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Thesis Abstract

In recent years, there has been much interest in electrode processes at metal surfaces

with monolayers coated on them. These monolayers are typically composed of alka-

nethiol molecules. The advantage of alkanethiol molecules is that their length can be

changed systematically. The electron transfer rate across an alkanethiol interface can

be measured as a function of the length of the alkanethiol chain length. A method

using Green’s functions was developed in our laboratory to treat the electron transfer

rate across a monolayer covered electrode.

Another effect of the monolayer is that the electron transfer rate from the redox

reagent in solution to the metal (gold or platinum is commonly used) becomes clearly

nonadiabatic in nature. Thus, the effect of the density of states of the metal on such

a rate can be investigated. We used the previously developed method of Green’s

functions to calculate the change in the electron transfer rate constant on changing

the metal electrode. We developed a way of writing the wave function of a semi-

infinite metal using tight-binding matrix elements and the Z-transform. Using these

k dependent metal wave functions we could calculate the coupling matrix element

between the metal and the redox reagent and thus calculate the electron transfer rate

constant kET.

We used this method to study the effect of changing the density of electronic

states, ρF, at the Fermi level of a metal on the rate of nonadiabatic electron transfer.

The rate constant kET was calculated for the electron transfer to platinum and to

gold using the equation

kET =
2π

~

∫
dε

[
e−(λ−eη+ε)2/4λkBT

(4πλkBT )1/2

]
|V (ε)|2f(ε), (1)

where λ is the reorganization energy, e is the electronic charge, and η is the overpoten-

tial. The expression in [ ] is the classical Franck-Condon factor. V (ε) is the coupling

matrix element calculated by the method of Green’s functions and the Z-transform.

f(ε) is the Fermi-Dirac distribution function.
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The ρF of platinum is about 7.5 times that of gold, the difference being mainly

due to the d-band of Pt. In spite of this difference, the calculated electron transfer

rate constant kET increases only by a factor of about 1.8, instead of the factor of

about 7.5 expected using ρF alone. Bands which are weakly coupled (e.g., the d-band

of Pt in the present case) contribute much less to the rate constant than is suggested

by their density of states ρF. Thereby, kET is approximately independent of ρF in

two cases: adiabatic electron transfer and nonadiabatic electron transfer when the

extra ρF is due to the d-electrons. Our results are in agreement with experiments

performed with systems similar to those used in our calculations.

We then employed our method to calculate the temperature dependence of the

electronic contribution to the nonadiabatic electron transfer rate constant (kET ) at

metal electrodes. It was found in our calculations that this contribution is propor-

tional to the absolute temperature T . The Fermi function and the Franck-Condon

factor broaden with temperature. This broadening implies that a broader distribution

of metal electronic states about the Fermi level is sampled with increasing T . The

electronic contribution is linear in T because the density of states is approximately

constant with energy, narrow, quickly varying bands contributing less to the coupling

matrix element than broader s− p type bands as before.

We also considered the nonadiabatic rate constant for electron transfer at a semi-

conductor electrode. Under conditions for the maximum rate constant, the electronic

contribution is also estimated to be proportional to T , but for different reasons than

in the case of metals (Boltzmann statistics and transfer at the conduction band edge

for the semiconductor vs. Fermi-Dirac statistics and transfer at the Fermi level, which

is far from the band edge, of the metal).

On a different topic, we study the inverse photoemission spectra at metal elec-

trodes. Inverse photoemission at the solid-vacuum interface can be used to map the

empty electronic states above the Fermi level of the metal. Several years ago, ex-

periments were performed at the metal-solution interface similar in nature to inverse

photoemission spectroscopy. In these experiments, an electron transfer redox agent

was used to inject electons or holes into a metal and create excited states. These
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excited states decayed radiatively to give a frequency dependent spectrum. This

spectrum may be analysed to map the electronic structure of the metal above and

below its Fermi level. This experimental technique is known as charge transfer inverse

photoemission spectroscopy (CTRIPS).

We make a compilation of all the available CTRIPS data, and list the principal

features of the spectra. We also bring out some inconsistencies in the data which need

clarification. We present a simple model of the electron transfer process and the emis-

sion. We give some possible explanations of the data using our model, experimental

band structures (from vacuum inverse photemission) and solution electroreflectance

(ER) experiments. We also propose some experiments that could be performed to

further clarify the electronic structure of the metal in solution.
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Chapter 1

Introduction

Electron transfer (ET) from a solvated donor to a solvated acceptor or between a

solvated donor/acceptor and an electrode is among the simplest of the chemical re-

actions, there being no bond formation or bond breaking involved. In this thesis,

we study the latter and discuss ET processes at metal-solution interfaces. Electron

transfer processes [eq 1.1],

D + A −→ D+ + A−, (1.1)

are usually represented in terms of Marcus parabolas [Fig. 1.1]. These parabolas

are the free energy curves for the reactant state (D, A, solution) and the product

state (D+, A−, solution). The statistical mechanical analysis is based on multi-

dimensional (thousands of coordinates) potential energy surfaces and the definition

of a suitable reaction coordinate, Q. A statistical mechanical calculation at each Q

yields the free energy parabolas. The electron being a light particle, the reaction

follows the Franck-Condon principle, and the donor, acceptor, and solvent molecules

are assumed to be stationary during the electron tunnelling event. The transfer also

satisfies energy conservation. Thus, for a dark transition the system moves from the

reactants’ parabola to the products’ parabola only at their intersection.

The reactants travel along the reactant parabola up to and beyond the point of

intersection, Q‡. At Q‡ there is a possibility of electron transfer through electron

tunnelling from the reactant state to the product state. The ET rate constant can
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Figure 1.1: Free energy of the ET reaction.
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be modelled as

kET = P (Reactant diffusion to reach intersection of parabolas)

× P (Electron tunnelling), (1.2)

where P (event) is the probability of the ‘event’ happening. The first part of the RHS

of eq 1.2 is due to solvent relaxation and the temperature of the system, while the

second is due to the electronic coupling matrix element between the reactant and the

product states. This matrix element facilitates the electron transfer.

On the basis of eq 1.2, ET processes are usually classified into two types:

1. Adiabatic: When the average time for a tunnelling event is small compared

to the time the system spends near Q‡ (in reaction coordinate space) the

electron tunnelling event occurs almost every time the electron reaches Q‡ or

P (Electron tunnelling) ≈ 1. The simplest case for which this condition applies

is that of a reacting system with a large electronic coupling matrix element

between donor and acceptor. Using the approximation, the rate constant can

be written as

kET = P (Reactant diffusion to reach intersection of parabolas)

= A e−∆G‡/kBT , (1.3)

which is just the Arrehenius probability of reaching Q‡ from the bottom of the

reactants’ parabola. Using the parabolic model ∆G‡ can be evaluated:

∆G‡ =
(∆G0 + λ)2

4λ
, (1.4)

where λ, the reorganization energy, is the energy required to change the con-

figuration of the reactants into the equilibrium configuration of the products

without the electron transfer having taken place.

Examples of systems in which adiabatic electron transfer occurs are small sol-
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vated molecules [1].

2. Nonadiabatic: When the tunnelling matrix element is small, the system has to

diffuse up to Q‡ (in reaction coordinate space) several times before the electron

tunnels. Such a weak coupling case can be treated quantum mechanically using

the Fermi’s golden rule. In the nonadiabatic case kET can be written as

kET =
2π

~

|HDA|2FC, (1.5)

where HDA is the electronic coupling matrix element between the donor and the

acceptor. FC is the Franck-Condon factor and is equal to exp(−(∆G0+λ)2/4λkBT )

(4πλkBT )1/2

in the classical case.

Nonadiabatic electron transfer usually occurs over long distances and has been

studied extensively both in bridged systems in solution [2] and across monolayers

on electrodes [3].

In the present thesis, we study nonadiabatic electron transfer at metal-solution

interfaces.

1.1 Electron transfer at metal surfaces

Metals have a continuum of donor/acceptor states. Each of these states has to be

included in the ET calculation. Whether ET at the metal-solution interface is adia-

batic or nonadiabatic depends on the distance between the electrode and the redox

agent in solution. It thus depends on the structure of the metal-solution interface.

In recent years there has been a lot of interest in electrode processes at metal

surfaces with monolayers coated on them. An effect of the monolayer is that the

electron transfer rate from the redox reagent in solution to the metal (gold or platinum

is commonly used) becomes clearly nonadiabatic in nature.

The monolayers are typically composed of alkanethiol molecules. The advantage

of alkanethiol molecules is that their length can be changed systematically. The
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electron transfer rate across an alkanethiol interface can be measured as a function

of the length of the alkanethiol chain length. A method using Green’s functions was

developed in our laboratory to treat the electron transfer rate across a monolayer

covered electrode.

In the present thesis, we investigate the effect of changing the density of electronic

states, ρF, at the Fermi level of a metal on the rate of nonadiabatic electron transfer.

We use the previously developed method of Green’s functions to calculate the change

in the electron transfer rate constant on changing the metal electrode. We develop

a method for writing the wave function of a semi-infinite metal using tight-binding

matrix elements and the Z-transform. Using these k-dependent metal wave functions,

we calculate the coupling matrix element between the metal and the redox reagent

and thus calculate the electron transfer rate constant kET.

Au(111) and Pt(111) are ideal systems for our study, the ρF of Pt is about 7.5

times that of Au, the difference being mainly due to the d-band of Pt. In spite of

this difference, experiments have found that the electron transfer rate constant kET

increases only by a factor of about 1.7, instead of the factor of about 7.5 expected

using ρF alone. We find that bands which are weakly coupled ( e.g., the d-band of

Pt in the present case) contribute much less to the rate constant than is suggested

by their ρF. Thereby, kET is approximately independent of ρF in two cases: adiabatic

electron transfer and nonadiabatic electron transfer when the extra ρF is due to weakly

coupled bands such as d-electrons. There is good agreement between calculated and

experimentally observed ratios kPtET/k
Au
ET .

We also employ our method to calculate the temperature dependence of the elec-

tronic contribution to the nonadiabatic electron transfer rate constant (kET ) at metal

electrodes. We find that this contribution is proportional to the absolute temperature

T . We also consider the nonadiabatic rate constant for electron transfer at a semicon-

ductor electrode. Under conditions for the maximum rate constant, this electronic

contribution is also estimated to be proportional to T , but for different reasons than

in the case of metals (Boltzmann statistics and transfer at the conduction band edge

for the semiconductor vs. Fermi-Dirac statistics and transfer at the Fermi level, which
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is far from the band edge, for the metal).

1.2 Photoemission at metal surfaces

On a different topic, we study the inverse photoemission spectra at metal electrodes.

Inverse photoemission at the solid-vacuum interface can be used to map the empty

electronic states above the Fermi level of the metal. Several years ago, experiments

were performed at the metal-solution interface similar in nature to inverse photoemis-

sion spectroscopy in vacuum. In these experiments, an electron transfer redox agent

was used to inject electons or holes into a metal and create excited states. These

excited states decayed radiatively to give a frequency dependent spectrum. This

spectrum may be analysed to map the electronic structure of the metal above and

below its Fermi level. This experimental technique is known as charge transfer inverse

photoemission spectroscopy (CTRIPS). We make a compilation of all the available

CTRIPS data, and list the principal features of the spectra. We also bring out some

inconsistencies in the data which need clarification. We present a simple model for

the electron transfer process and the emission of light. We give a possible explana-

tion of the data using our model, experimental band structures (from vacuum inverse

photemission) and solution electroreflectance (ER) experiments, which accounts for

the principal experimental results. We also propose some experiments that could be

performed to further clarify the electronic structure of the metal in solution.

The next three chapters are self-contained. A formulation for calculating wave

functions using the Z-transform and the results on changing the density of states

at metal surfaces are given in Chapter 2. Results on the temperature dependence

of the electronic factor in nonadiabatic ET at metal and semiconductor electrodes

are presented in Chapter 3. The study on inverse photoemission at a metal-solution

interface is presented in Chapter 4. The conclusions are summarized in Chapter 5.



7

Chapter 2

Nonadiabatic Electron Transfer at Metal
Surfaces

2.1 Introduction

In this chapter, we study how the rate of electron transfer is affected by the density

(ρF) and the nature of electronic states of the metal at the Fermi level, in particular

how the exchange current, is affected. There have been some experiments performed

investigating the variation of the rate constant with the density of states of the metal

not using monolayers [4, 5, 6] and with monolayers [7, 8]. Iwasita et al. [4] measured

the electrochemical exchange current iex for the Ru(NH3)2+
6 − Ru(NH3)3+

6 couple at

several metal electrodes. They found that iex was the same, even when the density

of electronic states differed by an order of magnitude.

