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Preface

The aim of this book is to provide some insight into chemical defects in 
crystalline solids. Chemical defects, which are mistakes or changes in the 
atomic make-up of the crystals, have far-reaching effects on the com­
position, optical properties and electronic properties of materials and as 
such is an area of relevance to chemists, physicists, materials scientists and 
engineers. The book itself has been designed to be read by students with no 
prior knowledge of the subject, but with a background in basic chemistry 
and physics. It starts with rather simple ideas but progresses into a dis­
cussion of complex materials which are now at the forefront of much 
intensive research effort.

The book has arisen from courses given to both undergraduate and 
postgraduate university students in chemistry, physics, materials science and 
materials engineering. It has built upon the strengths of the previous edition, 
Defect Crystal Chemistry, but has laid additional emphasis on the 
relationship between basic principles and device applications. This has been 
accomplished by frequent reference to current research and experimental 
results and the inclusion of applications throughout the text. The links 
between principles and applications have been further strengthened by the 
inclusion of a series of case studies. In addition, the crystal structures that 
are of most importance have been described throughout the book in a series 
of boxes, to provide a crystallographic reference within the text.

I have been particularly helped in the revision of this book by E.E.M. 
Tilley, who first encouraged the idea of revising the text, and by G.J. Tilley 
and R.D. Tilley, who gave invaluable advice and criticism on the format and 
contents of the volume. Finally, my indebtedness to my wife Anne continues 
for her encouragement and tolerance during the rewriting of the text.

R.J.D. Tilley





1 Point defects

1.1 The importance of defects

During the course of this century, and particularly in more recent years, it 
has been realized that many properties of solids are controlled not so much 
by the structure of the material itself but by faults or defects in this structure. 
For example, the strength of metals is often governed by the presence of 
linear defects called dislocations. Similarly, the various and beautiful colours 
of many gemstones are due to impurity atoms within the otherwise perfect 
structure of the crystal itself. Impurities are also the key to an understanding 
of the electronic properties of semiconductors, without which we would 
have none of the electronic devices that are so important and commonplace 
today. Defects are also of vital importance in many chemical reactions in­
cluding corrosion, which costs billions of dollars each year, and catalysis 
which generates an equal amount of money by producing essential 
chemicals for modern industry. Indeed, there is no aspect of the physics 
and chemistry of solids which is not decisively influenced by the defects that 
occur in the material.

This book relates to this large subject area and is mainly concerned with 
the chemical, optical and electronic consequences of the presence of defects 
in crystals. The earlier chapters provide an introduction to basic concepts 
and these are illustrated, where possible, with case studies describing the 
practical consequences of the ideas that have been presented. In later 
chapters the concepts are gradually extended, and we will build up the 
framework of defect chemistry and physics. This will allow us to be able to 
meet one of the most important challenges in the modern world, how to 
manipulate the defect populations in a material so as to endow it with new 
and desirable properties, that is, defect engineering. For example, we will see 
how, by using our knowledge of defect behaviour, we will be able to 
accomplish remarkable experimental challenges such as turning a colourless 
insulator into a black metallic material or a fairly ordinary copper oxide into 
a high temperature superconductor. Moreover, we will also be able to 
explain why the defects that we use to achieve these amazing results are able 
to exert such potent control over the properties of these truly remarkable 
materials.
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At the outset we consider the sort of simple defects that we find in every 
pure crystal of a compound. Even here a surprising number of devices and 
processes result from the defects present as the two case studies, concerning 
photography and self-darkening (photochromic) glasses, show.

1.2 Point defects

The simplest localized defect that we can imagine in a crystal is a mistake at a 
single atom site. These defects are called point defects.

1.2.1 Point defects in pure elements

Let us first think of a crystal of a single element, diamond, silicon or iron, for 
example. We can imagine that an atom will sometimes be absent from a 
normally occupied position. The hole that is left in the structure is called a 
vacancy. Alternatively, during crystal growth an extra atom might be 
incorporated which is forced to take up a position in the crystal which is not 
a normally occupied site. These are called interstitial atoms. In some cases it 
is necessary to be a little more explicit in the description and if we want to 
stress that the interstitial atom is the same as the normal atoms which built 
the structure, it is called a self interstitial atom. Such vacancies and 
interstitials, which occur in even the purest of materials, are called intrinsic 
defects. These are shown in Figure 1.1(a) and (b).

Of course, no material is totally pure, and foreign atoms will also be 
present. If these are undesirable or accidental they are known as impurities, 
but if they have been added deliberately, so as to change the properties of 
the material, they are called dopant atoms. The foreign atoms can rest on 
sites normally occupied by the parent atom type to form substitutional 
defects. Foreign atoms may also occupy positions not normally occupied in 
the crystal to create interstitial impurities or dopants. These defect types are 
illustrated schematically in Figure 1.2.

At the outset let us say that it is not easy to imagine the three-dimensional 
consequences of the presence of defects from these two-dimensional 
diagrams. If it is at all possible try to build crystal models. This will help 
you to see that in real crystals it will be much easier to create vacancies at 
some atom sites than others, and that it is easier to introduce interstitials 
into rather open structures. However, despite any initial difficulties, you will 
find that this gets easier with practice and you will soon become familiar 
with the structures involved.

Even though these ideas about defects are not too difficult to follow, they 
have a great importance. At present almost all of the modern electronics 
industry, and all microchips that are so widely used in computers and
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Figure 1.1 A schematic representation of (a) a vacancy and (b) an interstitial, in a monatomic 
crystal such as silicon or iron.

computer-controlled machinery, are made by the introduction of small 
amounts of foreign atom dopants into very pure silicon crystals. The 
dopants are atoms such as phosphorus or aluminium which occupy sites 
normally occupied by silicon atoms. They are, therefore, substitutional 
dopants. Later in this book we will find out just how these dopants are able 
to modify the electronic properties of pure silicon, so that such important 
devices can be made.

(a) (b)

Figure 1.2 A schematic representation of (a) substituted dopant or impurity atom and (b) a 
dopant or impurity interstitial, in a monatomic crystal such as silicon.

(a) (b)
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1.2.2 Point defects in compounds

Compounds are made up of more than one atom type. For example, the 
compound sodium chloride, also called rock salt or halite, shown in Figure 
1.3, is composed of equal numbers of sodium (Na) and chlorine (Cl) atoms 
and has a chemical formula NaCl. In the crystals of any particular 
compound, the atoms present are always arranged in exactly the same way. 
This geometrical arrangement is characteristic of the compound and can be 
used to identify it via X-ray diffraction methods. When we wish to refer to 
the structure in a generalized way so that we are not really concerned 
whether the material is, say NaCl itself, but any material with the same 
arrangement of atoms, then we refer to the rock salt structure type.į

It is a good first approximation to regard such materials as being 
composed of ions, and doing this allows us to extend the ideas outlined 
about defects. Once again, think of a salt crystal. Reference to Figure 1.3 
shows the compound to be built up of an alternation of N a+ ions and Cl-  
ions. We will often want to separate out the effects of the anions from that 
of the cations and so we will call these two arrays by different names, the 
anion sub-lattice for the Cl-  array and the cation sub-lattice for the Na + 
array.

If we now imagine introducing vacancies on the cation sub-lattice the 
composition and the charge balance will be upset. If x such vacancies occur, 
the formula of the crystal will now be Nai_*Cl and the overall material will 
have an excess negative charge of x—, because the number of chloride ions is 
greater than the number of sodium ions by this amount. The compound 
should be written [Nai_xCl]x-. The same will be true for the anion sub­
lattice. If we introduce X vacancies on to the Cl sub-lattice the material will 
take on an overall positive charge, because the number of sodium ions now 
outnumbers the chlorine ions, and the formula becomes [NaCli_Jx+. 
Generally, crystals of salt do not show an overall negative or positive charge 
or have a formula different to NaCl. So if we imagine vacancy defects in 
these crystals we need to be sure that the numbers on both the anion and 
cation sub-lattices are balanced so as to maintain the correct formula and 
preserve electrical neutrality. This means that we must introduce equal 
numbers of vacancies on to both sub-lattices. Such a situation was envisaged 
by W. Schottky and C. Wagner, and their ideas were first presented in 1930.

The defects arising from balanced populations of cation and anion 
vacancies in any crystal, not just NaCl, are now known as Schottky defects. 
For example, if the crystal has a formula MX, then the number of cation

fA structure type will be written in italics and a chemical compound in normal type. Hence, 
NaCl refers to the rock salt structure type while NaCl means the compound sodium chloride.
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Figure 1.3 The NaCl structure. The Na atoms are drawn as small circles and the 
Cl atoms as large circles.

The rock salt (NaCl) structure

The rock salt structure type is adopted by a wide variety of 
compounds with a formula MX. Some examples are MgO, NiO, 
CaS and TiN. The unit cell of the rock salt structure type is 
cubic, with a lattice parameter of about 0.5 nm. NaCl itself has a 
lattice parameter of 0.563 nm. There are four M  and four X  
atoms in a unit cell. Each M  is surrounded by an octahedron of 
X  atoms, and each X  atom is surrounded by an octahedron of six 
M  atoms.

vacancies will be equal to the number of anion vacancies, in order to 
maintain electrical neutrality. In such a crystal, one Schottky defect consists 
of one cation vacancy together with one anion vacancy, although these 
vacancies are not necessarily imagined to be near to each other in the crystal. 
It is necessary to remember that the number of Schottky defects in a crystal 
of formula M X  is equal to one half of the total number of vacancies. 
Schottky defects are frequently represented diagrammatically by a drawing 
similar to Figure 1.4(a).

In crystals of more complex formula, such as titanium dioxide, Ti02, 
there will be twice as many anion vacancies as cation vacancies in a Schottky 
defect. This is because we need the absence of two O2- ions to electrically 
counterbalance the loss of one Ti4+ ion from the crystal. This ratio of two



6 PRI NCI P LES A ND  AP P LI CATI ONS  OF CHEMI CAL DEFECTS

Figure 1.4 (a) Schematic illustration of a Schottky defect on a plane in a crystal of the NaCl 
type. The defects consist of equal numbers of vacancies on both metal and non-metal sites, (b) 
Schematic illustration of a Frenkel defect in a crystal of the NaCl type. The defects consist of 
equal numbers of vacancies on either the metal or non-metal sub-lattice and interstitial ions of 
the same type. Here the vacancy is on the metal sub-lattice.

anion vacancies per one cation vacancy will hold in all compounds of 
formula MX2. In crystals like A120 3, two Al3+ vacancies will be balanced by 
three 0 2~ vacancies. Thus, in crystals with a formula M2X3, a Schottky 
defect will consist of two vacancies on the cation sub-lattice and three 
vacancies on the anion sub-lattice. As mentioned, these vacancies are not 
necessarily clustered together and we are only noting the relative numbers 
needed to keep the crystals electrically neutral.

It is also possible to imagine a defect related to the interstitial defects 
described above. Such defects are known as Frenkel defects, as they were 
first suggested as being of importance by the Russian physicist Y.I. Frenkel.

(a)

(b)
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In this case an atom from one sub-lattice moves to a normally empty place 
in the crystal, leaving a vacancy behind. This is shown schematically in 
Figure 1.4(b). Frenkel defects occur in AgBr. In this compound some of the 
silver ions move from the normal positions to sit at normally empty places, 
generating interstitial silver ions, and leave behind vacancies on some of the 
normally occupied silver sites. The Br_ ions are not involved in the defects 
at all. We will see later in this chapter that Frenkel defects in AgBr are 
responsible for the whole of both black and white and colour photography.

In any crystal of formula MX, a Frenkel defect consists of one interstitial 
atom plus one vacant site in the sub-lattice where that atom would normally 
be found. Because we are simply moving ions around within the crystal we 
do not find that we have a problem with charge balance, as we did with 
Schottky defects. This also means that the relative numbers of vacancies is 
not connected to the formula of the compound. For example, if we have 
Frenkel defects on the anion sub-lattice in CaF2, we can think of just one F~ 
ion being displaced; it is not necessary to displace two ions to form the 
Frenkel defect. However, here we can introduce some jargon. Sometimes the 
term Frenkel defect is reserved for the case when a cation moves to an 
interstitial position, and the term anti-Frenkel defect is used for the case 
where an anion is displaced. In this book we will not discriminate in this way 
and a Frenkel defect may be on either the cation or anion sub-lattice.

Although, Schottky and Frenkel defects do not alter the composition of 
the host structures, they can have profound effects on the usefulness of 
materials. It is, therefore, important to try to gain an idea of the numbers of 
defects present in a normal crystal before we turn to the interesting challenge 
of how to manipulate these defects to produce new and desirable properties. 
This forms the basis of the following sections.

1.3 The equilibrium concentration of Schottky defects in crystals

In order to find out if Schottky defects are present in a crystal it is necessary 
to estimate the energy change that is needed to put the defects into an 
otherwise perfect solid. This takes us into the realm of thermodynamics, 
which gives us information about systems when they are at equilibrium. In 
general, we can say that the first law of thermodynamics tells us that there 
will be an energy cost in introducing the defects and the second law says that 
this energy cost may be recouped via the disorder introduced into the 
crystal. These imprecise concepts can be quantified by using the Gibbs 
energy of a crystal, G, which is written as:

G = H — TS

where H  is the enthalpy, S is the entropy and T  the absolute temperature of 
the crystal. If Schottky defects are going to exist in the crystal, then the
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Gibbs energy must be less than it is in a perfect crystal. However, if the 
introduction of more and more defects causes the Gibbs energy to 
continually fall, then ultimately there is no crystal left. This means that 
the form of the Gibbs energy curve must be like Figure 1.5 if defects are to 
be present at equilibrium. This form of curve turns out to be correct, and we 
find that Schottky defects exist in all crystals at temperatures above 0 K.

In order to determine how many Schottky defects are present in a crystal 
at equilibrium, we need to estimate the position of the minimum on the 
Gibbs energy curve shown in Figure 1.5. We proceed in the following way. 
Introduction of Schottky defects will change the Gibbs energy of the crystal 
by an amount AG , given by

where AH  is the associated change in enthalpy and A S  the change in the 
entropy of the crystal. In more simple terms, AH  is the energy that we must 
expend in forming the defects and A S  is the additional randomness in the 
crystal due to the defects. These two terms correspond to the first law and 
second law contributions that we mentioned above. To find AG , we can try 
to determine the change in the enthalpy AH, and the entropy AS, or both. 
The enthalpy tends to be associated more with nearest neighbours and the 
bonding energy between them. The change in entropy, AS, is also complex, 
and consists of terms due to the vibration of the atoms around the defects 
and terms due to the arrangements of the defects in the crystal. Fortunately, 
this latter quantity, called the configurational entropy, is relatively easy to 
assess using the well-established methods of statistical mechanics, and this 
term is the one which is estimated. With this information the minimum in

Figure 1.5 A schematic diagram showing the variation of the Gibbs energy needed if a defect 
population is to be present in a crystal at equilibrium.
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Gibbs energy must be less than it is in a perfect crystal. However, if the 
introduction of more and more defects causes the Gibbs energy to 
continually fall, then ultimately there is no crystal left. This means that 
the form of the Gibbs energy curve must be like Figure 1.5 if defects are to 
be present at equilibrium. This form of curve turns out to be correct, and we 
find that Schottky defects exist in all crystals at temperatures above 0 K. 

In order to determine how many Schottky defects are present in a crystal 
at equilibrium, we need to estimate the position of the minimum on the 
Gibbs energy curve shown in Figure 1.5. We proceed in the following way. 
Introduction of Schottky defects will change the Gibbs energy of the crystal 
by an amount t1G, given by 

t1G = t1H - Tt1S 

where t1H is the associated change in enthalpy and t1S the change in the 
entropy of the crystal. In more simple terms, t1H is the energy that we must 
expend in forming the defects and t1S is the additional randomness in the 
crystal due to the defects. These two terms correspond to the first law and 
second law contributions that we mentioned above. To find t1G, we can try 
to determine the change in the enthalpy t1H, and the entropy t1S, or both. 
The enthalpy tends to be associated more with nearest neighbours and the 
bonding energy between them. The change in entropy, t1S, is also complex, 
and consists of terms due to the vibration of the atoms around the defects 
and terms due to the arrangements of the defects in the crystal. Fortunately, 
this latter quantity, called the configurational entropy, is relatively easy to 
assess using the well-established methods of statistical mechanics, and this 
term is the one which is estimated. With this information the minimum in 

Gibbs energy, G 

.~G 

Number of defects 

Minimum 

Figure 1.5 A schematic diagram showing the variation of the Gibbs energy needed if a defect 
population is to be present in a crystal at equilibrium. 
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the Gibbs energy curve can be obtained by using standard mathematical 
procedures. The method for a crystal of composition M X  is given in 
Appendix 1.1.

The result is found to be:

( 1 . 1)

where AHS is the enthalpy to form one defect. The units of AH  are thus 
joules per defect and k , Boltzmann’s constant, is in JK -1. Sometimes you 
will find equation (1.1) written in the form:

( 1.2)

In this case AHS is in J mol-1 and is the energy required to form 1 mole of 
Schottky defects. This necessitates replacement of Boltzmann’s constant by 
R, the gas constant, which is equal to kNA where NA is Avogadro’s number, 
6.0225 X 1023mol_1, so that R has units of JK _1mol_1.

It is sometimes useful to make a rough estimate of the fraction of sites in a 
crystal which are vacant due to Schottky disorder rather than compute a 
more accurate figure from equation (1.2). This figure can be obtained by the 
following procedure.

Taking logarithms in equation (1.2)

and as we know that

it is possible to write

hence

and substituting for R a value of 8.3143 JK  ^ o l  1 and removing the 
logarithm term we obtain

(1.3)

where AHS is measured in Jm o F 1.
Remember that this formula only applies to materials with a composition 

MX, as equation (1.2) was the starting point of the analysis.
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Some experimental values for the enthalpy of formation of Schottky 
defects are given in Table 1.1. We will see in chapters 2 and 3 how these 
values can be obtained experimentally. Unfortunately the task is not easy 
and the purity of the crystals studied is of importance. Therefore, there is a 
large scatter of values in the literature. Those reported in Table 1.1 seem to 
be among the most reliable available. It is no coincidence that they are for 
the easily purified alkali halides.

Example LI

Obtain a rough estimate of the fraction of Schottky defects present in a 
crystal at 900 K if the value of AHS is 200 kJ mol“ 1.

For an approximate answer use equation (1.3)

This value shows that the population of point defects is quite low. Even at 
900 K we find that only one or two sites in one million are vacant!

Substituting the values given we find

Table 1.1 The formation enthalpy of Schottky defects in 
some alkali halide compounds of formula MX]

Compound H S ( J )  X К Г 19

LiF
LiCl
LiBr
Lil
NaF
NaCl
NaBr
Nal
KF
KC1
KBr
KI

3.74 
3.39 
2.88 
1.70 
3.87
3.75
2.75
2.34
4.35 
4.06 
3.73 
2.54

į All compounds have the rock salt structure.
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Obtain a rough estimate of the fraction of Schottky defects present in a 
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Substituting the values given we find 
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This value shows that the population of point defects is quite low. Even at 
900 K we find that only one or two sites in one million are vacant! 

Table 1.1 The formation enthalpy of Schottky defects in 
some alkali halide compounds of formula MXt 

Compound 

LiF 
LiCI 
LiBr 
LiI 
NaF 
NaCI 
NaBr 
NaI 
KF 
KCI 
KBr 
KI 

Hs(J) X 10- 19 

3.74 
3.39 
2.88 
1.70 
3.87 
3.75 
2.75 
2.34 
4.35 
4.06 
3.73 
2.54 

t All compounds have the rock salt structure. 
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Example 1.2

Calculate how the fraction of Schottky defects in a crystal of KC1 varies 
with temperature if the value of AHS is 244 kJ mol-1.

To answer this question, we need to compute values of ns/N  from 
equation (1.2).

substituting suitable values of T (in K!) leads to the values given in Table
1.2.

Example 1.3

Calculate the number of Schottky defects in a crystal of KC1 at 800 K.
The fraction of Schottky defects present, nJN, can be estimated as above. 

The problem is to evaluate N. To do this it is necessary to know something 
of the crystal structure of the material in question. In this case, KC1 has the 
rock salt structure. Crystallographic information tells us that the unit cell is 
a cube of side 0.629 nm and in each unit cell we have four K + and four Cl-  
ions. The number of sites of each type is then given by

We can then fill in the details using the data in Table 1.1 to give:

Table 1.2 Schottky defect populations in KC1

Temperature (°С) Temperature (K) nJN

27 300 5.7 χ  КГ22
127 500 1.2 χ  К Г 16
427 700 7.9 χ  К Г10
627 900 8.3 χ  КГ8
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Example 1.2 

Calculate how the fraction of Schottky defects in a crystal of KCI varies 
with temperature if the value of f1Hs is 244 kJ mol-I. 
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equation (1.2). 
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Example 1.3 

Calculate the number of Schottky defects in a crystal of KCI at 800 K. 
The fraction of Schottky defects present, nsf N, can be estimated as above. 

The problem is to evaluate N. To do this it is necessary to know something 
of the crystal structure of the material in question. In this case, KCl has the 
rock salt structure. Crystallographic information tells us that the unit cell is 
a cube of side 0.629 nm and in each unit cell we have four K + and four CI­
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N [ 4 l-3 
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= 1.6 X 1028 m-3 
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Temperature eC) 

27 
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427 
627 

Temperature (K) 
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ns/N 

5.7 X 10-22 

1.2 X 10- 16 

7.9 X 10- 10 

8.3 X 10-8 
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1.4 The equilibrium concentration of Frenkel defects in crystals

The calculation of the number of Frenkel defects in a crystal proceeds along 
lines parallel to those for Schottky defects. We need to find the minimum in 
the Gibbs free energy curve as a function of defect concentration. To do this 
we calculate the configurational entropy of the defects in the system as 
before. However, there is one small difference to take into account. The 
number of interstitial positions that a displaced ion can move to need not be 
the same as the number of positions normally occupied and so it is better to 
make this clear in the calculation. Thus, we suppose that there are N  
normally occupied lattice sites per m3 in the array of ions affected by 
Frenkel defects, and N* available interstitial sites per m3 available for the 
displaced ions to move to. The calculations are set out in detail in Appendix 
1.2. It is found that the number of Frenkel defects, «/, present in a crystal of 
formula M X  at equilibrium is given by:

(1.4)

Values for AHf and Boltzmann’s constant k are in Jmol-1 per defect or

(1.5)

when the values and R , the gas constant, are in Jmol-1.
Some experimental values of AHf  are given in Table 1.3. As with Schottky 

defects, it is not easy to determine these values experimentally and there is a 
large scatter in the values found in the literature. Those given below seem to 
be among the most reliable.

Table 1.3 The formation enthalpy of Frenkel defects in some compounds of formula MX  and 
MX2

Compound X o o Compound

O7oXί-ΓST

AgClf 2.32 CaF,*
SrF2*

4.34
AgBrf 1.81 2.78
/5-AgIf 0.96 BaF2* 3.06

įFrenkel defects on the cation sub-lattice of a rock salt structure compound. 
^Frenkel defects on the anion sub-lattice o f a fluorite structure compound.
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= 1.6 X 1028 X 1.08 X 10-8 
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1.5 Schottky and Frenkel defects: trends and further considerations

Perhaps the most important result is that we find that at all temperatures 
above OK we should expect to find Schottky or Frenkel point defects 
present in all pure crystals. For this reason such defects are also termed 
intrinsic defects. Moreover, these defects will be in thermodynamic 
equilibrium, and so it will not be possible to remove them by annealing or 
other thermal treatments. The actual type of defect found, either Schottky 
or Frenkel, will mainly depend on the value of AH. One would not expect 
this to be the same for these two alternatives, and would anticipate that only 
the defect with the lower value of A H  would be important.

Unfortunately it is not possible to predict, from a knowledge of crystal 
structure, which defect type will be present in any crystal. Sophisticated 
calculations, which we discuss in later chapters, show that there is not much 
difference in the energy required to form either a Schottky or a Frenkel 
defect in many compounds. However, we can say that often rather close- 
packed compounds, such as those with a structure like NaCl, tend to 
contain Schottky defects. The important exceptions are the silver halides, 
which we will consider in more detail later in this chapter. More open 
structures, on the other hand, will be more receptive to the presence of 
Frenkel defects.

Although there is some uncertainty in the experimental values given in 
Tables 1.1 and 1.3 it is tempting to look for trends in the defect formation 
enthalpies. However, when doing this it is important to look only among 
materials which show the same crystal structure type, as a change of crystal 
structure will usually outweigh the chemical effects. As an example, data for 
the rock salt structure alkali halides is shown in Figure 1.6. This reveals that 
more energy is required to form defects as we traverse the systems in the 
direction lAX to K X  and that the energy falls as we pass from MF towards 
Ml. However, the differences are not great and it is necessary to be cautious 
in attributing these trends to any one cause. These factors are best explored 
via calculations, of which we will say more in chapter 11.

Despite the utility of the formulae given in equations (1.1)—(1.5), they 
suffer from a number of limitations which it is useful to collect together 
here.

1. First of all, remember that the formulae derived above apply to 
materials of formula MX. In order to discuss crystals of different 
composition, such as М2Хз, MX2 and so on, it is important to bear in 
mind that different, although similar, formulae will result because the 
configurational entropy term will involve different relative numbers of 
anion, cation and interstitial sites.

2. Only one sort of defect is supposed to be found in a crystal. This is 
usually a good assumption to make, but in some systems it has been
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Figure 1.6 The formation enthalpies of Schottky defects in alkali halide crystals.

found that the sort of defect predominating can change, especially at 
high temperatures. (We will show an example of this in chapter 4.) Close 
to the transition temperature both defect types will be present.

3. The treatment assumes that the defects do not interact. Now this is not a 
very good assumption, because if we move ions around in a crystal we 
would expect electronic interactions to be rather important except when 
the number of defects present is very small. Defect interactions are 
important and it is possible to take such interactions into account in 
more general formulae.

4. The important quantities AH  and A S  are assumed to be temperature 
independent. Once again, this is often quite a good approximation. 
However, remember that the vibrational component of the entropy, 
which has been neglected altogether, will become increasingly important 
at high temperatures.

These three last points show the direction in which the simple theories 
outlined above can be modified to present a more realistic model of defects 
in a crystal. The electronic and other interactions between defects can be 
calculated using a variety of more complex theories, such as the Debye- 
Hückel treatment used for electrolytes. We will return to this in chapter 11. 
Different ways of distributing defects over the available lattice positions in a 
crystal can be envisaged, and ways to estimate the entropy of such distri­
butions can also be sought. This approach can also include more 
sophisticated site exclusion rules, which allow defects to either cluster or 
keep apart from each other. Nevertheless, our formulae are a very good 
starting point for our exploration of the role of defects in solids and do 
apply well when defect concentrations are small and at temperatures which 
are not too high.
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1.6 Case study: the photographic process

1.6.1 Light-sensitive crystals

Photography is one of the most widely used of all information storage 
methods. Perhaps surprisingly, both black and white and colour photo­
graphy are possible only because of the presence of point defects in the 
crystals used. The light-sensitive materials employed in photography are 
silver halides, notably AgBr, which are dispersed in gelatine to form the 
photographic emulsion. In order to ensure that the crystals are free of 
macroscopic defects such as dislocations, which degrade the perfection of the 
photographic images produced, the silver halide crystals are carefully grown 
within the gelatine matrix itself. The crystals formed are usually thin 
triangular or hexagonal plates, varying between 0.01 and 10 μιη in size, and 
in photographic parlance are known as grains.

When the emulsion is exposed to light a latent image is said to form. After 
illumination each grain will either contain a latent image, that is, it will have 
interacted with the light photons, or it will have remained unchanged. The 
film is then put into a developer. Each grain which contains a latent image is 
totally reduced to metallic silver. Each crystallite with no latent image 
remains unchanged. The reactions taking place can be written down 
schematically as:

AgBr —> [AgBr + latent image]

[AgBr + latent image] —► Ag

It has been found that only a few photons, maybe as little as six, are needed 
to form the latent image. As a fully developed crystallite may consist of 109 
silver atoms, we see that the film is a very sensitive light detector. The final 
step in the photographic process is called fixing, in which the unreacted 
silver bromide crystals are removed from the emulsion chemically. These 
steps are shown schematically in Figure 1.7.

1.6.2 The mechanism of latent image formation

Despite the fact that not all details of the photographic process are 
completely understood the overall mechanism for the production of the 
latent image is well known. The halide AgBr, crystallizes in the NaCl 
structure type. Whilst in most crystals with the NaCl structure Schottky 
defects are the major structural point defect type present, it is found that the 
silver halides, including AgBr, favour Frenkel defects. The formation of 
latent images is a multi-stage process, involving the Frenkel defect 
population.

POINT DEFECTS 15 

1.6 Case study: the photographic process 

1.6.1 Light-sensitive crystals 

Photography is one of the most widely used of all information storage 
methods. Perhaps surprisingly, both black and white and colour photo­
graphy are possible only because of the presence of point defects in the 
crystals used. The light-sensitive materials employed in photography are 
silver halides, notably AgBr, which are dispersed in gelatine to form the 
photographic emulsion. In order to ensure that the crystals are free of 
macroscopic defects such as dislocations, which degrade the perfection of the 
photographic images produced, the silver halide crystals are carefully grown 
within the gelatine matrix itself. The crystals formed are usually thin 
triangular or hexagonal plates, varying between 0.01 and 10 11m in size, and 
in photographic parlance are known as grains. 

When the emulsion is exposed to light a latent image is said to form. After 
illumination each grain will either contain a latent image, that is, it will have 
interacted with the light photons, or it will have remained unchanged. The 
film is then put into a developer. Each grain which contains a latent image is 
totally reduced to metallic silver. Each crystallite with no latent image 
remains unchanged. The reactions taking place can be written down 
schematically as: 

AgBr ~ [AgBr + latent image] 

[AgBr + latent image] ~ Ag 

It has been found that only a few photons, maybe as little as six, are needed 
to form the latent image. As a fully developed crystallite may consist of 109 

silver atoms, we see that the film is a very sensitive light detector. The final 
step in the photographic process is called fixing, in which the unreacted 
silver bromide crystals are removed from the emulsion chemically. These 
steps are shown schematically in Figure 1.7. 

1.6.2 The mechanism of latent image formation 
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Figure 1.7 The production of an image in a photographic film, (a) The film emulsion contains 
crystallites of AgBr distributed uniformly in a gelatine layer, (b) Interaction with light 
introduces latent images into some crystallites, shown grey in (c). (d) Development turns 
crystallites containing latent images into silver crystals, shown in black, (e) Fixing removes all 
unreacted AgBr crystals leaving silver crystallites only.

The major steps are believed to be:

1. A light photon interacts with a halogen ion in the AgBr crystal and the 
energy from the photon liberates an electron from this ion. The 
liberated electron is free to move in the lattice and migrates to an 
interstitial silver ion which is part of a Frenkel defect, to form a neutral 
silver atom.

where Agį+ represents a silver interstitial ion which is part of a Frenkel 
defect and Agj is a neutral silver interstitial atom.

(a)

(b)

(c)

(d)

(e)
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Figure 1.7 The production of an image in a photographic film. (a) The film emulsion contains 
crystallites of AgBr distributed uniformly in a gelatine layer. (b) Interaction with light 
introduces latent images into some crystallites, shown grey in (c). (d) Development turns 
crystallites containing latent images into silver crystals, shown in black. (e) Fixing removes all 
unreacted AgBr crystals leaving silver crystallites only. 

The major steps are believed to be: 

1. A light photon interacts with a halogen ion in the AgBr crystal and the 
energy from the photon liberates an electron from this ion. The 
liberated electron is free to move in the lattice and migrates to an 
interstitial silver ion which is part of a Frenkel defect, to form a neutral 
silver atom. 

light photon + Br- ----> e- + Br 

Ag/ + e- -+ Agj 

where Agj + represents a silver interstitial ion which is part of a Frenkel 
defect and Agj is a neutral silver interstitial atom. 
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2. In many instances the above reaction will then take place in the reverse 
direction, and the silver atom will revert to the normal stable state as a 
Frenkel defect. However, the metal atom seems to be stabilized if 
another photon activates a nearby region of the crystal before the 
decomposition can take place. This stabilization may take place in one 
of two ways. It is possible that the interstitial silver atom can trap the 
electron liberated by the second photon to form the unusual Agį~ ion, 
thus:

The silver ion produced in this reaction is then neutralized by 
association with another interstitial silver atom thus:

to produce a cluster of two neutral silver atoms.

The second possibility is that the second electron could interact with an 
interstitial ion to yield a second silver atom which would then diffuse to the 
first silver atom to form an identical cluster of two:

It is only recently that studies of small metal clusters have shown that a 
latent image consists of a minimum of four silver atoms. Remarkably, three 
atoms is not sufficient!

The point which all this leads up to, is that these small clusters of silver 
atoms completely control the chemistry of photography. To repeat the point 
stated earlier, when a photographic film is developed, only those crystallites 
containing a latent image react. The process involves the chemical reduction 
of the halide to metallic silver. So, the chemical action of the developer is 
confined to crystallites which contain a latent image. It becomes apparent that 
the presence of just one small cluster of four silver atoms determines 
whether the crystallite can react with developer or not. The point defects 
that we have recently become acquainted with have quite an importance!

Clearly, successful latent image formation depends on a reasonable 
concentration of Frenkel defects in the halide crystals. The enthalpy of 
formation of a Frenkel defect in AgBr is about 2 x 10~19 J and so we can 
estimate the number of Frenkel defects in a crystal of AgBr at room 
temperature using the formula given in equation (1.4). The ratio /iy/(AW*)1/2 
turns out to be about 10“ 11. This is not a very high population and it seems 
reasonable to wonder whether such a concentration is sufficient to allow 
latent image formation to take place at all. In fact, it is much too small. 
However, research has shown that the surface of a silver halide grain has a
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net negative charge which is balanced by an enhanced number of interstitial 
silver ions located within a few tens of nanometres of the surface. As the 
halide grains are so small, the ratio of surface to bulk is large, so that the 
total population of interstitial silver ions in the grains is much higher than 
the figure given above, which applies to large crystals with relatively small 
surfaces. This factor is of importance in the overall efficiency of the process 
and indeed makes practical photography possible.

1.7 Case study: photochromic glasses

Photochromic glass is another material which is sensitive to light. Although 
many types of photochromic glass have been fabricated, the best known are 
those which darken on exposure to visible or ultraviolet light and regain 
their transparency when the light is removed. Such glasses are widely used in 
sunglasses, sunroofs and for architectural purposes.

The mechanism of the darkening transformation is similar to that 
involved in the photographic process. Photochromic glasses are complex 
materials which usually contain silver halides as the light-sensitive medium. 
The glass for this use would typically be an aluminoborosilicate (Pyrex type) 
material containing about 0.2 wt% of silver bromide or chloride. In 
addition, a small amount of a copper chloride is also added. When the 
glass is first fabricated it is cooled rapidly. Under these conditions the silver 
and copper halides remain dissolved in the glass matrix and the glass 
produced is transparent and does not show any photochromic behaviour at 
all, as shown in Figure 1.8(a) and (b). This glass is transformed into the 
photochromic state by heating under carefully controlled conditions of 
temperature and time, which might be, for example, 550 °С for 30 min 
followed by 650 °С for 30 min. The heat treatment is chosen so that the 
halides crystallize in the glass matrix, as shown in Figure 1.8(c). Care must 
be taken to ensure that the crystals do not become too large and that they do 
not aggregate. A desirable size would be about 10 nm diameter and the 
individual crystallites should be about lOOnm apart.

It is important that the copper is in the monovalent state and 
incorporated into the silver halide crystals as an impurity. Because the 
Cu+ has the same valence as the Ag+, some Cu+ will replace Ag+ in the 
AgX crystal, as shown in Figure 1.8(d). Such a crystal is said to be a solid 
solution of CuX in AgX  and a new sort of defect has been generated in the 
crystal, an impurity defect. In the present case this consists of a Cu+ ion 
occupying an Ag+ site. These mixed crystallites are precipitated in the 
complete absence of light. Following this treatment a finished glass blank 
will look clear because the silver halide grains are so small that they do not 
scatter light.



POINT DEFECTS 19

Figure 1.8 The preparation of photochromic glass, (a) A homogeneous melt o f glass 
containing CuCl and AgCl. (b) A non-photochromic glass blank is cast from the melt, (c) Heat 
treatment transforms the blank into photochromic glass containing crystals o f (Ag,Cu)Cl. (d) 
Schematic illustration of an AgCl crystal containing a Cu+ impurity ion, shown as a black 
circle.

The influence of light causes changes similar to those occurring in a 
photographic emulsion. The photons liberate electrons and these are 
trapped by interstitial silver ions, which exist as Frenkel defects, to form 
specks of metallic silver. Unlike the photographic process, the electrons are 
liberated by the Cu+ ions which are converted to Cu2+ ions in the process.

This process continues until a small speck of silver is created. It is these 
clusters of silver which absorb the light falling on the glass. The absorption 
characteristics of the silver specks depend quite critically upon their size and 
shape. The processes used in producing photochromic glass are manipulated 
so as to produce a wide variety of shapes and sizes of the silver specks to 
produce the uniform darkening of the glass.

In a photographic emulsion the halide atoms produced when electrons are 
released under the influence of light can diffuse away from the silver or react 
with the emulsion and the process becomes irreversible. In the silver halide 
crystals, however, the copper ions remain trapped near to the silver 
particles. This means that the silver particles can release electrons to the 
Cu2+ ions when the light is turned off, making the whole process reversible.

id)
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The influence of light causes changes similar to those occurring in a 
photographic emulsion. The photons liberate electrons and these are 
trapped by interstitial silver ions, which exist as Frenkel defects, to form 
specks of metallic silver. Unlike the photographic process, the electrons are 
liberated by the Cu + ions which are converted to Cu2 + ions in the process. 

Cu+ + (light) --+ Cu2+ + e-

e- + Ag j + --+ Ag j 

Ag j + Ag j --+ 2Ag j 

This process continues until a small speck of silver is created. It is these 
clusters of silver which absorb the light falling on the glass. The absorption 
characteristics of the silver specks depend quite critically upon their size and 
shape. The processes used in producing photochromic glass are manipulated 
so as to produce a wide variety of shapes and sizes of the silver specks to 
produce the uniform darkening of the glass. 

In a photographic emulsion the halide atoms produced when electrons are 
released under the influence of light can diffuse away from the silver or react 
with the emulsion and the process becomes irreversible. In the silver halide 
crystals, however, the copper ions remain trapped near to the silver 
particles. This means that the silver particles can release electrons to the 
Cu2 + ions when the light is turned off, making the whole process reversible. 
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This bleaching process is the reverse of the darkening process. In fact, the 
darkening and bleaching reactions are taking place simultaneously under 
normal circumstances, so that we can speak of dynamic equilibrium holding. 
When the amount of incident light is high we have a large number of silver 
specks present in the glass and hence a high degree of darkening. When the 
light intensity falls the number of silver particles decreases and the glass 
becomes clear again.

As we have seen, photochromic behaviour depends critically upon the 
interaction of two defects types with light, Frenkel defects in the silver halide 
together with impurity Cu + 1 point defects in the silver halide matrix. It is 
these two defects together which constitute the photochromic phase. For 
commercially useful materials, the rate of the combined reaction is most 
important. If the darkening takes place too slowly, or if the subsequent 
fading of the colour is too slow, the materials will not be useful. The 
presence of the copper halide is essential in ensuring that the kinetics of the 
reaction are appropriate and that the process is reversible.

I. 8 Supplementary reading

Frenkel and Schottky defect equilibrium is treated in a number of 
textbooks, among which are:
W.D. Kingery, H.K. Bowen and D.R. Uhlmann, Introduction to Ceramics, 2nd Edition, Wiley- 

Interscience, New York (1976).
N.N. Greenwood, Ionic Crystals, Lattice Defects and Non~stoichiometry, Butterworths, London 

(1968).
R.A. Swalin, Thermodynamics of Solids, 2nd Edition, Wiley-Interscience, New York (1972). 

A very clear account, together with self-assessment questions, is given by: 
R.F. Davies, J. Ed. Mod. Mat. Sei. Eng. 2, 837 (1980).

Two excellent review articles, which also cover material relevant to chapters 
2 and 3 are:
J. Corish and P.W.M. Jacobs, in Surface and Defect Properties of Solids, Voi. 2, eds. M.W. 

Roberts and J.M. Thomas, The Chemical Society, London (1973).
J. Corish, P.W.M. Jacobs and S. Radhakrishna, in Surface and Defect Properties of Solids, Voi. 

6, eds. M.W. Roberts and J.M. Thomas, The Chemical Society, London (1977).

The photographic process is well documented, and advertising literature 
often contains much useful information. The classic account of latent image 
formation is:
R.W. Gurney and N. F. Mott, Proc. Roy. Soc. Lond., Sect. A 164, 485 (1938).

The following are detailed reviews, together with many literature references:
F.C. Brown, in Treatise on Solid State Chemistry, Voi. 4, Reactivity of Solids, ed. N.B. Hannay, 

Plenum, New York (1976).
J.F. Hamilton, Adv. Phys. 37, 359 (1988).
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Brief but clear accounts of the photographic process and photochromic 
glasses are given by:
K. Nassau, The Physics and Chemistry of Colour, Wiley-Interscience, New York (1983).

The processes occurring in photochromic glasses are described in:
D.M. Trotter, Sci. Am. April, 36 (1991).

Detailed information on photochromic and other glass, together with 
comprehensive bibliographies, are given in:
D.C. Boyd and D.A. Thompson, ‘Glass’, in Encyclopaedia of Chemical Technology, Voi. 11, 3rd 

Edition, Wiley, New York (1980), 807-880.
R.J. Araujo and N.F. Borrelli, in Optical Properties of Glass, eds. D.R. Uhlmann and N.J. 

Kreidl, Academic Press (1990).

Appendix 1.1
The equilibrium concentration of Schottky defects in crystals

The usual way to tackle this is to start by considering the Gibbs energy of a 
crystal, G, which is written as

where H  is the enthalpy, S is the entropy and T is the absolute temperature 
of the crystal. If we introduce Schottky defects, we introduce a change in the 
Gibbs energy of the crystal by an amount AG , given by

where AH  is the associated change in enthalpy and A S  the change in the 
entropy of the crystal. In a crystal of overall composition MX , suppose ns is 
the number of Schottky defects per m3 in the crystal at T K, that is, we have 
ns vacant cation sites and ns vacant anion sites present. In a crystal of this 
composition there are N  possible cation sites and N  possible anion sites per 
m3. We can determine the entropy change, AS, in this system by using the 
Boltzmann equation:

where S  is the entropy of a system in which W is the number of ways of 
distributing n defects over N  sites at random and k is Boltzmann’s constant. 
Probability theory shows that W is given by the formula

where the symbol TV!, called factorial TV, is mathematical shorthand for the 
expression
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D.M. Trotter, Sci. Am. April, 36 (1991). 
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R.J. Araujo and N.F. Borrelli, in Optical Properties of Glass, eds. D.R. Uhlmann and N.J. 
Kreidl, Academic Press (1990). 

Appendix 1.1 
The equilibrium concentration of Schottky defects in crystals 

The usual way to tackle this is to start by considering the Gibbs energy of a 
crystal, G, which is written as 

G=H- TS 

where H is the enthalpy, S is the entropy and T is the absolute temperature 
of the crystal. If we introduce Schottky defects, we introduce a change in the 
Gibbs energy of the crystal by an amount !::l.G, given by 

!::l.G=!::l.H- T!::l.S 

where !::l.H is the associated change in enthalpy and !::l.S the change in the 
entropy of the crystal. In a crystal of overall composition MX, suppose ns is 
the number of Schottky defects per m3 in the crystal at TK, that is, we have 
ns vacant cation sites and ns vacant anion sites present. In a crystal of this 
composition there are N possible cation sites and N possible anion sites per 
m3. We can determine the entropy change, !::l.S, in this system by using the 
Boltzmann equation: 

S= klnW 

where S is the entropy of a system in which W is the number of ways of 
distributing n defects over N sites at random and k is Boltzmann's constant. 
Probability theory shows that W is given by the formula 

W=~ 
(N - n)!n! 

where the symbol N!, called factorial N, is mathematical shorthand for the 
expression 
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Returning to our case, the number of ways that we can distribute the ns 
cation and anion vacancies over the available sites in the crystal will be given 
by the expression

for vacancies on cation sites, and

for vacancies on anion sites. For a crystal of stoichiometry M X

The total number of ways of distributing these defects, W, is given by the 
product of wc and wa, hence

Therefore the change in configurational entropy caused by introducing these 
defects is

i.e.

Now this expression must be simplified somewhat to be of use. We need to 
eliminate the factorials. This is usually done by employing the approxima­
tion

which is referred to as Stirling’s approximation. In fact, this last 
approximation is not all that good and is several per cent in error even 
for values of N  as large as IO10. The correct expression for Stirling’s 
approximation is

which is accurate even for very low values of N. Nevertheless, in order to 
continue without using excessively cumbersome mathematical expressions
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Nx (N-I) X (N-2) ... 1 

Returning to our case, the number of ways that we can distribute the ns 
cation and anion vacancies over the available sites in the crystal will be given 
by the expression 

N! 
We = (N - ns)!ns! 

for vacancies on cation sites, and 

N! 
Wa (N - ns .ns. = )' , 

for vacancies on anion sites. For a crystal of stoichiometry MX 

We = Wa 

The total number of ways of distributing these defects, W, is given by the 
product of We and Wa, hence 

W= WeWa = w2 

Therefore the change in configurational entropy caused by introducing these 
defects is 

~s = kln(w2) = 2klnw 

l.e. 

~s = 2kln [(N -~s)!ns!] 
Now this expression must be simplified somewhat to be of use. We need to 
eliminate the factorials. This is usually done by employing the approxima­
tion 

InN! ~ NlnN - N 

which is referred to as Stirling's approximation. In fact, this last 
approximation is not all that good and is several per cent in error even 
for values of N as large as IOIO. The correct expression for Stirling's 
approximation is 

I 
InN! ~ NlnN - N + 21n (27rN) 

which is accurate even for very low values of N. Nevertheless, in order to 
continue without using excessively cumbersome mathematical expressions 



we revert to the simpler formula. Substituting, we ultimately obtain

which is (at last!) in a form that we can use.
We make no attempt to calculate the enthalpy change, but merely label 

the enthalpy needed to form a Schottky defect, AHS. To form ns pairs we 
need a total enthalpy input of ns AHS. The values for A S  and AHS are 
substituted into the Gibbs equation to give

In general, the energy increase due to the AHS term will be offset by the 
energy decrease due to the - A S  term. At equilibrium AG will be equal to 
zero and, moreover, the minimum in the AG versus ns curve is given by

Remembering that N lnN  is constant, so its differential is zero and the 
differential of lnx is l/x  and of x In x is 1 +lnx, we find on differentiating

l.e.

l.e.

hence:

Rearranging:

or, if N  is considered to be very much greater than ns,
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we revert to the simpler formula. Substituting, we ultimately obtain 

tlS = 2k{NlnN - (N - ns) In(N - ns) - ns Inns} 

which is (at last!) in a form that we can use. 
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We make no attempt to calculate the enthalpy change, but merely label 
the enthalpy needed to form a Schottky defect, tlHs. To form ns pairs we 
need a total enthalpy input of ns tlHs. The values for tlS and tlHs are 
substituted into the Gibbs equation to give 

tlG = nstlHs - 2kT{NlnN - (N - ns) In(N - ns) - ns Inns} 

In general, the energy increase due to the tlHs term will be offset by the 
energy decrease due to the -tlS term. At equilibrium tlG will be equal to 
zero and, moreover, the minimum in the tlG versus ns curve is given by 

( dtlG) = 0 
dns T 

i.e. 

( dtlG) d -d- =-d {ns tlHs-2kT[NlnN-(N- ns)ln(N- ns)-nslnns]}=O 
ns T ns 

Remembering that Nln N is constant, so its differential is zero and the 
differential of In x is l/x and of x In x is 1 + In x, we find on differentiating 

d 
tlHs - 2kT -d [NlnN - (N - ns) In (N - ns) - nslnnsJ = 0 

ns 

I.e. 

tlHs - 2kT In (N - ns) + -Inns - - = 0 [ (N - ns) ns] 
(N - ns) ns 

hence: 

tlHs = 2kTln [(N ~ ns)] 

Rearranging: 

ns = (N - ns)e-6.Hs/2kT 

or, if N is considered to be very much greater than ns, 

ns :::::; Ne- 6.Hs /2kT 
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Appendix 1.2
The equilibrium concentration of Frenkel defects in crystals

The calculation of the number of Frenkel defects in a crystal proceeds along 
lines parallel to those for Schottky defects. Suppose there are N  lattice sites 
per m3 in the array of atoms affected by Frenkel defects, and N* available 
interstitial sites. If rif ions from the lattice move into interstitial sites, each 
needing an enthalpy Δ #/, the total enthalpy change is given by nf  Δ#/. As 
before, we turn to an assessment of the configurational entropy of these 
vacancies and interstitial atoms in order to proceed further.

We can write down the number of ways of distributing the vacancies that 
have been created over the available positions in the atom array affected by 
Frenkel defects as

where we have rif vacancies and a possible total of N  positions for the 
location of the vacancy. Similarly, for the distribution of the interstitial 
atoms we can write

where we have «/interstitials distributed over N* sites. Proceeding in exactly 
the same way as for Schottky defects, we can write the total number of ways 
of arranging the vacancies and interstitials as W, where

The change in configurational entropy, A S , due to this distribution will be 
given by

Hence

Once again we use Stirling’s theorem to put this into a more useful format 
for our needs. This procedure ultimately yields the cumbersome expression

Note that if we make N* and N  equal to each other we arrive at the 
expression for Schottky defects. Proceeding as before, the free energy 
change, AGß to form the defects, is given by
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Appendix 1.2 
The equilibrium concentration of Frenkel defects in crystals 

The calculation of the number of Frenkel defects in a crystal proceeds along 
lines parallel to those for Schottky defects. Suppose there are N lattice sites 
per m3 in the array of atoms affected by Frenkel defects, and N* available 
interstitial sites. If nJ ions from the lattice move into interstitial sites, each 
needing an enthalpy !:1HJ, the total enthalpy change is given by nJ !:1HJ. As 
before, we turn to an assessment of the configurational entropy of these 
vacancies and interstitial atoms in order to proceed further. 

We can write down the number of ways of distributing the vacancies that 
have been created over the available positions in the atom array affected by 
Frenkel defects as 

N! 
Wv = (N - nf)!ni 

where we have nJ vacancies and a possible total of N positions for the 
location of the vacancy. Similarly, for the distribution of the interstitial 
atoms we can write 

N*! 
Wi = (N* - nf)!ni 

where we have nJinterstitials distributed over N* sites. Proceeding in exactly 
the same way as for Schottky defects, we can write the total number of ways 
of arranging the vacancies and interstitials as W, where 

W= WvWi 

The change in configurational entropy, !:1S, due to this distribution will be 
given by 

!:1S = klnW = kin WvWi 

Hence 

!:1S = k{ In [(N .!::J)!ni] + In [~(N-*-':-~J~)!n-j!] } 
Once again we use Stirling's theorem to put this into a more useful format 
for our needs. This procedure ultimately yields the cumbersome expression 

!1S = k[NlnN + N* InN* - (N - nf) In (N - nf) - (N* - nf) In(N* - nf) - 2nflnnfl 

Note that if we make N* and N equal to each other we arrive at the 
expression for Schottky defects. Proceeding as before, the free energy 
change, !:1GJ, to form the defects, is given by 
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Setting

at equilibrium and differentiating, remembering that N In N  and N* In N* 
are constants and so are, therefore, eliminated, we arrive at an expression 
similar to the Schottky expression

l.e.

This expression can be further simplified if we make yet another ap­
proximation, and suppose the number of Frenkel defects, is a lot less 
than either the number of normal positions N  or the number of interstitial 
positions available N*. In this case we can write the approximate expression

POINT DEFECTS 25 

t1Gf= nf':':l.Hf- kT[NlnN - N* InN* - (N - nf)ln (N - nf) 

- (N* - nj) In (N* - nj) - 2njlnnj] 

Setting 

(
dt1Gf ) = 0 

dnj T 

at equilibrium and differentiating, remembering that N In Nand N* In N* 
are constants and so are, therefore, eliminated, we arrive at an expression 
similar to the Schottky expression 

t1Hj = kTin [(N - nj)n)N* - nj) 1 
I.e. 

n} = (N - nj) (N* - nj)e~t!.Hf/kT 

This expression can be further simplified if we make yet another ap­
proximation, and suppose the number of Frenkel defects, nj, is a lot less 
than either the number of normal positions N or the number of interstitial 
positions available N*. In this case we can write the approximate expression 

nj:::::: (NN*)1 /2 e~t!.Hf/2kT 



2 Atomic mobility: diffusion

2.1 Introduction

The idea of diffusion in a gas or a liquid is well known. If some heavily 
perfumed flowers are placed in a room the scent is soon noticeable 
everywhere in the room due to the diffusion of molecules from the flowers 
through the gas molecules of the air. The diffusion process is tending to 
make the concentration of the ‘impurity’ perfume equal throughout the 
volume available. The concentration of the diffusing molecules is greatest at 
the flowers and least in the furthest corners of the room. This is termed a 
concentration gradient and the diffusion is due to the existence of this 
concentration gradient. Similarly, if a drop of ink falls into a beaker of 
water the colour soon spreads out due to the diffusion of the ink particles 
through the molecules of water. This is also due to a concentration gradient, 
this time of the ink particles.

Diffusion also takes place in solids, although at a much slower rate than 
in gases or liquids. However, it remains very important. A piece of clean 
iron placed outside for several days will soon start to turn ‘rusty’ and 
corrode. This is a chemical reaction in which the iron surface reacts with the 
oxygen in the air to form iron oxide. If we think about this we see that the 
reaction will stop as soon as a complete film of iron oxide covers the surface 
unless somehow atoms of iron or atoms of oxygen can traverse the film by 
solid-state diffusion to allow further reactions to occur. Unfortunately, solid- 
state diffusion is quite easy in iron oxide and so corrosion continues quite 
rapidly at room temperature. The concentration gradient responsible is set 
up by the high concentration of oxygen on one side of the oxide film and by 
the high concentration of iron on the other.

Unlike iron, aluminium metal does not appear to corrode in air. Like 
iron, initial reaction is the same and a thin film of aluminium oxide forms 
rapidly on the surface of the clean metal. However, diffusion of aluminium 
or oxygen across this film is almost impossible and so aluminium appears to 
be impervious to corrosion under normal conditions.

These differences are extremely important. A great deal of money is spent 
on trying to prevent iron from rusting, usually with only partial success. It 
therefore becomes important to ask why these differences should exist. 
Suppose that you try to think of one atom or ion trying to diffuse through a 
solid. If all of the atoms in the solid are in their correct lattice sites then the
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movement can only take place if the diffusing atom uses interstitial 
positions. That is, the crystals must be able to incorporate some interstitial 
defects into the structure. It will be easier if there are vacancies present, 
because the diffusing atoms can then make use of these empty sites to move 
across the crystal. Thus, we are becoming aware of the fact that solid-state 
diffusion will be easiest in crystals with large numbers of point defects and 
most difficult in those with very few point defects.

There are two aspects to solid-state diffusion that need to be described. 
First, there is the recognition that it is atoms or ions that are moving, that is, 
we have to think about diffusion at a microscopic or atomic level. However, 
the effects that can be measured, like the spread of perfume or ink, involve a 
scale much greater than atoms, a macroscopic level of understanding. The 
plan adopted in this book has been to discuss the experimentally observable 
macroscopic effects of diffusion in this chapter. Although we take for 
granted that atoms move through the solid by one mechanism or another, 
such mechanistic considerations are put to one side. The following chapter is 
then reserved exclusively for an interpretation of the experimental results in 
terms of atom movements. It is here that the importance of point defect 
populations will be fully appreciated.

Before we can start on this task, it is necessary to define some of the terms 
common to the subject. Atomic movement through the crystalline lattice is 
called volume, lattice or bulk diffusion. However, atoms can also diffuse 
along surfaces or between crystallites. As the regular crystal geometry is 
disrupted in these regions, atom movement is often much faster than for 
volume diffusion. Diffusion by way of these pathways is often referred to as 
short-circuit diffusion.

The speed at which atoms or ions move through a solid is usually 
expressed in terms of a diffusion coefficient, which has units of m2s_1. Not 
surprisingly, the measured diffusion coefficient of an atom will depend upon 
a number of factors. The most important of these are: (a) the temperature at 
which the diffusion occurs; (b) the geometry of the crystal structure through 
which the atom must move; (c) the number of defects present in the crystal; 
and (d) whether a chemical reaction takes place as a result of the diffusion.

Because of this it is not correct to talk about the diffusion coefficient for 
an atom but more accurate to define a number of diffusion coefficients, each 
correct under certain circumstances. The various diffusion coefficients 
discussed in this chapter are given in Table 2.1. The terms themselves will be 
explained at appropriate points in the text.
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Table 2.1 Symbols and terms for diffusion coefficients

Symbol Meaning Applicability

D Self-diffusion coefficient Random diffusion processes in the 
absence of a concentration gradient

D* Tracer diffusion coefficient Diffusion when concentration 
gradients are small

D Chemical diffusion coefficient Diffusion in a concentration gradient
Chemical diffusion coefficient Diffusion coefficient for the reaction 

between A and В
d a Interdiffusion coefficient Diffusion of component A in a 

chemical diffusion process

2.2 Self-diffusion and tracer diffusion

2.2.1 The determination of tracer diffusion coefficients

When atoms in a pure crystal diffuse under no concentration gradient or 
other driving force, the process is called self-diffusion. In such cases, the 
atomic movements are random, with motion in one direction just as likely as 
another and the relevant diffusion coefficient is called the self-diffusion 
coefficient and is given the symbol D.

It is by no means easy, strictly speaking, to measure the self-diffusion 
coefficient of an atom because it is not possible to keep track of the 
movements of one atom in a crystal composed of many identical atoms. 
However, it is possible to measure something which is a very good 
approximation to the self-diffusion coefficient, if some of the atoms can be 
uniquely labelled and their movement tracked. In this case the diffusion 
coefficient that is measured is called the tracer diffusion coefficient, written 
D*.

There are a number of experimental methods which allow tracer diffusion 
coefficients to be determined. One common technique uses radioactivity as a 
means of following the movement of the diffusing atoms. One face of a 
single crystal is coated with a thin radioactive layer of the same substance. 
This layer contains the tracer atoms. Another slice of crystal is placed on top 
of the coated crystal, and the sandwich, called a diffusion couple, is then 
heated at a constant temperature for a known period of time. After this 
treatment, the couple is cut into slices and the radioactivity in each slice 
measured. This allows the distance moved by the tracer atoms to be 
determined.

In this experiment there will be a concentration gradient, because the 
concentration of the radioactive isotopes in the coating will be different to 
the concentration of radioactive isotopes, if any, in the original crystal 
pieces. This is why the term tracer diffusion coefficient is used. However, if



ATOMI C MOBILITY:  D I F F U S I O N 29

the layer of tracer atoms is very thin, the concentration gradient will be 
small and will rapidly become smaller as diffusion takes place and in these 
circumstances Z>*, the tracer diffusion coefficient, will be very similar to the 
self-diffusion coefficient, D.

As an example, to measure the tracer diffusion coefficient of Mg in MgO, 
which crystallizes with the rock salt structure, a thin layer of radioactive Mg 
is evaporated onto the surface of a carefully polished, single crystal of MgO. 
This layer is oxidized to MgO by exposing the layers to oxygen gas, after 
which another carefully polished single crystal slice of MgO is placed on top 
to form a diffusion couple, as shown in Figure 2.1.

The crystal sandwich is heated for a known time at the temperature for 
which the diffusion coefficient is required. The whole slab is then carefully 
sliced parallel to the original interface containing the radioactive MgO layer 
and the radioactivity of each slice, which is a measure of the concentration 
of radioactive Mg in each section, is determined. A graph of concentration 
of the radioactive component is then plotted against the distance from the 
interface to give a diffusion profile, or concentration profile. The typical form 
of such profiles is shown in Figure 2.2.

In order to obtain the diffusion coefficient from such profiles, we use a set 
of equations called Fick’s laws. These can be applied to a wide range of 
diffusion problems, including the one to be solved here. For the experiment 
described, we need to use Fick’s second law which relates the change in 
concentration of the diffusing tracer atoms with time to the diffusion 
coefficient. The experiment described yields information about diffusion in 
one direction only, perpendicular to the original interface, and so we can use 
a one-dimensional form of the law. Additionally, if the tracer diffusion 
coefficient, D*, is assumed to be independent of the concentration of the 
radioactive ions, the equation becomes even simpler, and can be written as

dc 
d t D*d2c

dx2 (2.1)

where c is the concentration of the diffusing radioactive ions at a distance x 
from the original interface after time t has elapsed.

(a ) Cb)

Figure 2.1 A reaction couple used for diffusion experiments. The slabs are carefully polished 
and oriented slices o f MgO. The central dark strip in (a) represents a very thin layer of MgO 
containing radioactive Mg atoms. After the diffusion experiment the radioactive Mg has moved 
away from the original plane, as in (b).
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Figure 2.1 A reaction couple used for diffusion experiments. The slabs are carefully polished 
and oriented slices of MgO. The central dark strip in (a) represents a very thin layer of MgO 
containing radioactive Mg atoms. After the diffusion experiment the radioactive Mg has moved 
away from the original plane, as in (b). 
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Figure 2.2 Schematic illustration of typical diffusion profiles, which are plots of the 
concentration of the diffusing species, c, against distance, x, from the original interface. The 
three curves (a), (b) and (c) refer to three different heating times at the same temperature, 
(a) being the shortest and (c) the longest.

This equation has to be solved for the experimental arrangement 
illustrated in Figure 2.1. The answer is found to bef

(2.2)

where c is the concentration of the diffusing species at a distance of x from 
the original interface after time t has elapsed, D* is the tracer diffusion 
coefficient and c0 is the initial concentration on the surface. A value for the 
tracer diffusion coefficient is obtained by taking logarithms of both sides of 
this equation

(Different experimental arrangements will result in different solutions to equation (2.1). 
Fortunately, the appropriate solutions for most geometric and chemical situations o f interest 
have long been derived and are to be found in specialist books on diffusion.

(a) (b)

(c)

30 PRINCIPLES AND APPLICATIONS OF CHEMICAL DEFECTS 

(a) concentration 
(b) 

concentration 

distance distance 

concentration 
(c) 

distance 

Figure 2.2 Schematic illustration of typical diffusion profiles, which are plots of the 
concentration of the diffusing species, c, against distance, x, from the original interface. The 
three curves (a), (b) and (c) refer to three different heating times at the same temperature, 
(a) being the shortest and (c) the longest. 

This equation has to be solved for the experimental arrangement 
illustrated in Figure 2.1 . The answer is found to bet 

Co [x2 ] c- exp ---
- 2(7TD*t)1 4D*t 

(2.2) 

where c is the concentration of the diffusing species at a distance of x from 
the original interface after time t has elapsed, D* is the tracer diffusion 
coefficient and Co is the initial concentration on the surface. A value for the 
tracer diffusion coefficient is obtained by taking logarithms of both sides of 
this equation 

tDifferent experimental arrangements will result in different solutions to equation (2.1). 
Fortunately, the appropriate solutions for most geometric and chemical situations of interest 
have long been derived and are to be found in specialist books on diffusion. 
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This has the form

and so a plot of In c versus x2 will have a gradient of —1/4D*t as shown in 
Figure 2.3. A measurement of the gradient gives a value for the tracer 
diffusion coefficient at the temperature at which the diffusion couple was 
heated.

It is clear that the experimental procedure must be carried out with care. 
The crystals must be carefully polished and cleaned before the experiment, 
and the slices taken after the experiment must be exactly parallel to the 
surface upon which the radioactive layer was deposited. This allows us to 
obtain true values of the concentration of the radioactive species as a 
function of penetration. If we need the diffusion coefficient over a variety of 
temperatures, as is usually the case, the experiments must be repeated.

2.2.2 Temperature variation of diffusion coefficients

Both tracer and self-diffusion coefficients are usually found to vary 
considerably with temperature. This variation can often be expressed in 
terms of the Arrhenius equation:

Figure 2.3 A straight line graph of In c versus x2, the slope of which can be used to determine 
the numerical value of the tracer diffusion coefficient, D*.

This has the form 
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Inc = constant - 4D* t 
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obtain true values of the concentration of the radioactive species as a 
function of penetration. If we need the diffusion coefficient over a variety of 
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2.2.2 Temperature variation of diffusion coefficients 

Both tracer and self-diffusion coefficients are usually found to vary 
considerably with temperature. This variation can often be expressed in 
terms of the Arrhenius equation: 
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Figure 2.3 A straight line graph of In c versus x2, the slope of which can be used to determine 
the numerical value of the tracer diffusion coefficient, D'. 
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named after the Swedish chemist Svante Arrhenius, who formulated this 
equation to explain kinetic processes in chemical reactions. In this equation 
R is the gas constant, T is the temperature at which the value of D was 
measured and D0 is a constant term referred to as the pre-exponential factor 
or frequency factor. The term E is called the activation energy of diffusion. It 
is the energy that is needed to displace a diffusing atom from one stable 
position in the solid to another.

Taking logarithms of both sides of this equation gives

If a graph of InD versus 1/7" is drawn, the activation energy can be 
determined from the gradient of the plot, as shown in Figure 2.4. Such 
graphs are known as Arrhenius plots. Some experimental data, plotted in this 
way, are presented in Figure 2.5.

Some numerical values of diffusion coefficients will be found in Table 2.2. 
These data allow trends in the way that diffusion coefficients vary between 
one compound and another to be picked out. However, because the 
literature values vary widely this must be done with a certain amount of 
caution. Despite this qualification we see that structure has a dominant 
effect. In the metals a change of structure from face-centred cubic (fee) to 
body-centred cubic (bcc) increases the pre-exponential factor and decreases 
the activation energy. This point is well illustrated in the data for iron.

When the rock salt structure halides and oxides are considered, the 
activation energy for diffusion of both cations and anions are rather similar. 
This is surprising as anions are generally regarded as being much larger than 
cations. Other factors of importance will become apparent when we 
consider mechanisms of diffusion in the following chapter.

Figure 2.4 An Arrhenius plot of In D versus 1/Γ, used to determine the activation energy for a 
diffusion process. The intercept of the line at 1 /Т  = 0 yields a value for In D0 and the gradient 
yields a value for the activation energy of diffusion.
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Figure 2.4 An Arrhenius plot ofln D versus1lT, used to determine the activation energy for a 
diffusion process. The intercept of the line at liT = 0 yields a value for In Do and the gradient 
yields a value for the activation energy of diffusion. 
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Figure 2.5 Arrhenius plots for diffusion in some common oxides. The j^-axis scale is 
logarithmic, so that values o f D are plotted directly against 1 /  T. The slope of these graphs yields 
the activation energy of diffusion.
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Figure 2.5 Arrhenius plots for diffusion in some common oxides. The y-axis scale is 

logarithmic, so that values of D are plotted directly against liT. The slope of these graphs yields 

the activation energy of diffusion. 
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Table 2.2 Some representative values for self-diffusion coefficients!

Atom Matrix A )(m 2s *) E (kJ mol *)

Metals
Cu Cu 2.0 X  10“5 197
Fe Fe (fee) 1.0 X  10"3 201
Fe Fe (bcc) 0.5 53
Na Na 0.16 42

Halides with the rock salt structure
N a + NaCl 8.4 X  10-4 189
СГ NaCl 0.167 245
K + KC1 0.5480 256
СГ KC1 1.3 X  10“2 231

Oxides with the rock salt structure
Mg2 + MgO 2.5 X  10“5 330
O2- MgO 4.3 X  10“9 343
Ni2 + NiO 4.8 X  10'6 254
O2" NiO 6.2 X  10~8 241

fNote: literature values for self-diffusion coefficients vary widely, indicating the difficulty of 
making reliable measurements. The values here are meant to be representative only.

2.2.3 The effect of impurities

Not all Arrhenius plots are as straightforward as those shown in Figures 2.4 
and 2.5. One common form of the graph has two straight line parts, but with 
differing slopes as shown in Figure 2.6. The point where the two straight 
lines intersect is called a ‘knee’. If a number of different crystals of the same 
compound are studied it is often found that the position of the knee varies 
from one crystal to another. The region corresponding to diffusion at lower 
temperatures, to the right of the knee, has a smaller activation energy than 
the region to the left, which normally corresponds to high temperature 
experiments. The form of the lower temperature region is associated with 
the impurity content in the crystal whereas the high temperature part reflects 
the pure material itself. The exact number of impurities in crystals is hard to 
control and any variation will change the position of the knee. In Figure 2.6, 
for example, crystal 1 would have a higher impurity concentration than 
crystal 2. The two parts of the graph are also known as the intrinsic region 
and the impurity or extrinsic region, respectively. The effect is explained in 
the following chapter.

