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1.1. Overview and principles of powder diffraction

R. E. DINNEBIER AND S. J. L. BILLINGE

1.1.1. Information content of a powder pattern

The structures of real materials comprise not only the crystal
structure — the time- and space-averaged periodic configuration
of atoms on an idealized periodic lattice — but also the micro-
structure, which is caused by imperfections, dislocations and all
kinds of disorder. The microstructure is often responsible for
interesting properties of the material. A powder diffraction
pattern contains a wealth of information about this micro-
structure in addition to the average crystal structure, as shown
schematically in Fig. 1.1.1.

At each stage of a powder diffraction study, great effort and
ingenuity are needed to find the optimal experimental conditions
and to understand and analyse the resulting line shapes and
signals. As experimental equipment, theoretical understanding
and computational tools have improved, it has become possible
to tap into the rich information content of the line peak shapes
and diffuse background of a typical powder diffraction pattern,
yielding unprecedented information about real materials for
materials scientists, chemists, physicists, earth scientists and
engineers. For example, in the modern practice of whole-pattern
modelling, the line profile is calculated from first principles,
taking into account all aspects of the state of the sample, such as
particle-size distributions, inhomogeneous strains and texture, as
well as the experimental setup and aberrations. There is a useful
feedback effect in that better profile descriptions result in more
accurate determinations of the intensities of the Bragg peaks,
which is important to extract accurate structural information
(Bragg peaks are introduced in detail in the next section).
Similarly, great progress has been made in the extraction of
information from the diffuse signal that used to be called the
‘background’. Rather than fitting the background using arbitrary
fitting parameters, as is done in a traditional Rietveld refinement,
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Figure 1.1.1

Schematic picture of the information content of a powder pattern. [Reproduced from Dinnebier

& Billinge (2008) with permission from the Royal Society of Chemistry.]
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careful corrections can be made for experimental effects such as
Compton scattering, fluorescence, multiple scattering and scat-
tering from sample environments. The resulting ‘background’
beneath and between the Bragg peaks of the corrected data is
information-rich diffuse scattering from the sample, which
contains information about the local structure and how it devi-
ates from the average crystal structure in the form of defects and
correlated lattice dynamics (phonons). Total-scattering methods
that include both the Bragg and diffuse scattering are only now
being fully appreciated, with quantitative analyses being carried
out in real space using the atomic pair distribution function
(PDF) method, and in reciprocal space with Monte Carlo simu-
lated-annealing-type modelling based on the Debye equation.
In this introductory chapter, the basic physics behind the
observation of a powder diffraction pattern is described. In
accordance with the scheme in Fig. 1.1.1, the information in a
powder diffraction pattern can be described by the Bragg-peak
positions, the peak profile, the Bragg-peak intensities and the
non-Bragg-scattering contributions to the background. After
describing the fundamentals of scattering by a crystalline powder,
the chapter is organized such that each of the paths illustrated in
Fig. 1.1.1 is followed and described in an introductory way.
Detailed descriptions of the state of the art in the kinds of studies
covered in Fig. 1.1.1 can be found in following chapters, but here
we discuss each aspect of powder diffraction in turn, giving a
high-level overview of what information is available from powder
diffraction as well as explaining the fundamental origin of the
features containing that information. We do not attempt to
review applications of the different kinds of studies, leaving that
to the following chapters.
In this chapter we have drawn heavily on information within
three textbooks (Dinnebier & Billinge, 2008; Mittemeijer &
Welzel, 2012; Egami & Billinge, 2013) and
references therein.

1.1.2. The peak position
1.1.2.1. The Bragg equation derived
The easiest way to understand the struc-
tural information contained in powder

diffraction, and historically one of the first
ways in which diffraction was described, is

Sample via the well known Bragg equation (Bragg,
e 1913), which describes the principle of X-ray
1 diffraction in terms of the reflection of

X-rays by sets of lattice planes.

To understand the concept of a lattice
plane, first imagine a three-dimensional
periodic lattice of points, for example the
corners of an array of cubes stacked in three
dimensions. We can imagine a particular
plane through the lattice by placing each
layer of the stack of cubes on a tray: the tray
then defines a lattice plane. Now imagine
making the tray thinner and thinner until it
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is infinitely thin, but still goes through the same set of points (the
cube corners). What we see is that there is not just a single plane,
but a series of equivalent planes: for example, between the top
and second layers, the second and third layers, and so on. Each
plane is parallel to the others and subsequent planes are sepa-
rated by the same distance (the height of the cube). This is a set of
lattice planes. We can also envisage inserting the trays in other
ways. For example, we could place the trays vertically rather than
horizontally and running from the left side to the right side of the
stack of cubes, or alternatively running from the front of the stack
to the back of the stack. Each of these is a different set of lattice
planes (Fig. 1.1.2), although in this case they have the same layer
spacing, or periodicity. If we were able to insert the tray at
different angles to the cubes, for example at 45°, we could find
other sets of parallel planes that, when we force them to go
through some well defined subset of the points defining the
lattice, will have well defined layer spacings or periodicities.
Bragg’s law showed that the diffraction pattern could be under-
stood in terms of X-rays reflecting specularly off subsequent
planes in each of these sets of planes and emerging in phase. (In
reality, the actual effect is not specular reflection of light from an
abstract plane, but a diffraction effect. However, the combination
of diffraction and periodicity results in a selection rule that
intense scattering only occurs when this particular specular-
reflection condition holds.)

There are actually an infinite number of lattice planes in an
infinite lattice, and it is important to have a way of labelling them,
which is commonly done using the triplet of indices hkl, called
Miller indices, where 4, k and [ are integers, and the separation of
the planes is denoted by the distance dj,;,. When h, k and / have
small values the planes are said to be ‘low-order’ planes. Low-
order planes have the largest interplanar separations, and for a
particular symmetry of the lattice there is a direct relationship
between the Miller indices and d,;.

The Bragg equation gives the condition that must hold for
specular reflection from subsequent planes in a set to be
perfectly in phase, as illustrated in Fig. 1.1.3. It is evident in
Fig. 1.1.3 that the wave reflecting off the lower plane travels a
longer distance (by PN before and NQ after reflection occurs)
than the wave reflecting off the upper plane. The two waves
are in phase, resulting in constructive interference, only when
A = |PN| + INQ| is a multiple n =0, 1, 2, ... of the wavelength
A,

A = naA. (1.1.1)

In all other cases, destructive interference results, since it is
always possible to find a deeper plane, p, for which the relation

Figure 1.1.2
Schematic drawing of a set of parallel lattice planes (111) passing
through all points of the cubic lattice.

Figure 1.1.3

Illustration of the geometry used for the simplified derivation of Bragg’s
law. [Reproduced from Dinnebier & Billinge (2008) with permission
from the Royal Society of Chemistry.]

180-(a.+0)

Figure 1.1.4

Illustration of the geometry in the general case where scattering takes
place at the position of atoms in consecutive planes. [Reproduced from
Dinnebier & Billinge (2008) with permission from the Royal Society of
Chemistry.]

pA =nk 4+ 1/2 exactly holds, giving rise to perfect destructive
interference. Thus, when a narrow beam of X-rays impinges on a
crystalline sample, sharp peaks in the intensity of the scattered
X-rays are seen only at the angles for which equation (1.1.1)
holds, with no intensity observed at other angles. As can easily be
seen from Fig. 1.1.3, geometrically,

A = 2dsin 6, (1.1.2)

where d is the interplanar spacing of the parallel lattice planes
and 26 is the diffraction (or ‘scattering’) angle, the angle between
the incoming and outgoing X-ray beams. The angle 6 = 26/2 is
often called the Bragg angle. Combining equations (1.1.1) and
(1.1.2) we get

niA = 2dsin0, (1.1.3)

which is the Bragg equation (Bragg, 1913).

This simplified derivation of the Bragg equation is often
reproduced in textbooks. Although it leads to the correct solu-
tion, it has a serious drawback. In reality the X-rays are not
reflected by planes, but are scattered by electrons bound to the
atoms in the sample. The planes within a crystal are not like shiny
optical mirrors, but contain discrete atoms separated by regions
of much lower electron density and, in general, the atoms in one
plane will not lie exactly above atoms in the plane below as
implied by Fig. 1.1.3. How is it then that the simplified picture
shown in Fig. 1.1.3 gives the correct result? A more general
description shows that equation (1.1.3) is also valid if the atom in
the lower lattice plane in Fig. 1.1.3 is shifted by an arbitrary
amount within the plane (Fig. 1.1.4).

The phase shift can immediately be deduced from Fig. 1.1.4 as

ni = MN cos[180° — (« + 8)] + MN cos(a — 0)

= MN[— cos(a 4 6) + cos(a — 6)]. (1.1.4)
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Using the standard trigonometric results

cos(a + 0) = cosacos — sinasin 6,

cos(a — 0) = cosacos O + sinasin 6, (1.1.5)
equation (1.1.4) becomes
nt = MN(2 sin « sin 6) (1.1.6)
with
d = MNssina, (1.1.7)
which may be substituted to yield the Bragg equation:
nA = 2dsin 6. (1.1.8)

The Bragg equation holds for any radiation or particle that is
used to probe the structure of the sample: X-rays, neutrons or
electrons. Another equivalent, and highly useful, form of the
Bragg equation for the particular case of X-rays is
6.199 12.398
d= =

- with A = ,
sin 6 E

(1.1.9)

where the energy E of the X-rays is in keV and X is in angstroms.

The Bragg law results in narrow beams of high intensity that
emerge from the crystal in specific directions given by the Bragg
equation, resulting in sharp spots on the detector, and there is a
one-to-one correspondence between these Bragg spots (often
referred to as Bragg reflections) and each set of crystallographic
planes. Each Bragg spot is therefore labelled with the same set of
Miller indices, hkl, as the set of planes that gave rise to it.

It is possible to construct a ‘reciprocal space’ where the axes of
the space are in units of inverse length. The reference coordinate
frame of the reciprocal space is defined by a set of basis vectors
whose directions are perpendicular to the plane normals of the
(100), (010) and (100) planes of the crystal. Thus, a point in this
reciprocal space corresponds to a direction in direct space and
every allowed reflection according to the Bragg law is repre-
sented by a point in reciprocal space. The set of points arising
from the Bragg law forms a lattice in reciprocal space, which is
called the ‘reciprocal lattice’, and each single crystal has its own
reciprocal lattice. [See International Tables for Crystallography
Volume B (Shmueli, 2008) for more details.]

To derive the Bragg equation, we used an assumption of
specular reflection, which is borne out by experiment: for a
crystalline material, destructive interference eliminates scattered
intensity in all directions except where equation (1.1.3) holds.
Strictly this holds only for crystals that are infinite in extent and
which the incident X-ray beam can penetrate without loss of
intensity. This does not sound like a particularly good approx-
imation, but in practice it holds rather well. Even a fairly low
energy X-ray beam that only penetrates, say, a micrometre into
the material will still probe ~10 000 atomic layers. The condition
is not strictly obeyed in the presence of defects and disorder in
the material. In such materials the Bragg peaks are modified in
their position, their width and their shape, and there is also an
additional component of the diffracted intensity that may be
observed in all directions, away from reciprocal-lattice points,
known as diffuse scattering.

1.1.2.2. The Bragg equation from the reciprocal lattice

Here we develop in more detail the mathematics of the reci-
procal lattice. The reciprocal lattice has been adopted by crys-
tallographers as a simple and convenient representation of the
physics of diffraction by a crystal. It is an extremely useful tool
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Figure 1.1.5

A two-dimensional monoclinic lattice and its corresponding reciprocal
lattice. [Adapted from Dinnebier & Billinge (2008) with permission from
the Royal Society of Chemistry.]

for describing all kinds of diffraction phenomena occurring in
powder diffraction.

Consider a ‘normal’ crystal lattice with lattice vectors a, b and
¢, which have lengths a, b and c, respectively, and angles «o
between b and ¢, B between a and ¢ and y between a and b. The
unit-cell volume is given by V. A second lattice with lattice
parameters a*, b*, ¢*, o*, %, y* and unit-cell volume V* with the
same origin exists such that

a-b"=a-¢c*=b-¢c"=a"-b=a"-¢c=b"-¢c=0,
a-a*=b-b"=c-¢" =1 (1.1.10)
This is known as the reciprocal lattice' (Fig. 1.1.5), which exists in
so-called reciprocal space. As mentioned above, we will see that it
turns out that the points in the reciprocal lattice are related to the
vectors defining the crystallographic plane normals. There is one
point in the reciprocal lattice for each set of crystallographic
planes, (hkl), separated by distance d,,,, as discussed below. For
now, just consider /4, k and / to be integers that index a point in
the reciprocal lattice. A reciprocal-lattice vector hy,, is the vector
from the origin of reciprocal space to the reciprocal-lattice point
for the plane (hkl),
h,,, = ha* + kb* +Ic*, h, k1€ Z. (1.1.11)
where 7 is the set of all integers.
The length of the reciprocal basis vector a* is defined according
to
a* = x(b x ¢), (1.1.12)

where the scale factor x can easily be deduced, using equations
(1.1.12) and (1.1.10), as

1
a*~a:x(bxc-a)=xV$x:‘—/, (1.1.13)
leading to

1 1 1
a' = V(b xe¢), b= V(c x a), ¢ = V(a xb) (1.1.14)

and, vice versa,

! The reciprocal lattice is a commonly used construct in solid-state physics, but
with a different normalization: a - a* = 2.
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1 1 1
a—= W(b* X C*), b= W(C* X a*), Cc = W(a* X b*)
(1.1.15)

The relationship between the reciprocal and the real lattice
parameters expressed geometrically rather than in the vector
formalism used above is

. besina
“=—
b — acsin
- 9
|4
. absiny
¢ =—
. Ccosfcosy —cosa
cosa’ = - -
sin Bsin y
. cosacosy —cosf
cos B = - -
sin o sin y
. cosacosfB —cosy
cosy' =

sin « sin 8

V = abey/1 4 2 cosacos fcos y — cos’a — cos?f — cos?y.
(1.1.16)

Equation (1.1.16) is the most general expression for non-ortho-
gonal lattices. The expressions simplify considerably for higher-
symmetry crystal systems.

We now re-derive Bragg’s law using the vector notation
introduced above (Fig. 1.1.6). The wave vectors of the incoming
and outgoing beams are given by s, and s, respectively. They point
in the direction of propagation of the wave and their length
depends on A. For elastic scattering (for which there is no change
in wavelength on scattering), s, and s have the same length.

We define the scattering vector as
h=(s—s), (1.1.17)

which for a specular reflection is always perpendicular to the
scattering plane. The length of h is given by

h
— =2sin6.
s

(1.1.18)

Comparison with the formula for the Bragg equation (1.1.3),

A
"% _ 2sine, (1.1.19)
d
gives
Aok
e (1.1.20)
d K

Figure 1.1.6

Illustration of the important wave and scattering vectors in the case of
elastic Bragg scattering. [Reproduced from Dinnebier & Billinge (2008)
with permission from the Royal Society of Chemistry.]

Cc

Figure 1.1.7

Geometrical description of a lattice plane in terms of real-space basis
vectors. The arc and dot below the letter D indicate a right angle.
[Reproduced from Dinnebier & Billinge (2008) with permission from the
Royal Society of Chemistry.]

Setting the magnitude of s to 1/A, we get the Bragg equation in
terms of the magnitude /4 of the scattering vector,

h="C.

y (1.1.21)

This shows that diffraction occurs when the magnitude of the
scattering vector is an integral number of reciprocal-lattice
spacings 1/d. We define a vector d* perpendicular to the lattice
planes with length 1/d. Since h is perpendicular to the scattering
plane, this leads to

h = nd*. (1.1.22)

Diffraction can occur at different scattering angles 26 for the
same crystallographic plane, giving the different orders n of
diffraction. For simplicity, the number n will be incorporated in
the indexing of the lattice planes, where

it = Ny (1.1.23)

e.g., d5, = 2dj;;, and we get an alternative expression for Bragg’s
equation:

h=d,. (1.1.24)

The vector d},, points in a direction perpendicular to a real-space
lattice plane. We would like to express this vector in terms of the
reciprocal-space basis vectors a*, b*, ¢*.
First we define d,,; in terms of the real-space basis vectors a, b,
c. Referring to Fig. 1.1.7, we can define
1 1

OA:Ea, OB =-b, OC:%c

P (1.1.25)

with A, k and / being integers, as required by the periodicity of the
lattice.

The plane-normal vector dj,, originates on one plane and
terminates on the next parallel plane. Therefore, OA -d =
(OA)dcosa. From Fig. 1.1.7 we see that, geometrically,
(OA)cosa = d. Substituting, we get OA -d = d>. Combining
this with equation (1.1.25) leads to

1
—a-d=d’ (1.1.26)
h
and consequently
d d d

By definition, %, k and [ are divided by their largest common
integer to be Miller indices. The vector dj,,;, from Bragg’s equa-
tion (1.1.24), points in the plane-normal direction parallel to
d but with length 1/d. We can now write dj,, in terms of the
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vector d:
d;, = % (1.1.28)
which gives
d;, = % = ha+ kb + [c, (1.1.29)
or written in terms of the reciprocal basis
dy;; = ha™ + kb* 4 Ic*, (1.1.30)
which was obtained using
dj,-a*=ha-a"+kb-a*+lc-a* =h,
dj,, -b* =ha-b*+kb-b"+Ic-b" =k,
d;,-¢"=ha-¢c"+kb-¢"+lc-c" =1 (1.1.31)

Comparing equation (1.1.30) with equation (1.1.11) proves the
identity of dj,, and the reciprocal-lattice vector h,,,. Bragg’s
equation, (1.1.24), can be re-stated as

h=h,, (1.1.32)

In other words, diffraction occurs whenever the scattering vector
h equals a reciprocal-lattice vector h,,,. This powerful result is
visualized in the useful Ewald construction, which is described in
Section 1.1.2.4.

Useful equivalent variations of the Bragg equation are
2sinf 1

- 1.1.33
=3 ( )

|h| = |S_So| =

and

47 sin 0 _ 2

Ql=— 7

(1.1.34)

The vector Q is the physicist’s equivalent of the crystal-
lographer’s h. The physical meaning of Q is the momentum
transfer on scattering and it differs from the scattering vector h
by a factor of 2.

1.1.2.3. The Bragg equation from the Laue equation

Another approach for describing scattering from a material
was first described by Laue (von Laue, 1912). The Laue equation
can be derived by evaluating the phase relation between two
wavefronts after hitting two scatterers that are separated by the
vector r. The path-length difference A = |CD| — |BA| between
the two scattered waves introduces a phase shift between the two
outgoing waves (Fig. 1.1.8). From Fig. 1.1.8 one immediately sees
that the path-length difference is given by

A = rcose — rcose,. (1.1.35)
This path-length difference gives rise to a phase shift
A r r
Q= 271; = 271(Xcoss —Xcosso). (1.1.36)
The term in parentheses is
s‘r—s,-r=(s—s))-r=h-r (1.1.37)

The amplitude of the scattered wave at a large distance away in

the direction of the vector s is
A(h) = exp(27i0) + exp(2mih - 1) (1.1.38)

When we generalize the idea laid out above to 7 scatterers, we get

Figure 1.1.8
Scattering from an object consisting of two scatterers separated by r.