The first explanation that comes to mind for such experiments [4, 5, 6] is that

the electron transfer reaction is adiabatic. The exchange current, iex, is expected to

be proportional to ρF only for nonadiabatic electron transfers, namely, in the limit of

weak coupling of the redox agent to the metal. In the adiabatic case, iex should be

independent of ρF. However, there is an alternative explanation for the results. The

assumption that iex is proportional to ρF in a nonadiabatic process is based on the

assumption that the different electronic orbitals in the metal, s, p, d, which contribute

to ρF, contribute equally to iex. The large value of ρF in metals such as Pt or Pd

arises because their d orbitals lie near the Fermi level. If the d electrons are much

less coupled to the acceptor than the s electrons (which dominate ρF for metals such
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as Au or Ag), the exchange rate would not be proportional to the total ρF even for a

nonadiabatic process.

In recent years, there has been much experimental work with monolayers coated

on metal surfaces [9, 10] (mainly gold). Such experiments have been used to study

features such as the distance dependence of the rate of electron transfer, the reorga-

nization energy and the coupling between the redox agent and the metal. When a

sufficiently thick monolayer is present, for example, sufficiently long alkyl chains in

the case of a thioalkane monolayer, the coupling between the metal and the acceptor

is weak and the rate of electron transfer is clearly nonadiabatic. Studies with such

a system would help differentiate between the two explanations for the rate constant

dependence on the density of states given above, by providing information on the

coupling by d versus s electrons.

In this chapter, the electron transfer rate constant kET is calculated for an alka-

nethiol with 15 methylene units, with the redox agent Ru(NH3)5Py2+ tethered to it.

A monolayer of the alkanethiol (HS(CH2)15CONHCH2PyRu(NH3)2+
5 ) is then coated

on the (111) face of a metal. We estimate how changing the metal from Pt to Au

changes the rate constant and hence the exchange current.

The theoretical model is described in Section 2.2. To treat the metal electrode, a

tight-binding (TB) approach is used in the calculations. Parameters available from a

fit to band structure of the metals [11] are used. The extended Hückel method [12] is

used to treat the alkanethiol bridge and its coupling to the acceptor and to the metal.

The bridge part is parametrized to fit experimental band structure of long chain

alkanes. In a recent article [13], it was found that this parametrization was sufficiently

accurate for the calculation of the distance dependence of long-range electron transfer

rates in similar systems.

In treating the metal, the Z-transform [20] method is used, which facilitates the use

of a semi-infinite model for the electrode and allows for easy calculation of metal wave

functions with tight-binding parameters. This method is summarized in Section 2.4

and is applied there to the present problem. In the present chapter, we use it to

explore how kET changes with a change in ρF, namely, how it changes with the metal



9

electrode, and examine particularly the relative contributions of d and s electronic

states to the rate constant. The results are discussed in Section 2.5 and compared

with available experimental data. The present approach, like that in our earlier

papers [15, 16] on long-range electron transfer, is a pragmatic one, namely to use an

approximate but simple method which has no arbitrarily adjustable parameters and

see whether it is in agreement with the trends in the available experimental results.

2.2 Theoretical model

The standard expression for the first-order rate constant for a nonadiabatic electron

transfer (weak electronic coupling limit) for reactants fixed in position is [17]

kET =
2π

~

FC|HDA|2, (2.1)

where FC is the Franck-Condon factor and HDA is the electronic coupling between

the donor and the acceptor.

We consider a donor (or acceptor) attached to the electrode by a thioalkane bridge

monolayer. When a continuum of donor or acceptor levels is involved in the electron

transfer, as is the case in a metal electrode, the right-hand side of eq 2.1 is integrated

appropriately over these levels. The rate constant for electron transfer can then be

written as [17, 18]

kET =
2π

~

∫
dε
e−(λ−eη+ε)2/4λkBT

(4πλkBT )1/2
|V (ε)|2f(ε) (2.2)

and the units of kET are s−1. For the Franck-Condon factor we have substituted a

classical value (the final ratio kET ’s for different metals will be insensitive to this

approximation),

FC =
e−(λ−eη+ε)2/4λkBT

(4πλkBT )1/2
, (2.3)

where λ is the reorganization energy, e is the electronic charge, and η is the overpo-

tential. In eq 2.2, f(ε) is the Fermi-Dirac distribution with ε measured relative to µ,
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the chemical potential of the electrode,

f(ε) =
eε/kBT

1 + eε/kBT
. (2.4)

The square of the coupling matrix element, |V (ε)|2 denotes an integral over all the

wavevectors k which contribute to a given energy,

|V (ε)|2 =

∫
d3k|HkA|2δ(ε(k)− ε). (2.5)

|HkA| is 〈Ψk|H|ΨA〉 and describes the electronic coupling between the redox agent

(A) and a particular electronic state of wavevector k of the electrode (which may

have contributions from many bands). The integral over wavevectors in eq 2.5 is

intended to include all such states and bands. Ψk and ΨA are the wave functions of

the electrode and the redox agent respectively. ΨA is normalized in the usual way

and has units of Å−3/2. For Ψk a box normalization is used, i.e.,

〈Ψk(r)|Ψk(r)〉
V

= 1, (2.6)

where V is the unit cell volume and 〈 〉 implies integration over a unit cell volume.

Thus, Ψk(r) has no units and 〈Ψk|H|ΨA〉 acquires units of eV Å3/2, |HkA|2 has units

of eV2 Å3 (eV2wavevector−3), and so |V (ε)|2 has units of eV.

The exchange current can be obtained from the rate constant with η set to 0

and then integrating over a unit area of the metal surface. Equation 2.2 is readily

modified when the redox reagent is not attached to the monolayer.

For a single-band case, η = 0 and λ >> ε (as is typically the case), eq 2.2 simplifies

to [13]

kET =
2π

~

(4πλkBT )−1/2e−λ/4kBT |V |2, (2.7)

where

|V |2 = πkBT |HkA|2ρF , (2.8)
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the square of the coupling |HkA|2 denotes

|HkA|2 =

∫
d3k |HkA|2 δ(ε(k)− εF)∫

d3k δ(ε(k)− εF)
, (2.9)

and ρF is the density of states [19] at the Fermi level,

ρF =

∫
d3k δ(ε(k)− εF). (2.10)

We use the volume of the unit cell (with a one-atom basis when appropriate as in the

present case) as the unit volume and the units of ρF become eV−1atom−1.

In a multiband case, more than one band contributes to the density of states. If

the summation over different bands is included in |HkA|2 and ρF includes densities

from all bands, eq 2.7 is still applicable. |HkA|2 has contributions from all bands and

depends on how the states are distributed over the bands and how each band couples

to the acceptor. Because of this feature, |HkA|2 can vary from metal to metal, and

so the rate constant is not merely proportional to ρF , although eqs 2.7 to 2.9 remain

valid. Clearly, the electronic states of bands weakly coupled to the redox agent will

not contribute as much to the rate constant as those from bands strongly coupled to

it.

To obtain kET (eqs 2.7 to 2.9), a calculation of HkA at the Fermi energy (εF) is

needed. A Green’s function method due to Hsu and Marcus [13] is used to obtain the

HkA. Some details on their sequential formula, including the key recursion equations

used to obtain the matrix elements, are given in the next section. This matrix element

is the coupling between the metal 〈Ψk| and the acceptor |ΨA〉 states. To find the

form of the 〈Ψk| states of the metal we use the Z-transform method. This method is

outlined in Section 2.4.

2.3 The Sequential formula

In this section we outline the derivation of the sequential formula of Hsu and Mar-

cus [13] and give the key recursion relations which are used in the calculation of HkA.
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Consider a bridge consisting of n identical units (in the present case of an alkanethiol

monolayer the unit would be −CH2−) each having m molecular orbitals. Let e be

an m×m diagonal matrix which represents the Hamiltonian of the bridge unit in a

basis which diagonalizes it, i.e.,

e =


ε1 0 · · · 0

0 ε2 · · · 0
...

...
. . .

...

0 0 · · · εm

 . (2.11)

Let v be the coupling between the bridge units in the same basis and vT be its

transpose. Both v and vT are m × m matrices. With these definitions and the

tight-binding assumption, the Hamiltonian of the total bridge becomes

H(n) =



e v 0 0 · · · 0

vT e v 0 · · · ...

0 vT e v · · · ...
...

...
...

...
. . . v

0 · · · · · · 0 vT e


. (2.12)

The partitions in the above equation splits H(n) into two parts H(n)
0 and H(n)

1 , where

H(n)
0 =



e v 0 0 · · · 0

vT e v 0 · · · ...

0 vT e v · · · ...
...

...
...

...
. . . 0

0 · · · · · · 0 0 e


≡

 H(n−1) 0

0 e

 , (2.13)
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and

H(n)
1 =



0 0 0 0 · · · 0

0 0 0 0 · · · 0

0 0 0 0 · · · 0
...

...
...

...
. . . v

0 · · · · · · 0 vT 0


, (2.14)

so that H(n) = H(n)
0 +H(n)

1 . H(n)
0 is the Hamiltonian of a bridge with (n− 1) coupled

units and 1 uncoupled unit while H(n)
1 is the coupling between the (n− 1)st unit and

the nth unit.

Treating H(n)
1 as a perturbation to H(n)

0 , the Green’s function for H(n) can be

rewritten exactly as

G(n) = (E1−H(n))−1 = (E1−H(n)
0 −H

(n)
1 )−1

= G(n)
0 (1−H(n)

1 G
(n)
0 )−1, (2.15)

where G(n)
0 is the Green’s function corresponding to H(n)

0 , namely,

G(n)
0 = (E1−H(n)

0 )−1 =

 G(n−1) 0

0 ∆−1

 , (2.16)

and ∆ is the m×m matrix,

∆ = E1− e, (2.17)

where E is the energy of the electron.

The tight-binding model is used in this formulation, and so only that block of the

Green’s function which relates to the transition of the electron from the 1st unit to the

nth is needed to calculate HkA. This m×m block is G
(n)
(1,n). After some manipulation

of eq 2.15 a recursion relation for G
(n)
(1,n) can be obtained,

G
(n)
(1,n) = G

(n−1)
(1,n−1)v∆−1(1− vTG

(n−1)
(n−1,n−1)v∆−1)−1, (2.18)
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and

G
(n)
(n,n) = ∆−1(1− vTG

(n−1)
(n−1,n−1)v∆−1)−1. (2.19)

G
(n)
(n,n) is the (n, n)th block of G(n). The initial condition of the recursion, namely,

G
(2)
(1,2) and G

(2)
(2,2) can be obtained by directly solving eq 2.15 as a 2m × 2m matrix

equation.

From G
(n)
(1,n), HkA can be obtained using an equation derived in ref [13]:

HkA = Vk,1G
(n)
(1,n)Vn,A, (2.20)

where Vk,1 is the coupling of the metal k-states to the bridge and Vn,A is the coupling

of the bridge to the acceptor.

2.4 The Z-transform model for semi-infinite

metals

The Z-transform is a generalization of the discrete Fourier transform and is commonly

used in the field of signal processing [20]. The periodicity of crystals makes them

very similar to discrete signals and so, the Z-transform can be applied very easily

to crystalline solids to obtain their wave functions. It is especially useful in the

application of the tight-binding approximation [14].

We consider a crystal as being built up of planes with two-dimensional trans-

lational symmetry. Let R̂‖,1 and R̂‖,2 be the unit vectors which lie in the plane.

Henceforth, we denote any vector [21] lying in the plane by

R‖ = n1R̂‖,1 + n2R̂‖,2 (with integer n1 and n2). (2.21)

When we sum over R‖ we imply a double sum over n1 and n2. k‖ in the subsequent

notation denotes a wavevector conjugate to R‖.

Let R̂p be the third unit vector for the unit cell, directed from one of the above
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planes to the next. With this notation each plane has a wave function of the form

Φj(r−Rp) =
+∞∑

R‖=−∞

exp(ik‖ ·R‖) Θj(r−Rp −R‖), (2.22)

with

Rp = nR̂p, (2.23)

where j is an index which labels the orbitals for each atom and Θj(r −Rp −R‖)

denotes the orbital centered at r = Rp + R‖. The crystals of both Au and Pt have

a one-atom basis (one atom in the unit cell) and so we use that basis here, but this

method is easily generalized to a larger basis.

The wave function of the crystal is

Ψk(r) =
∑
n,j

Φj(r− nR̂p)cn,j, (2.24)

where cn,j is a factor which we will find using the Z-transform. j is summed over

the number of orbitals per unit cell, here numbered 1 to J . n is summed over as

many layers as the problem requires, for example, −∞ to +∞ for a bulk crystal, 1

to +∞ for a bulk crystal with a surface, and 1 to a finite m for a slab. The range

of n imposes boundary conditions on the wave function, and we will examine later

how these conditions affect the wave function. For now, we take n to be a problem-

dependent quantity.