2.2.4 The penetration depth
It is quite useful to gain some idea of how far a tracer will diffuse into a solid 
during a diffusion experiment. This is of considerable practical importance. 
The electronic properties of integrated circuits are created by the careful
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Figure 2.6 A frequently encountered form of an Arrhenius plot. The region at higher 
temperatures is called the intrinsic region, and does not vary greatly from crystal to crystal. The 
lower temperature curves can occur in a variety o f positions, dependent upon the impurity 
content o f the crystals. It is thus referred to as the impurity region. In the example shown, 
crystal 1 would have a higher impurity content than crystal 2 .

diffusion of selected dopants into single crystals of very pure silicon. Many 
metallic machine components are hardened by the diffusion of carbon or 
nitrogen from the surface into the bulk. In both cases, it is necessary to 
know the depth to which the diffusing atoms will penetrate.

Now if we think of several single atoms diffusing by a more or less 
random series of jumps, it is clear that some will penetrate further into the 
solid than others. Because of this there is no fixed inner boundary to which 
the tracers diffuse which is why there is no sharp cut-off shown in Figure 
2.2. However, it is possible to get an idea of the sort of distances over which 
the diffusion is appreciable after a certain reaction time in the following 
way.

In the solution to the diffusion equation (2.2) we see the term x2/4D*t. 
This is used to obtain the answer. Generally a quick estimate of the 
penetration depth, xP, which is the depth where an appreciable change in the 
concentration of the tracer can be said to have occurred after a diffusion 
time t, is obtained by equating xP2 to D*t.

In general, this approach is used whenever an estimate is required 
irrespective of the type of diffusion coefficient available. In chemical 
diffusion, treated in the following section, we would, therefore, utilize D 
rather than D*. In the following chapter we shall gain a more precise idea of 
the relationship between the penetration depth and the concentration of the 
diffusing species in the sample.
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diffusion of selected dopants into single crystals of very pure silicon. Many 
metallic machine components are hardened by the diffusion of carbon or 
nitrogen from the surface into the bulk. In both cases, it is necessary to 
know the depth to which the diffusing atoms will penetrate. 

Now if we think of several single atoms diffusing by a more or less 
random series of jumps, it is clear that some will penetrate further into the 
solid than others. Because of this there is no fixed inner boundary to which 
the tracers diffuse which is why there is no sharp cut-off shown in Figure 
2.2. However, it is possible to get an idea of the sort of distances over which 
the diffusion is appreciable after a certain reaction time in the following 
way. 

In the solution to the diffusion equation (2.2) we see the term x2 j4D* t. 
This is used to obtain the answer. Generally a quick estimate of the 
penetration depth, Xp, which is the depth where an appreciable change in the 
concentration of the tracer can be said to have occurred after a diffusion 
time t, is obtained by equating xl to D*t. 

Xp = (D*t)1/2 

In general, this approach is used whenever an estimate is required 
irrespective of the type of diffusion coefficient available. In chemical 
diffusion, treated in the following section, we would, therefore, utilize jj 
rather than D*. In the following chapter we shall gain a more precise idea of 
the relationship between the penetration depth and the concentration of the 
diffusing species in the sample. 
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Example 2.1

The diffusion coefficient of Ni2+ tracers in NiO is 10~15m2s_1 at 1100°С. 
Estimate the penetration depth of the Ni2+ ions into a crystal of NiO after 
heating for 1 h at 1100 °С.

The penetration depth is given by

2.3 Chemical diffusion

2.3.1 Chemical diffusion coefficients

In the previous section we discussed diffusion in the case where changes in 
concentration of the diffusing species were unimportant. In many systems 
this is not true, and the measured diffusion coefficient is found to depend 
upon the concentration of the diffusing atoms. The diffusion coefficient 
relevant to this situation is called the chemical diffusion coefficient, and is 
written D. The chemical diffusion coefficient is related to the concentration 
and position by a more generalized form of equation (2.1). This will bear 
upon crystal symmetry and the direction of atom movement, as well as upon 
the concentration effects that we consider here. For diffusion along only one 
direction, say x, it would be

(2.3)

Unfortunately, it is not possible to solve this equation algebraically because 
D is not a constant and indirect methods have to be used obtain chemical 
diffusion coefficients.

In general, reasonably simple experimental conditions hold when one 
pure metallic element diffuses into another pure metallic element. Because of 
this, we naturally find that theoretical discussion is often centred around the 
interdiffusion of two chemically similar metals to form an alloy phase. In 
order to give a feeling for how diffusion coefficients in chemically reacting 
systems differ from tracer and self-diffusion coefficients, and how the 
determination of such diffusion coefficients can be approached in practice, 
we will stay close to such simple systems in this and the following sections.

Because of the variability of the values obtained experimentally for D, it is 
helpful to try to relate them to self-diffusion coefficients or tracer diffusion 
coefficients. This objective will form the basis for section 2.4.
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coefficients. This objective will form the basis for section 2.4. 
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2.3.2 The Matano-Boltzmann relationship

One commonly used procedure to obtain numerical values for D is a 
graphical method described by the Matano-Boltzmann relationship. To 
illustrate this technique, we will consider a case where the diffusion couple 
consists of two metals, A and B, say copper (Cu) and gold (Au). Slabs of 
these two metals, ideally single crystal specimens, are placed in contact with 
one another and heated for an appropriate period of time. During the 
experiment, some of the metal A will have diffused into metal В and vice 
versa. After the heat treatment the slabs are carefully sliced up and the 
variation of the concentrations of A and В are measured across the original 
interface.

Suppose that the concentration profile after inter diffusion gives the result 
shown in Figure 2.7(a). To make the discussion as general as possible we will 
call the concentrations of A which holds at the extreme left of the 
distribution curve c~A, and at the extreme right cA, rather than 0% and 
100%. This will prove of use if A and В are present in alloys, say, instead of 
being present as pure metals. Figure 2.7(b) shows that the curve has been 
divided by a line, at position xM, to yield the two shaded areas. In the real 
diffusion couple, this line will correspond to a plane normal to the x 
direction. When this plane is chosen so as to make the two shaded areas on 
Figure 2.7(b) equal to one another, the plane is called the Mat ano plane. If D 
is the same on both sides of the Matano plane then the curve will be 
symmetrical with respect to this interface.

Once having drawn the Matano plane we can now determine the chemical 
diffusion coefficient, D, at any value cA that we care to choose, as it is simply 
given by

(2.4)

where t is the time over which the diffusion has occurred and D is valid at 
the particular value of x* and the corresponding value of cA. Referring to 
Figure 2.7(c), we see that the area we need is shaded, and the slope that we 
need is that of the line labelled S-S in Figure 2.7(d). By repeatedly changing 
the value of cA and recalculating the new areas and slopes, we can determine 
how D varies with changing concentration, cA, and with distance from the 
Matano interface, x*.

Having given a rather straightforward description of how the chemical 
discussion coefficient can be evaluated it is useful to write out the Matano- 
Boltzmann equation

(2.5)
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where t is the time over which the diffusion has occurred and b is valid at 
the particular value of x' and the corresponding value of cA. Referring to 
Figure 2.7(c), we see that the area we need is shaded, and the slope that we 
need is that of the line labelled S-S in Figure 2. 7( d). By repeatedly changing 
the value of cA and recalculating the new areas and slopes, we can determine 
how b varies with changing concentration, cA, and with distance from the 
Matano interface, X'. 

Having given a rather straightforward description of how the chemical 
discussion coefficient can be evaluated it is useful to write out the Matano-
Boltzmann equation 

- l(~) 1~ D~=-- - ~~ 
2t dc ~ C 

A A 

(2.5) 
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Figure 2.7 (a) A measured penetration curve for component A after inter-diffusion of A and B. 
(b) The Matano plane, at л:м , is placed so that the shaded areas are equal, (c) The area to be 
measured, shaded, and the slope of the curve needed, the line S-S, in the Matano procedure is 
for the evaluation of the chemical diffusion coefficient at concentration c*A and position x*.
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Figure 2.7 (a) A measured penetration curve for component A after inter-diffusion of A and B. 
(b) The Matano plane, at XM, is placed so that the shaded areas are equal. (c) The area to be 
measured, shaded, and the slope of the curve needed, the line S-S, in the Matano procedure is 
for the evaluation of the chemical diffusion coefficient at concentration cA and position X'. 
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This expresses in mathematical terms the verbal equation (2.4). The integral 
in equation (2.5) represents the shaded area in Figure 2.7(c) and the 
denominator in equation (2.5) represents the slope of the curve at c*A in 
Figure 2.7(d).

The diffusion coefficient that is found from the Matano-Boltzmann 
analysis is the single diffusion coefficient that describes the reaction between 
A and В and not the diffusion coefficients for either of the components 
separately. It is analogous to the voltage given by a battery, which is the sum 
of the voltages due to the cathode and the anode and not just the voltage 
from one or the other electrode alone. For this reason it is best to write it as 
Dab-

2.4 Chemical diffusion, intrinsic diffusion and self-diffusion

2.4.1 The Kirkendall effect

In the preceding section we used the Matano interface as a reference plane 
when it was necessary to measure distances in a diffusion couple. Intuitively 
it seems far simpler to use the initial interface between the two reactants, A 
and B, for this purpose. This is a nice idea, but unfortunately it is not always 
easy to locate this plane after diffusion has occurred.

Let us think about this a little. After heat treatment, the central region of 
the diffusion couple will consist of a new material, called the inter-diffusion 
phase. If we suppose that A diffuses twice as quickly across the interface into 
В, as В does in the opposite direction, then clearly the amount of inter- 
diffusion phase on one side of the interface will be twice as much as on the 
other side, and the diffusion coefficient, or at least the relative diffusion 
coefficients, can easily be determined by simple measurement. So, why not 
mark the initial interface? We could do this by placing a few inert markers, 
platinum wires, for example, at the interface before the heating cycle is 
started. Unfortunately, the inert markers will not always remain in place at 
the interface.

This shift of markers is known as the Kirkendall effect. It was first 
observed in an experiment in which a block of a-brass (70% Cu: 30% Zn) 
was embedded in a block of copper. The brass was wrapped around with 
fine molybdenum wires which were to act as the inert marker, as shown in 
Figure 2.8(a). After heating, it was found that the separation of the wires 
had decreased.

The reason for movement of the marker is not too difficult to understand. 
Assume that markers are placed at the interface between the components, as 
shown in Figure 2.8(b), that the diffusion of A is faster than the diffusion of 
В and that the volume of the system after the diffusion experiment is the 
same. That is, alloy formation does not alter the total volume of the couple.
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(b)

(CD

Figure 2.8 (a) Schematic illustration of the Kirkendall effect, (b) The situation in (a) before the 
reaction, (c) The situation in (a) after the reaction, if component A diffuses faster than 
component B. The separation of the markers, w, appears to decrease.

After some time, the number of atoms of A which has passed to the right of 
the marker R is greater than the number of atoms of В which has passed to 
the left of R. This is shown in Figure 2.8(c), where we now see that the 
amount of material to the left of the marker is smaller than the amount of 
material to the right. The opposite happens at the marker L. Clearly, we 
started out with equal volumes on both sides of the marker, and so it 
appears, in an experimental observation, that the marker R has moved to the 
left and marker L has moved to the right. The separation between the 
markers, w, thus appears to decrease.

In reality, the extent of the Kirkendall effect is difficult to estimate. There 
will invariably be some volume change because the molar volume of the 
alloy formed will be different to that of either of the initial components, 
although this may be small. In addition, if one component leaves one area of

(a)
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sample faster than the other component moves in, we are likely to get voids 
formed. When this happens it also effects the marker displacement. It is, 
therefore, difficult to treat the Kirkendall effect theoretically in a general 
way. One situation has been analysed in detail, and we shall briefly discuss 
this now, as it will allow us to separate the contribution of the diffusion 
coefficient of component A from that of component В in the reaction.

2.4.2 Intrinsic diffusion coefficients

The chemical diffusion coefficient, D, for our A-B  system can be thought of 
as made up of two intrinsic diffusion coefficients, DA and DB. These are 
equivalent to the chemical diffusion coefficients of each of the separate 
components A and В in our reaction. In general, DA and DB as well as D, are 
concentration dependent. It is, therefore, not possible to relate these 
quantities to each other over all the concentration ranges that apply in the 
diffusion couple, but in the moving marker plane, also called the Kirkendall 
plane, some relationships between them can be found.

This is not simply an arbitrary choice of origin, of course. Suppose, for 
example, we wish to measure the diffusion coefficient of a dye molecule in 
water. The dye could simply be injected into a tank of water at a certain 
marked spot, and its spread observed visually. Unfortunately, in the case of 
chemical diffusion, it is rather like trying to do the experiment by dropping 
the dye into a river rather than a tank of still water. In this case two factors 
are operating. Firstly, the dye is diffusing outwards, as before, but also the 
whole body of water in which the dye diffuses is being swept along 
downstream. To study the diffusion process alone it is necessary to walk 
downstream at the same speed as the flow and then the spread of the dye can 
be measured without introducing an error due to the water flow. To put this 
into more formal language, the point in the river where the dye is injected is 
taken as a moving reference point. Using the moving Kirkendall marker 
plane is the analogous situation in our diffusion couple.

Bearing this in mind, we find, not surprisingly, that the movement of the 
marker plane with respect to the Matano plane is quite simply related to the 
difference in the separate diffusion coefficients, ф А -  DB) . The key 
equation is

where velK is the velocity of the marker plane, NA is the mole fractionf of 
component A. The other key equation is

(2 .6)

(2.7)
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be measured without introducing an error due to the water flow. To put this 
into more formal language, the point in the river where the dye is injected is 
taken as a moving reference point. Using the moving Kirkendall marker 
plane is the analogous situation in our diffusion couple. 

Bearing this in mind, we find, not surprisingly, that the movement of the 
marker plane with respect to the Matano plane is quite simply related to the 
dffference in the separate diffusion coefficients, (D A - DB). The key 
equation is 

velK= (DA _DB)(d~A) (2.6) 

where velK is the velocity of the marker plane, NA is the mole fractiont of 
component A. The other key equation is 

D = NADs + NBDA (2.7) 
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where NB the mole fraction of component B. Equation (2.7) is known as the 
Darken equation. In both equation (2.6) and (2.7) measurements are made at 
the marker plane.

These equations allow values for Da and DB appropriate to the 
Kirkendall plane to be determined. The following procedure is employed. 
First, І) and the mole fractions of A and В are measured in the Kirkendall 
plane using the Matano-Boltzmann method. This gives information on 
{Da + Db) from equation (2.7). Then the slope of the curve is measured at 
the Kirkendall plane, which gives us AN a/Ax. Finally, the displacement of 
the Kirkendall plane from the Matano plane, xK., is measured and as the 
time of the diffusion experiment t, is known, we can calculate the velocity of 
the marker plane, velK,, using the equation:

We now have sufficient information to calculate separate values for both Da 
and DB in the Kirkendall plane. If the marker plane coincides with the 
Matano plane then velK will be zero and so DA will be equal to DB.

2.4.3 The relationship between chemical diffusion and self-diffusion 
coefficients

It is difficult to obtain a general relationship between chemical diffusion and 
self-diffusion coefficients, but, as above, it is possible to obtain a 
relationship which is valid in the in the Kirkendall plane. For component A

where Da is the intrinsic diffusion coefficient and D \ the tracer diffusion 
coefficient of component A , and F is called the thermodynamic coefficient. A 
similar equation can be written for component B. Therefore, the chemical 
diffusion coefficient can be regarded as the tracer diffusion coefficient 
multiplied by a factor, the thermodynamic coefficient, which accounts for 
concentration changes. At low concentrations, or when concentration

įThe mole fraction of A is the number of moles of A divided by the total number of moles of A 
and В present,

_  moles o f A
Уү a —......

moles o f Л+moles of В
The number of moles of A is equal to the mass of A present, in grammes, divided by the molar 
mass of A, in grammes.

moles of A —
mass of A (g) 

molar mass of A (g)
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Darken equation. In both equation (2.6) and (2.7) measurements are made at 
the marker plane. 

These equations allow values for D A and DB appropriate to the 
Kirkendall plane to be determined. The following procedure is employed. 
First, D and the mole fractions of A and B are measured in the Kirkendall 
plane using the Matano-Boltzmann method. This gives information on 
(D A + DB) from equation (2.7). Then the slope of the curve is measured at 
the Kirkendall plane, which gives us dNA/dx. Finally, the displacement of 
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XK 
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We now have sufficient information to calculate separate values for both D A 

and DB in the Kirkendall plane. If the marker plane coincides with the 
Matano plane then vel K will be zero and so D A will be equal to DB. 

2.4.3 The relationship between chemical diffusion and self-diffusion 
coefficients 

It is difficult to obtain a general relationship between chemical diffusion and 
self-diffusion coefficients, but, as above, it is possible to obtain a 
relationship which is valid in the in the Kirkendall plane. For component A 

DA = D~F 

where DAis the intrinsic diffusion coefficient and D~ the tracer diffusion 
coefficient of component A, and F is called the thermodynamic coefficient. A 
similar equation can be written for component B. Therefore, the chemical 
diffusion coefficient can be regarded as the tracer diffusion coefficient 
multiplied by a factor, the thermodynamic coefficient, which accounts for 
concentration changes. At low concentrations, or when concentration 

tThe mole fraction of A is the number of moles of A divided by the total number of moles of A 
and B present, 

NA moles of A 
moles of A+moles of B 

The number of moles of A is equal to the mass of A present, in grammes, divided by the molar 
mass of A, in grammes. 

mass of A (g) 
moles of A molar mass of A (g) 
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effects are not relevant, the value of Fis unity and DA = D*A. For chemically 
similar metals or compounds it is often possible to take the thermodynamic 
coefficient for component В to be the same as that for component A , which 
allows us to write

These relationships between the chemical diffusion coefficient and the tracer 
diffusion coefficient are called the Darken relations. In general, they are 
found to hold well.

2.5 Diffusion in ionic crystals

2.5.1 Ambipolar diffusion

In the previous sections of this chapter diffusion was restricted to neutral 
atoms and was considered to be due to changes in concentration. When the 
movement of charged particles, ions or electrons, is considered, concentra­
tion is not the only factor of importance. In considering the diffusion of 
charged particles, which is referred to as ambipolar diffusion, overall electric 
charge neutrality must be maintained during diffusion. In order to examine 
this concept in a little more detail it is instructive to consider some typical 
experimental situations.

2.5.2 Solid solution formation

If two compounds with the same formula and crystal structure are placed in 
contact, the atoms in each can inter-diffuse to form a mixed crystal or solid 
solution. In the case of ionic compounds such as oxides, this is achieved by 
the diffusion of ions. A concrete example is provided by the reaction 
between NiO and MgO to form a mixed crystal of composition NixMgi_xO. 
Both of these oxides crystallize with the rock salt crystal structure. This 
means that the oxygen anion sub-lattice is the same in both crystals. Thus, if 
we ignore any slight rearrangements of the anions at the interface between 
the two crystals, the solid solution formation will involve only the diffusion 
of Mg2+ and Ni2+ cations in opposite directions.į 

The situation is shown in Figure 2.9. An experimentally determined 
diffusion profile, obtained by heating a single crystal of NiO placed in 
contact with a single crystal of MgO, is shown in Figure 2.10. Note that the

fNote that self-diffusion of the oxygen atoms will occur but this will not contribute to the 
formation of the solid solution.
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Figure 2.9 A diffusion couple in which a solid solution forms between the starting phases MgO 
and NiO. (a) The situation before reaction, (b) The situation after the reaction. Note that the 
boundaries between both MgO and NiO and the solid solution will be diffuse, (c) Plot o f the 
concentration of Ni versus distance across the couple.

interface is not symmetrical and so the diffusion coefficients of the two 
cations must differ.

Now this observation raises a problem. If one of these ions diffuses faster 
than the other then, after some time, on one side of the boundary there will 
be fewer cations present and on the other side more cations present, than at 
the outset. This will create charge balance difficulties. In the NiO-MgO 
system a small concentration of mobile electrons is present because of the 
slightly non-stoichiometric behaviour of NiO, as explained in chapters 6 and

(a)

(b)

(c)
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Figure 2.9 A diffusion couple in which a solid solution forms between the starting phases MgO 
and NiO. (a) The situation before reaction. (b) The situation after the reaction. Note that the 
boundaries between both MgO and NiO and the solid solution will be diffuse. (c) Plot of the 
concentration of Ni versus distance across the couple. 

interface is not symmetrical and so the diffusion coefficients of the two 
cations must differ. 

Now this observation raises a problem. If one of these ions diffuses faster 
than the other then, after some time, on one side of the boundary there will 
be fewer cations present and on the other side more cations present, than at 
the outset. This will create charge balance difficulties. In the NiO-MgO 
system a small concentration of mobile electrons is present because of the 
slightly non-stoichiometric behaviour of NiO, as explained in chapters 6 and 
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Figure 2.10 An experimentally determined concentration profile for the system NiO-MgO  
heated at 1370 °С in air. Note that the curve is unsymmetrical. [Redrawn from S.L. Blank and 
J.A. Pask, J. Am. Ceram. Soc. 52, 669 (1969).]

8. These electrons always allow local charge balance to be maintained, as 
they migrate very quickly compared to the ions themselves, so that electric 
field effects do not present problems.

Example 2.2 Estimate the chemical diffusion coefficient applicable to the 
reaction shown in Fig. 2.10

The experimental data can be analysed by the Matano procedure to obtain 
the diffusion coefficient as a function of the distance from the Matano 
interface and the concentration of Ni2 + . At the temperature of the 
experiment shown in Figure 2.10, 1370 °С, it was found that 
D = 1.25 X 10-15m2s_1 at a nickel concentration of 10at% and
6.5 X 10_15m2s-1 at a nickel concentration of 40at%.

2.5.3 Spinel formation

A slightly different diffusion problem occurs if an intermediate phase is 
formed instead of a solid solution when two compounds are put into 
contact. The mechanism of the reaction may depend upon whether electron 
transport is possible in the intermediate phase and the rate o f reaction will be 
controlled by the rate of diffusion of the slowest ion.

A good example of this situation is provided by spinel formation. Spinel is 
a mineral with a composition MgAl20 4. A large number of other oxides 
crystallize with the same structure type and formula AB20 4. These are 
collectively referred to as spinels. Most often A represents a divalent cation
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Figure 2.10 An experimentally determined concentration profile for the system NiO-MgO 
heated at 1370°C in air. Note that the curve is unsymmetrical. [Redrawn from S.L. Blank and 
I.A. Pask, J. Am. Ceram. Soc. 52, 669 (1969).] 

8. These electrons always allow local charge balance to be maintained, as 
they migrate very quickly compared to the ions themselves, so that electric 
field effects do not present problems. 

Example 2.2 Estimate the chemical diffusion coefficient applicable to the 
reaction shown in Fig. 2.10 

The experimental data can be analysed by the Matano procedure to obtain 
the diffusion coefficient as a function of the distance from the Matano 
interface and the concentration of Ni2 +. At the temperature of the 
experiment shown in Figure 2.10, l370°C, it was found that 
jj = 1.25 X 10-15 m2 s-1 at a nickel concentration of 10 at% and 
6.5 x 1O- 15 m2 s- 1 at a nickel concentration of 40at%. 

2.5.3 Spinel formation 

A slightly different diffusion problem occurs if an intermediate phase is 
formed instead of a solid solution when two compounds are put into 
contact. The mechanism of the reaction may depend upon whether electron 
transport is possible in the intermediate phase and the rate of reaction will be 
controlled by the rate of diffusion of the slowest ion. 

A good example of this situation is provided by spinel formation. Spinel is 
a mineral with a composition MgAlz04 . A large number of other oxides 
crystallize with the same structure type and formula AB20 4. These are 
collectively referred to as spinels. Most often A represents a divalent cation 
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and B a trivalent cation, as in MgAl20 4 itself, but other combinations of 
ions are also possible. The spinel structure is discussed in detail later in this 
book, but for the present this information is not needed.

The spinel formation reaction can be represented by the chemical 
equation

Suppose that an experiment similar to solid solution formation is set up, but 
this time using a crystal of A120 3 in contact with a crystal of MgO, as shown 
in Figure 2.11(a). The initial reaction will result in the separation of the two 
reacting oxides MgO and A120 3 by a layer of spinel, MgAl20 4. Continued 
reaction will depend upon transport of reactants across the spinel layer. A 
number of mechanisms can be suggested but, because MgAl20 4 is an 
insulator, electron transport is not possible and so only mechanisms 
involving ions are permitted. These are shown in Figure 2.11(b)—(d).

In Figure 2.11(b) the reaction is sustained by diffusion of equal numbers 
of O2" anions and Mg2+ cations. The electrical charges on the ions are 
equal and opposite so no charge balance problems arise. Because the ionic 
movement is towards the right, new spinel growth will take place at the 
right-hand side of the spinel layer. In Figure 2.11(c) the reverse situation is 
shown where diffusion of O2- anions is accompanied by a parallel diffusion 
of Al3+ cations. Because of the difference in the ionic charges, two Al3 + 
cations need to be accompanied by three O2- anions to maintain charge 
neutrality, as shown. Spinel growth will now take place at the left-hand 
boundary. Finally, Figure 2.11(d) shows a scheme in which only cations 
diffuse, Mg2+ from left to right and Al3+ from right to left. In order to 
maintain the charge balance, for every three Mg2+ cations which diffuse in 
one direction two Al3 + must move in the other. In this case, the spinel layer 
forms on either side of the initial boundary.

It has been found that the reaction between MgO and A120 3 follows the 
mechanism shown in Figure 2.11(d). At the boundary between A120 3 and 
spinel we have the reactions

While at the boundary between MgO and spinel we have the reactions

These equations indicate that the spinel layer grows in an asymmetrical 
fashion. For every three Mg2+ ions which arrive at the A120 3 boundary
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book, but for the present this information is not needed. 

The spinel formation reaction can be represented by the chemical 
equation 

MgO + Ah03 ---+ MgAl20 4 

Suppose that an experiment similar to solid solution formation is set up, but 
this time using a crystal of Al20 3 in contact with a crystal of MgO, as shown 
in Figure 2.II(a). The initial reaction will result in the separation of the two 
reacting oxides MgO and Al20 3 by a layer of spinel, MgAI20 4. Continued 
reaction will depend upon transport of reactants across the spinel layer. A 
number of mechanisms can be suggested but, because MgAl20 4 is an 
insulator, electron transport is not possible and so only mechanisms 
involving ions are permitted. These are shown in Figure 2.11 (b )-( d). 

In Figure 2.11 (b) the reaction is sustained by diffusion of equal numbers 
of 0 2- anions and Mg2 + cations. The electrical charges on the ions are 
equal and opposite so no charge balance problems arise. Because the ionic 
movement is towards the right, new spinel growth will take place at the 
right-hand side of the spinel layer. In Figure 2.lI(c) the reverse situation is 
shown where diffusion of 0 2- anions is accompanied by a parallel diffusion 
of Al3 + cations. Because of the difference in the ionic charges, two Al3 + 
cations need to be accompanied by three 0 2- anions to maintain charge 
neutrality, as shown. Spinel growth will now take place at the left-hand 
boundary. Finally, Figure 2.11(d) shows a scheme in which only cations 
diffuse, Mg2+ from left to right and AI3+ from right to left. In order to 
maintain the charge balance, for every three Mg2+ cations which diffuse in 
one direction two AI3+ must move in the other. In this case, the spinel layer 
forms on either side of the initial boundary. 

It has been found that the reaction between MgO and Ah03 follows the 
mechanism shown in Figure 2.11(d). At the boundary between Ah03 and 
spinel we have the reactions 

Ah03---+2AI3+ + 302-

3Mg2+ + 302- + 3A120 3---+3MgAlz04 

While at the boundary between MgO and spinel we have the reactions 

3MgO---+3Mg2+ + 302-

302- + 2AI3+ + MgO---+MgAI204 

These equations indicate that the spinel layer grows in an asymmetrical 
fashion. For every three Mg2+ ions which arrive at the Ah03 boundary 
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Figure 2.11 Schematic illustration of some diffusion processes which can occur in spinel 
formation between two oxides MgO and A120 3. (a) Diffusion o f Mg2+ cations and O2- anions 
allows reaction to take place at the right-hand surface of the spinel layer, (b) Diffusion of Al3 + 
cations and O2- anions allows the reaction to take place at the left-hand surface of the spinel 
layer, (c) Counter diffusion of both cations allows the reaction to take place at both surfaces.

three MgAl20 4 molecules form, while for every two Al3+ ions which arrive 
at the MgO boundary only one MgAl20 4 molecule forms. Therefore, the 
spinel layer will form in a ratio of 1:3 on either side of the initial boundary, 
with the thicker part on the A120 3 side.

The rate at which the total thickness of the spinel layer grows is controlled 
by the speed of diffusion of the slowest cation. In reactions of this sort, if the 
spinel layer increases by an amount Δχ in a period of time Δ*, the rate of 
film growth, d(Ax)/d(Ai), is given by

where k is a constant and x is the film thickness at time t. Integration and
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(b)

(c)

(d)
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Figure 2.11 Schematic illustration of some diffusion processes which can occur in spinel 
formation between two oxides MgO and A120 3. (a) Diffusion of Mg2+ cations and 0 2- anions 
allows reaction to take place at the right-hand surface of the spinel layer. (b) Diffusion of AI3+ 
cations and 0 2- anions allows the reaction to take place at the left-hand surface of the spinel 
layer. (c) Counter diffusion of both cations allows the reaction to take place at both surfaces. 

three MgAh04 molecules form, while for every two Al3 + ions which arrive 
at the MgO boundary only one MgAh04 molecule forms. Therefore, the 
spinel layer will form in a ratio of 1:3 on either side of the initial boundary, 
with the thicker part on the Al20 3 side. 

The rate at which the total thickness of the spinel layer grows is controlled 
by the speed of diffusion of the slowest cation. In reactions of this sort, if the 
spinel layer increases by an amount ~x in a period of time ~t, the rate of 
film growth, d(~x)/d(~t), is given by 

d(~x) k 

d(~t) x 

where k is a constant and x is the film thickness at time t. Integration and 
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rearrangement of this equation leads to

where jc is the thickness of the spinel layer, k is called the practical reaction 
rate constant and t is the reaction time. Because a graph of x versus t is 
parabolic in shape, k is also sometimes called the parabolic rate constant.

2.6 Case study: corrosion and oxidation reactions

Corrosion occurs when a metal is attacked by a gaseous atmosphere, which 
is damp oxygen in everyday life, to produce a thin layer of product phase. It 
has been observed since antiquity that the ‘Noble’ metals, especially gold, 
were those which did not appear to corrode in air. Owing to the industrial 
and economic importance of such reactions, they have been very extensively 
studied. It was soon appreciated that in order for the corrosion to continue 
some of the reactants must diffuse across the product layer. For many 
metals, such as transition metals, this is not too difficult, even at room 
temperature. For others, like aluminium, diffusion is not possible. This 
means that in practice aluminium appears to be resistant to corrosion, 
although in effect it is the thin aluminium oxide film which quickly forms on 
the metal which is the protective barrier. Such resistance to diffusion is also 
found in the lanthanide metals. Lighter ‘flints’ are made from a mixture of 
lanthanide metals, known as mischmetall. The metal of the flint is protected 
by a thin oxide film which prevents further oxidation. When the flint is 
abraded against a steel surface, as when using the lighter, the oxide film is 
removed and the subsequent reoxidation of the newly exposed metal 
generates enough heat to cause sparks.

The reasons why some metal oxides can support diffusion, while others do 
not, is explained later in this book. In this section the role that diffusion 
plays in corrosion reactions will be explored.

The classical studies on metal oxidation involved the formation of Cu20. 
When copper metal is oxidized in conditions of low partial pressure of 
oxygen a thin film of Cu20  forms. The reaction is described by the chemical 
equation

Because of this we will focus on the situation that arises when the initial 
reaction results in the formation of a continuous film of product which is 
firmly attached to the metal surface. In such a case, further reaction can only 
proceed if ions or atoms can diffuse across the product, either from the 
outside gaseous phase into the inner metal layer, or else from the metal out 
to meet the gas. If this cannot happen then no reaction takes place.
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rearrangement of this equation leads to 
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2Cu + 202 -+ CU20 

Because of this we will focus on the situation that arises when the initial 
reaction results in the formation of a continuous film of product which is 
firmly attached to the metal surface. In such a case, further reaction can only 
proceed if ions or atoms can diffuse across the product, either from the 
outside gaseous phase into the inner metal layer, or else from the metal out 
to meet the gas. If this cannot happen then no reaction takes place. 
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There are several possible mechanisms for the transport of material across 
the initial oxide coating. These are shown in Figure 2.12. Because oxides are 
rather ionic compounds it is usual to think of ions as the moving species and 
not copper atoms or oxygen molecules. Perhaps the most obvious 
possibility, illustrated in Figure 2.12(a), employs the diffusion of Cu + 
cations outward from the metal towards the gas atmosphere. If this took 
place, a large negative charge would be left behind at the copper-copper 
oxide interface which would soon slow down the moving cations and bring 
the reaction to a halt. To maintain electrical neutrality in the system and to 
allow the reaction to continue, this diffusion must be accompanied by a 
parallel diffusion of an equal number of electrons. When the electrons arrive 
at the surface they react with oxygen molecules on the oxide surface to form 
two O2- ions. These are incorporated into the oxide film and together with 
the arriving Cu+ cations allows the film to grow from the outer surface of 
the film.

(a)

(b)

(c)

Figure 2.12 Schematic illustration of some diffusion processes which can allow the continued 
oxidation of copper (Cu) to CU2O. (a) Diffusion of Cu+ cations and electrons allows further 
reaction to take place at the outer surface of the oxide, (b) Counter diffusion of O2- anions and 
electrons allows the reaction to take place at the inner surface of the oxide, (c) Counter diffusion 
of both anions and cations allows the reaction to take place at both surfaces.
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The scheme illustrated in Figure 2.12(b) shows the diffusion of oxygen 
ions into the film. These ions cannot be generated spontaneously, and it is 
necessary for electrons to move through the oxide layer from the copper to 
make the ionization possible. This leaves Cu+ cations behind at the copper- 
copper oxide boundary. These cations are able to combine with the arriving 
O2- anions to extend the oxide film at the copper-copper oxide boundary.

In the third scheme, shown in Figure 2.12(c), the mechanism involves the 
counter diffusion of Cu+ cations and 0 2~ anions. On the face of it, this 
mechanism does not need electron movement to proceed. However, anions 
cannot be continually generated at the surface nor cations at the metal- 
metal oxide interface without some electron movement. Fortunately, it is 
not necessary to worry about these electrons, or the electrons in the other 
reaction schemes, at this stage. This is because the electrons move much 
faster than the ions and so the rate of corrosion is controlled by ionic 
diffusion alone.

Experiments have shown that the mechanism shown in Figure 2.12(a), 
involving diffusion of Cu+ cations, is followed. This is largely because the 
O2- ions are too large to diffuse readily through the structure, which 
eliminates both of the other reactions shown.

The rate of growth of the film is controlled by the slow diffusion of the 
Cu+ ions. It is quite easy to determine this rate by measuring the gain in 
weight of a copper strip over time. To do this, a strip of copper is suspended 
from a sensitive balance and enclosed so that the oxygen pressure surround­
ing the strip can be varied. The copper strip is then heated at a suitable 
temperature and the weight gain recorded. In reactions controlled by 
diffusion, the rate of thickening of the film obeys the parabolic rate law 
described for spinel formation, above. The increase in the thickness of the 
film, X, varies with time in the following way

where kp is called the parabolic rate constant for the formation of a layer of 
Cu20  of thickness X after reaction time t.

The mobile electrons play an important role in this reaction. Although the 
rate of the reaction is controlled by the slow cation diffusion, in the absence 
of any mobile electrons the reaction would stop. Indeed, this is the reason 
why both aluminium and lanthanide metals do not obviously corrode. As 
we will see in later chapters, the ability of these oxide films to support 
electronic conduction is often a reflection of the ability of the cation to 
adopt more than one valence state. This is a characteristic of transition 
metal compounds and so these are particularly susceptible to corrosion.
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2.7 Short-circuit diffusion

In the preceding sections we have focused attention upon diffusion through 
a crystal lattice which contained only point defects. However, diffusion 
along other imperfections in the structure is often much faster than bulk 
diffusion, especially at lower temperatures. This process is referred to as 
short-circuit diffusion. The main imperfections that are of importance for 
short-circuit diffusion are dislocations and grain boundaries. Dislocations 
can be thought of as tubes of disordered structure which thread through the 
crystal, and grain boundaries are the surfaces between individual crystallites 
in a polycry stalline solid.

The situation which has been studied in most detail is that of diffusion 
along a grain boundary. One way of experimentally determining the effect of 
grain boundary diffusion is to follow a route very similar to that described 
in section 2.2 for the determination of tracer diffusion coefficients. Initially a 
polycrystalline material is carefully polished and a thin layer of a radioactive 
tracer is then coated onto the polished surface, as in Figure 2.13. The sample 
is now heated at an appropriate temperature for some hours during which 
time the tracer will diffuse into the material.

Several processes are now occurring simultaneously. The tracer will 
diffuse into the crystal lattice from the surface at a speed related to the tracer 
diffusion coefficient. It will also diffuse down the grain boundary at a rate 
characteristic of the grain boundary diffusion coefficient. Finally, the tracer 
will also diffuse sideways into the bulk from the grain boundary, again at a 
rate characteristic of the tracer diffusion coefficient. The contours of equal 
concentration of the diffusing tracer in the polycrystalline material will 
depend upon the relative values of the diffusion coefficient in the bulk 
compared to that down the grain boundary. If the grain boundary 
penetration is much greater than the penetration into the crystal lattice, a 
profile as shown in Figure 2.13(b) will result. If the rate of movement along 
the grain boundary is only a little faster than that through the lattice not 
much effect will be noticed. This is shown schematically in Figure 2.13(c).

After the experiment, the sample is carefully sliced parallel to the top 
surface and the radioactivity measured, which allows a penetration profile to 
be drawn which is analogous to that shown in Figure 2.2. However, this 
only reveals part of the information about the process that could be 
obtained. In order to obtain some details about the distribution of the 
radioactivity a piece of photographic film can be placed in contact with the 
freshly cut surface. The radiation from the tracer effects the photographic 
film in the same way as light photons. Thus, the darkening of the film is 
proportional to the degree of radioactivity in the underlying sample and 
gives a nice picture of the distribution of the tracer across the exposed 
surface.
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(a)

Figure 2.13 Short-circuit diffusion down a grain boundary, (a) The situation before reaction 
showing a surface layer of tracer atoms, (b) Diffusion of the tracer is much faster down the 
boundary than in the bulk, (c) Diffusion of the tracer is hardly faster down the boundary than 
in the bulk. The shaded areas in (b) and (c) indicate the penetration depth of the tracer.

The sort of results obtained by the combination of techniques illustrated 
in Figure 2.14. The penetration curve is shown as a line, clearly divided into 
two segments. The photographic ‘snapshots’ are shown as insets labelled 
from (a) to (f). In the surface layers, the radioactive tracer will have 
saturated the lattice and the grain boundaries, the average radioactivity will 
be high and it will not be possible to distinguish the grain boundaries from 
the surrounding crystal, as shown schematically in Figure 2.14(a) and (b). 
However, as the crystal is sliced the average radioactivity will fall and the 
grain boundaries start to show higher levels of radioactivity than the 
surrounding lattice, as shown in Figure 2.14(c) and (d). Ultimately the 
radioactivity is only associated with the grain boundaries, as seen in Figure
2.14 (e) and (f).

(b)

(c)
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Figure 2.13 Short-circuit diffusion down a grain boundary. (a) The situation before reaction 
showing a surface layer of tracer atoms. (b) Diffusion of the tracer is much faster down the 
boundary than in the bulk. (c) Diffusion of the tracer is hardly faster down the boundary than 
in the bulk. The shaded areas in (b) and (c) indicate the penetration depth of the tracer. 

The sort of results obtained by the combination of techniques illustrated 
in Figure 2.14. The penetration curve is shown as a line, clearly divided into 
two segments. The photographic 'snapshots' are shown as insets labelled 
from (a) to (t). In the surface layers, the radioactive tracer will have 
saturated the lattice and the grain boundaries, the average radioactivity will 
be high and it will not be possible to distinguish the grain boundaries from 
the surrounding crystal, as shown schematically in Figure 2.l4(a) and (b). 
However, as the crystal is sliced the average radioactivity will fall and the 
grain boundaries start to show higher levels of radioactivity than the 
surrounding lattice, as shown in Figure 2.14(c) and (d). Ultimately the 
radioactivity is only associated with the grain boundaries, as seen in Figure 
2.14 (e) and (t). 
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Figure 2.14 Schematic representation of the diffusion profile and tracer distribution for grain 
boundary diffusion in a polycrystalline compact. The left-hand part of the curve is bell shaped 
as in Figure 2.2. The insets, (a)-{f), show the distribution of the radioactive tracer in the sample.

Examination of the penetration profile will reveal that it consists of two 
regions. Initially the curve is bell shaped and dominated by lattice diffusion. 
At greater penetration, the graph becomes linear. In this region grain 
boundary diffusion takes over as the major mechanism for the movement of 
the radioactive tracer atoms.

An experimental penetration profile is shown in Figure 2.15. It refers to 
the diffusion of the radioactive isotope 63Ni into a polycrystalline block of 
CoO at 935 °С for 30 min. In order to extract values for the bulk and grain 
boundary diffusion coefficients from diffusion profiles like that shown in 
Figure 2.15 it is necessary to solve the appropriate forms of Fick’s laws just 
as we did in section 2.2. The solutions obtained are, not surprisingly, rather 
complex and will not be given here.

The situation in the case of dislocations is similar to that for grain 
boundaries. Diffusion down the dislocation core, sometimes called pipe 
diffusion, will be faster than that through the surrounding bulk. If the 
apparent diffusion coefficient in a material containing many dislocations is 
compared to the diffusion coefficient in a sample with only a few 
dislocations a considerable difference will often be found.

The relationship between the effective diffusion coefficient, DE, and the 
true lattice diffusion coefficient, DB, is often found to be given by an 
equation of the form:
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boundary diffusion takes over as the major mechanism for the movement of 
the radioactive tracer atoms. 
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CoO at 935 °C for 30 min. In order to extract values for the bulk and grain 
boundary diffusion coefficients from diffusion profiles like that shown in 
Figure 2.15 it is necessary to solve the appropriate forms of Fick's laws just 
as we did in section 2.2. The solutions obtained are, not surprisingly, rather 
complex and will not be given here. 

The situation in the case of dislocations is similar to that for grain 
boundaries. Diffusion down the dislocation core, sometimes called pipe 
diffusion, will be faster than that through the surrounding bulk. If the 
apparent diffusion coefficient in a material containing many dislocations is 
compared to the diffusion coefficient in a sample with only a few 
dislocations a considerable difference will often be found. 
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Figure 2.15 Experimental result for the diffusion of radioactive 63Ni2+ diffusing into 
polycrystalline CoO at 953 °С. [Redrawn from K. Kowalski, thesis, University o f Nancy (1994).]

where Dd is the diffusion coefficient down the dislocations and grain 
boundaries and g is a geometrical factor which contains terms for the 
density of these defects and the number of atom sites taking part in the 
enhanced diffusion process. Further information on this topic will be found 
in the supplementary reading section.

2.8 Supplementary reading

There are many books which treat the topic of diffusion in depth. One of the 
most readable is:
P.G. Shewmon, Diffusion in Solids, McGraw-Hill, New York (1963).

The subject is also treated extensively in textbooks of metallurgy and 
materials science. A good account is given in:
W.D. Kingery, H.K. Bowen and D.R. Uhlmann, Introduction to Ceramics, 2nd Edition, Wiley- 

Interscience, New York (1976).

An advanced review article which summarizes diffusion theory is in:
A.D. LeClaire, in Treatise on Solid State Chemistry, ed. N.B. Hannay, Plenum, New York 

(1976).
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Figure 2.15 Experimental result for the diffusion of radioactive 63Ni2+ diffusing into 
polycrystalline CoO at 953°C. [Redrawn from K. Kowalski, thesis, University of Nancy (1994).] 
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where D D is the diffusion coefficient down the dislocations and grain 
boundaries and g is a geometrical factor which contains terms for the 
density of these defects and the number of atom sites taking part in the 
enhanced diffusion process. Further information on this topic will be found 
in the supplementary reading section. 

2.8 Supplementary reading 

There are many books which treat the topic of diffusion in depth. One of the 
most readable is: 

P.G. Shewmon, Diffusion in Solids, McGraw-Hill, New York (1963). 

The subject is also treated extensively in textbooks of metallurgy and 
materials science. A good account is given in: 

W.D. Kingery, H.K. Bowen and D.R. Uhlmann, Introduction to Ceramics, 2nd Edition, Wiley­
Interscience, New York (1976). 

An advanced review article which summarizes diffusion theory is in: 

A.D. LeClaire, in Treatise on Solid State Chemistry, ed. N.B. Hannay, Plenum, New York 
(1976). 
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Many experimental results are to be found in:
P. Kofstad, Nonstoichiometry, Diffusion and Electrical Conductivity in Binary Metal Oxides, 

Wiley-Interscience, New York (1972).

A clear account of diffusion, together with self-test examples is given by:
R. Metselaar, / .  Mater. Ed. 6, 229 (1984); 7, 653 (1985); 10, 621 (1988).

Worked examples covering a wide range of diffusion problems is given in 
the very useful book:
R.G. Faulkener, D.J. Fray and R.D. Jones, Worked Examples in Mass and Heat Transfer in 

Materials Engineering, Institution of Metallurgists, London (n.d.).

Short-circuit diffusion is covered in:
I. Kaur and W. Gust, Fundamentals of Grain and Interphase Boundary Diffusion, Ziegler Press, 

Stuttgart (1988).
A. Atkinson, J. Chem. Soc. Faraday Trans. 1307 (1990).



3 The atomic theory of diffusion

3.1 Introduction

In chapter 2 the process of diffusion was presented from an experimental 
viewpoint. These results are now rationalized on an atomic scale. This has 
more than an academic interest, for if the atomic movements which 
constitute diffusion can be understood, then those processes which depend 
upon diffusion can be controlled more precisely and materials chemically 
and physically tailored to our special needs.

When diffusion occurs atoms are migrating through the crystal structure. 
Let us first look at some schematic ways in which we can imagine this to 
take place. For normal crystals this will be by way of individual atom jumps 
from one stable position to another. į Some ways in which these individual 
jumps can take place are illustrated in Figure 3.1.

If Schottky defects are present, as in Figure 3.1(a), atoms or ions can 
jump from a normal site into a neighbouring vacancy and so gradually move 
through the crystal. Looking at the pathways shown in Figure 3.1(a), we can 
see that movement of a diffusing atom into a vacant site corresponds to 
movement of a vacancy in the other direction. This process is, therefore, 
frequently referred to as vacancy diffusion. In practice it is often very 
convenient, where vacancy diffusion occurs, to ignore atom movement and 
to focus attention upon the diffusion of the vacancies as if they were real 
particles. This mechanism is of importance in close-packed materials.

When Frenkel defects are present, as in Figure 3.1(b), three migration 
routes are possible. An atom can jump from a normal position into a vacant 
site created by the Frenkel defect, which is identical to the process of 
vacancy diffusion just described. Alternatively, an atom in an interstitial site 
can jump to a neighbouring interstitial position. This is called interstitial 
diffusion and is the mechanism by which tool-steels are hardened. One 
commonly used process involves heating the steel in an atmosphere of 
nitrogen. The nitrogen atoms enter the steel and diffuse by an interstitial

fin  chapter 5 we will focus on fast ion conductors, where cooperative atomic movement can 
occur involving many atom jumps in concert.
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(a)

(c)

(b) ( d )

Figure 3.1 Some possible diffusion mechanisms in crystals, (a) Vacancy diffusion in a material 
containing Schottky defects in an idealized crystal structure, (b) Vacancy, interstitial and 
interstitialcy diffusion in a material containing Frenkel defects on the cation sub-lattice, (c) 
Interstitial and interstitialcy diffusion in a material containing interstitial impurities, (d) Ring 
and exchange diffusion in a material containing substitutional impurities.

mechanism, creating a hard nitrided surface layer on the tool. A third 
mechanism is also possible. Here, an interstitial atom jumps to a filled site 
and knocks the occupant into an neighbouring interstitial site. This ‘knock- 
on’ process is called interstitialcy diffusion.

When impurity point defects are present in a crystal they can migrate 
without the intervention of Schottky or Frenkel defects. Interstitial 
impurities can move by interstitial and interstitialcy jumps, as shown in 
Figure 3.1(c). Substitutional impurities can also move by way of two 
mechanisms, illustrated in Figure 3.1(d). In exchange diffusion an impurity 
swaps places with a neighbouring normal atom while in ring diffusion 
cooperation between several atoms is needed to make the exchange. These 
processes have been found to take place during the doping of semiconductor 
crystals.

Remember that in real crystals the paths will be more complex than 
suggested by the two-dimensional illustrations. It is a good idea to look at a 
crystal structure model, if you can, to relate the ideas just presented to the 
three-dimensional geometry of the real world.
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3.2 Self-diffusion mechanisms

3.2.1 Energy barriers

The process of self-diffusion involves the movement of atoms in a random 
fashion through a crystal. No strong driving force, such as a concentration 
gradient, is present. Nevertheless, each time an atom moves it will have to 
overcome an energy barrier. This is because the migrating atoms have to 
leave normally occupied positions which are, by definition, the most stable 
positions for atoms in the crystal, to pass through less stable positions not 
normally occupied by atoms. Often atoms may be required to squeeze 
through a bottle-neck of surrounding atoms in order to move at all.

For a one-dimensional diffusion process we can imagine the energy 
barrier to take the form shown in Figure 3.2. Referring to this diagram, we 
can write Ev for the energy barrier to be surmounted by an atom migrating 
via a vacancy mechanism, Et for the energy barrier to be surmounted by an 
interstitial atom and so on. How easily will an atom overcome the barrier it 
faces? Obviously, the larger the magnitude of E the less chance there is that 
the atom has the necessary energy to make a successful jump.

We can gain an estimate of this probability by using Maxwell-Boltzmann 
statistics, which tells us that the probability, p , that a single atom will move 
from one position of minimum energy in Figure 3.2 to an adjacent position 
will be given by the equation

where k is Boltzmann’s constant and T the absolute temperature. This 
equation indicates that if E is very small, the probability that the atom will 
clear the barrier approaches 1.0, if E is equal to kT  the probability for a

Figure 3.2 Schematic illustration of the potential barrier, E, that a migrating atom has to 
overcome in moving through a crystal lattice. Stable atom positions, shown by filled circles, are 
separated by the jump distance, a.
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We can gain an estimate of this probability by using Maxwell-Boltzmann 
statistics, which tells us that the probability, p, that a single atom will move 
from one position of minimum energy in Figure 3.2 to an adjacent position 
will be given by the equation 

p = exp ( -k~) 
where k is Boltzmann's constant and T the absolute temperature. This 
equation indicates that if E is very small, the probability that the atom will 
clear the barrier approaches 1.0, if E is equal to kT the probability for a 

atom 
positions • 

a 
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Figure 3.2 Schematic illustration of the potential barrier, E, that a migrating atom has to 
overcome in moving through a crystal lattice. Stable atom positions, shown by filled circles, are 
separated by the jump distance, a. 

atom 
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successful jump is about one third and if E increases above kT  the 
probability that the atom could jump the barrier rapidly becomes negligible.

Knowing the probability of an atom clearing the barrier is half of the 
problem solved. Now it is necessary to know how often the atom tries to 
make a jump. Recall that the atoms in a crystal are not stationary, but are 
vibrating continually with a frequency, u, that is usually taken to have a 
value of about 1013Hz at room temperature. It is reasonable to suppose that 
the number of attempts at a jump, sometimes called the attempt frequency, 
will be equal to the frequency with which the atom is vibrating. The number 
of successful jumps that an atom will make per second, Г, will be equal to the 
attempt frequency, v, multiplied by the probability of a successful move, i.e.

3.2.2 Atomic migration and diffusion coefficients

In order to link this idea with the magnitude of the self-diffusion coefficient 
it is necessary to return to the basic equations of diffusion theory, Fick’s 
laws. For the present task the most important of these is Fick’s first law. For 
a flow of atoms along the x-direction this can be written as

where J  is the number of particles crossing a unit area in the solid each 
second, D is the diffusion coefficient and c is the concentration of the 
diffusing species at point x after time t has elapsed.

It is not difficult to derive an expression for J  for a one-dimensional 
diffusion process and this is given in Appendix 3.1. The analysis shows that

Where Г is the number of successful jumps that an atom makes per second 
and a is the separation of the stable positions, as in Figure 3.2. If we now 
compare this equation with Fick’s first law, given above, it is clear that:

We have already derived an expression for Г in terms of the barrier height to 
be negotiated, E, and substituting, we arrive at
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3.2.3 Self-diffusion in crystals

So far our considerations have been limited to diffusion along a single 
direction. In real crystals, it is necessary to take some account of the three- 
dimensional nature of the diffusion process. An easy way of doing this is to 
add a geometrical factor, g, into the equation for D so that it becomes

In fact, in the one-dimensional case we have already done this because the 
factor 1 / 2  was a geometrical term to account for the fact that an atom jump 
can be in one of two directions. In a cubic structure, diffusion can occur 
along six equivalent directions and a value of g of 1 /6  would be appropriate

3.2.4 The effect of the defect population

In a real solid containing a population of defects, the number of jumps per 
second will not only involve the diffusing species, but also the defect 
population. Let us consider two examples. If we are discussing interstitial 
diffusion in AgBr, the amount of diffusion will be decided by the number of 
Frenkel defects in the system. To take this into account we should 
incorporate a term for и/into our equations. Similarly, an atom at a normal 
lattice position cannot diffuse by a vacancy mechanism unless there is a 
vacancy population in the crystal. In a pure crystal, this vacancy population 
will arise from a Schottky defect population, and we would need to include a 
term for ns.

The defects of interest could arise in many other ways. If we, therefore, 
simply express the number of important defects present in the crystal as n, 
we can correctly write the diffusion coefficient expression as

(3.1)

3.3 The Arrhenius equation and the effect of temperature

If this last equation is compared to the Arrhenius equation

the pre-exponential factor D0 evaluated experimentally is given by
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Similarly, the activation energy, E, is equivalent to the height of the energy 
barrier to be surmounted. We have, therefore, succeeded in our aim of 
relating the experimentally observed form of the diffusion equation to an 
atomic model.

When Arrhenius plots were described in section 2.2, it was remarked that 
these sometimes fell into two regions; the low temperature part having a 
rather lower activation energy and the high temperature area having a 
higher activation energy, as is shown schematically in Figure 3.3. Clearly 
something is happening at higher temperatures which is using additional 
energy compared to the low temperature regime. The atomic model allows 
us to explain this puzzling phenomenon.

We notice in these equations that D0 includes n, the number of defects 
present. At low temperatures the number of intrinsic (Frenkel and Schottky) 
defects will be small. Impurities can also create defects, and it is reasonable 
to suppose that the defects due to impurities far outnumber the intrinsic 
defects present. Hence the number of defects, «, in the equation is indeed 
constant. Thus, in the low temperature part of an Arrhenius plot the 
activation energy, E, will correspond to height of the energy barrier and D0 
to ga2vn.

At high temperatures, however, it is unrealistic to assume that the number 
of defects, я, is constant. It is more reasonable to assume that at high 
enough temperatures, the constant n should be replaced by a formula 
expressing the real population of defects in the crystal. If we take as an 
example Schottky defects in a crystal of formula M X

and equation (3.1) becomes

Figure 3.3 Diagram showing the Arrhenius plot expected from a diffusion experiment to find 
the activation energy for diffusion. The slope in the impurity region yields a value for the energy 
of movement of the atoms, and the slope in the intrinsic region yields a value for the energy of 
formation of the defects plus the energy of movement of the atoms.
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Figure 3.3 Diagram showing the Arrhenius plot expected from a diffusion experiment to find 
the activation energy for diffusion. The slope in the impurity region yields a value for the energy 
of movement of the atoms, and the slope in the intrinsic region yields a value for the energy of 
formation of the defects plus the energy of movement of the atoms. 
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where Ev represents the height of the energy barrier to be overcome in 
vacancy diffusion. If we have Frenkel defects in a crystal of formula MX

and equation (3.1) becomes

where Eį represents the potential barrier to be surmounted by an interstitial 
atom.

Now both of these equations retain the form

but now E is the sum of the energy needed to move the defect, Eį or Ev, plus 
the energy of defect formation. For Frenkel defects

and for Schottky defects

Thus a comparison of the slope of the Arrhenius plot in the high 
temperature and the low temperature region will allow an estimate of both 
the energy barrier and the relevant defect formation energy to be made. 
Some values found in this way are listed in Table 3.1.

Finally, we should remark on the fact that in our previous discussion we 
have supposed that the height of the potential barrier will be the same at all 
temperatures. This is probably not so. As the temperature increases the 
lattice will expand, and in general E would be expected to decrease. 
Moreover, some of the other constant terms in the preceding equations will 
vary slightly with temperature. For example, the lattice spacings will change, 
leading to a change in the constant a, and the vibration frequency, v, will 
increase. The Arrhenius plots reveal this by being slightly curved.
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Table 3.1. Some enthalpy values for the formation and movement of vacancies in alkali halide 
crystals

Schottky defects

Material Hf Hm cation vacancy Hm anion vacancy

NaCl 192 84 109
NaBr 163 84 113
KC1 230 75 172
KBr 192 29 46

Frenkel defects

Material Hf Hm interstitial Hm vacancy

AgCl 155 13 36
AgBr 117 11 23

All values in kJ mol l .

3.4 The relationship between D and diffusion distance

In many processes it is necessary to be able to estimate the distance that 
atoms can diffuse in a given time. This is important, for example, if we want 
to know how far a dopant will penetrate into a semiconductor during 
fabrication. The discussion in chapter 2 revealed that there is no single 
distance that can be quoted because the distribution of the diffusing atoms 
has the form of a bell-shaped curve. The development of this curve is shown 
in Figure 3.4.

In these circumstances, the best we can do is to get an idea of the average 
distance moved by the diffusing atoms. A straightforward derivation, which 
assumes a random one-dimensional process is set out in Appendix 3.2. The 
result obtained, for diffusion along the jt-axis only, is:

where the square root of (x1) is a quantity called the root mean square value 
of x, D is the diffusion coefficient and t is the diffusion time. Thus, we find 
that the root mean square distance that an atom will move is given by a 
rather simple relationship, and that it is proportional to the square root of 
the time.

To complete the discussion it is necessary to explain exactly what the root 
mean square is. To answer this it is necessary to turn to a statistical analysisf 
of the situation. In statistical parlance, the distribution of atoms leading to a 
bell-shaped curve is called a normal distribution or Gaussian distribution. The 
statistics of the normal distribution are well known and tell us that there is a 
67% probability that any particular atom will be found in the region
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Figure 3.4 (a)-(d) Development of bell-shaped curves by diffusion of a tracer atom in a crystal.

between the starting point of the diffusion and a distance of ± y/(x2) on 
either side of it. This region is shown shaded in Figure 3.5. The probability 
that any particular atom has diffused further than this distance is given by 
the total area under the curve minus the shaded area, which is 33%. The 
probability that the atoms have diffused further than 2ҳ/(х2) is equal to the 
total area under the curve minus the area under the curve up to 2 ҳ / (x2). 
This is found to be equal to about 95%. Some atoms will have gone further 
than this distance, but the probability that any one particular atom will have 
done so is very small.

flnterestingly, the equations relevant to this analysis were first derived by Demoivre in 1733, 
with respect to problems associated with the tossing of coins. There are many similarities, of 
course. Each atom can jump forwards or backwards, just as a coin can fall heads or tails. A very 
reasonable model for diffusion can be made simply by placing a row of counters on a board, 
and tossing a coin to decide if a counter should move forward or backward. After many throws 
the distribution of the counters will mirror the distribution of atoms.

(a)

(b)

(c)

(d)
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Figure 3.5 A typical bell-shaped normal distribution curve. The shaded region in the centre of 
the curve indicates a 67% probability that a diffusing atom will be found between the limits
+ y/W) and -y/W)·

3.5 Correlation effects

So far in this chapter we have discussed the diffusion of atoms in a random 
fashion throughout the crystal lattice. Each step was unrelated to the one 
before and not driven by any particular force. The atoms and defects can be 
considered to be jostled solely by thermal energy. However, diffusion of an 
atom in a solid is not a truly random process and it is reasonable to suppose 
that in many circumstances a given jump direction may depend on the 
direction of the previous jump.

We can explain the situation by considering the vacancy diffusion of an 
atom in a crystal, as shown schematically in Figure 3.6. The atom we are 
interested in is dot shaded in Figure 3.6(a), and can be regarded as a tracer 
atom. It is situated next to a vacant site, so that diffusion can take place. 
Because we are interested in the diffusion of the tracer, let us assume that it 
is the tracer that makes the first jump into the vacant site. This leads to the 
situation shown in Figure 3.6(b). The next jump of the tracer is no longer an 
entirely random process. It is still next to the vacancy and clearly it is more 
likely that the tracer will move back to the vacancy, recreating the situation 
shown in Figure 3.6(a). Hence, of the choices available to the tracer in 
Figure 3.6(b), a jump back to the situation shown in Figure 3.6(a) is of 
highest probability.

If we now focus attention upon the vacancy we find a different answer. 
Considering the situation in Figure 3.6(a), diffusion can occur by way of any 
of the atoms around the vacancy moving into the empty site. The vacancy, 
of course, has no preference for any of its neighbours so that its first jump is 
entirely random. The same is true of the situation shown in Figure 3.6(b). 
The vacancy will have no need to prefer a jump to the tracer position. Thus, 
we see that the vacancy can always move to an adjacent cation site, and 
hence can follow a truly random path.

THE ATOMIC THEORY OF DIFFUSION 65 

_ N<x2> _ "<x2> o "<x2> 2-J <x2> 

Figure 3.5 A typical bell-shaped normal distribution curve. The shaded region in the centre of 
the curve indicates a 67% probability that a diffusing atom will be found between the limits 
+V(x2) and -V(x2). 

3.5 Correlation effects 

So far in this chapter we have discussed the diffusion of atoms in a random 
fashion throughout the crystal lattice. Each step was unrelated to the one 
before and not driven by any particular force. The atoms and defects can be 
considered to be jostled solely by thermal energy. However, diffusion of an 
atom in a solid is not a truly random process and it is reasonable to suppose 
that in many circumstances a given jump direction may depend on the 
direction of the previous jump. 

We can explain the situation by considering the vacancy diffusion of an 
atom in a crystal, as shown schematically in Figure 3.6. The atom we are 
interested in is dot shaded in Figure 3.6(a), and can be regarded as a tracer 
atom. It is situated next to a vacant site, so that diffusion can take place. 
Because we are interested in the diffusion of the tracer, let us assume that it 
is the tracer that makes the first jump into the vacant site. This leads to the 
situation shown in Figure 3.6(b). The next jump of the tracer is no longer an 
entirely random process. It is still next to the vacancy and clearly it is more 
likely that the tracer will move back to the vacancy, recreating the situation 
shown in Figure 3.6(a). Hence, of the choices available to the tracer in 
Figure 3.6(b), a jump back to the situation shown in Figure 3.6(a) is of 
highest probability. 
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Figure 3.6 Correlated motion in vacancy diffusion. The dot shaded circle represents the tracer 
atom and the arrows the most likely next jump of the tracer.

When this non-random motion is considered over many jumps, the mean 
square displacement of the tracer will be less that that of the vacancy, which 
took the same number of jumps. So it is expected that the observed diffusion 
coefficient of the tracer will be less than that of the vacancy. In these 
circumstances, the random-walk diffusion equations need to be modified by 
the introduction of a correlation factor,/ . The correlation factor is given by 
the ratio of the values of the mean square displacement of the tracer to that 
of the vacancy, provided that the number of jumps considered is large.

Correlation factors for vacancy diffusion generally take values of between 
0.5 and 0.8.

If we consider interstitial diffusion in which we have only a few diffusing 
ions and many available empty interstitial sites, we would expect a 
correlation factor close to 1.0. In effect the interstitial atom moves in a 
‘sea of vacancies’. In the case of interstitialcy diffusion, this will not be true 
because the number of vacancies will be equal to the number of interstitials 
present, which will always be rather small in proportion to the number of 
filled sites.

A number of mathematical procedures have been adopted for evaluating 
correlation factors. Table 3.2 lists some values for a variety of diffusion 
mechanisms in some common crystal structure types.

Before concluding this section, it is useful to take the arguments a little 
further. In our discussion of vacancy diffusion all the cations were assumed 
to be identical. Often, however, we need to consider the diffusion of an 
impurity atom in a crystal, say K in NaCl or Ca in MgO. In such cases, the
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When this non-random motion is considered over many jumps, the mean 
square displacement of the tracer will be less that that of the vacancy, which 
took the same number of jumps. So it is expected that the observed diffusion 
coefficient of the tracer will be less than that of the vacancy. In these 
circumstances, the random-walk diffusion equations need to be modified by 
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the ratio of the values of the mean square displacement of the tracer to that 
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Correlation factors for vacancy diffusion generally take values of between 
0.5 and 0.8. 

If we consider interstitial diffusion in which we have only a few diffusing 
ions and many available empty interstitial sites, we would expect a 
correlation factor close to 1.0. In effect the interstitial atom moves in a 
'sea of vacancies'. In the case of interstitialcy diffusion, this will not be true 
because the number of vacancies will be equal to the number of interstitials 
present, which will always be rather small in proportion to the number of 
filled sites. 

A number of mathematical procedures have been adopted for evaluating 
correlation factors. Table 3.2 lists some values for a variety of diffusion 
mechanisms in some common crystal structure types. 

Before concluding this section, it is useful to take the arguments a little 
further. In our discussion of vacancy diffusion all the cations were assumed 
to be identical. Often, however, we need to consider the diffusion of an 
impurity atom in a crystal, say K in NaCI or Ca in MgO. In such cases, the 



THE ATOMI C THEORY OF D I F F U S I O N 67

Table 3.2 Correlation factors for self-diffusion

Mechanism Structure Correlation factor if)

Vacancy Diamond 0.50
b.c.c. 0.7272
f.c.c. 0.7815
h.c.p. 0.7812 (fx,fy)
h.c.p. 0.7815 (fz)

Interstitialcy f.c.c. 0.80
Fluorite (cations) 1.00
b.c.c. 0.666
CsCl (cations) 0.832
AgBr (cations) 0.666

probability that the impurity will exchange with the vacancy will depend on 
other factors such as the relative atomic sizes of the impurity compared to 
the host atoms. In the case of ionic movement, the charge on the diffusing 
species will play a part. This can be expressed in terms of the jump 
frequencies of the host and impurity atoms, in which case one is likely to be 
greater than the other. If, for example, the host atoms have a very high jump 
frequency, they will be far more likely to move at any instant, giving them a 
higher correlation factor than the impurities.

3.6 Case history: integrated circuits

Integrated circuits are one of the most important innovations of the 
twentieth century. They lie at the heart of all computers, smart machines, 
smart cards and the multiple facets of modern life that rely on information 
transfer in one way or another. The key step in the manufacture of 
integrated circuits is diffusion.

Integrated circuit production starts with a slice of single crystal silicon 
about 125 mm diameter and about 0.2 mm thick. All of the integrated 
circuitry is fabricated within a p-type or л-typef surface layer of about 6-8 
μιη thickness on the surface.

This layer is grown on the surface by a process in which volatile 
compounds of silicon and the chosen impurity are decomposed on the 
original surface of the single crystal slice. The compounds used are usually 
halides, which are fairly volatile and can be prepared in a pure state. If the

fThis terminology will become clear later. For the moment it is only necessary for us to know 
that conductivity in «-type material is by way of electrons while in p -type material it is by way of 
electron holes. Conduction by way of holes is analogous to vacancy diffusion.
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dopant halide comes from the left of silicon in the periodic table, typically 
BBr3, the resulting crystal becomes p-type while if it comes from the right, 
typically PBr5, the crystal turns out to be «-type. The growth conditions are 
carefully chosen so that the single crystal itself grows outward by the 
addition of new layers of atoms in perfect match with those in the under­
lying lattice. The dopant is incorporated substitutionally on some of the sites 
normally occupied by the silicon atoms. This process is called epitaxial 
growth. The dopant atoms give the silicon its electrical properties.

Integrated circuits consist of complex patterns of n- and p-type silicon 
which are grown into the epitaxial layer. These patterns are built up by a 
repetition of three basic steps. The surface of the slice is oxidized to silicon 
dioxide, Si02. ‘Windows’ are made in this layer by dissolving away the Si02 
in precisely specified areas. A dopant is diffused into the exposed silicon to 
switch its electrical properties from «-type to p-type or vice versa. The role of 
defects is crucial to each step and the first two steps are both diffusion 
controlled.