A(h) = Zn: exp(2m’h . rj). (1.1.39)

=1

For simplicity, consider the case of an infinite one-dimensional
crystal of scatterers that are equally spaced by distance a;,. In this
case, r; = aj and

A(h) = i exp(2mihaj). (1.1.40)
j=—00
Using the definition for a periodic delta function,
lim Xn: exp(2mihaj) = ki 8(k — ha) (1.1.41)
=00 j=—p =—00
and
Aty = i 5(k — ha), (1.1.42)

which is a periodic array of delta functions at positions & = k/a.
This means that sharp peaks of intensity will only appear when
this expression holds, which are the reciprocal-lattice points. This
is the same result as given by the Bragg equation (1.1.3) in one
dimension. Extending to three dimensions, equations (1.1.40) and
(1.1.42) become

A(h) = i exp (27i(h - a)aj) i exp (27i(h - ﬁ)bk)

j=—00 k=—00

(e8]

X Y exp (27‘[i(h . é)cl),

l=—00

(1.1.43)

where a = a/a, and

00

A=

oV, =—00

8[1 — (- @)als[v — (h - bYbJS[n — (h - &)c].
(1.1.44)

Equation (1.1.44) has the same meaning in three dimensions,
where intensity appears only when all three delta functions are
non-zero. This occurs for the conditions

v AN

h-a=" nb="andn.e=", (1.1.45)
a b c
where 1, v and 7 are integers. From this follows
h-a=pyu, h-b=vandh-c=n1. (1.1.46)
These conditions are met when
h = pa* +b" + e =dj,,. (1.1.47)

This is exactly Bragg’s equation in the form given in equation
(1.1.30).

For practical purposes including the indexing of powder
patterns and refinement of a structural model, given a set of
lattice parameters a, b, ¢, «, B, y, the positions for all possible
reflections Akl can be calculated according to
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1 1
— == { [hzbzczsinza + K*a*Psin® B + Pa’b’sin’y
dyy V
+ 2hkabc*(cos o cos B — cos )

+ 2kla*be(cos Bcos y — cos a)

1/2
+ 2hlab*c(cos a cos y — cos ,B)] } , (1.1.48)
for the triclinic case. Equation (1.1.48) simplifies considerably
with symmetry to, for example,

1 Vhr 4+ k2 + 2
B e e (1.1.49)
Ay a

for the cubic case.

1.1.2.4. The Ewald construction and Debye—Scherrer cones

The Bragg equation shows that diffraction occurs when the
scattering vector equals a reciprocal-lattice vector. The scattering
vector depends on the geometry of the experiment, whereas the
reciprocal-lattice vectors are determined by the orientation and
the lattice parameters of the crystalline sample. Bragg’s law
shows the relationship between these vectors in a scattering
experiment. Ewald developed a powerful geometric construction
that combines these two concepts in an intuitive way (Ewald,
1921). A sphere of radius 1/ is drawn following the recipe below.
The Bragg equation is satisfied and diffraction occurs whenever a
reciprocal-lattice point coincides with the surface of the sphere.

The recipe for constructing Ewald’s sphere? is as follows (Fig.
1.1.9):

(1) Draw the incident wave vector s,. This points in the direction
of the incident beam and has length 1/A.

(2) Draw a sphere centred on the tail of this vector with radius
1/A. The incident wave vector s, defines the radius of the
sphere. The scattered wave vector s, also of length 1/A, points
in the direction from the sample to the detector. This vector is
also drawn starting from the centre of the sphere and also
terminates at a point on the surface of the sphere. The scat-
tering vector h =s — s, completes the triangle from the tip of s
to the tip of s, both of which lie on the surface of the sphere.
Thus the surface of the sphere defines the locus of points in
reciprocal space where the scattering vector in our experi-
ment may possibly lie.

(3) Draw the reciprocal lattice with the origin lying at the tip
of s.

(4) Find all the places on the surface of the sphere where
reciprocal-lattice points lie. This gives the set of points in
reciprocal space where the expression h = hy;; may possibly
be satisfied in our experiment.

This construction places a reciprocal-lattice point at one end of
h. The other end of h lies on the surface of the sphere by defi-
nition. Thus, Bragg’s law is only satisfied when another
reciprocal-lattice point coincides with the surface of the sphere.
Diffraction can be envisaged as beams of X-rays emanating from
the sample in these directions. In order to detect the intensity of
these diffracted beams, one simply moves the detector to the
right position. Any vector between two reciprocal-lattice points
has the potential to produce a Bragg peak. The Ewald-sphere
construction indicates which of these possible reflections are
experimentally accessible.

2 For practical reasons, plots of the Ewald ‘sphere’ are circular cuts through the
sphere and the corresponding slice of reciprocal space.

Figure 1.1.9

Simplified representation of the Ewald-sphere construction as a circle in
two dimensions. O marks the origin of reciprocal space. The vectors are
defined in the text. [Reproduced from Dinnebier & Billinge (2008) with
permission from the Royal Society of Chemistry.]

Changing the orientation of the crystal reorients the reciprocal
lattice, bringing different reciprocal-lattice points onto the
surface of the Ewald sphere. In a single-crystal experiment it is
necessary to repeatedly reorient the crystal to bring new
reciprocal-lattice points onto the surface of the Ewald sphere,
and then to reorient the detector in such a way as to measure the
scattering from each particular reflection on the surface. This is
done in a highly automated fashion these days. Once a diffraction
pattern has been indexed so that the lattice vectors and the
orientation matrix (the relation of the lattice vectors to the
laboratory coordinate frame) are found, then all of the diffract-
ometer settings that are required to collect all the Bragg peaks
are fully determined and this process can be accomplished
automatically.

In this chapter we are considering scattering from powders. An
ideal powder contains individual crystallites in all possible
orientations with equal probability. The powder experiment is
equivalent to placing a detector at a fixed position and rotating a
single crystal through every orientation, spending an equal
amount of time in each orientation. The first powder experiment
was reported by Debye & Scherrer in 1916, and independently by
Hull in 1917. In the Ewald construction, this is the same as
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Figure 1.1.10

Illustration of the reciprocal lattice associated with a single-crystal lattice
(left) and a large number of randomly oriented crystallites (right). A real
powder consists of so many grains that the dots of the reciprocal lattice
form into continuous lines. [Reproduced from Dinnebier & Billinge
(2008) with permission from the Royal Society of Chemistry.]
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Figure 1.1.11

Simplified representation of the Ewald-sphere construction as a circle in
two dimensions. Illustration of the region of reciprocal space that is
accessible in a powder diffraction experiment. The smaller circle
represents the Ewald sphere. As shown in Fig. 1.1.10, a powder sample
has crystallites in all possible orientations, which is modelled by rotating
the reciprocal lattice to sample all orientations. An equivalent operation
is to rotate the Ewald sphere in all possible orientations around the
origin of reciprocal space. The volume swept out is the region of
reciprocal space accessible in the experiment. [Reproduced from
Dinnebier & Billinge (2008) with permission from the Royal Society
of Chemistry.]

smearing out every reciprocal-lattice point over the surface of a
sphere centred on the origin of reciprocal space. This is illustrated
in Fig. 1.1.10. The orientation of the dj,, vector is lost and the
three-dimensional vector space is reduced to one dimension with
the independent variable being the modulus of the vector
id2k1| =1/d.

These spherical shells intersect the surface of the Ewald sphere
in circles. A two-dimensional projection is shown in Fig. 1.1.11.
Diffracted beams can be envisaged as emanating from the sample
in, and only in, the directions where the thin circles from the
smeared reciprocal lattice intersect the thick circle of the Ewald
sphere. A few representative diffraction beams are indicated by
the dashed, dotted and dash-dotted arrows.

hkl

Primary beam

The reflections from planes with the smallest d-spacing that are
accessible in the experiment are determined by the diameter of
the Ewald sphere, which is 2/A. In order to increase the number of
reflections that can be detected, one must decrease the incident
wavelength. In the case of an energy-dispersive experiment such
as a time-of-flight neutron powder diffraction experiment, which
makes use of a continuous distribution of wavelengths from A ;,
to Amax at fixed angle, all reflections that lie in the cone-shaped
region of reciprocal space between the two limiting Ewald
spheres at 2/A ., and 2/, Will be detected.

As mentioned above, in a powder the reciprocal-lattice points
get smeared into a spherical surface, which intersects the Ewald
sphere as a circle. This means that, in three dimensions, the
resulting diffracted radiation associated with the reflection hkl
forms a cone emanating from the sample on an axis given by
the direct beam, the so-called Debye-Scherrer cone. Different
reciprocal-lattice points, at different values of 1/d,,,, give rise to
coaxial cones of scattering. This is illustrated in Fig. 1.1.12.

The smearing of reciprocal space in a powder experiment
makes the measurement of a powder diffraction pattern easier
than the measurement of a set of single-crystal data, because the
sample does not have to be repeatedly re-oriented, but this comes
at the cost of a loss of information. At first sight the loss of
information seems to be the directional information about the
points in the reciprocal lattice. However, once the lattice is
indexed (i.e. its basis vectors are known) the directional infor-
mation in the pattern can be recovered without difficulty, which is
why three-dimensional structures can be determined from the
one-dimensional diffraction information in a powder pattern.
The loss of information comes from the fact that reflections from
lattice planes whose vectors lie in different directions but which
have the same d-spacing overlap. These reflections cannot be
resolved by the measurement and so the intensity in each of the
peaks is not known. The peak-overlap problem becomes
increasingly worse with increasing scattering angle as the number
of diffraction planes in a particular d-spacing range increases and
their separation decreases.

Some of these overlaps are dictated by symmetry (systematic
overlaps) and others are accidental. Systematic overlaps are less
problematic because the number of equivalent reflections (the
multiplicity) is known from the symmetry, and, by symmetry, each
of the overlapping peaks has the same
intensity. For highly crystalline samples, the
number of accidental overlaps can be
reduced by making measurements with
higher resolution, since this allows similar

A

but not identical d-spacings to be separated.

To obtain the maximum amount of
information, a spherical-shell detector
would be desirable, although this is
currently impractical. Often, a flat two-
dimensional detector, either film, an image
plate or a charge-coupled device (CCD), is
placed perpendicular to the direct beam, or

A

Figure 1.1.12

| |" Primary*, beam
| 1

| offset to one side to increase the angular
/ range of the data collected. In this case, the

= Debye—Scherrer cones appear as circles, as

shown in Fig. 1.1.13, or as ellipses if the
detector is at an angle to the direct beam.
For an ideal powder, the intensity distri-

Comparison between the scattered beams originating from a single crystal (top) and a powder
(bottom). For the latter, some Debye-Scherrer cones are drawn in reciprocal space.
[Reproduced from Dinnebier & Billinge (2008) with permission from the Royal Society of
Chemistry.]

bution around the rings is uniform. In a
traditional powder diffraction experiment
using a point detector, for example a scin-
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tillator detector behind a receiving slit that defines the angular
resolution of the measurement, at each position the detector
samples a point on the two-dimensional diffraction pattern shown
in Fig. 1.1.13. As the detector is moved to higher 26 angles the
locus of the points that are sampled is a horizontal or vertical
(depending on whether the detector is moving in the horizontal
or the vertical plane) line across the two-dimensional image. The
intensity that is detected is low except where the detector crosses
the circles of high intensity. This type of measurement is
preferred for obtaining the highest resolution, especially if a
highly perfect analyser crystal is used instead of a slit for defining
the angle of the scattered beam. However, if the full rings, or
fractions of them, are detected with two-dimensional detectors,
the counting statistics can be improved enormously by inte-
grating azimuthally around the rings at constant |h|. This mode is
becoming very popular for time-resolved, in situ and parametric
studies where rapid throughput is more important than high
resolution. It is also useful for samples that are weakly scattering
and for nanometre-sized crystals or defective crystals, which may
not show sharper peaks even when measured at higher resolu-
tion.

If the powder is non-ideal, the intensity distribution around the
ring is no longer uniform, as illustrated in the right part of Fig.

Figure 1.1.13

Left: Debye—Scherrer rings from an ideal fine-grained powder sample of
a protein (courtesy Bob Von Dreele). Right: perspective view of Debye—
Scherrer rings from a grainy powder sample of BiBOj; at high pressure in
a diamond anvil cell.
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Figure 1.1.14
Graphical illustration of the phase shift between two sine waves of equal
amplitude. [Reproduced from Dinnebier & Billinge (2008) with
permission from the Royal Society of Chemistry.]

1.1.13, and a one-dimensional scan will give arbitrary intensities
for the reflections. To check for this in a conventional measure-
ment it is possible to measure a rocking curve by keeping the
detector positioned so that the Bragg condition for a reflection is
satisfied and then taking measurements while the sample is
rotated. If the powder is ideal, i.e. it is uniform and fine-grained
enough to sample every orientation uniformly, this will result in a
constant intensity as a function of sample angle, while large
fluctuations in intensity will suggest a poor powder average. To
improve powder statistics, powder samples may be rotated during
a single measurement exposure, both for conventional point
measurements and for measurements with two-dimensional
detectors. Additional averaging of the signal also occurs during
the azimuthal integration in the case of two-dimensional detec-
tors. Outlier intensities can be identified and excluded from the
integration. On the other hand, the intensity variation around the
rings can give important information about the sample, such as
preferred orientation of the crystallites or texture.

The d-spacings that are calculated from a powder diffraction
pattern will include measurement errors, and it is important to
minimize these as much as possible. These can come from
uncertainty in the position of the sample, the zero point of 20, the
angle of the detector or the angle of a pixel on a two-dimensional
detector, uncertainties in the wavelength and so on. These effects
will be dealt with in detail in later chapters. These aberrations
often have a well defined angular dependence which can be
included in fits to the data so that the correct underlying Bragg-
peak positions can be determined with high accuracy.

1.1.3. The peak intensity
1.1.3.1. Adding phase-shifted amplitudes

Bragg’s law gives the positions at which diffraction by a crystal
will lead to sharp peaks (known as Bragg peaks) in diffracted
intensity. We now want to investigate the factors that determine
the intensities of these peaks.

X-rays are electromagnetic (EM) waves with a much shorter
wavelength than visible light, typically of the order of 1 A (=
107'° m). The physics of EM waves is well understood and
excellent introductions to the subject are found in every textbook
on optics. Here we briefly review the results that are most
important in understanding the intensities of Bragg peaks.

Classical EM waves can be described by a sine wave of
wavelength A that repeats every 27 radians. If two identical waves
are not coincident, they are said to have a phase shift, which is
either measured as a shift, A, on a length scale in units of the
wavelength, or equivalently as a shift in the phase, d¢, on an
angular scale, such that

A S 2
—=—¢:>8¢:7A.

1.1.50
A 27 ( )

This is shown in Fig. 1.1.14.

The detected intensity, /, is proportional to the square of the
amplitude, A, of the sine wave. With two waves present that are
coherent and can interfere, the amplitude of the resultant wave is
not just the sum of the individual amplitudes, but depends on the
phase shift §p. The two extremes occur when ¢ =0
(constructive interference), where I >~ (A, +A2)2, and ¢ =7
(destructive interference), where I~ (A, —A,)". In general,
I~ [A1 + A, exp(i8<p)]2. When more than two waves are present,
this equation becomes
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(1.1.51)

I~ |:ZAf exp(i(p]-):| ,

where the sum is over all the sine waves present and the phases,
;, are measured with respect to some origin.

Measuring X-ray diffraction involves the measurement of the
intensity of X-rays scattered from electrons bound to atoms.
Waves scattered by atoms at different positions arrive at the
detector with a relative phase shift. Therefore, the measured
intensities yield information about the relative atomic positions.

In the case of X-ray diffraction, the Fraunhofer approximation
is valid. This is a far-field approximation, where the distances L,
from the source to the place where scattering occurs (the sample)
and L, from the sample to the detector are much larger than the
separation, D, of the scatterers. This is an excellent approxima-
tion, since in this case D/L, >~ D/L, ~ 1071°, The Fraunhofer
approximation greatly simplifies the mathematics. The incident
X-rays come from a distant source and form a wavefront of
constant phase that is a plane wave. X-rays scattered by single
electrons are outgoing spherical waves, which again appear as
plane waves in the far field. This allows us to express the intensity
of the diffracted X-rays using equations (1.1.51) and (1.1.39).

This is the origin of equation (1.1.39), which gives the ampli-
tude of the scattered radiation in terms of the scattering vector, h
=, — s, and the atomic positions, r;. In fact, the amplitude of the
scattered radiation is only proportional to this expression. The
actual intensity depends on the amplitude of the incident wave
and also on the absolute scattering power of the scatterers. If we
neglect for now the incident intensity and assume that our
measured intensities are normalized to the incident beam
intensity, we get

A(h) = Z fi(h) exp(2mih - 1)), (1.1.52)

where f;(h) is the atomic form factor and 4 = |h| is the magnitude
of the scattering vector, and is described in more detail in
International Tables for Crystallography, Volume C, Part 6. This
is a measure of the strength of scattering from the jth atom. At
h =0, scattering is in the forward direction with all electrons
scattering in phase. As a result, f,(0) equals the number of elec-
trons bound to the atom (in units of the Thomson scattering cross
section for an electron), usually taken to be the atomic number of
the atomic species at the jth site. An additional h-dependent
reduction of the amplitude comes from positional disorder of the
atoms. A Gaussian blurring is used with a width that is often
falsely called the ‘temperature factor’, but is more correctly
known as the atomic displacement parameter (ADP). The
Gaussian is known as the Debye—Waller factor, which is discussed
below. More information can be found in Chapter 4.7.

The crystal structure consists of periodic arrangements of
atoms. The simplest structures have one atom in a periodically
repeated unit cell. However, in general, there is a well defined
group of atoms that forms a structural motif that is periodically
repeated. This motif can range from one atom to thousands of
atoms in complex protein structures. Solving the crystal structure
consists of finding the unit-cell parameters and determining the
positions in the unit cell of the atoms in the structural motif. In
this sense, the structure of the infinite crystal can be thought of
mathematically as a convolution of the periodic lattice that we
discussed above with the structural motif. This results in a perfect,
orientationally ordered copy of the structural motif in every unit
cell translated in three-dimensional space.
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Figure 1.1.15

The position vector of the jth atom r; can be decomposed into a vector Ry
from the origin of the crystal to the origin of the unit cell containing the
jth atom, and the vector u, from the unit cell origin to the jth atom.

As we discussed above, the direct-space lattice has a reciprocal
lattice associated with it which determines the positions of the
Bragg peaks, or allowed delta functions of scattered intensity. The
reciprocal lattice is actually a Fourier transform of the periodic
lattice in direct space. The convolution theorem of Fourier
transforms tells us that a convolution of two functions in direct
space will result in a product of the Fourier transforms of those
functions in the Fourier space. Since the structure is a convolu-
tion of the direct-space lattice with the structural motif, the
reciprocal lattice will be multiplied by the Fourier transform of
the structural motif. This Fourier transform of the structural motif
is called the crystallographic structure factor, F,.