Using the Schroedinger equation, multiplying by a particular Φl(r − n
′
R̂p) and

integrating over r, we obtain

〈Φl(r− n
′
R̂p) | H | Ψk〉 = ε〈Φl(r− n

′
R̂p) | Ψk〉. (2.25)

For the present problem, where the rate constant is being evaluated at the Fermi level

(in the “normal region” for rate constants), ε equals εF and from eqs 2.22 to 2.25 we
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have

∑
n,j

{〈Φl(r−n
′
R̂p) | H | Φj(r−nR̂p)〉−εF〈Φl(r−n

′
R̂p) | Φj(r−nR̂p)〉}cn,j = 0. (2.26)

The above equation can be written in matrix form,

∑
n

M(n
′
R̂p, nR̂p)cn = 0, (2.27)

where M is a J × J matrix (J is the number of orbitals per atom) and cn becomes

a column vector with J components, its jth component being cn,j. Using the tight-

binding (TB) approximation, we assume that any given plane interacts within itself,

M(nR̂p, nR̂p) = A, (2.28)

and with its nearest neighbors,

M(nR̂p, (n− 1)R̂p)) = B†, (2.29)

M(nR̂p, (n+ 1)R̂p)) = B. (2.30)

A, B and B† are J×J matrices (with J same as above) which can be calculated from

TB parameters of the metal [11, 22]. A, being the self-interaction of the plane, is

Hermitian. When a plane is not at the boundary, and so, both its neighboring planes

are present, we have

B†cn−1 + Acn + Bcn+1 = 0. (2.31)

Since n is discrete, we use the Z transform [20]

F(z) =
∑
n

zncn, (2.32)

where z is a complex variable, F(z) a column vector with J components. Only when

z is of the form exp(iθ) with real θ, does F(z) reduce to the familiar discrete Fourier
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transform. From eqs 2.31 and 2.32 we see that

B†
F(z)

z
+ AF(z) + BF(z)z = 0. (2.33)

To obtain a nontrivial F(z) we set

det

(
B†

z
+ A + Bz

)
= 0. (2.34)

This equation has 2J roots. Taking the complex conjugate of the above equation to

see the symmetry of the roots, we have

det

(
B

z∗
+ A† + B†z∗

)
= 0. (2.35)

Since A is Hermitian, we see that if z is a root then 1/z∗ is also a root and so the

number of roots with | z |< 1 equals the number with | z |> 1.

The most general form of cn is obtained by inverting the Z-transform (eq 2.32):

cn =
∑
m

(zm)namFm(zm), (2.36)

where the sum is over the number of roots (2j), the zm and Fm(zm) are the eigen-

values and eigenvectors of eq 2.33, and the am can be determined from the boundary

conditions and the normalization.

The boundary conditions are considered next:

1) Bulk: Any solution to eq 2.34, z = zm, which has | zm |> 1 or | zm |< 1 will

diverge at +∞ or −∞, respectively, and its am is set to 0. Therefore only | zm |= 1

roots contribute to eq 2.36, so zm = exp(ikm) with real km [23], and there is a three-

dimensional translational symmetry of the wave function. The final wave function is

then of the form

Ψk(r) =
∑
n,m,j

exp(inkm)amFm,j(exp(inkm))Φj(r− nR̂p), (2.37)
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where Fm,j is the jth component of Fm and the remaining am’s can be determined by

normalization. The number of Ψk equals the number of am’s found from normaliza-

tion. The number of Ψk also equals twice the number of bands present at that energy.

Physically, these Ψk represent forward and backward propagating waves.

2) Surface: The crystal planes are denoted by n = 1 to +∞. Two conditions are

imposed on Ψk:

(a) Ψk should not diverge at n = +∞ and (b) c0 = 0, since there is no crystal plane

there.

Condition (a) requires that only the | zm |≤ 1 contribute to Ψk. The am’s associated

with the | zm |> 1 roots (the same in number as the | zm |< 1 roots) are set to 0.

Condition (b) requires that

∑
m,j

amFm,j(zm) = 0 (|zm| ≤ 1, j = 1 to J). (2.38)

To satisfy (b) we need at least as many solutions of eq 2.33 (i.e., zm’s) as there are

orbitals (i.e., J or components of c0) and thus J of the am’s are determined from the

boundary condition. The most general form of the wave function is

Ψk(r) =
∞∑
n=1

∑
m,j

(zm)namFm,j(zm)Φj(r− nR̂p). (2.39)

Ψk has two parts, one with | zm |= 1, which propagates into the bulk, and one with

contributions from | zm |< 1, which approaches zero after a few layers [24]. In eq 2.39,

J of the am are determined by the boundary condition, eq 2.38, and the remainder

are determined by normalization. If l bands lie at the energy εF (eq 2.25) then l

solutions Ψk exist and l of the am need to be determined by the normalization.

Two special cases may arise:

(i) Due to the symmetry of the particular crystal (and the particular surface) under

consideration none of the decaying solutions contribute to the wave function, e.g., as

in the case of Au(111) modelled with only s-orbitals [26]. In this situation k and −k

(where z = exp(ik)), both contribute to the wave function and a sin(nk)-like wave
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function (n being the nth layer from the origin) satisfies the boundary condition.

ii) At some particular values of |k‖| (eq 2.22), no z with | z |= 1 will exist. In this

case the boundary conditions may still be satisfied but the resulting wave function

decays after a few layers, yielding a pure surface state.

In metals with a surface, the most common type of states are of the type given in

eq 2.39. We use such states to calculate 〈Ψk|H|ΨA〉.

2.5 Calculation and results

The metals Au and Pt have very different densities of states at the Fermi level,

the difference being largely due to the presence of the d-electron band in Pt. The

values [11] of ρF = 2.20/atom/eV for Pt and ρF = 0.29/atom/eV for Au are used

in the present calculation. The Fermi energies [11] of Pt and Au are taken to be

8.68 eV and 7.32 eV, respectively, and the lattice parameters [27] are 2.77 Å for

Pt and 2.88 Å for Au. Literature values [11] of the TB parameters for the metals

are used to calculate Ψk. These parameters were obtained by a fit to accurate band

structure calculations. The extended Hückel theory is used to calculate the energy and

overlap matrix elements of the bridge and the acceptor. The structure of the acceptor

is estimated from the structure of X-ray data of similar compounds [28]. Only one

alkanethiol chain is used instead of the entire monolayer. It was shown by comparison

with added alkanethiol molecules that this approximation gave a reasonable and for

our purposes adequate description of the coupling [13]. A parametrization of the

bridge, and the sequential formula of Hsu and Marcus [13] were used to calculate

the coupling element HkA. The |HkA|2’s were averaged over 60 k vectors [29]. These

k vectors were chosen randomly and included contributions from all bands. Thus,

|HkA|2 is averaged over all bands and ρF is the total density of states. To make the

calculations of Hsu one needs the difference in energies of a virtual superexchange

state and the donor/acceptor state at the transition state. This difference can be

calculated using a formula [30] given in ref [13].

Our result for the rate constants of the two metals for a 15 methylene unit alka-
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nethiol monolayer gives a value of 1.8 for kPt/kAu. This result is consistent with

unpublished experiments [7, 8]. The ratio of the densities of electronic states of the

two metals is 7.5.

The ratio of the exchange rate constants as a function of number of methylene

units for the two metals is given in Fig. 2.2. The number of methylene units is varied

from 3 to 20. This ratio gives the distance dependence of the d-orbital coupling. The

overpotential dependence of the ratio is also calculated and is plotted in Fig. 2.3. The

dependence is found assuming a value of 1.2 eV [31, 32] for λ. The same monolayer

shields the acceptor in the solution from the metal surface, so we assume that the

reorganization energy (λ) does not change on going from Au to Pt. To perform this

calculation a value of 0.025 eV for kBT , and the expression of the rate constant from

eq 2.2 were used.

2.6 Discussion

It is seen both experimentally and theoretically that the nonadiabatic rate of electron

transfer is not simply proportional to the total density of states. It depends instead

on the density of states modulated by the the square of the coupling. Accordingly,

it is necessary that the various bands from which the density of states arises be also

considered.

A more detailed analysis of the results provides some insight into the nature of

the similarity of electron transfer rates for Pt and Au, their large difference in density

of states at the Fermi energy notwithstanding. With a density of states at the Fermi

energy of 29.9 in no. of states/Rydberg/atom, the density of sp states of Pt is 0.6

and that of d-states is 29.3 [11]. With a density of states of 4.0 for Au at the Fermi

energy, the density of sp-states was 1.6 and that of d-states was 2.4 [11]. From these

results it can be inferred that while the d-states in Pt are not ineffective for coupling,

their effectiveness is far below that of the sp-states. If for a rough estimate the ratio

of individual coupling effectiveness of an sp-state and of a d-state in Pt were taken to

be roughly the same as in Au, then the calculated ratio of 1.8 for the rate constants
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Figure 2.1: Band structure of Au and Pt with the Fermi energies of each set to 0. ρ
is in units of no. of states per atom per eV. (�) gives the density of states for Pt and
(+) gives the density of states for Au.

leads from the above figures to a relative effectiveness of sp-states to d states of 11.2.

There has been some concern [33] that the extended Hückel method gives very

narrow d-bands, which are more localized than in reality. In the present calculation,

the metal is modelled using TB parameters which are not taken from extended Hückel

and give good band structure results [11] (Fig. 2.1). The d-couplings we used for

the Pt-S, Au-S and bridge-acceptor were however obtained from extended Hückel

calculation using the standard parameters available with the program [12].

The fact that the d-orbitals are localized and not strongly coupled to the en-

vironment is well known from field emission experiments [36]. Thus, even though

the d-electrons are present at the Fermi level they interact very weakly with external

fields or ions and these electrons tunnel out from the metal much less than s-electrons

at the same energy. This fact has been observed in field emission as well as in ion

neutralization experiments [37]. It is thus perhaps, not surprising that this d-electron

localization also manifests itself in a reduced contribution to the rate constant in

electron transfer experiments.

The rate constants were calculated as a function of the number of methylene units
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Figure 2.2: Ratio of rates at zero overpotential vs. number of methylene units.

for the two metals. Regarding the results in Fig. 2.2 we note that the ratio of the

rate constants of Pt and Au changes little with number of methylene units.

We also calculate the overpotential dependence of the ratio of rate constants using

eqs 2.2-2.5 (Fig. 2.3). We find that the ratio peaks close to the Fermi level and

decreases weakly for positive overpotentials. This result is understood using the

band structure of the two metals (Fig. 2.3): the density of electronic states of Pt

is the highest close to Fermi level (zero overpotential), slopes gradually for negative

energies relative to the Fermi energy and decreases sharply for positive energies while

the density of states of Au is almost constant over the whole overpotential range.

The change in ratio of rate constants with change in overpotential is very small for

the anodic and cathodic parts of the curve. This small change should not cause any

significant asymmetry in the rate vs. overpotential curves, because of the large direct

effect of the overpotential in the exponent of eq 2.2.

The observation of the importance of the type of states for the present study

rather than only the density of states has its counterpart in studies of intramolecular

vibrational relaxation [34], where the total density of states does not play a direct

role in the rate of relaxation. It is rather a local density of coupled vibrational states

which is important. In surface physics, too, the concept of local density of states is
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Figure 2.3: Ratio of kPt and kAu vs. overpotential (η), assuming an equal λ for the
two metals.

useful to understand spectra where contributions from different layers parallel to the

surface might be different [35].

2.7 Conclusions

In this chapter, we have calculated the effect of the metal density of electronic states

on the rate of electron transfer. We find that the rate constant is not simply propor-

tional to the density of states. Instead, we need to consider the individual electronic

coupling elements for each of the bands. The coupling matrix elements significantly

reduce the effect of the extra density of states of weakly coupled bands, such as the

d band. We find, consistent with electron emission results [36] and electron transfer

experiments [7, 8], that the d band states couple weakly to the outside environment

and thus, the rate constant for electron transfer does not reflect only the density of

states.
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Chapter 3

Temperature Dependence of the
Electronic Factor in the Nonadiabatic
Electron Transfer at Metal and
Semiconductor Electrodes

3.1 Introduction

In this chapter, the temperature dependence of the electronic factor in the expression

for the nonadabatic rate constant (kET ) is discussed, both for metals and for semi-

conductors. In the case of the electrochemical exchange current at metal electrodes

the temperature dependence of kET is due to two parts: one part arises from the well

known variation with temperature of the Franck-Condon factor. It has an exponential

term and a pre-exponential term which, classically, is proportional T−1/2. The second

part of the temperature variation arises from the increasing range of energies of elec-

tronic states in the metal near the Fermi level that can contribute significantly to the

rate constant with increasing temperature. An experimental system of an alkanethiol

monolayer adsorbed on two different metals, Au and Pt, is considered to investigate

how this temperature dependence of the Fermi-Dirac distribution affects the rate.

The metal electronic state dependence of the metal-reagent electronic coupling ma-

trix element is included in the calculation. To a good approximation, the averaged

electronic factor for the exchange current rate constant is calculated below to be pro-

portional to T , the known proportionality when the electronic coupling element is

energy-independent.
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The temperature dependence of the electronic factor for nonadiabatic electron

transfer at semiconductor electrodes is also discussed. For the present purpose, in

lieu of detailed calculations, this factor is estimated using the free electron model. It

is found to be proportional to the temperature T under conditions for the maximum

of the rate constant, but the origin of the proportionality is quite different from that

in the case of the electrochemical exchange current at metal electrodes.

In the following sections, the theoretical model used and the predictions that can

be made from this model are described.