The growth of layers of Si02 on the crystal surface is carried out by 
heating the slice in oxygen gas at about 1200 °С. The growth rate is slow, 
about 1 pm per h. Now the reason for this can be judged by using the 
information given in the case study in the previous chapter, mainly con­
cerning Cu20. The atoms in Si02 are strongly bonded and this material does 
not contain a high defect population. Furthermore, it is a good electronic 
insulator and so electronic conduction is not possible. These factors mean 
that as soon as the initial layer of Si02 is formed on the surface of the slice, 
further transport of Si or O across the layer is very slow indeed. This makes 
the growth of the layer nicely controllable.

The second key step is the diffusion of the desired «- or /?-type dopant into 
selected exposed regions of silicon. This diffusion step is controlled, as we 
would expect, by controlling the important diffusion variables of temp­
erature and time. The initial step is to deposit rather a lot of the dopant on 
the exposed areas of silicon rather rapidly to build up a concentrated surface 
layer. The next stage is to heat the slice at a controlled temperature to allow 
the dopant ions to diffuse into the crystal. The equations given for tracer 
diffusion in the previous chapter will help in working out the important 
depth-concentration profile which will determine the exact electrical 
properties of the layer.

Although the fact that the change of electrical behaviour from «-type to p- 
type and back again is not diffusion controlled, it is an important property. 
After all, one does not change a metal into an insulator by adding a trace of 
a non-conducting material or change it back again by adding another trace 
of metal, yet this is what happens in semiconductors like doped silicon. This 
is rather an important property which comes about by the nature of the
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impurity defects and the way in which they control the electrical properties 
of the material. This unusual state of affairs will be explained in later 
chapters.

3.7 Ionic conductivity

Ionic movement under the action of an externally applied electric field is 
called ionic conductivity. If two electrodes are introduced into a beaker 
containing a solution of ions and a voltage is applied, ionic conductivity will 
occur and the cations will move towards the cathode and the anions towards 
the anode. This is the origin of the terms cation and anion, in fact. Now the 
same thing will occur when a voltage is applied across a solid which is made 
up of ions. In most normal solids, the ionic conductivity is too small to 
measure at room temperature but all of chapter 5 is devoted to materials in 
which this limitation has been overcome. Although at first sight it may seem 
that ionic conductivity in a solid has little connection with self-diffusion, the 
processes can be treated in very similar ways.

Let us, to illustrate this point, consider diffusion of monovalent ions. The 
movement will be subject to exactly the same constraints as we discussed 
previously. The only difference will be that the potential energy barrier E, to 
be surmounted by the ions in migrating, will be modified in the presence of 
an applied field V. If the ion is moving against the field, it will have to 
negotiate not only E but an extra obstacle given by

eaV
~ Ύ ~

where e is the electron charge, a is the normal lattice separation and V is the 
magnitude of the applied electric field. This situation is shown schematically 
in Figure 3.7. On the other hand, if movement is in the opposite direction, 
the applied field helps the ion by lowering the potential barrier by a similar 
amount. Compared to diffusion, the only new aspect of the situation is that 
the potential barriers are now tilted in the direction of the applied electric 
field, as shown in Figure 3.7. At right angles to the field, the energy barrier E 
remains unchanged. Migration of charged particles in the direction of the 
field is now favoured.

We can consider the effect this will have upon the movement of the ions 
by utilizing the same model as we employed to look at self-diffusion. The 
details are given in Appendix 3.3, the result of which reveals that the ionic 
conductivity, σ, can be written as

where E is the height of the diffusion barrier, k is Boltzmann’s constant and

(3.2)
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where e is the electron charge, a is the normal lattice separation and V is the 
magnitude of the applied electric field. This situation is shown schematically 
in Figure 3.7. On the other hand, if movement is in the opposite direction, 
the applied field helps the ion by lowering the potential barrier by a similar 
amount. Compared to diffusion, the only new aspect of the situation is that 
the potential barriers are now tilted in the direction of the applied electric 
field, as shown in Figure 3.7. At right angles to the field, the energy barrier E 
remains unchanged. Migration of charged particles in the direction of the 
field is now favoured. 

We can consider the effect this will have upon the movement of the ions 
by utilizing the same model as we employed to look at self-diffusion. The 
details are given in Appendix 3.3, the result of which reveals that the ionic 
conductivity, (1, can be written as 

(1 = (~) exp ( -k~) (3.2) 

where E is the height of the diffusion barrier, k is Boltzmann's constant and 
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Figure 3.7 Schematic illustration of the potential barrier that a migrating ion must overcome 
in the presence of an electric field. The values of a, the jump distance, and E, the average height 
of the potential barrier, are the same as in Figure 3.2, but the effective barrier that an ion faces is 
lowered for movement in the direction of the field and increased for movement in a direction 
against the field.

T is the absolute temperature. The term σ0 is given by

where n is the number of migrating ions per unit volume, v is the attempt 
frequency and a and e have already been defined above.

The number of mobile species present in the crystal will depend upon the 
point defect populations present. At low temperatures, where this 
population is controlled by the impurities present, n will be constant. This 
means that we can use an Arrhenius-like plot to determine a value for E in 
the following way. Multiplying both sides by T and taking logarithms in 
equation (3.2) gives

Hence a plot of In(σΤ) versus \ /T  will have a slope equal to - E /k .
At high temperatures it is reasonable to suppose that the value of n will 

increase due to the creation of extra Frenkel or Schottky defects. In this case 
we can substitute for n from the equations given in chapter 1, as we did 
above.

For Frenkel defects

and for Schottky defects
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Figure 3.7 Schematic illustration of the potential barrier that a migrating ion must overcome 
in the presence of an electric field . The values of a, the jump distance, and E, the average height 
ofthe potential barrier, are the same as in Figure 3.2, but the effective barrier that an ion faces is 
lowered for movement in the direction of the field and increased for movement in a direction 
against the field. 

T is the absolute temperature. The term 0'0 is given by 

0'0 = nva2e2 

where n is the number of migrating ions per unit volume, v is the attempt 
frequency and a and e have already been defined above. 

The number of mobile species present in the crystal will depend upon the 
point defect populations present. At low temperatures, where this 
population is controlled by the impurities present, n will be constant. This 
means that we can use an Arrhenius-like plot to determine a value for E in 
the following way. Multiplying both sides by T and taking logarithms in 
equation (3.2) gives 

-E 
In(O'T) = In(O'o) + kT 

Hence a plot of In(O'T) versus liT will have a slope equal to -Elk. 
At high temperatures it is reasonable to suppose that the value of n will 

increase due to the creation of extra Frenkel or Schottky defects . In this case 
we can substitute for n from the equations given in chapter 1, as we did 
above. 

For Frenkel defects 

and for Schottky defects 

E= Ei + D.Hf 
2 
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If both high and low temperature regimes are important, the Arrhenius plots 
for such materials will show a knee similar to that shown in Figure 3.4.

Thus one is able to measure values for enthalpy of formation and 
migration of point defects using conductivity data in an analogous way to 
using diffusion data. In fact, although conductivity measurements are not 
always easy to make, they are usually much easier to perform than diffusion 
experiments, and are usually preferred. To illustrate this, we reproduce in 
Figure 3.8 some experimental results for the ionic conductivity of NaCl 
which show the intrinsic and impurity regions clearly.

The equations that have been derived in this section are correct for 
monovalent ions only. In order to make them applicable to ions of formal 
charge + z, we must replace the term e by 4- ze.

Figure 3.8 The ionic conductivity o f NaCl clearly showing the intrinsic and impurity regions. 
[From R. Kirk and P.L. Pratt, Proc. Br. Ceram. Soc. 9, 215 (1967).]
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Figure 3.8 The ionic conductivity of NaCI clearly showing the intrinsic and impurity regions. 
[From R. Kirk and P.L. Pratt, Proc. Br. Ceram. Soc. 9, 215 (1967).] 
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3.7.1 The relationship between ionic conductivity and diffusion coefficient

From our foregoing discussions, ionic conductivity and ionic diffusion are 
seen to be closely related. If both processes occur by the same random-walk 
mechanism, the relationship between the self-diffusion coefficient, Z), and 
the ionic conductivity, σ, can readily be derived.

The ionic conductivity of a monovalent ion in a direction parallel to an 
external electric field is given by

The equivalent equation for diffusion of an ion, moving in one direction, 
over an identical potential barrier is given by

Combining these two equation gives

This equation, first derived by Einstein, is a simplified form of an equation 
generally known as the Nernst-Einstein equation. For an ion of charge +z, 
the equation becomes

In both these equations n is the number of mobile ions of charge ze per unit 
volume.

Example 3.1

Estimate the value of σ/D.
Taking the charge on the electron to be 1.6 x 10~19C and Boltzmann’s 

constant to be 1.38 x 10-23 JK -1

In general, n takes a value of approximately 1022 defects m~3, and taking T 
as 10 0 0K

72 PRINCIPLES AND APPLICATIONS OF CHEMICAL DEFECTS 

3.7.1 The relationship between ionic conductivity and diffusion coefficient 

From our foregoing discussions, ionic conductivity and ionic diffusion are 
seen to be closely related. If both processes occur by the same random-walk 
mechanism, the relationship between the self-diffusion coefficient, D, and 
the ionic conductivity, a, can readily be derived. 

The ionic conductivity of a monovalent ion in a direction parallel to an 
external electric field is given by 

(nva2e2) (E) a= -- exp --
kT kT 

The equivalent equation for diffusion of an ion, moving in one direction, 
over an identical potential barrier is given by 

D = va2exp(~:) 
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a ne2 

D kT 

This equation, first derived by Einstein, is a simplified form of an equation 
generally known as the Nernst-Einstein equation. For an ion of charge + z, 
the equation becomes 

a nz2e2 
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In both these equations n is the number of mobile ions of charge ze per unit 
volume. 

Example 3.1 

Estimate the value of a/D. 
Taking the charge on the electron to be 1.6 x 10-19 C and Boltzmann's 

constant to be 1.38 x 10-23 JK-1 

a 

D 

n x (1.6 x 10-19)2 

(1.38 x lO-23)T 

- 1 86 X 1O-15~ - . T 

In general, n takes a value of approximately 1022 defects m-3, and taking T 
as 1000K 
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Hence we see that D is considerably smaller than σ, so not only are 
conductivity values more easily obtained experimentally, but are also a lot 
larger in magnitude.

3.7.2 Transport numbers

The conventional method of stating the electrical conductivity of a crystal 
gives no indication of the component conductivities which may be 
contributing to the overall effect. Conductivity could arise from either 
cations, anions or electrons. Transport numbers give the extent to which each 
of these factors contribute to the conductivity. Thus, if we write the total 
conductivity of a material as σ we can write

where creation? cTanion and a eiectron are the conductivities of the cations, anions 
and electrons, and Nation, /anion and /electron are called the transport numbers 
for cations, anions and electrons, respectively. As can be seen from these 
relationships

Among the compounds of interest in this book the following generalizations 
hold.

Halides rarely show electronic conductivity, so that /electron is 0. Li halides 
in which the small Li+ ion is very mobile, and Ag halides with Frenkel 
defects on the cation sub-lattice, have / cation = 1.0. Ba and Pb halides, with 
very large cations and which contain Frenkel defects on the anion sub­
lattice, show only anion migration and hence have /anion = 1.0. NaF, NaCl, 
NaBr and KC1 in which Schottky defects prevail and in which the cations 
and anions are of similar sizes, have both cation and anion contributions to 
ionic conductivity.
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a cation tcation a 

aanion tanion a 

a electron telectron a 

where acation, aanion and aelectron are the conductivities of the cations, anions 
and electrons, and tcation, tanion and telectron are called the transport numbers 
for cations, anions and electrons, respectively. As can be seen from these 
relationships 

a = a(tcation + tanion + telectron) 

tcation + tanion + telectron 

Among the compounds of interest in this book the following generalizations 
hold. 

Halides rarely show electronic conductivity, so that telectron is O. Li halides 
in which the small Li + ion is very mobile, and Ag halides with Frenkel 
defects on the cation sub-lattice, have tcation = 1.0. Ba and Pb halides, with 
very large cations and which contain Frenkel defects on the anion sub­
lattice, show only anion migration and hence have tanion = 1.0. NaF, NaCl, 
NaBr and KCI in which Schottky defects prevail and in which the cations 
and anions are of similar sizes, have both cation and anion contributions to 
ionic conductivity. 
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Oxides and sulphides, especially of transition metals, often have 
appreciable values of êlectron·

3.8 Supplementary reading

Atomic diffusion is covered in many textbooks of materials science and 
physical chemistry. For a very clear introductory article, see:
Phase Diagrams and Microstructure, Open University Introduction to Materials course, Unit 5, 

Open University (1974).

A more comprehensive discussion is included in:
W.D. Kingery, H.K. Bowen and D.R. Uhlmann, Introduction to Ceramics, 2nd Edition, Wiley- 

Interscience, New York (1976).

At an advanced, but still readable level, refer to:
P.G. Shewman, Diffusion in Solids, McGraw-Hill (1963).
J.R. Manning, Diffusion Kinetics for Atoms in Crystals, Van Nostrand (1968).

A clear exposition of the principles of diffusion, together with self- 
assessment questions, is given by:
R. Metselaar, / .  Mater. Edn. 6 , 229 (1984); 7, 653 (1985); 10, 621 (1988).

The supplementary reading at the end of chapter 2 also contains material 
relevant to the present chapter.

Appendix 3.1
Atomic migration and the diffusion coefficient

We can derive expressions for J  and àc/άχ  by reference to Figure Al. Here 
we have adjacent planes in a crystal, numbered 1 and 2 , separated by the 
atomic jump distance, a. Let nx and n2 be the numbers of diffusing atoms per

Figure A l Schematic diagram of two adjacent planes in a crystal, 1 and 2, separated by the 
jump distance for diffusion, a. The number of diffusing atoms on these planes is nx and n2 per 
unit area, respectively.
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unit area in planes 1 and 2 , respectively. If Г12 is the frequency with which 
an atom moves from plane 1 to plane 2 , then the numbers of atoms moving 
from plane 1 to 2 per second is y12, where

Similarly, the number moving from plane 2 to plane 1 is j 2\ where

The net movement, often called the flux, between the planes, / ,  is given by

If the process is random, the jump frequency is independent of direction and 
we can set Г12 equal to Г21. Moreover, if the jump frequency is independent 
of direction, then half of the jumps, on average, will be in one direction and 
half will be in the opposite direction, so we can write

where Г represents the overall jump frequency of the diffusion atoms, i.e.

To proceed further, we must relate щ and n2 to the concentration of mobile 
atoms in the crystal. This is readily accomplished. The number of mobile 
atoms on plane 1 is щ per unit area, so that the concentration per unit 
volume at plane 1 is ηγ/α, which we will call c\. Similarly, the number of 
mobile atoms per unit area on plane 2 is n2,, so that the concentration per 
unit volume at plane 2 is n2ja which we will call c2. Thus

Hence

The concentration gradient, dc/dx, is given by the change in concentration 
between planes 1 and 2 divided by the distance between planes 1 and 2 , that 
is

where a minus sign is introduced as the concentration falls as we move from 
plane 1 to plane 2. Hence
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J = j12 - hi = (n lr12 - n2r 2J) 

If the process is random, the jump frequency is independent of direction and 
we can set r l2 equal to r 21 . Moreover, if the jump frequency is independent 
of direction, then half of the jumps, on average, will be in one direction and 
half will be in the opposite direction, so we can write 

1 
r I2 =r21 =2 r 

where r represents the overall jump frequency of the diffusion atoms, i.e. 

1 
J = 2 (nl - n2)r 

To proceed further, we must relate nl and n2 to the concentration of mobile 
atoms in the crystal. This is readily accomplished. The number of mobile 
atoms on plane 1 is nl per unit area, so that the concentration per unit 
volume at plane 1 is nda, which we will call CI' Similarly, the number of 
mobile atoms per unit area on plane 2 is n2, so that the concentration per 
unit volume at plane 2 is n2/a which we will call C2. Thus 

(nl - n2) = a(ci - C2) 

Hence 

1 
J = 2a(cl - C2)r 

The concentration gradient, dc/dx, is given by the change in concentration 
between planes 1 and 2 divided by the distance between planes 1 and 2, that 
IS 

dc (CI - C2) 
dx a 

where a minus sign is introduced as the concentration falls as we move from 
plane I to plane 2. Hence 
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and

If we now compare this equation with Fick’s first law

it is clear that

We have already derived an expression for the jump frequency, Г, in terms 
of the barrier height to be negotiated, E, and so

Appendix 3.2
The relationship between D and diffusion distance

Suppose an atom is moving from one stable site to the next in the x- 
direction by way of a random walk. The net displacement of a diffusing 
atom after N jumps will be the algebraic sum of the individual jumps. If x,· is 
the distance moved along the x axis in the /th jump, the distance moved after 
a total of N jumps, x will simply be the sum of all the individual steps, i.e.

In our case each individual value of X/ can be + a or —a.
If the jumps take place with an equal probability in both directions, after 

N jumps the total displacement may have any value between zero and Na. In 
order to proceed, we use a mathematical short cut. If the jump distances are 
squared, we automatically get rid of all the negative quantities. So, squaring 
the summation
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and 

de 
(e\ - e2) = -a dx 

I 2 de 
J= --ra -

2 dx 

If we now compare this equation with Fick's first law 

it is clear that 

J= _D de 
dx 

I 
D = -ra2 

2 

We have already derived an expression for the jump frequency, r, in terms 
of the barrier height to be negotiated, E, and so 

D=~a2v( -kEr) 
Appendix 3.2 
The relationship between D and diffusion distance 

Suppose an atom is moving from one stable site to the next in the x­
direction by way of a random walk. The net displacement of a diffusing 
atom after N jumps will be the algebraic sum of the individual jumps. If Xi is 
the distance moved along the X axis in the ith jump, the distance moved after 
a total of N jumps, x will simply be the sum of all the individual steps, i.e. 

x = x\ +X2 +X3··· = LXi 

In our case each individual value of Xi can be + a or -a. 
If the jumps take place with an equal probability in both directions, after 

N jumps the total displacement may have any value between zero and Na. In 
order to proceed, we use a mathematical short cut. If the jump distances are 
squared, we automatically get rid of all the negative quantities. So, squaring 
the summation 

x2 =(x\ + X2 + X3 ... XN)(X\ + X2 + X3 ... XN) 

=(x\x\ + X\X2 + X\X3",X\XN 

+X2X \ + X2X2 + X2 X 3·· ·X 2X N 

+ ... 
+ XNX\ + XNX2 + XNX3 ... XNXN) 



THE ATOMI C THEORY OF D I F F U S I O N 77

We can write this in a more condensed form as

If a large number of jumps is assumed, and knowing that each jump may be 
either positive or negative, the double sum terms in the last equation average 
to zero. The result is called the mean square displacement, and written (x2). 
The equation therefore reduces to the manageable form

As each jump, xh can be equal to + a or - a, 

i.e. (x2) = Na2
In section 3.2 we defined Г as the frequency with which an atom jumps 

from one site to another along the x-direction, so that the total number of 
jumps, N , will be given by Г jumps per second multiplied by the time, t, over 
which the diffusion experiment has lasted, that is

Hence

However, we determined that the term Та2 is equal to 2Д  so that

The average distance that an atom will travel in time t is the square root of 
(x2), a quantity called the root mean square value of x, which is given by

Appendix 3.3 
Ionic conductivity

The ionic conductivity, σ, can be defined in terms of the equation 

where n is the number of migrating monovalent ions per unit volume, each
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either positive or negative, the double sum terms in the last equation average 
to zero. The result is called the mean square displacement, and written (x2). 
The equation therefore reduces to the manageable form 

(X2) = LX; 

As each jump, Xi, can be equal to + a or -a, 

( 2) 2 2 2 2 X = Xl +X2 + X3· · · +XN 

=a2 +a2 +a2 ... +a2 

i.e. (x2) = Na2 

In section 3.2 we defined r as the frequency with which an atom jumps 
from one site to another along the x-direction, so that the total number of 
jumps, N, will be given by r jumps per second multiplied by the time, t, over 
which the diffusion experiment has lasted, that is 

N=rt 

Hence 

(X2) = rta2 

However, we determined that the term ra2 is equal to 2D, so that 

J{X2) = 2Dt 

The average distance that an atom will travel in time t is the square root of 
(X2), a quantity called the root mean square value of x, which is given by 

Appendix 3.3 
Ionic conductivity 

1M = >/2Dt 

The ionic conductivity, a, can be defined in terms of the equation 

a=nep 

where n is the number of migrating monovalent ions per unit volume, each 
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carrying a charge e and μ is called the mobility of the ion. The strategy is to 
use the idea of atomic jumps to estimate the mobility of the ions and hence 
the ionic conductivity.

The number of jumps that an ion will make in the direction of the field per 
second is given by a modified form of the equation

For movement in the favoured direction, the number of successful jumps 
that an ion will make will be

where we have simply substituted the new potential barrier, E - ^ e a V for E. 
In a direction against the field the number of successful jumps will be given 
by

where we have a similar substitution for E but this time of E + ^eaV, as the 
barrier height is now increased.

The overall jump rate in the direction of the field is Γ+ -  Г_, and as the 
net velocity of the ions in the direction of the field, vel, is given by the net 
jump rate multiplied by the distance moved at each jump we can write

For low field strengths eaV is much less than kT , and 
exp(eaV/2kT) -  exp(-eaV/2KT) may be replaced by (eaV/kT)] as we 
can see from Table Al. We can now proceed to write

fTo see just what sort of field strength this approximation corresponds to, we can take a value 
of eaV/kT  equal to 1 to be the maximum value at which the approximation holds and estimate 
the corresponding field strength. Taking a temperature of 500 K, and a value of a o f about 
0.3 X 10~9m yields a value for V of 2.87 x IO2 V cm-1 . Thus, the approximation is a reasonable 
one for the field strengths up to about 300 V cm-1 .
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carrying a charge e and J1 is called the mobility of the ion. The strategy is to 
use the idea of atomic jumps to estimate the mobility of the ions and hence 
the ionic conductivity. 

The number of jumps that an ion will make in the direction of the field per 
second is given by a modified form of the equation 

r = vexp ( -k~) 
For movement in the favoured direction, the number of successful jumps 
that an ion will make will be 

f+ = vexp[_(E+};aV)] 

where we have simply substituted the new potential barrier, E - !eaVfor E. 
In a direction against the field the number of successful jumps will be given 
by 

r- = vexp [_ (E +};av)] 
where we have a similar substitution for E but this time of E + !eaV, as the 
barrier height is now increased. 

The overall jump rate in the direction of the field is r + - r _, and as the 
net velocity of the ions in the direction of the field, vel, is given by the net 
jump rate multiplied by the distance moved at each jump we can write 

{ [ (E _leaV)] [(E + leaV)] } 
vel = va exp - k~ - exp k2T 

= va exp ( - k~) [exp(;;~) - exp ( - ;~~)] 
For low field strengths eaV is much less than kT, and 

exp(eaVj2kT) - exp( -eaVj2KT) may be replaced by (eaVjkT)t as we 
can see from Table AI. We can now proceed to write 

(va2e~ ( E) 
vel = -U jexp - kT 

tTo see just what sort of field strength this approximation corresponds to, we can take a value 
of eaV/kTequal to I to be the maximum value at which the approximation holds and estimate 
the corresponding field strength. Taking a temperature of 500 K, and a value of a of about 
0.3 x 1O-9 m yields a value for Vof 2.87 x 102y em-I . Thus, the approximation is a reasonable 
one for the field strengths up to about 300Y em-I. 
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Table A l The equivalence of eaE/kT  and

eaE (  eaE \ f —eaE \
~W ехр{ ш ) expU  k T ) Difference

0 .0 0 1 1 .0 0 1 0 0 0.99900 0 .0 0 2 0 0

0 .0 1 1.01005 0.99005 0 .0 2 0 0 0

0.1 1.10517 0.90484 0.20033
1 .0 0 2.71828 0.36788 2.35040

1 0 .0 0 22026.47 4.54 X  IO” 5 22026.47

The mobility, μ, of the ion is defined as the rate of movement when the 
value of V is unity, so

Returning to the equation for the ionic conductivity, σ, given by

and substituting for μ, we can write

We can see that this equation takes on a form

In this equation, σ0 includes a term, n, which is the number of mobile species 
present in the crystal. At low temperatures n will be controlled by the 
impurity population. When atom migration takes place via a vacancy 
diffusion mechanism we can write

and when it takes place by the migration of interstitials

In this regime we can obtain measures of Ev or Εχ directly from the 
Arrhenius-like plots of ΙησΓ versus \/T. At high temperatures it is 
reasonable to suppose that the values of nv or щ are temperature dependent.
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. [(eaE) (-eaE)] Table At The eqUivalence of eaEjkT and exp 2kT - exp 2kT 

eaE (eaE) (-eaE) kT exp 2kT exp 2kT Difference 

0.001 1.00100 0.99900 0.00200 
0.01 1.01005 0.99005 0.02000 
0.1 1.10517 0.90484 0.20033 
1.00 2.71828 0.36788 2.35040 

10.00 22026.47 4.54 x 10- 5 22026.47 

The mobility, f.J" of the ion is defined as the rate of movement when the 
value of V is unity, so 

(va2e) (E) 
f.J, = kT exp -kT 

Returning to the equation for the ionic conductivity, a, given by 

a=nef.J, 

and substituting for f.J" we can write 

(nva2e2
) (E) a= -- exp --

kT kT 

We can see that this equation takes on a form 

a = (~)exp( -k~) 
In this equation, ao includes a term, n, which is the number of mobile species 
present in the crystal. At low temperatures n will be controlled by the 
impurity population. When atom migration takes place via a vacancy 
diffusion mechanism we can write 

[nvva2e2] (Ev) 
av = kT exp -kT 

and when it takes place by the migration of interstitials 

[niva2e2] (Ei) ai = -,zr exp -kT 

In this regime we can obtain measures of Ev or E j directly from the 
Arrhenius-like plots of In aT versus liT. At high temperatures it is 
reasonable to suppose that the values of nv or nj are temperature dependent. 
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In this case, we can substitute for n from the equations given in chapter 1 to 
obtain, for interstitials due to Frenkel defects

In this case, an Arrhenius plot of ΙησΓ versus Ì/T  will yield a higher value 
for the activation energy than in the low temperature region. The new value 
for E will be composed of two terms

for Schottky defects and

for Frenkel defects.

and for vacancies due to Schottky defects
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In this case, we can substitute for n from the equations given in chapter 1 to 
obtain, for interstitials due to Frenkel defects 

[va2e2(NN*) 1/2] (Ei) (6.Hf) a· = exp -- exp --
I kT kT 2kT 

and for vacancies due to Schottky defects 

[va2 e2 N2] (Ev) (6.Hs) 
av = kT exp -kT exp - 2kT 

In this case, an Arrhenius plot of In aT versus liT will yield a higher value 
for the activation energy than in the low temperature region. The new value 
for E will be composed of two terms 

for Schottky defects and 

for Frenkel defects. 

Es = Ev + 6.Hs 
2 

Ef= Ei + 6.Hf 
2 



4 Non-stoichiometry and point defects

4.1 The composition of solids

Classical chemistry has taught people to think in terms of compounds in 
which the ratios of the atomic components are small integers. The 
compositions of such compounds are, moreover, thought to be totally 
fixed. Examples include molecules such as HC1, H20  and NH3. Experimen­
tally it has been found that this does not apply very well to numerous solid 
phases. Phases with a variable composition are called non-stoichiometric 
compounds. When it is necessary to stress the non-stoichiometric nature of a 
material the symbol ~  will prefix the formula. For example, ~FeO refers to 
non-stoichiometric iron monoxide which is only approximately represented 
by the formula FeO. In the rest of this book, the underlying reasons for non­
stoichiometry are described. The approach taken is to describe non- 
stoichiometric materials as normal crystals which contain a varying pop­
ulation of defects. As we will see, these defects endow the materials with 
important and often very surprising properties indeed.

4.2 Solid solutions

One of the simplest ways to vary the composition of a solid is to replace one 
ion by another of the same size and charge. We have looked at this from the 
point of diffusion in chapter 2, when we considered what would happen if a 
crystal of MgO was placed in contact with a crystal of NiO and heated. 
Looking at matters from a structural perspective, addition of a little NiO to 
MgO followed by heating will yield an X-ray powder pattern which is 
virtually identical to that of pure MgO. This will continue all across the 
range from pure MgO to pure NiO. A solid solution is said to have formed. 
In this case both MgO and NiO have the same rock salt structure and at 
intermediate compositions the product is a material with the rock salt 
structure but with a mixture of Mg2+ and Ni2+ distributed over the cation 
sites in the proportions given by the starting composition before heating. 
The formation reaction can be written

(1 -  x)MgO + xNiO— »Mgj^NLO
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One of the simplest ways to vary the composition of a solid is to replace one 
ion by another of the same size and charge. We have looked at this from the 
point of diffusion in chapter 2, when we considered what would happen if a 
crystal of MgO was placed in contact with a crystal of NiO and heated. 
Looking at matters from a structural perspective, addition of a little NiO to 
MgO followed by heating will yield an X-ray powder pattern which is 
virtually identical to that of pure MgO. This will continue all across the 
range from pure MgO to pure NiO. A solid solution is said to have formed. 
In this case both MgO and NiO have the same rock salt structure and at 
intermediate compositions the product is a material with the rock salt 
structure but with a mixture of Mg2+ and Ni2+ distributed over the cation 
sites in the proportions given by the starting composition before heating. 
The formation reaction can be written 

(1 - x)MgO + xNiO---+Mgl_xNixO 
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The phase formed can be given the formula Mgļ_xNixO where x  can take 
values of between zero and 1.

The solid solution is shown schematically in Figure 4.1. In this case it has 
been assumed that the crystal is fairly pure MgO. The Ni2+ cations present 
replace some of the Mg2+ cations and so are substitutional impurity defects 
of the same general sort as discussed in chapter 1. The impurity cations give 
the crystals new properties, in this case the most obvious of these is colour, 
as the mixed crystals take on a green hue.

Solid solutions have been widely studied because they provide a 
convenient means of changing the physical properties of a material in a 
controlled way. Interestingly, the properties of the resultant solid solutions 
are not just a weighted average of the properties of the phases which occur 
at each end of the solid solution range, and surprising new features are often 
found. This effect will be illustrated in a seemingly very simple system, that 
between A120 3 and Cr20 3 in chapter 7, where the reason for the formation 
of rubies and ruby lasers is explained. Another important series of solid 
solutions with variable magnetic properties is described in the case study 
following this section.

4.2.1 Vegard’s law

If the unit cell size of a solid solution is measured as a function of the 
composition, it will frequently be found to obey Vegard’s law. The ‘ideal 
law’, which was first propounded in 1921, states that the lattice parameter of 
a solid solution of two phases with similar structures will be linear function 
of the lattice parameters of the two end members of the composition range. 
This is illustrated in Figure 4.2 for the solid solution which forms between 
the two rock salt structure oxides CoO and MnO. Even when Vegard’s law

Figure 4.1 A schematic illustration of a solid solution Mgi_xNixO. The O2 ions are drawn 
as large open circles, the Mg2+ ions as filled circles and the Ni2+ ions as shaded circles.
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Figure 4.2 The Vegard’s law dependence of the lattice parameter of the cubic rock salt solid 
solution between CoO (a = 0.4260 nm) and MnO (<a = 0.44448 nm).

in its ideal form is not obeyed exactly, the line joining the lattice parameters 
of the parent phases is often a shallow curve. In either case, Vegard’s law 
can be used to determine the composition of intermediate compositions in a 
solid solution quite easily. It is a straightforward matter to obtain an X-ray 
powder pattern and determine the unit cell dimensions of a solid solution. A 
comparison of the result with the unit cell dimensions of the parent 
compounds will give a reliable value for the relative percentages of the 
components.

Example 4.1

The unit cell size of CaO is 0.48105 nm and that of SrO is 0.51602 nm. Both 
adopt the rock salt type structure. Estimate the composition of a crystal of 
formula CaxSri_xO which was found to have a unit cell of 0.5003 nm.

The easiest way to tackle this is to draw a straight-line graph connecting 
the two lattice parameters, as shown in Figure 4.2, and read off the 
composition along the x-axis. The formula of the crystal is found to be 
Cao.65Sro.45O·

4.3 Case study: magnetic spinels

Solid solutions of a family of oxides called spinels with a general formula 
AB2O4 are of considerable commercial importance. Among the most useful 
are those which contain iron as one cation in the solid solution, as they show 
a range of useful magnetic properties. Indeed, the first magnetic material 
known, and for many centuries the only magnetic material known, was the 
magnetic oxide ҒезС>4 which is also called lodes tone or magnetite. The name 
lodestone is a corruption of the expression leading stone, which reflects on 
the fact that one of its earliest and most important uses was as a compass
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in its ideal form is not obeyed exactly, the line joining the lattice parameters 
of the parent phases is often a shallow curve. In either case, Vegard's law 
can be used to determine the composition of intermediate compositions in a 
solid solution quite easily. It is a straightforward matter to obtain an X-ray 
powder pattern and determine the unit cell dimensions of a solid solution. A 
comparison of the result with the unit cell dimensions of the parent 
compounds will give a reliable value for the relative percentages of the 
components. 

Example 4.1 

The unit cell size ofCaO is 0.48105nm and that ofSrO is 0.51602nm. Both 
adopt the rock salt type structure. Estimate the composition of a crystal of 
formula CaxSrl_xO which was found to have a unit cell of 0.5003 nm. 

The easiest way to tackle this is to draw a straight-line graph connecting 
the two lattice parameters, as shown in Figure 4.2, and read off the 
composition along the x-axis. The formula of the crystal is found to be 
CaO.65Sr0.450. 

4.3 Case study: magnetic spinels 

Solid solutions of a family of oxides called spinels with a general formula 
AB20 4 are of considerable commercial importance. Among the most useful 
are those which contain iron as one cation in the solid solution, as they show 
a range of useful magnetic properties. Indeed, the first magnetic material 
known, and for many centuries the only magnetic material known, was the 
magnetic oxide Fe304 which is also called lodestone or magnetite. The name 
lodestone is a corruption of the expression leading stone, which reflects on 
the fact that one of its earliest and most important uses was as a compass 
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Figure 4.3 (a) A perspective view of a unit cell of normal spinel structure 
A[B?\O 4 . The A2+ cations occupy tetrahedral sites and the B3+ cations occupy 
octahedral sites in the oxygen array. The structure is built from octants of A04 
tetrahedra and B40 4 cubes as shown in (b). These are arranged in a face-centred 
cubic array of A2+ cations as shown in (c).

The spinel structure

The spinel family of oxides with composition AB20 4 takes its 
name from the mineral spinel, MgAl20 4 . The unit cell is cubic 
with a lattice parameter of 0.809 nm. Each unit cell contains 
eight MgAl20 4 formula units, that is, eight Mg2+ ions, 16 Al3 + 
ions and 32 O2- ions. A wide variety of cations can adopt the 
spinel structure, but the largest group is formed by a combina­
tion of A2+ and B3+ cations. All crystallize with the structure

(b)(a)

(c)
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shown in Figure 4.3. In this structure, some of the cations are 
surrounded by four oxide ions in what are called tetrahedral sites 
while twice as many are surrounded by six oxide ions in 
octahedral sites. The oxygen anions are in the same arrangement 
as in the rock salt structure and this geometry leads to one 
octahedral site and two tetrahedral sites available per anion. The 
spinel unit cell contains four AB20 4 formula units, which means 
that there are 32 oxygen ions present and so 32 octahedral sites 
and 64 tetrahedral sites are available. In the structure, one-eighth 
of the tetrahedral sites and one-half of the octahedral sites are 
filled by the cations.

There are a number of ways in which this can be done. If all of 
the A2+ cations are located in the tetrahedral sites and the B3 + 
ions fill the octahedral sites we have the normal spinel structure, 
written as А2+[Въ]̂0 ^  where the square brackets enclose the 
octahedrally co-ordinated ions. If the A2+ cations occupy most 
of the octahedral sites, and the В3 + cations fill up the rest of the 
octahedral sites and all of the tetrahedral sites, the arrangement 
is called the inverse spinel structure, written as 2?3 + [v42+2?3+]04. 
In MgAl20 4, the situation is not quite so clear cut as some Mg 
ions do occupy octahedral sites, while most sit in the tetrahedral 
sites. This intermediate situation can be described via an 
occupation factor, λ, which gives the fraction of B3 + cations 
in the tetrahedral sites. A normal spinel has a value of 0 for Λ, 
while an inverse spinel has a value of 0.5. MgAl20 4 has a λ value 
of about 0.05

pointer. Small fragments of lodestone floating in a basin of water always 
came to rest pointing north-south. This property was much prized by early 
navigators who made use of the material as a primitive compass. More 
recently, large tonnages of iron spinels are used as transformer cores, 
deflection yoke cores and beam-focusing coils in television sets. The 
recording heads on tape and video-recorders are made of the same group of 
materials. In order to understand how these useful properties come about, it 
is necessary to examine the structures of these solid solutions in detail.

The magnetically important ferrites have a general formula 4̂2 + Fe2+0 4. 
Many crystallize with the inverse spinel structure and can be written as 
Fe3 + [y42+Fe3+]04. In these materials the magnetic moment of the Fe3 + 
ions in the tetrahedral sites is opposed to that of the Fe3+ ions in the 
octahedral sites, so that the net magnetic moment due to Fe3+ is zero. Take, 
for example, nickel ferrite. This can be written as Fe3 + t[Fe3 + |N i2+t]0 4
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and the net magnetic moment is due to the Ni2+ ions alone. Other ferrites 
with the inverse structure are formed by Mn2+ and Co2 + . The oxide Fe30 4 

is an inverse spinel, although this fact is obscured in the formula by the fact 
that the A and В cations are both Fe. The correct state of affairs is given 
when the formula is written Fe3 + |[Fe3 + ļFe2 + ļ]0 4. Note that the overall 
magnetic moment of the compound is due to the Fe2+ contribution, as with 
NiFe20 4. The magnetic behaviour exhibited by this type of ordered 
arrangement of spins is called ferr magnetism.

The object of a large amount of research on these compounds centres on 
how to make solid solutions which will modify this magnetic situation to 
produce compounds with a precise and unique magnetic signature. In effect, 
the strategy is to introduce substitutional impurities to achieve this 
objective. The structure gives us four degrees of freedom to explore, 
magnetic or non-magnetic impurity cations on tetrahedral sites, and mag­
netic or non-magnetic impurities on octahedral sites. Because the magnetic 
moments on all of these cations is different, it is possible to make solid 
solutions with quite precise magnetic behaviour. In effect, we are able to 
introduce controlled amounts of magnetic defects (or magnetism) into the 
solid solution in this way.

The flexibility of the system can be increased greatly when solid solutions 
are made with normal ferrites. An example is provided by the normal spinel 
ZnFe20 4. In this material, the magnetic moments of the individual Fe3 + 
ions are opposed even though they both occupy the octahedral sites, and the 
formula can be written Zn2+[Fe3 + |F e 3 + 1]04. Suppose that this material is 
now reacted to form a solid solution with NiFe20 4 thus

(1 -  x)NiFe20 4+xZnFe20 4— ►ZnJCNii_*Fe20 4

The rather straightforward formula hides an intriguing situation. This is 
made clear if we write out the formula as

zn 2+Fe3+x î  [Fe3+ і m 2+x î  Fe3+ T]o4

where the arrows represent the overall magnetic moment of the ions. When 
X is zero the material has a magnetism due only to the Ni2+ ions. When x is 
1.0 the material is non-magnetic. In between, the magnetism is a steady 
function of the Ni2+ concentration and Ni2+ is the magnetic defect. But 
what happens if the formula is

Zn2+Fe3í x Î [Fe3+ T Ni2+X Î Fe3+ i ]0 4

Now when X is zero all the magnetic moments point in the same direction 
and we have a much higher magnetism than in NiFe2 0 4. Experimentally, it 
is found that the defect interactions are complex and the observed
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magnetism rises to a maximum when x is near to 0.5. Nickel-zinc ferrites of 
about this composition are used in recording heads for audio and video­
recorders.

4.4 Non-stoichiometry

Solid solution formation involves the substitution of one cation or anion by 
another of the same size and charge. What would happen if the charges on 
the substituted ions did not match? In such cases the charge imbalance is 
offset by a change in composition. Materials which have a composition 
range are called non-stoichiometric compounds. The variation in composition 
need not be by substitution only. Other mechanisms, such as the addition of 
interstitial ions, can also lead to the formation of non-stoichiometric 
compounds. Thus, the appearance of non-stoichiometry will be closely 
associated with the presence of substitutional or interstitial defects in the 
structure.

Non-stoichiometric compounds are important because the composition 
variation endows the compounds with useful and often fascinating 
properties. Moreover, these can be modified by varying the relative 
proportions of the atomic constituents and in controlling the types of 
defects present. In this volume, we intend to focus most attention on 
inorganic non-metallic materials and so a short but by no means exhaustive 
list of some of these particular non-stoichiometric phases is given in Table 
4.1. The interacting role of defects and composition in non-stoichiometric 
compounds will be explained in the following sections.

4.5 Substitutional impurities

4.5.1 Vacancy formation

Think about the situation that occurs when a cation of higher valence is 
introduced into a compound. For example, suppose a crystal of NaCl 
contains a small amount of Ca2 + as a substitutional impurity replacing 
some N a+ ions present in the sample. In this case, each Ca2 + ion in the 
crystal will increase the total amount of positive charge present. Now 
common observation will reveal that such crystals do not show an excess of 
positive charge proportional to the impurity Ca2+ concentration and a 
compensating mechanism must operate to restore neutrality. One way to 
achieve this balance this is to create one vacancy among the N a+ cations for 
each Ca2+ incorporated into the structure, as shown in Figure 4.4. Thus, it 
appears that the substitution has produced a double defect population, 
substitutional impurities and an equal number of cation vacancies. In fact, 
this is found rather often and a general rule is that if we dope with a cation
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Table 4.1 Approximate composition ranges for some non-stoichiometric phasesf

Compound Approximate formula Composition range

Rock salt structure oxides
TiOx TiO 0.65 < x <  1.25
vo x VO 0.79 < x <  1.29

МПдТ) MnO 0.848 < jc< 1.00
FexO FeO 0.833 < x <  0.957
CoxO CoO 0.988 < * < 1 .0 0 0
NixO NiO 0.999 < * <  1.000

Fluorite structure oxides
CeO* СЄ2О3 1 .50< x<  1.52

СЄ32О58 1.805 < x <  1.812
ZrO* Z r02 1.700 < jc< 2.004
UOx UO2 1.65 < x <  2.25

Oxide ‘bronzes’
U xV20 5 0.2 < * <  0.33
NaxV20 5 0.13 < JC<0.31
U xV30 8 1.13 <JC< 1.33
LixW 0 3 0 < x <  0.50
CaxW 0 3 0 < jc<0.125
InxW 0 3 0.20 < jc< 0.33

Sulphides
Tisx TiS 0.971 < x <  1.064

TigSç 1.112 < jc < 1.205
Tİ3S4 1.282 < x <  1.300
Tİ2S3 1.370 < jc< 1.587
TiS2 1.818 < x <  1.923

NbxS NbS2 0.92 < * <  1.00
T avS2 TaS2 1.00 < л: < 1.35

Ba3Feı . ДS5 Ba6Fe3Sio 0 < jc< 1

fNote that all composition ranges are temperature dependent and the figures given here are only 
intended as a guide.

of higher valence than the normal cations present, a vacancy population on 
the cation sub-lattice is also produced. This technique has great potential as 
a means of modification of the properties of crystals, as will be seen later.

4.5.2 Calcia-stabilized zirconia

Calcia-stabilized zirconia provides a good example of the consequences of 
incorporating an ion with a lower valence into a crystal structure. Zirconia, 
Z r02, is an important material as it remains inert and stable even at 
temperatures of up to 2500 °С. This means that it finds uses in a diverse 
range of applications from rocket motors to furnace linings. The difficulty 
with pure zirconia, however, is that it will not tolerate cycling from high to 
low temperatures repeatedly. This is because the structure at room
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Figure 4.4 A schematic illustration of vacancy formation in NaCl doped with Ca2+ ions. The 
N a + ions are shown as filled circles, the C1“ ions as open circles and the Ca2+ impurities as 
large shaded circles.

temperature has a monoclinic unit cell which changes to tetragonal above 
about 1000 °С. This change is accompanied by a change in the unit cell 
volume. The resulting stress caused by the transition causes the material to 
fracture.

The solution to the problem is to react the zirconia with calcia, CaO. The 
product, which has a cubic unit cell, is called calcia-stabilized zirconia. X-ray 
diffraction shows this to be a non-stoichiometric phase which exists between 
the approximate limits of 16 and 28 mole % CaO. The unit cell dimensions 
of this cubic phase change smoothly across the composition range in 
agreement with Vegard’s law. Because the cubic symmetry does not change 
with temperature the material can be used in high temperature applications 
without a problem.

Cubic calcia-stabilized zirconia crystallizes with the fluorite structure, 
which is shown in Figure 4.5. It is found that the Ca2+ cations occupy 
positions that are normally filled by Zr4+ cations, that is, cation substitution 
has occurred. As the Ca2+ ions have a lower charge than the Zr4+ ions the 
crystal will show an overall negative charge if we simply write the formula as 
Ca2+Z rįix0 2 . One simple way for the crystal to compensate for the extra 
negative charge is to arrange for some of the anion sites to be vacant. For 
exact neutrality, the number of vacancies on the anion sub-lattice needs to 
be exactly the same as the number of calcium ions in the structure. Thus, 
each Ca2+ added to the Z r0 2 produces an oxygen vacancy at the same time. 
The formula of the crystal is C a^Zrį^C ^-*. This model is a good starting 
point for the discussion of the defect structure of calcia-stabilized zirconia 
and we will refer to it on a number of occasions later in this book.

It has been found that when a material is ‘doped’ with substitutional 
impurity cations of lower charge, anion vacancies are a common method of 
achieving charge balance.
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Figure 4.5 The crystal structure of CaF2, fluorite. In (a) the fluorine atoms, 
larger spheres, are in a cubic array; the calcium atoms occupy half of the cube 
centres formed. In (b) the structure is shown as a packing of CaF8 cubes.

The fluorite structure

The fluorite structure is adopted by the mineral fluorite, CaF2, 
and is shown in Figure 4.5. The unit cell is cubic with a lattice 
parameter of 0.545nm and contains four Ca2+ and eight F~ 
ions. In this structure, each calcium ion is at the centre of a cube 
of eight fluorine ions and each fluorine ion is at the centre of a 
tetrahedron of calcium ions. As there are twice as many fluorine 
atoms as metal atoms, half of the F_ cubes will be empty.

4.5.3 Interstitial formation

The two previous examples of substitution produced results rather similar to 
Schottky defects in the crystal. However, the anion and cation vacancies 
were no longer balanced, but adjusted to keep the crystal electrically neutral 
overall. One might expect, therefore, that substitution can also lead to 
unbalanced defect populations of interstitial ions which are rather similar to 
Frenkel defects.

This use of interstitials is quite common in materials with the fluorite 
structure shown in Figure 4.5. If CaF2 is reacted with LaF3, YF3, ThF4 or 
similar fluorides, non-stoichiometric phases form. In these, the metal atoms 
substitute for calcium on the metal ion sub-lattice in a similar way to that

(a) (b)
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described in the case of calcia-stabilized zirconia. However, charge balance 
is ensured by the incorporation of additional F-  ions into the crystals as 
interstitials which occupy the vacant cube centres.

Perhaps one of the most studied oxides, because of its technological 
importance as a fuel, is the oxygen-rich form of uranium dioxide, U 02+JC. 
The parent phase, stoichiometric U 02, also adopts the fluorite structure, with 
each uranium atom located at the centre of a cube of eight oxygen atoms. 
The composition range in U 02+x is due to the additional oxygen atoms 
arranged at random in the normally unoccupied interstitial positions. The 
charge excess which will arise due to these extra oxygen ions is balanced by 
an equal number of U4+ ions becoming U6+ ions. In effect, this can be 
regarded as substitution of U4+ by U6+ together with a compensating 
population of oxygen interstitials. Although this explanation of the non­
stoichiometry in U 0 2 is largely correct, improved methods of structural 
analysis have shown that the interstitial oxygen atoms are not placed at 
random in the structure at all. In fact they are arranged in local clusters with 
quite specific geometries, which will be described in more detail in chapter 9.

4.6 Density and defect type

An X-ray powder photograph yields a measurement of the average unit cell 
dimensions of a material, and, for a non-stoichiometric compound, this 
invariably changes in a regular way across the phase range. In a similar way, 
the density of a material gives the average amount of matter in a large 
volume of material, and for a non-stoichiometric phase this also varies 
across the phase range. These two techniques can be used in conjunction 
with each other to determine the most likely point defect model to apply to a 
material. As both techniques are averaging techniques they say nothing 
about the real organization of the defects, but they do suggest first 
approximations. We will illustrate the method by reference to two typical 
examples, iron monoxide, with a composition close to FeO and calcia- 
stabilized zirconia, referred to earlier in this chapter.

4.6.1 Iron monoxide, wüstite, ~FeO

Iron monoxide, often known by its mineral name of wüstite, is found to 
possess a range of compositions close to FeOļ 0- It has a rock salt structure 
with a lattice parameter, a0, of about 0.43 nm which varies as the 
composition changes. Data for a number of samples across the composition 
range are listed in Table 4.2. These results show that there is more oxygen 
present than iron in the compound. We can consider, as an initial step, two 
possible point defect models to account for this finding.



92 PRI NCI P LES AN D  AP P LI CATI ONS  OF CHEMI CAL DEFECTS

Table 4.2 Experimental data for ~FeO f

0:Fe ratio Fe:0 ratio Lattice parameter (nm)

1.058 0.945 0.4301
1.075 0.930 0.4292
1.087 0.920 0.4285
1.099 0.910 0.4282

fThe data here and in Table 4.3 are classical data from the paper of E.R. Jette and F. Foote, J. 
Chem. Phys. 1, 29 (1933).

Model A. In this model we assume that the iron atoms in the crystal are in a 
perfect array, identical to the metal atoms in rock salt. In this case, to obtain 
an excess of oxygen, we need interstitial oxygen atoms to be present, as all 
the normal anion positions are already occupied. This possibility is shown in 
Figure 4.6(a). The unit cell of the rock salt structure contains four M  atoms 
and four X  atoms. Hence, in this model, the unit cell must contain four 
atoms of Fe and 4(1 +x) atoms of oxygen; that is, the unit cell contents are 
Fe40 4 + 4jc and the composition is FeOi + *, where (1 + x) is the figure given in 
the first column of Table 4.2.

Model B. On the other hand, we could assume that the oxygen array is 
perfect and each oxygen atom occupies a site equivalent to that of each non- 
metal atom in the rock salt structure. As we have more oxygen atoms than 
iron atoms, we must, therefore, have some vacancies in the iron positions, as 
shown in Figure 4.6(b). In this case, one unit cell will contain four atoms of 
oxygen and (4-4x) atoms of iron. The true formula of ~FeO now should be 
written Fei_*0 .

Figure 4.6 Idealized diagrams of possible defect structures of ~FeO. In (a) the shaded circles 
are oxygen interstitials. The Fe ions are shown as filled circles and the oxygen ions as open 
circles.

(a) (b)
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It is easy to determine which of these suppositions is correct by comparing 
the real and theoretical density of the material. For example, consider the 
sample specified in the top line of Table 4.2. The volume, v, of the cubic unit 
cell is given by a03. In this case the volume is thus (0.4301 x 10-9) m3, so v
= 7.9562 x 10“23cm3.

The mass of a unit cell is readily calculated with the knowledge that the 
relative atomic masses of Fe and O are 55.85 and is 16.00, respectively, and 
that these values correspond to the weight in grammes of Avagadro’s 
number, Na, of atoms. Hence

Model A. The mass of 1 unit cell is mA,

The value of (1 + x), from Table 4.2 column one is 1.058, so that

The density, p, is given by the mass of one unit cell divided by the volume, to 
yield

Model B. The mass of one unit cell is mB where

and taking the value of (1-х) as 0.945, from the second column of Table 4.2, 
we find

The density, p, is given by the mass of 1 unit cell divided by the volume, to 
yield

= 5.740gem 3
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The difference in the two values is surprisingly large, and is well within the 
accuracy of density determinations. The value found experimentally is 
5.728 gem-3, in good accord with Model B, which assumes vacancies on the 
iron positions. This indicates that the formula of the ~FeO phase should be 
written Feo.9450. Table 4.3 is an expanded version of Table 4.2 which 
includes the density data. All results are seen to be in good agreement with 
an experimental formula for ~FeO of Fei_xO, in which there are vacancies 
at some of the Fe positions.

4.6.2 Calcia-stabilized zirconia

In the discussion of calcia-stabilized zirconia given above, it was suggested 
that the Ca2+ ions substituted for Zr4+ ions on normal cation sites and to 
maintain charge balance vacancies were introduced into the anion sub­
lattice. The formula for the compound was Zr1_xCax0 2_Jc. However, we 
have another possibility to consider, that of Ca2+ cation interstitials. The 
simplest model to envisage is one where the Ca2+ interstitials are balanced 
by extra interstitial oxide ions, to give a formula of ZrCax0 2 + 2x· However, 
it is difficult to fit both Ca2+ and O2- interstitials into the unit cell and a 
more plausible suggestion is to introduce one Zr4+ cation vacancy for each 
two Ca2+ interstitial ions present, to give a formula Zri_x/2Cax0 2.

To check these models we measure the density of the material and 
compare it with the theoretical density of the phase. The structure of the 
parent material is cubic, with a unit cell edge of about 0.52 nm. Each unit 
cell contains four normally occupied cation sites and eight normally 
occupied anion sites, so that the overall composition of stoichiometric 
zirconia is Zr02.

Turning to some experimental results, it has been found that a crystal 
prepared by heating 85 mole % Zr02 with 15 mole % CaO at 1600 °С 
yielded a material with a cubic unit cell which had a lattice parameter, a0, of 
0.5144nm and a measured density of 5.525gem-3. Let us see how these 
values compare with our models.

Table 4.3 Experimental and theoretical densities of ~FeO

0:Fe ratio Fe:0 ratio

Density (gem 3)
Lättıcc

parameter (nm) Observed Interstitial oxygen Iron vacancies

1.058 0.945 0.4301 5.728 6.076 5.740
1.075 0.930 0.4292 5.658 6.136 5.706
1.087 0.920 0.4285 5.624 6.181 5.687
1.099 0.910 0.4282 5.613 6 .2 1 0 5.652
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Model A . Zr1_xCax0 2_JC with mion vacancies. The mass of the unit cell of 
this material will be given by

where 91.22 is the molar mass of Zr, 40.08 is the molar mass of Ca, 16 is the 
molar mass of O and NA is Avagadro’s number. The volume, v, of the unit 
cell will be a03, that is

so that the density, p, is found to be

Model В: Zrļ_(x/2)CaJC0 2  with Ca2+ interstitials. The mass of the unit cell is

Where all the symbols have the same meaning as before. Additionally, the 
volume of the unit cell will be unchanged, so that the density is found to be

p = 5.972gcm-3.

The calculations come down squarely on the side of the substitution plus 
anion vacancy model.

The experimental data are shown in a more extended form in Figure 4.7. 
The calculated values for the density of the samples has been shown for both 
the vacancy and interstitial models that we have just described. As in the 
case of wüstite, these densities are sufficiently different to discriminate 
between the two models over the range of compositions studied. Also shown 
are the experimentally determined densities for two series of samples, one 
prepared at 1600 °С and the other at 1800 °С. The results are interesting. At 
1600 °С, the vacancy model fits the data pretty well. In the samples prepared 
at the higher temperature, however, the situation is more complex. For low 
amounts of CaO, it seems that we have interstitials present. At greater 
concentrations of CaO, however, the situation is less clear and it would 
appear that we pass through a region in which some cells seem to contain 
interstitials, while in others the substitution mechanism is still employed.
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Figure 4.7 A comparison of observed and calculated densities for calcia-stabilized zirconia. 
Here (a) shows samples quenched from 1600 °С and (b) shows samples quenched from 1800 °С. 
The calculated density values are shown as open circles for a cation interstitial model, and as 
filled circles for an anion vacancy model. The experimental densities are shown as filled squares. 
[Data redrawn from A.M. Dienes and R. Roy, Solid State Comm. 3, 123 (1965).]

4.7 Interpolation

Interpolated atoms are atoms which occupy normally empty positions in a 
crystal structure, and so can be considered to be similar to Frenkel defects. 
The likelihood of finding that a non-stoichiometric composition range is due 
to the presence of interpolated atoms in a crystal will depend on the 
openness of the structure and the size of the impurity. Despite this 
limitation, non-stoichiometric materials which utilize an interstitial mechan­
ism are many and varied. Examples are: interstitial alloys, in which small 
atoms percolate into a metallic host; layered structures where atoms are 
taken in between weakly held layers, typified by TiS2; and structures 
containing tunnels, for instance the cubic tungsten bronzes.

4.7.1 Interstitial alloys and hydrides

The interstitial alloys are formed when small atoms such as C or N fit into 
the spaces between larger metal atoms such as Fe. These alloys are extremely 
hard and metallic components are often given a wear-resistant coating of an 
interstitial alloy by diffusing C or N into the surface layers. Metal hydrides 
are another group of materials formed by interpolation. In these deceptively 
simple non-stoichiometric compounds, hydrogen diffuses into the structure 
of a host metal to form a variety of ordered and disordered phases.
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4.7.2 Titanium disulphide

A number of very interesting compounds form when a structure with layers 
incorporates small or medium-sized electropositive ions such as Li + . The 
resulting compounds, often called insertion compounds, are finding increas­
ing use in batteries, sensors and displays, and examples of these uses will be 
given in later chapters.

One important group of non-stoichiometric materials are derived from 
disulphides with a layered form of structure, such as TiS2 and NbS2. To 
illustrate this behaviour, let us look at the titanium sulphides. The structure

Figure 4.8 The structure of Cdl2 (a) as a perspective view and (b) as a packing of 
Cdl6 octahedra. In both structures, the iodine atoms are arranged in a hexagonal 
stacking. In Cdl2, the octahedral sites between alternate sheets of iodine atoms 
are filled by cadmium atoms.

The Cdl2 structure

The Cdl2 structure type is shown in Figure 4.8. The unit cell is 
hexagonal with parameters a = 0.424 nm and c = 0.684 nm. It is 
made up of layers of iodine atoms stacked up in a hexagonal 
fashion as shown in Figure 4.8(a). This sort of stacking leaves 
octahedral sites between the layers. In Cdl2, every other sheet of 
these octahedral sites is filled by cadmium to generate layers of 
composition Cdl2 as emphasized in Figure 4.8(b). These layers 
are only weakly held together by secondary bonding. Cdl2 is 
easily cleaved into sheets parallel to the layers as a result.

(a) (b)
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of TiS2 is of the Cdl2 type, shown in Figure 4.8. It is made up of layers of 
composition TiS2 which are only weakly held together.

Small atoms such as Li can enter the structure in varying amounts to form 
non-stoichiometric phases with a general formula LixTiS2. Because the 
bonding between the layers is weak, this process is easily reversible and the 
compound acts as a convenient reservoir of Li atoms. The usefulness of this 
material will be discussed in chapter 5.

Another interesting series of non-stoichiometric phases can be generated 
by gradually filling the vacant octahedral sites in TiS2 with Ті itself. 
Depending on the preparation conditions used, the interpolated atoms may

Figure 4.9 The structures of NiAs (a) as a packing of atoms and (b) as a packing 
of NiAs6 octahedra. In both structures the As atoms are arranged in a hexagonal 
stacking. Ni atoms occupy all of the octahedral sites formed between these layers.

The NiAs structure

The NiAs structure is the hexagonal analogue of the cubic NaCl 
structure. The hexagonal unit cell has parameters a = 0.360 nm, 
c = 0.501 nm. The structure is shown as a packing of atoms in 
Figure 4.9(a). Each Ni atom is surrounded by an octahedron of 
As atoms and each As atom by an octahedron of Ni atoms. This 
arrangement is emphasized in Figure 4.9(b). It is simply related 
to the Cdl2 structure by the filling of the interlayer octahedral 
sites by metal atoms.

(a) (b)
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be ordered, disordered or partially ordered. If they are ordered, X-ray 
diffraction will record the presence of new phases. In this way a number of 
intermediate compounds have been recognized, among which are Ti8S9, 
Tİ4S5, Tİ3S4 , Tİ2S3 and Ti5S8. Ultimately, all of the available octahedral sites 
are filled and the material has a composition TiS, with the nickel arsenide, 
NiAs, structure.

4.7.3 Cubic tungsten bronzes

Good examples of interpolation are provided by the fascinating compounds 
known as tungsten ‘bronzes’. The tungsten bronzes are so called because

Figure 4.10 The structure of W 0 3 shown (a) as a perspective view and (b) as an 
array of corner-sharing W 0 6 octahedra. The large cage sites between the 
octahedra take in interpolated metal atoms in the cubic tungsten bronzes.

The WO3 structure

The structure of WO3 is made up of W6+ ions surrounded by 
octahedra of O2- ions. The unit cell is orthorhombic at room 
temperature, due to small distortions of the W 06 octahedra. The 
ideal cubic unit cell has a lattice parameter 0.38 nm. The 
structure as a packing of atoms is shown in Figure 4.10(a). 
The structure is often more conveniently viewed as a three- 
dimensional chessboard-like arrangement of corner-linked W 06 
octahedra, as shown in Figure 4.10(b).

(a) (b)
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when they were first discovered, by Wohler in 1837, their metallic lustre and 
conductivity led him to believe that he had made some new alloys of 
tungsten rather than new oxides. The lithium tungsten bronze Li^WC^ has a 
composition range from W 03 to Lİ0.5WO3 and is formed by interpolation of 
the rather small Li atoms at random into the rather open parent W 03 
structure. The open nature of the tungsten trioxide structure allows the 
lithium atoms to move readily in and out of the crystals, and like LixTiS2, 
LixW 03 can act as a convenient solid reservoir for Li metal.

4.8 Defect chemistry

Point defect populations profoundly affect both the physical and chemical 
properties of materials. In order to describe these consequences, we need a 
notation for defects that is simple and self-consistent. The most widely 
employed system, and the one we shall use in this book, is the Kröger-Vink 
notation.

One of the most difficult problems, when working with defects in ionic 
crystals, is to decide on the charge on the ions and atoms of importance. In 
the Kröger-Vink notation, this problem is overcome in the following way. 
When we add or subtract elements to or from a crystal we do so by adding 
or subtracting electrically neutral atoms. When ionic crystals are involved, 
this requires that we separately add or subtract electrons. To illustrate the 
implications of this idea we will use the notation to describe some defects in 
a compound of formula MX , where M  is a metal and X  an anion. We 
commence with a consideration of uncharged atomic defects.

4.8.1 Atomic defects

Vacancies. When empty lattice sites occur, they are indicated by the symbols 
VM and Vx for the metal and non-metal sites, respectively. For example, in 
an ionic oxide such as NiO, VNį would imply the removal of a Ni2+ ion 
together with two electrons, that is, a neutral Ni atom. Similarly, V0  would 
indicate a vacancy in the oxygen sub-lattice and implies removal of an 0 2~ 
ion from the crystal and the subsequent addition of two electrons to the 
crystal.

Interstitial atoms. When atoms occupy interstitial positions, they are 
denoted by Mi and X{ for metals and anions, respectively. Hence K{ 
represents an interstitial potassium atom in a crystal.
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Impurity atoms. Many materials contain impurity atoms, either introduced 
on purpose, or because purification procedures are inadequate, and it is 
important to be able to specify the nature of the impurities and where in the 
crystal they are to be found. This is particularly true for dopant impurities 
that are deliberately added to control electronic or other properties. In this 
case, the impurity is given its normal chemical symbol and the site occupied 
is written as a subscript. Thus, an Mg atom on a Ni site in NiO would be 
written as MgNi. The same nomenclature is used if an atom in a crystal 
occupies the wrong site. So it is possible for M  atoms to be on X  sites, 
written as Mx  or X  atoms to be on M  sites, written as XM. A potassium 
atom on a bromine site in KBr would be written as KBr, for example.

Associated defects. It is possible for one or more lattice defects to associate 
with one another, that is, to cluster together. These are indicated by 
enclosing the components of such a cluster in parenthesis. As an example 
(VmVx) would represent a Schottky defect in which the two vacancies were 
associated as a vacancy pair.

It can be noted that the nomenclature uses a straightforward system of 
description. It is seen that the normal symbol for a chemical element 
represents the species involved, and the subscript represents the position of 
the atom in the structure. Apart from the symbols for chemical elements, we 
have used V to represent a vacancy and і to represent an interstitial. The 
symbol V is also the chemical symbol for the element vanadium, of course. 
Where confusion may occur, the symbol for a vacancy is written Va.

4.8.2 Charges on defects

Electrons and electron holes. The charged defects that most readily come to 
mind are electrons. Some fraction of the electrons in a crystal may be free to 
move through the crystal. These are denoted by the symbol e'. The 
superscript ' represents the negative charge on the electron and it is written 
in this way to emphasize that it is considered relative to the surroundings 
rather than as an isolated point charge. This becomes important when we 
are concerned with the interactions and reactions of defects. Although 
electrons are the only charged sub-atomic particles to exist in the structure, 
it often simplifies matters to think about the sites where electrons are 
missing. This is analogous to thinking about vacancies instead of atoms. In 
the case of these ‘electron vacancies’ we use the symbol Һ’ to denote the 
defect, which is called an electron hole, or, more commonly, simply as a 
‘hole'. Each hole will bear a positive charge of + 1, which is represented by 
the superscript dot to emphasize that it is considered relative to the 
surrounding lattice.
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Charges on defects. Besides the electrons and holes just mentioned, the 
atomic defects that we have described above can also carry a charge. In ionic 
crystals, this may be considered to be the normal state of affairs. The 
Kröger-Vink notation bypasses the problem of deciding on the real charges 
on defects by considering only effective charges on defects. The effective 
charge is the charge that the defect has with respect to the normal crystal 
lattice. To illustrate this concept, let us consider the situation in an ionic 
material such as NaCl, which we will supposed to be made up of the charged 
ions N a+ and СП. If we have a vacancy in the NaCl structure at a sodium 
position VNa, what will the effective charge on this defect be? To answer this, 
you must mentally think of yourself as ‘diffusing’ through the NaCl 
structure. Each time an N a+ ion is encountered, a region of positive charge 
will be experienced. If, then, we meet a vacancy instead of a normal ion, this 
will not seem to be positive at all. Relative to the situation normally met 
with at the site, we will encounter a region which has an effective negative 
charge, that is a charge relative to that normally encountered at that 
position equivalent to -1 . In order to distinguish effective charges from real 
charges, the superscript prime is used for each unit of negative charge and 
the superscript dot is used for each unit of positive charge. Hence a ‘normal’ 
vacancy at a sodium site in NaCl would be written as V'Na, which 
corresponds to a missing N a+ ion. Similarly, a ‘normal’ vacancy at a 
chloride ion site would seem to be positively charged relative to the normal 
situation in the crystal. Hence the vacancy has an effective charge of +1, 
which would be written Y q\ ·

With each of the other defect symbols VM, Vx, Mi? Mx and associated 
defects such as (VmVx) an effective charge relative to the host lattice is also 
possible. Thus, Zn2* would indicate a Zn2+ ion at an interstitial site which 
is normally unoccupied and hence without any pre-existing charge. In such a 
case, all the charge on the Zn2+ ion is experienced as we move through the 
lattice, and hence the presence of two units of effective charge is recorded in 
the symbol, i.e. 2*. Similarly, substitution of a divalent ion such as Ca2+ for 
monovalent N a+ on a sodium site gives a local electronic charge augmented 
by one extra positive charge which is then represented as Ca^a*

Suppose now a sodium ion in NaCl, represented by NaNa, is substituted 
by a potassium ion, represented by KNa. Clearly the defect will have no 
effective charge, as, to anyone moving through the crystal, the charge felt on 
encountering the KNa ion is the same as that experienced on encountering a 
normal NaNa ion. This defect is, therefore, neutral in terms of effective 
charge. This is written as K^a when the effective charge situation needs to be 
specified. The superscript x represents no effective charge at the site in 
question.

It is, therefore, evident that the idea of the charge on the defect is 
separated from the chemical entity which makes up the defect. Real charges 
are represented by n+ and while effective charges are represented by nt
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and «·, or X. It is for this reason that the charges on electrons and electron 
holes mentioned above were written as ' and *, as these charges are only of 
importance relative to the surrounding crystal lattice.

The main features of the Kröger-Vink notation are summarized in Table 
4.4.