This result can be readily derived from equation (1.1.52). In
this equation r; is the vector from the (arbitrary but fixed) origin
to the jth atom in the material. If we now think of the crystal as
consisting of n identical cells, each containing an identical
structural motif consisting of m atoms, we can write r; as a sum of
two vectors: a vector that goes from the origin to the corner of the
sth unit cell that contains the jth atom, and a second vector that
goes from the corner of the sth cell to the position of the jth atom.
This is illustrated in Fig. 1.1.15.

Equation (1.1.52) can then be written as

n m

A(h) = Y- > fi(h) exp (27ih - (R, +u))),

s=11=1

(1.1.53)

where it is readily seen that the first sum is taken over all the cells
in the crystal and the second sum is taken over the m atoms in the
structural motif. The equation is readily factored as follows:

A(h) = Y exprih-R) S fi(h) expih -w).  (1.1.54)
s=1 t=1

Taking # to infinity, we immediately recognise the first sum as the

lattice sum of equation (1.1.43), and we can therefore rewrite
equation (1.1.54) as

A(h) =Y. £(h) exp(2ih - w,)

« i_, 5[ — (b - &)a]3[v — (0 - B)B]6[n — (b - )],
A(h) = Fyy, i:_ 81t — (h - &)al8[v — (b - B)B]3[n — (h - &)c].

(1.1.55)

The delta functions determine the positions of the reciprocal-
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Figure 1.1.16

Graphical illustration of the summation of scattered wave amplitudes f,
in the complex plane, accounting for the phase shifts coming from the
different positions of the atoms in the unit cell.

lattice points (directions of the Bragg peaks), and their intensities
are multiplied by a factor, the crystallographic structure factor,

Foy = f:ft(h) exp(27wih - u,). (1.1.56)
=1

If we write each term as a complex number denoted f,, we can
represent this complex sum as a vector sum in the complex plane,
as illustrated in Fig. 1.1.16, where the ¢, = 27rh - u,. The intensity
of the Bragg peak depends only on the length of the F,;, not its
direction. However, its length depends on both the lengths and
the phases of each contribution, which in turn depend on the
positions of the atoms within the unit cell. This is the phase
information that is ‘lost’ in a diffraction experiment. Given a
structure, we can directly calculate all the Bragg-peak intensities
(the ‘forward problem’). However, given all the Bragg-peak
intensities, we cannot directly calculate the structure (the ‘inverse
problem’). Structure determination uses the measured intensities
and reconstructs the lost phase information using various itera-
tive methods and algorithms.

In fact, the intensity of a Bragg reflection A4kl is given by the
squared absolute value of the structure-factor amplitude Fj,y,

Fyl” = ilft(h)f;f(h) exp (27ih - (u, — u,)).

=

(1.1.57)

where * indicates the complex conjugate. This analysis shows that
the positions of the Bragg peaks determine the geometry of the
periodic lattice (the size and shape of the unit cell, for example),
but the intensities of the Bragg peaks are determined by the
relative positions of atoms within the unit cell, scaled by their
respective scattering power. To solve the internal structure of the
structural motif within the unit cell, it is necessary to measure
quantitatively the intensities of many Bragg peaks and use some
kind of iterative procedure to move the atoms within the cell until
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Figure 1.1.17

Schematic illustration of the projection of the reciprocal a*¢* plane
(representing the three-dimensional reciprocal-lattice space) into the
one-dimensional powder pattern.

the calculated structure factors self-consistently reproduce the
intensities of all the measured Bragg peaks.

The situation is not fundamentally different in a powder
diffraction experiment from the single-crystal case, except that
the Bragg peaks in three-dimensional reciprocal space are
projected into one dimension, as shown in Fig. 1.1.17.

‘Indexing’ is the term used for deriving the lattice parameters
from the positions of the Bragg peaks (see Chapter 3.4). Once the
size and shape of the reciprocal lattice is determined, Miller
indices can be assigned to each of the Bragg peaks in a one-
dimensional powder pattern. If it is possible to extract the
intensities of those peaks from the pattern, diffraction data from
a powder can be used to reconstruct the three-dimensional
structure in exactly the same way as is done with data from a
single crystal. This process is known as structure solution from
powder diffraction, and is often successful, although it is less well
automated than structure solution from data from single crystals.
As mentioned above, the main problem with powder data is a loss
of information due to systematic and accidental peak overlap, but
this can often be overcome.

There are various methods for extracting quantitative peak
intensities from indexed powder patterns by computer fitting of
profiles to the Bragg peaks at their known positions. Two of the
most common are Pawley refinement (Pawley, 1981) and Le Bail
refinement (Le Balil ef al., 1988), as discussed in Chapter 3.5.

In general, the intensities of the Bragg reflections must be
corrected by the product K, of various correction factors. Some
common correction factors are given by

K, = M, Abs,, Ext,, LP,, PO, ..., (1.1.58)
where M,,, is the multiplicity, Abs,,, is an absorption correction,
Ext,,, is an extinction correction, LP;; is the geometrical
Lorentz—polarization correction and PO,,; is a correction for
preferred orientation (see Chapter 4.7).

If there is more than one crystalline phase present in the
sample, and the structures of all the crystalline phases are known,
then we can find a scale factor for each phase in the mixture
which reproduces the data. This is then a way of determining the
proportion of each phase in the sample. This is called quantitative
phase analysis (see Chapter 3.9).
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Figure 1.1.18

Normalized peak-shape functions. (@) The hat function, (b) the Gaussian function and (c) the Lorentzian function.

1.1.4. The peak profile

The peak profile refers to the shape of the measured Bragg peak.
In the treatment above, the Bragg peaks from a perfect infinite
crystal were delta functions and therefore infinitely narrow. In
reality, the finite size of the crystal, the finite resolution of the
measurement and defects in the material that result in inhomo-
geneous strains all broaden the delta function, giving it a finite
width and some characteristic shape. When fitting a model to the
measured diffraction pattern we should correctly account for
these effects in order to obtain correct values for the Bragg-peak
intensities. On the other hand, a careful study of the peak shapes
yields important information about the size of the crystallites in
the sample and defects that they contain. With recent improve-
ments in instrumentation and computational data-analysis
methods, this latter type of study has become more important and
is having considerable scientific and technological impact.

The convolution theorem of the Fourier transform that was
introduced in the derivation of the crystallographic structure
factor above is also very useful in understanding the peak profile.
In this case, the measured Bragg peak can be thought of as a delta
function convoluted with a profile (Klug & Alexander, 1974). The
profile of the Bragg reflection hkl, ®,,,, can be written as

(20, — 20,,,) = EP(26,) ® IP(26,) ® MS(20; — 26),;,),
(1.1.59)

where EP(20,) is the emission profile of the X-ray source (tube or
synchrotron), IP(26,) contains additional contributions to the
profile from the instrument and MS(26; — 26,,,) is the contribu-
tion from the microstructure of the sample. The symbol ®
denotes convolution.

The convolution of two functions f(f) and g(¢) in real space is
defined as

(o0 = | f@si—d (1.1.60)

The convolution theorem tells us that the Fourier transform (FT)
of two convoluted functions is the product of the Fourier trans-
forms of those functions:

FT(f ® g)(1) = (FT(f))(FT(g)). (1.1.61)

Normalization of the transform leads to scaling factors like 27
which have been omitted here for simplicity.
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In practice, numerical integrations are almost always required,
as many of the instrument aberration functions cannot be
convoluted analytically. This convolution approach is the basis of
the so-called fundamental-parameter (FP) approach (Cheary &
Coelho, 1992) and has proven to be superior to other more
empirical or phenomenological methods. The idea behind the FP
approach is to build up the profile from first principles, exclu-
sively using measurable physical quantities like slit widths, slit
lengths, Soller-slit opening angles etc. The process of convolution
from a fundamental-parameters perspective is an approximation
whereby second- and higher-order effects are typically neglected
for computational speed and simplicity. The instrumental profile
is usually fully characterized by measuring a line-profile standard
such as NIST SRM 660c LaBg, which is expected to contain only
small microstructural contributions, and comparing the calcu-
lated diffraction pattern to the measured one. Once the instru-
mental part of the profile is sufficiently well determined, it can be
assumed that the remaining contributions to the ‘real’ profile are
purely sample dependent (e.g. domain size, strain).

In general, it is desirable to keep the number of functions that
are used to describe the peak profile to a minimum. Typical
examples of mathematical functions which are convoluted to
form the profile of a Bragg reflection include:

(a) the hat function H (e.g. for all kinds of rectangular slits),

A for —a/2 < (20 —20,,,) <a/2,
0 for (26 —26,;,) < —a/2
and (20 —26,,) > —a/2

H(20—26,,) = (1.1.62)

(Fig. 1.1.18a);
(b) the normalized Gaussian G (e.g. for microstrain broad-
ening),

2./In(2 —41n(2)(26 — 26,,,)*
G(Z@ — 29th) = ( 71:\;;11)\{[7-[) CXP( n(Fi)(VHMZ hkl) >,

(1.1.63)

(Fig. 1.1.18b), where FWHM denotes the full width at half
maximum of the Gaussian function in ° 260; and
(c) the Lorentzian function L (e.g. for the emission profile),

1
2

FWHM

L(26 —26,,) =
( hia) ((29 —26,,,) + FWHM? /4

), (1.1.64)

(Fig. 1.1.18¢).
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Figure 1.1.19

Peak fits of three selected reflections for an LaBg¢ standard measured with Mo Ko radiation (A = 0.7093 A) from a Ge(220) monochromator in Debye—
Scherrer geometry using the fundamental-parameter approach. (a) A pure Lorentzian emission profile with a half width of 0.2695 mA is applied,
refining the peak position and intensity only; (b) additionally, a hat shape function of the receiving slit in the equatorial plane with a width of 0.1 mm
has been convoluted into the profile; (c) additionally, an axial convolution with filament-, sample- and receiving-slit lengths of 8 mm each and a
secondary Soller slit with an opening angle of 2.5° has been convoluted into the profile; (d) additionally a small contribution of Gaussian broadening
coming from the position-sensitive detector is convoluted into the profile. [From Mittemeijer & Welzel (2012). Copyright Wiley-VCH Verlag GmbH &

Co. KGaA. Reproduced with permission.]

These functions can be convoluted sequentially as needed, first
with the delta-function Bragg peak, and subsequently with the
existing profile from the previous convolutions, each time
resulting in a new profile that can become quite complex (Fig.
1.1.19). It is often the case that for a particular resolution effect
the angular dependence of the profile function is known from the
geometry of the measurement, and the convolution function for
each peak is determined with only a very small number of
parameters.

1.1.4.1. Sample contributions to the peak profile

Features of the sample that affect the peak profile include
crystallite domain size and shape, dislocations, disclinations, twin
and stacking faults, antiphase domains, microstrains, grain surface
relaxations, and compositional fluctuations. Here we reproduce
some basic results as examples; they also illustrate some funda-
mental aspects of diffraction from real crystals.

1.1.4.1.1. Crystallite size

The starting point for the analysis of finite size effects is the
Laue equation, equation (1.1.39), which is reproduced here for a
one-dimensional crystal:

A(h) =

exp(2miajh). (1.1.65)
=0

J

When we were deriving the Bragg equation from the Laue
equation we assumed an infinite crystal, and the sum taken to
infinity resulted in delta functions at the reciprocal-lattice points.
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Now we want to consider a finite crystal with n unit cells. There is
an analytic form for this sum which, using Euler’s identity, is
given by

exp (27i(n + 1)ah) — 1
exp(2miah) — 1
_exp (in(n + 1)ah) exp (in(n + 1)ah) — exp (—irr(n + 1)ah)

Ah) =

exp(irah) exp(iah) — exp(—imah)
sin (77(n + 1)ah)

g (1.1.66)

= exp(imnah)

The intensity is obtained by taking the modulus squared of this
complex function, resulting in

sin’ (n(n + 1)ah)

Iy = sin®(rah)

(1.1.67)

This function has sharp maxima when 4 = v(1/a), where v is an
integer. This large central maximum falls off with a width
proportional to 1/n* with oscillating tails of intensity where the
frequency of the oscillations increases with increasing z. This is
illustrated in Fig. 1.1.20 for two different values of n but the same
value of a.

In general, the Fourier transforms of periodic patterns become
sharper with increasing number of unit cells. The expression
sin(7z(n + 1)ah)/sin(;ah) is also called the geometric factor of the
structure amplitude.

This size broadening is often modelled in practice by using an
equation due to Scherrer. We now reproduce the simple deri-
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Figure 1.1.20

Normalized intensity from a finite lattice with n = 3 (solid curve) and n =
8 (dashed line), demonstrating the sharpening of peaks with increasing
number of unit cells n. The normalization was done such that the peaks
have the same peak maximum rather than the same integrated intensity
for a clearer comparison of the relative peak widths.

vation of the Scherrer equation following Klug & Alexander
(1974).

Fig. 1.1.21 shows the path-length difference versus the depth of
the lattice plane. When the angle between the incoming beam
and the lattice plane 0 is different by an amount ¢ from the Bragg
condition, it is always possible to find a lattice plane inside an
infinite crystal where the extra path is A = A(n + 1) for n integer,
producing destructive interference. For a thick crystal this is true
for arbitrarily small ¢, which explains the sharp Bragg reflections.
In the case of a crystal with finite dimensions, for small ¢ the
plane for which A = A(n + 1) holds will not be reached, thus
leading to an intensity distribution over some small angular
range. We can use this idea to estimate the broadening of a Bragg
reflection due to size effects.

The thickness of a crystallite in the direction perpendicular to
p planes of separation d;,;; (Fig. 1.1.21) is

Ly = pdjyg- (1.1.68)

The additional beam path between consecutive lattice planes at
the angle 6 + ¢ is
A = 2dsin(0 + ¢)
= 2d(sin O cos € 4 cos fsin €)

= nAcos & + 2d sin g cos 6

>~ nA + 2dsin & cos 6. (1.1.69)
The corresponding phase difference is then
A 4 4med cos 0
8(p=2n7=2nn+%sdc059=$ (1.1.70)

and the phase difference between the top and the bottom layer
(layer p) is then

dmedcos®  4mL,,ecosb
pop = pLLa0 T T mat €8T (1.1.71)
A A
Rearranging equation (1.1.71) leads to
AS
—_ P (1.1.72)
4rL,,, cos O

which gives an expression for the misalignment angle in terms of
the crystallite size L,;; and the phase difference d¢ between the
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Figure 1.1.21

Path-length difference of the scattered ray versus the depth of the lattice
plane in the crystal. [Reproduced from Dinnebier & Billinge (2008) with
permission from the Royal Society of Chemistry.]

3

reflections originating from the top plane and the bottom plane.
Clearly, the scattered intensity is at a maximum for §¢ =0
(¢ = 0). With increasing ¢ the intensity decreases, giving rise to a
peak of finite width. Perfect cancellation of the waves from the
top and bottom planes occurs for a phase difference of §¢ = =+,
at which point & = £ /(4L,,, cos 0). On a 20 scale, the measured
angular width between these points is

B = 4e = (1.1.73)

Ly cosf’
giving us some measure of the peak width in radians that results
from the finite particle size. A full treatment taking into account
the correct form for the intensity distribution gives

KX

—_—, (1.1.74)
Ly, cos6

ﬁhkt =

with a scale factor of K = 0.89 for perfect spheres. In general K
depends on the shape of the grains (e.g. K is 0.94 for cube-shaped
grains), but it is always close to unity. This equation is not valid
for crystallites® that are too large or too small. In the case of large
crystallites the peak width is governed by the coherence of the
incident beam and not by particle size. For nanometre-sized
crystallites, Bragg’s law fails and the Debye equation needs to be
used instead. The Debye equation (see Section 1.1.5.3) gives the
scattering from an isotropically scattering sample such as a
glass, liquid or powder, and does not presume that the sample is
periodic.

1.1.4.1.2. Microstrain

Several important relationships in crystallography, including
the effect of strain and microstrain on Bragg peaks, follow
directly from a derivative of the Bragg equation (1.1.3). First we
rewrite Bragg’s law making the d-spacing the subject of the
equation:

na

= . 1.1.75
2sin 6 ( )

The uncertainty of the measured lattice spacing is given by the
total derivative dd,

d
dd—a—d9+a—d)»

1.1.
a6 o (1.1.76)

3 Strictly speaking, the term crystallite size here refers to the dimension of a
coherently scattering domain. Only in a perfect crystal is this the grain size.
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Table 1.1.1
Types of scattering from a sample

Type of scattering Coherent

Incoherent

Elastic Bragg scattering Laue monotonic diffuse scattering
Magnetic Bragg scattering Neutron incoherent scattering
Bragg scattering from ferroelectric/magnetic order Multiple scattering (incoherent)
Diffuse scattering from static defects
Diffuse signal from small nanoparticles (<10 nm)
Scattering from amorphous material (except excitations)
Multiple scattering (coherent)
Inelastic Thermal diffuse scattering Compton scattering
Spin-wave scattering Fluorescence
Paraelectric/paramagnetic scattering Incoherent scattering from hydrogen
Scattering from liquids
leading to defined as follows. The coherency of the signal derives from
i cosd whether or not the scattered waves interfere with each other
dd = ————d0+——dx (1.1.77) constructively, and the resulting intensities are different in each
2sinfsinf 2sinf . o .
case. For coherent scattering, the waves contributing to the signal
and finally are all summed first, before the wave amplitude is squared, to find
dd 4o da the intensity distribution, which is the modulus squared of the
T "wne o (1.1.78) resulting wave. For incoherent waves, one simply squares the

When a crystal is strained, the d-spacings vary. A macroscopic
strain changes the interplanar spacing by Ad,,,, giving rise to a
shift of Af in the average position of the diffraction peak. On the
other hand, microscopic strains result in a distribution of
d-spacings of width dd,,;, which has the effect of broadening the
diffraction peak by 86. Equation (1.1.78) gives an expression for
the amount of Bragg-peak broadening that occurs for a given
Sdlp-

1.1.5. The background
1.1.5.1. Information content in the background

As discussed above, the elastic scattering from a crystalline
powder consists of sharp rings, or peaks, of scattering at the 260
angles where the Bragg or von Laue laws are satisfied. In general
these sharp peaks sit on top of a ‘background’ which is broad and
somewhat featureless. There are two components to this back-
ground, illustrated in Fig. 1.1.1: extraneous counts in the detector
from things other than the sample, and non-Bragg scattering from
the sample itself. The former are rarely of interest scientifically
and the objective of a good experimental design is to minimize
them as far as possible, or explicitly measure and subtract them,
and then account well in any model or data interpretation for the
part that cannot be eliminated from the measurement. Histori-
cally, the diffuse-scattering signals from the sample itself were
also considered to be an inconvenience to be minimized and
removed, and indeed in many cases this is still the best course of
action (for example, sample fluorescence can be eliminated by
choosing to work at an X-ray energy that lies below the
absorption edge of a constituent atom). However, the diffuse
‘background’ from the sample can contain crucial information
about defects, disorder and nanoscale order in the sample, and
increasingly we are interested in studying it in order to under-
stand the properties of the material that is under investigation. In
some cases, such as glasses, liquids and samples of small nano-
particles, there is no Bragg scattering at all and only a diffuse
scattering signal (see Chapter 5.6).