3.2 Theory

3.2.1 Metals

The rate constant for nonadiabatic electron transfer from a metal to a reactant at

the interface (kET ) is given by [17]

kET =
2π

~

∫
dε FC|V (ε)|2f(ε), (3.1)

where f(ε) is the Fermi-Dirac distribution with ε measured relative to µ, the chemical

potential of the electrons in the electrode,

f(ε) =
1

1 + eε/kBT
. (3.2)

FC is the Franck-Condon factor, which in its classical form is

FC =
e−(λ−eη−ε)2/4λkBT

(4πλkBT )1/2
. (3.3)

Here, λ is the reorganization energy, e the electronic charge, η the overpotential,

and |V (ε)|2 the square of the electronic coupling matrix element, integrated over the
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distribution of the electronic states at the given ε:

|V (ε)|2 =

∫
d3k|HkA|2δ(ε(k)− ε), (3.4)

where |HkA| denotes 〈Ψk|H|ΨA〉 and describes the electronic coupling between the

redox agent (A) and each electronic state of wavevector k of the electrode.

Equations 3.1-3.4 are given for the reduction rate constant. The rate constant for

the reverse reaction, which we will denote by krET , is obtained by replacing ε by −ε

and η by −η. One can verify, for example, that the equilibrium constant kET/k
r
ET is

then given by exp(eη/kBT ), as expected.

From eqs 3.1-3.3 we have

kET =
2π

~

e−λ/4kBT

(4πλkBT )1/2

∫ ∞
−∞

e
−ε2+h(ε,η)

4kBT g(ε)|V (ε)|2dε, (3.5)

where g(ε) is given by

g(ε) =
1

2
sech

(
ε

2kBT

)
(3.6)

and

h(ε, η) = 2(λ− ε)eη − (eη)2. (3.7)

In applications, the dependence of |V (ε)|2 on ε is normally neglected. The reor-

ganization energy λ is then obtained in two different ways, one from a plot of

ln kET vs. η [38], and the other from a plot (noted below) involving ln(k0/T 1/2) vs. 1/T ,

or both [39, 40]. While the effect of neglecting the dependence of V (ε) on ε is expected

to be small, it is estimated in the present chapter. Results for finite η can also be

estimated from the calculations, with appropriate additions, as discussed later.

When η = 0, eq 3.5 becomes k0, the standard rate constant:

k0 =
2π

~

e−λ/4kBT

(4πλkBT )1/2

∫ ∞
−∞

e−ε
2/4λkBTg(ε)|V (ε)|2dε. (3.8)

We first consider, for comparison, the simplest case: both the dependence of V (ε)

on ε and the ε2/4λkBT term in eq 3.8 are neglected. In that case the integral in eq 3.8
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is a standard integral [41] yielding

k0 ∼=
2π

~

e−λ/4kBT

(4πλkBT )1/2
πkBT |V (0)|2. (3.9)

When the value of λ is obtained from eq 3.9 and a plot of the experimental rate

constant k0, ln(k0/T 1/2) vs. 1/T , we have

λ/kB = −4 ∂ ln(k0T−1/2)/∂(1/T ). (3.10)

We next consider the case where the dependence of |V (ε)|2 is neglected, as before,

but where the ε2/4kBT in eq 3.8 is included. In this case we have

k0 ∼=
2π

~

e−λ/4kBT

(4πλkBT )1/2
πkBT |V (0)|2〈e−ε2/4λkBT 〉, (3.11)

where we have used [41] πkBT =
∫∞
−∞ g(ε)dε and where 〈〉 denotes an average over

the distribution function, g(ε)dε/
∫∞
−∞ g(ε)dε. The exponent is so small that the ex-

ponential in 〈〉 can be expanded, retaining only the first two terms. Use of standard

integrals [41] then yields

k0 =
2π

~

e−λ/4kBT

(4πλkBT )1/2
πkBT |V (0)|2

(
1− π2kBT

4λ

)
. (3.12)

For a value [39] of λ ∼= 0.8 eV and kBT ∼= 0.025 eV, the last factor in the parentheses,

due to 〈exp(−ε2/4λkBT )〉 term, is 0.923, and so is close to unity. In the following the

exp(−ε2/4λkBT ) in eq 3.8 will be replaced by unity.

In passing, we note that from eq 3.11 that the slope of ln(k0(λ/kBT )1/2) vs. λ/kBT

equals −(1/4)(1 − π2(kBT/λ)2), because of the smallness of kBT/λ. The reciprocal

of this quantity can, because of the smallness of the correction, be written, as −4.04.

A numerical evaluation of the integral [39] gave −4.03, which is within the round-off

error. The difference of −4.03 from −4 is 1% and so can be neglected relative to other

sources of error in λ.
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The integral in eq 3.8 can now be written as

I(kBT ) =

∫ ∞
−∞

g(ε)|V (ε)|2dε. (3.13)

We have written the limits as ±∞, but of course the lower limit is finite. It equals

the lower limit of the energy of the band, which is very negative. More than adequate

for our purpose is changing the limits of integration to ±1.1 eV.

The temperature dependence of I(kBT ) arises from the weighting function, g(ε),

which becomes broader with increasing temperature. The |V (ε)|2 depends only on ε

and so is independent of temperature. However, because of the broadening of g(ε)

with increasing T , parts of |V (ε)|2 at larger and smaller ε contribute more in the

integral when the temperature is increased. For a |V (ε)|2 replaced by |V (0)|2, the

integral in eq 3.12, is, as already noted |V (0)|2πkBT .

For flat and broad bands, such as s and p bands, one expects |V (ε)|2 to remain

constant with ε. In that case, the temperature dependence arises mainly from the

width of the weighting function, g(ε), given in eq 3.6. For narrow bands, such as d

bands, the density of states, ρ, changes fairly rapidly over a short energy range. If

this feature leads to a large change in |V (ε)|2 then widely varying values of |V (ε)|2

become increasingly included in I(kBT ) when the temperature is increased, and some

deviation of the temperature dependence of I(kBT ) from |V (0)|2πkBT is expected.

However, the d states do not couple as well into the donor/acceptor species in solu-

tion [42], the large change in the density of d states with ε is diminished by the small

coupling of these states, so leading again to an approximately constant |V (ε)|2. In

this case, the temperature dependence would remain about the same as in the case

of the s and p bands, i.e., depend only on the width of the weighting function.

The accessible number of participating electronic states near the Fermi level

(ε = 0) increases linearly with temperature, a result well known from the propor-

tionality of the electronic specific heat of the metals to the temperature. However,

this observation offers no information on the average strength of |HkA|2 as a func-

tion of ε. The question of the behavior of the matrix element, suitably averaged, is
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addressed in calculations in a later section.

Numerical results of the calculations based on eqs 3.4 and 3.8 (both with and

without the ε2/4λkBT neglected) are given in Section 3.3.

3.2.2 Semiconductors

In the case of electron transfer from a semiconductor to a reactant species in solution,

the rate is first order in the concentration of electrons in the semiconductor at the sur-

face and first order in the reactant. An expression for the second-order nonadiabatic

rate constant kET was given earlier [43].

kET =
2π

~

v√
4πλkBT

1

βs

∫∞
0
e−(λ+∆G0−ε)2/4λkBT 〈|V (ε)|2〉e−ε/kBTρ(ε)dε∫∞

0
e−ε/kBTρ(ε)dε

, (3.14)

where 〈|V (ε)|2〉 is an electronic matrix element [43]:

|V (ε)|2 =
|V (ε)|2

ρ(ε)
(3.15)

and

ρ(ε) =

∫
d3kδ(ε(k)− ε). (3.16)

The average 〈〉 was over all orientations of the reactant at the contact distance [43].

In eq 3.14, v is the volume of the unit cell in the semiconductor (the wave functions

appearing in V (ε) are normalized to that volume), and βs is the exponent for the

decay of the square of the matrix element with distance.

We note, in passing, that in the experiments [44], ∆G0 is varied by varying the

redox reagent in solution. The maximum kET , kmaxET , determined in this way, corre-

sponds to λ+ ∆G0 = 0.

The exponent of the first factor in the integral in the numerator of eq 3.14 can be

written as

(λ+ ∆G0 − ε)2

4λkBT
=

(λ+ ∆G0)2

4λkBT
− (λ+ ∆G0)ε

2λkBT
+

ε2

4λkBT
. (3.17)
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The first term in the RHS of the above equation is independent of ε and can be

removed from the integral. The second term varies much more slowly with ε than the

ε/kBT in the exponent of the third term in the integral in eq 3.14, when λ+∆G0 ≈ 0

(the important region for kmaxET , as noted above). The ratio of the third term in eq 3.17

to ε/kBT is ε/4λ, which is very small since ε ≈ kBT , i.e., 0.025 eV, and λ is typically

1 eV. The dependence of (λ+ ∆G0− ε)2 on ε in eq 3.17 can then be ignored, yielding

kET =
2π

~

v√
4πλkBT

1

βs
e−(λ+∆G0)2/4λkBT

∫∞
0
〈|V (ε)|2〉e−ε/kBTρ(ε)dε∫∞

0
e−ε/kBTρ(ε)dε

, (3.18)

as in eq A5 of ref [43]. Of particular interest is kmaxET , which, obtained from eq 3.18, is

kmaxET =
2π

~

v√
4πλkBT

1

βs

∫∞
0
〈|V (ε)|2〉e−ε/kBTρ(ε)dε∫∞

0
e−ε/kBTρ(ε)dε

. (3.19)

When |λ + ∆G0|/λ becomes different from zero, say, ≈ 1/2, then the ratio of

the second term in eq 3.17 to ε/kBT becomes 1/4, which on integration including a

slowly varying V (ε) will affect the pre-exponential factor a little. The ratio of the last

term in eq 3.17 to ε/kBT becomes ε/4λ, which for an averaged value of ε ≈ λ/4 in

the sampling of ε’s for the exothermic direction, is still a relatively small though not

negligible quantity. Accordingly, eq 3.18 is expected to suffice for typical conditions.

When it does not suffice eq 3.14 could be used instead. However, our main interest

here is in kmaxET and so in eq 3.19.

3.3 Applications

3.3.1 Metals

A particular system, an alkanethiol monolayer with 15 CH2 units and with the redox

agent Ru(NH3)5Py2+ tethered to it is considered here. Only one alkanethiol molecule

adsorbed on a metal electrode is used in our calculation, since it has been found that

this approximation is reasonable, and adding more molecules does not have a large

effect on the rate [13]. Two metals, gold (Au) and platinum (Pt), are considered, the
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method of z-transforms and a tight binding Hamiltonian are used to obtain the wave

functions of the metal. The details of the calculation are given elsewhere [42]. For

the purpose of the calculations we use eqs 3.4, 3.15 and 3.16.

The metal Au has no d states near the Fermi level while the d band of Pt lies

close to its Fermi level. The ρ(ε) given by eq 3.16 is plotted in Fig. 3.1 for both these

metals, as well as the g(ε) at T = 300K. The Fermi levels of both metals are used as

the zeros for their respective ε’s.

The |V (ε)|2 is plotted in Fig. 3.2 for the two metals as a function of ε. It is seen

that even though the |V (ε)|2 for Pt does change somewhat with the energy ε, the

effect is considerably less than the change in ρ(ε). Although the extent of ε for which

g(ε) is nonzero is ∼ ±0.3 eV (Fig. 3.2) the validity of the λ << ε approximation and

the neglect of the ε2 term should be checked against the full width at half maximum

of the g(ε) curve. The half-width is ε ∼ 0.066 eV. Thus, with the usual values of

λ = 0.6 eV to 1.2 eV the approximation is still valid.

Although only a narrow range of ε is needed for our purpose of calculating the

standard reduction rate constant k0, we have given in Fig. 3.2 a substantially larger

range of ε. When large overpotentials ±eη are considered, electronic energy levels

with a correspondingly large range of ε are needed for the evaluation of the integral.

Accordingly, this larger range of ε’s is given in Fig. 3.2, should kET (or the reverse rate

constant krET ) at larger |η|’s, rather than just at η = 0, be needed. However, when

large overpotentials are considered, the effect of the energy denominators should be

included, e.g., [45].

The ln(I(kBT )) is plotted in Fig. 3.3 versus ln(kBT ) from T ∼= 120K to T ∼= 325K

without and with the ε2/4λkBT . A value of 0.8 eV is used for λ. The slope is

close to unity without the ε2/4λkBT correction (1.00 for Au and 0.97 for Pt) and

deviates a little from it with the correction (0.96 for Au and 0.93 for Pt). Thus, in

both cases I(kBT ) ∝ kBT is valid for the nonadiabatic electron transfer to Au and

Pt. Accordingly, the temperature dependence of the electronic factor in eq 3.13 is

proportional to T and so the kET in eqs 3.1-3.3 (apart from the exponential part of

the Franck-Condon factor) is proportional to T/T 1/2, i.e., T 1/2. With the classical
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Figure 3.1: Band structure of Au and Pt with the Fermi energies of each set to 0.
∗ is for Pt and ◦ is for Au. ρ(ε) is in units of no. of states per atom per eV. The
weighting function g(ε)× 5 at kBT = 0.025 eV, i.e., T = 300K is also plotted (−·) to
show the density of states which contribute to the integral in the rate constant kET .
For simplicity, a “splined” fit is drawn through the points for ρ(ε) for Pt.
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Figure 3.2: A plot of |V (ε)|2 vs. ε. ◦ gives the plot for Au and ∗ gives the plot for
Pt. A plot of g(ε)× 10−10 (−·) is also given. The Au curve is a best fit to the points,
the Pt curve is a “splined” fit.
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Figure 3.3: A plot of ln[I(kBT )] vs. ln(kBT ). The slope gives the exponent of kBT
in I(kBT ). The ∗ and + (with the ε2/4λkBT correction) points are for Pt and ◦
and · (with correction) points are for Au. The slope for Au is 1.00 and 0.96 (with
correction) and the slope for Pt is 0.97 and 0.93 (with correction).
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formulation for the Franck-Condon factor for the electrochemical exchange current,

kET ∝ T 1/2e−λ/4kBT for both metals and thus we expect it to apply for other metals

at these temperatures.