4.8.3 Reaction equations

There are many instances when we have to consider reactions which cannot 
be expressed within the normal chemical nomenclature. For example, if an 
impurity is doped into a crystal it can have profound effects on the physical 
and chemical properties of the substance because of the defects introduced. 
However, defects do not occur in the balance of reactants expressed in 
traditional chemical equations and so these important effects are lost to the 
chemical accounting system that the equations represent. If defects can be 
incorporated into normal chemical equations, it will not only allow us to 
keep a strict account of these important entities but also to apply chemical 
thermodynamics and other techniques of handling chemical energy 
exchange to the reactions. We can, therefore, build up a defect chemistry, 
in which the defects play a role analogous to that of the chemical atoms 
themselves. The Kröger-Vink notation allows this to be done, provided the 
normal rules which apply to balanced chemical equations are preserved. As 
the rules are slightly different than those of elementary chemistry they are 
set out here.

Table 4.4 Summary of the Kröger-Vink notationf

Defect Type Notation Defect type Notation

Non-metal vacancy at v x Impurity non-metal (Y) at Yx
non-metal site non-metal site

Metal vacancy at metal site VM Impurity metal (A) at metal A m
site

Neutral vacancies V M v x Non-metal vacancies with Vx
positive effective charge

Metal vacancies with V'm Interstitial metal Mi
negative effective charge

Interstitial non-metal Xi Interstitial metal with M\
positive effective charge

Interstitial non-metal with X'
negative effective charge 

Free electron! e' Free positive holeļ h*

fThe definitive definitions of this nomenclature and further examples are to be found in the 
IUPAC Red Book on the Nomenclature of Inorganic Chemistry, Chapters 1-6. 
^Concentrations of these defects are designated by n and p, respectively.
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1. The number of metal atom sites must always be in the correct proportion 
to the number of non-metal atom sites in the crystal. For example, in 
MgO we must always have equal numbers of both types of position; in 
Ti02, there must always be twice as many anion sites as cation sites; and 
in a compound МаХы there must be a metal atom sites for every b non- 
metal atom sites. As long as this proportion is maintained, the total 
number of sites can vary, as this simply corresponds to more or less 
substance present. If the crystal contains vacancies these must also be 
counted in the total number of sites, as each vacancy can be considered 
to occupy a site just as legally as an atom. Interstitial atoms do not 
occupy normal sites and so do not count when this rule is being applied.

2. The total number of atoms on one side o f the equation must balance the 
total number of atoms on the other side. Remember that the subscripts 
and superscripts are labels describing charges and sites, and are not 
counted in evaluating the atom balance.

3. The crystal must always be electrically neutral. This means not only that 
the total charge on one side of the equation must be equal to the total 
charge on the other side, but also that the sum of the charges on each 
side of the equation must equal zero. In this assessment, both effective 
and real charges must be counted if both sorts are present.

4. When crystals react, only neutral atoms are involved. After the reaction, 
neutral atoms can dissociate into charged species if this is thought to 
represent the real situation in the crystal.

To illustrate exactly how these rules work and to show that their 
application is not difficult, let us consider the reactions that can occur when 
crystals of Zr02 are reacted with CaO to produce a crystal of calcia-stabilized 
zirconia. This sort of situation cannot be treated by normal chemical 
equations, but it is clear that such reactions do take place and are important.

In Zr02 there are twice as many anion sites as there are cation sites. Let us 
suppose, as we have in the past, that the reacting Ca atoms are located on 
normal cation sites. In order to comply with the first rule we must, therefore, 
create two anion sites per Ca atom. These are considered to be vacant at the 
start. However, as we have to locate an oxygen atom in the crystal as well, it 
is reasonable to place it in one of these sites. The other site remains vacant. 
We have noted that the reactions are to be carried out using neutral atoms 
so as to avoid mistakes over the allocation of charges to reacting species. 
The reaction equation is then

This means that in the structure of Z r02 we now have Ca atoms and O 
atoms on sites normally occupied by metal and non-metal species. As the Ca 
atom is taken as being neutral, the effective charge at the site will be 4' with 
respect to the charge encountered when a normal Zr ion is encountered.

104 PRINCIPLES AND APPLICATIONS OF CHEMICAL DEFECTS 

1. The number of metal atom sites must always be in the correct proportion 
to the number of non-metal atom sites in the crystal. For example, in 
MgO we must always have equal numbers of both types of position; in 
Ti02, there must always be twice as many anion sites as cation sites; and 
in a compound MaXb, there must be a metal atom sites for every b non­
metal atom sites. As long as this proportion is maintained, the total 
number of sites can vary, as this simply corresponds to more or less 
substance present. If the crystal contains vacancies these must also be 
counted in the total number of sites, as each vacancy can be considered 
to occupy a site just as legally as an atom. Interstitial atoms do not 
occupy normal sites and so do not count when this rule is being applied. 

2. The total number of atoms on one side of the equation must balance the 
total number of atoms on the other side. Remember that the subscripts 
and superscripts are labels describing charges and sites, and are not 
counted in evaluating the atom balance. 

3. The crystal must always be electrically neutral. This means not only that 
the total charge on one side of the equation must be equal to the total 
charge on the other side, but also that the sum of the charges on each 
side of the equation must equal zero. In this assessment, both effective 
and real charges must be counted if both sorts are present. 

4. When crystals react, only neutral atoms are involved. After the reaction, 
neutral atoms can dissociate into charged species if this is thought to 
represent the real situation in the crystal. 

To illustrate exactly how these rules work and to show that their 
application is not difficult, let us consider the reactions that can occur when 
crystals of Zr02 are reacted with CaO to produce a crystal of calcia-stabilized 
zirconia. This sort of situation cannot be treated by normal chemical 
equations, but it is clear that such reactions do take place and are important. 
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suppose, as we have in the past, that the reacting Ca atoms are located on 
normal cation sites. In order to comply with the first rule we must, therefore, 
create two anion sites per Ca atom. These are considered to be vacant at the 
start. However, as we have to locate an oxygen atom in the crystal as well, it 
is reasonable to place it in one of these sites. The other site remains vacant. 
We have noted that the reactions are to be carried out using neutral atoms 
so as to avoid mistakes over the allocation of charges to reacting species. 
The reaction equation is then 

C 0 Zr02 C 4' V2 ' 0 2 ' 
a ---t aZr + 0 + ° 

This means that in the structure of Zr02 we now have Ca atoms and 0 
atoms on sites normally occupied by metal and non-metal species. As the Ca 
atom is taken as being neutral, the effective charge at the site will be 4' with 
respect to the charge encountered when a normal Zr ion is encountered. 
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Similarly, the oxygen atom will be neutral and so the effective charge on the 
oxygen site which is occupied will be 2·, and that on the oxygen site which is 
vacant will equally be 2·. Note that the equation conserves mass balance, 
electrical charge balance and site numbers, in accordance with the rules 
given above.

Now, Z r0 2 and CaO are normally regarded as ionic compounds, so that 
ions should occupy the sites, not neutral atoms. This gives us an alternative 
and perhaps more realistic process which we can write as

This equation also conserves mass balance, electrical charge balance and site 
numbers, as indeed it must. We notice that the effective charge on the Ca ion 
is now 2 ' as the normal charge at a cation position is due to the presence of 
Zr4+ ion, and so, with respect to the normal situation, the presence of the 
Ca2+ ion leads to an effective decrease in the charge encountered at the site 
in question by two units. Similarly, the oxygen ion occupies a normal 
oxygen ion site and we have no difference from that normally encountered 
in Z r0 2 and so the effective charge for these ions is zero.

It may be argued that the Ca2+ ions do not occupy Zr sites, but prefer 
interstitial positions. The Ca2+ ions are then easy to deal with, as they do 
not affect the site numbers in the Z r0 2 matrix. Each oxygen atom can again 
be assumed to occupy an anion site. Now in this case, the site conservation 
rule applies, and for each fresh anion site created we must create one half of 
a new cation site. This simply means that every two oxygen atoms 
incorporated into the crystal generate one new cation position. As the Ca 
ions do not make use of these positions they remain empty. Once again, 
taking the atomic entities to be ions rather than neutral atoms, we can write 
the formation equation as

So far we have written down three equations which could apply to the 
reaction of CaO with Zr02 to form calcia-stabilized zirconia. All of them are 
correct in a chemical sense. To decide which of them, if any, represents the 
true situation in the material, experimental evidence, such as that derived from 
density measurements of the type already shown in Figure 4.11, is needed.

4.9 Point defect interactions

We have seen that defects in a crystal can carry effective charges, and 
because of this we would expect the defects to interact with each other quite 
strongly. It is worthwhile to see if we can gain some approximate feeling for 
the magnitude of these energy terms. As we are thinking about the
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the magnitude of these energy terms. As we are thinking about the 
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interaction of charged defects, perhaps the place to start is with simple 
electrostatic theory. This gives the energy of interaction of two unit charges 
(sometimes expressed as the work needed to separate them) as

where each of the charges has a magnitude of e and we assume that the 
charges have opposite signs and attract each other, r is the separation of the 
charges and ε0 is the permittivity of vacuum.

If we apply this formula to defects in a crystal, and again assume that the 
defects are oppositely charged, so that they attract each other, the energy 
term will be roughly equivalent to the enthalpy of formation of a defect pair, 
ΔHp. In order to allow for the crystal structure itself, which will modify the 
interaction energy considerably, we make the assumption that the force of 
attraction is simply ‘diluted’ in the crystal by an amount equal to its relative 
permittivity.

The modified formula is then

where AHP is the enthalpy of interaction, z\ and z2 are the effective charges 
on the defects, є is the static relative permittivity of the crystal and the other 
symbols have the same meaning as in the initial formula.

Simple as this theory is, it is good enough to tell us whether the 
association of defects is likely to occur. Consider, as an example, a Schottky 
defect, consisting of a cation vacancy and an anion vacancy, in a crystal of a 
monovalent metal MX  with the rock salt structure. These vacancies will 
have effective charges of + e and -e . Their interaction will be greatest when 
they are closest to each other, that is, when they occupy neighbouring sites 
in the crystal. The separation of these sites is about 3 x 10~lom in this 
structure. An approximate value for the relative permittivity of a rock salt 
structure crystal is 10. The value of eo is given by 8.854 x 10~12Fm -1  and 
the electronic charge by 1.6022 x 10- 19C, so the interaction energy, which 
is attractive, is given by

įThe units in this calculation work out correctly.

Converting into more fundamental values C = As, F = C V -1, V = W A " 1 and W = Js \  
where C = coulomb, A = ampere, F = farad, V = volt, W = watt and J -  joule. Making the 
appropriate substitutions,
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The figure we have calculated is the interaction energy for one pair of 
vacancies only. To obtain the molar quantity, we multiply ΔHp above by 
Avagadro’s number, N \, to yield

This is similar in magnitude to the values quoted for Schottky defect 
formation energies and so we would expect that a reasonable proportion of 
the vacancies would be associated into pairs.

We can actually make an assessment of the fraction of defects in a crystal 
which are associated using the rough interaction energies calculated above 
in the following way. The Boltzmann equation tells us that if we have two 
energy states separated by an energy difference AH  the fraction of the 
population in the upper state, /,  is given by

where k is Boltzmann’s constant and T the absolute temperature. We can 
use this for our purposes, and to provide an example, let us return to the 
case discussed above, that of vacancy pair association in an NaCl type 
material.

If the number of Schottky defects is ns, we will have ns cation vacancies 
and ns anion vacancies in the crystal. If we take the interaction energy to be 
7.69 X 10~ 20 J, as we calculated, the fraction of vacancies associated will be 
given by /, where

where we have taken a value of 1.38 x 10 23 JK  1 for Boltzmann’s 
constant, к , and a temperature of 1000 K. Hence

That is, about four defects in every 1000 will be associated into pairs at 
1000 K. As we already know how to estimate the number of Schottky 
defects in a crystal, it is, therefore, possible to find the total number of 
vacancies that are associated in pairs. Obviously we can use similar 
reasoning to that above for other defect types.

We can conclude this section by observing that although the estimates of 
interaction energy given here are approximate, they do suggest that a fair 
number of defects will exist as clusters rather than as isolated ‘point defects’. 
This conclusion has been borne out in recent years by realistic calculations 
which can be made via a variety of sophisticated computational techniques. 
These show that much of the interaction energy between point defects arises 
when the atoms in the crystal close to the defects move slightly to adjust to

NON-STOICHIOMETRY AND POINT DEFECTS 107 

The figure we have calculated is the interaction energy for one pair of 
vacancies only_ To obtain the molar quantity, we multiply !::lHp above by 
Avagadro's number, N A , to yield 

!::lHp = 46.3 kJ mol- I 

This is similar in magnitude to the values quoted for Schottky defect 
formation energies and so we would expect that a reasonable proportion of 
the vacancies would be associated into pairs. 

We can actually make an assessment of the fraction of defects in a crystal 
which are associated using the rough interaction energies calculated above 
in the following way. The Boltzmann equation tells us that if we have two 
energy states separated by an energy difference !::lH the fraction of the 
population in the upper state, J, is given by 

f= exp ( - ~:) 
where k is Boltzmann's constant and T the absolute temperature. We can 
use this for our purposes, and to provide an example, let us return to the 
case discussed above, that of vacancy pair association in an NaCl type 
material. 

If the number of Schottky defects is ns, we will have ns cation vacancies 
and ns anion vacancies in the crystal. If we take the interaction energy to be 
7.69 x 10- 20 J, as we calculated, the fraction of vacancies associated will be 
given by J, where 

[ (-7.69 x 10-20 ) ] 

f = exp (1.38 x 10-23 x 103) 

where we have taken a value of 1.38 x 10-23 J K -I for Boltzmann's 
constant, k, and a temperature of 1000 K. Hence 

f= 0.0038 

That is, about four defects in every 1000 will be associated into pairs at 
1000 K. As we already know how to estimate the number of Schottky 
defects in a crystal, it is, therefore, possible to find the total number of 
vacancies that are associated in pairs. Obviously we can use similar 
reasoning to that above for other defect types. 

We can conclude this section by observing that although the estimates of 
interaction energy given here are approximate, they do suggest that a fair 
number of defects will exist as clusters rather than as isolated 'point defects'. 
This conclusion has been borne out in recent years by realistic calculations 
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the new configuration of the defects themselves. This process is known as 
relaxation, and this relaxation energy makes a major contribution to the 
overall stabilization energy of defect clusters.

4.10 Supplementary reading

There are very few books which cover the defect chemistry and physics 
covered in this chapter at an introductory level. Probably the most complete 
account of point defect chemistry, and an explanation of the Kröger-Vink 
notation is to be found in the book:
F.A. Kröger, The Chemistry of Imperfect Crystals, 2nd edition, North-Holland, Amsterdam 

(1974).

An account of the defect chemistry of oxides with much experimental data 
can be found in:
P. Kofstad, Non-stoichiometry, Diffusion and Electrical Conductivity in Binary Metal Oxides, 

Wiley-Interscience, New York (1972).

A brief but interesting account of defect chemistry is given in chapters 1 and 
5 of:
W.J. Moore, Seven Solid States, Benjamin, New York (1967).

Two very good review articles on the subject matter of this chapter are:
J.S. Anderson, in Chemistry of the Solid State, ed. C.N.R. Rao, Marcel Dekker, New York 

(1974).
D.J.M. Bevan, Comprehensive Inorganic Chemistry, Voi. 4, chapter 49, ed. A.F. Trotman- 

Dickenson, Pergamon, Oxford (1973).



5 Fast ion conductors

5.1 Introduction

Batteries are obviously very useful. The key to battery construction is an 
electrolyte which can carry ionic conduction but not electronic conduction. 
The first batteries used water solutions as electrolytes and such batteries are 
still common place. The normal lead-acid car battery is a good example. 
However, batteries which utilize a solid electrolyte have been developed and 
find uses in a wide range of applications from watches to heart pacemakers, 
where a liquid electrolyte battery would not be satisfactory. Moreover, the 
voltage produced by a battery depends on the concentration of the materials 
on either side of the electrolyte. This means that we can use the voltage as a 
signal to give us concentration information. This forms the basis of the 
operation of many sensors. If the battery voltage is reversed, as it is when 
charging a car battery, then material is pumped from one side of the 
electrolyte to the other. Thus, batteries can be modified and used as 
electrochemical pumps capable of delivering very precisely monitored 
amounts of substance to one side of the cell.

With few exceptions, Lil discussed in section 5.2, for example, normal 
solids have too low a conductivity to be useful in these devices. In fact, the 
principle requirement of a solid electrolyte is that it should conduct ions 
through the crystal lattice as fast as ions can travel in a solution. This is 
quite a demanding requirement! However, careful manipulation of the 
defect populations present in ‘normal’ crystals have led to the production of 
a number of materials which do have ionic conductivities in the solid state 
which are as large as that normally found in solutions. Such materials are 
sometimes called super ionic conductors, but the term fast ion conductors is 
preferred to avoid confusion with metallic superconductors, which transport 
electrons, not ions, and by a quite different mechanism. Figure 5.1 shows the 
domains of fast ion conduction for the principle materials discussed in this 
chapter. This chapter focuses on the role that defects play in fast ion 
conductors and uses this information to explain the mechanisms by which 
devices which rely on these materials operate.
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Figure 5.1 Ionic conductivity of some widely used solid electrolytes.

5.2 The lithium iodide battery

Lithium iodide is an electrolyte in certain batteries used in specialist 
situations. Although Lil is not a fast ion conductor, this disadvantage is 
more than offset by reliability and long life, which make these batteries ideal 
for medical use in heart pacemakers, for example. These features also make 
Lil cells useful in backup circuits designed to function in emergencies. For 
heart pacemakers, the battery itself is typically constructed of two cells, 
placed back to back, separated by a nickel gauze and contained in a stainless 
steel or titanium case, while for use in electronic circuits, a single button cell 
of the type shown in Figure 5.2 is more often employed. The anode is made 
of lithium metal. For the cathode, a conducting polymer of iodine and 
polyvinyl pyridine is employed because iodine itself is not a good electronic 
conductor. The cell is fabricated by placing the Li anode in contact with the
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Figure 5.2 A single Lil button cell for use in electronic circuits.

polyvinyl pyridine-iodine polymer. The lithium, being a reactive metal, 
immediately combines with the iodine in the polymer to form a thin layer 
the electrolyte, Lil. The reaction is

overall reaction :

The voltage of the battery is 2.8 V.
In order for the battery to function, the Lil must be a reasonable ionic 

conductor. The cell operation is sustained by the Schottky defect population 
in the Lil. On closing the external circuit, the Li atoms in the anode surface 
become Li+ ions at the anode-electrolyte interface

anode reaction :

These diffuse through the Lil via the Schottky cation vacancies to reach the 
iodine in the cathode. The electrons lost by the Li traverse the external 
circuit and arrive at the interface between the cathode and the electrolyte. 
Here they react with the iodine and the incoming Li+ ions to form more Lil

cathode reaction :

These reactions are shown schematically in Figure 5.3. During use, the 
thickness of the Lil electrolyte gradually increases because of this reaction, 
and it is this factor that ultimately causes the cell to become unusable.

Although the Schottky defect population in Lil is vital for maintaining 
battery operation it is too low for many purposes. For instance, the low 
ionic conductivity means that the current in the external circuit cannot be 
large. This is due to the fact that the small number of Schottky defects 
present limits the magnitude of the current flow in the external circuit. To 
overcome this problem the Lil is sometimes doped with Ca2+ ions. Recall 
that the consequence of doping an ionic material with a cation of higher
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FAST ION CO ND U CTORS 

insulator 

solid electrolyte 
(lithium iodide layer) 

Figure 5.2 A single LiI button cell for use in electronic circuits. 

111 

cathode 

polyvinyl pyridine) 

polyvinyl pyridine-iodine polymer. The lithium, being a reactive metal, 
immediately combines with the iodine in the polymer to form a thin layer 
the electrolyte, Lil. The reaction is 

overall reaction: Li ( s) + ~ 12 ( s) ----> Lil ( s ) 

The voltage of the battery is 2.8 V. 
In order for the battery to function, the Lil must be a reasonable ionic 

conductor. The cell operation is sustained by the Schottky defect population 
in the Lil. On closing the external circuit, the Li atoms in the anode surface 
become Li + ions at the anode-electrolyte interface 

anode reaction: Li(s) ----> Li+ + e-

These diffuse through the Lil via the Schottky cation vacancies to reach the 
iodine in the cathode. The electrons lost by the Li traverse the external 
circuit and arrive at the interface between the cathode and the electrolyte. 
Here they react with the iodine and the incoming Li + ions to form more Lil 

cathode reaction: 2Li+ + 12 + 2e- ----> 2Lil 

These reactions are shown schematically in Figure 5.3. During use, the 
thickness of the Lil electrolyte gradually increases because of this reaction, 
and it is this factor that ultimately causes the cell to become unusable. 

Although the Schottky defect population in Lil is vital for maintaining 
battery operation it is too low for many purposes. For instance, the low 
ionic conductivity means that the current in the external circuit cannot be 
large. This is due to the fact that the small number of Schottky defects 
present limits the magnitude of the current flow in the external circuit. To 
overcome this problem the Lil is sometimes doped with Ca2+ ions. Recall 
that the consequence of doping an ionic material with a cation of higher 

cathode 
cathode 
cathode 

cathode 
cathode cathode 

cathode 

cathode 



1 1 2 P RI NCI P LES A ND  A P P LI CATI ONS  OF CHEMI CAL DEFECTS

Figure 5.3 The processes taking place in a Lil cell. Electrons traverse the external circuit from 
anode to cathode. Li+ ions travel across the Lil electrolyte via Schottky vacancy diffusion.

valence is the introduction of cation vacancies. So each Ca2+ ion in Lil will 
form one cation vacancy over and above those present due to Schottky 
defects. In this way, the conductivity of the electrolyte can be substantially 
increased. Nevertheless, conductivities equivalent to solutions cannot be 
achieved in Lil by this or any other method. In later sections we will see how 
materials with enhanced defect populations make it possible to achieve this 
goal.

5.3 Disordered cation compounds

Although most fast ion conductors have only been developed in recent 
years, they are not altogether new and some were investigated by Faraday in 
the nineteenth century. Examples of these materials are listed in Table 5.1. 
They show a very high ionic conductivity at temperatures above about 
150 °С due to a very high concentration of what might be thought of as 
Frenkel defects.

The origin of these high-defect concentrations can be understood by 
reference to the apparently simple material, Agl. At room temperature, Agl 
exists in the /З-form, which has the wurtzite structure. The ionic conductivity 
of this material is normal. However, in 1914 silver iodide was discovered to 
transform to a high temperature polymorph, a-Agl, above 147 °С. This 
material possesses an unusually high ionic conductivity, as can be seen from 
the conductivity data in Figure 5.1.

The structure of the a- phase, shown in Figure 5.4, reveals that the iodine 
ions form a fixed, body-centred cubic sub-lattice. The unit cell contains two 
Agl formula units and so two Ag+ ions must, therefore, be distributed in 
some way between the iodide ions. There are quite a number of different 
possible cation sites available: six with octahedral geometry, 12 with
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Figure 5.3 The processes taking place in a LiI cell. Electrons traverse the external circuit from 
anode to cathode. Li + ions travel across the LiI electrolyte via Schottky vacancy diffusion. 

valence is the introduction of cation vacancies. So each Ca2 + ion in LiI will 
form one cation vacancy over and above those present due to Schottky 
defects. In this way, the conductivity of the electrolyte can be substantially 
increased. Nevertheless, conductivities equivalent to solutions cannot be 
achieved in LiI by this or any other method. In later sections we will see how 
materials with enhanced defect populations make it possible to achieve this 
goal. 

5.3 Disordered cation compounds 

Although most fast ion conductors have only been developed in recent 
years, they are not altogether new and some were investigated by Faraday in 
the nineteenth century. Examples of these materials are listed in Table 5.1. 
They show a very high ionic conductivity at temperatures above about 
150°C due to a very high concentration of what might be thought of as 
Frenkel defects. 

The origin of these high-defect concentrations can be understood by 
reference to the apparently simple material, AgI. At room temperature, AgI 
exists in the ,8-form, which has the wurtzite structure. The ionic conductivity 
of this material is normal. However, in 1914 silver iodide was discovered to 
transform to a high temperature polymorph, a-AgI, above 147 °C. This 
material possesses an unusually high ionic conductivity, as can be seen from 
the conductivity data in Figure 5.1. 

The structure of the a- phase, shown in Figure 5.4, reveals that the iodine 
ions form a fixed, body-centred cubic sub-lattice. The unit cell contains two 
AgI formula units and so two Ag + ions must, therefore, be distributed in 
some way between the iodide ions. There are quite a number of different 
possible cation sites available: six with octahedral geometry, 12 with 
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Table 5.1 Disordered cation compounds related to a-A glj

bcc anions fee anions Miscellaneous

a-Agl o-Cul Na2S
a-Ag2S o-Cu2Se MHg4l 5 (M = Rb, K, Cs)
a-Ag2Te
a-Ag2Se
a-Ag3CuS2

a-Ag3SI
Ag3SBr
a-Ag3HgI4

Ag4HgSe2I2

a-CuAgS

fin  these phases the α-form refers to the high temperature disordered phase, the /З-form to the 
ordered room temperature phase and the 7 -form to any additional low temperature ordered 
phases which may occur.

tetrahedral geometry and 24 with trigonal geometry, making 42 in all! In a- 
Agl the silver ions use only the tetrahedral positions so that two will be 
occupied and 10 empty. However, the two which are occupied are 
continually changing as the Ag^ ions continually jump between all the 
tetrahedral sites. Over the course of several seconds, it appears that the Ag+ 
ions are distributed statistically between these positions as if they were 
endlessly flowing from one to another. This has led to the concept of a 
molten sub-lattice of Ag+ ions moving like a liquid through a fixed matrix of 
I“ ions.

Figure 5.4 (a) The body-centred cubic structure of the I“ ions in a-Agi. (b) Four unit cells 
arranged to show the tetrahedral sites, between the darker ions, occupied on a statistical basis 
by continually moving A g+ ions.

(b)(a)
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Structural studies have shown that a similar thing happens in the other 
materials listed in Table 5.1. At very low temperatures the structures are 
quite normal in the sense that all atoms can be placed in well-defined 
locations in the crystal structure. These low temperature structures are 
usually labelled the 7 -form. At temperatures close to room temperature, it is 
found that some or all of the cations exhibit very pronounced uncertainty in 
their positions, due to greatly increased amplitudes of vibration. These room 
temperature forms are normally labelled as /?-. Above a transition 
temperature, which is not too far from 400 K for all of these compounds, 
the а -phase is formed. In the high temperature forms, the cations occupy 
some or all positions statistically, leading to the high metal atom mobility 
described. Thus, the picture that emerges is one in which, as the temperature 
increases, metal atom vibrations increase until, at the transition tempera­
ture, these motions are so extreme that neighbouring sites become partly 
occupied. At this temperature the metal atoms are unable to distinguish 
between sites which should be permanently occupied and those which 
should be normally empty. If we imagine that the atoms are rapidly jumping 
from site to site in this high temperature phase, we have a picture of large 
numbers of Frenkel defects constantly forming and being annihilated.

5.4 Calcia-stabilized zirconia and related fast oxygen ion conductors

5.4.1 Structure and oxygen diffusion in fluorite structure oxides

A number of oxides with the fluorite structure are widely used in solid state 
electrochemical systems. They have formulae A 0 2xCaO, where A is 
typically Zr, Hf and Th, or Z r02JcM20 3 where M  is usually La, Sm, Y, 
Yb or Sc. Calcia-stabilized zirconia is the most important material of this 
type. The technological importance of these materials lies in the fact that 
they are fast ion conductors for oxygen ions at moderate temperatures. This 
property is enhanced by the fact that there is negligible cation diffusion or 
electronic conductivity in these materials which makes them ideal for use in 
a diverse variety of batteries and sensors.

In order to understand how these oxides are able to conduct oxygen ions 
with facility it is necessary to reconsider their defect structure. The 
stoichiometric composition of a fluorite structure oxide is M 02. Taking 
calcia-stabilized zirconia as an example, we know that addition of CaO 
drops the metal to oxygen ratio to below 2 .0 , and the formula of the oxide 
becomes CaxZri_x0 2_x. As we described in the previous chapter, the 
structure of calcia-stabilized zirconia fabricated at temperatures of about 
1600 °С is one in which the Ca2+ ions substitute on sites normally occupied 
by Zr4+ ions and we have compensating vacancies on the oxygen sites. For 
each Ca2+ ion inserted into the structure, we must create one anion
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vacancy. Hence an oxide containing 20 mole % CaO will have 20 mole % 
oxygen vacancies in the structure. Exactly the same situation holds when 
zirconia is reacted with the M20 3 oxides mentioned above. The population 
of oxygen vacancies will be rather less per substituted ion in these latter 
compounds, as one oxygen vacancy will form for every two foreign 3 + 
cations incorporated, leading to a generalized formula of M 3+Zr\-x0 2- x/2· 

Nevertheless, all of these stabilized zirconias contain an enormous oxygen 
vacancy population. The result of this is that the diffusion coefficient of 
oxygen ions is increased by many orders of magnitude compared to a 
normal oxide. This is because every normal oxygen ion is next to an oxygen 
vacancy and the rather open fluorite structure ensures that the energy barrier 
to be overcome in making a jump is rather low. These materials are a very 
fast oxygen ion conductors with no the cation transport or electronic 
conductivity.

5.4.2 Stabilized zirconia electrolytes

The high defect population in these stabilized zirconias is used in a large 
number of surprising ways. All of them rely on the zirconia being used as a 
solid electrolyte but they are not all batteries in the conventional sense. The 
reason for this flexibility arises as a consequence of the high oxygen vacancy 
concentrations.

What will tend to happen if a plate of stabilized zirconia separates oxygen 
gas at two different pressures, as shown in Figure 5.5? The high oxygen ion 
diffusion coefficient will allow ions to move from the high pressure side to 
the low pressure side so as to even out the pressure differential. However, 
this process will not continue for more than a transient moment because the 
oxygen gas on the high pressure side needs to be ionized and the oxygen ions 
arriving at the low pressure side need to gain electrons to form oxygen 
atoms and hence molecules again. However, if both surfaces of the zirconia 
are coated with a metallic electrode, say porous platinum, and the electrodes 
are connected by a wire, the reaction will continue. The electrons liberated 
at the high pressure side will traverse the external circuit and reunite with 
ions arriving at the low pressure side. The force driving the reaction will be 
the oxygen pressure differential.

The measure of this force is usually taken in thermodynamic terms to be 
the free energy of the reaction taking place. The free energy of the reaction, 
AG , is given by the equation

where n is the number of electrons transferred during the reaction, F is the 
Faraday constant and, most importantly, E is the voltage which develops
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Figure 5.5 The processes taking place in a stabilized zirconia oxygen sensor. The electrolyte 
separates oxygen gas at two different pressures. Electrons traverse the external circuit from the 
anode to the cathode, and oxygen ions cross the electrolyte from the cathode to anode. The 
voltage in the external circuit provides a measure of the oxygen pressure difference across the 
electrolyte.

between the electrodes as a result of the reaction. So, the end result is that 
the pressure difference has produced a voltage.

Thermodynamics tells us that the equation for AG applies to a much 
wider range of situations than just oxygen gas at two different pressures. A 
free energy change and hence a voltage will be produced as long as oxygen is 
present at two different activities. Now oxygen, which may be part of an 
oxide, dissolved in a metal or present in the blood, has measurable activities 
and so can be used as the source of a voltage. The rather wide range of 
devices which are based on a stabilized zirconia use this voltage as a signal 
to give information about the difference in the oxygen activity on each side 
of the stabilized zirconia barrier.

5.4.3 Oxygen sensors

One of the most important applications of calcia-stabilized zirconia is as an 
oxygen sensor. For the situation illustrated in Figure 5.5 the voltage across 
the zirconia is

where R is the gas constant, T the temperature in K, the factor four is the 
number of electrons required to transform one oxygen molecule into oxide 
ions and the oxygen pressures are measured in atmospheres. This can be 
rearranged to give
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where R is the gas constant, T the temperature in K, the factor four is the 
number of electrons required to transform one oxygen molecule into oxide 
ions and the oxygen pressures are measured in atmospheres. This can be 
rearranged to give 
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An easy way to make an oxygen sensor is to use a stabilized zirconia tube 
and to coat the inside and outside with porous platinum to which leads are 
connected. The tube can be used directly as an oxygen meter if p"0i is a 
standard pressure, such as 1 atmosphere of oxygen or else the pressure of 
oxygen in air, which is approximately 0.21 atmosphere. Such a system is 
utilized to monitor the oxygen content, and thus fuel efficiency, of a car 
engine. The schematic arrangement is shown in Figure 5.6. The coated 
zirconia tube is arranged to project into the exhaust stream of the engine. 
Using air as the standard oxygen pressure, the output voltage of the sensor 
is directly related to the stoichiometry of the air-fuel mixture. The cell 
voltage may be used to alter the engine input fuel-air mix automatically so 
as to optimize engine efficiency. Calibration of the response of the engine as 
a function of input conditions allows for the construction of a useful 
reproducible sensor.

The same arrangement can be used to measure the concentration of 
oxygen in solutions such as liquid metals or blood, and such sensors are in 
routine use in such diverse areas as medicine and the steel industry. Because 
the oxygen is dissolved, the voltage measured depends on the activity of the 
oxygen in the solution. For low concentrations, the activity is equal to the 
concentration itself, and it is found that

Figure 5.6 A car exhaust sensor using a stabilized zirconia ceramic tube electrolyte. [Redrawn 
after R.E. Newnham, Crystallogr. Rev. 1, 253 (1988).]
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If we take po2 as 1 atmosphere we can simplify the last equation to write

These equations consider the oxygen to be present as molecules in solution. 
If the oxygen exists as atoms the equation is

This is because the number of electrons required to transform the oxygen 
into ions is now two rather than four, as in the case of molecules.

5.4.4 Free energy meters

Because the potential developed across a stabilized zirconia electrolyte is 
simply related to the free energy of the reactions taking place in the 
surrounding cell, the material can be used to construct a free energy meter. 
One of the simplest arrangements that we can envisage is one in which the 
stabilized zirconia separates oxygen gas at 1 atmosphere pressure and a 
metal-metal oxide mixture. The voltage measured is directly related to the 
free energy of formation of the metal oxide. A more useful arrangement, in 
which a non-stoichiometric oxide is used on one side and a stoichiometric 
oxide on the other, allows one to measure the free energy of a phase as a 
function of its composition

We can illustrate this principle using the non-stoichiometric oxide ~FeO 
as the test material and NiO as the standard, as shown in Figure 5.7. 
Provided that the metal oxides are mixed with some metal the reactions 
taking place are

anode reaction : 

cathode reaction :

overall cell reaction :

where Feļ_xO represents the non-stoichiometric oxide in contact with Fe 
metal. Now the voltage measures the difference in the free energies of 
formation of the oxides and as NiO is a standard
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We can illustrate this principle using the non-stoichiometric oxide cvFeO 
as the test material and NiO as the standard, as shown in Figure 5.7. 
Provided that the metal oxides are mixed with some metal the reactions 
taking place are 

anode reaction: (I - x)Fe + 0 2- ----; Fel_xO + 2e-

cathode reaction: NiO + 2e- ----;Ni + 0 2-

overall cell reaction: (I - x)Fe + NiO----;Fel_xO + Ni 

where FeI _xO represents the non-stoichiometric oxide in contact with Fe 
metal. Now the voltage measures the difference in the free energies of 
formation of the oxides and as NiO is a standard 
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Figure 5.7 The reactions taking place in a stabilized zirconia cell used to measure the free 
energy of formation of ~FeO. The free energy of NiO is a known standard. The voltage in the 
external circuit is a measure of the difference in the free energy of NiO and ~FeO .

where AGpe0 represents the free energy of formation of Fei_xO and AG^io 
is the free energy of formation of NiO.

In this arrangement the voltage will be constant. Now if the iron in the 
mixture is used up the reaction will be slightly different, as the non- 
stoichiometric Fei_xO will still be able to take up oxygen. The reaction will 
be

The voltage measured will now appear to drift as the composition range of 
the non-stoichiometric oxide is crossed. The magnitude of the drift will be a 
direct measure of the difference in the free energy of formation of the oxide 
in contact with Fe, i.e. Fei_xO, with that of the composition produced, 
¥ е ] - хО \ +у.

5.4.5 Oxygen pumps and coulometric titrations

In the arrangements described above, oxygen is transferred from the high 
pressure (or high free energy) side to the low pressure (or low free energy) 
side of the zirconia as long as current is flowing in the external circuit. The 
amount of oxygen transferred can be precisely calculated by an application 
of Faraday’s law of electrolysis. The moles of 0 2~ transferred during cell 
operation is
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~GFeO = -2EF + ~G~iO 
where ~GFeO represents the free energy of formation of Fel_xO and ~G~<iO 
is the free energy of formation of NiO. 

In this arrangement the voltage will be constant. Now if the iron in the 
mixture is used up the reaction will be slightly different, as the non­
stoichiometric Fel_xO will still be able to take up oxygen. The reaction will 
be 

Fel-xO + yNiO---->Fel-xOI+y + yNi 

The voltage measured will now appear to drift as the composition range of 
the non-stoichiometric oxide is crossed. The magnitude of the drift will be a 
direct measure of the difference in the free energy of formation of the oxide 
in contact with Fe, i.e. Fel_xO, with that of the composition produced, 
Fel_xOI +y-

5.4.5 Oxygen pumps and coulometric titrations 

In the arrangements described above, oxygen is transferred from the high 
pressure (or high free energy) side to the low pressure (or low free energy) 
side of the zirconia as long as current is flowing in the external circuit. The 
amount of oxygen transferred can be precisely calculated by an application 
of Faraday's law of electrolysis. The moles of 0 2- transferred during cell 
operation is 

time (s) 
moles of 0 2- = current (A) x 2F(Cmol I) 
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This means that we can use the experimental procedure just described to 
vary the composition of the ~FeO phase in a quite precise way, simply by 
allowing a known amount of current to flow in the external circuit. This 
procedure is known as coulometric titration.

The process can also be reversed to make an oxygen pump. The principle 
is exactly the same as that used when charging a car battery. If a higher 
voltage is applied to the electrodes on each side of the stabilized zirconia, 
and the polarity of the voltage is reversed, oxygen ions will be pumped from 
the low pressure side to the high pressure side. These pumps have no moving 
parts or electric motors and are, therefore, of most use in situations where 
mechanical failure or electrical sparks must be avoided.

5.5 Case study: fuel cells

A battery uses the energy supplied by a spontaneous chemical reaction to 
provide an electric current. When the supply of reactants on each side of the 
electrolyte has been exhausted the chemical reaction stops and the battery 
will no longer serve a useful purpose. Fuel cells have been designed to 
overcome this disadvantage. Broadly speaking the supply of reactants to 
each side of the cell is continuous and the supply of current that can be 
drawn is limitless.

There are a number of good reasons for wanting to make a fuel cell, but 
two of the most important are economy and environmental protection. 
From the viewpoint of economics, fossil fuels are in ever shorter supply and 
an alternative source of energy will be necessary sooner or later. Looking at 
environmental protection, electric motors are non-polluting, both from the 
point of view of emissions and from the point of view of noise. Battery- 
driven motors would offer considerable advantages. However, battery 
production is not always so clean and fuel cell-driven motors would bypass 
this problem. Moreover, the burning of fossil fuels is at the heart of worries 
over global warming. Fuel cells would eliminate this worry as well.

Considerations of this nature have driven fuel cell research for a number 
of years. The ideal reactants for a fuel cell are hydrogen and oxygen. The 
reaction to form water has a suitable free energy and will yield about 1.2 V. 
Moreover, the reaction product is benign and oxygen is readily available 
simply by using air as one component of the cell. Practical cells have had 
two stumbling blocks, an easy source of hydrogen as a reactant and a 
suitable electrolyte.

In cells for experimental purposes or when costs are of secondary 
importance, hydrogen gas and an aqueous solution of KOH have been used 
as fuel and electrolyte. However, for many purposes a solid electrolyte is to 
be preferred. If cells are to be used to power cars, for example, a solid 
electrolyte would prove convenient and safe. Thus, a large number of cells
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have been constructed using stabilized zirconia as an electrolyte. A 
schematic diagram of one such cell design is shown in Figure 5.8. In this 
cell the fuel flows over the anode, which might be porous platinum, for 
example. The oxygen flows over the cathode, which is also porous platinum. 
The oxygen gas is oxidized and the stabilized zirconia transports oxygen 
ions from the high oxygen pressure cathode region to the anode region. The 
hydrogen fuel reacts with the O2- ions to produce water and electrons which 
flow to the anode. The cell reactions taking place are

anode reaction: 

cathode reaction: 

cell reaction:

For efficient production of power, these cells have to be used at about 
700 °С or higher. This is not a problem for automotive use as the cells can be 
warmed using, at least in part, surplus heat from the engine. The fact that 
such cells are not used routinely in cars lies in part with the problem of fuel. 
Despite a great deal of research on non-stoichiometric hydrides such as 
T\HX and NbHx, which are able to store hydrogen gas in a convenient form, 
no commercially successful portable hydrogen reservoir has yet been 
perfected. Recent research, in fact, suggests that a conventional hydro­
carbon fuel might be used indirectly, by passing it over a catalyst so as to 
generate hydrogen gas. Although the technology to make fuel cells an 
economic source of either static or mobile electricity has not quite been 
achieved, the rewards that will flow from a success will ensure that these cells 
will eventually be available commercially.

Figure 5.8 Detail of a fuel cell constructed of corrugated sheets o f stabilized zirconia. The 
anode and cathode can be porous platinum, but electrically conducting oxides such as doped 
LaM n03 are usually used.
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5.6 The ß-alumina oxides

5.6.1 High energy density batteries: the problem

An important goal in recent years has to make a battery suitable for use as a 
power source for vehicles. For this purpose a large cell voltage is required. 
Because of the connection between voltage and free energy, given by

this is equivalent to finding a reaction associated with a large free energy 
change.

The reactions between alkali metals and non-metals such as oxygen fall 
into this group. In terms of energy output per unit weight, these reactions 
yield about 600kWh per kg of material. In fact the Lil battery, described 
earlier in this chapter, utilizes this type of reaction. However, the ionic 
conductivity via the Schottky defects present in the Lil is too low to yield the 
high currents that are required in vehicles. A fast ion conductor is needed. 
Suitable materials have been found in a group of oxides related to the 
compound ß-alumina. These have high ionic conductivities, with transport 
numbers for the alkali metal cations close to 1.0 over a wide range of 
temperatures (see Figure 5.1) and appear perfect for the job.

5.6.2 The structure of ß-alumina

The ß-alumina family of phases are all non-stoichiometric compounds with 
compositions lying somewhere between the limits MA50$ and M An 0 17, 
where M  represents a monovalent cation, typically Li, Na, K, Rb, Ag or T1 
and A represents a trivalent ion, usually Al, Ga or Fe. The parent phase, /3- 
alumina itself, has a nominal composition of NaAlnOn.

In fact, both the name and formula of /З-alumina are misleading. When /3- 
alumina was first prepared it was thought to be a polymorph of alumina, 
hence the name. Only later was it discovered that the compound was, in fact, 
a sodium aluminium oxide. Despite this fact, the name /З-alumina was still 
retained and today is firmly entrenched in the literature.

The general features of the /З-alumina structure were clarified as long ago 
as 1931 and are shown in Figure 5.9. It is seen that the unit cell is composed 
of two units, the 6spinel blocks' and regions between these blocks which hold 
them together. The spinel blocks are composed of four oxygen layers in a 
cubic, close-packed arrangement. In these layers, the Al3+ ions occupy 
octahedral and tetrahedral positions, so the structure resembles a thin slice 
of the compound spinel, MgAl20 4, but without the Mg2+ ions. So, although 
these sheets are called spinel blocks, they are neither exactly of the spinel 
composition, nor blocks, being in fact sheets of unlimited extent in the
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direction normal to the c-axis. They are held together by a few АЮ4 

tetrahedra. This means that the spinel blocks are easily separated, and /3- 
alumina cleaves readily into mica-like foils along these planes. The N a+ ions 
reside in this almost empty region between the spinel blocks, called the 
conduction planes.

When the structure is determined carefully, problems arise because it is 
impossible to locate the N a+ ions with precision. There are three possible 
N a+ sites in the conduction planes as shown in Figure 5.10(a). At room 
temperature, the N a+ ions are moving continuously between them, as 
illustrated in Figure 5.10(b). This is just like the situation in Agl. This means 
that the N a+ ions behave as a quasi-liquid layer throughout the conduction 
planes. It is now easy to understand why /З-alumina is such a good 
conductor of N a+ ions. We have almost unimpeded motion in the Na + 
layers and the conductivity is of the same order of magnitude as one would 
find in a strong solution of a sodium salt in water. This is exactly as desired!

When we compare the situation in /З-alumina with that in Lil, we can see 
that the problem of obtaining a high point defect concentration in the 
electrolyte has been solved by effectively segregating the ‘defects’ into N a+- 
containing layers, away from the normal spinel-like structure which contains 
only low point defect concentrations. This is indeed a clever structural way 
for aluminium oxide, which is built up of small cations, to incorporate large 
cations within its structure without excessive lattice strain.

Figure 5.9 The structure of /З-alumina shown as a packing of ‘spinel blocks’, separated by 
A I O 4  tetrahedra. The conduction planes contain only N a + ions, shown as filled circles, and 
oxygen ions which form the central apex of the A I O 4  tetrahedra.
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The story of the non-stoichiometric structure of /З-alumina is not quite 
finished. While the ideal composition is NaAlnOn, the real composition is 
quite variable and it is found that that the phase always contains an excess 
of alkali metal. (A typical analysis would yield a composition of 
Na2.58Aİ2i.8i0 34.) Because crystals of /З-alumina contain an excess of Na + 
ions over the idealized formula it is necessary to look for some sort of 
counter-defects. There are two reasonable possibilities that can be 
envisaged; the introduction of Al3 + vacancies into the spinel sheets or else 
the incorporation of extra oxygen ions into the structure. It is not easy to see 
how these extra O2- ions can be introduced into the spinel sheets as the 
available unoccupied positions are too small to accommodate them. 
Therefore, it is necessary to conclude that the extra O2- ions must be 
present in the same layers as the N a+ ions.

It has not been easy to obtain experimental evidence to confirm which of 
these alternative possibilities holds, but on balance it seems that extra 
oxygen ions enter the Na planes to maintain the charge balance. However, 
the energy needed to create an Al3+ vacancy must be very similar to that

Figure 5.10 (a) Some of the possible Na sites in the conduction plane of sodium /3-alumina. 
The outline marks the extent of the unit cell. The positions labelled N al are on average 
occupied 80% of the time while the sites labelled Na2 are only occupied about 17% of the time. 
Other sites make up the other 3% occupancy. The oxygen ion forms part of an A104 
tetrahedron, (b) The structure of the conduction plane in which the open circles represent O2- 
ions and the filled circles N a + ions in N al sites. One of many diffusion paths is shown as a 
dotted line.

(a)

(b)
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needed to place an oxide ion into the N a+ planes because in some other /3- 
alumina phases Al3+ vacancies, or a combination of both vacancies, and 
extra oxygen occurs.

5.6.3 Other ß-alumina related phases

The stacking of the spinel blocks in /З-alumina is not unique and an alternative 
arrangement in which the unit cell contains three spinel blocks, not two, is 
possible. This structure is called /3"-alumina. Although the structure is 
different the phase has the same composition and formula as /3-alumina. 
Complex structures which have the same chemical formula but differ in the 
way in which parts of the structure are stacked on top of one another are 
often called polytypes. The ^"-alumina phase is preferred for batteries as it 
generally shows a higher ionic conductivity for N a+ than the /3-form.

The ionic conductivity is due to the alkali metal ions between the spinel- 
like slabs and so is specific to these alkali metal cations only. Thus, if we 
wish to make a sensor capable of detecting only sodium we could make use 
of sodium /3"-alumina. The mobility of the alkali metal ions has a further 
consequence. If crystals of sodium /3"-alumina are placed in contact with a 
liquid phase containing another cation, such as molten KC1, then the Na + 
will exchange with the K + and we can make a crystal in which the alkali 
metal ions are K + rather than N a+. In this way /3"-alumina crystals 
containing a wide range of monovalent, divalent and lanthanide cations 
have been prepared. All of these have very similar structures to sodium-/3"- 
alumina but the details of the defect structure vary from one phase to 
another.

5.6.4 ß-alumina batteries: a solution

The ideal properties of the /З-alumina oxides were first exploited in a battery 
by the Ford Motor Company in 1966. As expected, it had an extremely high 
power density, equal to 1030 Wh kg-1. The principle of the battery is shown 
in Figure 5.11. The reaction chosen was that between sodium and sulphur. 
The /3"-alumina electrolyte, made in the form of a large test-tube, separates 
molten sodium from molten sulphur, which is contained in a porous carbon 
felt. The operating temperature of the cell is high, about 300 °С, which is a 
drawback. However, the cell reaction is extremely energetic and the heat 
required to maintain the cell at its operating temperature is readily supplied 
by the cell itself.
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The following reactions take place 

anode reaction :

cathode reaction :

overall cell reaction :

The anode reaction takes place at the liquid sodium-/3"-alumina interface. 
Here sodium atoms loose an electron and the N a+ ions formed enter the 
conduction planes in the electrolyte. The cathode reaction, which occurs at 
the interface between the /?"-alumina and the liquid sulphur, forms sodium 
poly sulphides. The equations given above are representative of this type of 
reaction.

5.7 The LixTiS2-L i3N battery: role reversal

5.7.1 LixTiS2: a non-stoichiometric electrode

In previous sections of this chapter, fast ion conductors have mainly 
featured as solid electrolytes. Although the electrolyte is a vital component, 
it is not the only one of importance. The electrode materials also pose severe

Figure 5.11 Schematic diagram of a sodium-sulphur cell using /?"-alumina as a solid 
electrolyte.
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problems which can often be overcome by the use of non-stoichiometric 
compounds. In this final section, the way in which one material, LixTiS2, is 
used will be outlined.

In the previous chapter, the structure of non-stoichiometric materials, 
such as LixTiS2, was described. Li*TiS2 is made up of rather dense TiS2 
sheets interleaved with variable amounts of Li. The reaction by which the Li 
is inserted, called an intercalation reaction, is easily reversible. This property 
makes LixTiS2 very suitable for use as electrode material in batteries in 
which Li+ ions cross the electrolyte, as it can act as a reservoir for the very 
reactive Li needed. In general, it is used as the cathode. The reactions which 
take place when the battery is used (discharged) or recharged are

discharge : xLi + TiS2 — ► LixTiS2

recharge : LixTiS2 — ► xLi + TiS2

The cell reactions are

anode reaction : xLi — ► xLi+ + xe~

cathode reaction : TiS2 + xLi++xe_— ^LixTiS2

overall cell reaction : xLi + TiS2 — ► LixTiS2

which takes place for values of x which are less than 1 .

5.7.2 Li3N: a stoichiometric electrolyte

There are a number of batteries which have been constructed using Li as the 
anode and LixTiS2 as the cathode. Of most interest in the present context are 
those which use the material Li3N as the electrolyte. A diagram of a typical 
Li3N battery is shown in Figure 5.12.

How is a stoichiometric compound like Li3N is able to provide sufficiently 
high ionic conduction? Structurally, this phase is composed of compact 
layers of Li and N atoms joined together by Li atoms between the layers as 
shown in Figure 5.13. There is some uncertainty about the bonding in Li3N, 
but it would appear that an ionic model is not too far from the truth. In this 
case, the layers have a formula of (Li2N)~ and they are linked by Li+ ions. 
Pure Li3N is a conductor of Li+ ions. Looking at Figure 5.13, it would be 
natural to assume that the ionic transport takes place exactly as in ß- 
alumina and that the inter-layer lithium ions are responsible for the 
conductivity. Quite remarkably, this is false as the phase is strictly 
stoichiometric. Instead, the conductivity comes about by the formation of 
Frenkel defects. Some of the Li+ ions in the hexagonal layers move into 
interstitial sites in the region between the layers, leaving behind a cation
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Figure 5.12 Schematic illustration of a Li3N  solid state battery. The electrolyte is 
stoichiometric Li3N  and the cathode is non-stoichiometric LixTiS2-

Figure 5.13 The hexagonal structure of Li3N  which contains layers of Li+ ions, shown as 
small spheres, and N 3- ions, shown as large spheres, connected by bridging Li+ ions.

vacancy. The energy required to form such a defect is only 0.19 x 10“ 19 J. 
Surprisingly, the migrating defects appear to be the Li+ vacancies and not 
the interstitial Li+ ions between the layers! The enthalpy of migration of the 
defects is about 0.19 x 10_19J, the same as the formation energy of the 
Frenkel pair. The interacting roles of defects and non-stoichiometry are 
strangely reversed in this phase!

These cells present the rather unusual feature that a non-stoichiometric 
compound is used for the cathode and a stoichiometric material for the 
electrolyte.

5.8 Supplementary reading

There are a number of text books, volumes of conference proceedings and 
articles devoted to solid state electrolytes which cover the topic in this 
chapter from the point of view of cells and batteries. A selection of these are:
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chapter from the point of view of cells and batteries. A selection of these are: 

electrolyte 

electrolyte 

electrolyte 
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6 Non-stoichiometry and electronic conduction

6.1 Introduction

So far, discussion has been mainly restricted to materials in which the 
cations took only one valence state. We now add another level to our 
understanding of the structure and properties of non-stoichiometric 
compounds by considering materials in which some of the cations can take 
more than one valence state. Such cations are typically those of the tran­
sition metals, but some other atoms, such as Sn or Bi are also of importance.

All of the features of point defect chemistry that have been discussed 
previously also apply to these compounds. In particular, non-stoichiometry 
must be accompanied by compensating defects which maintain overall 
electrical neutrality in the material. Previously these compensating defects 
were supposed to be vacancies, interstitials or substituted atoms. In 
materials in which cations can take more than one valence state, electrical 
neutrality can also be preserved by a change in the charges on the cations. 
This results in the formation of new sorts of defects which are electronic in 
nature. An understanding of electronic defects will provide a key to the 
important electrical properties of transition metal compounds and the way 
in which these properties can be manipulated for our own purposes.

6.2 Non-stoichiometry in pure oxides

6.2.1 Metal excess

An oxide with an approximate formula MO and an experimentally 
determined metal excess can accommodate non-stoichiometry in two ways. 
In the absence of any other vacancies or interstitials, these compositional 
changes cannot be made without introducing electronic defects as well.

Type A materials. In type A materials, anion vacancies are the cause of the 
metal excess and the oxide will have a real formula MOi_x. In order to keep 
the crystal neutral we need to introduce two electrons for each oxygen ion 
moved. A good site for these electrons is a cation. In the present case, the
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starting oxide will contain only M2 + cations. If one electron is associated 
with one cation, it will change from an M 2+ ion to an M + ion. This 
situation is illustrated in Figure 6.1(a).

Type В materials. In type В materials, interstitial cations cause the excess 
metal and the oxide will have a real formula of M i + XO. In order to maintain 
charge neutrality, each interstitial M2+ cation atom must be balanced by 
two electrons. As before, these will create two M + ions in the structure, as 
shown in Figure 6.1(b).

In both these materials, non-stoichiometry involves the introduction of 
extra electrons. If sufficient energy is supplied to make the move from one 
cation to another, the crystal will be able to conduct electricity. Often light 
will provide the energy needed to allow the electrons to migrate and the 
material is said to show photoconductivity. When thermal energy alone is 
sufficient to free the electrons, the electronic conductivity will rise with 
increasing temperature. Materials behave in this way are called n-type 
semiconductors.

Figure 6.1 Schematic illustration of ways o f accommodating changes in stoichiometry in a 
cation excess oxide of composition close to MO. The anions are shown as open circles and the 
cations are represented as full circles. In (a) an anion vacancy is accompanied by two M + 
cations, shown lightly shaded. In (b) a cation interstitial is accompanied by two M + ions, which 
are shown lightly shaded.

(a)

(b)
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6 .2 .2  O x y g e n  excess

An oxide, MO, with an excess of the non-metal can also accommodate the 
change in composition in two ways and uses electronic defects to maintain 
charge neutrality.

T y p e  C  m a te r ia ls . In these materials, interstitial 0 2~ anions are the cause of 
the composition change and will give the oxide a real formula of M O \ + x . 
Figure 6.2(a) shows that to compensate two M2+ cations have been 
converted to two M3+ cations.

T y p e  D  m a te r ia ls . In these materials, cation vacancies are the reason for the 
oxygen excess, which will give the oxide a formula of M \ _ xO . This change 
can be balanced by changing two M2 + ions into two M3 + ions, as shown in 
Figure 6.2(b).

Just as we regarded an M2 + ion plus an electron as an M + ion, we can 
regard the M3+ ions in type C and D materials as M 2 +  ions plus a trapped 
p o s itiv e  h o le  or simply a h o le . If the holes are able to gain enough energy to 
move from one cation when illuminated, the materials are photoconducting. 
Thermal energy may also be able to liberate the holes. In both cases, the

Figure 6.2 Schematic illustration of structural ways of accommodating changes in 
stoichiometry in anion excess oxides of composition close to MO. The anions are shown as 
open circles and the cations are represented as full circles. In (a) an interstitial anion is 
accompanied by two M3 + cations, shown lightly shaded. In (b), a cation vacancy is 
accompanied by two M3+ cations shown lightly shaded.

(a)

(b)
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Figure 6.3 A schematic representation of the structural and electronic consequences of non­
stoichiometry in oxides o f metals with a variable valence.

materials will behave as if the charge was transported by positive particles 
and they are known as p-type semiconductors.

The situation described above is summarized in Figure 6.3. Type B, «-type 
semiconducting materials are well exemplified by ZnO and CdO, while type 
D, p-type semiconducting materials are exemplified by the oxides NiO, 
Cu20 , CoO and MnO.

Clearly, in all these materials the number of electronic defects is closely 
related to the composition. Thus, by controlling stoichiometry, we can 
control electronic conductivity, a fact of some importance in the search for 
new electronic materials.

6.3 The effect of impurity atoms

Although the principles just outlined are very important, in practice it is 
often difficult to alter the composition of a phase to order, as later chapters 
in this book will make clear. Nevertheless, the importance of electrical 
properties makes it worthwhile searching for simpler ways of introducing 
electronic defects into crystals. Fortunately, similar electronic effects can be 
generated if we can incorporate into the lattice an impurity ion of a different
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materials will behave as if the charge was transported by positive particles 
and they are known as p-type semiconductors. 

The situation described above is summarized in Figure 6.3. Type B, n-type 
semiconducting materials are well exemplified by ZnO and CdO, while type 
D, p-type semiconducting materials are exemplified by the oxides NiO, 
CU20, CoO and MnO. 

Clearly, in all these materials the number of electronic defects is closely 
related to the composition. Thus, by controlling stoichiometry, we can 
control electronic conductivity, a fact of some importance in the search for 
new electronic materials. 

6.3 The effect of impurity atoms 

Although the principles just outlined are very important, in practice it is 
often difficult to alter the composition of a phase to order, as later chapters 
in this book will make clear. Nevertheless, the importance of electrical 
properties makes it worthwhile searching for simpler ways of introducing 
electronic defects into crystals. Fortunately, similar electronic effects can be 
generated if we can incorporate into the lattice an impurity ion of a different 
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nominal charge or valence to that of the parent atoms. Nowadays the 
deliberate addition of impurities to cause specific changes in electronic 
properties of materials lies at the heart of much of the modern electronics 
industry. These ideas will be illustrated with respect to the semiconductors 
silicon and germanium, as well as more complex oxide materials.

6.3.1 Impurities in silicon and germanium

The deliberate addition of impurities to Si and Ge so as to modify their 
electronic conductivity is called doping. Both of these elements crystallize 
with the diamond type structure shown in Figure 6.4. In this structure, each 
atom is surrounded by four others arranged at the corners of a tetrahedron. 
Each atom has four s2p2 outer electrons and each is used up in forming the 
four sp3 bonds which connects any one atom to its neighbours.

Consider what will happen if we dope Si with a very small amount of an 
impurity from the neighbouring group of the periodic table P, As or Sb. The 
valence electron structure of the impurity atoms is s2p3 and after using four 
electrons to form the four sp3 bonds, one electron per impurity is left over. 
These electrons are easily liberated from the impurity atoms by thermal energy 
and the doped material has become an «-type semiconductor. The atoms P, As 
or Sb in Si or Ge are called donors as they donate an electron to the crystal.

An analogous situation arises if we dope with elements from the Al, Ga, 
In subgroup. In this case, the impurities have only three outer electrons in an 
s2pl configuration which is not sufficient to complete four bonds to the 
surrounding atoms. One bond is an electron short. It makes life easier if we 
call the missing electron a positive hole and so each impurity is thought of as 
introducing one positive hole into the array of bonds within crystal. These 
impurities are called acceptors, because they can be thought of as accepting 
electrons from the otherwise filled bonds. Thermal energy is sufficient to 
allow these holes to jump from one position to another and these materials 
are, therefore, p-type semiconductors.

6.3.2 Impurities in simple oxides

A well-studied example of the effects of impurity interaction in simple oxides 
is provided by the NiO-Li20  system. If colourless Li20  and green NiO are 
heated together at high temperatures, the mobile Li+ ions can easily enter 
the NiO structure and occupy Ni2+ sites. The resulting ‘impure’ crystal has 
the formula Li^Nii.^O where x can take values from 0 to approximately 
0.1. This mixed crystal, in which the Li has substituted for Ni, is able to form 
easily because the ionic radii of Ni2+ and Li+ are very similar. The resulting 
material is black in colour which indicates that something significant has 
happened.
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Figure 6.4 The diamond structure type. Perspective view of the cubic unit cell (a) 
showing atom positions and (b) as carbon-centred tetrahedra.

The diamond structure

The diamond structure is cubic with a unit cell parameter a  = 
0.356 nm. There are eight atoms in the unit cell. Each is 
connected to its neighbours by four bonds pointing towards the 
vertices of a tetrahedron. The structure can also be considered to 
be made up of carbon tetrahedra each with a carbon atom 
within.

As the Li+ ions are introduced into the NiO crystals a compensating 
defect is needed to balance the charge and maintain neutrality, which is in 
this case the rather uncommon ion Ni3 + . Thus, every Li+ on a Ni2+ site in 
the lattice results in the formation of a Ni3+ ion elsewhere.į

For ease of discussion of electronic properties, it is convenient to regard 
each of these ions as being equivalent to a positive hole located on a Ni2 + 
cation. The reaction, therefore, produces a high concentration of holes 
located in the nickel oxide. The process of creating electronic defects in a 
crystal in this way is called v alen ce  in d u c tio n . The material is a p -type

fThere is increasing evidence that the real defects in this compound might be O-  rather than 
N i3 + . That is, the hole sits on an oxygen anion not a nickel cation. Exactly the same is true in 
the case of many other cationic valences mentioned in this and later chapters and more 
experimental information is needed to clarify the situation.

(a) (b)
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semiconductor and as the holes are only weakly bound to the cations, the 
material shows high conductivity.

It is equally possible to enhance «-type conductivity by suitable doping. 
For example, consider the consequences of reacting the oxide Ga20 3 with 
ZnO. For small degrees of reaction, the Ga3 + is found to substitute for 
Zn2+ and the crystal maintains its overall MO stoichiometry. Neither Ga3 + 
nor Zn2+ are ions which take a variable valence and some vacancy 
compensation mechanism would be expected. However, this does not occur 
and charge compensation has been found to be electronic in nature. Each 
Ga3+ ion in the lattice is balanced by an electron elsewhere. It is generally 
believed that these rest on Zn2+ ions to generate either uncharged Zn atoms 
or Zn+ ions. We can write these reactions in terms of defect chemical 
equations in the following way

We will encounter the effects of impurities often in the remainder of this 
book.

6.3.3 Impurities in complex oxides

Typical examples of complex oxides are provided by the spinels AB20 4 and 
the perovskites ABO3. The introduction of impurities into complex oxides 
will produce similar changes in electronic properties to those described 
above, if at least one of the cations present is able to change its valence. In 
fact, such oxides are often chosen for study because the introduction of an 
impurity cation onto one sub-lattice, say that occupied by A , can change the 
valence of the cations, В, on the other cation sub-lattice, in a controlled 
fashion.

A good example is provided by SrV03. The structure of this phase is of 
the perovskite type, shown in Figure 6.5. The material contains Sr2+ ions in 
the large cage sites and V4+ ions in the octahedra. The material behaves like 
an insulator. If some of the Sr2+ ions are replaced by La3+ ions, then charge 
neutrality is maintained by transforming some V4+ ions into V3+ ions. The 
V3+ ions can be regarded as V4+ ions plus a trapped electron, and it is not 
to difficult to move these electrons from one V ion to another. Thus, 
although SrV03 is a poor electronic conductor, LaxSri_xV 03 is quite a good 
one. In effect, the insulator has been turned into a metal. We have more to 
say about electronic conduction in perovskites in section 6.7.
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Typical examples of complex oxides are provided by the spinels AB20 4 and 
the perovskites AB03. The introduction of impurities into complex oxides 
will produce similar changes in electronic properties to those described 
above, if at least one of the cations present is able to change its valence. In 
fact, such oxides are often chosen for study because the introduction of an 
impurity cation onto one sub-lattice, say that occupied by A, can change the 
valence of the cations, B, on the other cation sub-lattice, in a controlled 
fashion. 

A good example is provided by SrY03. The structure of this phase is of 
the perovskite type, shown in Figure 6.5. The material contains Sr2+ ions in 
the large cage sites and y4+ ions in the octahedra. The material behaves like 
an insulator. If some of the Sr2 + ions are replaced by La 3 + ions, then charge 
neutrality is maintained by transforming some y4+ ions into y3 + ions. The 
y3 + ions can be regarded as y4+ ions plus a trapped electron, and it is not 
to difficult to move these electrons from one Y ion to another. Thus, 
although SrY03 is a poor electronic conductor, LaxSrI-x Y03 is quite a good 
one. In effect, the insulator has been turned into a metal. We have more to 
say about electronic conduction in perovskites in section 6.7. 
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Figure 6.5 The S1TİO3 ideal perovskite structure, (a) The structure shown as an 
ion array, Ti4+ are smallest, Sr2+ of medium size and 0 2~ are largest, (b) The 
structure shown as a packing of corner-shared T i0 6 octahedra with the Sr2 + ion 
located at the cage centre.

The cubic perovskite structure: SrTi03

The ideal perovskite structure is adopted by the oxide SrTi03. 
The unit cell is cubic with a parameter a = 0.3905 nm. It consists 
of an array of corner-sharing Ti06 octahedra with the large Sr2 + 
ion located at the cell centre. The Ti06 framework is similar to 
that in W O 3 , shown in Chapter 4.

A large number of oxides of general formula ЛВО3, where A is 
a large cation and В is a medium-sized cation, crystallize with 
this structure, although in many, slight distortions of the BOe 
octahedra cause the symmetry to change from cubic to 
tetragonal or orthorhombic.

A rather more subtle way in which ‘impurities’ can generate electronic 
defects is found in the Mg-Ті spinels. MgTi20 4 is a normal spinel with a 
cation distribution Mg2 + [Ti2+]0 4, where the octahedral cations are enclosed 
in square brackets. However, another spinel phase also exists, Mg2Ti04. 
This is an inverse spinel with the cation distribution Mg2 + [Mg2 + Ti4+]04. 
What happens if we make a ‘solid solution’ between these, with a formula 
Mg2_xTii +JC0 4 in which л: varies from 0 to about 0.5? In this material we are

(a) (b)
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replacing octahedral Mg2+ by the ‘impurity’ Ti3 + . In the intermediate 
phases we have a population of Ti3 + and Ti4+ on the octahedral sites. The 
Ti3+ can be regarded as a Ti4+ plus an electron. A comparison with the 
binary oxides suggests that the material will change from an insulator to an 
electron conductor and that the conductivity will increase as the value of x 
increases. This is exactly as found and we have a controlled way of altering 
the electronic defect population and, therefore, the electronic conductivity 
of this material.

6.4 Electronic conduction in ionic materials

The materials just described have been discussed in terms of an ionic model. 
It would, therefore, be useful to set up a theory for electronic conductivity 
that retained this simple picture. Later in this chapter this model will be 
linked with another theory of electronic conduction called band theory.

The ionic model of solids treats the normal electrons around each atomic 
nucleus as being localized at the ions. The electronic conductivity is due to 
additional electrons or holes created by the defect chemistry of the system. 
These are also localized or trapped at ions or other defects within the crystal, 
but not too strongly. They contribute to electronic conductivity by jumping 
or hopping from one site to another under the influence of an electric field. 
At a certain time, a localized electron will acquire enough energy to 
overcome the trapping barrier. It will then move to another site where it 
becomes relocalized until it gains sufficient energy to make another jump. 
This is shown in Figure 6 .6 .