All the intensity scattered by the sample can be categorized as
either coherent or incoherent and as elastic or inelastic, which are
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amplitude of each wave to get its intensity and sums these
together to get the total intensity. Switching to a consideration of
the elasticity of the scattering, we define the scattering as elastic if
the incident and scattered waves have the same energy, in which
case no energy was exchanged during the scattering process
between the incident wave and the sample, and inelastic scat-
tering as the opposite. Inelastic scattering may result in a gain or a
loss of energy of the scattered particle depending on the nature of
the scattering, which results in a change in the wavelength of the
scattered particle. There are also some non-scattering processes
that can take place, such as absorption and fluorescence, but
emissions resulting from these processes can also be categorized
by whether or not they are coherent and elastic. It should be
noted that the total energy of the system must be conserved
during the scattering process, and so when a scattered wave gains
or loses energy it exchanges it with the sample. This is used as a
way of probing excitations in a material. Table 1.1.1 summarizes
many of the types of diffuse scattering coming from a sample and
categorizes them by their coherency and elasticity.

1.1.5.2. Background from extraneous sources

The most commonly observed extraneous, or parasitic, scat-
tering is from the sample container (such as a capillary) that holds
the sample during the measurement. Another large contribution
may come from air scattering, which originates principally from
scattering of the direct beam by molecules in the air in the beam
path, both before and after the sample. Air-scattering effects can
be minimized by enclosing as much of the beam path as possible
in a tube which may be evacuated or where the air is replaced by
a weakly scattering gas (such as He in the case of X-rays). Air
scattering that is detected by the detector can also be reduced by
careful collimation of the beams and then shielding the detector
from detecting radiation that does not originate from the sample
position. Collimating the incident beam is straightforward and
results in a big reduction in air scattering. For point detectors it is
also straightforward to collimate the scattered beam, but the
modern trend towards using linear and area detectors makes this
more difficult. There is sometimes a trade-off between colli-
mating the scattered beam to reduce background and having
uniform backgrounds that do not vary with angle because of
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incomplete angle-dependent collimation. Incomplete angle-
dependent collimation can be very difficult to correct when trying
to measure diffuse scattering quantitatively and the current trend
is to have minimal secondary collimation.

There is increasing interest in carrying out in situ experiments
under extreme conditions of pressure, temperature, magnetic
field and so on (see Chapters 2.6 to 2.8). These experiments
inevitably introduce additional scattering from the environment.
Again, there is a balance between finding creative ways to reduce
these backgrounds, and simply making them less problematic in
the data analysis. For example, in a diamond-anvil cell, where the
beam accesses the sample through the diamond, one can drill a
hole part way through the diamond to accommodate the direct
beam and make the direct beam small enough to fit in the hole.
This increases the complexity of the measurement as alignment
becomes harder, but it is usually worth it. Shielding structural
parts of the environment cell with an absorbing material, such as
lead for X-rays or a borated material for neutrons, can help to
reduce unwanted background intensity a lot, as can making thin,
transparent windows for the incident and scattered beams.

An additional source of background in the signal does not
come from scattering at all, but from electrical noise in the
detector electronics. For some types of detectors it may be
important to measure ‘dark’ exposures with the X-rays turned off
and subtract these carefully from the experimental data. It is also
possible to detect signals from cosmic rays, which can leave tracks
in two-dimensional detector signals.

1.1.5.3. Sources of background from the sample
1.1.5.3.1. Elastic coherent diffuse scattering

As discussed in Section 1.1.4.1.1, decreasing the size of a crystal
leads to an increase in the width of the Bragg peaks. When the
size of the crystallite becomes very small, as a rule of thumb
below 10 nm in diameter for typical unit cells, the widths of the
Bragg peaks become so large that they merge and overlap, and it
does not make sense to use delta-function Bragg peaks as the
starting point for the analysis. At this point the coherent
diffraction is completely diffuse in nature. Nonetheless, it still
contains structural information. To see this we begin again with
the Laue equation before we assumed periodicity [equation
(1.1.39)]. For the simple case of a diatomic gas such as N,, the sum
would be taken only over two atoms, since scattering from a
single molecule will be coherent but that from different mole-
cules will be incoherent. In that case we have

A(h) = ]i:fj(h) exp(2rtih - 1)),
A(h) = f, exp(2wih - ;) + f, exp(27ih - 1), (1.1.79)
and the intensity is proportional to
I(h) = (R + L5 + Af5 exp (2ih - xyy)
+ fff exp (—Zm'h - 1'12)a (1.1.80)

where r;, =r; — r,. For a diatomic molecule where both atoms are
the same f; = f, and

I(h) = f*f cos*(wth - 1,,).

The scattering from a diatomic molecule of an element is simply a
single-component cosine wave with a wavelength that depends on
the separation of the atoms in the molecule. In an actual
experiment there will be scattering from all the molecules that
have every orientation with equal probability, so it is necessary to

(1.1.81)
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take an orientational average of the scattering. How this is done
is shown in Chapter 5.7 on PDF analysis, but the result is the
Debye equation (Debye, 1915),

sin(Qr;)
o

where N is the total number of atoms. For our diatomic molecule
this becomes

I(h) = (1.1.82)

sm(Q”,]):| _ (1.1.83)

For clusters of atoms such as larger molecules or small nano-
particles that are intermediate in size between a diatomic mole-
cule and a small chunk of crystal, the Debye equation is exact and
may be used to calculate the intensity of the scattering. As the
clusters get larger and the structure more periodic, such as small
chunks of crystal, the scattering calculated from the Debye
equation crosses smoothly to that obtained from the periodic
Laue equation. The finite size broadened crystallographic model
works well as a starting point for calculating scattering from well
ordered crystals down to nanoparticle sizes of 10 nm, but loses
accuracy rapidly below this particle size. The Debye equation is
accurate for all particle sizes, but becomes computationally
intractable for larger clusters much above 10 nm.

1.1.5.3.2. Total-scattering and atomic pair distribution function
analysis

An alternative approach to the analysis of diffuse scattering
from nanostructures is to Fourier transform the data to obtain the
atomic pair distribution function, or PDF. In fact, the Fourier
transform does not depend on whether the structure is periodic
or not, and it is also possible to Fourier transform the Bragg
scattering from crystals. If there is no nanoscale disorder in the
crystal there are few real benefits in doing this rather than using
the powerful crystallographic methods described elsewhere in
this chapter. However, the PDF approach utilizes both the Bragg
and diffuse components, and yields additional information about
the structure that is particularly valuable when the crystal
contains some kind of nanoscale domains. The presence of such
domains was rarely considered in the past, but we now know that
they are often found in materials. In the sense that both Bragg
and diffuse scattering data are used without prejudice, and also
that the data are measured over a wide range of the scattering
vector so that, as far as possible, the coherent scattering in all of
the reciprocal space is measured, this method is known as ‘total-
scattering analysis’, and as ‘PDF analysis’ when the data are
Fourier transformed and studied in real space.

The powder diffraction data for total-scattering studies are
measured in much the same way as in a regular powder
diffraction experiment. However, explicit corrections are
made for extrinsic contributions to the background intensity
from such effects as Compton scattering, fluorescence, scat-
tering from the sample holder and so on. The resulting
coherent scattering function I(Q) is a continuous function of
0 = |Q| =2h = 4msin /A, with sharp peaks where there are
Bragg reflections and broad features in between. In general it is
usual to work with a normalized version of this scattering
intensity, S(Q). This is the intensity normalized by the incident
flux per atom in the sample. S(Q) is called the total-scattering
structure function. It is a dimensionless quantity and the
normalization is such that the average value (S(Q)) = 1. In short,
S(Q) is nothing other than the powder diffraction pattern that
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Figure 1.1.22

Comparison of raw data and the normalized reduced total-scattering
structure function F(Q) = Q[S(Q) — 1]. The sample is a powder of 2 nm
diameter CdSe nanoparticles and the data are X-ray data from beamline
6ID-D at the Advanced Photon Source at Argonne National Laboratory.
The raw data are shown in the top panel. The high-Q data in the region Q
>9 A~! appear smooth and featureless. However, after normalizing and
dividing by the square of the atomic form factor, important diffuse
scattering is evident in this region of the diffraction pattern (bottom
panel).
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Figure 1.1.23

PDFs in the form of G(r) from bulk CdSe and from a series of CdSe
nanoparticles. The blue curve at the bottom is the PDF obtained from the
data shown in Figure 1.1.22. The blue symbols are from the data and the
thin red lines on top are from models of the local structure in these
nanoparticles. Offset below are difference curves between the model and
the data. [Reprinted with permission from Masadeh et al (2007).
Copyright (2007) by the American Physical Society.]
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has been corrected for experimental artifacts and suitably
normalized (Egami & Billinge, 2013).

Measuring over a wide range of Q values yields better reso-
lution in real space, as well as yielding more information, and is
desirable. The coherent intensity (the features) in S(Q) dies out
with increasing Q because of the Debye—Waller factor (which
comes from thermal and quantum zero-point motion of the
atoms), as well as any static displacive disorder in the material
and, for X-ray measuerments, because of the X-ray form factor.
In a neutron measurement, the atomic displacement effects are
still present, but the neutron has no form factor and the scattering
length is constant in Q. By a Q value of 30-50 A~! (depending on
the temperature and the stiffness of the bonding in the sample)
there are no more features in S(Q) and there is no need to
measure data to higher Q. Still, this is a much higher maximum
value of Q than is measured in conventional powder diffraction
experiments using laboratory X-rays or reactor neutrons. The
maximum value of Q attainable in back scattering from a Cu Ko
tube is around 8 A~ and from an Mo Ka tube it is around
16 A~'. Routine total-scattering measurements can be made
using laboratory sources with Mo or Ag tubes; however, for the
highest real-space resolution, and the smallest statistical
uncertainties, synchrotron data are preferred. In the case of
neutron scattering, spallation neutron sources are ideal for total-
scattering experiments.

The total-scattering function S(Q) appears to be different from
the function measured in a standard powder diffraction experi-
ment because of the QO range studied, and also because of an
important aspect of the normalization: the measured intensity is
divided by the total scattering cross section of the sample. In the
case of X-ray scattering, the sample scattering cross section is the
square of the atomic form factor, ( f(Q))z, which becomes very
small at high Q. Thus, during the normalization process the data
at high Q are amplified (by being divided by a small number),
which has the effect that even rather weak intensities at high Q,
which are totally neglected in a conventional analysis of the data,
become rather important in a total-scattering experiment.
Because the signal at high Q is weak it is important to collect the
data in that region with good statistics. This is illustrated in Fig.
1.1.22.

The Fourier transform of the total-scattering data is the
reduced pair distribution function, G(r), which is related to S(Q)
through a sine Fourier transform according to

Onmax

=2 [
Omin

Q[S(Q) — 1]sin(Qr) dQ. (1.1.84)

Examples of G(r) functions from small nanoparticles of CdSe are
shown in Fig. 1.1.23.

G(r) has peaks at positions, r, that separate pairs of atoms in
the solid with high probability. For example, there are no physi-
cally meaningful peaks below the nearest-neighbour peak at
~2.5 A, which is the Cd-Se separation in CdSe. However, in
addition to the nearest-neighbour information, valuable struc-
tural information is contained in the pair correlations that extend
to much higher values of r. In fact, with data to a high resolution
in Q, PDFs can be measured out to hundreds of nanometres (i.e.,
thousands of angstroms) and the structural information that can
be obtained from the data remains quantitatively reliable
(Levashov et al., 2005).

The function G(r) is related to the atomic density. However, it
is not the atomic density itself, but its autocorrelation. This is
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obtained by taking the atomic density of the molecule or cluster
(which are the atoms at their respective positions) and convo-
luting it with a replica of the same thing. This object is then
orientationally averaged to obtain the PDF. It is not a particularly
intuitive object, but it is straightforward to calculate it from a
given structural model. The inverse problem, calculating the
structure from a PDF, is not possible directly, although in
favourable cases, as with structure solution from powder
diffraction, it is possible to obtain a unique structure solution
from a PDF (Juhas et al., 2006).

We described above how to obtain G(r) from powder data.
Here we briefly describe how to calculate a PDF from a structural
model. To do this we have to introduce a related function to the
PDF, the radial distribution function (RDF), R(r), which is
related to G(r) by

G(r)= @ — dmrp,, (1.1.85)
where py is the atomic number density (Egami & Billinge, 2013).

The function R(r) is important because it is more closely
related to the physical structure than G(r), since R(r) dr gives the
number of atoms in an annulus of thickness dr at distance r from
another atom. For example, the coordination number (or the

number of neighbours) of an atom, N, is given by

n
Nc = [ R(r)dr,

n

(1.1.86)

where r; and r, define the start and end positions of the RDF
peak corresponding to the coordination shell in question. This
suggests a scheme for calculating PDFs from atomic models.
Consider a model consisting of a large number of atoms situated
at positions r, with respect to some origin. Expressed mathe-
matically, this amounts to a series of delta functions, 8(r — r,).
The RDF is then given as

R(r):%XU:XM:S(r_rWL)»

where r,,, = [r, — r,| is the magnitude of the separation of the vth
and pth ions, and the double sum runs twice over all atoms in the
sample. In Chapter 5.7 on PDF analysis we address explicitly
samples with more than one type of atom, but for completeness
we give here the expression for R(r) in this case:

R =Y Zf(cff; 50— 1,0),

(1.1.87)

(1.1.88)

v n

where f, and f,, are the form factors, evaluated at Q = h = 0, for
the vth and pth atoms, respectively, and ( f) is the sample-average
form factor.

1.1.5.3.3. Inelastic coherent diffuse scattering

Scattering events must conserve energy and momentum. When
a wave is scattered it changes direction and therefore changes its
momentum. To satisfy conservation, this momentum, Q = 27h =
27(s — sy), must be transferred to the material. When radiation is
scattered by a crystal, the mass of the crystal is so large that this
produces a negligible acceleration and the scattering is elastic.
However, scattering from free atoms or fluids will produce a
recoil, which results from a transfer of energy to the atom and the
scattering is strictly inelastic. Even within a bulk crystal, there are
lattice excitation modes (phonons) which may be created during
a particular scattering event and the resulting scattering is
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inelastic. In an X-ray experiment, the energy resolution of the
measurement usually is much too poor to separate this from the
elastic scattering and it all appears mixed together (and is often
simply referred to as ‘elastic scattering’). As the excitation
energies of internal modes of the system have energies of the
order of meV (107> eV) and the X-ray energy is of the order of
keV (10°eV), resolving the inelastic modes would require an
energy resolution of AE/E = 107°, which is often unachievable.
Nonetheless, such experiments are now carried out at synchro-
tron sources and provide important scientific insights, although
the experiments are very slow and very specialized (Burkel,
1991).

These experiments are rarely carried out on powders. If the
inelastic scattering is not resolved during the measurement, as is
usually the case, it appears as a diffuse-scattering component in
the signal from the powder or single crystal and it can be inter-
preted and modelled to extract information. In powder diffrac-
tion, when the scattering occurs from lattice vibrations, or
phonons, the diffuse signal is called ‘thermal diffuse scattering’
or TDS (Warren, 1990). Over the last 50-60 years, a number of
attempts have been made to extract information about phonon
energies and phonon dispersions from TDS with varying amounts
of success (Warren, 1990; Jeong et al., 1999; Graf et al., 2003;
Goodwin et al., 2005). In the case of PDF analysis, the informa-
tion in the TDS manifests itself in real space as correlated
motion, and it is observed that the low-r peaks are sharper than
the high-r peaks. This is because closely bonded atoms tend to
move together: if an atom moves to the right it tends to push its
neighbour also over to the right, so the motion is correlated.
There is useful information in the TDS and the r dependence of
the PDF peak broadening, but this is at best a very indirect way of
measuring lattice-dynamical effects.

When the energy transfer is not resolved it is hard to separate
the cases of scattering arising from phonons (which are dynamic
atomic displacements) and scattering arising from static atomic
displacements. To some extent these can be disentangled by
studying the temperature dependence of the atomic displacement
parameters (ADPs) obtained from modelling the data either in
reciprocal space or real space (Billinge et al., 1991). This is often
done by using a Debye model (Debye, 1912), where the
temperature dependence of the mean-square ADP is given by

— 30T 0 16
u (47T2Mk39§)> |:¢<T> +4 Ti| + offset? ( )
where
0,/T
0 T
o[22 z_/ —* |dx (1.1.90)
T 0p exp(x) — 1

0

is the Debye integral. Here, 6, is the Debye temperature, which is
a measure of the stiffness of the bonding, /# and kg are Planck’s
and Boltzmann’s constants, respectively, and M is the mass of
the oscillating atom. The constant A, 1S a temperature-
independent offset that is generally needed in the model to
account for static distortions. The Debye model is rather crude
but surprisingly useful and works well in many cases.

As in the case of phonons, if the scatterer couples to something
else in the solid that has an excitation spectrum, this can be
studied too. The case of neutrons scattered by magnetic moments
is the best known example. Inelastic scattering gives direct
information about the magnon dispersion curves. Information
about magnetic excitations may also be obtained indirectly from
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Spectrum from an energy-resolving detector that shows the elastic and
Compton signals as a function of scattering vector Q. [Reprinted with
permission from Petkov er al. (2000). Copyright (2007) by the American
Physical Society.]

the non-energy-resolved magnetic diffuse scattering signal.
Magnetic PDF is now possible (Frandsen & Billinge, 2015) as
described in Chapter 5.7, as well as reciprocal-space studies of
magnetic diffuse scattering (Paddison & Goodwin, 2012).

1.1.5.3.4. Incoherent scattering

Incoherent scattering does not contain any structural infor-
mation, and cannot be used to study structure in a diffraction
experiment since the intensities of the scattered waves do not
depend on the position of the scatterers. This does not mean that
all incoherent scattering intensity is useless. The fluorescence
intensity is incoherent, but may be used in EXAFS experiments
to yield structural information. This is because coherent scat-
tering of the photoexcited electron during an absorption event
modulates the absorption cross section and therefore the inco-
herent fluorescence intensity, so a coherent scattering process
leaves a measurable response in an incoherent intensity. Inco-
herent scattering can also be used to measure excitations,
although all momentum-transfer information is lost so it is not
possible to measure, for example, dispersions of excitations such
as phonons and magnons. Even if the scattering process is inco-
herent, the energy exchanged between the probe and the sample
can be measured by the change in wavelength of the scattered
wave, and the amplitude of the scattering at each energy transfer
is proportional to the density of states of the excitation being
probed. In the case of neutrons, the very large incoherent cross
section for scattering by hydrogen (~100x the scattering cross
section of most atoms) provides a strong signal for studying low-
probability inelastic scattering events. Measuring inelastic scat-
tering from powders can be a rapid way of determining the
density of states of phonons, magnons and so on, which is
very useful for determining the thermodynamic properties of
materials, even though it is less precise than measurement of the
full set of dispersion curves.
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Another type of incoherent scattering that can be observed in
X-ray experiments is Compton scattering (Compton, 1923;
Cooper et al., 2004), which is an inelastic incoherent process
where the scattering atom recoils during the scattering event. An
example of Compton scattering measured in the spectrum from
an energy-resolving detector is shown in Fig. 1.1.24.