The slopes from Fig. 3.3 can be used to evaluate the value of the prefactor in

eq 3.10. We proceed by writing the integral in eq 3.8 as C(kBT )1+∆n, where ∆n is

the deviation of the slope from unity and C is some constant. Equation 3.8 can then

be written as,

k0 =
2π

~

e−λ/4kBT

(4πλkBT )1/2
C(kBT )1+∆n. (3.20)

The above equation can then be used to find the value of ∂ ln(k0T−1/2)/∂(1/T ). It

equals −λ/kB[1/4 + ∆nkBT/λ], which gives instead of the factor of 4 in eq 3.10 a

factor of 4/(1 + 4∆nkBT/λ). For the slopes from Fig. 3.3, with λ = 0.8 eV and

kBT = 0.025 eV we get values of 4.02 and 4.04 for Pt (without and with ε2/4λkBT

correction) and 4.00 and 4.02 for Au (without and with correction).

The slopes of the ln(I(kBT )) vs. ln(kBT ) given above (1 + ∆n) could also have

been obtained from an expansion of |V (ε)|2 in the vicinity of ε = 0, using the data in

Fig. 3.2.

|V (ε)|2 = |V (0)|2
(
1 + aε+ bε2 + cε3 + dε4 + ...

)
(3.21)

The terms having odd powers of ε do not contribute, and so we have

I(kBT ) = |V (0)|2πkBT
[
1 + (πkBT )2b+ 5(πkBT )4d+ ...

]
. (3.22)

Since the |V (ε)|2 for Au is linear in ε at ε = 0, (Fig. 3.2), b vanishes and it is clear

why a plot of ln(I(kBT )) vs. ln(kBT ) was 1.00 for Au. Expanding |V (ε)|2 around

ε = 0 for Pt by fitting the Pt curve in Fig. 3.2 with various polynomial functions, it

was found that the calculated slope varied from 0.9 to 1.0, thus yielding an almost

linear plot [46].
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3.3.2 Semiconductors

To treat the T dependence for semiconductor electrodes using eqs 3.18 or 3.19, calcula-

tions such as those given in ref [43] would need to be repeated at various temperatures.

In the absence of those particular results we use here the free electron model [47] in

which the matrix element HkA (i.e., 〈Ψk|H|ΨA〉) at small ε is found to be proportional

to kz [48] (because Ψk is proportional to kz), and so |HkA|2 ∝ k2
z ∝ k2/3 ∝ ε, where

ε is the energy. Since ρ(ε) varies as some (known) power of ε, one finds that the

electronic factor, 〈|V (ε)|2〉 in eq 3.14, is proportional to kBT . A consequence is that

kmaxET varies as T/T 1/2, i.e., T 1/2.

3.4 Discussion

Two differences between metals and the present nondegenerate semiconductors may

be noted: (1) In the former, the Fermi-Dirac distribution is needed, while the Boltz-

mann distribution suffices for the semiconductor. (2) As a first approximation the

HkA in eq 3.4, appearing via eq 3.15 in eq 3.19 for kmaxET , is approximately propor-

tional to kz in the free electron model for the semiconductor [47]. Since |V (ε)|2 is,

as seen from above, proportional to k2
z and since the transfer is from the edge of the

conduction band, it is also proportional to ε. In the case of the metal, however, the

distribution of the k’s is hardly changed when the energy ε relative to the Fermi level

is changed. Thus, now |V (ε)|2 is essentially independent of ε. Specifically, at the high

energies associated with k’s near the Fermi level in free electron metals, k2
z would

be proportional to (∆ + ε), where ∆ is the energy of the Fermi level relative to that

of the bottom of the band, namely about 2 or more eV. Thus, as ε is varied, the

distribution of the kz’s is hardly changed, since ∆ >> ε. This behavior is in marked

contrast to that of the semiconductor at its band edge, where k2
z ∝ ε.

These two effects, seen to be different for the semiconductor and the metal, nev-

ertheless, for different reasons, gave rise to a proportionality of the electronic factor

to kBT for kET for the exchange current in the case of the metal and for kmaxET in the
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case of the maximum rate constant for the semiconductor.
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Chapter 4

A Model for Charge Transfer Inverse
Photoemission

4.1 Introduction

Inverse photoemission [49, 50, 51] has been extensively studied at the solid-vacuum in-

terface and is used to map the empty electronic states in the band structures of metals.

Several years ago, McIntyre and Sass [52] performed experiments at a metal-solution

interface that were similar in nature to vacuum inverse photoemission spectroscopy

(IPS). In their experiments, they used an electron transfer redox agent in solution

to inject electons or holes into a metal electrode and create electronically excited

states of the metal. These excited states decayed radiatively to give a spectrum.

The competing nonradiative processes make the quantum yield of the emission very

small. Because of the electrochemical nature of the experiments the redox agent-

metal potential difference could be varied. The resulting light emission depended on

the electrode-solution potential difference. This spectrum although low in intensity

could in principle be analysed so as to provide information on the electronic struc-

ture of the metal above and below its Fermi level. The electrochemical experimental

technique was termed charge transfer inverse photoemission spectroscopy (CTRIPS),

and a schematic of charge transfer inverse photoemission is given in Fig. 4.1.

The purpose of the present chapter is twofold. There is a wide assortment of data

though frequently no two laboratories have used conditions which serve as a check.

We first assemble the available CTRIPS data and summarize the principal features
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Figure 4.1: Schematic diagram for CTRIPS.
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of the spectra. In the process we also note some inconsistencies in the data which

need clarification.

A model is then presented for the electron transfer process and the light emis-

sion. A possible explanation of the data is given using the model and experimental

band structures obtained from vacuum inverse photemission together with solution

electroreflectance (ER) experiments. Several experimental tests of the model are also

proposed, with the aim of clarifying further the various features of the spectra.

A simple model for vacuum inverse photoemission extensively used in the solid

state physics literature [49] consists of three steps. (1) Electron injection into the

metal, (2) electron transmission within the metal and relaxation of the electron by

electron-electron collisions, and (3) emission of photons (mostly by direct vertical

transitions). In this chapter we extend the above treatment so as to include in step

(1) electron injection by electron transfer from a reactant to the metal and consider,

too, the role of Franck-Condon factors in the initial electron transfer. The latter

arise from the nuclear motion of the solvent as a result of the reaction satisfying the

Franck-Condon principle [17]. Throughout the present chapter contact is made with

the three-step model.

The difference between electron injection in vacuum and electron transfer in solu-

tion is that in the former case the electron is injected into a metal energy level above

the vacuum level while in the latter both the energy level entered by the electron

and the level to which it then falls lie below the vacuum level and above the Fermi

level of the metal. Electronic levels above the vacuum level are free electron in nature

and in the inverse photoemission experiments their character is assumed to be well

known [49]. Thus, the spectrum elucidates the properties of the level to which the

electron relaxes by photoemission.

In the solution experiments, in contrast, both the initial and the final energy

levels are typically bound levels, i.e., below the work function threshold (vacuum

level). Thus, the optical spectrum emitted in electrochemical inverse photoemission

depends on the detailed band character of both levels. Since the energy difference

between the two levels has a maximum of about 3.5 eV in most experiments, due
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to solution stability constraints, it is not as large as in the vacuum experiments. It

is expected from this energy difference that the final band into which the electron

relaxes is close to the Fermi level of the metal and is the same irrespective of the

energy level into which the electron (hole) initially enters, unless there is more than

one band present at the Fermi level. Accordingly, it is expected that the change in the

shape and position of the spectrum on changing the electrode/solution potential will

be determined by the presence or absence of radiative bands at the electron injection

energy and the nature of the states involved.

Electrochemical inverse photoemission spectra have been obtained with different

metals, solvents, redox reagents, electrolytes, and electrode solution potential differ-

ences. The metals affect the spectra through their band structure, the solvent effect

is due to a change in reorganization energy and the effect of different redox agents

is due to their redox potentials (E0). Since the potential of the electrode changes

the positions of the the Fermi level (EF ) and bulk band energy levels of the metal

electrode relative to the energy levels of the redox reagent (E0), it strongly affects the

emitted spectrum. Although temperature can have a substantial effect on photoe-

mission, its effect on CTRIPS has apparently not been studied experimentally thus

far.

The role of surface states in CTRIPS has been quite uncertain. In interpreting

electroreflectance solution experiments [53], it was concluded that the surface states

in a metal are in sufficiently close contact with the solution, that a change in the

potential of the electrode does not affect them as much as it affects the bulk bands.

The metal bulk band energies vary linearly with the electrode potential with a slope

of 1 while the surface band energies might be totally pinned to the solution and so

might not vary at all, depending on the conditions. In this case, the effect of varying

the electrode potential in inverse photoemission depends on whether the emitting

metal band states are surface states or bulk states. What is actually observed in

each experiment should depend on the band structure of the metal and the electrode

potential, and this aspect is included in treating the role of the band structure.

The spectra have in one instance been filtered into parallel and perpendicular
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polarization components. They have also been measured at different emission angles.

A comprehensive set of experiments of all types is not available for a single system

or from a single laboratory, and so some “piecing together” of the diverse data is

undertaken in the following section.

The chapter is subdivided as follows: In Section 4.2, the available experimen-

tal results are compiled and summarized. In Section 4.3, a model is suggested for

their interpretation. The calculations and the results are described in Section 4.4

and discussed in Section 4.5. Experimental tests of the mechanism are proposed in

Section 4.6.

4.2 Experimental results

Some of the principal observations made in the CTRIPS experiments are compiled

and compared, and conclusions are drawn from these observations. Some results

are replotted to make the comparison clearer. The experimental conditions used for

different experiments are summarized in Table 4.1.

The earliest experiments on CTRIPS were those of Sass and McIntyre [52]. Their

experiments were performed primarily using the gold electrode, acetronitrile as the

solvent, and benzophenone as the redox reagent. They found that the high energy

threshold (Eth) of the spectrum varies linearly with the potential of the electrode, E.

The Fermi level of the metal EF is pinned to the potential of the electrode E, and the

two are used interchangeably henceforth. In a later paper [54] they found that Eth

approximately equals Einj, the energy above the Fermi level into which the electron

is injected. This result is common to all the later experiments from all groups. Einj

equals (EF −E0), E0 being the standard potential of the redox agent measured on the

same scale as EF . They also observed in electron and hole transfer experiments [52,

a] that the intensity of the hole transfer spectrum is about fifty times greater than

that of the electron injection spectrum. They suggested that there were few upper

radiative states available for the electron transfer step, due to a band gap at the

Au(111) surface above the Fermi level, while the d-states present below the Fermi
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level of Au(111) increased the intensity of the hole transfer. They also measured

angle-dependent inverse photoemission [52, b] and polarization of emission [54, a] for

Au(111). The detection of polarized light emission provides information about the

optical matrix element of the radiative transition. The hole emission showed strongly

p-polarised spectra which suggested an sp to d transition. They also compared their

emission spectra from gold with that from silver [54, b].

Bard et al. presented results [55, 56] on the hole and electron transfer spectra at a

platinum electrode, again using acetonitrile as the solvent. They also presented pre-

liminary results using a rhodium electrode [56, a]. In their experiments they used a

series of redox agents with different standard potentials and made a key observation:

They observed a cutoff in redox potentials below which there was no light emission,

this cutoff is denoted by ER,th for the electron injection and by EO,th for the hole

injection. They proposed that this cutoff arises because of nonradiative Shockley

surface states which are present above and below the Fermi level of platinum. They

assumed that the surface states decayed in an efficient nonradiative process. On the

other hand, if the injection is at an energy where no surface states are present, then a

direct radiative transition was assumed to occur. From their hole and electron trans-

fer experiments they calculated the band width of the Shockley states in platinum

to be about 2.9 eV , which is similar to that obtained independently in solid state

experiments [57].

Uosaki and coworkers described a number of experiments using a gold electrode,

initially using acetonitrile as a solvent [58, 59] and later using solvated electrons

in a hexamethylphosphoramide [60] (HMPA) solvent. In their measurements with

the solvated electrons they again observed an Eth ≈ Einj, as well as a low energy

threshold, El for the spectra.