In terms of this picture, a stoichiometric oxide with only one valence state, 
such as MgO, would be an insulator. This is because if we want to move an 
electron from one cation to another we must provide energy equal to the

Figure 6.6 In (a) representing a stoichiometric oxide, with cations of fixed valence, such as 
Mg2 + , the electron jump, shown arrowed, requires a prohibitively large energy to create a Mg + 
and a Mg3+ ion. For a slightly non-stoichiometric oxide, such as ~N iO  (b) already containing a 
low population of M3+ ions, the electron exchange requires only low energy.

6.4 6.4 

6.4 6.4 

6.4 6.4 

6.4 6.4 

understand 
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further ionization energy of one Mg2+ cation and the electron affinity of 
another Mg2+ cation, to result in the hypothetical production of Mg3+ and 
Mg+, as shown in Figure 6 .6(a). Such a situation requires so much energy 
that it is never encountered under normal circumstances and the material 
will remain an insulator.

On the other hand, if two valence states are available, as in non- 
stoichiometric Nii_xO, which contains Ni2+ and Ni3+ ions, an electron 
jump requires very little energy, because the initial and final state of the 
crystal are very similar, as shown in Figure 6 .6(b). Thus, under normal 
conditions, electron movement will not be too difficult and the material will 
be an electronic conductor. Electronic conductivity by a hopping mechan­
ism is, therefore, likely to be restricted mainly to transition metal 
compounds where alternative valence states are available to cations with 
little expenditure of energy.

A little thought will show that electron movement by way of discrete 
jumps is identical to that of atom diffusion discussed in chapter 3. Thus, 
conduction in materials with hopping-charge carriers is essentially a 
diffusion process. As treatment of diffusion in this earlier chapter was 
successful in accounting for many aspects of atom movement, it is 
worthwhile applying it to the present problem to see exactly where it will 
lead. In fact, the derivation given in Appendix 6.1 yields the most useful 
equation

where AT is a constant, φ is the fraction of sites occupied by a mobile electron 
or hole, (1— φ) is the fraction of unoccupied positions that the electron can 
move to and E is the activation energy for each jump at a temperature of T. 

The conductivity, σ, is said to be an activated process, that is

This means that the conductivity will increase with temperature and 
hopping materials are often referred to as hopping semiconductors.

However, the conductivity will also vary as a function of φ, and this is 
something new. To illustrate the implication of this fact, consider a non- 
stoichiometric oxide MOx in which x can take all values between one and 
two. Within this composition range suppose three stoichiometric oxides 
MO, M20 3 and M 02 form. These contain, nominally, M2 + , M3 + and M4 + 
cations. How exactly will the electronic conductivity vary over the total 
composition range of the non-stoichiometric phase? The result is given in 
Figure 6.7.
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To understand this answer, suppose that stoichiometric M 02 is heated in 
a vacuum so that it loses oxygen. Initially, all cations are in the M4+ state 
and we expect the material to be an insulator. Removal of O2- to the gas 
phase as oxygen causes electrons to be left in the lattice, which will be 
localized on cation sites to produce some M3 + cations. The oxide now has a 
few M3 + cations in the M4+ matrix and thermal energy should allow 
electrons to hop from M3 + to M4+. Thus, the oxide should be an «-type 
semiconductor. The conductivity increases up to x = 1.75, when there are 
equal numbers of M3 + and M4  ̂ cations present. As reduction continues, 
we get to a stage when almost all the ions are now in the M3 + state and we 
have only a few M4+ cations left. In this condition, we think of holes 
hopping from site to site and the material will be a p-type semiconductor. 
Eventually at x = 1.5, all cations will be in the M3 + state and we have an 
insulator, M20 3.

We can repeat this argument for the composition range from M20 3 to 
MO. Slight reduction of M20 3 will produce a few M2 + cations in the M3 + 
matrix, leading to «-type semiconductivity. This would persist in the 
composition range MOx between x = 1.5 and x = 1.25; the conductivity 
passing through a maximum at the composition MO\ 25. Further reduction 
would lead to the situation where we have fewer M3+ cations than M2 + and 
we anticipate p-type behaviour in the composition range between x = 1.25 
and x = 1.0. The stoichiometric composition MO should be an insulator.

There are no non-stoichiometric oxides which have a composition range 
extending all the way from M 0 2 to MO, but many which cover a part of this 
range. These show that the conductivity does vary in the way expected, 
which gives credence to the idea that hopping conductivity does occur in 
some phases and that a diffusion model provides a good picture of the 
process.

Figure 6.7 Expected variation of the change of conductivity with composition expected for 
hopping semiconducting oxide MOx, where x can take values between 1.0 and 2.0.

140 PRINCIPLES AND APPLICATIONS OF CHEMICAL DEFECTS 

To understand this answer, suppose that stoichiometric M02 is heated in 
a vacuum so that it loses oxygen. Initially, all cations are in the ~+ state 
and we expect the material to be an insulator. Removal of 0 2 - to the gas 
phase as oxygen causes electrons to be left in the lattice, which will be 
localized on cation sites to produce some M3+ cations. The oxide now has a 
few M 3+ cations in the ~+ matrix and thermal energy should allow 
electrons to hop from M3+ to ~+. Thus, the oxide should be an n-type 
semiconductor. The conductivity increases up to x = 1.75, when there are 
equal numbers of M3+ and ~+ cations present. As reduction continues, 
we get to a stage when almost all the ions are now in the M3 + state and we 
have only a few ~+ cations left. In this condition, we think of holes 
hopping from site to site and the material will be a p-type semiconductor. 
Eventually at x = 1.5, all cations will be in the M3 + state and we have an 
insulator, M 20 3• 

We can repeat this argument for the composition range from M 20 3 to 
MO. Slight reduction of M 20 3 will produce a few M2+ cations in the M3+ 
matrix, leading to n-type semiconductivity. This would persist in the 
composition range MOx between x = 1.5 and x = 1.25; the conductivity 
passing through a maximum at the composition M01.25' Further reduction 
would lead to the situation where we have fewer M3+ cations than M 2 + and 
we anticipate p-type behaviour in the composition range between x = 1.25 
and x = 1.0. The stoichiometric composition MO should be an insulator. 

There are no non-stoichiometric oxides which have a composition range 
extending all the way from M02 to MO, but many which cover a part of this 
range. These show that the conductivity does vary in the way expected, 
which gives credence to the idea that hopping conductivity does occur in 
some phases and that a diffusion model provides a good picture of the 
process. 
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Figure 6.7 Expected variation of the change of conductivity with composition expected for 
hopping semiconducting oxide MOx • where x can take values between 1.0 and 2.0. 
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6.5 Thermoelectric effects

6.5.1 The thermoelectric coefficients

In the materials discussed in this chapter, mobile charge carriers, either 
electrons or holes, are not too strongly trapped at cation positions and move 
when sufficient energy is supplied to overcome the activation energy for a 
jump to the next available site. Thus, we might anticipate that in such 
materials thermal and electrical effects might be linked. This, in fact, 
happens and the resulting phenomena are termed thermoelectric effects.

The first thermoelectric effect to be discovered was the Seebeck effect, 
which is illustrated in Figure 6 .8 . When the two ends of a metal or a 
semiconductor are held at different temperatures, a voltage is produced. 
This effect is used in the measurement of temperature with a thermocouple. 
The complementary effect, in which heat is absorbed or generated via a 
voltage, the Peltier effect, is used in refrigeration. Although these effects 
were discovered quite separately they were shown to be closely related by 
William Thomson (later Lord Kelvin) who predicted the existence of a third 
thermoelectric effect now known as the Thomson effect. This consists of the 
appearance of reversible heating or cooling when a current flows along a 
conductor which has one end at a different temperature to the other.

All three thermoelectric effects are bulk effects and the magnitude of the 
effects produced can be characterized by the materials parameters a, the 
absolute Seebeck coefficient, π, the absolute Peltier coefficient and r, the 
Thomson coefficient.f

Although the three effects are interrelated, the Seebeck effect and the 
Peltier effect are the most important and are exploited in a wide range of 
commercial devices. The relationship between these two coefficients is

π = αΤ

where T is the temperature in K. Thermoelectric parameters are very useful 
as they give information about the type of mobile charge carriers in the 
sample. The following section illustrates this by reference to the Seebeck 
effect.

fThe terminology and the description of these coefficients is confused in the literature because 
the effects themselves are usually described with respect to a junction between two different 
conductors, which introduces unnecessary complications. Values of the Seebeck and Peltier 
coefficients, derived from such experimental arrangements, are relative values, which, to first 
approximation, represent the difference between the absolute values for the pair of materials 
which form the junction. In our discussion we are referring only to absolute values, which are 
properties of a single component and not a pair of materials. The sources listed in Section 6.7 
will give further information on this knotty problem.
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Figure 6.8 The Seebeck effect. The sample, which is typically an oxide such as NiO, is placed 
in a temperature gradient so that the temperature varies from one end, which is at TH, to the 
other at Tc. This results in a potential difference of Δφ, between the ends when equilibrium is 
reached.

6.5.2 The Seebeck coefficient and defect type

The Seebeck coefficient of a material is defined as the ratio of the electric 
potential produced, measured in volts and when no current flows, to the 
temperature difference present across a material. Thus, referring to Figure
6.9

where Фн  and Фс are the potentials and TH and Tc are the temperatures at 
the hot end and the cold end of the sample, respectively. The units of a are 
volts per degree. The Seebeck coefficient for metals is of the order of 
ΙΟμνΚ -1 and for semiconductors is about 100-300 μ ν Κ -1.

We can gain an intuitive idea of the cause of the Seebeck effect by 
assuming that the electrons or holes behave rather like gas atoms. In this 
case, the charge carriers in the hot region will have a higher kinetic energy, 
and hence a higher velocity, than those in the cold region. This means that

Figure 6.9 Variation of the Seebeck coefficient with defect concentration in LixN iļ_xO 
crystals. In this representation the number of defects decreases from left to right along the 
x-axis.
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the net velocity of the charge carriers at the hot end moving towards the cold 
end will be higher than the net velocity of the charge carriers at the cold end 
moving towards the hot end. In this situation more carriers will flow from 
the hot end towards the cold end than vice versa. This will cause a voltage to 
build up between the hot and cold ends of the sample. Eventually 
equilibrium will be established and the potential so set up is called the 
Seebeck voltage. In the case of materials which have mobile electrons, for 
example «-type semiconductors or metals, the colder end of the rod will be 
negative with respect to the hotter end because of a build up of negative 
carriers in this region. In the case where the mobile charge carriers are 
positive holes, for example p-type semiconductors, the colder end of the rod 
will be positive with respect to the hotter end. Thus, a measurement of the 
sign of the Seebeck coefficient will show whether the material is «-type or p- 
type. For example, the non-stoichiometric forms of NiO, CoO and FeO all 
show positive values for a, indicating that conduction is by way of holes 
whereas non-stoichiometric ZnO has a negative value of a , indicating 
electron mobility.

The picture just drawn of mobile particles moving under the influence of 
temperature is accounted for in thermodynamics by the entropy contribu­
tion. It is quite easy to show that the Seebeck coefficient is actually a 
measurement of the entropy of the charge carriers. The derivation is given in 
Appendix 6.2. A very simple relationship is found. For electrons

and for holes

where s is the entropy and e is the charge on a mobile carrier. The units of 
entropy are joules per degree (JK _1) per particle and the units of the 
electron charge will be coulombs (C) per particle. Thus, the units of the 
Seebeck coefficient will be

(JK l) per particle/C per particle = J/CK = V/K

because

so that the units of the Seebeck coefficient will be volts per degree, as 
expected.
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6.5.3 The Seebeck coefficient and defect concentrations

The equations in Appendix 6.2 apply to all materials with mobile charge 
carriers. However, we can apply these equations to hopping materials and 
derive a fairly simple relationship between the magnitude of the Seebeck 
coefficient and the number of defects present in the material. An important 
result is that the fewer defects present, the larger a becomes. This is 
particularly useful when we wish to investigate crystals which show only 
very small departures from stoichiometry as these are often difficult to study 
by other means.

The derivation set out in Appendix 6.3 shows

where the positive version applies to p-type materials and the negative 
expression to «-type materials. In this equation, A is a constant, n0 is the 
number sites for the mobile electrons or holes to occupy, normally the 
number of cation sites, and nd is the number of electrons or holes. The 
number of electrons or holes is equivalent to the number of defects present 
and so the value of the Seebeck coefficient will be largest for lowest defect 
populations.

Example 6.1

Some data for the material LixNiļ_xO are presented in Figure 6.9. Each Li + 
substitutes for an Ni2+ ion in the structure and this results in the formation 
of one Ni3 + ion per Li+. The number of mobile holes which appear in the 
structure is equal to the number of Ni3+ ions and hence to the number of 
Li+ ions incorporated. Therefore, nd is equal to x. The term n0 is the number 
of sites that the holes can jump to. This is equal to the number of unchanged 
Ni2+ cations, which is equal to (1-х). The Seebeck coefficient of LixNii_xO 
is given by

This is a straight-line equation and a graph of a versus ln[l -  x/x] should be 
a straight line which increases as the log term increases, i.e. as x decreases. 
The slope of the graph should be positive for holes, and of a value kje. This 
is in good agreement with the data shown in the figure.

It is also possible to use the data to see how well the theory fits 
numerically. As an example, log[(l -  x)/x] = 1 which yields x = 0.0909 and 
(1 -х )  = 0.9091. The term kje is given by
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(Remember that J/C = V.) Inserting these values we find

The value of a given in the figure is about 250 μ V K~l. It therefore appears 
that the theory is quite good and gives reasonable values for the Seebeck 
coefficient.

6.5.4 The Seebeck coefficient and stoichiometry

Because the value a depends on the number of defects present it should vary 
systematically with the composition. It is interesting to sketch out, in a 
qualitative way, this variation for a non-stoichiometric phase. As an 
example, let us consider a non-stoichiometric oxide M 0 2 which is fairly 
readily reduced to form M 0 2~x, and which passes through the phases M 20 3 
and MO during the course of this reduction.

The sequence of events which occurs during the reduction was described 
earlier. Reference to this discussion shows that initial reduction will 
populate our М 02_* crystal with a few M3 + ions which will give rise to 
«-type semiconduction. The value of a will, therefore, be large and negative, 
as shown on the far right of Figure 6 .10. This value will fall as the number of 
defects increases, in accordance with our earlier analysis and the curve 
approaches zero in the figure. Turning to M 20 3, a slight degree of oxidation 
will introduce into the M 20 3 + x phase a small number of M4+ ions in a 
matrix of M3 + ions. This will lead to p-type semiconductivity and a large 
positive value for a, shown in the centre part of Figure 6.10. Continued 
oxidation will cause this value to fall as the number of M4+ centres 
increases. This leads to the variation of a over the complete composition 
range from M 0 2 to M 20 3 shown in the right-hand part of Figure 6.10, 
where the region between the high a and low a regions has been 
extrapolated from the values near to the end compositions. Most 
significantly, there is a change from «-type to p-type behaviour as the 
composition passes through a composition of M0 1>75.

A similar situation will hold as we span the composition range between 
M20 3 and MO, with a changing from positive to negative at a composition 
of MOi 25· This composition range is, therefore, identical to that just 
described, and is shown on the left-hand side of Figure 6.10. As mentioned 
when discussing conductivity, no oxides are known which span this whole 
composition range. However, Figure 6.10 shows that the value of a  will
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Figure 6.10 Expected variation of the Seebeck coefficient, a , with composition for a non- 
stoichiometric oxide MOx, where x can take values between 1.0 and 2.0.

change drastically from large and positive to large and negative as we pass 
through the stoichiometric position at M20 3. Because the discussion leading 
to this conclusion can be applied to any stoichiometric composition, be it 
MO, M20 3 or M 0 2 the effect is easily observable and has been confirmed 
for a number of non-stoichiometric oxides.

6.6 Band theory

6.6.1 Energy bands

Everything that we have said so far in this chapter has lead to the conclusion 
that electronic conduction is simply an extension of diffusion theory. In 
terms of jargon, the electrons or holes are said to be localized and we are 
really using an ionic model for the conduction process. While this is 
certainly reasonable for the metal oxides we have described, there are large 
numbers of materials known for which this description does not seem to be 
valid. Pure metals and most alloys come into this category, together with 
many sulphides and some oxides. In order to understand many aspects of 
defect crystal chemistry we must now consider these materials.

The theoretical approach which has been pre-eminent in describing the 
electronic properties of metals and alloys is called band theory. In band 
theory, the electrons responsible for conduction are not linked to any 
particular atom. They can move easily throughout the crystal and are said to 
be free, or very nearly so. To put this another way, the wave functions of 
these electrons are considered to extend throughout the whole of the crystal 
and are said to be delocalized. In this section, a brief and qualitative account
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of the theory is given and it is shown how semiconducting transition metal 
oxides, such as NiO or FeO, and impurities in pure materials are described 
in terms of band theory.

We can summarize the principal results of the theory by stating that the 
outer electrons in a solid, that is, the electrons which are of greatest 
importance from the point of view of electronic properties, occupy bands of 
allowed energies. The way this comes about is easy to understand. In an 
isolated atom, the electrons occupy a ladder of sharp energy levels which are 
filled up from the lowest energy to the highest in order. As far as electronic 
conductivity is concerned only the topmost energy level is of importance. 
This can be completely filled (with two electrons) or be partly filled (with 
one). In Figure 5.11(a), the outermost energy level of an isolated atom is 
shown. If another atom approaches the first the outer electron clouds will 
interact and the result is that the single energy level will split up into two, 
one at a higher energy and one at a lower energy, as shown in Figure 
6.11(b). The amount of splitting will depend on the closeness of the 
interacting atoms. The closer they approach, the wider will be the separation 
of the upper and lower levels. The electrons from both atoms will be placed 
into the two levels, starting with that at lowest energy. The amount of filling 
of the energy levels will depend on the number of electrons available.

This process can be continued indefinitely. As each atom is added to the 
cluster it adds its energy level to the collection and the number of energy 
levels in the high energy and low energy groups gradually increase. At the 
same time the spacing between the energy levels in each group decreases. 
Both of these features are shown in Figure 6.11(c). All of the available 
electrons are allocated to these energy levels starting at the lowest and filling 
up towards the highest, exactly as before. Ultimately, when a large number 
of atoms are brought together to form a crystal, the energy levels in both the 
high energy and low energy groups are very close indeed. They are now 
called energy bands and are shown shaded in Figure 6.11(d). The electrons, 
as before, are poured into the bands to occupy them from the lowest energy 
level upwards.

The general features shown in Figure 6.11 depend on the degree of 
interaction of the electron energy levels. This effect is illustrated in Figure 
6.12. If the interaction is large, typically when the atoms are close together, 
the average separation of the upper and lower bands is large but they are 
also very broad and may overlap. When the interaction is less, as occurs 
when the atoms involved are further apart, the separation is small, as is the 
width of each band.
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(a) (b) (c) (d)

Figure 6.11 The development of energy bands, (a) A single outer electron orbital on an 
isolated atom, (b) Two atoms yield two energy levels, (c) Four atoms yield four energy levels, 
(d) Bands of energy are produced when large numbers of atoms aggregate.

6.6.2 Insulators, semiconductors and metals

The fundamental division of materials, where electrical properties are 
considered, is into metals, insulators and semiconductors. An insulator is a 
material which normally shows no electrical conductivity. Metals and 
semiconductors were originally classified more or less in terms of the 
magnitude of the measured electrical conductivity. However, this turned out 
to be less than satisfactory and now a better definition is to include in metals

Figure 6.12 (a) The band geometry when atoms are rather well separated and have rather 
small interactions, (b) The band geometry when atoms are rather close and have strong 
interactions.

(a)

(b)(d)

(d)(d)
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those materials for which the electrical conductivity falls as the temperature 
increases. Semiconductors show an increase in electrical conductivity as the 
temperature increases. The differences between these groups is explained by 
band theory in the following way.

Insulators have the upper band completely empty and the lower band 
completely filled by electrons. The energy gap between the top of the filled 
band and the bottom of empty band is quite large, as can be seen in Figure 
6.13(a). The filled band of energies is called the valence band and the empty 
band is called the conduction band. The energy difference between the top of 
the valence band and the bottom of the conduction band is called the band 
gap. Now when a material conducts electricity, the electrons pick up some 
energy and are transferred to slightly higher energy levels. If the electron- 
containing band is full, conductivity cannot occur because there are no 
slightly higher energy levels available.į

Intrinsic semiconductors have a similar band picture to insulators, except 
that the separation of the empty and filled bands is small, as in Figure 
6.13(b). How small is small? The band gap must be such that some electrons 
will be transferred from the top of the valence band to the bottom of the 
conduction band at room temperature. The electrons in the conduction 
band will have plenty of slightly higher energy levels available and when a 
voltage is imposed on the material they can take up some energy and this 
leads to some degree of conductivity. At OK these materials will be 
insulators because no electrons will cross from the valence band to the 
conduction band. The magnitude of their electrical conductivity will 
increase as the temperature increases because more electrons will gain 
sufficient energy to cross the band gap.

Rather surprisingly, an equal contribution to the conductivity will come 
from positive charge carriers equal in number to the electrons promoted into 
the conduction band. These are illustrated in Figure 6.13(b) as ‘vacancies’ in 
the valence band. We have already met with these before as positive holes. 
Each time an electron is removed from the full valence band to the 
conduction band two mobile charge carriers are created, an electron and a 
hole.

Degenerate semiconductors are similar to extrinsic semiconductors but the 
band gap is similar to, or less than, the thermal energy. In these cases the 
number of charge carriers in each band becomes very high.

Extrinsic semiconductors contain an appreciable number of foreign atoms 
which have been added intentionally as dopants. At very low temperatures 
these may have no effect on the electronic properties of the material but as

fNaturally, if an enormous voltage is applied, as in a thunderstorm, the electrons are given so 
much energy that they are ripped from the valence band and can transfer to the conduction 
band. In these conditions the insulator is said to break down.
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(a)

(b)

(C )

Figure 6.13 Schematic representation of the energy band scheme for (a) insulators; (b) intrinsic 
semiconductors; (c) extrinsic (doped) semiconductors; (d) metals; and (e) semi-metals.

the temperature rises they can influence the behaviour in two very different 
ways. They can act as donors, donating electrons to the conduction band, or 
as acceptors, accepting electrons from the valence band, which is equivalent 
to donating holes to the valence band. Donors and acceptors are often 
represented by lines drawn at a distance from the band equal to the energy 
required for the electron transfer to take place. This is shown in Figure 
6.13(c). When donors are the main impurities present in the crystals, the 
conduction is mainly by way of electrons and the material is called an «-type 
semiconductor. Similarly, if acceptors are the major impurities present, 
conduction is mainly by way of holes and the material is called a p-type 
semiconductor. This behaviour marks a difference between intrinsic 
semiconductors and extrinsic semiconductors. In intrinsic semiconductors, 
electrons and holes are present. In extrinsic semiconduction, the con­
ductivity is due to either one or the other.
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Figure 6.12 (a) The band geometry when atoms are rather well separated and have rather 
small interactions. (b) The band geometry when atoms are rather close and have strong 
interactions. 
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If the donors and acceptors are present in equal numbers, the material is 
said to be a compensated semiconductor. At OK these materials are 
insulators, and it is difficult in practice to distinguish between compensated 
and intrinsic semiconductors. When all of the impurities are fully ionized, so 
that either all the donor levels have lost an electron or all the acceptor levels 
have gained an electron, the exhaustion range has been reached.

Metals are defined as materials in which the uppermost energy band is 
only partly filled as shown in Figure 6.13(d). The uppermost energy level 
filled is called the Fermi energy or the Fermi level. Conduction can take place 
because of the easy availability of empty energy levels just above the Fermi 
energy. In a crystalline metal, the Fermi level possesses a complex shape and 
is called the Fermi surface.

Semi-metals show metallic conductivity due to the overlap of a filled and 
an empty band, as shown in Figure 6.13(e). In this case, electrons spill over 
from the filled band into the bottom of the empty band until the Fermi 
surface intersects both sets of bands. In semi-metals holes and electrons 
coexist even at 0 K.

6.6.3 Point defects and energy bands

The presence of point defects is represented on band diagrams in a similar 
way to that shown in Figure 6.13(c). Thus, defects are treated as donors 
which donate electrons to the conduction band to produce «-type 
semiconductors, or acceptors, which create holes in the valence band to 
produce p-type semiconductors.

Consider the case of interstitial metal atoms added to an insulating ionic 
oxide. These will tend to act as donors because metal atoms tend to ionize 
by losing electrons. They are represented by donor levels shown below the 
conduction band in Figure 6.14(a). Note that the energy of the ionized 
donor is now lower than that of the neutral interstitial by the same amount 
as required to move the electron into the conduction band. The material is 
now an «-type semiconductor.

In the case of interstitial non-metal atoms, these will act as acceptors 
because anion formation involves taking up extra electrons. These defects 
are represented as acceptor levels just above the top of the valence band, as 
shown in Figure 6.14(b). They can ionize by taking electrons from the 
valence band, creating holes in the process, as shown above. Once again, the 
energy of the neutral acceptor atom is at a different level to that of the 
ionized acceptor. These materials are p-type semiconductors because of the 
presence of holes in the valence band. The electrons on the ionized anions do 
not contribute to the conductivity.
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(a)

(b)

(C)

(d)

Figure 6.14 Schematic representation of the band structure of an insulating material 
containing point defects. Each defect is associated with an energy level, drawn as a short 
line. In (a) the defects are neutral and ionized cation interstitials; in (b) the defects are neutral 
and ionized anion interstitials; in (c) the defects are neutral and ionized anion vacancies; and in 
(d) the defects are neutral and ionized cation vacancies. CB indicates the conduction band and 
VB the valence band.

The same sort of considerations will apply to vacancies. For instance, an 
anion vacancy gives rise to a set of donor levels just below the lower edge of 
the conduction band. If the vacancy is created by removing a neutral non- 
metal atom from the crystal, the electrons that were on the anion are
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The same sort of considerations will apply to vacancies. For instance, an 
anion vacancy gives rise to a set of donor levels just below the lower edge of 
the conduction band. If the vacancy is created by removing a neutral non­
metal atom from the crystal, the electrons that were on the anion are 



N O N- S T OI C H I O M E T R Y A ND  ELE CT RONI C C O N D U CT I O N 153

transferred to the conduction band to produce an «-type semiconductor, as 
in Figure 6.14(c). As before, the energy of neutral and ionized vacancies are 
slightly different.

A cation vacancy will be opposite to this in behaviour. Hence the removal 
of a neutral metal atom from a material will involve removal of a cation plus 
the correct number of electrons which are taken from the valence band. 
Cation vacancies will, therefore, be represented as acceptor levels situated 
near to the valence band together with an equivalent number of holes in the 
band as shown in Figure 6.14(d). These materials are p-type semiconductors.

To illustrate these features, zinc interstitials in ZnO will be represented by 
the scheme shown in Figure 6.14(a) as neutral or ionized donor levels. 
Similarly, cation vacancies in NiO will be represented as neutral or ionized 
acceptor levels as shown in Figure 6.14(d). The amount of ionization of 
donor and acceptor levels, and hence their influence on electric properties, 
will depend on how close the energy is to the nearest band. Hence some 
impurities produce deep energy levels, which have little effect on properties, 
while others give rise to shallow levels, which have a larger effect.

6.7 Band conduction and hopping conduction

The characterization of the defects present in semiconducting or metallic 
non-stoichiometric compounds is often approached using electrical con­
ductivity measurements. Because of this it will be useful to contrast the 
equations derived for hopping materials with those best described in terms 
of band theory. For example, the type of conductivity behaviour shown in 
Figure 6.8 is quite different from that expected for an alloy of two metals 
which is well described in band theory terms. In this case, the conductivity is 
frequently a linear function of the composition and certainly does not tend 
to zero at the end compositions.

For a typical band theory metal, conducting by electrons, the 
conductivity, σ, is given by:

where n is the number of mobile electrons in the metal, which is more or less 
constant over small temperature ranges, and μ is the mobility of the 
electrons. The mobility of the electrons depends on their mass and the 
number of times an electron collides with another electron or some other 
obstacle in the crystal. It can be expressed as

where m* is the effective mass of the electron in the crystal. The number of 
collisions is included as r, the mean lifetime between electron collisions. At
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For a typical band theory metal, conducting by electrons, the 
conductivity, a, is given by: 

a= neJ-t 

where n is the number of mobile electrons in the metal, which is more or less 
constant over small temperature ranges, and J-t is the mobility of the 
electrons. The mobility of the electrons depends on their mass and the 
number of times an electron collides with another electron or some other 
obstacle in the crystal. It can be expressed as 

eT 
J-t= m* 

where m* is the effective mass of the electron in the crystal. The number of 
collisions is included as T, the mean lifetime between electron collisions. At 
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normal temperatures μ is inversely proportional to a low power of 
temperature, typically

For a metal, therefore, σ decreases with temperature

In the case of semiconductors the equation for the conductivity is

for electrons and

for holes, where n, the number of mobile electrons, is replaced by the 
number of mobile holes, p. The mobility of the electrons or holes is 
dependent on temperature, just as in a metal. However, in semiconductors 
we cannot consider the number of charge carriers, n or /?, to be constant. In 
an intrinsic semiconductor, n or p increases with temperature in the 
following way:

where Eg is the band gap and n0 is a constant. Very similar equations hold 
for doped semiconductors, the main difference being that Eg needs to be 
replaced by the energy required to create an electron in the conduction band 
or a hole in the valence band. Thus, we find that the conductivity increases 
with temperature in a semiconductor because of the increase in the value of 
n or p. So for a semiconductor we can generally write:

where E represents the appropriate energy term for electrons or holes.
A comparison of the relevant equations for metals, band theory 

semiconductors and hopping semiconductors is given in Table 6.1. These 
equations can be used in a diagnostic fashion to separate one material type 
from another. Thus, if we find that the electronic conductivity increases with 
temperature we either have a band-like semiconductor or a hopping 
semiconductor, but not a metal. If, in the same material, the mobility 
increases with temperature we must have a hopping semiconductor.
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A comparison of the relevant equations for metals, band theory 
semiconductors and hopping semiconductors is given in Table 6.1. These 
equations can be used in a diagnostic fashion to separate one material type 
from another. Thus, if we find that the electronic conductivity increases with 
temperature we either have a band-like semiconductor or a hopping 
semiconductor, but not a metal. If, in the same material, the mobility 
increases with temperature we must have a hopping semiconductor. 



N O N - S T O I C H I O M E T R Y A ND  ELE CT RONI C C O N D U CT I O N 155

Table 6.1 Electrical conductivity and mobility of charge carriers in metals, band-like 
semiconductors and hopping semiconductors

Metal
Band-like

semiconductor
Hopping

semiconductor

Conductivity, σ oc T~m ос ехр[-Е /кТ } a  exp [~E/kT\
falls slightly with T increases with T increases with T

Mobility, μ oc T~m oc T~m oc exp[-E /kT]
falls slightly with T falls slightly with T increases with T

6.8 Case study: turning an insulator into a metal

Bearing in mind the wide range of electrical behaviour described above, it is 
not especially surprising to find that a number of materials exist which 
transform from metallic behaviour to semiconducting or insulating 
behaviour or vice versa. Such transitions can be induced by either 
temperature, pressure or a change in crystal structure. We will not discuss 
these possibilities here but conclude this chapter by looking at the way in 
which it is possible to bring this change about simply by utilizing non­
stoichiometry!

Let us first look at an example in which the role of stoichiometry is 
disguised. This is provided by LaCo03, which has the perovskite structure. 
At temperatures close to absolute zero the material is an insulator. It is 
made up of La3 + and Co3 + ions and so would be expected to be an ionic 
insulator. As the temperature increases to approximately 110K, electron- 
hole pairs start to be generated. In band theory terms, some electrons are 
thermally excited from the valence band to the conduction band. In 
chemical terms, it is possible to regard these electrons as originating in a 
disproportionation reaction in which electrons on some of the Co3 + ions are 
transferred to neighbouring Co3+ ions. This will produce Co2+ and Co4 + 
ions in the following way

We have the simultaneous generation of two sorts of defect at once, Co2 + 
and Co4+ ions, distributed on the Co3+ sub-lattice.

The Co2+ ions can be thought of Co3+ plus a trapped electron while the 
Co4+ ions can be regarded as Co3+ plus a trapped hole, i.e. the last 
equation can be rewritten as

The Seebeck coefficient of this compound is found to be large and positive.
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ions in the following way 

2C03+ ----+ Co2+ + C04+ 

We have the simultaneous generation of two sorts of defect at once, C02 + 

and C04 + ions, distributed on the Co3+ sub-lattice. 
The Co2 + ions can be thought of C03 + plus a trapped electron while the 

C04 + ions can be regarded as C03 + plus a trapped hole, i.e. the last 
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I • 

2Coco ----+ Coco + Coco 

The Seebeck coefficient of this compound is found to be large and positive. 
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This must mean that the holes are mobile but the electrons are trapped. This 
is rather a surprise and tells us that Co2+ is stable but Co4+ is not, at least in 
LaCo03 at temperatures above 110K!

As the temperature increases to 350 K the degree of disproportionation 
increases steadily and the number of mobile holes increases. The Seebeck 
coefficient falls, as expected, but remains positive.

Interestingly, in the temperature regime between approximately 350 and 
650 K another change occurs. The semiconducting behaviour gradually 
changes to metallic behaviour. This comes about because the band gap 
gradually decreases to zero as the proportion of large Co2+ ions in the 
structure increases. (Remember that the band separation is a function of the 
electron interactions and because Co2+ is much bigger than Co3 + , the 
interactions increase as the degree of disproportionation increases. This 
makes the conduction and valence bands widen and eventually overlap.) 
Above about 650 K overlap is complete and the material is metallic.

Can this transition be brought about in a more controlled way using 
valence induction? The answer is yes. If we make a series of compounds 
Lai_xSrxCo03 we find a transition to the metallic state. When x = 0, the 
material LaCo03 has a rather high resistivity, as suggested above. When 
Sr2+ is introduced into the material it substitutes for the La3+ and occupies 
La sites. In order to maintain charge neutrality each Sr2+ cation introduced 
into the crystal causes a Co3+ cation to change to a Co4+ cation. In the 
composition range up to x = 0.15 the material is a p-type semiconductor, as 
expected. It is possible to say with confidence that the Co4+ ions can be 
regarded as Co3 + plus a trapped hole which is able to migrate in the applied 
electric field. The p-type semiconductivity increases steadily as the value of x 
increases. In the region between x values of 0.2-0.3 the material changes into 
a metal, and for a value of x = 0.3 the material is completely metallic with a 
conductivity which decreases as the temperature increases. This is quite 
opposite to that found in the p-type semiconductor, of course.

How can this be explained? We do not have large Co2+ ions to alter the 
band gap. Instead it is the number of holes present that changes the system. 
When only one or two holes are present, they will be quite strongly attracted 
to any of the Co3+ cations nearby. As more and more holes form in the 
crystal, they spread throughout the crystal and form a form a positive cloud 
draped around the Co3+ sub-lattice. This is called a screening potential 
because it hides the Co3+ ions from any new holes formed. With only a few 
holes the screening is not very effective but it does cause the hole trapping 
energy to decrease. Using Sr2+ substitution, though, it is possible to 
introduce far more Co4+ than occurred naturally in undoped LaCo03 and 
although the screening also occurs in the undoped material it never reaches 
significant levels. In Lai_^SrxCo03 the shielding has become so effective at
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X = 0.3 that the trapping energy has been reduced to zero. At this stage the 
holes become free. No hopping energy is required and the material shows 
metallic behaviour.

Although an insulator has been turned into a metal in both these 
examples the transition was caused by two quite different microscopic 
effects, both of which involved the same defect, Co4+ ions in a Co3+ sub­
lattice. The perovskite system contains many more surprises for us. Some of 
these will be explored in chapter 10.

6.9 Supplementary reading

There is no compact source of information on the material covered in this 
chapter, but related aspects, particularly for oxides, will be found in:
M . S. Seltzer and R.J. Jaffee (eds.), Defects and Transport in Oxides, Plenum, New York (1975).
C. N.R. Rao (ed.), The Chemistry of the Solid State, Marcel Decker, New York (1974).
P. Kofstad, Nonstoichiometry. Diffusion and Electrical Conduction in Binary Metal Oxides, 

Wiley-Interscience, New York (1972).
J.B. Goodenough, Progress in Solid State Chemistry, Voi. 5, ed. H. Reiss, Pergamon, Oxford 

(1972).

The band theory of materials is covered in an approachable way in:
P.A. Cox, The Electronic Structure and Chemistry of Solids. Oxford University Press, Oxford 

(1987).

A very readable review article covering electron transport of in solids is:
D. Adler, Treatise on Solid State Chemistry, Voi. 2, ed. N.B. Hannay, Plenum, New York 

(1975).

Electrical conductivity in oxides is discussed clearly with self-test questions 
by:
O. Johansen and P. Kofstad, J. Mater. Ed. 7, 909 (1985).

Metal-insulator transitions are treated in depth in:
N . F. Mott, Metal-Insulator Transitions, Taylor and Francis, London (1974).

Appendix 6.1 
Hopping conductivity

Referring to chapter 3, for a random diffusion process the relationship 
between ionic conductivity, σ, and self-diffusion coefficient, Z>, is given by 
the Einstein relation
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where n was the number of ions that could diffuse per unit volume. As the 
hopping process will be identical to the diffusion process, this equation will 
also apply to electron or hole hopping, provided that it takes place by a 
random series of jumps. In this case, n will be the number of electrons or 
holes that can move per unit volume of crystal.

The strategy that is now employed is to derive a theoretical expression for 
the diffusion coefficient, following the route laid down in chapter 3, and use 
this to obtain a relationship between the conductivity, σ, and other atomic 
parameters. We, therefore, start with the expression for the number of 
successful jumps made by a hopping electron, which is

where v is the attempt frequency for a hop, q is the probability that a jump 
along the field direction will be successful and E is the activation energy for 
the hop.

Now such an expression is valid if each possible jump is to an available 
site. In the case under discussion the electron cannot just jump anywhere. If 
we consider our example of Niļ_*0 an electron can jump from Ni2+ to 
Ni3+ but not from one Ni2+ to another or from one Ni3+ to another. To 
allow for this, we can designate the number of sites which are occupied by 
mobile charges, either e' or h\ by φ, which is expressed as a fraction of the 
total sites which the mobile charge carriers can occupy. Thus, the fraction of 
available unoccupied sites is (1—</?). With this proviso, we can now rewrite 
the last equation in the correct form for us, so that the probability of a 
successful jump will be given by

We now proceed to calculate the diffusion coefficient of these moving 
charges, following the procedure in chapter 3. The steps in the argument 
will, therefore, be only briefly outlined. In the electric field responsible for 
the electronic conductivity, a gradient of mobile charge carriers will exist. If 
there is a density of na carriers on the plane at position x, per unit volume, 
and a density of [N + a(án/dx)]a and [n -  a(dn/dx)\a on the two adjacent 
planes at time t, we can write

Fick’s law, in the form that we require is
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-=-q(l-ip)a -
dt 2 dx 

Fick's law, in the form that we require is 

dn dn 
-=D­
dt dx 
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so that we can write

where D is the diffusion coefficient of the charge carriers. Substituting for q 
gives

We are now able to go back and substitute this into the Einstein relation, to 
yield

This expression is rather cumbersome and it is worth our while to condense 
it somewhat. To do this let us look at the basic building blocks of the 
structure that the electrons are diffusing through, that is, the unit cells. If we 
have c sites that the mobile charge carriers can occupy per unit cell, of 
volume v, then the number of mobile charge carriers per unit cell will be op, 
and the number per unit volume will be

where m is the number of unit cells per unit volume. If we now take the 
vibration frequency to be independent of temperature, we can collect many 
of these terms into a constant factor K, and write

where

Appendix 6.2
The Seebeck coefficient and entropy

In order to understand the relationship between the Seebeck coefficient and 
entropy, it is necessary to consider the effect in terms of the thermodynamics 
of the system. Electrons, holes or other mobile charge carriers can be 
considered as chemically reactive species in the thermodynamic sense. Thus, 
we can allot to them a thermodynamic chemical potential and then use all of 
the well-established formalism of thermodynamics to derive the relation­
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ships that are required. The thermodynamic function which is used is called 
the electrochemical potential, Д, defined as

where μ is the chemical potential of a mobile charge carrier in the absence of 
an electrical potential, ze is the charge on the mobile species and Φ is the 
electric potential in the neighbourhood of the carrier. In the present case, we 
will consider holes to be the charge carriers of relevance so z will be equal to 
+ 1 and we can use

for holes.
Turning now to a material subjected to a temperature gradient, as 

illustrated in Figure 6.9, when equilibrium is finally achieved the 
electrochemical potential of the holes at the hot end of the rod must be 
equal to that of the holes at the cold end of the rod. Hence we can write

The chemical potential of a substance can usually be equated to the Gibbs 
free energy and in this case we can write this as g per holef so that

where h and s represent the enthalpy and entropy of a mobile hole and T is 
the absolute temperature. Using this equation to substitute for μ

We now assume that the enthalpy and entropy of the holes at the hot and 
cold ends of the material can, to a reasonable approximation, be taken as 
equal over the small temperature ranges that are normal in experiments. 
Thus, if we write hc = hH = h, and sc = sH = s, and these quantities are 
substituted into the last equation, it is found that

f The use of lower case letters g, h and 5 , indicates that the free energy per particle is being 
discussed.

160 PRINCIPLES AND APPLICATIONS OF CHEMICAL DEFECTS 

ships that are required. The thermodynamic function which is used is called 
the electrochemical potential, fi, defined as 

fi = JL + Z<P 
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electrochemical potential of the holes at the hot end of the rod must be 
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The chemical potential of a substance can usually be equated to the Gibbs 
free energy and in this case we can write this as g per holet so that 

JL = g = h - Ts 

where hand s represent the enthalpy and entropy of a mobile hole and Tis 
the absolute temperature. Using this equation to substitute for JL 

e(<pH - <Pc) = (he - Tesc) - (hH - THsH) 

e(<pH - <Pc) = he - hH + THsH - Tese 

We now assume that the enthalpy and entropy of the holes at the hot and 
cold ends of the material can, to a reasonable approximation, be taken as 
equal over the small temperature ranges that are normal in experiments. 
Thus, if we write he = hH = h, and Se = SH = s, and these quantities are 
substituted into the last equation, it is found that 

e(<PH - <Pc) = (TH - Tc)s 

tThe use of lower case letters g, hand s, indicates that the free energy per particle is being 
discussed. 
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However, we have defined a as

so that, for holes

If we repeat this analysis for electrons we need to substitute the charge on 
the electron as —1, to give

Following through the analysis now gives, for electrons

The Seebeck coefficient is really a measure of the entropy of the holes or 
electrons in the material. At face value this is a rather surprising result and it 
is worthwhile to check the units to confirm that all is well, at least on that 
front. The units of entropy will be joules per degree (JK _1) per particle and 
the units of the electron charge will be coulombs (C) per particle. Thus the 
units of the Seebeck coefficient will be

(J K“1) per particle/C per particle = J/CK

We have seen previously that

so that the units of the Seebeck coefficient will be volts per degree (VK-1), 
as expected.

Appendix 6.3
The Seebeck coefficient for hopping semiconductors

Suppose that there are n mobile charge carriers in the material. The entropy 
of these charge carriers can be considered to be due to two parts, the 
arrangement of the charge carriers, which gives rise to the configurational 
entropy, and the displacements of the charge carriers due to thermal energy, 
which gives rise to the vibrational entropy. We can label these components 
Sc for configurational entropy and S v for vibrational entropy. For a
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material with localized holes or electrons it is possible to estimate Sc by 
using the Boltzmann formula. This procedure is identical to the calculation 
of the configurational entropy of point defects in a crystal as set out in 
chapter 1. Thus we can write

where Sc is the configurational entropy of n particles arranged on c 
available sites and k is Boltzmann’s constant. Using Stirling’s approxima­
tion (see chapter 1)

we can write

The entropy per particle, sc, is given by dSc/dn, which is

However, as we have defined n/c as φ, it is possible to write

so that

for electrons and

for holes. In general, S v is much smaller than ln[(l — φ)/φ] and as the only 
temperature variation will come into this equation from the S v term, a will 
be approximately independent of temperature. To a good approximation 
these equations are of the form

where A is a constant, n0 is the number of cation sites and nd is the number 
of cation defects for materials with non-stoichiometry affecting the metal 
lattice.
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Inn!=nlnn-n 

we can write 

Sc = k[clne - nlnn - (e - n) In(e - n)] 

The entropy per particle, sc, is given by dSc/dn, which is 
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However, as we have defined nje as cp, it is possible to write 

Sc = kln[(l ~ cp)] 

so that 

k { [(1 - cp)] } 
Q: = - -; In cp + S v 

for electrons and 

Q: = + ~ { In [( 1 ~ cp)] + S v } 

for holes. In general, Sv is much smaller than In[(l - cp)/cp] and as the only 
temperature variation will come into this equation from the S v term, Q: will 
be approximately independent of temperature. To a good approximation 
these equations are of the form 

Q: = ±~ [In(::) + A] 
where A is a constant, no is the number of cation sites and nd is the number 
of cation defects for materials with non-stoichiometry affecting the metal 
lattice. 



7 Defects and optical properties

7.1 Colour

Non-stoichiometry can have a profound effect on the optical properties of 
solids, especially colour. This can come about because of the presence of 
‘coloured’ impurities as when the presence of cobalt ions turns normally 
clear glass blue. Surprisingly, the presence of electronic defects, additional 
electrons or holes, can also colour materials. This effect is responsible for the 
colour of the semiprecious gemstones amethyst and smoky quartz.

In both of these cases, and with the others described in this chapter, 
colour is imparted to a material when electrons interact with electromagnetic 
radiation. When this happens electrons pick up the appropriate amount of 
energy from the light and are excited from the lower energy ground state, E0, 
to a higher energy excited state Eb as shown in Figure 7.1(a). The light that 
is ‘left over’ is depleted in some frequencies. The reverse can also happen. 
When electrons drop from the excited state Ei to the ground state E0 they 
release this energy and the same light frequencies will be emitted. This is 
shown in Figure 7.1(b). The relationship between the energy gained or lost, 
ΔΕ, and the frequency, v, or the wavelength, Л, of the light absorbed or 
emitted is

where h is Planck’s constant and c is the speed of light. For the radiation to 
be seen, Λ is restricted to the visible region of the electromagnetic spectrum, 
400-700 nm.

There is an important difference between the interaction of electro­
magnetic radiation with isolated atoms and with atoms in solids. In isolated 
atoms, the electrons move between sharp energy levels, E0 and Eb as shown 
in Figure 7.1(a) and (b). This means that light given out corresponds to a 
sharply defined energy difference and will consist of only one frequency (or a 
very small range of frequencies). Similarly, only sharp frequencies will be 
absorbed by gaseous atoms. The absorption or emission spectrum of an 
atom will consist of a series of sharp lines, each corresponding to one 
transition, as shown in Figure 7.1(c). In solids, although each electron 
capable of interacting with light moves between sharp energy levels, lattice 
vibrations mean that the spacings between the energy levels will vary slightly
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Figure 7.1 The physical processes taking place in light absorption (a) and emission (b). The 
emission from an isolated gas atom is a sharp line (c) while that from a solid is rather broad (d).

from atom to atom in the crystal. The upshot of this is that there exists a 
spread of energy levels in the crystal, and the absorption or emission 
spectrum of a solid due to electron transitions will consist of a series of bell­
shaped curves rather than sharp lines, as shown in Figure 7.1(d).

After an electron has been excited into the upper energy level, Eb as 
shown in Figure 7.2(a) there are two ways by which the ground state, E0, can 
be regained. Normally a light photon will be emitted at random in a process 
called spontaneous emission. When large numbers of photons are emitted 
from a solid by this process, the light waves are out of step with each other 
and the light is said to be incoherent. This process is shown in Figure 7.2(b). 
However, there is another way in which light can be given out. If a photon 
with the exact energy ΔΕ interacts with the atom while it is in the excited 
state it can trigger the transition to the ground state, as shown in Figure 
7.2(c). This is called stimulated emission. Under these circumstances the two 
light waves are perfectly in step and the light is said to be coherent.

Lasers are devices for producing coherent light. Although lasers are more 
often thought of in terms of high energy output (laser is an acronym for light 
amplification by stimulated emission of radiation), the coherent nature of 
the light produced is just as important. In order to make a laser it is 
necessary to arrange for more atoms to be in the excited state E2, than there

(a) (b)

(c) (d)
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Figure 7.2 Following absorption of radiation (a) an atom can emit radiation by two processes 
(b) and (c). In (b) the emission takes place at random via spontaneous emission. In (c) the 
emission is triggered by an incoming photon and leads to stimulated emission. The photons 
leaving the atom are coherent in this case.

are in the ground state Eb so that stimulated emission can take place. This 
state of affairs is called a population inversion and it is a necessary precursor 
to laser action.

In this chapter the way in which defects can be used to make two different 
sorts of solid state laser will be described.

7.2 Case study: rubies and ruby lasers

Rubies are crystals of A120 3 containing about 0.5% Cr20 3 impurity. This 
composition is a part of the continuous solid solution which is possible 
between the two end compounds A120 3 and Cr20 3. Both compounds share 
the same corundum structure-type shown in Figure 7.3, in which the cations 
are surrounded by six nearest-neighbour oxygen ions in an octahedral 
geometry. In the solid solution, the Al3+ and Cr3+ cations randomly 
occupy these sites. The lengths of the unit cell axes vary across the solid 
solution range, in a way quite close to that suggested by Vegard’s law, from 
a = 0.4763 nm and c = 1.3003 nm for A120 3, to a = 0.4960 nm and c = 
1.3599 nm for Cr20 3.
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Figure 7.2 Following absorption of radiation (a) an atom can emit radiation by two processes 
(b) and (c). In (b) the emission takes place at random via spontaneous emission. In (c) the 
emission is triggered by an incoming photon and leads to stimulated emission. The photons 
leaving the atom are coherent in this case. 
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to laser action. 

In this chapter the way in which defects can be used to make two different 
sorts of solid state laser will be described. 

7.2 Case study: rubies and ruby lasers 

Rubies are crystals of Ah03 containing about 0.5% Cr203 impurity. This 
composition is a part of the continuous solid solution which is possible 
between the two end compounds Al20 3 and Cr203' Both compounds share 
the same corundum structure-type shown in Figure 7.3, in which the cations 
are surrounded by six nearest-neighbour oxygen ions in an octahedral 
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Figure 7.3 The corundum structure. Small filled circles represent Al3 + ions and 
open circles represent O2- ions.

The corundum (A120 3) structure

The corundum structure is adopted by A120 3 (the mineral 
corundum) and a number of similar oxides such as Cr20 3 and 
Fe20 3. The unit cell is hexagonal, with a = 0.4763 nm, c = 
1.3003 nm. There are six A120 3 units in the cell. Each of the 
cations is surrounded by six oxygen ions in octahedral co­
ordination.

It is a surprise to find that the solid solutions AlxCr2_x0 3, with x taking 
rather small values close to 0 .0 1 , are coloured a rich ‘ruby’ red when the end 
members are colourless (A120 3) or green (Cr20 3). Across the whole solid 
solution range, the colour is produced by the Cr3+ ions. The energy levels 
involved arise via the interaction of the crystal structure and the d-electrons 
on the Cr3 + ion. This interaction causes the d-electron orbitals to split into
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two groups, one at a slightly greater energy than the other. This is called the 
crystal field or ligand field splitting. An important consequence of this effect 
is that three new energy levels, Eb E2 and E3 are introduced above the 
ground state, E0, which are not present in pure A120 3. These are shown in 
Figure 7.4(a).

When white light falls onto a crystal of ruby, which is in E0, Cr3 + ions 
selectively absorb some of the radiation and are excited to energy levels E2 
or level E3 as shown in Figure 7.4(a). The resulting absorption spectrum, 
shown in Figure 7.4(b), consists of two overlapping bell-shaped curves, one 
from Eļ and one from E3. The absorption curves show that wavelengths 
corresponding to violet and green-yellow are strongly absorbed. This means 
that the colour transmitted by the ruby will be red with something of a blue- 
purple undertone.

What happens to the illuminated ruby crystal which is in an energetically 
excited state? Some of the Cr3+ ions return to the ground state by losing 
exactly the same amount of energy that was absorbed and so they drop back 
to the ground state from either E2 or E3. Quite a lot of ions, however, lose 
some energy to the crystal lattice, warming it slightly, and drop back into 
the energy level labelled Eļ. For quantum mechanical reasons, it is not 
possible for an ion to pass directly from the ground state to Eļ by absorbing 
energy and so Eļ only gets filled by this round-about process. For the same 
reason, it is rather difficult for the ion to lose energy in the Eļ state and drop 
down to the ground state, E0, again. This means that the return is rather a 
slow process. Note that this is slow in atomic terms. There are still about 102 
transitions per second! However, the ions do return to the ground state and 
in so doing emit light of the appropriate colour. This is also red, but of a 
slightly different wavelength to that transmitted, as can be seen in Figure

Figure 7.4 (a) Energy is absorbed in a ruby crystal by transitions from the ground state, E0 to 
the excited states E2 and E3. (b) The spectrum of ruby shows two strong absorption bands near 
green and violet, due to these transitions. The colour perceived is red with bluish overtones, (c) 
Laser action occurs when the energy level Eļ is filled and then emptied abruptly by stimulated 
emission, (d) The laser colour is a red fluorescence and not the normal red colour seen in the 
gemstone.
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7.4(d). The process by which light of a higher energy is absorbed and light of 
a lower energy is emitted by a solid is called f lu o re s c e n c e . The colour of the 
best rubies is enhanced by this extra red fluorescence.

The ruby solid solution has another surprise in store. At compositions 
close to Cro.05Alo.95O3, the crystals are able to support laser action. In fact, 
ruby crystals were used in the first laser constructed. Laser action comes 
about in this way. Normally most of the Cr3 + ions are in the ground state 
and only a few are the Eļ energy level. However, if the ruby crystal is 
illuminated with a very intense light flash, most of the Cr3 + ions will absorb 
energy, become excited into E2 or E3 and then pour over into energy level 
Eļ. If the illuminating flash is intense enough to get more Cr3+ ions into Eļ 
than there are in the ground state, E0, a population inversion has been 
achieved and the return to the ground state can take place via stimulated 
emission. The ions remain in the excited state until a photon with an energy 
ΔΕ exactly equal to Eļ—E0 enters the ruby. When this happens, it causes an 
avalanche of all of the Cr3+ ions in Eļ to drop to E0 simultaneously, as 
shown in Figure 7.4(c). This process makes up laser action, and we have 
made a ruby laser. The light emitted, a red fluorescence, shown in Figure 
7.4(d) is the same as that weakly emitted under normal conditions.

Successful laser action requires that the ions which store the energy, Cr3 + 
in the present case, are well isolated from each other. When the 
concentration of Cr3+ in ruby crystals increases to much more than 
0.5%, interaction between these ions allows the energy to be lost in other 
ways, so preventing laser action from occurring.

So far so good. A120 3 is colourless because there are no Cr3+ ions present 
and we now know that ruby is red because of the extra energy levels 
introduced along with the Cr3+ ions. Can we also explain the green colour 
of Cr20 3? Shouldn’t it be red as well? Now it has been found that the 
magnitude of the ligand field splitting depends very sensitively on the 
distance between the Cr3 + ions and the surrounding octahedron of oxygen 
ions. In dilute solid solutions, the distance is similar to that in A120 3. As the 
composition range is spanned, the lattice parameter of the solid solution 
approaches that of Cr20 3 and the position of the critical energy levels Eļ 
and E2 alter very slightly. Now the lattice parameter of Cr20 3 is larger than 
that of A120 3. This means that the distance between the Cr3+ ions and the 
surrounding oxygen atoms is larger in Cr20 3 than in A120 3 and so the 
interaction will be smaller. The energy levels E2 and E3 will then be a little 
closer to the ground state than those shown in Figure 7.4(a). This small 
change is enough to cause the violet and red regions to be strongly absorbed, 
leaving a green transmission. As the solid solution range is traversed, the 
colour perceived changes from ruby red through a greyish tone to green.

The colour of rubies depends on the presence of Cr3+ substitutional 
impurities in octahedral sites of a specific geometry. The spinel Mg(Al0.99~ 
СГ0.0О2О4 has 1% Cr34" substituted for Al3+ on the octahedral sites. As the
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geometry of the site is quite similar to that in corundum, the spinel takes on 
a ruby colour. The colour of this ruby spinel is very close to that of real ruby 
and the two are easily confused visually. In fact, it appears that two of the 
gemstones in the British Crown Jewels, the Black Prince’s Ruby and the 
Timur Ruby, are in fact, ruby spinels.

7.3 Transparent electrodes

We will begin this section with a problem and see how the employment of a 
non-stoichiometric compound has been able to solve it. Many electronic 
displays, like those that give the answers on calculators or display the time 
on digital clocks and watches, require electrodes on the front and back of 
the display. It is necessary for electrodes to have a high electronic 
conductivity, to prevent excessive power loss and to avoid heating effects. 
A good electronic conductor needs to have plenty of free electrons and this 
generally makes for a material that is more or less metallic in appearance, 
which makes it useless for display electrodes.

Fortunately there are several families of non-stoichiometric oxides which 
show good electrical conductivity while remaining transparent. The 
candidates often used are derived from zinc oxide, ZnO, or tin oxide, 
S11O2, but here we will only deal with the most widely used material, called 
indium tin oxide, usually abbreviated to ITO in electronics publications.

Although this material is very widely used, the exact chemical and 
physical processes taking place which make it into such a good conductor 
are still not completely understood. However, it is clear that non­
stoichiometry has an important role to play. The base material that is used 
is the insulator indium oxide, ln20 3. In bulk it is yellow, but in thin films it is 
quite transparent. To make an electrode a thin film of indium oxide doped 
with several per cent of tin oxide is laid down on the surface of the device. 
This is done by heating a mixture of the two oxides in a low partial pressure 
of oxygen. The oxides evaporate and the molecules condense on the surface 
of the device which is placed nearby. The film which is deposited is 
amorphous and the next step is to crystallize it. This is done by heating 
under carefully controlled conditions of temperature and oxygen partial 
pressure. At this stage, the tin oxide is incorporated into the indium oxide 
crystal structure. It is found that the tin occupies indium sites so that 
impurity substitutional defects are formed.

The consequences of this will depend on which oxide of tin, the dioxide, 
Sn02, or the monoxide, SnO, is present. If we have Sn02 present as the 
impurity, we will need to incorporate extra oxygen into the ln20 3. If we have 
SnO present, we will need to introduce compensating oxygen vacancies into 
the ln20 3. In fact, the processing conditions are chosen to have SnO present 
and so the crystals contain oxygen vacancies. As the film is cooled down, the
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Sn2+ ions become very unstable and readily give up two electrons each to 
form Sn4+ ions. However, the oxygen diffusion coefficient at room tem­
perature is low and the oxygen vacancies are not filled up as they should be. 
The released electrons are not trapped at any specific site, but enter the 
conduction band of the ln20 3. However, the band gap of the ln20 3 is not 
significantly changed by all this and the thin film remains transparent. If the 
crystals are reheated, oxygen can diffuse in to fill the vacancies. The mobile 
electrons are used up in this step to form oxygen ions in the crystal matrix. 
At this stage the material is transparent but reverts to being an insulator 
again.

7.4 Electrochromic films

Electrochromic materials change colour when subjected to an electric field. 
In this section we will look at how to use defects in tungsten trioxide to 
make electrochromic displays. Tungsten trioxide, W 03, is yellow, an 
insulator and, like ln20 3, in thin films it is transparent. Structurally, W 03 
is built of corner-linked W 06 octahedra and is rather open (see chapter 4). It 
is quite easy to introduce metal atoms into the cages between the W 06 
octahedra to make non-stoichiometric tungsten bronzes. These are most 
often dark blue-black in colour. The principle of an electrochromic device 
using tungsten trioxide films is, therefore, not too difficult to envisage. It is 
necessary to arrange to drive some appropriate metal into the structure 
using an applied voltage. This will make the tungsten trioxide turn into a 
blue-black tungsten bronze. Reversal of the voltage must remove the 
interpolated metal and regenerate the colourless state. This reverse process is 
often referred to as bleaching.

To make such a display we need a reservoir for the interpolated metal and 
a transparent electrode on the top surface of the display. An experimental 
display has been constructed using the ionic conductor /З-alumina as a 
source of Na and indium tin oxide films as transparent electrodes. The 
scheme of the device is shown in Figure 7.5. When the power supply is 
connected as shown, N a+ ions migrate into the W 03 from the /3-alumina 
and electrons enter from the cathode. A tungsten bronze forms which is 
dark in colour. When the polarity is reversed, the Na re-enters the /3- 
alumina reservoir and the W 03 becomes colourless once again.

+xNa
W 03 (clear) ^  Na*W03 (blue—black)

-xN a

The whole structure is built from non-stoichiometric compounds! The speed 
of this device depends on ionic diffusion and at ordinary temperatures this is 
too slow for fast displays such as TV, but is perfect for electronic notice 
boards or shop signs.
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Figure 7.5 An electrochromic display using /5-alumina as an Na reservoir, W 0 3 as the 
electrochromic film and indium tin oxide (ITO) as transparent electrodes. The display would be 
viewed from above.

A similar arrangement has been used to make car mirrors which can be 
electrically dimmed so as to cut down dazzling reflections from bright lights. 
However, the mirrors have cleverly replaced the /З-alumina metal reservoir 
with something easily available, water vapour! This is decomposed by the 
voltage supplied to generate H + ions which in turn are used to produce a 
hydrogen tungsten bronze HxW 03. The arrangement is shown in Figure 7.6.

On the outer indium tin oxide electrode, the water vapour in the 
atmosphere is decomposed to hydrogen ions, thus

This is an electrochemical decomposition which requires about 1 V at the 
electrode surface. To drive the protons into the W 03 film we need a proton­
conducting electrolyte. One material which is quite a good hydrogen ion 
conductor is hydrogen uranyl phosphate, H U 02P 0 4*4H20 , often referred 
to as HUP. This material is essentially an acid hydrate and conductivity 
comes from the easy transport of H30 + via the water molecules in the 
structure. The next thin film in the cell is, therefore, HUP which is also 
transparent. The H + so produced can pass through the proton-conducting 
electrolyte to form the bronze, using electrons from the other electrode via 
the reaction

The four thin films are laid down on the mirror surface and connected to a 
battery. If the reflections are too bright, the battery is switched on and the 
W 03 layer is darkened by the formation of HxW 03, and in so doing cuts 
down the dazzling reflection. When the problem no longer occurs, the
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Figure 7.5 An electrochromic display using ,a-alumina as an Na reservoir, W03 as the 
electrochromic film and indium tin oxide (ITO) as transparent electrodes. The display would be 
viewed from above. 

A similar arrangement has been used to make car mirrors which can be 
electrically dimmed so as to cut down dazzling reflections from bright lights. 
However, the mirrors have cleverly replaced the ,a-alumina metal reservoir 
with something easily available, water vapour! This is decomposed by the 
voltage supplied to generate H + ions which in turn are used to produce a 
hydrogen tungsten bronze HxW03 . The arrangement is shown in Figure 7.6. 

On the outer indium tin oxide electrode, the water vapour in the 
atmosphere is decomposed to hydrogen ions, thus 

2H20 --+ 02(g) + 4H+ + 4e-

This is an electrochemical decomposition which requires about I V at the 
electrode surface. To drive the protons into the W03 film we need a proton­
conducting electrolyte. One material which is quite a good hydrogen ion 
conductor is hydrogen uranyl phosphate, HU02P04-4H20, often referred 
to as HUP. This material is essentially an acid hydrate and conductivity 
comes from the easy transport of H30 + via the water molecules in the 
structure. The next thin film in the cell is, therefore, HUP which is also 
transparent. The H + so produced can pass through the proton-conducting 
electrolyte to form the bronze, using electrons from the other electrode via 
the reaction 

+xH 
W03 (clear) ~ HxW03(blue-black) 

-xH 

The four thin films are laid down on the mirror surface and connected to a 
battery. If the reflections are too bright, the battery is switched on and the 
W03 layer is darkened by the formation of Hx W03, and in so doing cuts 
down the dazzling reflection. When the problem no longer occurs, the 
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Figure 7.6 An electrochromic layer which can be made to darken on applying a voltage. At the 
upper indium tin oxide electrode water is decomposed to H + which is conducted through the 
HUP electrolyte to form a hydrogen bronze in the W 0 3 layer. Electrons to maintain charge 
neutrality enter the bronze from the lower indium tin oxide (ITO) electrode. The films are 
deposited onto the surface of the mirror.

voltage is reversed. The H + ions are pulled out from the bronze and the film 
becomes colourless once more. If a photocell is incorporated into the circuit 
the whole device can be automated.

Like the sodium tungsten bronze displays, these mirror systems are still in 
the development stage.

7.5 Case study: the structure of the F-centre

Research in Germany, reported in 1938, indicated that exposure of alkali 
halide crystals to X-rays caused them to become brightly coloured. In these 
early studies, the source of the colours were not known and the colour was 
attributed to the formation of defects that were called Farbzentrum, the 
German for colour centre. These defects are now referred to by the briefer 
title of F-centres. Measurement of the absorption spectra of these crystals 
revealed a more or less bell-shaped curve of the type shown in Figure 7.7. 
Data for colour centres in alkali halide materials at room temperature are 
collected in Table 7.1.

Since then it has been found that many different types of high energy 
radiation, including ultraviolet light, X-rays, 7 -rays and neutrons, will cause 
these F-centres to form. The efficiency of the radiation with respect to F- 
centre production varies greatly and X-rays, for example, tend to produce F- 
centres only in the surface layers of the crystal, while the more penetrating 7 -
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voltage is reversed. The H + ions are pulled out from the bronze and the film 
becomes colourless once more. If a photocell is incorporated into the circuit 
the whole device can be automated. 

Like the sodium tungsten bronze displays, these mirror systems are still in 
the development stage. 

7.5 Case study: the structure of the F-centre 

Research in Germany, reported in 1938, indicated that exposure of alkali 
halide crystals to X-rays caused them to become brightly coloured. In these 
early studies, the source of the colours were not known and the colour was 
attributed to the formation of defects that were called Farbzentrum, the 
German for colour centre. These defects are now referred to by the briefer 
title of F-centres. Measurement of the absorption spectra of these crystals 
revealed a more or less bell-shaped curve of the type shown in Figure 7.7. 
Data for colour centres in alkali halide materials at room temperature are 
collected in Table 7.1. 

Since then it has been found that many different types of high energy 
radiation, including ultraviolet light, X-rays, ,-rays and neutrons, will cause 
these F-centres to form. The efficiency of the radiation with respect to F­
centre production varies greatly and X-rays, for example, tend to produce F­
centres only in the surface layers of the crystal, while the more penetrating ,-
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Table 7.1 Alkali metal halide F-centres

Metal

Fluoride Chloride Bromide

^max (nm) Colour

?в'K Colour ^шах (nm) Colour

Li 234 colourless 388 colourless 459 blue
Na 344 colourless 459 blue 539 green
K 459 blue 564 green 620 orange

Rb - - 620 orange 689 red

rays give a uniform distribution of F-centres throughout the bulk of the 
material. One significant fact is that, regardless of the type of radiation used, 
the colour produced in any particular crystal is always the same. Thus, F- 
centres in NaCl are always an orange-brown colour and in KC1 a violet 
colour, regardless of the method of F-centre production.

An understanding of the true nature of F-centres has involved the 
correlation of a number of experimental results and the use of a variety of 
techniques. The first indirect experimental observation that was of interest 
was that at the same time that F-centres were produced in a crystal, its 
density fell. This shows that we must, if nothing else, be introducing cation

Figure 7.7 A typical bell-shaped absorption curve due to F-centres in KC1. Curves for other F- 
centres are similar in shape but displaced to other wavelengths.
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centres are similar in shape but displaced to other wavelengths. 
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or anion vacancies into the structure. Now this poses an interesting problem 
which led to an insight into point defect chemistry which is not, strictly 
speaking, to do with colour centres themselves but is well worth mentioning.

The fact is that these vacancies cannot be created directly within the body 
of the crystal because the radiation used is usually not energetic enough to 
penetrate very far. The problem, therefore, is how to account for the 
diffusion of the vacancies into the crystal. The diffusion coefficients of both 
anion and cation vacancies is very low at room temperature, but the colour 
centres spread considerable distances into the crystals; a movement easily 
measured with an optical microscope. The difficulty was eventually 
explained by the suggestion that anion and cation vacancy pairs are the 
diffusing entities. This is reasonable to us as we have already noted that 
anion and cation vacancies carry opposite effective charges and hence are 
likely to associate in pairs. However, at the time this concept was put 
forward it was a novel idea, and formed the first suggestion that such 
vacancy pairs could exist. Calculations showed that the enthalpy of 
migration for a vacancy pair in alkali halide crystals is about ЗО кЈтоГ 1 
as compared to about 90 kJ mol-1 for a cation vacancy and 200 kJ т о П 1 for 
an anion vacancy, supporting the contention that pairs of defects are 
involved.