The Compton scattering is strong in this experiment because
the incident X-ray energy is high (80 keV) and the sample is a
low-atomic-number alumina-silicate glass. Both the high X-ray
energy and the low atomic numbers of the atoms in the sample
increase the Compton cross section with respect to the coherent
elastic scattering. As the magnitude of the scattering vector, Q, is
increased the Compton scattering moves to lower energy and
increases in intensity, but the elastic line stays fixed in energy and
its intensity decreases because of form-factor and Debye—Waller
effects. Momentum as well as energy is conserved in this process
and the Compton scattering can be used to measure the
momentum distribution of electrons in a material, although this
kind of experiment is not widespread these days.

Elastic incoherent scattering provides no information about
the sample, and simply degrades the signal-to-noise ratio of the
measurement. As such, it is just inconvenient and cannot be
easily removed. Monotonic Laue diffuse scattering originates
from different chemical species with different scattering powers
residing on different sites in the crystal, and when a destructive
interference condition is satisfied the resulting intensity does not
go to zero but is proportional to [fi(h) — f;(h)]” (Warren, 1990). In
pure elements in an X-ray experiment, the atoms on every site
are the same and there is no Laue diffuse scattering. This is not
true in neutron experiments where different nuclei have different
scattering powers and most elements contain a range of isotopes
in their natural form (the ‘natural abundance’; Squires, 1996).
This results in Laue diffuse scattering even in an element,
although it is normally not referred to in these terms but is
encompassed by a so-called ‘incoherent neutron cross section’
that is defined and tabulated (see Table 4.4.4.1 in International
Tables for Crystallography, Volume C) for each element. This is
not the only source of incoherent scattering in neutron diffrac-
tion, since the scattering power also depends on the relative
orientation of the neutron and nuclear spins. In general these
spins are all orientationally disordered (and fluctuating) and the
result is an additional scattering-event-dependent contribution to
the incoherent scattering from the sample, again encompassed by
the ‘incoherent neutron cross section’ of the element. Where
necessary, it may be possible to make isotopically enriched
samples for neutron experiments so that the proportion of
isotopes with large incoherent scattering cross sections is mini-
mized (or the isotopes are removed altogether), and the range of
isotopes can also be reduced, which further reduces the inco-
herent component of the signal. However, the cost and difficulty
of doing this means that it is rarely done.

1.1.6. Local and global optimization of crystal structures from
powder diffraction data

1.1.6.1. Rietveld refinement

More than 40 years have passed since the publication of the
pioneering papers by Hugo Rietveld (Rietveld, 1967, 1969), in
which he described a method for the refinement of crystal
structures from neutron powder diffraction data. Neutron data
sets from reactor sources were more amenable than X-ray data
sets to this method because the line profiles are quite Gaussian.
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However, it was not long before the method was extended to
X-ray powder diffraction. The quality of the data and the
computation power available these days have allowed the tech-
nique to develop enormously, to the point that even the
(successful) Rietveld refinement of small protein structures from
synchrotron powder diffraction data is now possible (see Chapter
7.1). Another development is the extension of the Rietveld
method towards parametric refinement on large numbers of
complimentary data sets with various as-yet unexplored new
applications. Rietveld refinement is so important it is described in
detail in Chapter 4.7, but we describe a number of important
fundamentals of the method here by way of introduction.

The basic idea behind the Rietveld method is simple: Instead
of extracting the integrated intensities of Bragg peaks and fitting
models to these, as would be done in single-crystal and early
powder diffraction studies, the full powder pattern, for example
available as step-scanned intensity data, is fitted using a model
whose parameters are refined using a least-squares procedure.
The model parameters are varied in such a way as to minimize the
sum of the squares of the difference between the n observed
Yobs; and n calculated Ycalc,({p}) step-scan intensities in the
powder pattern, where the latter are calculated from a model
containing a set of parameters {p}. The function that is minimized
is usually the profile-weighted residual function, or R factor,
given by

n

R, =Y w;(Yobs,(20) — Ycalc,(26; {p}))

i=1

2

(1.1.91)

The weight w; is derived from the variance of the values of Yobs,,
while all covariances between different Yobs; values are assumed
to be zero.

The calculated intensity Ycalc; is expressed by combinations of
mostly nonlinear and analytic or non-analytic functions as

phases 2

Yeale, = (Sph > (thl(ph)|F hkl(ph)’ q)hkl(ph)(zei - 29hkl@h)))>
ph=1 hki(ph)
+ b;(obs). (1.1.92)

The outer sum runs over all phases ph present in the powder
pattern, while the inner sum runs over all reflections ikl of a
phase ph that contribute to the intensity at the position i in the
powder pattern. A scaling factor S, is assigned to the reflection
intensities for each phase; the scaling factor is proportional to the
weight fraction of the phase. K, represents the product of
various correction factors to the square of the structure-factor
amplitudes, |Fhk,(ph)\2, which may depend on the diffraction
geometry and/or individual reflections. The value of the profile
function ®,,,(26, —26,,,) is given for the profile point
(26, — 26,,,) relative to the position of the Bragg reflection hkl.
The observed background at position i in the powder pattern is
denoted as b,(obs). Parameters in the model such as atomic
positions, lattice parameters and experimental factors that affect
peak shape and background are varied, using a least-squares
approach, until the agreement between the calculated and
measured diffraction profiles is optimized. In a least-squares
approach, optimization consists of minimizing a cost function that
is the weighted sum of the squared differences. This is a refine-
ment method: a good initial guess at, or knowledge of, the
structure is required and this model is refined by small adjust-
ments.

This approach requires the modelling of the entire powder
pattern. To simplify this complex task, the information content of
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kT
Flow diagram of a simulated-annealing procedure used for structure
determination from powder diffraction data (from Mittemeijer & Welzel,
2012). F in the double sum is the structure factor from the structural
model at each step of the optimization. Each sum runs over all
reflections. 2 and k are summation indices representing hkl and h'k'l,
respectively.

the powder pattern can be divided into several parts (Fig. 1.1.1),

allowing the separation of groups of parameters with respect to

their origin:

(a) the peak intensity |F,,k,(ph)|2 — the time- and space-averaged
crystal structure and geometrical contributions;

(b) the peak position — crystallographic lattice and symmetry, and
instrumental contributions;

(¢) the peak shape ®,,,(20;, — 20,,,) — microstructural parameters
and instrument profile;

(d) the background b,(obs) — local structure and instrumental
conditions.

Each part contains contributions from the sample and the

instrument.

Rietveld refinement is a nonlinear least-squares process and
requires starting values for all parameters. It is generally imple-
mented with a local, rather than a global, optimizer and it is
important for the starting parameters to be close to those of the
actual solution to ensure that it is in the valley in parameter space
that contains the global minimum. It is usual to guide the
refinement into the (relatively narrow) range of convergence by
hand by adding the parameters to the refinement sequentially. In
this sense, Rietveld refinement takes some time to learn, but with
care it can provide robust quantitative structures and a wealth of
information can be extracted from the data.

Of course, there is no reason (other than computational effi-
ciency) why the minimization algorithm could not be a more
robust global optimizer, and this is now starting to be imple-
mented in modern Rietveld codes. The most common and most
easily implemented global optimizer, though one of the least
efficient, is the Metropolis or simulated-annealing (SA) algo-
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%> (cost function) and ‘temperature’ dependence of the number of moves
during a simulated-annealing run. [From Mittemeijer & Welzel (2012).
Copyright Wiley-VCH Verlag GmbH & Co. KGaA. Reproduced with
permission.]

rithm. The most usual implementation is actually as a ‘regional’
optimizer where the updates to parameters such as atomic
position are constrained to be not too far from the previous
values in such a way that the algorithm makes a random walk
through the parameter space. This algorithm can avoid being
trapped in a local minimum by ‘walking uphill’, since changes to
the parameters that produce a worse agreement may be accepted
with a probability based on the Boltzmann criterion,
exp(—AR/kT). The temperature in this expression is fictitious
(i.e., it does not refer to any real temperature) and AR is the
change in the agreement produced by the trial update. The
temperature plays the role of tuning the probability of accepting
a bad move. It is initially chosen to have a high value, giving a
high probability of escaping a minimum and allowing the algo-
rithm to explore more of the parameter space. Later in the run
the temperature is lowered, trapping the solution into succes-
sively finer valleys in the parameter space until it settles into
(hopefully) the global minimum (Fig. 1.1.26). The calculation of R
can be based on the entire profile, or on integrated intensities. For
the latter, the correlation between partially or fully overlapping
reflections must be taken into account (as shown schematically in
Fig. 1.1.25).

A flow diagram of a typical SA algorithm as used for structure
determination from powder diffraction data is shown in Fig.
1.1.25. Parameters that can be varied during the SA runs include
internal and external degrees of freedom like translations (frac-
tional coordinates or rigid-body locations), rotations (Cartesian
angles, Eulerian angles or quaternions, describing the orientation
of molecular entities), torsion angles, fractional occupancies,
displacement parameters etc. Fig. 1.1.26 shows the results of a
typical simulated-annealing run in which the cost function, x*,
falls dramatically in the first few thousand moves, indicating that
the scattering is dominated by the positioning of heavier atoms or
globular molecules. Several million trial structures are usually
generated before a minimum can be reached. At the end of the
simulated-annealing run, Rietveld refinement is used to find the
bottom of the global minimum valley.

Special algorithms are not usually used to prevent close
contact of atoms or molecules during the global-optimization
procedure, as in general these have not been found to be
necessary, as the fit to the intensities alone quickly moves the
molecules to regions of the unit cell where they do not grossly
overlap with neighbouring molecules. A subsequent Rietveld
refinement in which only the scale and overall displacement
parameters are refined will immediately show whether further
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Figure 1.1.27
Screen shot (TOPAS 4.1; Bruker-AXS, 2007) of a simulated-annealing
run on Pb;O, measured with a D8 advance diffractometer in Bragg—
Brentano geometry. [From Mittemeijer & Welzel (2012). Copyright
Wiley-VCH Verlag GmbH & Co. KGaA. Reproduced with permission. ]

refinement of bond lengths and bond angles is necessary. Since
unconstrained refinement often results in severe distortions from
the ideal molecular geometry, either rigid bodies or soft
constraints on bond lengths, the planarity of flat groups and bond
angles can be used to stabilize the refinement. Another advan-
tage of the simulated-annealing technique is that hydrogen atoms
can often be included at calculated positions from the beginning
if their relative position with respect to other atoms can be
anticipated, which is often the case for molecular structures.

For inorganic crystal structures in particular, the identification
of special positions or the merging of defined rigid bodies is
useful during the final stages of structure solution. This can be
accomplished by a so-called ‘occupancy-merge’ procedure as
proposed by Favre-Nicolin & Cerny (2004; see also Chapter 4.5).
Here, the occupancies of the sites are modified as a function of
the fractional coordinates, i.e. they are changed when the atoms
get ‘too close’ to a special position. The sites are thought of as
spheres with a radius r. In this way any number of sites can be
merged when their distances are less than 2r. As an example, the
crystal structure solution of minium (Pb3Oy) is shown in Fig.
1.1.27. In this example, special positions are identified when two
oxygen or lead atoms approach within a distance less than the
sum of their respective merging radii, which is estimated as 0.7 A.
The occupancies of the sites then become: 1/(1 + intersection
fractional volumes).

The power of the Rietveld approach lies in its ability to extract
the maximum information from the region of the data where
peaks overlap. Since peak overlap is a significant problem even at
moderate d-spacings, this method revolutionized powder
diffraction to the point where the quantitative results are often
trusted more than those coming from refinements of single-
crystal data, since they are less sensitive to factors such as
extinction that can affect single-crystal structure refinements.
Single-crystal data are still preferred for structure solution, but
Rietveld refinement is often the method of choice for obtaining
the fine quantitative details of the structure after a solution has
been found. However, the Rietveld method has also opened the
door to using powder data for structure solution. In structure-
solution methods, the structure factors are calculated from the
intensities of all the available peaks, and algorithms are used to
find the missing phases for each of these peaks and therefore the
positions of the atoms in the unit cell. As mentioned above, full
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profile fitting following the Rietveld method can be carried out
without a model, where the ‘parameters’ are the Bragg-peak
intensities themselves; this is known as Pawley or Le Bail
refinement, depending on details of the approach used (see
Chapter 3.5). This allows more accurate determination of the
structure factors from Bragg peaks in regions where there is
significant peak overlap.

These days, with high-quality data from synchrotron X-ray
sources and excellent algorithms (either direct methods or
global-optimization methods in direct space), determination of
even quite complex crystal structures from powder diffraction
data is becoming a routine method in almost all branches of
natural sciences and engineering. The success rate mainly
depends on three parameters: the choice of measurement device,
how well the pattern profile is described and how good the
structure-solving algorithm is. It is becoming increasingly evident
that the use of highly monochromatic parallel-beam synchrotron
radiation is a huge advantage for obtaining accuracy in the
atomic parameters, which allows for the interpretation of
bonding and reaction mechanisms. In some cases, even details
like rotational disorder can be extracted from powder diffraction
data if maximum-entropy methods are combined with high-
resolution synchrotron data.

1.1.6.2. Local structure refinement

As described in Section 1.1.5.3.2, similar full-profile-fitting
strategies are now also carried out on total-scattering data that
include diffuse-scattering intensity residing in what used to be
considered as the ‘background’. This is either done by taking a
structural model, which may be similar to the crystal model used
in the Rietveld method (but the crystallographic symmetry of the
model could also be reduced) or be a discrete cluster or molecule.
As with the Rietveld method, structural parameters are varied in
such as way as to obtain a good fit of the calculated function to
the measured one. These methods go beyond the average struc-
ture and yield information about the local structure in the
material, which may be different from the long-range ordered
(LRO) crystal structure (or indeed there may be no LRO
structure, as is the case in liquids and glasses). They are becoming
more popular as data quality and computational power increase.

Solving the structures of nanoparticles from PDF data is less
well developed, although it has been demonstrated for some
simple structures such as Cq, and simple inorganic crystalline
compounds. We expect that this will grow in importance in the
coming years, following the trend of the Rietveld method and
structure solution from powders.

1.1.6.3. Parametric Rietveld refinement

The conventional approach to analysing a set of powder
patterns is to treat each powder pattern independently, thus
refining the entire set of all relevant parameters for each pattern
separately. Further analysis of the values of these parameters, for
example fitting with empirical or physics-based functions such as
fitting the temperature dependence of the ADPs with a Debye
model, is then performed after the Rietveld refinements. Alter-
natively, all powder patterns can be subjected to refinement
simultaneously, which allows the refinement of the functional
dependence of external variables instead of deriving the para-
meters of the function from the individual Rietveld refinements
afterwards. This so-called parametric or surface Rietveld refine-
ment was first introduced by Stinton & Evans (2007). Parametric
refinement offers several advantages over the traditional
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sequential refinement approach because the correlation between
parameters and the final standard uncertainty can be reduced by
introducing simple and physically meaningful constraints and
restraints. Furthermore, it is possible to refine noncrystallo-
graphic parameters such as rate constants or temperatures
directly from Rietveld refinement (Stinton & Evans, 2007). Of
course, introducing external constraints in this way may intro-
duce bias into the refinement if the constraint is not valid. For
example, if there is anharmonicity in the motion and the
temperature dependence of the ADPs does not follow the Debye
law, carrying out a parametric refinement where the Debye law is
presumed will result in biased refinements. However, with careful
application, this is a potentially powerful approach to maximizing
the quantitative information available from powder data in
complex systems. In the following, the basic concept of para-
metric refinement is illustrated with several examples.

If we assume a set of p.x powder patterns from a single
sample that have been measured as a function of the value of an
external variable, e.g. time, temperature or pressure, equation
(1.1.92) can be formally written for each powder pattern sepa-
rately:

Ycalci,pattern(l) = funcnon(pl‘pattem(l)’ p2,pattem(1)’ AR pm,paltem(l))

Ycalci,pattern(z) = funCtion(pl,pattem(Z)v pZ,pattern(Z)v ce
Ycalc;

i,pattern(pp;y)

’ pm, pattern (2))

P pm,paltem(pmax))'
(1.1.93)

= funcnon(pl.paltern(pmax)’ p2,patlem(pmax)’ s

If a functional dependency of some of the parameters p on
external variables T exists, these parameters may be expressed as
functions of these variables, for example 7. This functional
relationship can be used to constrain together the p parameters
for individual patterns measured at different temperatures,
drastically reducing the number of global parameters. Equation
(1.1.93) can thus be written as

Yealc; paern(r)
_ functiOn(Pl‘patter"(l)’ P2 pattern(1) = f(r,r,....,T),..., Pm,pattem(l))
Yeale, ,upeme)
= fuIlC'[iOn(pl,Panern(Z)’ P2pattern2) = ' (1, T,,.... T), ... ’pm.pattern(z))

Yealc; paitern(p,,)

= fUHCtion(pl,pattcrn(pmax)’ pZ,pattcrn(pmux) = f(Tl ) TZ? et T[)v

teo pm,panern(pmax))' (1194)

The cost function (1.1.91) to be minimized changes accordingly:

Pmax n—1 2
Rw = Z Z - Ycalci,pattem) ) .

(Wi,pattem (YObsi, pattern
pattern=1 \i=0
(1.1.95)

1.1.7. Outlook

As is evident from the above, the information content in a
powder diffraction pattern is enormous. This chapter gives only
an overview of the types of information about materials that can
be obtained from powder diffraction data, and the various
approaches mentioned here are described in greater detail in the
rest of this volume. The powder community is growing, as is the
number of applications of powder diffraction in all the materials
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sciences as instrumentation and computer modelling become
ever more powerful. Although intense modern X-ray and elec-
tron sources can measure data from tiny single crystals (of a size
approaching that of a single powder grain), this does not diminish
the usefulness and impact of powder diffraction, as powder
diffraction is much more than just crystal structure solution. It
probes real materials in real environments, yielding information
about defects, texture, nanostructure, strain, phase composition,
kinetics, phase transformations, size and shape distributions, and
heterogeneity. In short, crystallography gives us the structure, but
powder diffraction allows us to study the ‘materials science’, of
materials.
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2.1. Instrumentation for laboratory X-ray scattering techniques

A. KERN

2.1.1. Introduction

X-ray scattering techniques are among the most essential means
of characterizing materials, as they are the most direct analytical
methods for providing structural information for a material. In
particular, X-ray powder diffraction has become one of the most
important techniques in materials science, since many materials
are first formed or are only available or used as powders or other
polycrystalline forms.

The ever-increasing need for materials characterization, from
basic research to industrial quality control, has led to a multitude
of evolutionary and revolutionary instrument and application
developments. In the past two decades, the capabilities and thus
the range of application of laboratory X-ray diffractometers have
increased exponentially.