In the initial study Uosaki et al. concluded that the light emission might in-

volve surface states as acceptor states into which the electrons relax [58, a]. Sub-

sequently [59], they compared the position of these surface states with positions of

surface states observed in electroreflectance and concluded that surface states do not

contribute to the spectrum, since they were already occupied at the potentials used
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in the CTRIPS experiments. In another experiment [59], they measured the effect of

electrode thickness on the intensity of light emission and observed that the spectral

intensity increases with increasing electrode thickness [59, a], a result attributed to

the increase in the number of bulk states with increasing thickness. This fact pro-

vided another basis for their conclusion that the bulk states contribute to emission

intensity much more than do the surface states. They also compared the spectra from

benzonitrile, t-stilbene and benzophenone at the same energy above the Fermi level

(Einj) [59, b]. Part of their figure is reproduced here in Fig. 4.2. It is seen that the

spectra from benzophenone and benzonitrile overlap very well. Bulk states depend

only on the potential of the electrode and thus the bulk band structure depends only

on Einj. From this fact and their data they concluded that the main contribution to

the photoemission is from bulk states.

For comparison we have plotted in Fig. 4.3, a spectrum from Sass and McIn-

tyre [52, c] for benzophenone together with one from Murakoshi and Uosaki [59, c]

for benzonitrile, both at an Einj of 2.9 eV . It is seen that the spectra do not coincide

but rather there is a very large shift, so large that it may reflect a possible misprint

in which one of the measurements may not have been converted to the appropriate

relative electrode scale. The one difference in conditions in the two experiments is

that of the supporting electrolyte which was the use of tetrapropyl ammonium flu-

oroborate (TPABF4) for Sass and McIntyre and tetrabutyl ammonium fluoroborate

(TBABF4) for Uosaki et al. We discuss the effect of the supporting electrolyte and

in particular the tetraalkyl ammonium ions [61] in Section 4.6.

Another consequence of the difference of supporting electrolytes, solvents, and

references in the experiments of the various groups may lie in the difference in the

measured E0’s of the redox couples [Table 4.1]. Problems may arise in the measure-

ment of E0 values in nonaqueous solvents due to liquid junction potentials [61]. To

account for the differences in E0 values we use energy differences in our calculations

and comparisons and thus use Einj (i.e., EF −E0) values [Fig. 4.1] wherever possible.

To calculate these Einj values we use the E0 measured in the particular experiment.

Another pair [55, a][59, d] of spectra for platinum are compared in Fig. 4.4. The
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Figure 4.2: Inverse photoemission at Au(111) and constant Einj ≈ 2.9 eV using
different redox agents. Results of Murakoshi and Uosaki [59].
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Figure 4.3: Inverse photoemission at Au(111) with constant Einj = 2.9 eV using
different redox agents. (- -) are the results of Murakoshi and Uosaki [59] and (—) are
the results of McIntyre and Sass [52].
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Figure 4.4: Inverse Photoemission at Einj using different redox agents at the platinum
electrode. (- -) are the results of Murakoshi and Uosaki [60] and (-•-) are the results
of Ouyang and Bard [55].

spectra seem to have the same peak position but are shaped differently. While there is

a difference in solvent (HMPA in the case of the solvated electron [55] and acetonitrile

in the case of benzonitrile [59]), a repetition of each experiment in a single laboratory

would be useful.

The spectra of Murakoshi and Uosaki, when plotted versus frequency [ e.g.,

Fig. 4.2, Fig. 4.3, Fig. 4.4, Fig. 4.9], appear to be more symmetric than the emission

spectra of the other two groups. It would be useful in future experiments to establish

the exact shape of the spectrum as well as the frequency dependence of the spectra
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at each energy excess (EF − E0). We also note that the plot of spectral emission

vs. energy in the spectra of Murakoshi et al. is more asymmetric at high injection

energies and tends to become symmetric at low injection energies [62, 63], principally

because the low energy threshold is largely unaffected, but the high energy threshold

shifts to the red when the driving force (EF − E0) is reduced. The shift with EF is

linear with unit slope.

Uosaki et al. plotted the quantum efficiency (Φ) for the benzophenone and ben-

zonitrile [59, e] systems versus electrode potential. The curves look remarkably alike

when the benzonitrile curve is shifted negatively by the difference in their standard

electrode potentials. Thus, the shape of their spectra seem to depend only on Einj val-

ues. They also plotted Φ for the solvated electron at gold and platinum electrodes [60,

a], and found that the spectral intensity from platinum is much lower than that from

gold. Unfortunately, none of the groups have compared the cutoffs from metals (ER,th

or EO,th) observed in the Bard group for Pt [55, 56] to see if they are different for

different metals. In a later section we consider possible experiments which may clarify

the existing results and provide further insight into the inverse photoemission pro-

cess. There is a clear need for further experiments on the shape of the spectra, the

dependence of the spectrum on the metal, the polarization of emitted light, the effect

of the supporting electrolyte, the effect of temperature, and the appearance of the

cutoffs ER,th and EO,th for different molecules and in different metals.

We suggest next a possible mechanism for CTRIPS.

4.3 Model

The model proposed here for the mechanism of CTRIPS with electron injection can

be applied with minor changes to hole injection. We begin with the standard expres-

sion [64] for photon emission between two bands. It gives the intensity I(ω) in terms

of the optical coupling between the two bands, Vopt, and the number of available
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photon states (∝ ω3) at a given frequency ω:

I(ω) = Cω3|Vopt|2, (4.1)

where C is a numerical constant which depends on the dielectric constant ε0, the

speed of light c. The effective radiative coupling, Vopt, in the present case can be

calculated using the three-step model. The ω is measured in units of energy (eV).

Step one of this model is the electron injection via an electron transfer to the

metal. The expression for the first-order rate constant for a nonadiabatic electron

transfer process [17] is given by

kET =
2π

~

FC|HDA|2, (4.2)

where FC is the classical expression for the Franck-Condon factor and HDA is the

electronic coupling between the donor and the acceptor. The first order rate constant

to a redox molecule fixed at some position near the electrode. It is readily adapted

to second-order constants [17, 66].

The metal electrode has a continuum of levels which contribute to the electron

transfer process, each level in the metal being represented by a wave vector k. For

reactions at metal-solution interfaces the rate constant in eq 4.2 is used to include all

the metal-reactant electron transfer energy states, obtained by integrating the right

hand side of eq 4.2 over all energies ε and all k vectors contributing to a given energy.

The energy, ε, is measured relative to the Fermi energy of the metal EF . The rate

constant for electron transfer is then given by [17]

kET =
2π

~

∫
dε
e−(λ−eη+ε)2/4λkBT

(4πλkBT )1/2
|V (ε)|2f(ε), (4.3)

where the integration over wave vectors is included in the square of an averaged

coupling matrix element, |V (ε)|2:

|V (ε)|2 =

∫
d3k|HDk|2δ(ε(k)− ε). (4.4)
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The |HDk| is the electronic coupling between the donor (D) in solution and the quan-

tum state of the metal represented by the wave vector k, i.e., 〈ΨD|H|Ψk〉. Later, we

will extend |V (ε)|2 to also include the coupling between the upper and lower metal

electronic states contributing to photoemission. In eq 4.3, f(ε) is the Fermi-Dirac

distribution with, as previously noted, ε measured relative to EF , the Fermi level of

the metal,

f(ε) =
eε/kBT

1 + eε/kBT
. (4.5)

In the present case the energy of the donor is much higher (> 2 eV) than the Fermi

level, and f(ε) is essentially equal to 1. This substitution is made in the following

calculations.

The FC in eq 4.2 is replaced by its classical expression,

FC =
e−(λ−eη+ε)2/4λkBT

(4πλkBT )1/2
, (4.6)

where λ is the reorganization energy for the electron transfer, e the electronic charge,

and eη the overpotential equals (EF − E0).

Thus far, we have included the effect of the electron transfer process in the ex-

pression for photoemission intensity. We need to consider in addition the details of

the metal band structure, i.e., the energetic positions and the nature of the band

into which the electron gets injected by electron transfer and the band to which the

electron relaxes. Before proceeding to the band structure we need to ensure that the

final state into which the electron relaxes is unoccupied.

To obtain the final intensity as a function of the overpotential, η one further term

would be introduced, f(ε − ω), which is the Fermi function for a final state. This

term ensures that a final state into which the electron relaxes is unoccupied. The

intensity is now given by

I(η, ω) ∝ 2π

~

∫
dε ω3 e

−(λ−eη+ε)2/4λkBT

(4πλkBT )1/2
|V (ε)|2f(ε− ω), (4.7)

where |V (ε)|2 is the coupling contribution from all the states which exist at ε in the
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electronic band structure of the metal. The energy level of the metal, Einj, above the

Fermi level into which the electron is injected is the same as the overpotential eη. We

assume initially, as in the above expression, that the optical absorption coefficient of

the metal does not change the shape of the spectrum.

We now proceed to derive a detailed expression for |V (ε)|2 from eq 4.4. The

inverse photoemission process in the three-step model is subdivided into electron

transfer (step 1), electron relaxation by nonradiative (step 2) and radiative processes

(step 3). We introduce this separation into the expression for |V (ε)|2. We begin with

an expression very similar to the expression, eq 4.4, for pure electron transfer. Upon

renaming the initial k by k1 and εk by ε1, and so writing for direct transitions to

state k2 in the metal, we have

|V (ε)|2 =

∫ ∫
d3k2d

3k1|HDk1k2|2δ(ε1 − ε)δ(ε1 − ~ω − ε2), (4.8)

where the second δ function arises from the conservation of energy during the photon

emission. The HDk1k2 not only includes the HDk1 from eq 4.4 but also a term Hk1k2

of the form 〈Ψk1|T |Ψk2〉 describing the k1 to k2 transition, where T is the transition

coupling operator. Thus,

HDk1k2 = HDk1Hk1k2 . (4.9)

The integration over k2 in eq 4.8 ensures that all possible final states are included.

To calculate HDk1 we introduce simple forms for the donor and metal wave func-

tions. In a free-electron model the metal wave function would be of the form Aeik1·r.

Since the metal has a surface, the above form is changed to one which satisfies

boundary conditions at the surface, and the wave function becomes modified to [43]

Aei(k1xx+k1yy) sin(k1zz), where k1z is the z-component of the wave vector of the metal.

The simplest possible form [43] for HDk1 using this free electron model is sin(k1zz).

We also introduce a form for the wave function of the redox reagent and then calculate

HDk1 . For simplicity, a spherically symmetric donor wave function (as is the case for a

solvated electron) is introduced. A Gaussian form is assumed for this wave function,

B exp(−(x2 + y2 + (z − z0)2)/(2σ2)), with σ being the mean radius of the donor and



53

z0 the distance from the center of the donor to the the center of the metal atoms in

the first layer of the electrode (one half lattice plane beyond the surface). In the case

of a more complicated donor, an actual electron transfer matrix element should be

calculated [47]. We expect that the final shape of the spectrum will not be substan-

tially modified, because of the averaging over the various spatial configurations of the

donor with respect to the metal.

The coupling can then be calculated assuming a constant coupling matrix element

V , between the Gaussian donor and the sine-like metal wave function

|HDk1|2 = |V A B

∫ ∞
x,y=−∞

∫ ∞
z=0

e−
x2+y2+(z−z0)2

2σ2 ei(k1xx+k1yy) sin(k1zz)dxdydz|2. (4.10)

The A and B are the constants from the assumed forms of the wave functions.

We next consider steps two and three of the three-step model, i.e., relaxation

through radiative and nonradiative transitions. The radiative relaxation and resulting

photon emission occurs due to an allowed coupling, usually transition dipolar in

nature, between the initial and final electron states in the metal. This transition

dipole coupling depends on the types of bands that exist in the metal. In our model

we first assume for simplicity that this coupling is constant for all wave vectors and

denote it by T .

The question of direct versus indirect optical transitions in the photon emission

immediately arises. Direct transitions occur when there exist at least two accessible

energy bands, an upper and a lower, at the given k. In the case of a metal with a

surface, only wave vector conservation of k‖, the component of the wave vector parallel

to the surface, exists and a vertical transition occurs between the two accessible energy

bands. When the transition arises from a wave function that is fairly deep in the

metal, there is also an approximate conservation in the kz component.

Indirect transitions also contribute to the photoemission and inverse photoemis-

sion processes in vacuum [49, 67], and are thus expected to play a role in CTRIPS.

In the model, if direct transitions are not accessible then the electron can still radiate

by indirect transitions.
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There may also be a direct injection from the electron donor into some surface or

bulk states which give rise to radiationless decay [55]. One reason why the surface

states could be nonradiative lies in their band character. The surface state coupling

is discussed in a later section.