Despite this success, which seemed able to account for the penetration of 
colour centres into a crystal, there was still no explanation for the origin of 
the colour. This is because we know that Schottky defects exist in alkali 
halides and hence that vacancy pairs will also exist in these materials, but 
alkali halide crystals are not coloured under normal circumstances. So 
vacancy pairs themselves cannot be the colour centres.

There are, it turns out, other ways in which we can produce F-centres in 
alkali halide crystals apart from using ionizing radiation. The first of these 
involves heating the crystals at high temperatures in the vapour of the alkali 
metal itself. In a similar way, if we grow crystals of an alkali metal in an 
atmosphere that contains an excess of alkali metal, colour centres again 
occur. It is also notable that the exact metal does not matter so long as it is 
an alkali metal. That is, if we heat a crystal of KC1 in an atmosphere of Na 
vapour the typical purple KC1 F-centres are formed, and not the orange 
NaCl colour centres. Another way of introducing F-centres into alkali metal 
crystals is to pass an electric current through heated samples and electrolyse 
them. In this case, the typical F-centre colour is seen to move into the crystal 
from the cathode region. Once again, the colour depends on the crystal 
being electrolysed and not the exact nature of the cathode.

These observations suggest that the centres are associated with defects in 
the crystal structure rather than the exact elements which constitute the 
compound. Moreover, experiments such as heating crystals in a metal 
vapour are reminiscent of some of the methods used to produce of non- 
stoichiometric phases.
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What would we expect if this were happening? Consider KC1, for 
example. If we heat a crystal of KC1 in an alkali metal vapour and a little is 
incorporated into the crystal structure it will occupy normal cation sites as 
we know that Frenkel defects are not favoured in this compound. We can 
write the reaction

where M  stands for the alkali metal added to the KC1 crystal. Notice that 
the MK carries an effective negative charge because we have added a neutral 
metal atom to the system and that the vacancy carries the usual effective 
positive charge.

This state of affairs is not very likely, as alkali metals are very reactive and 
are more probably found as ions in the crystal. This is easily achieved by 
liberating the electron from the metal into the crystal. In the transition metal 
compounds that we discussed earlier this proved to be no problem as the 
electron could sit at another cation site. Here, though, there is only one 
plausible site for the electron, and that is at the vacancy. The reaction 
suggested is:

where the M  is now in the normal 1 4- state and the vacancy has an electron 
trapped at itself, that is

Could this vacancy plus trapped electron be our F-centre? The trapped 
electron will undoubtedly absorb electromagnetic radiation, and this would 
lead to an absorption spectrum of the type shown in Figure 7.10. We can 
check to see if this idea is reasonable by calculating the energy needed to free 
the electron. We can estimate this energy quite accurately by using the Bohr 
theory of the hydrogen atom, which gives good numerical answers for the 
energy of an electron trapped at a positive charge. The theory shows that the 
energy required to remove an electron completely from the nucleus is given 
in eV (where 1 eV corresponds to 1.60210 x 10—19 J) by

where the negative sign arises because the energy of the electron is taken as 
zero when it is free, and becomes increasingly more negative as it 
approaches the nucleus.

To account for the effect of the crystal lattice, the attractive force must be 
reduced in proportion to the magnitude of the relative permittivity. Taking 
this into account the energy becomes
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VCl +e ~ VCl 
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electron will undoubtedly absorb electromagnetic radiation, and this would 
lead to an absorption spectrum of the type shown in Figure 7.10. We can 
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13.6 
E=-­

n2 

where the negative sign arises because the energy of the electron is taken as 
zero when it is free, and becomes increasingly more negative as it 
approaches the nucleus. 

To account for the effect of the crystal lattice, the attractive force must be 
reduced in proportion to the magnitUde of the relative permittivity. Taking 
this into account the energy becomes 
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where er represents the relative permittivity of the crystal. The energy 
required is obtained by making n equal to 1. As the magnitude of the relative 
permittivity for the alkali halides is about 5, we find that the energy to cause 
the electron to escape from the vacancy is about 2.7 eV. This corresponds 
exactly to the energy of the F-centre absorption band in NaCl.

There is one more piece of evidence that we can call on that was not 
available to the earliest investigators. This is provided by the technique of 
electron spin resonance (esr), which gives a measure of the number of 
unpaired electrons present in a solid. When this technique is applied to 
normal alkali metal crystals no unpaired electrons are found, of course. 
However, for crystals containing F-centres unpaired electrons are found and 
in numbers equivalent to the number of colour centres present estimated by 
density measurements. This suggests that each F-centre contains one 
unpaired electron, as our model has proposed.

This is the end of the trail! An F-centre does indeed consist of a vacancy 
plus a trapped electron, as is shown in Figure 7.8.

7.6 Electron and hole centres

Since the original studies of F-centres, the term colour centre has broadened 
in meaning to include any point defect or point defect cluster which have 
trapped electrons or holes. These are called electron excess or hole excess 
centres, respectively.

Figure 7.8 The F-centre in an alkali halide crystal. The cations are shown as filled circles and 
the anions as large open circles. The colour centre consists of an electron trapped at a halide ion 
vacancy.
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The F-centre is an electron excess centre and arises because the crystal is 
slightly non-stoichiometric and contains a small excess of metal. Similar 
metal excess F-centres exist in compounds other than the alkali halides. 
Take, for example, an F-centre formed in alkaline earth oxides such as CaO. 
For this defect to be neutral, two electrons must be trapped as an anion 
vacancy in an oxide will have an effective positive charge of two units. If 
only one electron is trapped at such a vacancy it will still retain one unit of 
effective charge. This centre is called an F’-centre.

A similar defect is found in the mineral Blue John.į This is a rare, 
naturally occurring form of fluorite, CaF2. The coloration is caused by 
electron excess F-centres identical to those just described. It is believed that 
the colour centres were formed by energetic radiation from uranium 
compounds which were also contained in the rock strata. A fluorite F-centre 
is shown in Figure 7.9.

One of the best understood hole excess centres gives rise to the colour in 
smoky quartz and amethyst. These minerals are essentially crystals of silica, 
Si02, which contains a little Al as an impurity. As the aluminium is a 
trivalent ion which substitutes for silicon in the structure, we need a method 
of preserving charge neutrality. In natural mineral crystals this is usually by 
way of incorporated hydrogen, which is present as H + in exactly the same 
amount as the Al3 + . The colour centre, giving rise to the smoky purple 
colour, is formed when an electron is liberated from an [AIO4]-5 group by 
ionizing radiation and is trapped on one of the H + ions present. The 
reaction can be written as

It is seen that the [AIO4]-4 group is now electron deficient, but once again it 
is easier to think of this as [AIO4]-5 together with a trapped hole, as we have 
already done in earlier chapters. The colour arises when the trapped hole 
absorbs radiation in precisely the same way as the trapped electrons 
discussed above.

7.7 Case study: the search for a colour centre based information 
storage medium

7.7.1 Information storage

The ever increasing use of electronic computers has generated a need for 
sophisticated means of information storage. A reasonably sized book is

fThe name ‘Blue John’ is a corruption of the French term ‘bleu-jeune’which was used to 
describe the blue form of the normally yellowish fluorite crystals found in nature.
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tThe name 'Blue John' is a corruption of the French term 'bleu-jeune'which was used to 
describe the blue form of the normally yellowish fluorite crystals found in nature. 
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Figure 7.9 The colour centre in fluorite, CaF2, which gives the deep blue colour in the mineral 
‘Blue John’. It consists of an electron trapped at an F~ vacancy. Ca2+ ions are drawn as open 
circles and F_ ions as large shaded circles.

equivalent to about 106-107 bits, a figure estimated by assuming that the 
volume contains, let us say, 50 000 words of six letters each and each letter 
could be replaced by five bits, using the binary number system with A = 
00001, В = 00010, C = 00011 and so on. Surprisingly, a single picture needs 
the same number of bits to define it. We can confirm this by supposing that 
the picture can be divided up into about 500 x 500 pixels. Each pixel needs 
five bits to specify the ^-coordinate, another five for the ^-coordinate and 
yet another five to specify the tone or greyness level of the pixel. The total 
number of bits needed is obtained by multiplying all of these together to give 
3.125 x 107 bits! In principle, therefore, a single photographic negative can 
contain as much information as a book. This comparison illustrates the 
power of information storage via a memory plane and is the reason why the 
CD-ROM has become the chosen way to store information.

The major advantage of the photographic film is that the high density of 
information is achieved by virtue of the fact that the x-y  location, the 
geographical position, of each pixel is also stored information, as well as the 
degree of darkening of each pixel. In addition, each pixel can be read or 
‘addressed’ very rapidly indeed by way of scanned electron or light beams. 
The major drawbacks of photographic film as an information storage 
medium are that films need chemical processing to record the information 
and after this step the information is trapped in an irreversible fashion.

There is, therefore, considerable commercial interest in developing a film 
in which these drawbacks are eliminated. At the same time, such a film could 
be used for display screens and similar devices, as well as for information 
storage. In the following section we describe some research undertaken to 
try to use colour centres in CaF2 for information storage. Although the
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work did not result in the development of a commercially successful 
product, the studies are interesting in their own right and provide an insight 
into the technical difficulties underlying this type of project.

7.7.2 Photochromic calcium fluoride

The objective is to make a material which will markedly change colour when 
it is exposed to light. Such materials are called photochromic. Ideally, the 
change should be from white to black. The degree of darkening should also, 
if possible, be directly proportional to the amount of light incident on the 
crystal.

The photochromic behaviour of inorganic crystalline materials usually 
results from the reversible transfer of optically excited electrons from one 
type of trapping centre, let us call this A, to another type of trapping centre, 
В as shown in Figure 7.10. When the electron is in site A, then the crystal 
will be clear, whereas when it is at site В the crystal will be dark. In order to 
make the changes controllable, it is necessary to use light of one wavelength 
to transfer electrons from A to В and another wavelength to transfer them 
back again. This is illustrated schematically in Figure 7.10.

Figure 7.10 Schematic illustration of photochromic behaviour. In (a) the crystal is clear and 
contains two unionized colour centres, A and B. Transfer o f an electron from A to В using 
radiation of frequency v x gives ionized defects, Al and Bf, shown in (b). The crystal in this state 
is dark, but can be returned to the initial state by radiation of frequency v2.
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Figure 7.10 Schematic illustration of photochromic behaviour. In (a) the crystal is clear and 
contains two unionized colour centres, A and B. Transfer of an electron from A to Busing 
radiation of frequency III gives ionized defects, A· and 13', shown in (b). The crystal in this state 
is dark, but can be returned to the initial state by radiation of frequency 112. 
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In section 7.5, the F-centres which form in CaF2 to impart a dark blue- 
purple coloration were described. The colour is due to the absorption of 
light which liberates an electron from the F-centre, shown in Figure 7.10. In 
a normal crystal of CaF2, the liberated electron will soon be trapped again. 
The colour centre will remain ‘ionized’, that is, without its associated 
electron, only if some other defects can be provided which also act as 
electron traps. The previous chapter suggests that a multivalent cation 
would provide a convenient alternative location. All that we need to be sure 
of is that the cation chosen will form a solid solution with the CaF2 crystal, 
and that the trapping of the electron is not so strong as to prevent its return 
to the F-centre when required. A consideration of the crystal chemistry of 
CaF2 shows that a rare-earth cation such as lanthanum, La, would be a 
suitable second trap.

The initial stage in the preparation of photochromic CaF2 involves 
doping the crystals with LaF3 to create a non-stoichiometric phase. The 
large La3+ ions substitute for Ca2+ and occupy normal cation sites in the 
impure crystal. These form one of the sites needed, the В sites in Figure 7.10.

Reference to chapter 4 will suggest a number of ways in which the crystal 
can regain charge neutrality. For photochromic purposes, the crystals are 
especially grown in an atmosphere of HF and He. In these conditions the 
charge compensation is by way of F“ interstitials which occupy a site next to 
a substituted La3 + cation to form a defect pair. The reaction is

The colourless crystals are made photochromic by the technique of heating 
in Ca metal vapour. This process is called additive coloration. The Ca metal 
atoms join the crystal surface and some F_ ions diffuse to the surface to 
form new anion sites which increases the crystal volume. Now the site rule 
established in chapter 4 means that for every Ca which joins the crystal two 
F sites must be created at the surface. The interstitials present will only be 
sufficient to fill half of these because only one interstitial per La was 
introduced. Therefore, the net result of the additive doping is to remove all 
the interstitial F_ ions and in addition create an equal number of F-  
vacancies. The halogen vacancies do not occupy random positions but sit in 
sites next to a La3+ ion. This site traps the two electrons provided by the Ca, 
one to neutralize the effective charge of + 1 on the neighbouring La and one 
to neutralize the effective charge of + 1 on the vacancy. In so doing it forms 
an F-centre. Because the new centre consists of a halogen vacancy bounded 
by seven Ca2+ ions and one La3+ ion it is called an FLa-centre as shown in 
Figure 7.11. The reactions that take place are
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CaF2 21 • 
Ca(g) ----> CaCa + 2V F 
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Figure 7.11 An FLa-centre in CaF2. The centre is made up of an La3+ ion, shown as a filled 
circle, located next to an F-centre. Ca2+ ions are drawn as open circles and F_ ions as large 
shaded circles.

It is the FLa-centres that form the other sites needed, the A sites in Figure 7.10.

7.7.3 Information storage on defects

Information storage is achieved by swapping electrons between these two 
defects. In Figure 7.12 the absorption spectrum of the crystals in the initial 
state is shown shaded. There is little absorption over the visible region, but a 
strong peak in the near ultraviolet, at about 390 nm, and another in the 
infra-red, at about 750 nm. The crystals will appear clear. If the crystal is 
illuminated with light of 390 nm wavelength, the A sites will be ‘ionized’ and 
electrons transferred to В sites. The absorption spectrum of the crystal in 
this state is shown as a dotted line in Figure 7.12. There is now considerable 
absorption across the visible region and the crystal becomes blue-black. 
This darkening takes about 2 min at room temperature.

In order to erase the dark colour, the electrons need to be transferred in 
the opposite direction. The absorption spectrum of the dark state contains a 
peak at about 680 nm. Light of wavelengths near to this peak will achieve 
this and illuminating the crystal with this wavelength will transfer the 
electrons in the reverse direction and turn the crystal clear again. We thus 
have a system that we can darken or lighten at will. All that is now needed is 
some way of ‘reading’ the state of the crystal without altering it. This is 
achieved by using the absorption band which is present in the clear state at 
about 720 nm. It is found that irradiation at this wavelength does not alter 
the degree of darkening present and so monitoring the intensity of this band 
provides a measure of the state of the system.
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Figure 7.12 The absorption spectrum of CaF2 doped with LaF3. The continuous curve 
represents the clear state and the dotted curve the ionized dark state. Radiation corresponding 
to peak A is used to turn the crystal dark, i.e. to write information into the crystal. Peak В is 
used to reverse the process and turn the crystal clear, i.e. to erase information. Peak C is used to 
read information in the crystal. Radiation of energy corresponding to peak C does not alter the 
state of the crystal.

To summarize, we have developed an information storage film which does 
not need chemical processing and is reversible. We can write information 
into the film using light of wavelengths near to 380 nm, read information 
stored without changing the information using light of wavelengths near to 
720 nm and erase the information using light of about 680 nm. Moreover, 
the material does not degrade even after many cycles of writing and erasing, 
and these two processes are very efficient indeed.

This is too good to be true and the immediate question is, if the material is 
so good, why isn’t it being used? Unfortunately, the darkened state is 
thermally unstable and at normal temperatures lasts for only about a day. In 
addition, only relatively low concentrations of defects can be introduced 
into the crystals. This means that to obtain useful changes in optical density 
rather thick crystals must be used, which increases the amount of material 
needed to store each bit of information. So the challenge facing scientists 
and engineers is how to overcome these limitations.

7.8 Colour centre lasers

Although lasers covering a large range of wavelengths are available, not all 
operate efficiently and there is still a need for others to be developed. For
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Figure 7.12 The absorption spectrum of CaF2 doped with LaF3. The continuous curve 
represents the clear state and the dotted curve the ionized dark state. Radiation corresponding 
to peak A is used to turn the crystal dark, i.e. to write information into the crystaL Peak B is 
used to reverse the process and turn the crystal clear, i.e. to erase information. Peak C is used to 
read information in the crystaL Radiation of energy corresponding to peak C does not alter the 
state of the crystaL 

To summarize, we have developed an information storage film which does 
not need chemical processing and is reversible. We can write information 
into the film using light of wavelengths near to 380 nm, read information 
stored without changing the information using light of wavelengths near to 
720 nm and erase the information using light of about 680 nm. Moreover, 
the material does not degrade even after many cycles of writing and erasing, 
and these two processes are very efficient indeed. 

This is too good to be true and the immediate question is, if the material is 
so good, why isn't it being used? Unfortunately, the darkened state is 
thermally unstable and at normal temperatures lasts for only about a day. In 
addition, only relatively low concentrations of defects can be introduced 
into the crystals. This means that to obtain useful changes in optical density 
rather thick crystals must be used, which increases the amount of material 
needed to store each bit of information. So the challenge facing scientists 
and engineers is how to overcome these limitations. 

7.8 Colour centre lasers 

Although lasers covering a large range of wavelengths are available, not all 
operate efficiently and there is still a need for others to be developed. For 
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example, in the last section there was a need for lasers operating at three 
wavelengths to implement the information storage system developed. The 
fabrication of lasers based on colour centres adds a further dimension to the 
wavelengths available and several are commercially available. Unfortu­
nately it has been found that ordinary F-centres do not exhibit laser action. 
In order to achieve laser action it is necessary to create more complex colour 
centres in which dopant cations are involved. The way in which defects can 
be manipulated to achieve this objective is described below.

The simplest colour centres that can be used for laser action are F-centres 
which have one dopant cation next to the anion vacancy. The FLa-centres 
described above fall into this group. Crystals of KC1 or RbCl doped with 
LiCl, containing FLi-centres, shown in Figure 7.13(a), have been found to be 
good laser materials yielding outputs between 2.45 and 3.45 /ші. A unique 
property of these crystals is that in the excited state an anion adjacent to the 
FLi-centre moves into an interstitial position, as shown in Figure 7.13(b).

Figure 7.13 (a) A FLi-centre in a cubic alkali halide crystal in the ground state, (b) In the 
excited state one of the neighbouring anions moves to an interstitial position. This is called type 
II behaviour and is essential for colour centre laser action.

(a)

(b)
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This is called type II laser behaviour, and the centres are called Fu (II) 
centres.

How are these rather complex defects obtained? The process is rather 
interesting. Take KC1 doped with Li as an example. Initially the KC1 
crystals are grown from a solution containing LiCl as an impurity. The Li + 
cations form substitutional LiK impurity defects distributed at random 
throughout the crystal. These defects carry no effective charge as both Li 
and K are monovalent. The next step is to introduce F-centres into the 
crystals. This is often carried out by irradiation using X-rays but any of the 
methods covered in section 7.5 would be satisfactory. The F-centres which 
form are widely separated and not usually located next to a dopant Li + 
cation.

In order to convert the F-centres into the correct FLi (Il)-centres the 
crystal is subjected to a process called aggregation. In this step, the crystals 
are cooled to about -10 °С and then exposed to white light. This causes the 
trapped electrons to be released from the F-centres, leaving normal anion 
vacancies. These anion vacancies diffuse through the crystal for a while 
before recombining with the electron once more to reform the F-centre. 
Ultimately, each F-centre ends up next to a Li+ ion. At this position it is 
strongly trapped and further diffusion is not possible. Recombination with 
an electron forms the FLi-centre required. This process of aggregation is 
permanent provided that the crystal is kept at —10 °С and in this state the 
crystal is laser active.

This rather clever manipulation of defects and defect clusters to produce a 
new laser is indeed defect engineering!

7.9 Supplementary reading

The best approachable source for an introduction to the topic of colour and 
colour centres is the book:
K. Nassau, The Physics and Chemistry of Colour, chapter 9, Wiley-Interscience, New York 

(1983).

Bohr’s theory of the hydrogen atom is clearly explained by:
H.C. Ohanian, Physics, chapter 41, Norton (1985).

Indium tin oxide and other related materials are described in:
S.J. Lynch, Thin Solid Films 102, 47 (1983).

The information on photochromic CaF2 can be found in the scientific 
literature. Although these articles are rather advanced reading, they are 
worth studying to gain an insight into how the material was made and the 
efforts which were made in order to characterize it. The easiest starting 
points are:
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D.L. Staebler and S.E. Schnatterly, Phys. Rev. В 3, 516 (1971).
W. Phillips and C.R. Duncan, Metall. Trans. 2, 767 (1971).

Colour centre lasers are well described in the manufacturer’s literature (see 
those by Burleigh, for example).
A clear explanation of electrochromic devices is given in:
F.G. Bauke and J.A. Duffy, Chemistry in Britain July, 643 (1985).



8 Defects, composition ranges and conductivity

8.1 The equilibrium partial pressure of oxygen over an oxide

The composition of a non-stoichiometric oxide will depend on the partial 
pressure of oxygen in the surroundings. In this chapter the way in which 
thermodynamics can help in understanding this will be outlined. Surpris­
ingly, we will find that the number of defects in a material and its electronic 
conductivity can be quite easily understood from the same viewpoint. We 
begin by looking at how the stability of an oxide depends on the oxygen 
pressure.

A good example to take is silver oxide, as this is a stoichiometric phase 
which decomposes at quite a low temperature, when heated in air, to silver 
metal and oxygen gas

The change in the Gibbs free energy for this reaction, AGn can be related to 
the partial pressure of the oxygen gas, po2, using the equation

where Kp is the equilibrium constant of the reaction. In this example

At equilibrium, Δ Gr is a constant and so oxygen partial pressure, po2, will 
also be constant. This oxygen pressure is called the decomposition pressure or 
dissociation pressure of the oxide, and depends only on the temperature of 
the system.

What does this equation mean? Suppose some silver metal and silver 
oxide is sealed in a closed silica ampoule, under a complete vacuum, and we 
heat the ampoule to a temperature ГК. As there is no oxygen in the 
ampoule some of the silver oxide will decompose and oxygen will be 
released. This will continue until the equilibrium decomposition pressure is 
reached. Provided that there is always some silver and silver oxide in the 
tube the oxygen pressure will be fixed, as shown in Figure 8.1. If the
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Figure 8.1 (a) Equilibrium between a metal, Ag, and its oxide, Ag20 ,  generates a fixed partial 
pressure o f oxygen irrespective o f the amount o f each compound present at a constant 
temperature, (b) The variation of the partial pressure of oxygen with temperature in a sealed 
system.

temperature is raised or lowered, either more silver oxide will decompose, or 
some silver will oxidize, until a new equilibrium decomposition pressure is 
reached which is appropriate to the new temperature.

The same analysis will hold for any metal-metal oxide mixture. In order 
to determine the oxygen partial pressure over the pair, it is only necessary to 
look up the appropriate value of the free energy of formation of the oxide in 
standard thermodynamic tables at the temperature required and insert the 
value into the equation

This finds use in the laboratory when accurate partial pressures of oxygen 
must be obtained which are outside the range of conventional pumping 
systems. A mixture of metal plus oxide is called an oxygen buffer. To make 
an oxygen buffer, a quantity of a metal plus its oxide are placed in the 
system and heated to the desired temperature. The oxygen partial pressure 
will reach an equilibrium which depends only on materials chosen.

(a)

(b)
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Figure 8.1 (a) Equilibrium between a metal, Ag, and its oxide, Ag20, generates a fixed partial 
pressure of oxygen irrespective of the amount of each compound present at a constant 
temperature. (b) The variation of the partial pressure of oxygen with temperature in a sealed 
system. 

temperature is raised or lowered, either more silver oxide will decompose, or 
some silver will oxidize, until a new equilibrium decomposition pressure is 
reached which is appropriate to the new temperature. 

The same analysis will hold for any metal-metal oxide mixture. In order 
to determine the oxygen partial pressure over the pair, it is only necessary to 
look up the appropriate value of the free energy of formation of the oxide in 
standard thermodynamic tables at the temperature required and insert the 
value into the equation 

6.Gr = - RT In P02 

This finds use in the laboratory when accurate partial pressures of oxygen 
must be obtained which are outside the range of conventional pumping 
systems. A mixture of metal plus oxide is called an oxygen buffer. To make 
an oxygen buffer, a quantity of a metal plus its oxide are placed in the 
system and heated to the desired temperature. The oxygen partial pressure 
will reach an equilibrium which depends only on materials chosen. 

o 
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Example 8.1

Determine the equilibrium oxygen pressure over a mixture of copper, Cu, 
and cuprous oxide, Cu20  at 1000 K.

The chemical equation for the reaction is

The free energy change for this reaction at 1000K, Δ Gr, is found to be 
188 kJ. Substituting this value in

Now these pressures are more often expressed in terms of log10, hence

8.2 Variation of partial pressure with composition

A similar analysis to that presented above shows that for any pair of 
stoichiometric oxides of a multivalent metal M, say M20 3 and M 02, the 
same relationship must hold. The oxygen pressure in the sealed tube will 
depend only on the temperature and not on how much of each oxide is 
present. If we have several oxides in a system, for example M 02, M20 3, 
M30 4 and MO, the partial pressure of oxygen in the system will depend only 
on temperature and the particular pair of oxides present. However, the 
pressure will change abruptly when we go from one oxide pair to another, 
say from M30 4-M 20 3 to M20 3-M 0 2. This is illustrated schematically in 
Figure 8.2. Some experimental data for the manganese-oxygen system are 
presented in Figure 8.3.

Systems of the sort just discussed, where the oxygen pressure does not 
depend on the relative amounts of the two phases present but only on the 
temperature, are referred to as univariant. Will the same state of affairs 
occur with a non-stoichiometric compound? The easiest way to determine 
this, is to turn to the phase rule, which relates the number of components 
and phases in a system to the number of thermodynamic variables needed to 
define the state of equilibrium. The ‘rule’ is usually written as

(8.1)
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stoichiometric oxides of a multivalent metal M, say M 20 3 and M02 , the 
same relationship must hold. The oxygen pressure in the sealed tube will 
depend only on the temperature and not on how much of each oxide is 
present. If we have several oxides in a system, for example M02, M 20 3, 

M 30 4 and MO, the partial pressure of oxygen in the system will depend only 
on temperature and the particular pair of oxides present. However, the 
pressure will change abruptly when we go from one oxide pair to another, 
say from M 30 c M 20 3 to M 20 r M02 . This is illustrated schematically in 
Figure 8.2. Some experimental data for the manganese-oxygen system are 
presented in Figure 8.3. 

Systems of the sort just discussed, where the oxygen pressure does not 
depend on the relative amounts of the two phases present but only on the 
temperature, are referred to as univariant. Will the same state of affairs 
occur with a non-stoichiometric compound? The easiest way to determine 
this, is to turn to the phase rule, which relates the number of components 
and phases in a system to the number of thermodynamic variables needed to 
define the state of equilibrium. The 'rule' is usually written as 

P+F= C+2 (8.1 ) 



DEF ECTS ,  COMP OS I TI O N R A N G ES  A N D  C O N DU CT I V I T Y 189

Figure 8.2 The variation of oxygen partial pressure across the metal-oxygen system of a 
transition metal M  which forms stable oxides MO, M30 4, M20 3 and M 0 2.

where P represents the number of phases in the system, C is the number of 
components in the system and F represents the minimum number of 
thermodynamic parameters that have to be specified in order to define the 
equilibrium completely. This is also called the variance of the system.

Figure 8.3 Variation o f the equilibrium oxygen partial pressure with composition for the 
oxides o f manganese. The full lines parallel to the composition axis represent two-phase regions 
and the dashed lines parallel to the log/?o2-axis represent single-phase regions.
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In the case of silver oxide, equilibrium is achieved when three phases 
coexist, Ag20 , Ag and 0 2. The number of components in the system is two, 
silver and oxygen. Hence, substituting this information into the equation 
8.1, we find

i.e. F = 1.
What does this tell us? It tells us that under conditions where we have 

three phases in equilibrium we can only vary one thermodynamic 
parameter, all the others are fixed. We have already shown this to be true. 
If we choose the temperature of our sealed ampoule, then the oxygen 
pressure is fixed. Similarly, if we choose pressure, only one temperature will 
allow the system to come to equilibrium. Thus, the system has a variance of 
one; it is univariant, as stated earlier.

Now consider a non-stoichiometric compound, ~MO, in equilibrium 
with the vapour phase. If we change the composition of the compound a 
little, we do not produce more of a second solid compound, but still have 
one solid in equilibrium with gas. The number of components in the system 
will be two, metal and oxygen and the number of phases will be two, ~MO 
and 0 2, gas, hence

The minimum number of thermodynamic parameters that have to be fixed 
to define the equilibrium is now two, and the system is said to be bivariant. 
In this experiment, if ~MO and 0 2 gas are present in a sealed tube at a 
certain temperature, we cannot be sure that we are at equilibrium. Another 
parameter must be specified to define the system completely. This could be 
oxygen pressure or the composition of the oxide. Thus, if we specify oxide 
MO 1.0980 is in contact with 0 2 gas at 7TC, the equilibrium oxygen partial 
pressure will be defined. Similarly, if we define the oxygen partial pressure 
and the temperature, the composition of the phase will have one precise 
value only.

A system which appears to contain only one solid phase and which shows 
bivariant behaviour must contain a non-stoichiometric compound. This 
serves as a thermodynamic definition of non-stoichiometry to complement 
the structural one given in chapter 4.

Let us illustrate this behaviour for the Fe-O system, heated at a fixed 
temperature. If we start by oxidizing iron metal in a sealed tube, the first 
pair of equilibrium products will be Fe coexisting with the lower
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composition range of ~FeO, FeOļ 050· In this composition range, the 
oxygen partial pressure will be constant, as shown in Figure 8.4. Similarly, 
Fe30 4 will be in equilibrium with the oxygen-rich end of the ~FeO phase, 
that is, FeOLi5o. The partial pressure over the oxides will also be constant, 
as shown in the Figure 8.4. However, within the stoichiometry range of 
^FeO, between the composition limits of approximately FeOi.oso and 
FeOi.150, only one solid phase will be present. The system will now be 
bivariant in behaviour and the partial pressure of oxygen over the ~FeO 
will depend on the composition. This is shown as a sloping line in Figure 8.4. 
Changing the temperature will change the details on this figure but the 
overall shape of the diagram will be the same.

8.3 Electronic conductivity and partial pressure for Nil j cO

Cation deficient oxides which accommodate their non-stoichiometry by way 
of cation vacancies are typified by Nii_xO. In this oxide, the cation 
vacancies are balanced by compensating Ni3+ ions to maintain charge 
balance, and the formula can be written as N iļl3jcN i^O. We can write down 
a chemical equation for the production of vacancies and Ni + 3 ions 
following the guidelines set out in chapter 4

(8.2)

where represents a cation vacancy with two virtual negative charges and

composition X in MOx

Figure 8.4 Schematic illustration of the variation of oxygen partial pressure, plotted as logpo2 
versus composition, x, for the iron-oxygen system. The heavy lines represent two oxides present 
at equilibrium and the diagonal line represents the non-stoichiometric ~FeO  phase. The ~FeO  
phase range has been exaggerated for clarity.
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NiNi is an Ni2+ cation on a normal Ni2+ site, but bearing an extra positive 
charge, that is, an Ni3 + ion. If there is some uncertainty that the charge is 
located on normal Ni2+ ions, we may prefer to write the equation as

where h* represents a positive hole, not trapped or located at any particular 
site in the lattice, but free to move through the valence band.

Having expressed the defect formation reaction in terms of a chemical 
equation, we can handle it by normal equilibrium thermodynamics. The 
equilibrium constant of reaction (8.2) is

where [ ] represent concentrations, and po2 is the oxygen partial pressure. 
Now the values of [00] and [NiNi] are essentially constant, as the change in 
stoichiometry is small. Hence we can assimilate them into a new constant, 
Ki and write

We also know that for every vacancy in the crystal we have two Ni3+ ions, 
to maintain electroneutrality, so that

Hence

so that the concentration of Ni3 + ions is given by

The concentration of Ni3+ ions is, therefore, proportional to the 7/6 power 
of the oxygen partial pressure. Alternatively, the concentration of holes, [h‘], 
is proportional to the 1/6 power of the oxygen partial pressure, i.e.

The electrical conductivity, σ, will be proportional to the concentration of 
holes, so we can write
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1 NiO 21 ° 
202(g) -----> 00 + VNi + 2h 

where h· represents a positive hole, not trapped or located at any particular 
site in the lattice, but free to move through the valence band. 
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where [ ] represent concentrations, and P0 2 is the oxygen partial pressure. 
Now the values of [00] and [NiNi] are essentially constant, as the change in 
stoichiometry is small. Hence we can assimilate them into a new constant, 
KI and write 

_ [[Ni~J2 [V~Jl 
KI - 1/2 

P02 

We also know that for every vacancy in the crystal we have two Ni3+ ions, 
to maintain electroneutrality, so that 

[ 21] l[ .0] VNi =2 NINi 

Hence 

[Ni~J [Ni~J [Ni~;] 
KI = 1/2 

2P02 

so that the concentration of Ni3 + ions is given by 

[Ni~;] = (2KI)1/3p~26 

The concentration of Ni3 + ions is, therefore, proportional to the 1/6 power 
of the oxygen partial pressure. Alternatively, the concentration of holes, [h1, 
is proportional to the 1/6 power of the oxygen partial pressure, i.e. 

ho 1/6 
ex P02 

The electrical conductivity, a, will be proportional to the concentration of 
holes, so we can write 
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This is a very interesting result. It tells us that the conductivity will increase 
with increasing oxygen pressure. Moreover, the pressure dependence is 
specific. The conductivity will increase as p\£. Some experimental results 
confirming this result are shown in Figure 8.5.

8.4 Case study: Coi_xO

The results obtained for ~NiO are rather remarkable. The pressure 
dependence of conductivity was precisely that expected from the defect 
model used. This suggests that the technique could be used to clarify the 
nature of the defects present in other systems. The oxide Со]_*0 provides a 
good illustration of this. It would be expected that this oxide would behave 
in a very similar way to ~NiO, its periodic table neighbour. However, 
experimental results, shown in Figure 8.6, show that the conductivity 
increases as

Can a model of the defects present be derived which accounts for this?

Figure 8.5 Plot o f conductivity versus the logarithm of oxygen partial pressure for single, high 
purity nickel oxide crystals determined at a variety of temperatures. The slopes of the lines, l/jt, 
are close to, but not exactly equal to, 1/6. [Data redrawn from C.M. Osborn and R.W. Vest, J. 
Phys. Chem. Solids 32, 1131, 1343, 1353 (1971).]
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Figure 8 .6  Variation of the conductivity, at 950 °С, as a function of the partial pressure of 
oxygen for ~CoO. [Data redrawn from C. Kowalski, thesis, University Henri Poincaré, Nancy I 
(1994).]

The crux of the analysis of ~NiO was that the two holes generated by 
each cation vacancy sat on different Ni2+ cations. Could it be that instead 
of two holes sitting on separate cations to make two Co3 + ions, both sit on 
one cation to form a Co4+ ion?

Let us analyse this by following the same steps as in the case of ~NiO. 
The chemical equilibrium equation is

or

where the two holes are bracketed together to show that they are associated 
at one site. Following through the analysis as before, we find the equilibrium 
constant, K, is given by

Taking the concentrations of normal Co2+ and 0 2~ ions as constant 
because CoO has a small stoichiometry range, and incorporating them into 
a new equilibrium constant Kļ

Also [Vq,] is equal to [Со£0] and hence
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Figure 8.6 Variation of the conductivity, at 950 °C, as a function of the partial pressure of 
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The crux of the analysis of ",NiO was that the two holes generated by 
each cation vacancy sat on different Ni2+ cations. Could it be that instead 
of two holes sitting on separate cations to make two C03 + ions, both sit on 
one cation to form a C04 + ion? 

Let us analyse this by following the same steps as in the case of ",NiO. 
The chemical equilibrium equation is 

1 coo 21 2" 
COCo + 2" 0 2(g) ~ 00 + VCo + COCo 

or 

10 ( ) Coo 0 V21 (2h") 2" 2g~ 0+ co+ 

where the two holes are bracketed together to show that they are associated 
at one site. Following through the analysis as before, we find the equilibrium 
constant, K, is given by 

= [[00] [V~o] [co~o]l 
K 1/ 2 

[COCO]P02 

Taking the concentrations of normal Co2 + and 0 2- ions as constant 
because CoO has a small stoichiometry range, and incorporating them into 
a new equilibrium constant KI 

_ [[V~oJ [CO~oJl 
KI - 1/2 

P02 

Also [V~oJ is equal to [Co~oJ and hence 

[ 21 J [ 2" J ["J 1/2 V Co = COCo = 2h = KIP02 
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This predicts p-type semiconductivity, which increases with oxygen pressure, 
but now the dependence is proportional to the 1/4 power rather than the 1/6 
power. This seems like a very successful outcome. It appears that the defects 
in Coι_*0 are cation vacancies and Co4+ ions.

It is possible to take this just a little further. Chemically, it is possible to 
make the suggestion that two short-lived Co3+ ions disproportionate into 
one Co2+ ion and one Co4+ ion at the temperature of the experiment

Perhaps this reaction does not take place so readily at higher temperatures. 
Experimentally this could be checked by following the conductivity as a 
function of oxygen pressure at different temperatures. If the pressure 
dependence tends to change towards +1/6 the idea would be strongly 
supported. This is found. Although the change is rather small, as can be seen 
from Figure 8.7, there is no doubt about the result. At a temperature of 
1150°С the partial pressure dependence is + 1/4.16. If 100% Co3+ defects 
give a slope of 1/6 and 100% Co4+ defects give a slope of 1/4, y% of Co3 + 
will give a slope of 1/4.16 where

The solution is у = 11.5%. It thus appears that 11.5% of the Co4+ ions

Figure 8.7 The variation of the exponent, «, where conductivity σ oc /?q ", as a function of 
temperature for ~CoO. [Data redrawn from C. Kowalski, thesis, University Henri Poincaré, 
Nancy I (1994).]
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Figure 8.7 The variation of the exponent, n, where conductivity (]" oc p:{n, as a function of 
temperature for ~CoO. [Data redrawn from C. Kowalski, thesis, University Henri Poincare, 
Nancy I (1994).] 
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have disproportionated at 1150 °С and it is possible to speculate that even 
more Co3+ would form at even higher temperatures. The theory has been 
rather successful.

8.5 Electronic conductivity and partial pressure for Zn1 + JC0

In order to illustrate the behaviour of oxygen deficient materials let us look 
at oxides which have interstitial cations in the structure and which are «-type 
semiconductors, typically ZnO. When ZnO is heated in zinc vapour, we 
obtain a non-stoichiometric crystal containing excess zinc, Ζη1 + ΛΌ. The 
reaction is

where, for the moment, it has been assumed that the interstitial zinc atoms 
are singly ionized to form Zn+ ions. The equilibrium constant for this 
reaction is

The concentration of the Zn interstitials is equal to that of the electrons and 
is given by

Thus the number of defects increases as the vapour pressure of zinc metal 
increases, and the semiconductivity will be proportional to the zinc vapour 
pressure following the equation

We can treat the oxygen dependence similarly. In this case, heating ZnO in a 
vacuum will cause oxygen to be lost from the crystal, to again produce 
Zni+xO. Thus, we can write the chemical reaction as

The equilibrium constant for this reaction is given by

If we follow previous procedures and amalgamate the concentrations of 
lattice oxygen, which will be large and almost constant, into the equilibrium 
constant K to generate a new constant, Ku we can rewrite this equation as
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As before

so that

This shows that the number of defects will be proportional to the -114 
power of the oxygen partial pressure. The number of defects will fall as the 
oxygen pressure increases. As the oxygen pressure increases the composition 
of the material will approach the stoichiometric formula of ZnOLOoo· The 
electronic conductivity is proportional to the number of electrons so

It is seen that the situation here is opposite to that encountered in the p-type 
oxides and now the conductivity will decrease as the oxygen partial pressure 
increases. Some classical experimental data for Zni+xO, shown in Figure 
8.8, indicate that the relationship is obeyed well. This in turn supports the 
original assumption that the interstitial Zn atoms are singly ionized and 
exist as Zn+ entities in the structure.

Figure 8.8 Classical data showing the conductivity o f ~ZnO as a function of oxygen pressure 
at (550 °С as determined by Baumback and Wagner in 1933. The data are evidence that the Znj 
atoms are singly ionized rather than doubly ionized.

As before 

so that 
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KI = [Zni"][e']p~2 
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Figure 8.8 Classical data showing the conductivity of ~ZnO as a function of oxygen pressure 
at 650°C as determined by Baumback and Wagner in 1933. The data are evidence that the Zni 
atoms are singly ionized rather than doubly ionized. 
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Example 8.2

What would the Zn pressure dependence of conductivity be if the zinc 
interstials in ZnO were doubly ionized?

The chemical reaction describing the formation of doubly ionized 
interstitials is

If the analysis is now followed through in the same way as above the result is

8.6 Brouwer diagrams

Many of the important semiconducting materials show composition ranges 
which take them from cation deficient to cation excess. At the same time the 
semiconductivity often changes from p-type to «-type or vice versa. From a 
practical point of view, it would be helpful to be able see how the 
conductivity will change with composition at a glance without always 
having to return to chemical equilibrium equations. Brouwer diagrams allow 
one to do just that. The best way to understand the information contained in 
these diagrams is to construct an example. In the rest of this section a 
Brouwer diagram for a non-stoichiometric compound with a composition 
close to M X  will be constructed. In this example it will be assumed that both 
M  and X  are divalent.

8.6.1 Initial assumptions

The first step is to set out the assumptions concerning the defects that are 
likely to occur, using physical and chemical intuition about the system in 
mind. (Remember that the diagram is to be useful in the laboratory.) In this 
example, we shall presume that:
1. only vacancies are important in ~MX,  and interstitial defects can be 

ignored
2. ~ M I  can have an existence range which spans both sides of the 

stoichiometric composition, MXi 0o
3. the electrons or holes in the non-stoichiometric compound are not 

trapped at the vacancies, but are free to move
4. the most important gaseous component is X2, as is the case in most 

oxides, halides and sulphides.
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Example 8.2 

What would the Zn pressure dependence of conductivity be if the zinc 
interstials in ZnO were doubly ionized? 

The chemical reaction describing the formation of doubly ionized 
interstitials is 

ZnO 2' I Zn(g) ----> Znj + 2e 

If the analysis is now followed through in the same way as above the result is 

1/3 
a <X PZn 

8.6 Brouwer diagrams 

Many of the important semiconducting materials show composition ranges 
which take them from cation deficient to cation excess. At the same time the 
semiconductivity often changes from p-type to n-type or vice versa. From a 
practical point of view, it would be helpful to be able see how the 
conductivity will change with composition at a glance without always 
having to return to chemical equilibrium equations. Brouwer diagrams allow 
one to do just that. The best way to understand the information contained in 
these diagrams is to construct an example. In the rest of this section a 
Brouwer diagram for a non-stoichiometric compound with a composition 
close to MXwill be constructed. In this example it will be assumed that both 
M and X are divalent. 

8.6.1 Initial assumptions 

The first step is to set out the assumptions concerning the defects that are 
likely to occur, using physical and chemical intuition about the system in 
mind. (Remember that the diagram is to be useful in the laboratory.) In this 
example, we shall presume that: 

1. only vacancies are important in ",MX, and interstitial defects can be 
ignored 

2. ",MX can have an existence range which spans both sides of the 
stoichiometric composition, MXl.oO 

3. the electrons or holes in the non-stoichiometric compound are not 
trapped at the vacancies, but are free to move 

4. the most important gaseous component is X 2 , as is the case in most 
oxides, halides and sulphides. 
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These assumptions mean that there are only four defects to consider, 
electrons, e', holes, IT , vacancies on metal sites, Vj  ̂ and vacancies on anion 
sites, Υ χ.

8.6.2 Defect equilibria

It is now necessary to set up chemical equations to describe the equilibrium 
between these defects. These are:

1. the creation and elimination of Schottky defects. These defects can form 
at the crystal surface or vanish by diffusing to the surface. The equation 
describing this is

2. the creation and elimination of electronic defects. Electrons can 
combine with holes to be eliminated from the crystal thus

3. the composition can change by interaction with the gas phase to 
produce cation vacancies

or anion vacancies

4. the electrical neutrality must be maintained

(8.3)

This latter is the key equation.

8.6.3 Equilibrium constants

(8.4)

The equilibrium constants of these equations are then written down

(8.5)
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These assumptions mean that there are only four defects to consider, 
electrons, e', holes, h" , vacancies on metal sites, V~ and vacancies on anion 
. v2' sItes, x. 

8.6.2 Defect equilibria 

It is now necessary to set up chemical equations to describe the equilibrium 
between these defects. These are: 

1. the creation and elimination of Schottky defects. These defects can form 
at the crystal surface or vanish by diffusing to the surface. The equation 
describing this is 

zero --t V~ + V~ 

2. the creation and elimination of electronic defects. Electrons can 
combine with holes to be eliminated from the crystal thus 

zero --t e' + h' 

3. the composItIon can change by interaction with the gas phase to 
produce cation vacancies 

or anion vacancies 

1 MX 2/' 
2 X2 --t Xx + V M + 2h 

MX 1 2" I 
Xx --t2X2+Vx +2e 

4. the electrical neutrality must be maintained 

2 [V~] + [e'l -> 2 [V~] + [h"] 

This latter is the key equation. 

8.6.3 Equilibrium constants 

The equilibrium constants of these equations are then written down 

Ks = [V~] [V~] 

Ke = [e'l [h"] 

(8.3) 

(8.4) 

(8.5) 
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(8.6)

(8.7)

K4 is actually redundant, as

but it simplifies things to retain it.
There is now (almost) enough information available to draw the diagram.

8.6.4 High X2 partial pressures

Under these conditions it is unlikely that there will be a high population of 
anion vacancies and so an assumption is made that cation vacancies 
predominate. The discussion earlier in this chapter indicates that cation 
vacancies are usually paired with positive holes and so the it is assumed that 
there are more holes than electrons present. The appropriate form of 
equation (8.3) for the high pressure region is

We can now substitute into equations (8.4)-(8.7) to obtain relationships 
between the partial pressure of X2 and the defect concentrations present in 
the material. Starting with equation (8 .6)

(8 .8)

so that

Substituting from equation (8 .8)

(8.9)

From equation (8.5)
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K4 is actually redundant, as 

K3 = [V~] [hO]2 
pl/7 

X2 

[ 2°] [ ']2 1/2 K4 = Vx e PX2 

K4 = KsK; 
K3 

but it simplifies things to retain it. 

(8.6) 

(8.7) 

There is now (almost) enough information available to draw the diagram. 

8.6.4 High X2 partial pressures 

Under these conditions it is unlikely that there will be a high population of 
anion vacancies and so an assumption is made that cation vacancies 
predominate. The discussion earlier in this chapter indicates that cation 
vacancies are usually paired with positive holes and so the it is assumed that 
there are more holes than electrons present. The appropriate form of 
equation (8.3) for the high pressure region is 

2[V~] = [hO] (8.8) 

We can now substitute into equations (8.4)-(8.7) to obtain relationships 
between the partial pressure of X2 and the defect concentrations present in 
the material. Starting with equation (8.6) 

so that 

[V~] (2[V~])2 = K3P~22 

4 [V2/]3- K 1/2 
M - 3PX2 

8 [V~] 3 = 2K3P~22 

[V2/]=~(2K)I/3 1/6 
M 2 3 PX2 

Substituting from equation (8.8) 

[hO] = (2K3)1/3p~6 

From equation (8.5) 

(8.9) 
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l . e .

From equation (8.4)

The equilibrium constant Ką is not needed here.
To display these results graphically take logarithms of each side of the 

four equations describing the defect populations. For example, with 
equation (8.9)

A plot of log [h*] against log ρχ2 is a straight line of slope 1/6. Linear 
relationships between log [defect] and log ρχ2 result for all four equations, as 
shown in Figure 8.9.

Figure 8.9 contains all of the information given in the equations written 
out above but in an accessible way. The key defect equation

is displayed prominently at the top of the diagram to remind us of the main 
assumption. Most obviously, it is possible to see that there are only four 
defect types present as there are only four defect lines shown. A glance at the 
diagram shows that holes predominate so that the material is a p-type 
semiconductor. In addition, the conductivity will increase as the 1/6 power 
of the partial pressure of the gaseous X2 component increases. The number 
of metal vacancies (and oxygen excess) will increase as the partial pressure of 
the gaseous X2 component increases. This diagram could be used for the 
case of Νΐ1_* 0  described above.

(8.9)
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Ke 
[e'l =lh1 

I.e, 

Ke 
[e'l = (2K3)1/3p~26 

From equation (8.4) 

Ks 
[vrJ = [vtJ 

[vrJ = 2Ks(2K3)-1/3p~~/6 

The equilibrium constant K4 is not needed here. 
To display these results graphically take logarithms of each side of the 

four equations describing the defect populations. For example, with 
equation (8.9) 

[h'J = (2K3)1/3p~6 (8.9) 

[ 'J 1 1 log h = 310g(2K3) + 610gpx2 

A plot of log [he] against log PX 2 is a straight line of slope 1/6. Linear 
relationships between log [defect] and logPx 2 result for all four equations, as 
shown in Figure 8.9. 

Figure 8.9 contains all of the information given in the equations written 
out above but in an accessible way. The key defect equation 

2[vtJ = [h'J 
is displayed prominently at the top of the diagram to remind us of the main 
assumption. Most obviously, it is possible to see that there are only four 
defect types present as there are only four defect lines shown. A glance at the 
diagram shows that holes predominate so that the material is a p-type 
semiconductor. In addition, the conductivity will increase as the 1/6 power 
of the partial pressure of the gaseous X 2 component increases. The number 
of metal vacancies (and oxygen excess) will increase as the partial pressure of 
the gaseous X 2 component increases. This diagram could be used for the 
case of Ni1-xO described above. 
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Figure 8.9 Partial Brouwer diagram for a phase ~M X  in the region where the partial pressure 
of the gaseous component X2 is high. The logarithm of the defect concentrations, log[he], 
b g r ø ,  log [Ух ] and log[e'] are plotted along the у-axis, versus the logarithm of the partial 
pressure of X2 along the x-axis. The slopes of each of the lines is ±1/6, and the material will be a 
p-type semiconductor over the whole region covered.

8.6.5 Medium X2 partial pressures

As the partial pressure of X2 decreases, the number of cation vacancies and 
holes will decrease as the composition of ~M X  approaches MXi 000. 
Stoichiometric crystals tend to be insulators, and hence it is more 
appropriate to suppose that the formation of vacancies on cation and 
anion sites is more important than the creation of electrons and holes. It is 
now more reasonable to approximate the key equation (8.3)

(8.3)

by the new key relation

This equation is now substituted into equations (8.4)-(8.7) to obtain a new 
set of equations for the defect concentrations
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8.6.5 Medium X2 partial pressures 

As the partial pressure of X2 decreases, the number of cation vacancies and 
holes will decrease as the composition of ~MX approaches MXl.ooo, 

Stoichiometric crystals tend to be insulators, and hence it is more 
appropriate to suppose that the formation of vacancies on cation and 
anion sites is more important than the creation of electrons and holes. It is 
now more reasonable to approximate the key equation (8.3) 

2 [V~] + [e'l --+ 2 [Vr] + [h·] (8.3) 

by the new key relation 

2[V~] = 2 [Vr] 

This equation is now substituted into equations (8.4)-(8.7) to obtain a new 
set of equations for the defect concentrations 
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We can plot these on the log concentration versus log ρ χ 2 graph, as before, 
to produce the result shown in Figure 8.10.

Figure 8.10 Partial Brouwer diagram for a phase ~A7X, extended to lower partial pressures 
than applicable in Figure 8.10. The fraction besides the lines represents the slope of the lines. As 
the numbers of cation and anion vacancies is equal in the region to the left of the dotted line, the 
material in this part of the diagram has a composition M Xx 0.
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[v~] = K~2 

[v~] = Ky2 

[he] = (~) 1/2 
K1/2 pIj4 

S 2 

K3 -1/4 ( )

-1/2 

[e'l = Ke K¥2 PX2 

We can plot these on the log concentration versus log PX2 graph, as before, 

to produce the result shown in Figure 8.10. 

Figure 8.10 Partial Brouwer diagram for a phase ~MX, extended to lower partial pressures 
than applicable in Figure 8.10. The fraction besides the lines represents the slope of the lines. As 
the numbers of cation and anion vacancies is equal in the region to the left of the dotted line, the 
material in this part of the diagram has a composition MXl.o, 
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What does the diagram show? In the new region on Figure 8.10 there are 
only three defect lines because the cation and anion vacancy equations 
overlap. The number of holes and electrons will be well below the number of 
cation and anion vacancies for most of this region. The material will be a 
stoichiometric insulator with a composition Л/Х10o containing Schottky 
defects. At the extremes of the range the material becomes p-type with a 
pressure dependence of + 1/4 or «-type with a pressure dependence of —1/4.

8.6.6 Low X2 partial pressures

If we keep decreasing the partial pressure of X2, anion vacancies would be 
expected to dominate. The defect equation (8.3)

can now be approximated by the new key equation

This is substituted into equations (8.4)-(8.7) to derive the new defect con­
centrations.

These equations can now be plotted as straight lines if we take logarithms of 
both sides. The result is shown in Figure 8.11, plotted as region I.

8.6.7 The complete diagram

In Figure 8.11, the whole Brouwer diagram for the system is shown. There 
are three regions corresponding to low, medium and high partial pressures 
of X2 gas. The electron concentration starts high in the и-type region I and 
falls progressively, while the hole concentration starts low and ends high in
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only three defect lines because the cation and anion vacancy equations 
overlap. The number of holes and electrons will be well below the number of 
cation and anion vacancies for most of this region. The material will be a 
stoichiometric insulator with a composition MXI.oO containing Schottky 
defects. At the extremes of the range the material becomes p-type with a 
pressure dependence of + 1/4 or n-type with a pressure dependence of -1 /4. 

8.6.6 Low X2 partial pressures 

If we keep decreasing the partial pressure of X 2 , anion vacancies would be 
expected to dominate. The defect equation (8.3) 

2 [Y~] + [e'l ----t 2 [Y~] + [he] 

can now be approximated by the new key equation 

[e'l = 2[Y~] 

This is substituted into equations (8.4)-(8.7) to derive the new defect con­
centrations. 

[y 20] _ I ( 2KsK2) 1/3 X _ - __ e -1 /6 
2 K3 PX2 

__ e ~ -1/6 [e'l = ( 2KsK2) 1/3 
K3 PX2 

[he] = [ K2 ]1/6 
(2KIKV K3) 1/3 PX2 

M = S I~ [y 2/] [ 2K ] 
(2KsKJe/ K3) 1/3 PX2 

These equations can now be plotted as straight lines if we take logarithms of 
both sides. The result is shown in Figure 8.11, plotted as region I. 

8.6.7 The complete diagram 

In Figure 8.11, the whole Brouwer diagram for the system is shown. There 
are three regions corresponding to low, medium and high partial pressures 
of X2 gas. The electron concentration starts high in the n-type region I and 
falls progressively, while the hole concentration starts low and ends high in 
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Figure 8.11 Complete Brouwer diagram for a phase ~M X  for conditions of equilibrium 
specified by the electroneutrality equations shown in the three regions I, II and III.

the p-type region III. The way in which the other defects change as the 
partial pressure increases is easy to see. This variation gives a number of 
clues about the way in which the properties of the phase change as the 
partial pressure of X2 and the composition alter across the diagram. On the 
left, for example, there is high concentration of anion vacancies and so easy 
diffusion of anions is to be expected. In region III, we have a high 
concentration of cation vacancies which would be expected to enhance 
cation diffusion.

8.6.8 Further considerations

The form of this diagram can easily be modified to take into account other 
defect types and equilibria. For example, a treatment of AgBr would include 
Frenkel defect formation and not Schottky defects. It would also be easy to 
smooth out the abrupt changes between the three regions I, II and III by 
including an intermediate key electroneutrality equation. Between regions II
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Figure 8.11 Complete Brouwer diagram for a phase ~MX for conditions of equilibrium 
specified by the electroneutrality equations shown in the three regions I, II and III. 
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partial pressure increases is easy to see. This variation gives a number of 
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partial pressure of X2 and the composition alter across the diagram. On the 
left, for example, there is high concentration of anion vacancies and so easy 
diffusion of anions is to be expected. In region III, we have a high 
concentration of cation vacancies which would be expected to enhance 
cation diffusion. 

8.6.8 Further considerations 

The form of this diagram can easily be modified to take into account other 
defect types and equilibria. For example, a treatment of AgBr would include 
Frenkel defect formation and not Schottky defects. It would also be easy to 
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and III this could be 

Similarly, between regions I and II one could use

These variations will be seen in Brouwer diagrams for many systems of 
importance, especially those which refer to semiconducting materials.

8.7 Case study: an experimentally determined Brouwer diagram; CdTe

The material cadmium telluride, CdTe, is an important semiconductor. It 
crystallizes in the sphalerite (also called the zinc blende) structure. It has a 
(temperature-dependent) composition range from CdTeļ 0ooo 1° approxi­
mately CdTei.0204· It is an excellent photoconductor and the resistance of 
the material shows a large decrease when the compound is illuminated. This 
leads to its use in photodiodes and other light-detecting systems.

In order to prepare device quality crystals, it is important to control the 
defect population precisely. The Brouwer diagram, shown in Figure 8.13, 
can help in this. On the vertical axis, the concentrations per cubic centimetre 
of the most important defects are shown. On the pressure axis (KrpCd) is 
shown. This relates to the important reaction

by which Cd atoms in the vapour enter the crystal as single-charged 
interstitials and liberate an electron to the lattice. The equilibrium constant 
for this reaction, Kr, is given by

What information does the figure contain? First of all we can see that there 
are seven defects considered to be of importance, holes, h\ electrons, e', 
neutral cadmium interstitials, Cdİ5 cadmium interstitials which have an 
effective charge of +1, Cdf, and three sorts of vacancies on cadmium sites, 
double charged, Vçd, singly charged, Y cd, and neutral vacancies, Vcd.

Consider the central part of the diagram, region II, first. The basic point 
defect equilibria that holds must be a Frenkel type on the Cd sub-lattice, 
because of the presence of cadmium interstitials and vacancies. Stoichio­
metric CdTe10o is formed when the number of Cd interstitials equals the 
number of Cd vacancies, that is, when
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and III this could be 

2 [V~] = 2 [V~] + [he] 

Similarly, between regions I and II one could use 

2 [V~] + [e'l = [V~] 

These variations will be seen in Brouwer diagrams for many systems of 
importance, especially those which refer to semiconducting materials. 

8.7 Case study: an experimentally determined Brouwer diagram; CdTe 

The material cadmium telluride, CdTe, is an important semiconductor. It 
crystallizes in the sphalerite (also called the zinc blende) structure. It has a 
(temperature-dependent) composition range from CdTel.oOOO to approxi­
mately CdTel.o204. It is an excellent photoconductor and the resistance of 
the material shows a large decrease when the compound is illuminated. This 
leads to its use in photodiodes and other light-detecting systems. 

In order to prepare device quality crystals, it is important to control the 
defect population precisely. The Brouwer diagram, shown in Figure 8.13, 
can help in this. On the vertical axis, the concentrations per cubic centimetre 
of the most important defects are shown. On the pressure axis (KrPCd) is 
shown. This relates to the important reaction 

Cd(g) ~ Cd~ + e' 

by which Cd atoms in the vapour enter the crystal as single-charged 
interstitials and liberate an electron to the lattice. The equilibrium constant 
for this reaction, K" is given by 

[e'l [Cd~] 
Kr = .::........:-"----'-'-

Ped 

What information does the figure contain? First of all we can see that there 
are seven defects considered to be of importance, holes, he, electrons, e', 
neutral cadmium interstitials, Cd i , cadmium interstitials which have an 
effective charge of + I, Cdt, and three sorts of vacancies on cadmium sites, 
double charged, V~d' singly charged, V~d' and neutral vacancies, V Cd. 

Consider the central part of the diagram, region II, first. The basic point 
defect equilibria that holds must be a Frenkel type on the Cd sub-lattice, 
because of the presence of cadmium interstitials and vacancies. Stoichio­
metric CdTel.oo is formed when the number of Cd interstitials equals the 
number of Cd vacancies, that is, when 

[Cd~] = [V~d] 
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Figure 8.12 The sphalerite (zinc blende) structure. The structure contains 
alternating layers of Zn and S atoms. Each atom is surrounded tetrahedrally by 
atoms of the opposite type.

The sphalerite (zinc blende) structure

The sphalerite or zinc blende structure type of ZnS is similar to 
that of diamond but with alternating layers of Zn and S 
replacing C, as shown in Figure 8.12. The cubic cell has a lattice 
parameter of a = 0.541 nm. There are four Zn and four S atoms 
in a unit cell.

which only occurs at a precisely defined pressure of Cd vapour, marked S on 
the x-axis of the figure. If it is necessary to fabricate stoichiometric CdTe, 
this pressure must be used. In this material, the Frenkel defect equilibrium is 
much less important than the electronic defects present, so that region II is 
defined by the equation

A glance at the diagram shows that the number of Frenkel defects present is 
about 1012cm-3 compared to about 1016cm-3 for holes and electrons. The 
holes and electrons are present in equal numbers and the material will be an 
intrinsic semiconductor.

In region I, corresponding to low partial pressures of Cd, the charge 
neutrality condition was taken as
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The sphalerite (zinc blende) structure 

The sphalerite or zinc bien de structure type of ZnS is similar to 
that of diamond but with alternating layers of Zn and S 
replacing C, as shown in Figure 8.12. The cubic cell has a lattice 
parameter of a = 0.541 nm. There are four Zn and four S atoms 
in a unit cell. 

which only occurs at a precisely defined pressure of Cd vapour, marked S on 
the x-axis of the figure. If it is necessary to fabricate stoichiometric CdTe, 
this pressure must be used. In this material, the Frenkel defect equilibrium is 
much less important than the electronic defects present, so that region II is 
defined by the equation 

[e'l = [h'] 

A glance at the diagram shows that the number of Frenkel defects present is 
about 1012 cm- 3 compared to about 1016 cm- 3 for holes and electrons. The 
holes and electrons are present in equal numbers and the material will be an 
intrinsic semiconductor. 

In region I, corresponding to low partial pressures of Cd, the charge 
neutrality condition was taken as 

[h'] = [V~d] 
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Figure 8.13 Brouwer diagram for the semiconductor compound CdTe, derived from 
experimentally determined values for the defect concentrations and the partial pressure of Cd 
vapour.

and the lines for these two defects overlap here. There is a high population 
of holes and the material will be a p-type semiconductor. The equally high 
population of single-charged cadmium vacancies will make Cd diffusion 
through the Cd sub-lattice easy.

At high partial pressures of Cd, in region III, we have a charge neutrality 
equation

Electrons now dominate the electronic defect population and the compound 
will be an «-type semiconductor. The high number of Cd interstitials 
suggests that Cd diffusion by interstitial or interstitialcy mechanisms would
occur.
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Figure 8.13 Brouwer diagram for the semiconductor compound CdTe, derived from 
experimentally determined values for the defect concentrations and the partial pressure of Cd 
vapour. 

and the lines for these two defects overlap here. There is a high population 
of holes and the material will be a p-type semiconductor. The equally high 
population of single-charged cadmium vacancies will make Cd diffusion 
through the Cd sub-lattice easy. 

At high partial pressures of Cd, in region III, we have a charge neutrality 
equation 

[e'l = [Cd;] 

Electrons now dominate the electronic defect population and the compound 
will be an n-type semiconductor. The high number of Cd interstitials 
suggests that Cd diffusion by interstitial or interstitialcy mechanisms would 
occur. 
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The figure shows that as the partial pressure of Cd is swept from low to 
high values, the compound starts out by showing p-type semiconduction 
which falls as the pressure rises. The material passes through a point of 
minimum conductivity at the stoichiometric composition, after which it 
becomes an w-type semiconductor with rising conductivity as the pressure 
increases. Thus, the electronic properties needed for the device planned can 
be optimized during crystal growth.

The diagram could be complemented by a similar one for Те defects. 
Would these be important in practice? Well that will depend on the 
magnitude of the equilibrium constants for the defect formation reactions 
compared to those utilized in drawing Figure 8.13.

8.8 Supplementary reading

The thermodynamics of solid equilibrium with gas atmospheres is 
considered in many textbooks of thermodynamics, and often with useful 
examples in textbooks of metallurgy and geology. The thermodynamics of 
many metal-oxygen systems are especially well characterized in view of their 
industrial importance. Two very useful descriptions of gas-solid equilibria 
are:
T.B. Reed, Free energy offormation of binary compounds: an atlas of charts for high-temperature 

chemical calculations, M.I.T. (1971).
A. Muan, The effect of oxygen pressure on phase relations in oxide systems, Am. J. Sci. 256, 

171-207 (1958).

A very readable account of oxide equilibrium with self-test questions is 
given by:
G.A. Smiernow and L. Twidwell, J. Ed. Mod. Mater. Sci. Eng. 1, 223 (1979).

The thermodynamics of non-stoichiometric compounds and the relationship 
between thermodynamics and structures has been covered at an advanced 
but clear level by J.S. Anderson. See particularly:
J.S. Anderson, Bull. Soc. Chem. France 7, 2203 (1969).
J.S. Anderson, Problems of Non-stoichiometry, ed. A. Rabenau, North-Holland, Amsterdam 

(1970).

The use of the phase rule is clearly explained by:
E.G. Ehlers, The Interpretation of Geological Phase Diagrams, Freeman, San Francisco (1972).

In this respect, the original works of J. Willard Gibbs are also extremely 
interesting. They have been republished in two volumes by Dover 
Publications (1961).
Much experimental data concerning electronic conductivity in oxides and its 
variation with oxygen partial pressure will be found in:
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P. Kofstad, Non-stoichiometry, Diffusion and Electrical Conductivity in Binary Metal Oxides, 
Wiley-Interscience, New York (1972).

The original description of Brouwer diagrams is well worth consulting. It is:
G. Brouwer, Philips Res. Reports 9, 366 (1954).

More information and a large number of examples, can be found in the 
following books:
F.A. Kröger, The Chemistry of Imperfect Crystals, 2nd Edition, North-Holland, Amsterdam 

(1974).
W. van Gool, Principles of Defect Chemistry of Crystalline Solids, Academic Press, New York 

(1966).



9 Point defects and planar defects

In recent years, it has been discovered that non-stoichiometric compounds 
use a wide and fascinating range of defect types to achieve a composition 
range. Many of these defects are interesting in their own right, while others 
are important because they occur in commercially useful materials. This 
chapter provides a brief tour of some of the more important of these defects 
and the compounds that they are particularly associated with.

9.1 Point defects in nearly stoichiometric crystals

There are a number of materials which show small but measurable 
departures from stoichiometry. The best known of these compounds are 
probably the transition metal monoxides typified by NiO and CoO, but a 
large number of other materials also fall into this class, for example, ZnO, 
CdO, Cu20 , V2O3, VO2 and N b02. In some of these phases the composition 
range spans both sides of the stoichiometric composition; N b02, for 
instance, has a reported composition range from NbO 1.9975 to Nb0 2.oo3· In 
others, the materials have a composition range on only one side of the 
stoichiometric composition. In CoO, for example, the composition can 
range from approximately C00.99O up to C01.00O while in CdO the 
composition ranges from Cdļ 0000O to approximately Cdi.ooosO*

The experimental evidence available for these compounds suggests that 
the composition range is due to the presence of isolated point defects. Thus, 
NiO and CoO, both of which possess the NaCl structure when fully 
stoichiometric, are considered to accommodate composition changes by way 
of a population of vacancies on the normally occupied metal positions. In 
the case of CdO, which also has the NaCl structure, the metal excess is 
usually considered to be due to interstitial Cd atoms or ions.

9.2 Point defect clusters

Even when the composition range of a non-stoichiometric phase remains 
small, more interesting defect structures can occur. In systems which contain 
point defect clusters isolated point defects have been replaced by aggregates
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of point defects with a well-defined structure. Two examples have been 
chosen to illustrate this behaviour, ~FeO and U 02 + JC.