The present chapter covers the full range of commonly used
instrumentation for home-laboratory X-ray scattering analyses as
detailed in Section 2.1.2, with the focus on powder diffraction.
The scope is limited to recent and commercial designs, available
off-the-shelf from the major manufacturers. Neither technologi-
cally obsolete nor niche instrumentation will be discussed. A
short description of the history of X-ray instrumentation is given
in Section 2.1.3, illustrating the significant technological advances
made since 1985. Sections 2.1.4 to 2.1.7 describe the components
of the diverse range of currently available home-laboratory X-ray
powder diffractometers. The most important concepts are
discussed here; for technological details the reader is referred to
the original literature or to textbooks.

In order to maintain neutrality as well as timeliness, the use of
brand names and photos of real equipment has been avoided.

2.1.2. Scope and terminology

An X-ray (powder) diffractometer is by definition an instrument
for measuring X-ray diffraction phenomena (from powders),
where ‘diffraction’ is defined as elastic, coherent scattering of
X-rays from a crystal lattice (in the crystallographic literature, the
terms ‘diffraction’, ‘X-ray diffraction’ and ‘Bragg diffraction’ are
frequently used synonymously). In recent texts, a ‘powder’ is
frequently defined as a ‘solid containing small crystallites or
particles that will flow when agitated’ in accordance to the usual
sense of the word in colloquial speech.

Such definitions for ‘X-ray diffractometer’ and ‘powder’ are
problematic, as their scope is too narrow and arbitrarily limited.
They are probably the result of the historical development of the
methodology and the lack of interaction between groups repre-
senting different application areas, such as X-ray scattering,
emission or absorption techniques. The application range and
thus capabilities of today’s instrumentation are neither compre-
hensively nor even appropriately described by their implicit
limitation to measuring X-ray diffraction phenomena of crystal-
line solids in powdered form.

It is well known that scattering and thus interference
phenomena will occur with any type of waves and obstacles, and
are by no means restricted to X-rays or perfectly regular arrays of
atoms exhibiting long-range order (X-ray diffraction). In general,
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X-ray scattering can provide information on the arrangement of
atoms or particles in materials with short-range order or no order
at all, like gases, liquids and amorphous solids. For this reason it is
obvious that X-ray diffractometers are intrinsically suited (and
are actually used) for a wide range of X-ray techniques beyond
X-ray diffraction as defined above. These techniques not only
comprise X-ray scattering from any solids or liquids with any
degree of order, but also X-ray absorption (radiography) or
X-ray emission (XRF) techniques, see also Section 2.1.4.3.
Consequently, the following terminology will be used throughout
the remainder of this chapter:

A sample is the object or quantity of material to be investi-
gated, while the specimen is the representative portion of the
sample that is actually prepared and analysed. Specimen prop-
erties such as microstructure and packing density may differ from
the properties of the sample as a result of specimen preparation.
This must be taken into account for selection of the appropriate
instrument configuration, data acquisition and evaluation.

A powder is defined in EN-1330-11 (2007) as a ‘large number
of crystallites and/or particles (i.e. grains, agglomerates or
aggregates; crystalline or non-crystalline) irrespective of any
adhesion between them’ and thus can be a loose powder (in the
sense of common language), a solid block, a thin film or even a
liquid. An ideal powder is represented by a virtually unlimited
number of sufficiently sized, randomly oriented and spherical
crystallites.

The term X-ray diffractometer will refer to an instrument that,
in principle, is capable of doing any of the X-ray techniques
mentioned above, further detailed in Section 2.1.4.3. Instrument
components will be described independently of applications, as
they are not exclusive to any application area. Note that the term
X-ray diffractometer also explicitly includes ‘film cameras’. This
is worth mentioning, as even recent texts still differentiate
between (i) cameras, originally characterized by the use of X-ray
films, and (ii) diffractometers, originally defined as an instrument
derived from a camera in which the film had been replaced by a
point detector. In principle, any so-called cameras and any
diffractometers can be equipped with any type of today’s point,
linear and area detectors, so the former distinction between
cameras and diffractometers, which arose from the historical
development of X-ray instrumentation, is completely obsolete.

2.1.3. Historical overview
2.1.3.1. From film cameras to diffractometers
2.1.3.1.1. Film cameras

Powder diffraction analysis started with the development of
simple film cameras, right after von Laue formulated his basic
diffraction theory and the Braggs, father and son, laid down the
foundations of crystal structure analysis, in the years 1912-1914.
The first and simplest cameras were developed independently by
Debye & Scherrer (1916) and Hull (1917), using a film to detect
the scattered X-rays, with the instrument geometry termed
‘Debye—Scherrer geometry’. The basic drawback of Debye-
Scherrer cameras was their lack of resolution. Consequently,
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since standard X-ray tubes readily produce divergent beams, the
next evolutionary step was to employ self-focusing geometries, as
first proposed independently by Seemann (1919) and Bohlin
(1920), termed ‘Seemann-Bohlin geometry’. In addition to
significantly improved resolution, the intensity was also greatly
increased by using a para-focusing arrangement using an X-ray
source and specimen with finite width (line focus). Guinier (1937)
extended the Seemann-Bohlin geometry using an incident-beam
monochromator. Although the monochromator significantly
reduced the intensity, this disadvantage was overcompensated for
by improved beam conditioning, leading to unparalleled resolu-
tion at that time and elimination of the Ko, component of the
radiation. This made the Guinier camera the best-performing film
camera at that time and it therefore enjoyed high popularity.

The idea of using powder diffraction for phase identification of
substances in pure form or in mixtures, originally suggested by
Hull (1919) and then formalized by Hanawalt et al. (1938),
attracted enormous interest, and developed into the powder
diffraction method, making it a fundamental tool for material
scientists. However, while classic film cameras laid down the
historical foundation for the success of polycrystalline diffraction,
their use was mostly limited to phase identification, semi-
quantitative phase analysis and macroscopic stress measure-
ments. Inherent difficulties included, but were not limited to,
obtaining reliable intensities (because of film grain size and
nonlinearity of the film response), very limited flexibility in terms
of hardware extensions such as non-ambient specimen stages, and
lack of diffracted-beam conditioning (e.g. the use of diffracted-
beam monochromators).

Detailed descriptions of the many camera types as well as their
use are given in a large number of texts. The interested reader is
specifically referred to the textbook of Klug & Alexander (1974),
which also contains an extensive bibliography.

2.1.3.1.2. Diffractometers

Photographic films have two important weaknesses: the
detection efficiency is low and quantification of the diffracted
intensities, including the line-profile shapes, is indirect and
cumbersome. These shortcomings led to the idea of replacing the
film with a photon counter (most commonly utilizing the Geiger—
Miiller counter at that time) and thus to the development of a
device called a ‘diffractometer’. The design resembled that of the
Bragg ionization spectrometer, but dispersed monochromatic
radiation from lattice planes rather than a spectrum of X-ray
wavelengths. The first diffractometer developed by Le Galley
(1935) was a non-focusing arrangement using a point-focus X-ray
tube, making use of the cylindrical geometry of a normal film
camera. In subsequent instrument designs focusing geometries
were adopted, mostly the ‘Bragg-Brentano geometry’ (Brentano,
1924), a modification of the Seemann-Bohlin geometry, first
introduced by Lindemann & Trost (1940) and Friedmann (1945).

The introduction of the first commercial focusing diffract-
ometer in the early 1950s resulted in another major advance of
the polycrystalline diffraction method, and may be largely cred-
ited to Parrish and co-workers (e.g. Parrish, 1949). This instru-
ment consisted of a fixed-anode X-ray tube and a mechanical
goniometer, operating in Bragg-Brentano geometry. The initial
replacement of photographic film by the Geiger—Miiller counter,
and soon after by scintillation and lithium-drifted silicon detec-
tors, allowed accurate intensities and line-profile shapes with high
resolution to be recorded. The large space around the specimen
permitted the design of various interchangeable stages for
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specimen rotation and translation, automatic specimen changing
and non-ambient analyses. As a consequence, powder diffraction
found many new applications beyond phase identification,
including, but not limited to, quantitative analysis of crystalline
and amorphous phases, microstructure analysis, and texture and
strain analysis, at ambient and non-ambient conditions.

In the following decades, diffractometers were fully auto-
mated, fully digitized, and electronically and mechanically
stabilized. The data quality they delivered became generally
superior to that of film cameras, including in terms of resolution,
eventually even facilitating structure determination and refine-
ment from powders. Attempts to improve Guinier or Seemann—
Bohlin cameras by replacing the film with image plates or any
other stationary or scanning detectors did not produce compe-
titive instrumentation in terms of instrument flexibility and
mechanical simplicity. As a result, film cameras were steadily
replaced by automated diffractometers using the Bragg—
Brentano geometry. Since the 1990s, classic film cameras as well
as other Guinier- or Seemann-Bohlin-based instruments are no
longer used in practical polycrystalline diffraction analysis and
thus lost any commercial relevance, apart from for a few niche
applications. The Bragg-Brentano geometry, as developed in the
1940s, became the dominating instrument geometry and
accounted for more than 90% of all instruments sold. The
remainder almost exclusively used Debye—Scherrer-type
arrangements, either employing focusing incident-beam mono-
chromators for flat-plate or capillary transmission setups, or
parallel-beam setups based on (pinhole) slits and/or Soller
collimators and/or channel-cut monochromators for micro-
diffraction, small-angle X-ray scattering and the characterization
of thin films.

While powder diffractometers have changed little in their
construction and geometry since the 1940s, considerable
advances have made in X-ray detection and X-ray beam condi-
tioning (X-ray optics).

Significant detector developments include one- and two-
dimensional position-sensitive detectors (PSDs) based on gas
proportional counter technology, and especially that of the
scanning one-dimensional PSD (Gobel, 1980). The replacement
of a point detector by a scanning one-dimensional PSD
allowed the measurement time required to record a full pattern
to be reduced down to minutes without significant compromise
on resolution. This enabled time-critical applications (such as
non-ambient and high-throughput analyses), or compensation
of the intensity loss when employing incident-beam mono-
chromators.

The introduction of laterally graded multilayers on figured
reflectors, so-called ‘Gobel mirrors’ (Schuster & Gobel, 1996),
allowed the conversion of a convergent beam into a parallel
beam, and thus added a new dimension to laboratory beam
conditioning — at a time when X-ray techniques were expanding
into the now very rapidly growing area of thin-film character-
ization, sparking a renaissance of the Debye—Scherrer geometry.

Until the late 1980s and early 1990s, traditional powder
diffraction and thin-film characterization were seen as two
different techniques with diverse requirements. As a conse-
quence, thin-film techniques formed a different X-ray diffraction
application sector, served by different and specialized instru-
mentation, in addition to the already existing distinction between
single-crystal and powder diffraction applications and instru-
mentation. The X-ray powder diffraction market was character-
ized by dedicated (and separately marketed) instruments for
traditional powder diffraction, usually based on the Bragg-
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Brentano geometry, and for thin-film analysis, usually based on
the Debye—-Scherrer geometry.

2.1.3.2. Recent years

In the 1990s, more and more laboratories started to deal with a
full range of materials and related applications - from powders
through polycrystalline thin films to epitaxial thin films. Dedi-
cated and inflexible instruments were no longer economic for
serving the increasing range of applications and also their
increasing data-quality requirements.

The growing need for multipurpose instrumentation led to a
new generation of X-ray diffractometers in the late 1990s, from
all of the major manufacturers, based on a platform concept
covering all relevant beam-path components including X-ray
sources, optics, specimen stages and detectors. This concept,
described in Section 2.1.4, allowed for a faster development of
more and more differentiated instrumentation to optimally meet
the requirements of all possible applications and sample types.
Particularly successful were design improvements that allow the
user to transform an instrument on-site by changing beam-path
components, often without any need for alignment or even tools,
to cover a larger range of applications and sample types using a
single instrument.

A major contribution to the platform concept came from the
continued development of beam conditioners based on multi-
layers, resulting in a wealth of X-ray beam optics for different
applications. Advanced sputtering techniques allow the fabrica-
tion of multilayer optics with virtually arbitrary beam divergence,
which can be used to generate focusing, parallel and divergent
beams for both point- and line-focus applications.

The introduction of a series of new detector technologies in the
early 2000s represented another technological quantum leap,
which completely changed the X-ray detection landscape for
laboratory diffraction. Within only a few years, detectors based
on silicon micro-strip, silicon pixel and micro-gap technologies
reached a market share of more than 90% in newly sold systems.
Proportional and scintillation point detectors will probably
become obsolete in only a few years from now, but can still be
found, usually in lower-budget systems.

Today’s instruments, with their different possible configura-
tions of beam-path components, are now capable of performing a
wider range of X-ray scattering applications than ever (see
Section 2.1.4.3). Not surprisingly, the platform concept has
become so successful that all modern X-ray diffractometers are
now, at least to some extent, equipped with interchange
capabilities for beam-path components. However, the funda-
mental principles remain the same and date back to the first film
cameras and diffractometers, no matter how advanced today’s
instrumentation is.

2.1.4. The platform concept - fitting the instrument to the need

Modern X-ray diffractometers are highly modular assembly
systems based on a platform concept, with a shared set of major
components over a number of distinct diffractometer models,
serving different X-ray scattering application areas. Such a plat-
form concept has two important advantages. Firstly, a common
design allows differentiated instruments to be developed faster,
and eases the integration of new or improved beam-path
components, potentially over the whole model range. Secondly, it
enables the design of an X-ray optical bench with on-site inter-
change capabilities, allowing the mounting of selected beam-path
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Figure 2.1.1

Diffraction of X-rays by (a) a rotating single crystal and (b) an ideal
powder. The scattered intensity may be measured by a detector placed
on the detector circle.

components to meet specific application and specimen-property
requirements.

2.1.4.1. Basic design principles and instrument geometry consid-
erations

X-ray scattering data are generally recorded in what is virtually
the simplest possible manner, where the scattered intensity is
measured by a detector mounted at some distance from the
specimen. This is illustrated in Fig. 2.1.1, where a narrow,
essentially monochromatic beam illuminates a small spherical
specimen. For a rotating single crystal, the diffracted beams point
in discrete directions in space as given by Bragg’s law for each
lattice vector dj,; (Fig. 2.1.1a). For an ideal powder consisting of a
virtually unlimited number of randomly oriented crystallites, the
diffracted beams will form concentric cones (‘Debye cones’) with
a semi-apex angle of 26, representing all randomly oriented
identical lattice vectors d;; (Fig. 2.1.1b). Note that in contrast to
a single crystal, an ideal powder does not need to be rotated to
obtain a complete powder diffraction pattern.

Most instruments are built around a central specimen and
consist of the following beam-path components, the numbering of
which is consistent with the mounting positions shown in Fig.
2.1.2:

(1) X-ray source;

(2) incident-beam optics;

(3) goniometer base or specimen stage;
(4) diffracted-beam optics;

(5) detector.

The directions of the incident and diffracted beams (also called
‘primary’ and ‘secondary’ beams) form the diffraction plane (also
called the ‘equatorial plane’ or ‘scattering plane’). The goni-
ometer base can be mounted horizontally (horizontal diffraction
plane) or vertically (vertical diffraction plane). The direction
perpendicular to the equatorial plane is known as the axial
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Figure 2.1.2

The basic design principle of modern diffractometers. Currently
available instruments are built around a centrally mounted specimen
and represent an X-ray optical bench with mounting positions for any
(1) X-ray sources, (2) incident-beam optics, (3) specimen stages, (4)
diffracted-beam optics and (5) detectors. The 26 position of the
scattered-X-ray optical bench refers to the 26 angle of the Debye cone
shown in bold in Fig. 2.1.1(b).

direction. The detector circle (also called the ‘goniometer circle’
or ‘diffractometer circle’) is defined either by the centre of the
active window of a stationary detector, or, in most cases, by a
detector moving around the specimen, and is coplanar to the
diffraction plane. The 26 angle of both the diffracted beam in Fig.
2.1.1(a) and the Debye cone in Fig. 2.1.1(b) (shown in bold)
refers to the 26 position of the diffracted-beam X-ray optical
bench in Fig. 2.1.2. It is obvious from Figs. 2.1.1 and 2.1.2 that, in
principle, diffraction from single crystals and (ideal) powders can
be measured using the same instrument.

An instrument design with a centrally mounted specimen has
the important advantage that it implicitly allows the operation of
one and the same instrument in both Bragg-Brentano and
Debye-Scherrer geometry, depending on the beam divergence
chosen. The actual instrument geometry is thus a function of the
actual beam propagation angle (divergent, parallel or conver-
gent), making the X-ray optics the most important part of any
instrument-geometry conversion. The relationship between the
two geometries and their implementation in a single instrument
using an incident-beam X-ray optical bench is illustrated in Fig.
2.1.3.

As laboratory X-ray sources invariably produce divergent
beams, the ‘natural’ instrument geometry is self-focusing, ‘auto-
matically’ leading to the Bragg—Brentano geometry as shown in
Fig. 2.1.3(a). In this geometry the angle of both the incident and
the diffracted beam is 6 with respect to the specimen surface.
The X-ray-source-to-specimen and the specimen-to-detector
distances are equal. The diffraction pattern is collected by
varying the incidence angle of the incident beam by 6 and the
diffracted-beam angle by 26. The focusing circle is defined as
positioned tangentially to the specimen surface. The focusing
condition is fulfilled at the points where the goniometer circle
intersects the focusing circle, and thus requires measurements in
reflection mode.

The Bragg-Brentano geometry may be extended by an
incident- or a diffracted-beam monochromator. In the case of an
incident-beam monochromator as shown in Fig. 2.1.3(b), the
focus of the X-ray source is replaced by the focus of the mono-
chromator crystal. This involves mounting the monochromator
crystal (and the X-ray source) a certain distance away along the
incident-beam X-ray optical bench, as given by the focusing
length of the monochromator crystal (the dotted line in Fig.
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Figure 2.1.3

Transformation between the Bragg-Brentano and Debye—Scherrer
geometries using a incident-beam X-ray optical bench. SR: flat specimen,
reflection mode; SC: capillary specimen, transmission mode; ST: flat
specimen, transmission mode. The actual instrument geometry is a
function of the actual beam-propagation angle, making the X-ray optics
the most important part of any instrument-geometry conversion. (a)
Divergent beam: Bragg-Brentano geometry, (b) divergent beam: Bragg—
Brentano geometry extended by an incident-beam monochromator. (c)
Convergent beam: focusing Debye-Scherrer geometry, (d) parallel
beam: Debye-Scherrer geometry. Transformation is achieved by
mounting the X-ray tube and pre-aligned optical components at pre-
defined positions of the optical bench. None of the figures are to scale.

2.1.3b). For a diffracted-beam monochromator or mirror, the
geometry shown in Fig. 2.1.3(b) can be thought of as reversed
(simply consider the X-ray source and detector switching their
positions).