We first calculate the contribution to Hk1k2 (eq 4.9) from direct transitions. As

mentioned earlier, such transitions conserve k‖ during the photon emission. Using a

two-band approximation for the band structure of the metal [Fig. 4.5] and the free

electron model we obtain

|Hk1k2|2 =

∣∣∣∣T ∫ ∞
−∞

∫ ∞
−∞

∫ ∞
z=0

e−ik1xx+k1yy sin(k1zz)eik2xx+k2yy sin(k2zz)e−z/ldx dy dz

∣∣∣∣2 .
(4.11)

The l serves to introduce the relaxation of the electron through electron-electron

collisions, l being the mean free path of the electron at the energy ε. k‖ is conserved

and thus, the broadening is only introduced as an exponential in the z direction, e−z/l,

and not as an e−r/l. The l also decorrelates k1z from k2z and serves as a measure of

how different k1z can be from k2z. The integrals over x and y yield δ functions which

give momentum conservation along k‖. The integral can then be performed.

We calculate next the contribution of indirect transitions to Hk1k2 . If no direct

transitions can occur then the electrons radiate only through indirect transitions.

Photoemission caused by these transitions has been modelled quite rigorously [68].

In the present model, indirect transitions are introduced in a simple and quite ap-

proximate way. A broadening term similar to the mean free path broadening but

present in all directions is introduced. This term, like the l of the direct transitions

decorrelates the k1 from k2. A large broadening allows a calculation of |Hk1k2|2, by

an average integration of eq 4.11 to give a constant multiplied by T . This constant

which we shall call Tind, serves to reduce the entire spectral intensity of the indirect

transitions relative to the direct ones. Upon introducing this approximation into the

expression for the coupling, we have

|Hk1k2|2 = T 2
indT

2, (4.12)
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Figure 4.5: Two-band model for the band structure. The m∗ and the m1 are the
effective masses of the electrons in the lower and the upper bands, respectively.
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and so now the |V (ε)|2 for indirect transitions equals

|V (ε)|2 = T 2
indT

2

∫ ∫
d3k2d

3k1|HDk1 |2δ(ε1(k1)− ε)δ(ε1(k1)− ~ω − ε2(k2)), (4.13)

which is a product of the densities of states at the two energies ε1 and ε2, modulated

by |HDk1|2.

We consider next the surface states, which in principle could be optically active

or inactive. If they are optically active, they can be treated in the same way as bulk

states with an extra broadening factor due to an effectively finite length of the states

in the z direction. On the other hand, if they facilitate a competitive radiationless

transition now they need to be introduced as sinks in the calculation, so preventing

the electrons from radiating.

The position of the surface states with respect to the bulk states then needs to

be calculated. It has been inferred from electroreflectance spectroscopy [73, 53, 69]

that the position of the surface states depends strongly on the constituents in the

solution. The surface states extend beyond the surface of the metal and any specific

adsorption on the metal surface leads to a large change in potential at the surface.

There have been several models of the double layer at the metal [70] and some of

these models and simulation results [69] have been interpreted as indicating that the

energetic position of the surface states can move as much as 1 eV/V with respect to

the bulk states on changing electrode potential. This change in energetic position is

attributed to specific adsorption. This movement implies that the bulk state potential

is changed by changing the electrode potential while the surface states are pinned to

the solution potential. In this case the difference of redox couple potential (E0) and

the surface state potential (≡ Es) remains approximately constant on changing the

electrode potential. The surface states in the present model are positioned to reflect

this behavior and are assumed to be dark states.

Equation 4.7 is evaluated using a Monte Carlo routine to obtain the light emission

intensity.

In our calculations a model of the metal was used which fits the experimental band
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structure measured by vacuum inverse photoemission. Surface state properties have

been measured independently, and a linear dependence [73] of surface state energy

on metal solution potential was used to locate the position of the surface states.

Initially, with the assumption of optically inactive surface states, the experiment of

McIntyre and Sass [52] was used to obtain the factor Tind in eq 4.13. With these values

the CTRIP spectrum was calculated and compared with experiment. The numerical

values of the various parameters used and other details of the calculation and the

results are given next.

4.4 Details of calculations and results

A spectrum for Au(111) is calculated using the above model. We consider the ex-

periments of Uosaki and Murakoshi [60] which have a solvated electron as the donor

and Au(111) as the electrode. The various properties used to describe the experiment

include the vacuum band structure of Au(111), data from electroreflectance experi-

ments, and adsorption studies with tetra alkyl ammonium ions. These data are given

next.

The model for the band structure of gold is considered first. An experimentally

measured (inverse photoemission) vacuum band structure [71] is given in Fig. 4.6.

A particular cross section of the plot of k‖ vs. energy is shown there (k‖ has two

components kx and ky). Three bands exist within the experimentally accessible range:

a bulk band at about 3.6 eV above the Fermi level, a surface band which extends

above the Fermi level, and another bulk band below the surface band. Our model

for the metal is chosen to reproduce these bands of the spectrum. Gold has a face-

centered cubic band structure, and in the experiments the (111) face is used. For

simplicity, we assume a cubic band structure and a (100) face.

We first consider the bulk bands. The Fermi level of the metal is taken to be the

zero of energy. The lower bulk band, ε2 in Fig. 4.5, is modelled using the form ~
2(k2

x+

k2
y + k2

z)/2m
∗ − 7.12 eV . The band gap in our model occurs due to a Brilliouin zone

cutoff. m∗ and m1 are the effective masses of the electron in the lower and the upper
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Figure 4.6: Measured band structure replotted from ref [71]. The symbols are experi-
mental measurements. ◦’s denote the lower band edge while �’s give the upper band
edge. •’s give the image state. Hatching indicates the projected band structure. The
dashed curve is the extrapolation of the dispersion relation obtained below EF . The
m∗’s are the effective masses of the electron in the given bands.
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Figure 4.7: Projected band structure using the formulae for upper and lower bands
given in the text.

bands, respectively, with m∗ = 0.37 m and m∗ = 1.0 m, where m is the rest mass of

the electron [71]. The upper bulk band is of the form ~
2(k2

x + k2
y + k2

z)/2m1 +Eup eV .

A plot of the calculated band structure with Eup = 3.2 eV is given in Fig. 4.7.

We find that an Eup = 3.2 eV gives the best fit to experimental CTRIPS spectra

for the values 3.6 eV , 3.4 eV and 3.2 eV . The band edge is observed to be located

at 3.6 eV at the vacuum-Au(111) interface [71]. Band edges are fairly sensitive to

the experimental conditions and might shift at the solution-metal inteface. This fact

might be one of the reasons for the value of 3.2 eV giving the best fit. With the

larger values of Eup that the transition between the indirect and direct represented,

by the elbow shape of the calculated curve in Fig. 4.8 is more abrupt and the elbow

gets sharper. This condition might also reflect the very approximate model that we

use for the indirect transitions. The surface band is considered next.

The potential of zero charge (pzc), i.e. the electrode potential at which the elec-
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Figure 4.8: Quantum efficiency from Au(111) with solvated electrons. The +’s are
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trode is uncharged, plays a role in surface properties. When there are no adsorbed

ions the double layer at the electrode is very diffuse. The band structure of the elec-

trode (both bulk and surface bands) at the pzc is expected to resemble the vacuum

band structure of the metal [69, 53, 70, 59]. The pzc [72] of Au(111) is 0.325 V

with respect to the standard calomel electrode (SCE) while that of Pt(111) is 0.85 V .

The energetic position of the surface band changes with respect to that of the bulk

bands if the double layer structure at the interface is very dense, an effect which can

be caused by the specific adsorption of cations or anions on the surface of the elec-

trode [73]. The cations from most salts are small and highly solvated while the anions

are large, with weak solvation shells and may adsorb. The supporting electrolyte in

the case of the solvated electron experiments of Murakoshi and Uosaki is NaClO4.

The ClO−4 ions are known to affect the surface states on Au(111) surfaces [73, 69].

We assume, as in ref [73], that the surface states vary at a slope of 1.0 eV/V on the

positive charging side of pzc and at a slope of 0.2 eV/V on the negative charging side.

Thus, the surface band is calculated using the formula ~2(k2
x + k2

y)/2m
∗ − Esurf eV ,

where the Esurf varies linearly with EF −E0 with the offset of the pzc and a slope of

1.0 eV/V on the positive side and a slope of 0.2 eV/V on the negative charging side.

We remove an electron from our calculation if it enters the surface band. We use a

λ = 0.4 eV for the solvated electron [60] and kBT = 0.025eV .

The CTRIPS experiments [60] are performed by varying the electrode potential

and thus Einj, between 2.4 eV and 3.4 eV , and measuring the frequency-dependent

spectrum at each of these voltages. The upper bulk band in the two-band model is

at the edge of the experimental voltage. Also, from eq 4.7 we see that the peak of the

spectrum will occur around the experimental voltage minus the reorganization energy,

i.e., (EF − E0) − λ. As Einj is lowered from 3.4 eV to 2.4 eV this band contributes

less and less (proportional to the tail of a Gaussian) to the emission. Thus, direct

transitions are possible only at the upper end of the experimental measurement.

We assume a factor of 50 for Tind, a factor inferred from the results on hole and

electron spectra of Sass and McIntyre [52, 65]. The hole injection spectra of Sass and

McIntyre are much more intense (by a factor of Tind) than their electron injection
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spectra. They explain this factor by considering the band structure of gold: There

are no radiative states up to about 3 eV above the Fermi level in gold. Thus, they

attribute their electron injection spectra to indirect transitions. There are radiative

states present below the Fermi level and thus the hole injection occurs primarily by

direct transitions. We adopt this explanation for the spectra and so calculate Tind.

Some preliminary results from this model are given in Figs. 4.8 and 4.10. We

reproduce the corresponding experimental spectra in Figs. 4.8 and 4.9. There is a fair

agreement between the experimental and the theoretical results. We note that the

treatment of indirect transitions in our model is only a first approximation, as reflected

in the sharp transition from the direct to indirect transitions shown in the curves.

The lower frequency cutoff arises from the approximate [43] sin(k1zz) dependence of

the matrix element and the shape of the band structure. The lower frequency cutoff

occurs at a much higher energy (≈ 1.5 eV ) in the calculation of direct transitions. The

addition of indirect transitions lowers it. The upper frequency cutoff arises because

the Fermi level serves as the effective cutoff energy for the electron’s radiative decay

to the lower state.

4.5 Discussion

One principal question regarding CTRIPS is the role of surface states, namely whether

they contribute to the spectra as radiative states or as sinks which facilitate ra-

diationless (dark) transitions. Primarily because of the cutoff results of Bard and

coworkers [55, 56], we feel the evidence currently favors surface states which facilitate

radiationless transitions. In the present section we consider this point in the context

of some experimental facts summarized below. We then give a possible mechanism

which explains most of these facts in particular the cutoff of Bard and coworkers,

and then briefly list a set of alternative mechanisms for inverse photoemission. These

mechanisms may be useful to explain CTRIP spectra for metals with band structures

different from Au or Pt. We also compare our model for photoemission with that of

Murakoshi and Uosaki [60].
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Figure 4.9: Emission intensity from Au(111) with solvated electrons. Replotted from
Fig. 4 of ref [60].
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the model from Section 4.3.
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Some key experimental results are summarized below. At present these results

exist usually as isolated single-laboratory experiments and, as noted earlier, have

largely not been yet repeated or tested in other laboratories.

1. The high energy edge of the emission spectrum varies linearly with potential,

while the low energy edge is approximately potential independent.

2. There is a cutoff for the electron injection at Pt surfaces such that unless the

standard potential E0 of the donor is more negative than −1.90 V vs. SCE, the

CTRIPS effect is absent, regardless of the driving potential, EF −E0. For hole

injection at Pt surfaces, there is a cutoff such that unless E0 of the acceptor is

more positive than +1.0 V vs. SCE the CTRIPS effect again disappears.

3. The spectra arising at the Au(111) surface from hole transfer are fifty times

more intense in a particular experiment than that from electron transfer.

4. The spectrum-integrated emission intensity increases sharply with electrode po-

tential.

5. The emission intensity increases with metal film thickness at low film thick-

nesses.

6. Molecules having different E0’s have the same CTRIPS spectral plots, when

they have the same driving potential E − E0, provided the E0 does not lie

outside the cutoff region.

7. A decrease of the light emission yield when E exceeds a certain value has been

observed [55, 59]. In ref [55] it occurs when E > 1.2V relative to SCE, which

translates to E > 0.76V relative to Ag/Ag+(0.01 M) standard used in ref [59].

This behavior is roughly consistent with the behavior in Fig. 7 of ref [59] for

benzonitrile and a Pt electrode, where the decrease in emission begins around

E > 0.5V instead of 0.76V .

The following mechanism is consistent with the above results: The electron is in-

jected into a bulk state and decays radiatively to a bulk state. This decay yields the
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emitted spectrum. If the electron is injected into a surface state, it decays nonradia-

tively. Surface states are thus assumed to be dark. They are assumed to be pinned

to the surface if the supporting electrolyte shows specific adsorption.

In a bulk state to bulk state radiative decay, a change in a property, such as as

film thickness, which affects the density of bulk states will cause a change in the

spectrum, particularly in its intensity.

EF changes linearly with electrode potential as do all the bulk state energies.

Therefore, the spectrum will not change significantly with change of redox agent (E0)

if the electrode potential is changed in a way so as to compensate for a change of E0,

i.e., if EF − E0 is kept constant.