9.2.1 Iron oxide, ~FeO

Probably the best documented example of a material containing point defect 
clusters is ~FeO, wüstite. This oxide exists over a composition range from 
Fe0.89O to Fe0.96O at 1300 K which broadens with increasing temperature. 
The original view of ~FeO suggested that the compound had an NaCl-type 
structure in which the oxygen array was perfect and the non-stoichiometric 
composition was due to vacancies among the iron atoms, as discussed in 
chapter 4. However, careful structural studies have shown that isolated iron 
vacancies are not present at all, but instead small groups of atoms and 
vacancies aggregate into elements of new structure which are distributed 
throughout the wüstite matrix. Some of the cluster arrangements so far 
characterized are shown in Figure 9.1.

It is of great interest to discover that these clusters bear a strong resemb­
lance to fragments of the structure of Fe30 4, the next higher oxide to FeO. 
Structurally, therefore, the oxygen excess FeO is a partly ordered assembly 
of fragments of the Fe30 4 structure distributed throughout the NaCl 
structure expected of an oxide of formula FeO. The fact that these clusters 
are more stable than equivalent point defect populations has been confirmed 
by calculation of lattice energies.

9.2.2 Uranium oxide, UO2+X

Uranium oxides are of importance in the nuclear industry, and for this 
reason a lot of effort has been put into understanding their non-stoi­
chiometric behaviour. The dioxide, ~ U 0 2, crystallizes in the fluorite 
structure type with an ideal composition MX2. For a good many years it 
has been known that in these compounds it is the non-metal lattice which is 
the seat of the non-stoichiometric variation and in the MX2 + x phases 
interstitial anions are present.

One of the earliest cluster geometries to be understood is that of the so- 
called Willis 2:2:2 cluster in the fluorite structure oxide U 02+x. The 
structure of this cluster is shown in Figure 9.2. The cluster is made up from 
four oxygen cubes of the type shown in Figure 9.2(a) and (b) joined in the 
normal fluorite arrangement, shown in Figure 9.2(c) and (d). The cluster, 
shown in Figure 9.2(c) is formed by placing oxygen interstitials into the 
centre of the cubes at the top and bottom of the cluster, shown darker in 
Figure 9.2(d). Two oxygen ions which are normally at the junctions of three 
cubes, move into interstitial sites in the middle of the two central cubes, 
shown lighter in Figure 9.2(d). This creates two oxygen vacancies at these
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Figure 9.1 The proposed structure of clusters which are believed to occur in F e ^ O . The open 
circles represent Fe vacancies, the filled triangles show Fe in a tetrahedral coordination and the 
filled circles show Fe in octahedral environments. Oxygen atoms have been omitted for clarity. 
The numbers below each diagram represent the ratios o f Fe vacancies to Fe in tetrahedral 
positions.

corner junctions. The cluster name comes from the fact that there are two 
normal interstitials (called (111) interstitials), two created by moving normal 
anions (called (110) interstitials) and two vacancies.
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Figure 9.2 The structure of the 2:2:2 cluster in U02 + v. (a) and (b) The O2- cube which is part 
of the fluorite structure of U02+x. (c) The cluster, made up of four cubes, (d) Two interstitial 
oxygen ions centre the top and bottom cubes (darker shading) and interstitial oxygen ions from 
the corners, where three cubes meet, centre the middle two cubes (lighter shading).

9.3 Microdomains

As was pointed out for ~FeO, point defect clusters can sometimes be 
recognized as fragments of another structure. At times, these fragments 
become large enough to be considered as a microdomain of the other 
structure that is coherently intergrown within the structure of the non- 
stoichiometric phase. In such a situation at least one of the sub-lattices of 
the phase must be continuous across both the microdomains and the parent 
lattice, and no changes in crystal structure should occur. This situation is 
different from that in which a small precipitate is formed in a structure. In 
this case, the precipitate will have a different crystal structure to the parent

(a)

(c)

(b)

(d)
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matrix and quite clear crystallographic boundaries between the two phases 
will be found.

A good example of microdomain formation is provided by non- 
stoichiometric T ii+xS2. This material can be regarded as a derivative of 
the stoichiometric TiS2 structure shown in chapter 4. It consists of strongly 
bonded TiS2 sheets which are held together by rather weak forces. It is easy 
to synthesize non-stoichiometric materials with an overall composition 
Тії +*S2. In these phases, the additional Ті atoms lie between the TiS2 layers. 
It is interesting to discover that these extra atoms do not sit at random, but 
form microdomains with well-defined geometries. A model of the 
microdomain configuration found at the composition Tiļ.26S2 is shown in 
Figure 9.3. In this phase, the microdomains can be regarded as tiny pieces of 
the TiS structure coherently embedded in the TiS2 phase. As the amount of 
extra Ті goes up, the microdomains pack more closely together and change 
their configuration slightly.

This is rather typical of microdomain microstructures. The microdomains 
themselves often have a fixed composition, as does that of the matrix which 
contains them. The apparent non-stoichiometry of the system is caused by a

Figure 9.3 Some microdomain structures in Tit 2бб2- The microdomains are made up of 
ordered patches of Ті atoms (filled circles) lying between hexagonal layers of S atoms (open 
circles).
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variation of the relative proportions of the two sorts of structure. Because 
these are both ordered variants of an identical parent structure, complete 
transformation from one structure to the other is possible, at least in theory.

9.4 Point defect ordering and assimilation

Defect clusters and microdomains can be regarded as precursors to 
structures in which all of the defects are completely ordered. In this case 
the defects have been assimilated into the structure and are, strictly 
speaking, no longer ‘defects’ but a legitimate part of the structure. One of 
the best known systems showing this type of behaviour is the perovskite 
phase, SrFe02 5. At high temperatures, this material has a cubic perovskite 
structure. The ideal composition for a perovskite structure would be SrFe03, 
and the oxygen deficit is due to disordered oxygen vacancies. At 
temperatures below 900 °С these oxygen vacancies order completely in a 
specific way. The structure formed is an example of the brownmillerite type, 
shown in Figure 9.4. In this structure (named after the mineral 
brownmillerite, Са2ҒеАЮ5), half of the Fe cations are in octahedral sites 
and half in tetrahedral sites. In this ordered state, it is better to give the 
phase the formula Sr2Fe20 5 to emphasize the important structural change 
that has occurred. The tetrahedral sites are created by ordering the ‘oxygen 
vacancies’ in rows, as shown in Figure 9.4. This is followed by a slight 
displacement of the cations nearest to the vacancies so as to move them into 
the centre of the terahedra formed. The structure is now made up of sheets

Figure 9.4 An idealized representation of the tetrahedral and octahedral framework of the 
brownmillerite structure, (a) The structure can be derived from the octahedral framework in the 
perovskite structure by the removal of oxygen ions, shown as filled circles. This generates the 
tetrahedra shown in brownmillerite (b). The large cations are omitted in both figures.

(a) (b)
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Figure 9.5 The idealized structures of (a) Sr2Mn20 5 and Ca2Co20 5, and (b) one of the forms 
of Ca2Mn20 5. The structures are made up of corner-linked square pyramids formed by the 
ordered omission of oxygen atoms from the octahedra, making up the framework of the 
idealized perovskite structure. The large cations are omitted in both figures.

of perovskite structure interleaved with slabs of corner-linked tetrahedra 
reminiscent of many silicate structures.

As would be expected from the earlier chapters of this book, structures 
with high oxygen vacancy concentrations should show high oxygen ion 
diffusion. This is important in selective-oxidation catalysts. These materials 
are used to oxidize hydrocarbons at specific sites to produce precise reaction 
products. An important requisite of these compounds is that when necessary 
they take up oxygen from the gas phase rapidly and the catalytic reaction 
can be sustained at other times by rapid diffusion of oxide ions from the 
crystal bulk.

There are a number of non-stoichiometric, selective-oxidation catalysts 
which contain high concentrations of ordered oxygen vacancies. To 
illustrate the types of ordering encountered the three phases Ca2Mn20 5, 
Sr2Mn20 5 and Ca2Co20 5 are shown in Figure 9.5. They all have the 
brownmillerite composition and are derived from a parent perovskite 
structure, ABOз, but use a different way of ordering the oxygen vacancies. 
In fact, the oxygen vacancies are ordered so as to generate linked square 
pyramids, as shown in the figure.

The examples given above reveal one important feature involved in the 
incorporation of the oxygen vacancies into the structure. At least some of 
the cations involved must be able to take up a variety of different 
coordination polyhedra. We will see in the following chapter that this is an 
important feature of the copper containing high temperature super­
conductors.

9.5 Interpolation

Interpolation in non-stoichiometric compounds was introduced in chapter 
4. The tungsten bronzes, which have a formula MxW 03, are interesting

(a) (b)
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examples of these phases because they show metallic properties and vivid 
colours. In chapter 4, the cubic perovskite tungsten bronzes typified by 
LixW 03 were described. In addition, two other tungsten bronze types exist, 
shown in Figure 9.6. These are both made up of corner-linked W 06 

octahedra, arranged to form pentagonal and square tunnels in the tetragonal 
tungsten bronze structure, or hexagonal tunnels in the hexagonal tungsten 
bronze structure. Variable filling of the tunnels by metal atoms gives rise to 
wide stoichiometry ranges. In the sodium tetragonal tungsten bronze 
phases, both the pentagonal and square tunnels are partly filled. (The bronze 
NaxW 03 has the tetragonal tungsten bronze structure for values of x 
between 0.26 and 0.38. Outside this range, № *\Ү03 adopts the cubic 
perovskite tungsten bronze structure.)

However, in many tetragonal tungsten bronzes, typified by PbxW 03 and 
SnxW 03, in which X can take values from approximately 0.16 to 0.26, only 
the pentagonal tunnels are occupied. In the hexagonal tungsten bronzes, it is

Cal

Cb)

Figure 9.6 (a) The tetragonal tungsten bronze structure and (b) the hexagonal tungsten bronze 
structure. The shaded squares represent W 0 6 octahedra, which are linked to form pentagonal, 
square and hexagonal tunnels. These are able to contain a variable population of metal atoms, 
shown as open circles.
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the hexagonal tunnels which are partly occupied. The composition of the 
hexagonal tungsten bronze phase KxW 03, extends from x = 0.19 to 0.33 in 
this way.

The hollandite structure is another arrangement containing rather wide 
tunnels, as can be seen from Figure 9.7. Ba2Mn8Oļ6 is a typical example of 
these phases. The tunnels can be filled with large metal atoms in variable 
proportions to create non-stoichiometric hollandites. Hollandites formed 
from the parent compound Ti02, have received considerable attention in 
recent years for possible use in the storage of radioactive materials. These 
radioactive wastes must be turned into a stable solid and then stored for 
extended periods. The reason for choosing Ti02 is that it is a naturally 
occurring mineral which has shown itself to be stable over geological time 
scales. Mixtures of T i02, when heated with large radioactive metal ions, 
form hollandites in which the radioactive cations are trapped in the tunnels. 
The hollandite matrix is an inert shell which would then need to be 
encapsulated before storage. Although this technology has not yet become 
commercially viable the idea of using tunnel compounds for the isolation of 
dangerous ions is still being actively studied experimentally.

9.6 Planar faults and boundaries

Instead of using defects confined to one or a few atom sites, some systems 
utilize planar faults or defects (sometimes called extended defects) to change 
the composition. A planar fault in a crystal is created by schematically 
cutting the crystal into two and rejoining the pieces. The three ways in which 
this can occur are shown in Figure 9.8. In Figure 9.8(a) the composition of

Figure 9.7 The hollandite structure. The framework is composed of continuous chains of 
metal-oxygen octahedra, shown as shaded diamonds, which are linked so as to form square 
tunnels. A variable population of cations, shown as filled or open circles, can occupy these 
tunnels to give the materials significant composition ranges.
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the crystal has not changed as the fault has only slipped one part of the 
crystal past the other. These are called anti-phase boundaries. In Figure 
9.8(b) a plane of atoms has been removed at the fault. In this case the 
composition of the crystal has changed slightly. These boundaries are called 
crystallographic shear planes. The fault shown in Figure 9.8(c) is a mirror 
plane, and is called a twin plane. Some twin planes do not change the 
composition of the crystal while at others atoms are lost and a composition 
change can result. If faults which alter the composition are introduced in 
variable numbers and distributed at random, we will generate a crystal with 
a variable composition and a non-stoichiometric phase is produced. New 
coordination polyhedra are often created in the vicinity of the fault that are

(a)

(b)

Figure 9.8 Planar boundaries in crystals, (a) An anti-phase boundary, (b) A crystallographic 
shear plane, (c) A twin plane.

(c)
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not present in the parent structure. These may provide sites for novel 
chemical reactions or introduce changes in the physical properties of 
significance compared to those of the parent structure. 

If planar boundaries are introduced into a crystal in an ordered way a new 
and longer unit cell will result. Crystallographically, a new phase will have 
formed. Strictly speaking the faults are no longer defects and in this case are 
simply referred to as boundaries. If phases with different boundary spacings 
are synthesized, a homologous series of new phases will be generated. Each 
phase will be characterized by the separation between the ordered planar 
boundaries. In addition, each phase will have a fixed composition, although 
the formula may involve large integers. When the boundaries introduce a 
composition change, like those in Figure 9.8(b), each member of the 
homologous series will differ in composition from its neighbours by a small 
but definite amount. 

9.7 Crystallographic shear phases 

The phenomenon of crystallographic shear ( CS) seems to be important 
mainly in the transition metal oxides WO3, MoO3 and TiO2, and provides a 
mechanism for altering the anion to cation ratio in these materials without 
either changing the shape of the anion coordination polyhedra of the metal 
atoms or introducing point defects. 

9.7.1 Crystallographic shear in tungsten oxides 

The simplest compounds that we can use to illustrate this process occur in 
the tungsten-oxygen system. If tungsten trioxide is very slightly reduced (to 
approximately W02_998), random {102} CS planes form in the crystal in 
order to accommodate the oxygen loss, as can be seen in Figure 9.9. The 
structure of the parent oxide, W03, is shown in Figure 9.l0(a). To form a 
{102} CS plane, imagine that a sheet of oxygen atoms lying on a (210) plane 
has been removed from the crystal and the two sides rejoined. The structure 
of the resulting {102} CS plane is shown in Figure 9.l0(b). It consists of 
blocks of four-edge-shared octahedra in a normal WO3-like matrix. One 
oxygen ion is lost per block of four edge-shared octahedra. 

Although slight reduction produces disordered {102} CS planes, as the 
composition approaches W02_95 these become ordered to form a homo-
logous series. The composition of any phase is given by W n03n- i, where n 
represents the number of octahedra separating the CS planes, measured 
along the direction shown by an arrow in Figure 9. l 0(b ). These oxides are 
also known as crystallographic shear phases. The lower limit of the {102} CS 
series is approximately W 180 53 . 
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Figure 9.9 An electron micrograph showing random {102} CS planes in a crystal of slightly 
reduced W 0 3.

If reduction continues something remarkable happens. When the com­
position falls to about WO2.94, {102} CS planes are replaced by {103} CS 
planes. The structure of these CS planes consists of blocks of six edge-shared 
octahedra, as shown in Figure 9.10(c). In a {103} CS plane, two oxygen ions 
are lost per block of six edge-shared octahedra. These {103} CS planes are 
usually fairly well ordered and give rise to a homologous series of oxides with 
a general formula of W„03„ _ 2 over a composition range of approximately 
WO2.93 to W 02.87, that is from W25O73 to Wļ60 46. An electron micrograph 
of a well-ordered {103} CS structure is shown in Figure 9.11.

Why does the change of CS plane occur? In fact it is a response to 
minimize lattice strain. The cations in the blocks of edge-shared octahedra 
within the CS planes repel each other and so set up strain in the lattice. The 
total lattice strain depends on the number of CS planes present. When the 
composition of a reduced crystal reaches about WO2.92 the {102} CS planes 
are very close and the lattice strain becomes too great for further oxygen loss 
to take place. However, if the CS plane changes to {103} the same degree of 
reduction is achieved with half the number of CS planes and so the total 
lattice strain falls. This is because each block of six edge-shared octahedra
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Figure 9.10 The idealized structures of (a) W 0 3; (b) {102} CS planes; and (c) {103} CS planes. 
The shaded squares represent W 0 6 octahedra which are linked by corner-sharing in W 0 3 and 
by edge-sharing within the CS planes. The arrows in (b) and (c) show the direction in which 
octahedra are counted in order to measure the value of n in the formulae W „03„_i and W „03„ _ 2 
for the {102} and {103} series, respectively.

loses two oxygen ions compared to one for a block of four edge-shared 
octahedra. The decrease in lattice strain is so great that further reduction, 
now using {103} CS planes, can take place.

(a]

CO

CO
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Figure 9.11 Electron micrograph of a {103} CS phase. The dark dashes are the blocks of six 
edge-sharing octahedra which make up the CS planes. Some defects in the ordering of the CS 
plane are also apparent. The spacing of the CS planes reveal that the material has a composition 
close to W 180 52.

9.7.2 Crystallographic shear in titanium oxides

When the rutile form of titanium dioxide, shown in Figure 9.12, is reduced 
crystallographic shear planes are used to accommodate the oxygen loss. In 
fact, the CS behaviour of Τ ί02_* is remarkably similar to that encountered 
in W0 3 _x. For example, small degrees of reduction are accommodated on 
{132} CS planes. Initial reduction produces random CS planes, while 
increased reduction leads to a homologous series of CS phase with a series 
formula Ti„02„-i and n taking values from approximately 32 down to about 
16. The structure of this CS plane is shown in Figure 9.13(a). At greater 
degrees of reduction {132} CS planes change over to {121} CS planes, 
shown in Figure 9.13(b). The change-over occurs at compositions between 
approximately TiOļ93 and TiO190. The {121} series also has a formula 
Ti„02w_i, and the oxides run from Ti40 7 to Ti9Oi7.

In these figures, the anion packing has been emphasized rather than the 
metal coordination polyhedra to illustrate the distinction between the 
organization of a CS phase and the occurrence of point defects. In chapter 4 
the relationship between density and defect structure was discussed. 
Measurement of the density of reduced Ti02_x suggests that interstitial Ті 
ions form. Examination of the structures in Figure 9.13 shows that extra Ті 
ions are present in the crystal compared to Ti02 (because oxygen has been
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Figure 9.12 (a) The rutile structure of T i0 2 shown in a perspective view and (b) 
emphasizing the T i0 6 octahedra.

The rutile (T i0 2) structure

Titanium dioxide crystallizes in several forms. The most 
important is the rutile form. The unit cell is tetragonal with 
a = 0.4594 nm, c = 0.2958 nm. There are two formula units in a 
unit cell.

Other materials which crystallize in the rutile structure include 
Sn02, MgF2 and ZnF2. A number of oxides which show metallic 
or metal-insulator transitions, for example V 02, N b02, C r02, all 
have a slightly distorted form of the structure.

lost) and they occupy interstitial positions. Flowever, these ‘interstitials’ are 
integrated into the structure, with the consequence that interstitial ‘point 
defects’ are not present.

9.7.3 Impurities and CS in W 03 and Ti02

All the systems which rely on CS to accommodate oxygen loss reveal 
amazing degrees of complexity. This is especially apparent when ‘oxygen 
loss’ is achieved by reaction with other oxides. If, for example, W 03 is 
reacted with small amounts of Nb20 5, each pair of Nb ions which enter the 
W 03 lattice require a reduction in the amount of oxygen ions present by

(a) (b)
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(b)

Figure 9.13 The structures of (a) a {132} CS plane and (b) a {121} CS plane in T i0 2, drawn so 
as to emphasize the packing of anions, shown as open circles, and cations, shown as filled 
circles.

one. Oxygen vacancies do not form and the problem is solved by the use of 
CS planes. These are not on {102} or {103}, as one would expect from pure 
WO3, but form initially on {104} planes, which change to {001} planes as the 
Nb concentration increases. At compositions between these two regions 
spectacular wavy CS ‘planes’ are found, as shown in Figure 9.14. These do 
not form in the binary tungsten-oxygen system and reveal that complex 
factors are involved in determining the planes on which CS actually occurs.

This conclusion is substantiated by an example from the Ti02 system. 
One of the most remarkable CS systems is produced if Ti02 is reacted with 
Cr20 3. Small amounts of Cr20 3 cause {132} CS planes to form and larger

(a)
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Figure 9.14 An electron micrograph showing wave-like CS planes in W 0 3 reacted with 
Nb20 5.

amounts cause {121} CS planes to form, just as in the Т і02_д; itself. 
However, when the overall composition of the oxide lies between 
approximately (Ti,Cr)Oi 93 and (Ti,Cr)Oļ 90 a swinging CS region occurs. 
What this means is that the CS plane indices gradually transform from 
{132} towards {121} as the composition range is traversed. What is amazing, 
though, is that the CS planes in these intermediate compositions are always 
perfectly ordered. This should be stressed. Every composition prepared has 
an ordered arrangement of CS planes, with a definite spacing and CS 
orientation. Within this composition range, any composition at all seems to 
have a unique ordered CS structure.

9.8 Chemical twinning

9.8.1 Lead-bismuth sulphosalts

The use of chemical twinning (CT) to accommodate non-stoichiometry using 
twin planes can be illustrated by referring to the PbS-Bi2S3 system. Lead 
sulphide, PbS, often referred to by its mineral name, galena, has the rock salt 
structure. This is shown in projection down the [110] direction rather than 
the normal [100] direction of earlier diagrams, in Figure 9.15(a). From a 
crystal chemistry viewpoint, the problem is how to accommodate Bi2S3 into
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(C )

Figure 9.15 The structures of (a) PbS projected onto (110); (b) lillianite projected onto (001) 
and (c) heyrovskyite projected into (001). In each diagram the structures are shown as a packing 
of metal-sulphur octahedra; those at a higher level being shown in light relief and those at a 
lower level are darker. The structures (b) and (c) can be regarded as made up of slabs of PbS 
structure joined along twin planes, marked T, which contain metal atoms in trigonal prismatic 
coordination.

(a)

(b)
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galena. Two chemical problems arise, the Bi3+ will not fit into octahedra 
like the Pb and for each pair of Bi ions added to the galena three extra 
sulphur ions must be fitted in as well.

The solution is given by looking at the structures of the two phases, 
heyrovskyite, Pb24Bi8S36, and lillianite, Pbļ2Bi8S24, shown in Figure 9.15. 
The structures of these minerals, which belong to a group of mineral 
sulphosalts, are made up of twinned strips of PbS. This is rather clever. The 
twinning of the galena structure has achieved the two objects needed. First, 
the extra sulphur ions have been incorporated into the structure without the 
use of interstitials. Secondly, the twin planes introduce new and larger sites 
which do not exist in the original PbS structure. The Bi ions occupy these 
quite comfortably. The twinned nature of the phase heyrovskyite is clearly 
revealed in the electron micrograph shown in Figure 9.16.

Figure 9.15 shows that the width of the strips of PbS is different in the two 
structures lillianite and heyrovskyite. They are members of a homologous 
series. Other members of the series will form as the PbS regions take on 
other thicknesses. Many such phases have been found, particularly in 
mineral samples. Some of these phases use an interesting structural method 
of fitting intermediate compositions into the series. Alternating slabs of 
galena which are of different widths are used. It is certain that continued 
examination of these sulphides will produce other surprises.

Figure 9.16 An electron micrograph of the chemically twinned phase heyrovskyite, which is 
built up of twinned galena-like slabs, seven PbS octahedra in width. Careful measurement 
reveals that some slabs are wider than normal and contain eight octahedra.
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9.8.2 Molybdenum oxides and phosphate bronzes

Chemical twinning also occurs in a number of oxide systems. One rather 
elegant example is provided by the orthorhombic form of the oxide Мо4Оц. 
This oxide is made up of twinned slabs of a structure similar to that of W 03 
(but with a composition of M o03), linked by M0O4 tetrahedra as shown in 
Figure 9.17. There are six M o06 octahedra in each twinned slab and the 
structure is the n = 6 member of the homologous series Mon + 20 3n + 4, 
Mo80 22. The n = 1 phase, with seven octahedra in each slab, Mo7 8Wi 40 25 
is also known.

An extensive series of structures with the same basic twinning motif are 
formed when W 03 is reacted with the acidic P0 4 group. The formula of the 
materials is P40 8(W03)2„ and they are referred to as phosphate bronzes. The 
P0 4 groups replace the M o04 groups found in the molybdenum oxide and 
link W 03-like slabs to produce compounds which are structurally equivalent 
to the molybdenum oxides. However, it is interesting to discover that a 
wider range of n values occurs.

9.9 Planar intergrowths

In CS and CT phases, the structures on each side of the planar boundary are 
the same. It is quite easy to conceive of the situation where structures on

Figure 9.17 The idealized structure of Мо4Оц (orthorhombic) which is identical to the 
structure of the n = 6 member of the phosphate bronze phases P4 0 8(W0 3)2n· The diamond 
shapes represent M o0 6 or W 0 6 octahedra and the shaded triangles are M o0 4 or P 0 4 

tetrahedra.
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each side of the boundary are different, in which case we meet with the 
phenomenon of intergrowth. Here we will mention just two examples of 
intergrowth systems which show the amazing complexity of non-stoichio- 
metric compounds.

9.9.1 Perovskite-related structures in the Ca4Nb40 14-NaNb03 system

An extensive intergrowth series is found in the system bounded by the end 
members Ca4Nb4Oi4 and NaNb03. The structure of NaNb03 is the same as 
that of the mineral perovskite, CaTi03. In Ca4Nb4O ļ4 the structure is seen to 
be composed of slabs of perovskite type structure four octahedra in 
thickness, as shown in Figure 9.18. In this material, the slabs of perovskite 
structure are united by lamellae of composition CaO which have the rock 
salt structure and the oxides can be thought of as intergrowths of perovskite 
with rock salt. The principle phases which form in this system can be 
described by the series formula (Na,Ca)„Nb„03„ + 2, where n represents the 
number of metal-oxygen octahedra in each slab. Thus, Ca4Nb4O ļ4 is the 
n = 4 member of the series and N aNb03 is the n = oo member.

Although the structures just described are interesting, they do not even 
begin to approach the complexity that lies in the system. Between just the 
n = 4 and n = 5 phases several hundred other structures have been

Figure 9.18 Idealized structures of the AnBn0 3„ + 2 series o f layered perovskite related phases 
for values of n ranging from 1 to 5. The n = 4 structure is represented by Ca4Nb40 14. Infinite 
slabs make up the perovskite structure of N a N b 0 3.
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characterized. These are made up of different arrangements of n = 4 and 
n — 5 units. As an example, the composition Nao.5Ca4Nb4.5 0 15.5 is the 
formula of an oxide with one unit each of the n = 4 phase Ca4Nb40 14 and 
the n = 5 phase NaCa4Nb5Oi7. It could be given a series formula of n = 
4.5. The structure consists of alternating n = 4 and n = 5 lamellae in a 
perfectly ordered arrangement. Between compositions of the n = 4.5 phase, 
with an oxygen to metal ratio of MO 1.7222 and MO 1.735, about 50 structures 
have been characterized. This is remarkable!

Similar complexity exists between the other members of the series shown 
in Figure 9.18, so that over the whole of the phase region an enormous 
number of structures can be prepared. It is not surprising that research on 
these materials proved difficult!

9.9.2 Intergrowth tungsten bronzes

The intergrowth tungsten bronzes are intergrowths formed by the parent 
phases WO3 and the hexagonal tungsten bronze structure, which have been 
illustrated in Figures 9.6 and 9.10. The hexagonal tungsten bronze structure 
is formed when potassium is reacted with W 03, within the composition 
range from K0.19WO3 to K0.33WO3. What happens when the amount of 
potassium is less than the minimum needed to form the hexagonal tungsten 
bronze structure? In this case an intergrowth between the hexagonal 
tungsten bronze structure and W 03 is found. Usually the strips of hexagonal 
structure are two tunnels in width in the KxW 03 system, and this structure 
is illustrated in Figure 9.19(a). Similar intergrowth tungsten bronzes are also 
known in a number of other systems, including RbxW 03, Cs^WC^, 
BaxW 03, Sn^WCb and PbxW 03. In the non-alkali metal intergrowth 
bronzes, single tunnels seem to be preferred. This structure is shown in 
Figure 9.19(b) and an electron micrograph of the single tunnel Ba*W03 
intergrowth bronze is shown in Figure 9.20.

In all these phases, the separation of the strips of hexagonal tunnels 
increases as the concentration of the large interpolated atoms decreases, and 
a homologous series of compounds form. Because the hexagonal tungsten 
bronze parent structure is able to tolerate a considerable range of 
composition due to variable filling of the hexagonal tunnels, these 
intergrowth bronzes behave in the same way. In these phases, therefore, 
we have two ways of accommodating the change of composition, either by 
changing the relative numbers of hexagonal tunnels with respect to the W 03 
matrix, or else by varying the degree of filling of the hexagonal tunnels 
themselves.
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Figure 9.19 The idealized structures of two intergrowth tungsten bronze phases (a) containing 
double rows of hexagonal tunnels, and (b) containing single rows of tunnels. The tungsten 
trioxide matrix is shown as shaded squares and the hexagonal tunnels are shown empty, 
although in the known intergrowth tungsten bronzes the tunnels contain variable amounts of  
metal atoms.

9.10 Case study: the Nb20 5 block structures

A remarkable group of niobium oxides which have compositions close to 
Nb20 5 have been studied for many years. Early studies (complicated for the 
reader by the fact that the element is called Columbium in some reports) 
suggested that these materials had extensive non-stoichiometric composition 
ranges. It is convenient to start with the oxides which lie between the 
composition limits of Nb0 2.5 and NbO2 40. This was considered to consist of 
a single phase region due to point defects in the parent Nb20 5 structure. 
Similarly when Nb20 5 was reacted with other oxides extended composition

(a)
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Figure 9.20 An electron micrograph of the intergrowth tungsten bronze BaxW 0 3, showing 
single rows of hexagonal tunnels. The square arrays of black spots represent the tungsten ions in 
the WO3 portions of the structure. Some of the tunnels are seem to be empty or only partly filled 
with barium.

ranges were attributed to the resulting compounds. For example, it was 
believed that Nb20 5 could incorporate up to 50 mole % WO3 into its 
structure by using point defects. The composition range of the material was 
thought to extend from Nb0 2.5 to (Nb,W)02 7.

The breakthrough came when the structure of H-Nb20 5, which is the 
stable form of the oxide at high temperatures, was determined. It is shown in 
Figure 9.21(a). As can be seen, it is composed of columns of material with a 
\VO3-like structure formed by two intersecting sets of CS planes. These 
columns, in projection, look like rectangular blocks, and hence a common 
name for these materials is block structures. The blocks have two sizes 
(3 X 4) octahedra and (3 x 5) octahedra, neatly fitted together to form the 
structure.

CS planes are associated with oxygen loss and that is so in this case too, 
even though Nb20 5 is not a reduced oxide. The fact is that the Nb5+ ion 
strongly prefers to sit in an oxygen-coordination polyhedron which is 
octahedral. If the octahedra are linked by corners the composition would be 
N b03, which is not possible because the highest valence Nb can support is
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Figure 9.21 The idealized structures of some niobium oxide block structures, (a) H-Nb20 5; (b) 
N b120 29; and (c) W3N b 140 4 4 . The squares represent M 0 6 octahedra which are corner-sharing 
at the column centres and edge-sharing at the periphery of each column. The filled circles 
represent metal atoms in tetrahedral coordination at block junctions.

5 +. However, in Nb20 5 the Nb ions can retain octahedral coordination by 
the use of CS to eliminate some oxygen. The centres of the blocks have a 
composition NbOß and the block boundaries have a composition N b02.

When H-Nb20 5 is reduced, a series of new block structures form. The 
non-stoichiometric composition range is actually occupied by a series of 
different block structures. These have smaller block sizes, which tells us that 
the amount of the ‘N b03’ part is decreasing and the amount of ‘N b02’ part 
is increasing. The most reduced oxide, Nbļ20 29, with blocks of (3 x 4) 
octahedra in size, is shown in Figure 9.21(b). Between this oxide and

(b)

(a)
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H-№>20 5, the oxides №>22054, Nb470 116, №>25 0 б2, №>39С>97 and №>530132 
are found. Despite the formulae, which were referred to as ‘grotesque’ by the 
crystallographer A.D. Wadsley, who first unravelled these phases, all the 
structures are simple block jigsaws, neatly fitted together into a coherent 
structure.

The same thing happens when H-Nb20 5 reacts with many other oxides. 
To return to the case of W 03, the composition needs to approach MO3 and 
larger block sizes are needed. A considerable number of these span the 
originally reported non-stoichiometric composition range. Thèy are typified 
by W3Nb14044 , shown in Figure 9.21(c), made up of (4 x 4) blocks.

Although it might be thought that reactions between these phases, or the 
interconversion of one block size to another, would be difficult, the reverse 
is true and the reactions of the block structures take place very rapidly. For 
example, the reaction between Nb20 5 and WO3 produces perfectly ordered 
phases within 15 min at 1400K and a variety of more disordered non- 
stoichiometric phases in shorter times. An example of a partly ordered 
structure is shown in Figure 9.22.

9.11 Pentagonal column phases

Another group of compounds which contain three-dimensional faults are 
the so-called PC structures. These are a fairly large group of metal oxides 
which have, as their basic structural motif, the pentagonal column. This 
consists of a pentagonal ring of five M0 6 octahedra; the tunnel formed 
being filled with an alternating chain of oxygen and metal atoms to form a 
pentagonal column, as shown in Figure 9.23(a). It seems, at first sight, 
unlikely that such a unit could fit readily into a host structure, but 
nevertheless it is found that groups of PCs can coherently exist within a 
WO3 type of matrix. As a number of oxides can adopt this structure or a 
distorted version of it, a wide range of PC phases can form.

As in previous discussions, two alternatives exist. If the PC elements are 
perfectly ordered then we generate one or more structurally related 
homologous series of ordered phases. Some examples of these phases are 
given by the oxide Mo5Oi4 illustrated in Figure 9.23(b), the tetragonal 
tungsten bronze structure illustrated in Figure 9.6(a) and the oxide 
№>i6Wi80 64, which is an ordered variant of the tetragonal tungsten bronze 
structure in which only a percentage of the available tunnel sites are filled, 
shown in Figure 9.23(c). If the PC elements in the host structure are 
disordered a non-stoichiometric compound is generated. Such disorder 
occurs, for example, when WO3 is reacted with Nb20 5 for short periods of 
time at temperatures below about 1500K, as the electron micrograph in 
Figure 9.24 shows.
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Figure 9.22 An electron micrograph of a disordered block structure formed by reacting Nb20 5 
with WO3. The image clearly shows the block outlines. A number of different block sizes can be 
seen, each of which will correspond to a distinct composition.

In all of the PC phases, another form of non-stoichiometric variation is 
possible. In this case the O-M-O  chains which occupy the pentagonal 
tunnels can be incomplete, or else extra atoms can occupy tunnels which are 
normally empty. Interpolation is, therefore, also possible in these phases, 
thus matching the behaviour of the intergrowth tungsten bronzes discussed 
earlier.

9.12 Defect-free structures: modulated and incommensurate phases

9.12.1 Vernier structures

These structures make use of a novel way to accommodate variations in the 
anion to cation ratio which does not rely on point defects at all. It is possible 
to show how this can come about in a non-stoichiometric material by 
considering the orthorhombic phases formed when the oxyfluoride, YOF,
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CM

Cc)

Figure 9.23 Some structures containing pentagonal columns: (a) an isolated pentagonal 
column; (b) the Mo5Oļ4 structure; and (c) the ordered tetragonal tungsten bronze structure of 
N b16W 180 64, in which the square tunnels and some of the pentagonal tunnels are empty. The 
filled tunnels are indicated by filled circles.

reacts with small amounts of YF3. The phases form in the composition 
range between ҮҮ2лзо and YY2.220· where X  represents the anions (O, F).

The complexity of this system was unravelled by way of careful X-ray 
diffraction work. On powder photographs, the strong reflections correspond 
to that of the fluorite-type cell possessed by YOF. However, numerous faint 
lines can also be seen on these films indicating that the system is structurally

СаЭ
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Figure 9.24 An electron micrograph of a disordered PC phase showing pentagonal columns, 
which are imaged as pairs of black areas separated by a line of white contrast, distributed at 
random in a W 0 3 matrix.

complex. The positions of the lines change almost imperceptibly on moving 
from one composition to another. Moreover, the lattice parameter of the 
ZrOF cell appears to change smoothly as the composition varies, in 
agreement with Vegard’s law. At first sight the system seems to be 
uncomplicated and a description of the non-stoichiometry in terms of cation 
vacancies or anion interstitials seems reasonable. However, a very careful 
interpretation of the X-ray results, taking into account the faint lines, yields 
a much more interesting picture of the real structural complexity present. It 
has been found that within the non-stoichiometric region every composition 
prepared has a different structure, and a large number of different ordered 
phases exist forming a homologous series of compounds with a general 
formula Y„0„_iF„ + 2.

The structures of these phases can be thought of as made up of unit cells 
of YOF stacked up in a sequence which is sometimes interrupted in an 
ordered way allowing extra anions to be incorporated into the structure. The 
nature of the interruptions responsible for this is remarkable. In the fluorite 
structure the anions all lie on the corners of cubes and so form square anion 
nets in projection, as shown by the continuous lines in Figure 9.25. In the 
non-stoichiometric phases some of these square anion nets are changed from 
square into hexagonal anion nets, composed of triangles shown as dotted 
lines in Figure 9.25. Now these latter nets contain a higher density of anions
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Figure 9.25 The structures of the vernier phases (a) Y70 6F9 and (b) Zr108N 98F i38 projected 
along [100]. The anion nets at x/a = 0 are shown as broken lines and those at x/a = 1/2 as full 
lines. The cations are shown as filled circles. If the projection of the anion nets is considered it is 
seen that a vernier relationship exists between the upper and lower layers.

than the square nets, and this allows the extra atoms to fit readily into the 
structure. The outcome is illustrated in Figure 9.25 for the phase, Y70 6F9, 
which is the n = 7 member of the homologous series of phases Y„Ow_iF„+2, 
and the related compound Zr108N98F 138. The name vernier structure can 
now be appreciated. The positions of the metal atoms in this compound are 
the same as those in the fluorite structure parent. However, the two sorts of 
anion arrays are in a vernier relationship to one another. This means that a 
whole number, N, of squares will fit exactly with the whole number of 
triangles M. In Figure 9.25(a), Y70 6F9, it is seen that seven squares fit with 
eight triangles.

Vernier structures are found in a number of other systems which have 
structures based on the fluorite type. The structures of these non- 
stoichiometric phases evolve in a continuous fashion. The pitch of the 
vernier will vary from one compound to another in order to accommodate 
the correct anion to cation proportions in the structure. You can understand 
this by imagining that the hexagonal anion net in Figure 9.25 shrinks or 
expands slightly. The match between the two structures will now occur at 
different values of M  and N. A vernier in which 11 squares fits with 13 
triangles is found in Zri08N98Fi38 shown in Figure 9.25(b). Just a small 
change in the anion to cation ratio would make the vernier fit with five 
squares and six triangles or six squares and seven triangles. One can see that 
this rather subtle process allows for all of the compositions to be fitted in to 
an ordered structure with no defects present.

(a)

(b)



POINT DEFECTS  A N D  P LA N A R  DEFECTS 241

9.12.2 Infinitely adaptive compounds

In the last few sections of this chapter we have come across instances of 
considerable structural complexity occurring within fairly narrow stoichio­
metry ranges, in which, for the systems involved, any non-stoichiometric 
composition can be accommodated by an ordered structure. Moreover, in 
many systems the same composition can be accommodated by many 
structures. Thus, in the T i02-Cr20 3 swinging CS phases any composition 
can be achieved by a variety of CS plane spacings lying along different 
directions. In the block structures any one composition can be made from 
different block sizes and linkages. This a very remarkable state of affairs, 
not considered to be possible until recently. The solid state chemist J.S. 
Anderson coined the singularly apt name infinitely adaptive compounds for 
these and other phases which fall into this class.

9.12.2 Modulated or incommensurate structures

Vernier structures and some other infinitely adaptive compounds are 
increasingly being referred to as modulated structures or incommensurate 
structures. Modulated structures or incommensurate structures (there is still 
no consensus on a definite name for these materials) are described in terms 
of a fairly simple unit cell such as the fluorite type cell. This is often referred 
to as the sub-cell of the structure. The structure is described in terms of a 
modulation wave which has a slightly different wavelength than the sub-cell, 
that is, it is incommensurate with the sub-cell. The purpose of the 
modulation wave is to describe how the structure deviates from that of 
the sub-cell itself. If, for example, some of the atoms in a fluorite type sub­
cell to not occupy the normal positions but positions described by an 
incommensurate modulation wave, a positionally modulated structure is 
formed. Alternatively, the modulation wave might describe a distribution of 
vacant sites with respect to the sub-cell, found in a compositionally 
modulated structure.

To give a concrete example, let us look at the deceptively simple oxide 
Ta20 5. It has been known for a long time that the Та atoms in this phase 
form a uniform hexagonal array. The difficulty rests in describing the 
positions of the oxygen atoms. As with the vernier phases, the X-ray 
photographs show many faint lines which vary with temperature. This 
means that the unit cell is complex and temperature sensitive. Recently, an 
ingenious solution to the structure has been found. The positions of the 
oxygen atoms are described by an incommensurate modulation wave. The 
modulation wave is such that the positions of the oxygen atoms represent a 
compromise between providing the pentagonal bipyramidal coordination 
demanded by the size of the large Та atoms and the octahedral coordination 
needed to generate the correct Ta20 5 stoichiometry. When the oxygen
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atoms are distributed in accordance with the modulation wave, a percentage 
of the Та atoms can reasonably be regarded as allocated to pentagonal 
bipyramidal coordination and others to octahedral coordination. Some, 
however, are not really in one or the other polyhedron. As the temperature 
increases, the modulation wave changes so as to increase the number of 
metal atoms in octahedral coordination at the expense of the pentagonal 
bipyramidally coordinated atoms. The modulation wave varies smoothly 
with temperature within the stability range of Ta20 5 and so the oxide has an 
infinite number of structures available to it without any modification in its 
composition.

Ta20 5 can form ‘solid solutions’ with a number of other oxides including 
AI2O3, Ti02, WO3 and Z r02. These are all incommensurate or modulated 
structures. As the composition varies, the modulation wavelength has to 
compromise between the composition (i.e. the number of oxygen atoms 
present) and the coordination preferences of the metal atoms to produce a 
stable structure. For example, if the Ta20 5 is reacted with WO3 the 
modulation wave changes from that in the pure oxide so as to (i) 
accommodate more oxygen and (ii) accommodate more metal atoms 
(mainly W) in octahedral coordination. If Z r02 is the dopant, the wave 
takes into account that there is less oxygen in the structure and more atoms 
in pentagonal bipyramidal coordination. As before, the modulation wave 
also changes with temperature, producing the same remarkable state of 
affairs as in Ta20 5 itself, a single composition which can adopt an infinity of 
structures.

There are a number of non-stoichiometric compounds which show these 
incommensurate modulations quite clearly. However, the determination of 
the structures in detail is difficult and the problems posed by such materials 
at the forefront of structural crystallography.

9.13 Supplementary reading

Fortunately the subject matter of this chapter is well covered in a number of 
review articles. The classical article is that by A.D. Wadsley and should be 
consulted before the others. The textbook by Hyde and Andersson is next 
on the list, but all the articles cited contain different material and present 
different viewpoints of the subject.
A. D. Wadsley, Non-stoichiometric Compounds, ed. L. Mandelcorn, Academic Press, New York 

(1963).
B. G. Hyde and S. Andersson, Inorganic Crystal Structures, Wiley-Interscience, New York 

(1989).
J.S. Anderson, in Solid State Chemistry, N.B.S. Spec. Pub. 364, ed. R.S. Roth and S.J.

Schneider, National Bureau Standards, Washington (1972), p. 295.
J.S. Anderson, Defects and Transport in Oxides, eds. M.S. Seltzer and R.I. Jaffee, Plenum Press, 

New York (1974).
J.S. Anderson, J. Chem. Soc. Dalton Trans. 1107 (1973).
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B.G. Hyde, S. Andersson, M. Bakker, C.M. Plug and M. O’Keeffe, Prog. Solid State Chem. 12, 

273 (1979).
E. Makovicky and B.G. Hyde, Structure and Bonding 46, 101 (1981).
R. J.D. Tilley, in The chemical physics o f solids and their surfaces, Voi. 8 , eds. M.W. Roberts and 

J.M. Thomas, The Royal Society of Chemistry, London (1981).

The application of electron microscopy to non-stoichiometric compounds 
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10 Defects and non-stoichiometry in high temperature 
superconductors

10.1 Superconductivity and superconductors

Superconductivity was first discovered in 1911. It is a low temperature 
phenomenon which was first thought to be limited to a number of metallic 
elements and alloys. These materials are now known as conventional 
superconductors. The situation changed in 1987 when a number of complex 
copper oxides were synthesized which could transform to the super­
conducting state above liquid nitrogen temperatures. As liquid nitrogen is in 
plentiful supply and relatively inexpensive, the possibility of much greater 
commercial application became a reality and laboratory experimentation 
became a relatively simple procedure. These materials are called high 
temperature superconductors.

When a superconducting material is cooled to such an extent that it enters 
the superconducting state it loses all electrical resistivity. The temperature at 
which this occurs is called the superconducting transition temperature and is 
written Tc. This means that in a material cooled to below Tc an electric 
current will flow in an unimpeded fashion forever, without decaying.

The superconducting state is also associated with notable magnetic 
behaviour. If a superconducting material is placed into a strong enough 
magnetic field it will revert to normal behaviour. The value of the field at 
this point is called the critical magnetic field strength, Hc. The way in which 
the normal state is restored can take place in two ways. In Type I  
superconductors the externally applied magnetic field is completely excluded 
from penetrating the superconductor (except for a thin surface layer) up to 
Hc. At this point, the superconducting properties are lost completely and the 
field penetrates the whole of the superconductor. When a Type I material is 
at room temperature any external magnetic field will pass through it in a 
normal way. However, when the material is cooled through the critical 
temperature the field is pushed out of the superconductor abruptly. The 
phenomenon of magnetic field exclusion is called the Meisner effect.

In Type II superconductors the magnetic field expulsion is less sharp. 
Above a critical field, # q, the magnetic field starts to penetrate the 
superconductor. This results in cylinders of normal (non-superconducting) 
material embedded in the rest of the superconducting matrix. As the
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magnetic field increases the amount of normal material increases relative to 
the superconducting fraction until at the upper critical field, HCi, all the 
material becomes normal. The variation of the upper critical field with 
temperature is shown for some superconductors in Figure 10.1.

If a Type I or Type II superconductor is placed on a magnet, the magnetic 
field will be unable to enter the superconductor and the interaction can be 
strong enough to overcome gravitational forces and allow the super­
conductor to float above the surface of the magnet. This feature is known as 
magnetic levitation.

Although the potential applications for materials of this type are many, 
the usefulness of conventional superconductors was limited by the fact that 
the superconducting state could only be achieved quite close to absolute 
zero and at fairly low magnetic fields. The highest values for Tc with 
conventional superconductors remains at about 23 K to this day. Thus, the 
only applications for these materials are associated with equipment where 
the cost of cooling to such low temperatures, which requires expensive liquid 
helium, is offset by other benefits. Typically, such commercial applications 
consisted of magnetic resonance imaging equipment, of value in diagnostic

Figure 10.1 The temperature dependence of the upper critical field of a conventional 
superconductor, Nb3Sn, the Chevrel phase PbMo6S8 and the high temperature superconductor 
YBa2Cu30 7 both perpendicular and parallel to the crystallographic c-axis.
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medicine, and superconducting quantum interference devices (SQUIDS), 
used for detecting minute changes in magnetic fields. Research applications 
include exploratory magnetically levitated trains and magnets in particle 
colliders. The lower cost of cooling high temperature superconductors 
makes them attractive for these applications.

One of the most interesting features of these new oxide superconductors is 
that they are all non-stoichiometric oxides. Moreover, the superconductivity 
is closely correlated with the degree of non-stoichiometry. This chapter will 
focus upon these vital aspects and apply much of the knowledge already 
presented to an understanding of this vital chemical side to these materials.

10.2 High temperature oxide superconductors

Although Cu-containing superconducting oxides have gained most atten­
tion, the phenomenon of superconductivity occurs in a number of oxide 
systems, as detailed in Table 10.1. These materials may provide important 
clues as to the chemical factors which lead to the superconducting state. All 
of these materials are non-stoichiometric. The presence or absence of 
superconducting behaviour is critically dependent upon the composition, as 
is Tc. This behaviour can be regarded as being due to the presence of 
chemical defects within the parent structure. This chapter will concentrate 
upon these chemical defects. Other defects in the materials, such as 
dislocations and grain boundaries, certainly do affect the current-carrying 
capabilities of the material but do not appear to control the appearance of 
superconductivity.

Table 10.1 Some superconducting oxides

Compoundf Structure Tc (K)t Active atom

SrTi03_x Perovskite 0.5 Ті
LiTi20 4 Spinel 13 Ті

TiO NaCl 0 .6 Ті
NbO NbO 1 Nb

KxW0 3 HTB* 0.5 w
Bapbo.75Bio.2503 Perovskite 13 Bi
Ва0.бКо.4ВЮ3 Perovskite 31 Bi

La 1,85$г0. 15CUO4 K2NİF4 34 Cu
ҮВа2Си30б.95 Perovskite layers 94 Cu

Bi2Sr2CaCu20 8 Perovskite layers 92 Cu
Tİ2Ba2Ca2Cu30  j 0 Perovskite layers 128 Cu
HgBa2Ca2Cu30 8 Perovskite layers 133 Cu

* Hexagonal tungsten bronze.
fOnly representative formulae and Tc values are given.
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The stoichiometric variation of greatest significance, with respect to 
superconductivity, is the oxygen content. A change in the oxygen content of 
a material must be accompanied by the presence of some sort of counter­
defect to maintain charge neutrality. At present there is no theory that can 
account for the appearance of the superconducting state in these oxides and 
little guidance as to the true nature of the compensating defects.

10.3 Superconducting oxides which do not contain copper

1 0 3 .1  L İ T İ 2 O  4

LİTİ2O4 was one of the first oxides to be found which showed super­
conductivity, although the transition temperature is low, at about 13K. 
LİTİ2O4 adopts the normal spinel structure with Li+ on the tetrahedral sites 
and Ті on the octahedral sites. In order to maintain charge balance, there 
must be equal numbers of Ti3+ and Ti4+ ions in the structure. This is often 
written in terms of an ‘average valence’, which for the Ті ions is 3.5. A non­
integral valence state of this sort, we will see, is a key factor in all of the oxide 
superconductors. It appears to be necessary to endow one of the cations, the 
one which is presumed to be the cause of the superconductivity, with a 
partial valence.

As explained in chapter 6, the presence of two valence states readily leads 
to hopping conductivity. When electron transfer becomes very easy, the 
material would be metallic. This is the situation that exists in LiTi20 4. 
However, the spinel LiTi20 4 is able to form a solid solution in which 
additional Li substitutes for Ті on the octahedral sites, to yield a 
composition Ь іі+хТІ2_х0 4 with x taking values between 0 and 1/3. At the 
greatest extent of the solid solution, with a composition Lİ4/3Tİ5/3O4 all of 
the Ті ions are in the 4+ state and the material is an insulator. It seems that 
at intermediate compositions the material is composed of microdomains of 
superconducting LiTi20 4 coherently intergrown with non-superconducting 
Lİ4/3Tİ5/3O4. The transition temperature does not vary across the composi­
tion range because the superconducting component never changes although 
the percentage of superconducting phase does alter.

103.2 BaBiO3-related phases

The material BaBi03 has the perovskite structure. The charge on the Bi ions 
is not 4+ which is appropriate to the perovskite composition, but half of the 
atoms have a charge close to Bi3+ and half a charge close to Bi5 +. The result 
of this is that the oxygen octahedra surrounding the Bi atoms are of two 
sizes, with the Bi3+ in the large octahedra and Bi5+ in the smaller
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octahedra. By analogy with LiTi20 4, one would, therefore, expect this 
material to be metallic and perhaps a superconductor. However, because of 
the different geometries of the two types of octahedra, electron transfer is 
hindered and BaBi03 is a semiconductor. This is another general principle 
of use in materials chemistry, that is, electron transfer will be hindered if 
simultaneous structural changes are also needed. However, if these 
distortions can be suppressed it would be expected that the material might 
become metallic. This can be achieved via cation substitution and BaBi03 
can actually be made into a superconductor. Moreover, BaBi03 is unique in 
that it can be made superconducting by cation substitution on either the Bi 
sub-lattice or the Ba sub-lattice.

The first superconductor prepared in this system was found in the 
BaBi03-BaPb03 system. The addition of BaPb03 allows a solid solution to 
form in which the Pb4+ ions substitute for Bi to form BaPbxBiļ_x0 3. This 
solid solution remains semiconducting to a composition of about 
ВаРЬ0.бВі0.4О3 at which composition it becomes metallic and remains so 
down to pure BaPb03. Superconductivity with a Tc of 13 K occurs in a 
narrow composition range close to BaPbo.75Bio.25O3·

The other BaBi03-derived superconductor is formed by substitution of 
Ba2+ by K + on the perovskite A sites. The narrow range of composition 
which superconducts is close to Ва0.бК0.4ВіО3 and shows a Tc of about 
30 K.

All of these superconducting phases have one thing in common, mixed 
valence in one of the cations present. This appears to be a vital requirement 
and is a first clue in the hunt for the key to the occurrence of super­
conductivity in oxides.

10.4 High-temperature superconducting copper oxides

Before embarking on a description of some of these materials, it is useful to 
note some of the features which apply to the group as a whole. Structurally, 
the phases are all related to the perovskite type structure illustrated earlier. 
The structure is redrawn somewhat differently in Figure 10.2. It shows that 
the structure can be thought of as being built up of a sequence of layers 
which we can label as AO and B 02, where A are the large cations and В the 
medium-sized cations. In the copper oxide superconductors, the В atoms are 
Cu and the superconductivity resides in these Cu02 sheets. However, note 
that in the structures described later not all copper-oxygen layers are 
identical and not all are superconducting sheets. The AO layers can be 
replaced by a variety of slabs, with structures mainly equivalent to slices of 
the rock salt and fluorite structures. These act as charge reservoirs, which are 
important in contributing to the conductivity process.
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Figure 10.2 The perovskite structure shown as a stacking of AO and BO2 layers. (Compare 
with Figure 6.5.)

A second important factor in these materials is that the copper valence (in 
most compounds) must lie between the formal values of Cu2+ and Cu3 + . It 
seems to be a fairly common observation that the maximum value of the 
transition temperature, Tc, occurs when the average charge has a value of 
about 2.33. The aim of many experiments is to modify the AO regions to 
achieve this. į

10.5 La2C u 0 4 and related phases

10.5.1 La2Cu04

The phase La2Cu04 contains trivalent La and divalent Cu, and adopts a 
slightly distorted version of the K2NiF4 structure. This results in the 
compound being orthorhombic at room temperature with the я-axis slightly 
shorter than the 6-axis. At temperatures above about 260 °С, the structure 
becomes tetragonal with the a- and 6-axes equal. The La2Cu04 structure 
contains sheets of the perovskite type, one Cu06 octahedron in thickness 
stacked up one on top of the other, as can be seen in Figure 10.3. It is also

f There is considerable uncertainty as to whether the defects should be Cu3+ or O- , that is to 
say. whether the holes should sit on copper cations or anions. In this chapter the Cu3 + 
convention will be chosen. (See also the first footnote in Chapter 6.)
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Figure 10.3 The K2NiF4 structure, (a) A unit cell showing F~ ions as large 
spheres, Ni2+ ions as medium-sized spheres and K + ions as smallest spheres, (b) 
The structure shown in terms of NiF6 octahedra and in the lower part of the 
diagram NiF6 octahedra and sheets of composition KF.

The K2NİF4 structure

The K2NiF4 structure is made up of sheets of the perovskite type- 
one octahedra in thickness, stacked up one on top of the other, 
as can be seen in Figure 10.3. The unit cell is tetragonal with a = 
0.4006 nm, c = 1.3706 nm. There are two formula units in a unit 
cell. The positions of the K and F atoms in the KF layers is 
similar to the cation and anion positions in the rock salt structure 
and so the structure is often said to made up of an intergrowth of 
perovskite and rock salt slabs.

A number of oxides crystallize with this structure including 
La2N i04, Sr2Ti04 and Sr2Sn04.

(a) (b)
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easily described in terms of stacked Cu02 and LaO layers, as the figure 
suggests.

When prepared in air by heating oxides, the compound is usually 
stoichiometric with the oxygen content close to 4.00. However, small 
changes in the oxygen content can be easily introduced by heating in oxygen 
at higher or lower pressures, to make materials with a formula La2Cu04+<5. 
For values of б which are negative, indicating an oxygen loss, the material is 
a poor semiconductor. Notionally, the defect structure consists of oxygen 
vacancies with charge compensation being by way of two Cu+ ions per 
oxygen vacancy, but this has not been confirmed experimentally. For values 
of б which are positive, indicating an excess of oxygen, the electronic 
properties change drastically. First, the material becomes a metal and then a 
superconductor. The maximum value of Tc observed is 38 K in La2Cu04 13.

The structure of the oxygen-rich material is quite complex. At the 
temperatures at which these compounds are prepared, the extra oxygen 
atoms are introduced into the structure as interstitials which occupy sites 
midway between the LaO planes. They are also arranged so as to be as far 
away from the La3+ ions as possible, and sit more or less at the centre of an 
La3+ tetrahedron. For each interstitial introduced, two Cu2+ ions become 
Cu3 + ions. This is the same as saying that two holes are created per oxygen 
interstitial and that these are located on Cu2+ ions, at least in the 
semiconducting state. It is these holes that are the charge carriers in the 
superconducting state and the material is termed a ‘hole’ superconductor. 
At room temperature, the oxygen interstitials are not distributed at random. 
Instead they segregate into only some of the LaO layers. These defect- 
containing layers can stack up in several different ways to give several 
different crystallographic repeat lengths along the c-axis of the basic 
La2Cu04 unit cell. The actual configurations observed vary with oxygen 
content and with temperature. On cooling a typical preparation, the 
microstructure of the sample consists of microdomains of material with no 
interstitial oxygen atoms, together with material with several different 
ordering patterns of these interstitial oxygen atom layers to give quite a 
complex and interesting non-stoichiometric structure.

10.5.2 Substituted La2Cu04 phases

The generation of Cu3+ is not especially easy in La2Cu04 and it is much 
easier to utilize the technique of valence induction. In fact, it was this 
approach which lead to the discovery of the first copper oxide super­
conductor, Та2_хВахСи04. Since then, it has been shown that the 
incorporation of Sr, Ca, Na and K also induce superconductivity in this 
material. The material which has been investigated most has the formula 
La2_xSrxCu04, which shows a maximum transition temperature of 37 K at a



252 P RI NCI P LES A ND AP P LI CATI ONS  OF CHEMI CAL DEFECTS

composition of Laļ 85Sr0.i5CuO4_(5. In this compound, the impurity Sr2 + 
cations substitute for La3 + . Because the Sr2+ ion has a lower charge than 
the La3 + , some mechanism for maintaining charge neutrality must be 
found. This can take place in one of two ways. It is possible to generate 
one oxygen vacancy for every two Sr2+ added, to give a formula 
La2_xSrxCu2 + 0 4_x/2. Alternatively, one Cu3+ could form for each Sr2 + 
substituted, to give a formula La2_xSrxCUļ^xCu3+0 4.

The balance between these two alternative defects is very delicate and 
leads to a most surprising situation. Initially, the Cu3+ option is preferred. 
Because Cu3+ can be looked on as Cu2+ together with a trapped hole, it is 
considered that a hole population is present which leads to a super­
conducting state. As the Sr2+ concentration rises so does the Cu3+ con­
centration, up to a peak when x is approximately 0.2. As more Sr2+ is 
added, the preferred defect now becomes the oxygen vacancy and the 
oxygen content of the parent phase falls below 4.0. The number of Cu3 + 
ions decreases as oxygen vacancies form, and when the concentration of 
Sr2+ reaches approximately 0.32 all of the compensation is via vacancies 
and the material is no longer a superconductor! This is shown in Figure 
10.4.

The same effect is also found if the Lai.85Sr0.i5CuO4 is heated at about 
500 °С in a vacuum. This causes oxygen loss and a consequent loss of 
superconductivity. Reheating in oxygen restores the superconducting prop-

Figure 10.4 A diagram of the dependence of Tc on the Sr2+ content in La2- xSrxC u04. Initially 
S r + substitution introduces Cu3 + (i.e. holes) into the structure. At higher concentrations, the 
Cu3+ population is replaced by oxygen vacancies and the material loses its superconducting 
properties.
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erties. Thus, it is seen that the nature of the defects in the phase completely 
controls the superconductivity.

10.5.3 Lan + jCunOsn + / and related phases

La2Cu04 can be considered to be the first member of a homologous series of 
layered perovskite oxides described by the formula La„+iCu„03„+1. These 
oxides contain thicker perovskite slabs than La2Cu04, and the value of n in 
the formula gives the number of octahedra in the perovskite-like slabs as 
shown in Figure 10.5. They can also be regarded as ordered intergrowths 
between La2Cu04 and the perovskite LaCu03. This latter phase contains 
only Cu3+ rather than the more stable Cu2+ ion and so the homologous 
series can only be formed at high oxygen pressures.

Despite this limitation, a closely related group of compounds can form in 
air. These can be typified by La2SrCu20 6. The structure of this phase is 
shown in Figure 10.6. It is seen to be very similar to the structure of 
the n = 2 phase La3Cu20 7. However, the Cu is in the divalent state, 
achieved by substitution of one La3+ by Sr2+ and by removal of a layer of 
oxygen to convert the Cu coordination from octahedra to square pyramidal. 
This oxide and similar phases containing other alkaline earth metals are 
remarkable because they can take up and give out oxygen very easily. 
La2SrCu20 6 can easily and reversibly reach the composition of La2Sr- 
Cu20 6.2. This introduces Cu3+ into the compound and one would 
expect that these would become hole superconductors. This is not so 
for either La2SrCu20 6 + <$, or La2CaCu20 6_<5, but the mixed phase

Figure 10.5 The idealized structures o f the La„_iCu„03/I+i phases. The shaded squares 
represent C u 06 corner-linked octahedra and the circles represent the La atoms, (a) The 
idealized K2NiF4 or La2C u04 structure and (d), in which n = 0 0 , corresponds to the ideal 
perovskite structure, LaCu03.
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(d)
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Figure 10.6 The idealized structure of the oxide La2SrCu20 6. The small, filled circles represent 
Cu atoms which reside at the centres of C u 05 square pyramids. The large, open circles represent 
O atoms and the large, shaded circles represent the La or Sr atoms, which cannot be 
differentiated.

Lai .6Sr0.4CaCu2O6 + (5 can be made to superconduct with a Tc of about 60 K. 
This reveals the complexity of the superconducting process and the 
difficulties associated with the prediction of which materials might show 
this property.

10.6 Nd2C u 0 4 electron superconductors

The structure ofNd2Cu04 is shown in Figure 10.7. A comparison of Figures
10.3 and 10.7 reveals that the principle difference between the Nd2Cu04 and 
La2Cu04 structures lies in the disposition of the oxygen atoms as the cations 
in the two structures are in almost identical positions. However, in 
Nd2Cu04 the Nd3+ ions are in the centres of oxygen cubes and so this

eu 
La,Sr 

0 
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(α) (b ) ( c J

Figure 10.7 (a) The La2C u04 structure, (b) The Nd2C u04 structure, (c) The hybrid T* 
structure which is an intergrowth of half unit cells o f the La2C u04 and Nd2C u04 types.

region of the structure can be likened to slabs of the fluorite type and the 
structure is often described as an intergrowth of perovskite and fluorite 
structures. The Cu atoms lie at the centres of square coordination groups 
and between these are fluorite slabs.

Like the lanthanum copper oxides, this compound can lose oxygen down 
to at least a composition of Nd2Cu03 5. The oxygen deficit is due to oxygen 
vacancies and these are balanced by the formation Cu+ ions in the 
structure. These reduced materials are insulators.

However, Nd2Cu04 can be made to superconduct by a substitution of 
the lanthanide by a higher valence cation such as Ce4+ to form 
Nd2_xCeJCCu04_<$. If we use the same terminology as before, it is possible 
to write the formula as Ndi_JCCexC uįį;cCu1 0 4_ (5 and to suppose that one 
Cu+ ion is created for every Ce4+ in the crystal. The Cu+ ion is equivalent 
to a Cu2+ ion together with a trapped electron and so the structure is 
regarded as possessing an excess o f electrons in the structure. The 
compounds turn out to be electron superconductors rather than hole 
superconductors as in the case of the La2Cu04-related phases. In a formal 
way, the superconducting state occurs over a rather narrow range of 
substitutions with X taking values of approximately 0.12-0.18. The maximal 
Tc values found for these phases is 24 K, reached in the compound 
Nd і .85СЄ0.15Cu04.

It is noteworthy that hole superconduction does not seem possible in this 
phase, as Nd3+ substitution by Ca2 + , Sr2+ or Ba2+ does not give 
superconducting phases.
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Figure 10.7 (a) The La2Cu04 structure. (b) The Nd2Cu04 structure. (c) The hybrid T' 
structure which is an intergrowth of half unit cells of the La2Cu04 and Nd2Cu04 types. 

region of the structure can be likened to slabs of the fluorite type and the 
structure is often described as an intergrowth of perovskite and fluorite 
structures. The Cu atoms lie at the centres of square coordination groups 
and between these are fluorite slabs. 

Like the lanthanum copper oxides, this compound can lose oxygen down 
to at least a composition of Nd2Cu03.5' The oxygen deficit is due to oxygen 
vacancies and these are balanced by the formation Cu + ions in the 
structure. These reduced materials are insulators. 

However, Nd2Cu04 can be made to superconduct by a substitution of 
the lanthanide by a higher valence cation such as Ce4+ to form 
Nd2-xCexCu04-b' If we use the same terminology as before, it is possible 
to write the formula as Ndl-xCexCui~xcut04-b and to suppose that one 
Cu + ion is created for every Ce4+ in the crystal. The Cu + ion is equivalent 
to a Cu2+ ion together with a trapped electron and so the structure is 
regarded as possessing an excess of electrons in the structure. The 
compounds turn out to be electron superconductors rather than hole 
superconductors as in the case of the La2Cu04-related phases. In a formal 
way, the superconducting state occurs over a rather narrow range of 
substitutions with x taking values of approximately 0.12-0.18. The maximal 
Tc values found for these phases is 24 K, reached in the compound 
Ndl.85CeO.15Cu04. 

It is noteworthy that hole superconduction does not seem possible in this 
phase, as Nd3+ substitution by Ca2+, Sr2+ or Ba2+ does not give 
superconducting phases. 
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10.7 YBa2Cu30 7 and related phases

The compound YBa2Cu30 7, sometimes referred to as ‘123’, which describes 
the cation ratios of lY:2Ba:3Cu, has been widely studied because it is 
relatively easy to prepare and it was the first superconductor discovered with 
a Tc above the boiling point of liquid nitrogen. The crystal structure of 
YBa2Cu30 7, shown in Figure 10.8, is closely related to that of the perovskite 
type. The unit cell consists of three perovskite-like cells stacked one on top of 
the other, as can be seen from the cation stacking shown in Figure 10.8(a). 
The middle perovskite unit contains Y as the large A cation and Cu as the 
smaller В cation. The cells above and below this contain Ba as the A cation 
and Cu as the В cation, to give a metal formula of YBa2Cu3 as one would 
expect for a tripled perovskite cell, АЪВЪ0 9. The unit cell of the 
superconductor should contain nine O atoms. Instead, the seven O atoms 
present are arranged in such a way as to give the Cu atoms square pyramidal 
coordination, shown in Figure 10.8(b) and square planar coordination, 
shown in Figure 10.8(c), rather than entirely octahedral as in the normal 
perovskites. This results in an orthorhombic structure at room temperature. 
If the ions are allocated the normal formal charges of Y3 + , Ba2+ and O2", 
the Cu must take an average charge of 2.33, which can be considered to arise 
from the presence of two Cu2+ and one Cu3 + .

The appearance of superconductivity in this material is closely related to 
the oxygen content, which, like La2Cu04, is a hole superconductor. In fact, 
for the exact composition YBa2Cu3O70 the material does not show 
superconducting behaviour. This only appears when a small amount of 
oxygen is lost. In reality, the compound can readily lose oxygen down to a 
composition of YBa2Cu30 6 0 and the way in which the superconductivity 
changes over this composition range has been well documented and is 
shown in Figure 10.9. The maximum value of Tc, close to 94 K, is found at 
the composition of YBa2Cu30 6 95. As more oxygen is removed, the value of 
Tc falls to a plateau of approximately 60 K when the composition lies 
between the approximate limits of YBa2Cu30 67 and YBa2Cu30 65. 
Continued oxygen removal down to the phase limit of YBa2Cu30 6 0 rapidly 
leads to a loss of superconductivity. However, it is necessary to introduce a 
note of caution, because the exact behaviour of any sample depends upon 
the defects present and this in turn can depend upon whether the samples 
are cooled quickly or slowly.