The conversion from Bragg-Brentano to Debye-Scherrer
geometry involves the mounting of some kind of optics designed
to convert the divergent beam coming from the X-ray source into
a focusing or parallel beam; this is shown in Figs. 2.1.3(¢) and (d),
respectively.
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Figure 2.1.4

Bragg-Brentano geometry. The focusing circle, given for two different
angles 20, is tangential to the specimen surface. Its diameter is given by
the intersections between the detector and the focusing circles and is
thus 26 dependent.

In a focusing Debye—Scherrer geometry setup, as shown in Fig.
2.1.3(c), the divergent beam coming from the X-ray source is
normally focused on the detector circle (for highest resolution)
by means of an incident-beam monochromator or a focusing
mirror. The focusing circle is identical to the detector circle and
the focusing condition requires measurements in transmission
mode. When employing an incident-beam monochromator with
sufficient focusing length, then conversion between the Bragg—
Brentano geometry and the focusing Debye—Scherrer geometry
involves a shift of the monochromator crystal (and the X-ray
source) along the incident-beam X-ray optical bench (note the
identical focusing length of the monochromator shown in Figs.
2.1.3b and c).

For a parallel-beam setup, as shown in Fig. 2.1.3(d), paralleli-
zation of the divergent beam coming from the X-ray source may
be achieved by different means, such as collimators (classic
Debye—-Scherrer geometry) or reflective optics such as mirrors or
capillaries. In principle, the X-ray source and the detector may be
placed at any distance from the specimen, as there are no
focusing requirements. As a consequence, measurements can be
performed in both reflection and transmission mode.

In a simplified scheme, conversion between the geometries
discussed above involves repositioning of the X-ray source,
together with mounting of X-ray optics with suitable beam
divergence. To make this possible, the incident-beam optical
X-ray bench offers the necessary predefined mounting positions
including relevant translationary and rotationary degrees of
freedom.

'1‘ Focusing circle

Detector circle

Figure 2.1.5

Bragg-Brentano geometry. While all diffracted beams focus on the
(variable-diameter) focusing circle (here shown for two beams), focusing
on the detector circle is only achieved at the X-ray source and detector
positions (located at the intersections between the detector and the
focusing circles). This prevents the use of larger position-sensitive
detectors because of defocusing, as indicated by the hypothetical large
position-sensitive detector represented by the bold grey line.
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An important aspect directly related to the choice of the
instrument geometry is the geometric compatibility with position-
sensitive detectors. In contrast to Debye-Scherrer geometry,
large line and area detectors may not be used in Bragg—Brentano
geometry. This is an important limitation of the latter, as the
focusing circle does not coincide with the detector circle and has
a 260-dependent diameter, as illustrated in Fig. 2.1.4. As a
consequence, the diffracted beam is only focused on a single
point of the goniometer circle, as shown in Fig. 2.1.5. However,
small position-sensitive detectors with an angular coverage of not
more than about 10° 26 are used with great success, as defocusing
can be ignored at diffraction angles larger than about 20° 20 if
high angular accuracy and resolution are not required. For
measurements at smaller 26 angles, or for highest angular accu-
racy and resolution, the active window size of a position-sensitive
detector may be reduced by means of slits and/or electronically
down to a point, allowing the use of this detector as a point
detector.

2.1.4.2. Range of hardware

An X-ray diffractometer is generally characterized by the
relationship between a conditioned beam, the specimen orien-
tation and the subsequent interception of the diffracted beams by
a detector of given geometry and imaging properties. There are
only a very few instrument configurations that will be ideal for
any two application areas, or every conceivable sample within a
single application area. It is the user’s responsibility to match the
instrument to the specimen properties, which can be challenging,
particularly in multi-user environments with a large variety of
sample types. The platform and the X-ray optical-bench concepts
allow the user to choose and mount the most appropriate beam-
path components in order to optimize an instrument with respect
to a specific application and specimen-property requirements.
Table 2.1.1 provides an overview of the currently available types
of beam-path components from the X-ray source through to the
detector.

The length of available X-ray optical benches varies, and is
typically in the range of about 15cm up to 100 cm. Larger
benches allow mounting of bulky components (e.g. moving-target
X-ray sources or large detectors) as well as mounting of several
X-ray optics in a row (e.g. combinations of mirrors and channel-
cut monochromators). Some diffractometer models allow
mounting of two incident- and/or diffracted-beam X-ray optical
benches to mount different beam-path components in parallel,
e.g. X-ray sources with different wavelengths or beam shapes
(very popular in single-crystal diffraction), X-ray optics with
different beam divergence (e.g. to switch between Bragg-—
Brentano and Debye—Scherrer geometry), and different detector
types.

While Table 2.1.1 and the above may imply an enormous
combinatorial diversity, in practice this is not entirely the case. In
general, beam-path components have to be compatible with the
selected instrument geometry, which is dictated by the choice of
the X-ray source (point or line), the beam characteristics
(wavelength distribution, divergence) and the detector (point,
linear or area). This automatically narrows down the range of
combinations. As an obvious example, many crystal mono-
chromators and X-ray mirrors are only compatible with a parti-
cular wavelength. Also, the size and weight of bulky components,
such as moving-target X-ray sources, large specimen stages
and large two-dimensional detectors, may impose practical
constraints that require consideration. For example, the acces-
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Table 2.1.1

Types of beam-path components available in laboratory X-ray powder diffraction

The column numbering corresponds to the positions indicated in Fig. 2.1.2 at which individual components can be mounted.

Position 1 Positions 2 and 4 Position 3 Position 5
X-ray sources X-ray optics Goniometer base Specimen stages Detectors
Fixed target Absorptive (apertures, Vertical [w-0 (6-0), @26 (6-26)] Fixed, rotating Scintillation

Moving target metal filters)

(rotating anodes, Diffractive
liquid-metal jets) (monochromators,
analysers)
Reflective

(multilayer mirrors,
capillary optics)

sible angular range may be limited for large components owing to

collision issues, while heavy loads on vertical goniometers may

impede alignment and lead to early wear and tear. Restrictions
will be discussed in Sections 2.1.5 to 2.1.7 for the individual
components.

These days, the exchange of lighter components, such as
most X-ray optics, specimen stages and detectors, does not
require any tools at all (such as when a snap-lock mechanism is
employed) or more than a few screws for fixing. Alignment is
normally not required when components are factory pre-aligned
and handled with care, and when mounts are manufactured
with good quality. Intrinsic changes of the beam direction (e.g.
focusing crystal monochromators or X-ray mirrors) or beam
offsets (e.g. two-bounce channel-cut monochromators) need
compensating translation and/or rotation of the components
involved.

The exchange of large, heavy components, or complicated
rebuildings such as the conversion of a goniometer (vertical <>
horizontal, 69— <> 6-20 etc.), may be still possible for technically
skilled users. However, special tools may be necessary, requiring
shipment of the component(s), or even the instrument, back into
the factory. In addition, X-ray, machine and electrical safety
directives by the local authorities have to be obeyed, and
conversions may require updating approval to use the instru-
ment. In such cases it may be more economic to operate two
dedicated instruments instead.

The instrument control software plays a particularly important
role in the context of instrument configuration and automated
instrument conversion. In modern instruments, each beam-path
component is equipped with an identification chip or hole masks
read out by light barriers, which uniquely identify the respective
component and link it with all its individual stored or coded
properties. This information may range from part numbers, usage
history or alignment information such as beam offsets, through to
a virtually unlimited wealth of any physical data required to
configure and operate that particular component. This ‘compo-
nent recognition’ feature provides for completely new and
important capabilities of laboratory powder diffractometers, the
most important of which are:

(a) Any beam-path components, and each change of status, can
be automatically detected, validated and configured, allowing
true ‘plug & play’ operation.

(b) Real-time conflict detection: detection of incompatible,
incorrectly mounted or missing instrument components. This
feature can also help the user in choosing compatible
instrument components, as already discussed above.

Horizontal [w-0 (0-0), @20 (0-26)]
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Gas ionization
(metal wire,

Specimen changer
Eulerian cradles

Kappa stages micro-gap)
Tilt/fixed y stages Semiconductor
XYZ stages (SiLi, strip/pixel,
Flow-through cells CCD/CMOS)

Non-ambient
(low temperature,
high temperature,
humidity, high pressure)

(¢) Automatic, motorized adjustments of beam direction or
beam-offset changes, based on the information stored in the
related components’ ID chips, as individually determined at
the factory via pre-alignment.

(d) Every instrument detail can be saved together with the
measurement data, providing for a complete and accurate
documentation of the experiment. In principle, every
measurement can be exactly reproduced even years later.

(e) Measurement instructions can include instrument informa-
tion. For example, manufacturers or users can configure the
measurement software to propose instrument configurations
deemed best for particular applications. A user with appro-
priate rights can choose to enforce a certain instrument
configuration so that measurements will not start unless the
instrument has detected the required configuration.

Both the platform concept and the huge advances in instru-
mentation and instrument control software have dramatically
changed the laboratory X-ray instrumentation landscape in the
past few years. The ease with which an instrument configuration
can be changed is not only useful for less-skilled users. Probably
even more importantly, it allows the use of the same instrument,
in different configurations, for different X-ray application areas.
It can generally be said that laboratory X-ray instrumentation has
overcome the (mostly historical) dividing lines between different
applications, which were mostly between single-crystal diffrac-
tion, powder diffraction and thin-film analysis. As far as differ-
ences still remain, these are usually solely the consequence of
dedicated instrument components for meeting specific applica-
tion requirements, resulting in specialized measurement and
data-evaluation software, which is rarely included with each
instrument.

2.1.4.3. Range of applications

It is the flexibility of today’s X-ray diffractometers that leads to
their usefulness for a wide range of X-ray scattering techniques
beyond traditional X-ray powder ‘Bragg diffraction’. Table 2.1.2
provides an overview.

X-ray scattering techniques represent the vast majority of
techniques that X-ray diffractometers are used for. Properly
configured, however, the same instrument can also be used to
collect X-ray absorption (X-ray radiography) or X-ray emission
(X-ray fluorescence) data, even if the achievable data quality
cannot compete with dedicated instruments.

For X-ray radiography, an instrument will be configured in
transmission geometry with the X-rays projected towards a
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Table 2.1.2
X-ray applications for with modern X-ray diffractometers

X-ray scattering
Powder diffraction
Qualitative (phase identification) and quantitative phase
analysis
Indexing, structure determination and structure refinement
from powder data
Microstructure analysis (texture, size, strain, microstrain,
disorder and other defects)
Pair distribution function analysis (‘total scattering’)
Thin-film analysis
Grazing incidence X-ray diffraction (GIXRD)
X-ray reflectometry
Stress and texture
High-resolution X-ray diffraction
Reciprocal-space mapping
In-plane GIXRD
Single-crystal diffraction
Chemical crystallography
Protein crystallography
Small-angle X-ray scattering
X-ray topography

X-ray absorption
X-ray radiography (X-ray-absorption-based imaging)

X-ray emission
X-ray fluorescence

specimen. X-rays that pass through the specimen can be detected
to give a two-dimensional representation of the absorption
contrast within the specimen. For tomography, the X-ray source
and detector will be moved to blur out structures not in the
focal plane. Multiple images can be used to generate a three-
dimensional representation of the specimen by means of
computed tomography. Obvious disadvantages are the large
effective focal spot size of the X-ray sources and the relatively
low resolution of the detectors that are typically used for powder
diffraction, which, in combination with a limited adjustability of
both the X-ray-source-to-specimen and specimen-to-detector
distances, lead to substantial unsharpness issues and poor reso-
lution. High-quality images can be achieved when using micro-
focus X-ray sources and charge-coupled device (CCD) detectors
with focus and pixel sizes smaller than 10 pm, respectively, but
such an instrument configuration is not suitable for applications
requiring ideal powders (see also Sections 2.1.6 and 2.1.7).

Collecting X-ray fluorescence data is comparatively straight-
forward. Data can be collected simultaneously to X-ray scattering
data when employing a suitable detector, such as an energy-
dispersive detector (Section 2.1.7.2.3). There are a couple of
disadvantages to be considered, such as absorption issues (the
specimen will be normally measured in air rather than in vacuum,
hampering the analysis of light elements) and the inefficiency of
excitation by the characteristic line energies of the X-ray source
anode materials typically used for diffraction (hampering the
analysis of elements with higher atomic numbers than that of the
anode material).

2.1.5. Goniometer designs

A goniometer, by definition, is an instrument that either
measures an angle or allows an object to be rotated to a precise
angular position. In an X-ray diffractometer the purpose of the
goniometer is to move the X-ray source, specimen and detector in
relation to each other. Goniometers are usually categorized by
the number of axes available for X-ray source, specimen and
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detector rotation, and are thus called one-, two-, three-, ...,
n-axis (or -circle) goniometers.

Because of practical reasons, most goniometers consist of two
distinct components, a goniometer base and a specimen stage,
with the specimen stage mounted on the goniometer base.

The goniometer base typically offers two axes, one axis to
rotate the X-ray source or the specimen stage, the other axis to
rotate the detector. In some designs goniometer bases are
omitted, specifically if there is no need to move the X-ray source
and the detector, such as in Debye—Scherrer-type diffractometers
with large detectors. Such machines are usually dedicated to a
particular application without the need for high flexibility.

Depending on the requirements of the application, additional
rotational and translational degrees of freedom may be needed to
rotate and translate a specimen in space; these are usually
implemented in the specimen stage. More rotational degrees of
freedom may include the rotation of the X-ray source line focus
or a rotation of the detector out of the diffraction plane to
measure diffraction by lattice planes (nearly) perpendicular to
the specimen surface, so-called non-coplanar diffraction.

2.1.5.1. Geometrical conventions and scan modes

In the literature there is some inconsistency related to the
naming of axes and the choice of signs for angles (left- versus
right-handed). A comprehensive treatment of geometrical
conventions has recently been given by He (2009); in the
following these conventions will be adhered to.

In many texts the notations 6—26 and 6—6 rather than w-26 and
w-6 are used, mostly because of historical reasons. The first
diffractometers operated in Bragg-Brentano geometry (see
Section 2.1.3.1.2) and were equipped with single-axis goni-
ometers. In such a goniometer the single axis drives two shafts
which are mechanically coupled 1:2 or 1:1; thus the notations 6-26
and 6-6 were coined. Today, the majority of all goniometer bases
allow coupled as well as uncoupled rotation of the w and 6 axes.
Therefore the w-20 and w-6 notations should be generally
preferred, as they represent the more general notations.

2.1.5.1.1. Goniometer base

A typical goniometer base provides two coaxial and indepen-
dently driven axes, w and 26, mounted perpendicular to the
diffraction plane. These two axes are the main axes of a goni-
ometer, since they have the most effect on the accuracy and
precision of measured Bragg angles. The diffraction plane and the
axes are generally described by a right-handed Cartesian coor-
dinate system, as illustrated in Fig. 2.1.6, where the direct X-ray
beam propagates along the X, axis. Z; is up and coincident with
the w and 26 axes, and X;-Y; define the diffraction plane with
the detector circle coplanar to it. Since X7 is coincident with the
incident X-ray beam, it is also the axis of the Debye cones. The
semi-apex angles of the cones are determined by the 26 values
given by the Bragg equation. The angles 26 and y describe the
direction of scattering vectors in space (compare Fig. 2.1.1),
where y is defined as the azimuthal angle from the origin at —Z;,
with a right-hand rotation axis along the opposite direction of the
incident beam (—X direction).

The w and 26 axes are mechanically arranged as the inner circle
and outer circle, respectively. The inner circle usually carries
either the specimen stage or the X-ray source, while the detector
is mounted on the outer circle. As a consequence, there are two
common base goniometer configurations in use: In the w26 (or
6-20 with @ = 6) configuration, the incident-beam direction is
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Diffraction plane

Goniometer base

Figure 2.1.6

Laboratory coordinates and geometric definition of the coaxial
goniometer axes @ and 26. If the azimuthal angle y takes all values
from 0 to 360" at a given Bragg angle 26, the trace of the diffracted beams
forms a Debye cone (compare with Fig. 2.1.1).

mechanically fixed. The w axis rotates the specimen stage, while
the 26 axis rotates the detector. In the w9 (or -0 with @ = 6)
configuration, the w axis defines the incident-beam angle by
rotating the X-ray source, while the other axis scans the detector.
In this configuration the specimen stage is mechanically fixed.
Both configurations allow identical positioning of the X-ray
source, specimen and detector relative to each other.

The goniometer base orientation is defined by the diffraction
plane, which can be either horizontal or vertical. Vertical-base
goniometers in w—6 configuration are particularly popular, as the
specimen is always kept horizontal, effectively preventing it from
falling off. However, heavy specimens and beam-path compo-
nents require particular attention in both the goniometer base
design and choice of orientation, as they have a strong impact on
goniometer accuracy, precision and early wear and tear (see also
Section 2.1.5.2). Where loads exceed the maximum specifications
for a vertically mounted goniometer base, and whenever hori-
zontal specimen positioning is not imperative, either a vertical
goniometer base in w20 configuration or a horizontal goni-
ometer should be chosen.

(a) (b)

(d)

Figure 2.1.7

Goniometer base configurations and scan modes suitable for both
Bragg-Brentano or Debye-Scherrer geometry. Symmetric beam path
setup in (a) @26 and (b) w6 configuration. Rocking curve setup in (c)
w-20 and (d) w0 configuration. Only the central beams are shown for
clarity, rotations are indicated by arrows. S: X-ray source, D: detector,
SR: flat specimen, reflection mode.
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Figure 2.1.8

Goniometer base configurations and scan modes suitable for the Debye—
Scherrer geometry only. Only the central beams are shown for clarity. (a)
Capillary specimen in transmission mode, (b) flat specimen in
transmission mode, (c) flat specimen in reflection mode, grazing
incidence with fixed w. S: X-ray source, D: detector, SR: flat specimen,
reflection mode; SC: capillary specimen, transmission mode; ST: flat
specimen, transmission mode.

In Figs. 2.1.7 and 2.1.8 a range of typical goniometer base
configurations and scan modes are illustrated.

A symmetric beam-path setup in reflection mode, where both
the incident and diffracted beam form an angle of 6 with respect
to the specimen surface, is mandatory for instruments operating
in Bragg—Brentano geometry to maintain the focusing condition
(see Section 2.1.4.1), but is also commonly used in Debye-
Scherrer geometry. Scanning involves coupling of the w (with w =
0) and 26 axes in a ratio of 1:2 for the w-26 configuration (Fig.
2.1.7a) and 1:1 for the w0 configuration (Fig. 2.1.7b), but only
allows probing of lattice planes essentially parallel to the
specimen surface. Where determination of a texture parameter
is sought, a so-called ‘rocking-curve’ measurement can be
performed by rocking either the specimen or the X-ray source
and detector around the position of a Bragg peak. Two scenarios
need to be considered and are illustrated in Fig. 2.1.7(¢) and Fig.
2.1.7(d). In the w-26 configuration with fixed X-ray source (Fig.
2.1.7¢), the detector will be fixed at the 26 position of a selected
Bragg peak, while the specimen is rotated (‘rocked’) indepen-
dently, to perform a so-called ‘w-scan’. To achieve the same in an
-0 configuration with fixed specimen, the X-ray source and the
detector will be coupled 1:—1 or —1:1 to perform a clockwise or
anticlockwise scan while maintaining the selected 26 position,
respectively, as illustrated in Fig. 2.1.7(d).

