eq. (5.2)) as a function of temperature and the degree of conversion. While the conversion–

temperature trajectory of the process is unique for each heating rate (Fig. 5.1. b. for the 

example process), the effective activation energy as obtained with isoconversional methods is 

dependent on the applied set of heating rates. Figure 5.2 demonstrates calculated effective 

activation energies for the example process obtained by applying the isoconversional method 

and using three sets of heating rates. The results shown in Fig. 5.2 differ very clearly, even 

though the example process was not particularly complex. Effective activation energy as 

determined by isoconversional methods is thus a quantity of empirical nature, the reporting 

of which should be accompanied by a report of the heating rates and starting temperatures.    

 

Galwey [158] has discussed analytically different factors that may cause variable activation 

energy and regards this as a composite parameter in which the contributions from several 

controls remain undistinguished. He rejects the determination of effective activation energy 

and proposes that reliable kinetic predictions should be based on constant value activation 

energies associated with the contributory processes [158].    
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Figure 5.1.   a) Effective activation energy as a function of 
temperature and degree of conversion. 
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b) Conversion–temperature curves with different heating 
rates. 
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 Figure 5.2. Effective activation energy as a function of reduction degree as obtained by applying         

three sets of heating rates: set 1=10, 15, 20, 25 K/min; set 2=3, 5, 7, 9 K/min; set 3= 0.5, 1.0, 1.5, 2 

K/min.  

 

If the isoconversional analysis results in a constant activation energy, as a function of degree 

of conversion, the reaction rate is presumably limited by a single rate determining step and it 

should be easy to discover the pre-exponential factor and the reaction mechanism. On the 

other hand, if the resulting activation energy varies with the conversion, then most simple 

mechanistic explanations are ruled out and it is useless to carry out model fitting with a 

single-step unidirectional reaction rate model either. Evidently then, isoconversional 

methods do not contribute to an understanding of the underlying chemical phenomena. 
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The utility of these methods remains an on/off measure of the simplicity/complexity of the 

examined reaction and the isoconversional and NPK methods only postpone the inevitable 

determination of a kinetic model.   

 

Methods of kinetic analysis based on model fitting and mechanism and parameter 

identifiability 

Some of the distrust of model-fitting based methods originates from the application of 

temperature-programmed data, the information content of which does not ensure proper 

identifiability, and also from the force-fitting of unidirectional single-step rate models in 

situations that call for more complex description.      

 

Kinetic analysis of temperature-programmed experiments by model fitting confronts two 

identiafibility challenges: identifiability of the mechanism and identifiability of the 

parameters. The former involves distinguishing a unique functional form of the kinetic 

model. Basically, as transient techniques, the TPx methods should provide better mechanism 

identifiability than static experiments. The parameter identifiability involves determining the 

kinetic parameters of a given model from a given set of data. Parametric correlations often 

arise in modelling of reaction kinetics. The kinetic compensation effect (KCE), the 

correlation between two Arrhenius parameters of a rate coefficient, is a well-known 

phenomenon [146, 166] in chemical kinetics. It is customarily minimised by introducing 

temperature centring to the rate coefficient: k(T) = Aref exp(E/R(1/Tref-1/T)) and by 

estimating the less-correlated Aref and E. This is also a useful practise for kinetic modelling of 

temperature-programmed reactions. A wide temperature range applied in experimenting 

facilitates the identification of Arrhenius parameters.            

 

The mechanism and parameter identifiability are sometimes partly interconnected. If for an 

isothermal experiment the rate law is of the simple form 

 )()( αα
fTk

dt

d = ,                    (5.3) 

the rate coefficient k is naturally separated from the function f(α), since only the latter varies, 

while k remains constant. A single nonisothermal experiment provides information on both 

f(α) and k(T) but not in separated form. The adjustable Arrhenius parameters are able to 

compensate to a certain extent for the function f(α). For this reason, several different 
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functions f(α) may sometimes satisfactorily fit the data and the mechanism identifiability is 

poor. For example, the models of class 

 nnnf /)1())1ln()(1()( −−−−= ααα                  (5.4) 

irrespective of the value of n are especially capable of representing closely one another’s 

dynamic behaviour if the Arrhenius parameters are suitably adjusted. The contributions of 

the rate coefficient k(T) and the function f(α) to the reaction rate can be decoupled in TPx 

methods, however, by simultaneously using thermograms obtained with different heating 

rates as a basis of kinetic modelling. Good mechanism identifiability is commonly achieved 

by utilising three or four heating rates (I-V). This has been agreed on by many kineticists 

[163, 161]. 

 

Despite the popularity of isoconversional methods applied to thermoanalytical data, true 

kinetic analysis must involve establishing a kinetic model and determining all its parameters. 

Reporting the activation energy alone does not constitute kinetic analysis. The value is 

meaningless until related to a mechanistic model and other kinetic parameters. Independent 

system variables should account for different reaction conditions while the kinetic 

parameters should be as condition-independent and material-related as possible. The 

application of nonlinear regression analysis, based on an adequate physico-chemical 

description of the investigated system, is thus the most universal method of kinetic analysis. 

Among the methods of kinetic analysis now available it is the only one that can contribute to 

a fundamental understanding of rates of gas–solid reactions.   
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6 CONCLUDING REMARKS 
 

This thesis comprises four case studies on temperature-programmed reactions and the 

present summary. The work demonstrates that catalyst characterisation data obtained with 

temperature-programmed experiments can support detailed kinetic analysis of reduction, 

desorption and oxidation. In each case study, a phenomenological kinetic model was 

established and the parameters of the model were determined by nonlinear regression 

analysis.  

 

Kinetic modelling substantially extends the interpretability of temperature-programmed 

reaction data for characterising heterogeneous catalysts. The results of kinetic analysis 

facilitate the comparison of catalyst characterisation information obtained under different 

reaction conditions by different research groups. Kinetic analysis of temperature-

programmed reactions is also a potentially useful tool in microkinetic analysis of 

heterogeneously catalysed reactions, especially when the elementary reactions can be probed 

separately. If the adsorption/desorption or the reduction/oxidation kinetics of the reactants or 

the products relevant to the total reaction can be determined separately, the credibility of the 

total microkinetic model is improved (“divide and conquer”). The approaches introduced in 

this work can be applied to obtain fundamental information on gas–solid interactions or to 

construct models to provide predictions for assisted catalyst design or process engineering.       
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