The oxygen atoms are not lost at random in this reduction but come from 
the Cu04 square planar units to convert the copper coordination to linear, 
as can be seen by comparison of Figures 10.8(a) and (b) with 10.8(c). This 
suggests that oxidation in particular regions of the unit cell is important. If 
any of these intermediate compositions are carefully heated, the oxygen 
vacancies order into a number of superstructures and at fixed compositions. 
The principle oxygen compositions which have been reported as producing
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Figure 10.9 The superconducting transition temperature, Tc, as a function of the oxygen 
deficit б for ҮВагСизОу-б.

long-range ordered microstructures are YBa2Cu30 6.875> YBa2Cu3O6.50 and 
YBa2Cu30 6.i25. At intermediate compositions, microdomains of these 
ordered structures can intergrow easily with one another so as to 
accommodate the non-stoichiometry in an ordered fashion. The effect of 
these ordered arrangements on Tc remains to be fully explored.

Besides the change in the superconducting properties, oxygen loss also 
changes the symmetry of the structure. The introduction of the oxygen 
vacancies tends to make the cell become tetragonal. Oxygen is easily lost by 
heating the samples to temperatures of several hundred degrees. Thus, the 
tetragonal form of this compound has an extended composition range which 
is dependent on oxygen content and temperature. Although the range of the 
orthorhombic and tetragonal structures has been carefully mapped, the 
oxygen content remains the most important factor in endowing the material 
with superconducting properties.

These tetragonal and orthorhombic forms do have an important 
structural effect. YBa2Cu30 7 0 is normally prepared at temperatures of up 
to 950 °С. At these temperatures the material is tetragonal, with the я-axis 
equal to the è-axis. On cooling, either of these axes can become the a- or b- 
axis of the orthorhombic form. This produces random twinning on (110) 
planes and most crystals at room temperature are heavily twinned. There 
remains some uncertainty about the effect of these twins on the magnitude 
of Tc. However, they play an important role in decreasing the current- 
carrying capability of these compounds and they make device fabrication 
difficult.
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Figure 10.9 The superconducting transition temperature, Tc, as a function of the oxygen 
deficit 8 for YBa2Cu307_8' 

long-range ordered microstructures are YBa2Cu306.875, YBa2Cu306.50 and 
YBa2Cu306.125. At intermediate compositions, microdomains of these 
ordered structures can intergrow easily with one another so as to 
accommodate the non-stoichiometry in an ordered fashion. The effect of 
these ordered arrangements on Tc remains to be fully explored. 

Besides the change in the superconducting properties, oxygen loss also 
changes the symmetry of the structure. The introduction of the oxygen 
vacancies tends to make the cell become tetragonal. Oxygen is easily lost by 
heating the samples to temperatures of several hundred degrees. Thus, the 
tetragonal form of this compound has an extended composition range which 
is dependent on oxygen content and temperature. Although the range of the 
orthorhombic and tetragonal structures has been carefully mapped, the 
oxygen content remains the most important factor in endowing the material 
with superconducting properties. 

These tetragonal and orthorhombic forms do have an important 
structural effect. YBa2Cu307.0 is normally prepared at temperatures of up 
to 950 °C. At these temperatures the material is tetragonal, with the a-axis 
equal to the b-axis. On cooling, either of these axes can become the a- or b­
axis of the orthorhombic form. This produces random twinning on (110) 
planes and most crystals at room temperature are heavily twinned. There 
remains some uncertainty about the effect of these twins on the magnitude 
of Tc. However, they play an important role in decreasing the current­
carrying capability of these compounds and they make device fabrication 
difficult. 
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It is clear that the oxygen content of the material is critical. Thus, control 
of the oxygen content is vital during device fabrication. One of the most 
important parameters, in this respect, is the oxygen diffusion coefficient. 
Examination of Figure 10.8(c) will suggest that the diffusion coefficients 
along the three axes will be different. Diffusion turns out to be fastest along 
the ò-axis, and very much slower along the c-axis, with the я-axis diffusion 
coefficient rather smaller than the ò-axis value. Because of this marked 
anisotropy, it is possible to measure tracer diffusion coefficients along the b- 
axis of a plate without worrying too much about diffusion along the other 
axes. The tracer used is usually O18 and the experiments reported to date 
have settled close to the values

where the pre-exponential factor is in m2 s-1  and the activation energy is in 
kJmole-1. Some experimental results for O18 tracer diffusion are shown in 
Figure 10.10(a).

Although the tracer diffusion coefficient is of interest, in practical work 
the chemical diffusion coefficient is of more importance. We have seen that 
the relationship between the chemical diffusion coefficient D and the tracer 
diffusion coefficient D* is given by an expression of the form

where Fis the thermodynamic coefficient. It has proved possible to calculate 
the thermodynamic term from the oxygen pressure over the sample and the 
oxygen content of the solid. The result, given in Figure 10.10(b), shows that 
the thermodynamic coefficient increases rapidly close to an oxygen content 
of 7.0. Thus, although the tracer diffusion remains constant, surprisingly it 
seems that the chemical diffusion of oxygen will increase as the fully 
oxidized composition is approached. Some values of the chemical diffusion 
coefficient are shown in Figure 10.10(c).

The complexity of this non-stoichiometric oxide is considerably increased 
when cation substitutions are considered. In general, most of the 
lanthanides can replace Y and superconducting non-stoichiometric phases 
result. The only exception is PrBa2Cu30 7, which has not been made 
superconducting to date. The substitution of Cu by other metal ions, such as 
Ni and Zn, is also possible. These substitutions invariably decrease the value 
of Tc. This type of substitution and also allow the oxygen content to increase 
above 7.0. This happens, for example, when some Cu is replaced by Co, 
when a composition as high as YBa2Coo.8Cu2.2O7 4 can be achieved.

These substitutions suggest that Cu alone gives the highest value of Tc in a 
material.
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It is clear that the oxygen content of the material is critical. Thus, control 
of the oxygen content is vital during device fabrication. One of the most 
important parameters, in this respect, is the oxygen diffusion coefficient. 
Examination of Figure 1O.8(c) will suggest that the diffusion coefficients 
along the three axes will be different. Diffusion turns out to be fastest along 
the b-axis, and very much slower along the c-axis, with the a-axis diffusion 
coefficient rather smaller than the b-axis value. Because of this marked 
anisotropy, it is possible to measure tracer diffusion coefficients along the b­
axis of a plate without worrying too much about diffusion along the other 
axes. The tracer used is usually 0 18 and the experiments reported to date 
have settled close to the values 

( 119) D* = 1.3 X 10-3 exp - RT 

where the pre-exponential factor is in m2 S-I and the activation energy is in 
kJmole- l . Some experimental results for 0 18 tracer diffusion are shown in 
Figure 1O.10(a). 

Although the tracer diffusion coefficient is of interest, in practical work 
thl~ chemical diffusion coefficient is of more importance. We have seen that 
the relationship between the chemical diffusion coefficient jj and the tracer 
diffusion coefficient D* is given by an expression of the form 

jj = D*F 

where F is the thermodynamic coefficient. It has proved possible to calculate 
the thermodynamic term from the oxygen pressure over the sample and the 
oxygen content of the solid. The result, given in Figure 1O.1O(b), shows that 
the thermodynamic coefficient increases rapidly close to an oxygen content 
of 7.0. Thus, although the tracer diffusion remains constant, surprisingly it 
seems that the chemical diffusion of oxygen will increase as the fully 
oxidized composition is approached. Some values of the chemical diffusion 
coefficient are shown in Figure 10.1O(c). 

The complexity of this non-stoichiometric oxide is considerably increased 
when cation substitutions are considered. In general, most of the 
lanthanides can replace Y and superconducting non-stoichiometric phases 
result. The only exception is PrBa2Cu307, which has not been made 
superconducting to date. The substitution of Cu by other metal ions, such as 
Ni and Zn, is also possible. These substitutions invariably decrease the value 
of Te. This type of substitution and also allow the oxygen content to increase 
above 7.0. This happens, for example, when some Cu is replaced by Co, 
when a composition as high as YBa2Coo.8Cu2.207.4 can be achieved. 

These substitutions suggest that Cu alone gives the highest value of Tc in a 
material. 
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Figure 10.10 Oxygen difffusion data for orthorhombic YBa2Cu30 7. (a) An Arhenius plot for 
tracer diffusion, (b) Variation of the thermodynamic factor F as a function of composition, 

(c) Some values of the chemical diffusion coefficient. [Redrawn from data given by Conder, 
Kruger and Kaldis, Perspectives in Solid State Chemistry, ed. K.J. Rao, Narosa, New Delhi 
(1995).]
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Figure 10.10 Continued.

10.8 Pb2Sr2YCu30 8

In the previous sections, the key route to producing a superconducting 
material tended to be oxidation. The reason for including Pb2Sr2YCu308 in 
this chapter is to highlight the fact that this oxidation has to be directed at 
quite specific regions within the crystal structure. The compound 
Pb2Sr2YCu30 8 has a structure shown in Figure 10.1 1 . The familiar 
architecture of Cu02 planes, as part of perovskite-like regions of structure, 
is apparent. The formal charges on the atoms are Pb2 + , Sr2 + , Y3+ and O2-, 
resulting in an average Cu charge of +5/3, probably distributed as two 
Cu2+ and one Cu+ ion. Extrapolation from the behaviour of other phases 
suggests that oxidation would generate Cu3 + and superconducting 
behaviour would result. This appears to pose no structural problems as 
there is plenty of space for oxygen incorporation. However, a super­
conducting transition does not occur even though oxygen uptake to a 
composition of about Pb2Sr2YCu30 9 5 is easily possible. What in fact 
happens, is that the oxygen is incorporated into the Cu planes, rather than 
the Cu02 planes as anticipated, and the additional positive charges needed 
to maintain charge neutrality are localized on the Pb2+ ions to form Pb4+. 
The extra oxygen changes the coordination polyhedra around the bulky

(C)(c) 
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10.8 Pb2Sr2 YCU30S 

In the previous sections, the key route to producing a superconducting 
material tended to be oxidation. The reason for including Pb2Sr2YCu30g in 
this chapter is to highlight the fact that this oxidation has to be directed at 
quite specific regions within the crystal structure. The compound 
Pb2Sr2 YCU30g has a structure shown in Figure 10.11. The familiar 
architecture of CU02 planes, as part of perovskite-like regions of structure, 
is apparent. The formal charges on the atoms are Pb2+, Sr2+, y3+ and 0 2-, 
resulting in an average Cu charge of + 5/3, probably distributed as two 
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suggests that oxidation would generate Cu3+ and superconducting 
behaviour would result. This appears to pose no structural problems as 
there is plenty of space for oxygen incorporation. However, a super­
conducting transition does not occur even though oxygen uptake to a 
composition of about Pb2Sr2 YCU309.5 is easily possible. What in fact 
happens, is that the oxygen is incorporated into the Cu planes, rather than 
the CU02 planes as anticipated, and the additional positive charges needed 
to maintain charge neutrality are localized on the Pb2+ ions to form Pb4 +. 
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Figure 10.11 The Pb2Sr2YCu30 8 structure showing the Cu2+ ions in square pyramidal oxygen 
co-ordination and the Cu+ linearly co-ordinated by oxygen. The sequence of planes in the 
structure is listed to the right of the figure.

Pb2+ ions which transform to much smaller Pb4+ ions and as a result the 
additional charges are quite localized. This is similar to the situation holding 
in BaBi03 where charge transfer was inhibited because of the different 
coordination polyhedra around the two different Bi ions.

The problem is how to induce extra charges in the Cu02 layers. This has 
been achieved by replacing some of the Y3+ by Ca2+. Figure 10.11 shows 
that the Y3 + ions reside between the important Cu02 layers. Replacement 
of some Y3+ by Ca2+ results in some of the Cu2+ ions in the adjacent Cu02 
layers transforming to Cu3+ ions to form a superconducting material. The 
highest value of Tc has been found when half of the Y has been replaced, to 
give a composition Pb2Sr2Y0.5Cao.5Cu30 8. If this superconducting com­
pound is heated in oxygen, the oxygen content increases and the compound 
reverts to a non-superconducting state.

This material demonstrates an important aspect of this detailed crystal 
engineering. Not only must we induce a mixed valence for the Cu ions, but it 
must be between Cu2+ and Cu3+ and these must be localized in the same
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Figure 10.11 The Pb2Sr2YCu30g structure showing the Cu2+ ions in square pyramidal oxygen 
co-ordination and the Cu + linearly co-ordinated by oxygen. The sequence of planes in the 
structure is listed to the right of the figure. 

Pb2+ ions which transform to much smaller Pb4 + ions and as a result the 
additional charges are quite localized. This is similar to the situation holding 
in BaBi03 where charge transfer was inhibited because of the different 
coordination polyhedra around the two different Bi ions. 

The problem is how to induce extra charges in the CU02 layers. This has 
been achieved by replacing some of the y3+ by Ca2+. Figure 10.11 shows 
that the y3+ ions reside between the important CU02 layers. Replacement 
of some y3+ by Ca2+ results in some of the Cu2+ ions in the adjacent CU02 
layers transforming to Cu3+ ions to form a superconducting material. The 
highest value of Tc has been found when half of the Y has been replaced, to 
give a composition Pb2Sr2 Yo.sCaO.SCu30S. If this superconducting com­
pound is heated in oxygen, the oxygen content increases and the compound 
reverts to a non-superconducting state. 

This material demonstrates an important aspect of this detailed crystal 
engineering. Not only must we induce a mixed valence for the Cu ions, but it 
must be between Cu2 + and Cu3+ and these must be localized in the same 
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layer or adjacent layers to lead to the onset of superconducting behaviour. It 
also reveals that one important aspect in making Cu such a useful tool is 
that this ion can take several valence states in a number of different 
coordination geometries without any difficulties.

10.9 The Bi, T1 and Hg homologous series of superconductors

As soon as the high Tc compound (La,Ba)2Cu04, described earlier, was 
found, other systems which were likely to produce similar materials were 
investigated. A very likely candidate was the compound Bi2Cu04. Although 
the structure of this phase is different from that of La2Cu04 it seemed 
reasonable to try to replace some of the Bi3+ by a divalent cation in order to 
induce the formation of Cu3+ in the material and hopefully produce a new 
superconductor. These experiments were not successful, but nevertheless 
they did lead to the discovery of a series of superconducting phases which 
illustrate the marked dependence of Tc on the thickness of the perovskite-like 
regions in the compounds. The same feature is shown in a structurally 
similar series of oxides in which T1 or Hg replace Bi. These are listed in 
Table 10.2.

The first superconducting oxide to be made in this system was 
Bi2Sr2Cu06. It was subsequently shown that this compound was the n = 1 
member of a new homologous series of phases of general formula Bi2 
Ca„_iSr2Cu„02„+4, with n taking values from 1 to 3. Because of the rather 
complex formulae, these phases are often referred to in a shorthand notation 
which specifies the cation ratios in the order BiCaSrCu. The n = 1 phase is 
2021, i.e. made up from 2Bi:0Ca:2Sr:lCu. The n = 2 phase is written 2122 
and the n = 3 phase is 2223, and so on. These labels are given for all phases 
in Table 10.2.

Table 10.2 The Bi, T1 and Hg homologous series of superconductors

n Formula Notation r c (K) n Formula Notation ТА  K)

Double layers
1 Tl2Ba2C u 0 6 2 0 2 1 92 1 Bi2Sr2C u 0 6 2 0 2 1 10
2 Tl2CaBa2Cu2Og 2 1 2 2 119 2 Bi2CaSr2Cu20 8 2 1 2 2 92
3 Tl2Ca2Ba2Cu3O 10 2223 128 3 Bi2Ca2Sr2Cu3O 10 2223 1 1 0
4 Tl2Ca3Ba2Cu40  j 2 2324 119

Single layers
1 TlBa2C u 0 5 10 2 1 1 HgBa2C u04 10 2 1 94
2 TlCaBa2Cu20 7 1 1 2 2 103 2 HgCaBa2Cu20 6 1 1 2 2 127
3 TlCa2Ba2Cu30 9 1223 1 1 0 3 HgCa2Ba2Cu30 8 1223 133

4 HgCa3Ba2Cu40 1 o 1324 126
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The structure of the n = 1 compound, Bi2Sr2Cu06, shown in Figure 
10.12, is very similar to La2CuC>4, with a layer of corner-shared Cu06 

octahedra with a single perovskite layer being a prominent feature. These are 
connected by a layer of composition Bi20 2 which is shown as a planar sheet 
in Figure 10.12. The other members of this homologous series have thicker

(c)

Figure 10.12 The idealized structures of (a) Bi2Sr2C u06 and Tl2Ba2C u06; (b) Bi2CaSr2Cu20 8 
and Tl2CaBa2Cu20 8; and (c) Bi2Ca2Sr2Cu3Oi0 and Tl2Ca2Ba2Cu3Oi0. The Cu atoms are in 
octahedral (a) or square pyramidal oxygen coordination (b) and (c). Oxygen ions are 
represented by the smallest filled circles, copper ions by medium filled circles, bismuth ions by 
open circles and alkali metals by horizontal and dot shaded circles

(a)

(b)
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perovskite layers, two in the case of Bi2CaSr2Cu208 and three in the case of 
the Bi2Ca2Sr2Cu3Oļ0, but all have the same Bi20 2 separating slabs, as 
shown in Figure 10.12(b) and (c). The perovskite layers need a large cation 
both to balance the charges present and to prevent the structure from 
collapsing and in these oxides this role is taken up by Ca, which is the 
interpolated atom between the Cu02 sheets. In addition, the Cu06 

octahedra are transformed into Cu05 square pyramids in the perovskite 
layers of the n = 2 and n = 3 phases. These structures are shown in Figure 
10.12. An almost identical series of phases forms with T1 instead of Bi.

There are a number of unique points to mention concerning these phases. 
All need a slight oxygen excess to show superconductivity and the formulae 
are more accurately written in the form Bi2Can_ıSr2Cu„02„ + 4 + <ş. When 
these compounds are prepared in air this extra oxygen is incorporated 
directly and the process is sometimes referred to as self doping. If the 
samples are treated so as to remove this extra oxygen, then a loss of 
superconductivity results.

The most striking and important aspect of these compounds is the 
relationship between the thickness of the perovskite sheets, given by n in the 
series formulae, and the superconducting transition temperature, Tc. These 
are set out in Table 10.2. It is seen that Tc increases as the value of n 
increases, giving rise to hopes that even higher Tc values could be achieved 
simply by increasing n beyond 3. Unfortunately, compounds with n much 
higher than 3 are not easy to synthesize. In fact, even the compound 
Bi2Ca2Sr2Cu3Oio is extremely difficult to make, but can be ‘stabilized’ by 
replacing some of the Bi by Pb to form compounds with compositions 
typified by Biļ 6Pb0.4Ca2Sr2Cu3Oi0. However, several materials correspond­
ing to n = 4, especially Т12Са3Ва2Си40 12, have been made and these do not 
have the hoped for higher Tc values. It seems that in the compounds made to 
date, Tc peaks with the n = 3 phases.

Bonding between the Bi20 2 layers and the perovskite-like slabs is weak, 
which results in the crystals easily flaking, rather like mica. This weak 
bonding also allows the geometry of the Bi20 2 sheets to be relatively 
unconstrained by the geometry of the adjacent perovskite-like slabs. As 
noted, the oxygen content is not identical to that given by the idealized series 
formulae and in these phases the oxygen excess is accommodated within the 
Bi20 2 regions. This alters the dimensions of these units slightly and results in 
an incommensurate superlattice along the è-direction, because the repeat 
spacing of the Bi20 2 units no longer exactly matches that of the perovskite 
layers. This structural complexity does not affect the superconducting 
properties, which provides strong evidence for the assumption that the 
superconductivity is closely associated with the Cu02 sheets buried within 
the perovskite slabs.
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Although the structures of the T1 and Bi phases are similar, there are some 
aspects which differ. The smaller size of the Tl3+ ion necessitates the 
replacement of Sr2+ by the larger Ba2+ in order to maintain structural 
stability. The homologous series formula is, therefore, Tl2Ca„_iBa2Cu„0 2„+4. 
In addition the bonding between the perovskite layers and the T120 2 sheets is 
stronger than in the Bi case. This means that the oxides do not cleave so 
readily and the incommensurate superlattice does not easily occur. It also 
means that the oxygen deficit is not quite so easily accommodated within the 
T120 2 layers. A consequence of this is that another method of taking in a 
change of composition is helpful. This seems to be by way of intergrowths of 
the various members of the series, and such disordered and ordered 
intergrowths are quite a common feature of the Tl-containing crystals.

A more significant difference is the existence of a second homologous 
series of oxides which does not form in the Bi series. In these, the perovskite 
slabs are joined together by single TIO sheets rather than double T120 2 
slabs. The homologous series formula is ТІСа^ВагОілО^ + з and the 
structures of these compounds are shown in Figure 10.13. Apart from this 
structural change, they behave in quite a similar way to the double-layer 
phases. In particular, a small oxygen excess is needed to induce super­
conducting behaviour.

The most recent series of high temperature phases to be found have a 
formula HgCa„_ļBa2Cu„02w + 2 and structures which are very similar to the 
TIO phases just described. The structures are derived from those of the Tl- 
containing phases by replacing the TIO layers in these latter compounds by 
sheets of Hg atoms, as shown in Figure 10.13. As in the case of the other 
members of this group, the value of Tc varies with the value of n in the series 
formula, up to a maximum at the n = 3 compound HgCa2Ba2Cu30 8 of 
133 K. The major interest in these phases is that, to date, this is the highest 
Tc value yet reported for materials at normal pressures. The n = 4 member, 
HgCa3Ba2Cu4Oio, has a Tc value of 126 K. As in the Bi and T1 compounds, 
an oxygen excess over the nominal formula is required to induce the onset of 
superconductivity. In these phases, this is incorporated into the Hg planes to 
convert them to HgO^ planes.

10.10 Conclusions

Not all the known high temperature superconductors have been mentioned 
in this chapter. However, the examples given provide the basis for an 
understanding of the factors which must be controlled in order to make 
these materials, at least in the laboratory. These appear to be

1. The presence of mixed cation valence states.
2. A range of oxygen non-stoichiometry.
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Figure 10.13 The idealized structures o f (a) TlBa2C u 05; (b) HgBa2C u04 (c) TlCaBa2Cu20 7. 
The Cu atoms are in octahedral (a) and (b) or square pyramidal oxygen coordination (c).

3. The ability of the ‘superconducting’ cation to adopt to a variety of 
different coordination polyhedra.

One important aspect in making Cu such a useful cation, in this respect, is 
that this ion can take several valence states in a number of different 
coordination geometries without any difficulties.

Although these guidelines are helpful, there are still large numbers of 
interesting and exciting problems remaining. For example, it is not known

a b

c
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why the Hg superconductors have a higher Tc than any others, and there is 
still no guide as to whether materials with even higher Tc values can be 
fabricated. In addition, there is still no theoretical basis for understanding 
these phases. The story of these remarkable materials and the defect 
chemistry associated with them still has a long way to go.

10.11 Supplementary reading

Since the discovery of high-temperature superconductivity there has been a 
deluge of papers, numbering tens of thousands in just a few years. The list 
below gives just a few review articles and sources of wider interest.
The following articles give a good overview of the subject at a readable level:
The discovery of (conventional) superconductivity, Sci. Am. March, 84 (1997).
Perovskites in relation to non-stoichiometry and high-temperature superconductivity, Sci. Am. 

June, 52 (1989).
Applications of high temperature superconductors, Sci. Am. February, 45 (1989).
Crystal chemical aspects of high temperature superconductors, Sci. Am. August, 24 (1990). 
SQUIDs, superconducting quantum interference devices, Sci. Am. August, 36 (1994).

The physics of superconductivity is covered in:
J. R. Waldron, Superconductivity of Metals and Cuprates, Institute of Physics, Bristol (1996).

The relationship between electronic conductivity, chemical bonding and 
structure in oxides, including oxide superconductors, is given by:
P.A. Cox, Transition Metal Oxides, Oxford University Press, Oxford (1992).
P.A. Cox, The Electronic Structure and Chemistry of Solids, Oxford University Press, Oxford 

(1987).

An up-to-date tabulation of superconductors, both conventional and high 
temperature, will be found in the current edition of the Handbook of 
Chemistry and Physics, CRC Press, Boca Raton, FL, updated approxi­
mately annually.

Some review articles, which also give a flavour of the rapid progress made 
in the science and engineering of these remarkable compounds are:
MRS Bull. XIV, January (1989).
B. Raveau, C. Michel and M. Hervieu, J. Solid State Chem. 88, 140 (1990).
MRS Bull. XV, June (1990).
M. Marezio, Acta Crystallogr. A47, 640 (1991).
MRS Bull. XVII, August (1992).
P.L. Gai and J.M. Thomas, Superconductivity Rev. 1, 1 (1992).
MRS Bull. XIX, September (1994).
C. N.R. Rao and A.K. Ganguly, Acta Crystallogr. B51, 604 (1995).

The diffusion data shown in Figure 10.10 were redrawn from information 
in:
K. Condor, C. Kruger and E. Kaldis, Perspectives in Solid State Chemistry, ed. K.J. Rao, 

Narosa, New Dehli (1995).



11 Non-stoichiometry: an overview

11.1 Ordering, assimilation and elimination of defects

Throughout this book the complexity of the defect structures encountered 
has increased. It is useful to integrate these changes into a coherent picture. 
At the outset, the modes of changing the anion to cation ratio in a crystal 
were described as follows:

1. Interpolation. In interpolation, extra atoms are introduced into the 
structure in positions that are normally unoccupied in the parent phase. 
The defects relevant to interpolation are interstitials.

2. Subtraction. Subtraction simply means that some of the atoms that 
should be present in the structure are missing. The defects involved are 
vacancies.

3. Substitution. In this case, atoms of one type are substituted for those of 
another type in the structure. There is no one sort of defect associated 
with substitution, as the nature of the substitution will control the 
nature of the compensating entities required.

The structural information given in the later chapters shows that ordered 
or disordered aggregates of defects are the rule rather than the exception in 
non-stoichiometric crystals. The two extremes can be brought together by 
using two important variables; the interactions between the defects and the 
structure of the non-stoichiometric phase. The interaction between the 
defects can be thought of in terms of free energies or in terms of the balance 
between enthalpy and entropy. Random arrangements of defects implies a 
high entropy and weak interactions, while ordered arrays of defects means 
that the entropy contribution is small, the enthalpy of the interactions is 
high and the phase is likely to be a stoichiometric compound.

The interaction between these two parameters is shown in Table 11.1. On 
the left of the diagram the situation in normal stoichiometric materials is 
considered. In such compounds, Frenkel and Schottky defects are found. 
The interaction between these defects is relatively weak. Entropy effects are 
dominant and enthalpy effects are negligible in this case.

As we move to the right we come to non-stoichiometric phases with 
vacancies, interstitials or substituted atoms. If the interactions between these 
defects are still weak, then they will be distributed at random and entropy 
will still dominate enthalpy. It is very uncertain whether such a situation will
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exist in any real compound, as defect interactions will certainly become 
dominant at very low defect concentrations. In this case, the structural 
situation will demand clusters of defects and this level of association is 
shown in the next column of the table. The nature of these clusters will 
depend upon the system under consideration and may contain, for example, 
small crystallographic shear plane nuclei. The phase will be non-stoichio- 
metric in an operational sense, which means that experimentally the material 
will behave as if it contained point-defect populations. However, a degree of 
ordering at a microscopic level, much beyond this model, is really occurring. 
As the interactions between the defects increase, so the level of organization 
between the defect clusters will increase. The structural picture will now be 
of microdomains of order within the crystal matrix. At this juncture enthalpy 
will dominate entropy.

If one imagines the interactions to be so great that the defects become 
completely ordered, then they will be totally assimilated into the structure 
and no defects as such will be present. Thus, fully ordered Ti50 9 will be a 
defect-free stoichiometric phase. It may contain either Frenkel or Schottky 
defects, of course, but these will not change the composition at all. We are 
again back at the same situation that we encountered on the left of the table 
and so could imagine the sheet to be wrapped around into a cylinder.

Although such a scheme provides an attractive summary of possibilities, it 
is unlikely that the sequence from left to right will be followed by any one 
material. If the interactions between defects are weak, then only the left side 
of the chart will be of relevance. If the interactions are strong, then we will 
pass directly to microdomains or to a new ordered phase.

Temperature will also have an important effect. An increase of tempera­
ture will tend to decrease interactions and be equivalent to emphasizing the 
entropy factor against the enthalpy. The scheme outlined in Table 11.1 will 
change as the temperature increases, with the lower left-hand corner grow­
ing at the expense of the upper right-hand ordered region.

11.2 Thermodynamics and structures

The previous section relies upon experimental results. Just how easy is it to 
characterize a material as being non-stoichiometric at all temperatures? 
Structural studies such as X-ray diffraction and electron microscopy are 
usually carried out at room temperature. The defects present under these 
conditions might not be present at all temperatures. On the other hand, 
thermodynamic measurements of the way in which composition varies with 
partial pressure of the components present are made at high temperatures. 
In principle, therefore, it should be possible to resolve the problem of a 
change of defect type with temperature by combining these two techniques.
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What are the problems that are encountered in practice when this is 
attempted? In Figure 11.1 we show the way in which the composition of a 
sample of Т Ь ц02о, that is, TbOi.8i82> changes with temperature at a fixed 
oxygen pressure. An examination of the reduction path seems to indicate 
that we have two stoichiometric phases, Т Ь ц02о and Tb7Oi2, and that the 
Tb20 3 phase is non-stoichiometric and oxygen rich, with a composition of 
TbOļ 5+x. On reoxidation, however, quite different behaviour is found 
which is not so easily interpreted. In addition many regions of the curves are 
neither horizontal nor vertical, which indicates bivariant behaviour quite at 
variance with the reduction cycle. The problem is compounded by the fact 
that these curves are quite reproducible, and so cannot be dismissed as 
indicating that a non-equilibrium situation holds.

Now suppose that we have some structurally complex phases present, as 
the formulae ТЬцО20 and Tb7Oļ2 suggest and that these phases contain 
differing numbers of ordered ‘defects’ in the parent Tb02 phase. Reduction, 
which involves putting in more ‘defects’, will clearly require a different 
mechanism than oxidation, which will involve removal of the ‘defects’. 
There is no a priori reason why these two processes should take place at the 
same rate and so, in cases involving a series of microphases, hysteresis, as 
shown on Figure 11.1, would be expected to be the rule. Any form of 
structural analysis at the temperature of the experiments would be 
invaluable.

Figure 11.1 An oxidation-reduction curve for the oxide system Tb-O obtained at a constant 
oxygen pressure of 2.25 x 104Pa (191.5 Torr). The arrows indicate the paths followed during 
oxidation and reduction, which are reproducible and not coincident. [Data reproduced from 
B.G. Hyde and L. Eyring, Rare-earth Research, Voi. 3, ed. L. Eyring, Gordon and Breach, New 
York (1965).]
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attempted? In Figure 11.1 we show the way in which the composition of a 
sample of Tb II0 20, that is, TbOI.8182, changes with temperature at a fixed 
oxygen pressure. An examination of the reduction path seems to indicate 
that we have two stoichiometric phases, Tb110 20 and Tb70 12, and that the 
Tb20 3 phase is non-stoichiometric and oxygen rich, with a composition of 
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differing numbers of ordered 'defects' in the parent Tb02 phase. Reduction, 
which involves putting in more 'defects', will clearly require a different 
mechanism than oxidation, which will involve removal of the 'defects'. 
There is no a priori reason why these two processes should take place at the 
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Figure 11.1 An oxidation-reduction curve for the oxide system Tb-O obtained at a constant 
oxygen pressure of 2.25 x 104 Pa (191.5 Torr). The arrows indicate the paths followed during 
oxidation and reduction, which are reproducible and not coincident. [Data reproduced from 
B.G. Hyde and L. Eyring, Rare-earth Research, Vol. 3, ed. L. Eyring, Gordon and Breach, New 
York (1965).] 
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We can consider this in a little more detail. In Figure 11.2 we reproduce 
some very accurate oxidation and reduction data for the rutile form of Ti02. 
It is clear that there is considerable hysteresis and it is very difficult to be 
precise about the number of phases present in the composition range 
spanned, let alone whether the behaviour at any one point should be 
classified as univariant or bivariant. Fortunately, the structures of the 
phases occurring in the system are well known. The composition range 
between Ti02 and Tİ4O7 is spanned by a series of crystallographic shear 
phases with a series formula of Ti„02„_i. In the lower composition region, 
the structures of Tİ4O7, Tİ5O9, ТібОц, ТІ7О13, Ti80 15 and ТІ9О17 all contain 
ordered arrays of crystallographic shear planes on {121} planes. In the 
composition range between Ti160 3i and Ti02, the crystallographic shear 
planes lie upon {132} planes. Between these two regions, at a composition of 
about ТЮ1.91, the crystallographic shear planes swing from one orientation 
to the other to form an infinitely adaptive phase range.

The process of introducing and ordering planar boundaries will 
undoubtedly be quite different to the process of removing and reordering 
the remaining planar boundaries. Hence, it is hardly surprising that 
interpretation of the thermodynamic data is so difficult. Indeed, the 
thermodynamic data cannot be interpreted satisfactorily without the 
structural information also being available.

Therefore, the problem of interpretation of thermodynamic data is not 
dissimilar to the problem of interpretation of structural data. The precision of 
the interpretation will depend upon the precision of the technique. In a system 
containing a homologous series of compounds, it may be impossible to 
differentiate, in practical terms, between a bivariant region and a closely 
spaced series of univariant equilibria using thermodynamic means. Figure 11.3
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shows this schematically. Similarly, it is not always easy to distinguish 
between a non-stoichiometric compound and a homologous series of phases 
using powder X-ray diffraction.

Modulated structures pose particular problems as they do not fit into any 
precise structural or thermodynamic categories. Further work is needed to 
clarify this area of concern.

11.3 Theories and calculations

An ideal way of linking the theoretical ideas about non-stoichiometric 
compounds with the experimental determination of defect structures and 
microstructures is to evaluate the theoretical predictions numerically. This is 
now possible because of the rapid increase in the power of computers to 
carry out large numbers of arithmetical calculations in reasonably short 
time spans. There are a number of areas in which such calculations perform 
an invaluable service. Of prime importance is the calculation of data that are 
not available experimentally, for example, if we wish to determine how 
crystal structures change in the high temperatures and pressures far under 
the surface of the Earth, for the purposes of earthquake prediction. 
Computation can also tell us something about dynamic processes in 
materials. It is not possible to follow the diffusion of single ions directly, 
only to evaluate the statistical result of many diffusion steps of many ions. 
Calculations can allow us to determine the pathways followed by individual 
particles. Of obvious importance are calculations which pertain to 
conditions which are too dangerous for experiments. Thus, calculations of 
the effects of fission products on solids are useful in providing information 
where none exists and where experiments are not possible. In fact, the list of 
potential applications extends into all aspects of solid state chemistry and 
physics. Here we will focus on what calculations have taught us about non­
stoichiometry and defects. The precise details of how to perform the 
calculations and the details of the methods used can be found described in 
several books and review articles listed in the supplementary reading section.

The methods used to calculate the properties of interest follow two routes. 
The first involves solving the Schrödinger equation for the system of 
interest. These calculations are usually referred to as quantum mechanical or 
electronic structure calculations. There are several inherent problems with 
this method. The most important is that it is not possible to solve the 
Schrödinger equation exactly for any multi-atom system. The technique 
relies upon certain degrees of simplification and approximation to arrive at 
solutions which can be evaluated numerically. Depending upon the way in 
which these equations are then processed, the resulting calculations are 
referred to by two different names. Semi-empirical methods use experi-
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mental data to make estimates of some of the quantities in the equations. Ab 
initio methods avoid the use of experimental data and calculate everything 
from fundamental constants.

Because of the complexity of the calculations only relatively few atoms 
can be included if the calculation times are not to become excessively long. 
The method of calculation used to overcome this is also approached in two 
ways. The most obvious is to calculate the electronic structure for a cluster 
of atoms. The positions of the atoms can then be varied in a systematic way 
and the configuration corresponding to the minimum energy is taken to be 
the stable state in nature. The calculations give the electron density 
distribution, information about the bonding between the atoms and inter­
atomic potentials. The chemical and physical difficulty with the method lies 
in selecting a realistic cluster geometry at the outset and in somehow 
accounting for the unformed chemical bonds at the edges of the clusters. As 
computer speeds increase, cluster sizes can be increased and the last 
limitation will decrease in importance. The alternative method is to choose a 
unit cell in which the boundary problems are eliminated by a computational 
method in which the atoms at one side of the unit cell are linked with the 
atoms at the corresponding other side, so as to eliminate the cell edges. This 
technique has been used for many years under the name of the periodic 
boundary condition method. Although this allows us to treat a unit cell of 
material rather than a cluster, the number of atoms contained in the cell still 
needs to be limited.

The quantum mechanical approach, despite the inherent difficulties in the 
method, gives good results for the electronic properties of materials. The 
band structure of a solid is invariably calculated using these techniques and 
recently it has been used to calculate inter-atomic potentials, of central 
importance in the second method of theoretically exploring the structures of 
solids.

The general name for this second approach is simulation. In this set of 
techniques, inter-atomic potentials are used to for the purposes of 
calculations. These inter-atomic potentials are generally defined between 
pairs of atoms and are written down as a mathematical function of the 
positions of the two atoms involved. Having set up the inter-atomic 
potentials, the positions of the nuclei are varied and the variation of the 
total energy as a function of atomic position is calculated. Simulation 
techniques have reached a high degree of sophistication and have been used 
to calculate the effects of shock waves on solids and the way in which cracks 
can be propagated through materials as well as the defect structures of 
interest here. The major problem encountered in these calculations lies in the 
accuracy of the inter-atomic potentials used. There are two different 
approaches to this problem. One is to use the quantum mechanical methods
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outlined above to calculate inter-atomic potentials that can be used in 
simulation calculations. The other widely used method is to estimate inter­
atomic potentials from physical properties such as elasticity.

The results of simulation computations fall into three broad classes. The 
first of these can be called energy minimization. The positions of the atoms 
or defects in a structure of interest is varied in a systematic way and the 
energy calculated for each arrangement. The minimum energy structure is 
regarded as the one of importance in nature. In this way, one is able to 
determine details of surface structures and which defect configurations are 
most likely to be found. The energy minimization technique can also be used 
to discriminate between the different sites available for molecular 
absorption and so is being widely used to understand the processes taking 
place during catalysis.

A drawback of the last method is that it is a static method in which the 
atoms are moved in increments and a result calculated on the new static 
arrangement. An exciting technique uses molecular dynamics calculations 
which have become possible with increasing computational speed. This is 
also a simulation technique using inter-atomic potentials, but the equations 
evaluated include the kinetic energy of the system which considers the 
trajectories of some of the atoms in the structure. This technique allows the 
paths of diffusing ions to be constructed and so allows one to directly 
visualize ionic diffusion. At present, the large numbers of calculations 
involved allow only about 1 ns of real time to be ‘visualized’, but as 
computers improve this will increase.

The final use for simulations involves Monte Carlo methods. In this 
technique, the atoms in an array are moved small distances at random and 
the new configuration is accepted or rejected depending on some chemical or 
physical criterion, often the potential energy of the system. The rejection is 
not a simple yes or no affair in these calculations but varies with the degree 
of departure of the system from that chosen. For example, if the potential 
energy is used, a configuration with a slightly higher potential energy than 
the minimum is accepted as being highly likely to occur, while if the energy 
is far from the minimum it will be rather unlikely to form. The technique is 
essentially statistical in nature and, therefore, is able to give results 
concerning the likely configuration of defects in highly doped systems or 
information about how these defect populations are likely to change with 
temperature.

11.4 Defect structures and configurations

Some of the earliest simulation studies were aimed at clarifying the defect 
structures of technologically important materials. To illustrate the sort of 
results which can be obtained by these simulations, we can look at the defect
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Figure 11.4 The variation of the formation energy of Frenkel and Schottky defects in AgCl 
and AgBr as a function of temperature. [Original data from C.R.A. Catlow, MRS Bull. XIV, 23 
(1989).]

structures of those important photographic chemicals AgCl and AgBr. Even 
the first energy minimization calculations on these systems indicated that the 
formation of cation Frenkel defects required a lower energy than the 
formation of Schottky defects. More recent calculations have successfully 
reproduced the lattice parameter of the silver halide material, confirming 
that the cation Frenkel defects are more favoured and giving details of how 
the defect formation energy varies with temperature. Some of the results are 
plotted in Figure 11.4. Many other examples of defect structure calculations 
will be found in the supplementary reading listed in section 11.7.

11.5 Surfaces and interfaces

The calculation of surface and interface energies has an importance in the 
areas of corrosion, reactivity and phase equilibria studies. As an example, 
we can look at the stability of some layered perovskite phases, 
Sr„+1Ti„03„+i, illustrated in Figure 11.5. Early studies showed that only 
the phases Sr2Ti04, Sr3Ti20 7 and SrTi03 were usually found experimentally 
and that Sr3Ti20 7 coexisted with SrTi03 in samples which had a 
composition corresponding to n greater than 2. Calculations of the lattice 
energy of these phases revealed that the members of the series in which n was 
greater than 2 were unstable with respect to disproportionation into 
Sr3Ti20 7 and SrTi03 thus
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structures of those important photographic chemicals AgCl and AgBr. Even 
the first energy minimization calculations on these systems indicated that the 
formation of cation Frenkel defects required a lower energy than the 
formation of Schottky defects. More recent calculations have successfully 
reproduced the lattice parameter of the silver halide material, confirming 
that the cation Frenkel defects are more favoured and giving details of how 
the defect formation energy varies with temperature. Some of the results are 
plotted in Figure 11.4. Many other examples of defect structure calculations 
will be found in the supplementary reading listed in section 11.7. 

11.5 Surfaces and interfaces 

The calculation of surface and interface energies has an importance in the 
areas of corrosion, reactivity and phase equilibria studies. As an example, 
we can look at the stability of some layered perovskite phases, 
Srn + I Tin0 3n+" illustrated in Figure 11.5. Early studies showed that only 
the phases Sr2 Ti04, Sr3 Ti20 7 and SrTi03 were usually found experimentally 
and that Sr3 Ti20 7 coexisted with SrTi03 in samples which had a 
composition corresponding to n greater than 2. Calculations of the lattice 
energy of these phases revealed that the members of the series in which n was 
greater than 2 were unstable with respect to disproportionation into 
Sr3 Tiz07 and SrTi03 thus 
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Figure 11.5 The idealized structures of the Sr„ + ıTi„03„ + 1 oxides with n taking values of 1, 2, 3 
and oo (SrTi03). Calculations show that those structures with n > 2 disproportionate into 
SrTi03 and Sr3Ti20 7.

Sr4Ti3Oio — ► Sr3Ti20 7 + SrTi03

In addition, calculation of the interfacial energy between the Sr3Ti20 7 and 
SrTi03 indicated that {100} interfaces had the lowest interfacial energy and 
were to be preferred. Again the calculations are in good agreement with 
experimental results. The calculations also suggest that it is energetically 
preferable for the SrTi03 structure to accommodate a small excess of SrO, 
in the form of a thin lamellae of Sr3Ti20 7, rather than as other defects or 
defect clusters. Calculations, therefore, have vindicated the observation that 
point defects are not used to incorporate SrO in SrTi03 and explains the 
limited range of the series Sr„+ļTi„03„+i as well as giving valuable 
information about the interface between the phases.

11.6 Molecular dynamics

Experimentally, diffusion cannot be studied by recording the motion of just 
one atom, although this might be extremely useful. Simulations can, 
however, do just this. By using molecular dynamics, the low energy 
trajectories of atoms can be worked out and the diffusion mechanism 
elucidated at an atomic level. We will consider two examples which show 
that diffusion can be much more complicated in practice than indicated in 
chapters 2 and 3.

The case of Li3N has already been mentioned in chapter 5. It was pointed 
out that the rapid migration of Li vacancies is the root cause of the high 
ionic conductivity registered by this material. However, this does not explain
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one atom, although this might be extremely useful. Simulations can, 
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The case of Li3N has already been mentioned in chapter 5. It was pointed 
out that the rapid migration of Li vacancies is the root cause of the high 
ionic conductivity registered by this material. However, this does not explain 
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why the conductivity is so high. Dynamic calculations have shown that the 
migration is not a series of single atomic jumps but that strings of atoms 
move in a correlated fashion. An example is shown in Figure 11.6. Here we 
see that a chain of six Li+ ions all move together so as to displace the 
vacancy by seven places in one movement. Such correlated motion increases 
the observed diffusion coefficient enormously.

A second example concerns diffusion in the fluorite structure material, 
RbBiF4. In this material, the Rb and Bi atoms are distributed at random 
over the metal atom positions. Fast ion conduction is due to the migration 
of anion Frenkel defects formed when F_ ions, in their normal lattice 
positions at the corners of cubes of anions, are displaced into interstitial sites 
at the cube centres. It has been suspected that the diffusion of these F~ ions 
takes place by way of an interstitialcy mechanism, where the interstitial F-  
displaces a neighbouring F~ on a normal lattice site into an adjacent 
interstitial position. Molecular dynamic simulations reveal not only that this 
mechanism is correct, but that the path is angled rather than straight, as 
shown in Figure 11.7. The tangled line shows the path of an individual F-  
interstitial ion. Starting in the bottom cube, the line shows that the 
interstitial is moving about in the interstitial site but never moving far. 
Eventually, it is able to jump to the adjoining normal site, knocking the ion 
into the interstitial site in the upper cube. In fact, calculations have shown 
that the motions of more than just three atoms are involved and that the 
correlated motion of several F_ ions, over normal and interstitial sites, are 
responsible for the high ionic conductivity in this compound.

Figure 11.6 A schematic illustration of the correlated migration of six Li+ ions in Li3N to 
move the vacancy from position 7 to position 1. [Redrawn from C.R.A. Catlow, J. Chem. Soc. 
Faraday Trans. 86, 1167 (1990).]
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Figure 11.7 The calculated interstitialcy motion of a migrating F~ ion. (a) The basic F _ cube 
making up the structure, (b) The path, which looks like a tangle, shows an interstitial vibrating 
about its position at the centre of a cube of anions in the lower part o f the figure. Eventually, it 
is able to make a jump to a normal anion site at a cube corner. Again it vibrates, indicated by 
the tangled track, until it is able to make a second jump into the new interstitial position in the 
top cube. Overall, there is a non-linear track for the motion. [Redrawn from C.R.A. Catlow, J. 
Chem. Soc. Faraday Trans. 86, 1167 (1990).]

11.7 Supplementary reading

The following references cover significant or recent advances in the study of 
non-stoichiometric compounds, especially the relationships between ther­
modynamics and structure. Most work is concerned with oxide chemistry 
which reflects the current situation in this area of study.

Two books which contain a collection of advanced review articles are:
E. Rabenau (ed.), Problems of Non-stoichiometry, North-Holland, Amsterdam (1970).
O.T. Sorensen (ed.), Non-stoichiometric Oxides, Academic Press, New York (1981).

The whole topic is reviewed succinctly by:
D. J.M. Bevan, Comprehensive Inorganic Chemistry, chapter 49, Voi. 4, ed. A.F. Trotman- 

Dickenson, Pergamon, Oxford (1973).

The relationships between structure and thermodynamics are set out clearly 
by:
J.S. Anderson in: R.S. Roth and S.J. Schneider (eds.), Solid State Chemistry, N.B.S. Spec. Pub.

364, National Bureau of Standards, Washington (1972).
C.N.R. Rao (ed.), The Chemistry of the Solid State, Marcel Decker, New York (1974).
E. Rabenau (ed.), Problems in Non-stoichiometry, North-Holland, Amsterdam (1970) p.l.

( α  )

( b )
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Statistical thermodynamic theories are discussed by:
L. Manes, N on-stoichiometric Oxides, ed. O.T. Sorensen, Academic Press, New York (1981).

There are many reviews and books which are concerned with the calculation 
of the normal and defect properties of solids. Some of these of most 
relevance to this chapter, which also reveal the rapid evolution of the 
subject, are:
C.R.A. Catlow, Solid State Chemistry Techniques, chapter 7, eds. A.K. Cheetham and P. Day, 

Clarendon Press, Oxford (1987).
C.R.A. Catlow, MRS Bull XIV, 23 (1989).
C.R.A. Catlow and G.D. Price, Nature 347, 243 (1990).
C.R.A. Catlow, J.D. Gale and R.W. Grimes, J. Solid State Chem. 106, 13 (1993).
P.A. Cox. Chemistry in Britain, March, 44 (1997).
C.R.A. Catlow (ed.), Computer Modeling in Inorganic Crystallography, Academic Press, New 

York (1997).
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NaxV20 5 88 RbBr 173
NaxW03 170, 218 RbCl 173, 183
NbHx 122 RbHg4I5 113
NbO 246 RbxW03 232
NbOi.9975 211
Nb02 211,225 Si 134
Nb0 2 oo3 211 Si02 68
Nb024 233 SnO 169
Nb02.5 233,234 Sn02 169, 225
Nb20 5, H-Nb20 5 225, 227, 233, 234, SnxW03 218
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Nb250 62 236 Sr2Mn20 5 217
Nb390 97 236 SrO 83, 279
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NbS 88 Sr4Ti3Oļ0 279
NbS2 97 
(Nb,W)02.7 234 SrV03 136
Ncl2Cu04 254, 255 SnxW03 232
Nd2Cu03 5  255 
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Nd i ,85Ce0. і бСи04 255 TaS2 88
NiAs 98,99 TbOL5 + x 272
NiFe20 4 86 TbOļ 8i82 272
NH3 81 Tb20 3 272
NixMgļ_xO 82 Tb70 12 272
NİO, Nii_xO, «NiO 33, 34, 36, 43, 44, ТЬцО20 272

45, 81, 8 8 , 101, 118, 119, 134, 135, Tb02 272
139, 143, 147, 153, 191, 193, 194, ThF4 90
2 0 1 , 211 (Ti,Cr)O190 227

0 2 121, 190
(Ti,Cr)0193 227 
TiHx 122

P40 8(W03)2n 230
TiO 8 8 , 246 
TiOL90 224

Pbļ2Bi8S24 229 TiOļ 93 2 24
Pb24Bi8S36 2 29 Ti02, Ti02_x 5, 3
PbMo6S8 245 225, 226, 241,
PbS 227,228,229 
Pb2Sr2YCu30 8 261,262 
Pb2Sr2YCu30 9 5 261, 262 
Pb2Sr2Yo.5Cao.5Cu308 262 
PbxW03 218, 232

Ti40 7 224,
Ti5o 9 274
ТібОц 274
Ti7Oļ3 274
Tİ8o 15 274
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Tİ9O17 224 
ТіїбОзі 274 
TİS 8 8 , 99 
Tİ1.26S2 215 
Ti8S9 88 
Tİ3S4 88 
Tİ2S3 88
TiS2, Ti1+JCS2 8 8 , 96, 97, 98, 127, 215 
TlBa2Cu05 262,266 
TlCaBa2Cu20 7 263, 267 
TlCa2Ba2Cu30 9 263 
Tl2Ba2Cu06 263, 264 
Tl2CaBa2Cu20 8 246, 263, 264 
Tl2Ba2Ca2Cu3O10 246, 263, 264 
Tl2Ba2Ca3Cu40 12 263, 265

U02, \J02 + X 33, 8 8 , 90, 212, 214

VO 88 
V20 3 211
VO2 21 1, 225

w o 287 222
w o 293 222
w o 294 222
w o 2.998 221
WO3, w o 3_,

223, 224, 225, 226, 227, 230, 232, 
234, 236, 242

W160 46 222  
W180 53 221 
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W3Nb140 44 235,236

YBa2Cu30 7, YBa2Cu30 7_(ş 245, 256, 
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YBa2Co0.8Cu22O7 4 259 
YBa2Cu30 6 256,257 
ҮВа2СизОб i25 258 
YBa2Cu30 6 5 256, 258 
YBa2Cu30 6 7 256 
YBa2Cu30 6875 258 
YBa2Cu30 695 246 
YF3 90
YO F 237 , 238 , 239  
Y 70 6F 9 240  
Y F 3 238  

Y2O3 33

Z n F 2 225  
Z n F e 20 4 86
Z n O , Z n 1 + xO , « Z n O  133, 136, 143, 

153, 169, 196, 197, 198, 211 
Z n S  207
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Z r 0 2 88, 95 , 104, 105, 242  
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compensated semiconductor 151 
component 189, 190



SUBJECT I ND E X 291

composition
changes in and equilibrium partial 

pressure 186-91 
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point, see point defect
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defect (contd) 
reaction equations 103 

defect chemistry 100  
using Kröger-Vink notation 100-5 

defect clusters 211 
forms of in æFeO 2 1 2 , 213 
microdomains of order in 214 
in non-stoichiometric phases 211-13 
in uranium dioxide 212  

defect concentrations 
graphically displayed 198-209 

defect configuration 277 
defect engineering 1 
defect interactions 105-8 
defect pair 180 
defect population 60 
defect structures 277 
defect symbols 103 
defects

assimilation 271 
clustering of 211-13 
completely ordered 270 
effective charges on 101 , 102 
electronic 131 
entropy versus enthalpy 269 
extended 219-21 
fraction-associated 107 
Frenkel, see Frenkel defects 
high-entropy for random 

arrangements 270 
in compounds of formula MX 4-7 
incorporated into normal chemical 

equations 103-5 
information storage on 181 
interactions between 105 
intrinsic 2, 13 
isolated 14 
migration of 65-7 
notation for 100-5 
ordered 270 
organization 270 
planar 219-21 
point, see point defects 
random arrangements of 211 
reactions of 104 
Schottky, see Schottky defects 
substitutional 2
totally assimilated in structure 271

treated as acceptor 152 
treated as donor 152 

degenerate semiconductor 149 
density

comparison of real and 
theoretical 92-5 
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of a material 91-5 
measurement of 91-5 

developer 15
diamond structure 134, 135 
diffusion 26

activation energy of 32
ambipolar 43
bulk 27
of cations 43-9
chemical 36
driving force for 26
effect of temperature on 31
exchange 57
of a gas 26
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interstitial 56
in ionic crystals 43
interstitialcy 57
lattice 27
in MgO 29
of monovalent ions 69
as non-random process 65
pipe 50
in potential gradient 69 
profile 29
profile of for NiO, MgO 44, 45 
ring 57 
self- 28
short-circuit 27, 51 
solid state 26, 27 
tracer 28
of vacancies into crystal 174 
vacancy 57 
volume 27

diffusion coefficient 28 
and atomic migration 74 
chemical 36
and diffusion distance 76 
effective 50 
intrinsic 41 
lattice 50
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relationship with atomic 
mechanism 58-60 

relationship with distance 63 
self- 28 
values 34 

diffusion coefficients 
determined by Matano-Boltzmann 

analysis 37
effect of impurities on 34 
numerical values of 34 
temperature variation of 31 

diffusion couple 29 
of two metals 39, 40 

diffusion reactions between 
non-metals 43-8 

dislocations 1, 51 
in silver halide crystals 15 

disordered cation compounds 112  
disproportionation 195 
domains of electrolytic conduction 110  
donors 134 

as impurities 134 
doping 2
dynamic equilibrium 20

effective charge 102
distinguished from real charges 102  
on defects 102-3 
symbols for 102-4 

electrical neutrality, maintenance 
of 131-3

electrochemical potential 160 
electrodes, transparent 169 
electrochromic 

displays 170-2 
materials 170 

electrolyte 
in batteries 109 
Lil as 109 
solid 109

electromagnetic radiation 163 
interaction with atoms 163 
interaction with solids 163 

electron excess centre 176, 177 
electron holes 133 
electron 

traps 177 
transfer 248

electronic conduction 191-8 
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for Coi_xO 193 
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theories for 153-4 
control of 155 
dependence on oxygen partial 

pressure 191-8 
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effect of temperature upon 195 
by hopping mechanism 138-40 
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191-8

andZn1+JC0  196 
electronic conductors, classification 

of 148
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elimination of 199 
electrons

associated with cations in oxide with 
metal excess 131 

delocalized 147
hopping as contribution to electronic 

conductivity 13 8̂ 40 
localized at ions 138 
mobile 50 
trapped 177

electron spin resonance 176 
emission 

spectrum 163 
spontaneous 164 
stimulated 164 

emulsion, photographic 15 
energy 

bands 146 
barrier 48
of crystal, minimizing 277 
of defect as function of position in 

crystal 277
to free trapped electron 175 

energy levels 
deep 153 
shallow 153

energy of formation of Frenkel defect in 
Li3N 128
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energy of interaction 
between two unit charges 106 
calculation of, between defects 106, 

107
energy minimization 277 
enthalpy

of formation of defects in Li3N 128 
of formation of a defect pair 105-7, 

174
of Frenkel defects 12 
of interaction 105-7 
of Schottky defects 10 
of vacancy pair 114 

equilibrium constant 
for defect formation reaction 199, 

200
for formation reaction for Schottky 

defects 199 
equilibrium line

for metal/metal oxide systems 187 
excited state 163 
exhaustion range 151 
extrinsic semiconductors 149

F-centre 172
absorption spectrum 172, 173 
in alkali metal halides 173 
in alkaline earth oxides 177 
in amythyst 177 
as anion vacancy plus trapped 

electron 175 
in CaO 177 
in CaF2 177 
colour of 173 
effect of on density 173 
in KC1 172
energy of absorption band in alkali 

halides 173
number of unpaired electrons in 

176
methods of production of 172 
production by high energy 

radiation 172 
in smokey quartz 177 

F-interstitials, for charge 
compensation 91 

FLa-centre 180, 181, 183 
FLi-centre 183, 184

FLi(II)-centre 184 
fast ion conductors 109 
fast oxygen-ion conductor 109 
fault, planar 219-21 
iron monoxide, see wüstite 
ferrites 85 

nickel-zinc 86  
Fermi level 151 
Fermi surface 151 
ferromagnetism 86  
Fick’s laws 29 

first law 59 
second law 29 

fluorescence 167, 168 
spectrum of ruby 167 

fluorite phase, theoretical density of 
95

fluorite structure 89, 90, 114, 239 
oxygen diffusion in 114 

fluorite-structure oxides 114 
flux, of atoms 73
formation energies of defects 10, 12 
free energy 115

of dissociation of metal oxide 
186

of formation of «FeO 118 
of formation of NiO 118 

free-energy meters 118 
frequency factor 29 
Frenkel defects 6 , 7, 70, 278 

in AgBr 7 
in Agl 278 
definition 6
enthalpy of formation of 12, 17,

278
equilibriun concentration 12, 26 
energy of formation of 278 
interstitial silver ions in 16 
materials containing very high 

concentrations of 114 
in silver halides 278 

fuel cells 120-1

galena 227
Gaussian distribution 63 
gelatin matrix, growth of silver halide 

crystals in 15 
geometrical factor 60
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Gibbs’ energy 8 
of a crystal 8 
per particle 160 
of system containing Ag, O and 

Ag20  187 
grain boundaries 51 
grain 5
ground state 164 

HUP 171
heart pacemakers 110  
hexagonal tungsten bronze 218 

composition range for 218 
intergrowth with W03 232 
structure of 218 

heyrovskyite 228 
hole excess centre 176, 177 
hollandite

for storing radioactive materials 219 
structure 219

homologous series 221, 239, 240 
of superconductors 262 

hopping semiconductivity 
diffusional model for 139 
Seebeck coefficient for 161 
in cation deficient monoxides 191-6 

hopping semiconductors 138 
hydrogen uranyl phosphate 171 
hysteresis 272

ITO 169-70 
impurities

in complex oxides 136 
and crystallographic shear 225 
in germanium 134 
substitutional 87 
in silicon 134 
in simple oxides 134 
substitutional 82 

impurity atoms
effect of on electronic 

properties 134-8 
notation for 101-5 

impurity region
in ionic conductivity of NaCl 71 

indium tin oxide 169-70 
incommensurate phases 237, 241-2 
incommensurate superlattice 265

inert markers 40 
infinitely adaptive compounds 241 
information storage 177 

and colour centres 177-82 
via memory plane 178 

insertion compounds 97 
insulators 148, 149 
integrated circuits 67 
interaction energy 107 
interactions between defects 107 
ionic conductivity, see conductivity 
intercalation compounds 127 
intercalation reaction 127 
interdiffusion 

of Mg2+ and Ni2+ 44 
of two ionic compounds 44 
of two metals 40 
phase 39 

intergrowth 231 
interfaces 278 
interfacial energy 278 
in layered perovskites 231, 279 
examples of materials 

exhibiting 230-3 
in perovskites 231-2 
of perovskite and fluorite 

structures 255 
tungsten bronze 232-8 

intergrowth tungsten bronze 232-3 
intergrowth phases 230-3 
intermediate region 

electroneutrality equation for in 
Brouwer diagram 203 

interpolation 269 
interstitial alloys 96 
interstitial anions, in MX2 + x 

phases 90, 91 
interstitial atoms 2 

notation for 100  
self- 2

interstitial hydrides 96 
interstitial ions 

formation 90 
oxygen ions 92 
in U02 + JC 91

interstitial silver ions 16, 17 
as Frenkel defects 16, 17 

interstitial titanium atoms 9 7 -9
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interstitial zinc in ZnO 196 
interstitials 2 

(111) 213 
(110) 213

interstitialcy mechanism 280, 281 
intrinsic defects 13 
intrinsic diffusion coefficient 41 

relationship of with chemical and 
tracer diffusion coefficients 42 

intrinsic region
in ionic conductivity of NaCl 71 

intrinsic semiconductors 149 
ionic conductivity 99 

of NaCl, experimental results for 71 
relationship of to diffusion 

coefficients 72
ionic model of conductivity 138 
iron monoxide, see wiistite

jump directions, in cubic system 60 
jump frequency 59 
jump rate

in direction against field 78 
in direction of field 78 

K2NiF4 structure 249, 250 
Kirkendall 

effect 39, 40 
marker 40 
plane 41
displacement of from Matano 

plane 41
Kröger-Vink notation 100-5 

summary of 103

lanthanum cuprates 251-4 
laser

colour centre 182-4 
ruby 165-9 

latent image 15, 17 
formation of 15 

layer-structure disulphides 97 
levitation, magnetic 245 
ligand field splitting 167, 168 
lighter flints 48 
light-sensitive crystals 15 
light-sensitive medium, silver halides 

in 15
lillianite 228,229

lithium, variable reservoir of 127 
lithium iodide battery 109-12 

in heart pacemakers 110  
lithium iodide doped with Ca2+ 111 
lithium nickel oxide, variation of 

Seebeck coefficient in 142 
lithum nitride 127-8 

Frenkel defects in 128 
structure 128 

lode stone 83

magnetic spinels 83 
magnetite 83 
marker shift 39 
Matano plane 

as reference point 41 
displacement of from Kirkendall 

plane 41, 42 
Matano-Boltzmann 

analysis 39 
equation 37 
method 37-9 
relationship 37

Maxwell-Boltzmann statistics 58 
mean square displacement 77 
memory plane 178 
metal oxide, stability of in air 186-95 
metals, outer bonding electrons in 146, 

147
mischmetall 48
microdomain formation, theories to 

account for 271 
microdomains 214-15 

of order 271 
of ordered structure 271 
inTi1+xS2 215 
in YBa2Cu30 7 258 

mixed crystal 43, 134 
mobile carriers, number of 70, 159 
mobile species 70 
mobility of charge carriers 153, 154 

relationship of to conductivity 153, 
154

mobility of ions 78 
modulated structures 237, 241-2, 275 
molten sub-lattice 113 
Monte Carlo methods 277 
molecular dynamics 279
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«-type conductivity, enhancement of by 
doping 136

«-type semiconduction of Μ02_χ 140
«-type semiconductivity 131 
«-type semiconductors 131, 140, 150, 

151
Na+ ions as quasi-liquid layer 124 
Nernst-Einstein equation 72 
neutrality equation in Brouwer 

diagram 199
nickel arsenide structure 98, 99 
non-integral valence 247 
non-stoichiometric compound 81, 87 

bivariant behaviour of 190 
thermodynamic definition of 190 
thermodynamics of 188-91 

non-stoichiometric phases
approximate composition ranges 

for 88
with compositions between TiS and 

TiS2 88
organization 270 
structure 270

non-stoichiometric solids 87 
non-stoichiometry 87 

and diffusion 114 
and impurity atoms 132 
by introduction of electrons 186-96 
due to incorporation of interstitials in 

layered materials 97 
in pure oxides 130-3 
thermodynamic definition of 130 

normal distribution 67 
normal distribution curve, 

bell-shaped 65

one-dimensional self-diffusion 29, 
58-60

open system, Ag, Ag02 and O in 187 
optical properties 163-76 
ordered planar boundaries 221  
oxidation reactions 48 
oxide, equilibrium partial pressure 

of 186, 187 
oxygen over 187 

superconducting 247-68 
oxide with metal excess 130, 131

oxygen 
buffer 187
concentration of in liquid metal 117 
dissociation pressure of 187 
equilibrium partial pressure of over 

oxides 186-91 
generation of partial pressures 

of 187
measurement of concentration of in 

liquid metal 117 
partial pressure of over 

Ag/Ag20  186, 187 
partial pressure of over Ni/NiO 

mixture 191
pressure of over metal/metal oxide 

system 188 
oxygen buffers 187 
oxygen-deficient oxides 130, 131 
oxygen pump 119,120 
oxygen sensor 116,117 

in car exhaust 117 
oxygen vacancy 251, 252

p-type semiconductivity 133, 150, 151, 
195

p-type semiconductor 140, 151 
parabolic rate law 50 
parabolic rate law constant 50 
partial pressure, variation of with 

composition 186-91 
of Niļ_xO 191 

Peltier coefficient 141 
Peltier effect 141 
penetration depth 34, 35 
pentagonal column phases 236, 238 

disordered 236 
examples of 236-8 
homologous series of ordered

236
non-stoichiometric variation in 236,

237
in W03 type materials 276 

periodic boundary condition 276 
perovskite 136, 137, 155, 216, 247 

slabs 265 
layers 266
superconductors 247-68 

perovskites, layered 278, 279
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perovskite tungsten bronzes 218 
phase rule 188, 189 

for silver oxide system Ag20/Ag 190 
phosphate bronzes 230 
photochromic behaviour 18, 179 
photochromic calcium fluoride 179 

preparation of 180 
photochromic crystals 179 
photochromic glass 18 
photochromic materials 18 
photoconductivity 131 
photographic images 15 
photographic negative 15 
photographic process 15 
photography 15 
pixel 178
planar boundaries 219-21 
planar intergrowths 230 
point defect assimilation 216 
point defect clusters 211-14 
point defect ordering 216 
point defects 

in compounds 4 
and diffusion 27 
and energy bands 151 
in band-theory terms 151 
interactions of 105 
low concentration of 212  
in metals 2
in nearly stoichiometric crystals 

212
polytypes 125 
polyvinyl pyridine 111 
population inversion 165, 168 
positive holes 130-6, 148, 176 
potential, between atoms 276 
potential barrier

to atom movement 58 
effect of applied field on 70 
height of 58
modified by applied field 70 

pre-exponential factor 29 
probability

and atomic position 66  
of movement 59 
for successful jump 59 

pump
electrochemical 109

oxygen 119, 120

random atom jumps 6 6 , 76 
random walk analysis 76, 77 
random walk motion 66  
relaxation 108 
rock salt structure 4, 5 
root mean square displacement 63, 64 
root mean square distance 63 
root mean square value 67 
ruby 165-9 

laser 165-9
rules, for reaction equations 

incorporating defects 104 
rutile structure 225, 274

Schottky defects 4, 6 , 70, 106 
in A120 3 6 
anion vacancies in 6 
cation vacancies in 6 
definition of 6
equilibrium concentration of 7, 21 
enthalpy of formation of 10 
experimental values for enthalpy 

of 10
formation of 4-6 
in alkali halides 10 
in Lil 111
in NaCl-type crystals 4 
in KC1 11 
number of 9-12 
in Ti02 5
variation of with temperature 61 

Schottky disorder 4 
Schrödinger equation 275 
screening potential 156 
Seebeck coefficient 141, 143, 156 

and defect concentration 144 
and defect type 142 
variation of with

stoichiometry 145-6 
Seebeck effect 142 
Seebeck voltage 143 

in semiconductors 143, 145 
and entropy 143, 145 

self-diffusion 
in crystals 60
in terms of atomic motion 58-69
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mechanism of 58-60 
self-diffusion coefficient, experimental 

determination of 73 
self interstitial 2 
self doping 265
semiconducting device materials 67 
semiconductors 

degenerate 149 
extrinsic 149 
intrinsic 149, 154 

semi-empirical methods 275 
sensors 116-118 
silicon 3 

dopants in 68  
«-type 65 
/7-type 67
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