The optical matrix elements within the metal are such that the surface states be-

come nonradiative. In the metals considered in this chapter (Au(111), Pt(111), etc.),

only Shockley surface states (and not image states) have been reported within the

energy range of interest above the Fermi level [57]. The Shockley states are intrinsic

surface states formed due to the abrupt ending of the metal at z = 0. These states

are of the same electronic character as the band that they arise from, a band which

is primarily sp in character in the present instance. An electron may decay from an

sp bulk band to the sp surface band radiatively because of symmetry breaking in the

direction of the surface, i.e., the z direction. Alternatively, the band character of both

bands being sp, this transition may be largely optically forbidden but nonradiatively

allowed, and so the electrons may decay nonradiatively through these surface states.

In some recent calculations [74] in Pt(111), it was observed that the d-states were

squeezed out of the first layers near the surface. This circumstance might lead to a

smaller optical matrix element between bulk d-states and the predominantly sp sur-

face states in the first few layers of the crystal causing the surface states to be dark

for electron injection Pt(111).

As noted earlier the thickness-dependent experiments of Uosaki and Murakoshi [59]

suggest that the band into which the electron is injected is likely to be bulk band. In

the case of Au(111) there is only one bulk band present up to about 3.4 eV , rather

than an unoccupied upper and an unoccupied lower band required for light emission.
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The experiments of Uosaki and Murakoshi [58] nevertheless show that there exists a

spectrum at Einj’s in the range 2.4 eV to 3.4 eV above EF . Such a spectrum can

arise, in principle, from an indirect transition.

In Pt(111), the band structure is such that the cutoff in emission spectra [55]

can only be explained by the presence of nonradative surface states which are also

stationary with respect to the energy of the redox couple. This behavior can only

happen if the surface states stay pinned to the solution potential while the bulk

states move linearly with the electrode potential. That is, the surface states would

move linearly with respect to the bulk states with a slope of 1.0 eV/V on changing

electrode potential. Such behavior is observed on the positive charging side of the

Au(111) [53, 69] due to the specific adsorption of the anion. The pzc of Pt(111)

is 0.085 V vs. SCE, as noted earlier, when the electrolyte is HClO4. The region

of experiments is 0.22 to 1.44 V vs. SCE. The supporting electrolyte used in the

experiments of Bard and coworkers [55, 56], is TBABF4. The tetrabutyl ammonium

ions are known to specifically adsorb on metal surfaces [61, 75]. To explain the data of

Bard and coworkers [55, 56] it is necessary to assume that this adsorption is the cause

of a slope of 1.0 eV/V for the change of the surface band energy with respect to the

electrode potential on the negative charging side of the electrode. Specific adsorption

also changes the pzc and thus it is necessary for a clearer interpretation that both

the electroreflectance experiments and the CTRIPS experiments be conducted with

the same supporting electrolyte, such as TBABF4. Light emission spectra calculated

using the model presented here become more symmetric and show a peak shift to

lower energies with an increase in λ values.

Two other mechanisms for radiative transitions which could also give rise to light

emission are listed next. These mechanisms could contribute to emission at other

metals with different band structures. Reasons are given for their not contributing

to the spectra in the case of Au/Pt/Pd.

1. The electron is injected into a surface state and emits radiatively, so reaching a

lower unoccupied bulk state. The position of the state into which the electron

is injected may change with potential under particular circumstances [69] since
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it is a surface state. The relative position of the surface and bulk states changes

approximately linearly with potential, and the spectrum changes accordingly.

However, since the surface states on the (111) face of both Pt and Au are low in

energy [57], it is unlikely that they would contribute to the spectra as injection

states.

2. The electron is injected into a bulk state and decays radiatively from the bulk

state to a surface state. A change in any property which affects the density of

bulk states, such as the electrode thickness, causes a change in the properties

of the spectrum, such as intensity. Also, the spectrum changes with potential

because of the relative shifts in energies as before. This mechanism cannot

be used to explain the Pt(111) cutoffs of Bard et al. [55, 56] which requires

sink states which remain stationary when the electrode potential is changed.

In Au(111), on the other hand, the surface states are occupied if one assumes

specific adsorption. Thus, the surface states are not available for relaxation and

light emission, and so such a mechanism is not considered further.

In concluding this section we briefly compare our model with that of Murakoshi

and Uosaki [60]. Both are three-step models. Three-step models are approximations

to one-step models [50] of inverse photoemission which describe an overlap between

the electron transfer state outside the metal and the final state after photon emission.

Murakoshi and Uosaki describe the relaxation processes (step two of the three-step

model) more rigorously than the present chapter, which introduces electron-electron

collisions through a single relaxation length parameter. Also, the present chapter

neglects any reabsorption of emitted photons which is treated in ref [60].

However, in the present chapter we present a model which uses actual expressions

for electron transfer into the metal. We assume that if direct transitions are possible,

then the bulk of the photoemission intensity arises due to k‖-conserving transitions.

If direct transitions are not possible, then we invoke indirect transitions.

The model in ref [60] treats the electron transfer step using a constant energy

independent tunnelling probability. The model also assumes no k‖ conservation and
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so no possibility of a direct transition. All the spectral intensity arises due to indirect

transitions and so the band structure information is introduced into the problem only

through the density of states in the metal at a given energy. Information about band

gaps is lost in this way. Direct transitions and k‖-conservation play a major role in

inverse photoemission in vacuum at low energies and so are expected to play some role

in CTRIPS too. The overall shape of the spectra calculated in the present chapter

remains approximately the same as that calculated in ref [60]. However, using an

expression for electron transfer and the band structure of the metal, we find that the

low energy cutoff is better described than with an expression which does not contain

these details.

4.6 Proposed experiments

A number of experiments which may serve to clarify various features of the present

mechanism of CTRIPS phenomena are the following:

1. While cutoff experiments were performed for Pt(111), none were performed

for Au(111). The difference in Shockley states in the two metals would yield

differences in the cutoffs, if the present mechanism is correct. The position of

the Shockley states at the Pt(111) surface is about 1.2 eV above the Fermi

level [57], while those at the Au(111) surface are slightly above Fermi level.

However, this difference of about 1 eV may result in a difference in the thresholds

for photoemission, if the role of the surface states is nonradiative. From this

viewpoint, ER,th for Au(111) should be about 1 eV lower than that for Pt(111).

An experiment which determines the ER,th for Au would be clearly useful in

clarifying the actual role of the surface states.

2. In only one article was the relative emission intensity of the electron and hole

injection compared. More spectra which compare the relative intensities of the

two emissions in Au(111) are of interest. Au(111) has allowed bulk transitions

below the Fermi level, while it does not have any allowed bulk transitions above
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the Fermi level up to about 3.6 eV . Thus, the hole spectra should be much more

intense than the electron spectra, as is observed in the factor of fifty in the early

experiments [52] with Au(111). It would be useful to have such comparisons

for Pt(111), since intensities can give information as to whether a transition is

allowed or indirect.

3. After the initial experiments of McIntyre and Sass [52], there have been no

experiments which measure photoemission at different angles. The theoretical

model presented in this chapter is fairly simple and cannot in its present form

be used to explain angle resolved spectra. As mentioned, such angle resolved

spectra are few and their exact peak structure is not clear. If such experiments

become available, the present model can be easily adapted to include accurate

coupling matrix elements and to calculate the angle resolved peak structures in

light emission spectra. In the case of vacuum inverse photoemission, k-resolved

experiments are performed and provide detailed information on the positions

of band edges and surface states [51]. The contribution to the spectrum in

the solution case arises, in contrast with the vacuum experiments, from a wide

distribution of k‖ and kz, reflected in the fact that in electron transfer the

wave-function of the reactant can be Fourier-decomposed into many such states.

Nevertheless, the increasing detail, such as that obtained by Sass and McIntyre,

can elucidate the energetic positions and angular dispersion of the upper and

lower states involved in the emission.

4. McIntyre and Sass [54] presented data on the difference in emission spectra of

the s and p polarized light. When interpreted via a model such experiments can

provide information about the optical matrix elements of the transitions and

thus about the bands which contribute to the emission. An sp to d transition

gives p polarized light while an sp to sp transition should emit s polarized

light, provided the two bands differ in their sp content. Au(111) has few d

states above the Fermi level while Pt(111) has a large d band at Fermi level. A

polarization resolved spectrum at Pt(111) and Au(111) surfaces can help clarify
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the role of the d states in the emission. A hole injection spectrum could also be

obtained from both Au and Pt. There maybe a difference in peak position of

these two spectra since the d states of the two metals are at different positions

relative to the Fermi level. In some previous calculations [42] we found that d-

states contribute much less, per state, than do sp-states to some electon transfer

processes. It is likely that such effects occur in the CTRIPS experiments when

the electron or hole is injected into d-states. The reduction in intensity might

not occur in the optical matrix element Hk1k2 since the coupling is of a different

nature from that in electron transfer HDk1 .

5. Thus far, no effects of concentration or specific adsorption of the supporting

electrolyte on the spectrum appear to be available, either in CTRIPS or in

electroreflectance. In principle, a decrease in concentration would make the

double layer more diffuse and could lead to a smaller change in the relative

position of the surface states with respect to bulk states. A change in the

supporting electrolyte from one which specifically adsorbs to one which does not

would also lead to a similar change. An example of such an experiment would be

one using tetraalkyl ammonium ions with different alkyl chain lengths [61, 75]. If

there is a significant effect on electroreflectance then there could be a significant

effect on CTRIPS.

4.7 Conclusion

In the present chapter the various experimental results for charge transfer inverse

photoemission spectroscopy, CTRIPS, are summarized and a theory is proposed for

their treatment. This model reproduces approximately the various features of the

emission spectra, including the high and low frequency cutoffs at a given Einj. The

question of the role of surface states is also addressed. A number of different exper-

iments which serve to test the ideas are proposed. Since the mechanism can depend

upon band structure, as discussed in Section 4.5, such experiments can also help
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differentiate among possible mechanisms of photemission. The mechanism proposed

in the present chapter is applicable to the band structure for Au and Pt electrodes.

Ultimately with increasingly detailed experiments it can be expected that charge

transfer inverse photoemission spectroscopy can be a useful technique for probing the

electronic structure and behavior of metal-solution interfaces. While the once active

field of CTRIPS has died out, perhaps reflecting the lack of experimental-theoretical

interaction that so enriched other areas of electron transfer chemistry, we hope that

the proposed experiments and tests of theoretical ideas will stimulate its revival.



73

Chapter 5

Conclusions

The overall theme of this thesis is the study of nonadiabatic electron transfer at metal

surfaces. In Chapter 2, we developed a methodology for writing the k-dependent

wavefunction of a semi-infinite metal using the Z-transform. We then used this

method to calculate the effect of metal density of electronic states on the electron

transfer rate constant, kET . We observed that the rate constant is not proportional

simply to the density of states, but instead to the density of states modulated by the

electronic coupling matrix elements for each of the bands. We found, consistent with

electron emission results [36] and electron transfer experiments [7, 8], that the d-band

states couple weakly to the outside environment. The coupling matrix elements sig-

nificantly reduce the effect of the extra density of states of weakly coupled bands, such

as the d-band. Thus, it is the electronic coupling modulated density of states which

enters into the calculation of kET . Thereby, kET is approximately independent of ρF

in two cases: adiabatic electron transfer and nonadiabatic electron transfer when the

effect of any extra ρF is reduced by a weak electronic coupling.

In Chapter 3, we used the method of the Z-transform to study the effect of tem-

perature on the nonadiabatic kET . We also compared the case of metals to that

of semiconductors. The two differences between metals and nondegenerate semi-

conductors are: (A) The metal electrons obey the Fermi-Dirac statistics while the

classical Boltzmann distribution is used for the semiconductor electrons. (B) The

semiconductor-acceptor coupling, HkA which contributes via eq 3.15 and eq 3.19 to

kmaxET , is approximately proportional to kz in the free-electron model for the semicon-
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ductor [47]. Thus, |V (ε)|2 is proportional to k2
z and to ε, the transfer being from the

conduction band edge. In the the metal, however, there are no significant band gaps

near the Fermi energy. The distribution of the k’s is hardly changed when the en-

ergy, ε, relative to the Fermi level is changed. Thus, the coupling, |V (ε)|2 is essentially

independent of ε.

These two factors together, nevertheless, gave rise to a proportionality of the

electronic factor to kBT for kET for the exchange current in the case of the metal and

for kmaxET in the case of the maximum rate constant for the semiconductor.

In Chapter 4 we studied light emission at the metal-solution interface. The experi-

mental results for charge transfer inverse photoemission spectroscopy, CTRIPS, were

summarized and a theory is proposed for their treatment. The model reproduced

approximately the various features of the emission spectra, including the high and

low frequency thresholds at a given Einj. We addressed the role of surface states, and

proposed a mechanism for light emission, applicable to Au/Pt/Pd electrodes, which

explained the cut-offs at Pt(111). We propose several different experiments which

serve to test the ideas. Since the mechanism of light emission depends upon band

structure, such experiments can also help differentiate among possible mechanisms of

photon emission.
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