In Debye—Scherrer geometry there is no geometrical restraint
requiring coupled scans to maintain 26-dependent focusing
conditions, as is the case in the Bragg-Brentano geometry,
providing high flexibility. Specimens can be measured in both
reflection as well as transmission mode. In principle, the incident-
beam direction may be any relative to the specimen surface, and
can be fixed or variable, while the detector performs a ‘detector
scan’. The w and 26 axes may be coupled or not. Choices solely
depend on the specimen properties and the requirements of the
application. This is demonstrated in Fig. 2.1.8 for a few repre-
sentative examples. The classic Debye—Scherrer geometry using
a capillary specimen is shown in Fig. 2.1.8(a). The capillary
specimen can be readily exchanged for a flat-plate specimen as
shown in Fig. 2.1.8(b) and Fig. 2.1.8(c) for flat-plate transmission
and reflection, respectively. @ can be set to different angles or
perform a coupled scan to allow access to higher 260 angles (Fig.
2.1.8b) or can be set to a different angle for grazing-incidence
measurements (Fig. 2.1.8¢). In some applications it may be
beneficial to perform a (usually coupled) scan of both w and 26 to
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)]

Figure 2.1.9

Geometric definition of the Eulerian and kappa geometries with
identical specimen orientation in space. (a) Specimen rotation and
translation in a Eulerian cradle equipped with an XYZ stage, (b)
specimen rotation on a kappa stage.

improve particle statistics (‘wobbling’). Obviously, all the setups
shown in Fig. 2.1.8 will work for the full range of X-ray scattering
and absorption techniques as discussed in Section 2.1.4.3, leading
to the renaissance of the Debye-Scherrer geometry within the
past 20 years.

2.1.5.1.2. Specimen stage

Depending on the requirements of the application, the
specimen stage may offer additional degrees of freedom for
specimen rotation as well as X, Y, Z translation. The goniometer
base may be configured as w-26 as well as w-6, and may be
oriented vertically as well as horizontally.

To orient a specimen in all possible orientations in space, the
specimen stage will offer two more rotational degrees of freedom
in addition to the w and 26 axes provided by the goniometer base.
Such goniometers are known as four-axis diffractometers, with
two basic geometries in common use for specimen orientation:
Eulerian geometry and kappa geometry.

In the Eulerian geometry the specimen is oriented through the
three Euler angles  (defined by the w axis of the goniometer
base), ¥ (psi), and ¢ (phi). The relationship between the
laboratory and rotation axes is shown in Fig. 2.1.9(a) for a typical
Eulerian cradle. The w angle is defined as a right-handed rotation
about the w (or Z;) axis. The ¥ angle is a right-hand rotation
about the ¥ axis, which lies in the diffraction plane and runs
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parallel to the bisectrix between the incident and diffracted
beams. The ¢ angle defines a left-handed rotation about an axis
on the specimen, typically the normal to a flat specimen surface.
In some texts the angle x (chi) is used instead of ¥, with the
relationship between the two angles defined as ¥ = 90 — .
Eulerian cradles have the advantage of high mechanical stability
and are often integrated with XYZ stages to handle bulky
specimens. The geometrical definitions of specimen X, Y, Z
translations are also shown in Fig. 2.1.9(a).

The kappa (k) geometry shown in Fig. 2.1.9(b) represents an
alternative way to orient a specimen in space. The i axis of the
Eulerian geometry is replaced by the « axis, which is tilted at 50°
relative to the diffraction plane. It supports an arm carrying the
specimen, with the ¢ axis tilted at 50° to k. The role of the
Eulerian ¥ rotation is fulfilled by means of combined rotation
along « and ¢, which allows Eulerian i angles in the range —100
to +100° to be obtained. The absence of the (bulky) v circle of
Eulerian cradles allows an unobstructed view of the specimen
and unhindered access from ‘above’, for example to mount a
cooling device without risk of collision. These two advantages
made the kappa geometry popular in single-crystal work. On the
other hand, it is not possible to move the specimen to an ‘upside-
down’ position, ie. equivalent to Eulerian v angles less than
—100" or greater than 100°.

Most goniometers do not offer all six rotational and transla-
tional degrees of freedom. The majority of these are actually
three-axis goniometers, where the specimen stage offers one
additional axis for specimen rotation.

A comprehensive overview of commercially available
specimen stages is beyond the scope of this chapter owing to the
huge number of dedicated specimen stages available for different
kinds of specimen types, levels of automation and non-ambient
analyses. The most complete and most current information will
be found in manufacturers’ product information.

2.1.5.2. Accuracy and precision

Particularly high demands are made on goniometer accuracy
and precision in Bragg-angle positioning (goniometer base) and
specimen orientation (specimen stage). These are usually
expressed by the angular accuracy and precision of the goni-
ometer-base axes (w, 20) and the sphere of confusion of specimen
positioning in space. A detailed discussion is given by He (2009).

Depending on the application and the actual instrument
configuration, additional requirements may be imposed on
goniometers, and may limit the maximum accuracy and precision
that are achievable. Typical requirements, often not compatible
with each other, are:

(a) mounting of heavy and bulky beam-path components and
specimens;

(b) variable goniometer radii, typically ranging from about 15 to
60 cm; and

(c) vertical goniometer operation to prevent specimens from
falling off the holder.

Each of these requirements may have an impact on goniometer
accuracy and precision, and potential early wear and tear. Typical
loads range from several kg for fixed-target X-ray sources up to
50 kg and more for moving-target X-ray sources. Small detectors
such as point and one-dimensional detectors range from less than
1 kg up to a few kg, while large two-dimensional detectors may
weigh up to 50 kg and sometimes even more.

For vertical goniometers, the loads on the main axis bearings
can be effectively reduced by counterbalances, as shown in Fig.
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Figure 2.1.10

Example of counterbalancing of a vertical 6-6 goniometer. The
counterweights (grey parts) are located at positions matching the
weights and locations of the X-ray source and detector. Mounting of
different beam-path components with significantly different weight or
moving of, for example, the X-ray source and/or the detector to change
the respective radii may require repositioning of the counterweights to
maintain goniometer accuracy and instrument alignment.

2.1.10 for a goniometer in the w-6 configuration. Heavy specimen
stages may also be supported from below or mounted directly on
the bench, disconnected from the goniometer base. However, for
heavy beam-path components and larger goniometer radii there
is the additional issue of high torques on the incident- and/or the
diffracted-beam X-ray optical benches, leading to torsions along
the benches. These may significantly deteriorate both the angular
accuracy of a goniometer and instrument alignment. For heavy
incident-beam-path components such as moving-target X-ray
sources, a vertical goniometer base in the w-20 configuration is
commonly used, as the incident-beam optical X-ray bench is
mechanically fixed. For heavy incident- and diffracted-beam-path
components a horizontal goniometer base is preferred.

Modern goniometers are equipped with stepping motors
and optical encoders, and feature life-span lubrication for
maintenance-free operation. The typical accuracy of the two
goniometer base axes (w, 26) is of the order of a few thousandths
of a degree, with a precision of the order of a few tens of thou-
sandths of a degree. The v and ¢ axes of the specimen stage are
mostly used for specimen orientation; the typical angular accu-
racy and precision are in the range of about 0.01°.

The sphere of confusion of a goniometer is the result of a
superposition of all axes and represents the minimum spherical
volume covering all possible locations of an infinitely small
specimen at all possible orientations. The size of the sphere of
confusion depends on issues such as individual axis accuracy and
precision, mechanical tolerances, thermal-expansion mismatches,
and the weights of the specimen and beam-path components. The
sphere of confusion for a two-axis goniometer or a four-axis
goniometer with a kappa stage is typically less than 10 um, and
for a four-axis goniometer with a Eulerian cradle less than 50 pm;
both values are without a specimen loaded.

Note that the final accuracy of the Bragg angles of the
measurement data is mostly determined by instrument align-
ment, and not by the accuracy specifically of the two goniometer
base axes. Optical encoders can measure and control axis posi-
tions, but they cannot detect any misaligned or even loose beam-
path components. The final data accuracy is determined by the
adjustability of an X-ray diffractometer with all its beam-path
components. A modern X-ray diffractometer can be aligned to
an angular accuracy of equal or better than 0.01° 26, which
can be checked using suitable standard reference materials (see
Chapter 3.1).

35

2.1.5.3. Hybrid beam-path systems

The trend towards multipurpose instrumentation as well as
specific application requirements has led to a few specialized
goniometer designs. Two major representatives of such designs
are (1) multiple-beam-path systems and (2) systems with addi-
tional rotational degrees of freedom of beam-path components,
such as is required for non-coplanar grazing-incidence diffraction
(GID).

2.1.5.3.1. Multiple-beam-path systems

Multiple-beam-path systems are usually characterized by
integrating more than one beam path on a single goniometer,
employing different, complementary beam-path components to
meet different application and specimen-property requirements.
Mounting two different fixed-target X-ray sources (usually
microsources) with different wavelengths (Cu, Mo) is very
popular in single-crystal crystallography. Double detector arms
are used to mount different types of detectors, most frequently
one-dimensional detectors in combination with point detectors.
Different X-ray optics can be used to implement different
instrument geometries.

A significant driving force behind such multipurpose instru-
mentation is convenience, i.e. to serve a maximum range of
applications and specimen types, ideally without the need to
manually change the instrument configuration. Indeed, switching
between different, preconfigured beam paths may often only
require the push of a single software button. However, parallel
mounting of different beam-path components raises issues
related to the goniometer load and to limitations of angular scan
ranges owing to collision issues.

In more recent designs, different X-ray optics have been
combined into single motorized modules, allowing switching
between different beam paths. Such ‘combi-optics’ are described
in Section 2.1.6.3.4.

2.1.5.3.2. Non-coplanar beam-path systems

Non-coplanar (or ‘in-plane’) grazing-incidence diffraction is a
technique for investigating the near-surface region of specimens
(ten or fewer nanometres beneath the air-specimen interface). It
exploits the high intensity of the total external reflection condi-
tion while simultaneously involving Bragg diffraction from planes
that are nearly perpendicular to the specimen surface.

As illustrated in Fig. 2.1.11, the incident beam is set at an angle
oy, enabling total external reflection in the coplanar direction
(that is coplanar to the diffraction plane); related applications
include reflectometry and grazing-incidence small-angle X-ray
scattering (GISAXS). ‘In-plane’ grazing-incidence diffraction

BIP—(iII)

Figure 2.1.11

Illustration of coplanar and in-plane diffraction. S: X-ray source. 6y, Op:
incident and diffracted beams for coplanar diffraction. «;, op, 261p.Gip:
incident-beam angle, exit angle and diffracted-beam angle, respectively,
for in-plane grazing-incidence diffraction.
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Figure 2.1.12

Sophisticated IP-GID implementation by placing two goniometers
vertically with respect to each other, allowing simultaneous coplanar
and in-plane measurements using two independent scattered-beam
optical X-ray benches (compare with Fig. 2.1.2). The sample stage may
be mounted at position 3 or 3.

(IP-GID) may be measured at angles 260;p.gip in the non-
coplanar direction at an exit angle o.

There are two principal instrument designs implementing
coplanar and in-plane data collection. Firstly, as is obvious from
Fig. 2.1.11, a dual-goniometer system may be employed. The most
sophisticated implementation has two goniometers placed verti-
cally one above the other, allowing simultaneous coplanar and in-
plane measurements using two independent scattered-beam
optical X-ray benches as shown in Fig. 2.1.12. Alternatively, the
second goniometer may be integrated into the scattered-beam
optical X-ray bench, allowing sequential coplanar and in-plane
measurements. As a further alternative, a single goniometer may
be used, with a Eulerian cradle mounted at the detector position,
allowing the detector to be moved around the specimen to
perform in-plane measurements. Secondly, a single goniometer
equipped with a Eulerian cradle may be used, where the
specimen is simply turned by 90° in ¥. As line focus is usually
employed for IP-GID measurements, the X-ray source is also
turned by 90° to increase the flux.

For all systems, the diffracted-beam optical X-ray benches may
be equipped as for multiple beam-path systems, as described in
Section 2.1.5.3.1, providing extremely high flexibility. The choice
of the most appropriate design depends on issues such as
specimen size and weight, the weight of any components in the
diffracted-beam path, related spheres of confusion, and the
potential need to measure the specimen in a horizontal position.

2.1.6. X-ray sources and optics

This section covers both the generation as well as the condi-
tioning of X-ray beams. All types of X-ray sources, whether
laboratory or synchrotron sources, emit a wide range of wave-
lengths with a characteristic beam divergence and with an
intensity related to the power load applied. The function of the
incident- and diffracted-beam X-ray optics is to condition the
emitted beam in terms of desired wavelength spread, divergence,
cross-section size, and shape, and to conserve as much intensity as
possible. To achieve maximum performance in terms of intensity
and angular resolution, it is essential to design the X-ray optics so
that their properties match the characteristics of the X-ray
source. Important parameters are the X-ray source beam size and
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shape, as well as the acceptance angle of the optics given by their
design and the distance to the X-ray source.

The optimum choice of an X-ray source and the X-ray optics
always depends on the properties of the specimen and the
requirements of the applications. Applications requiring high
spatial resolution (e.g. small single crystals or microdiffraction) or
low-angle scattering (e.g. thin-film analysis or SAXS) usually
require parallel and narrow beams, while diffraction by ideal
powders usually works best with larger and slightly divergent
beams. As X-ray sources are hardly ever used without X-ray
optics, all the components should be seen as one unit determining
the beam characteristics at the specimen and eventually at the
detector position.

2.1.6.1. X-ray beam quality measures

An X-ray beam is characterized by its intensity, wavelength
spread, divergence, cross-section size, homogeneity and shape.
Simple means for quantifying the quality of an X-ray beam are
often useful, and can be used to design an optimal measurement
setup by appropriate choice of a combination of X-ray source and
X-ray optics. The quantities that are typically used are flux, flux
density, brightness and brilliance, all within a 0.1% bandwidth
represented by a wavelength range, AA, centred around a specific
wavelength A, ie. AA is equal to 1/1000 of A. While flux, flux
density, brightness and brilliance are inter-related, they are
distinct and one thus has to consider all of these when comparing
X-ray beam characteristics.

Flux represents the integrated intensity of an X-ray beam and
is defined as the number of X-ray photons emitted per unit time.
The unit for flux is photons per second (p.p.s.).

Flux density is defined as the flux passing through a unit area.
The unit is p.p.s. mm ™2 Flux density is an appropriate parameter
for measuring local counting rates and is synonymous to the term
‘intensity’ as used in colloquial speech.

Brightness takes the beam divergence into account, and is
defined as the flux per unit of solid angle of the radiation cone.
The unit is p.p.s. mrad 2. Brightness is an appropriate parameter
to use when comparing two X-ray sources with identical focal
spot size, as the definition does not contain a unit area.

Brilliance additionally takes the beam dimensions into
account and is defined as brightness per mm?” The unit is
p.p.s. mm > mrad~. Brilliance is maximized by making the beam
size and divergence as small as possible, and the photon flux as
large as possible. Two X-ray beams may have the same flux
density but different brilliance if the two beams have different
beam divergence. Brilliance is thus an appropriate parameter to
use when comparing two X-ray sources with different focal spot
sizes.

Note that the X-ray source brilliance is an invariant quantity,
i.e. the brilliance at the specimen position cannot be improved by
any optical techniques, but only by increasing the brilliance of the
X-ray source. This is a consequence of Liouville’s theorem, which
states that phase space is conserved. Accordingly, focusing the
beam to a smaller size by means of any diffractive or reflective
optics will necessarily increase the flux density and the diver-
gence of the X-ray beam, and vice versa. Additionally, any
diffractive or reflective optics lose flux owing to their reflectivity,
which usually is <90%. Apertures such as slits can help to reduce
beam size and divergence, but only at the expense of flux.

Brilliance is more important than flux for experiments with
small specimens (e.g. single crystals) or small regions of interest
(e.g. microdiffraction), where it is generally desirable to work
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Table 2.1.3

Characteristic wavelengths and absorption edges of metal filters in common use

These data are taken from International Tables for Crystallography Vol. C (2004). Metal filters are discussed in Section 2.1.6.3.1.2.

+ Currently used with dedicated Montel optics only.

with a beam of low divergence and to match the incident beam
size to the size of the specimen or the region of interest.

The illumination of larger specimen areas is particularly
important for any applications involving polycrystalline speci-
mens, where focusing of the diffracted beam has an advantage
over parallel-beam optics in terms of higher beam flux and
divergence in that the angular resolution in the diffraction
pattern increases. Using an X-ray beam with too small a cross
section and/or divergence will result in a smaller or even too
small number of diffracting crystallites. This will generally lead to
a loss in the diffracted intensity, and may additionally lead to an
inhomogeneous intensity distribution in space, leading to random
and uncorrectable intensity errors (known as ‘particle statistics
error’, ‘spottiness error’ or ‘granularity error’), and needs to be
avoided by all means.

The combination of an appropriate X-ray source with appro-
priate X-ray optics thus depends on the properties of the
specimen and the requirements of the application, and contri-
butes most to the attainable data quality. This is in full agreement
with the statement made earlier that there are only a few
instrument configurations that will be ideal for any two applica-
tion areas, or every conceivable sample within a single applica-
tion area. While changes of most X-ray optics are extremely easy
these days, changing between different types of X-ray sources
may require significant effort. The choice of the most appropriate
X-ray source therefore requires, at the time of instrument
acquisition, careful consideration of the types of specimen in
relation to the analyses to be conducted.

2.1.6.2. X-ray sources

In this section the general concepts of the commonest types of
X-ray sources will be described. The physics of X-ray generation
and the properties of X-rays have been extensively covered in
the literature. More detailed information can be found in, for
example, International Tables for Crystallography Vol. C (2004)
as well as in the textbooks by Pecharsky & Zavalij (2009),
Clearfield et al. (2008), Jenkins & Snyder (1996), and Klug &
Alexander (1974).

2.1.6.2.1. Generation of X-rays and the X-ray spectrum

In laboratory X-ray sources, X-rays are produced by a multi-
keV electron beam impinging on a metallic target. The X-ray
spectrum that is obtained is characterized by a broad band of
continuous radiation, accompanied by a number of discrete
spectral lines characteristic of the target material. The continuous

Anode Metal K absorption

material Ko, Ko,y KpBs KB, filter edge (A)

Cr 2.2936510 (30) 2.2897260 (30) 2.0848810 (40) 2.0848810 (40) \% 2269211 (21)

Co 1.7928350 (10) 1.7889960 (10) 1.6208260 (30) 1.6208260 (30) Fe 1.7436170 (49)

Cu 1.54442740 (50) 1.54059290 (50) 1.3922340 (60) 1.3922340 (60) Ni 1.4881401 (36)

Gat 1.3440260 (40) 1.3401270 (96) 1.208390 (75) 1.207930 (34)

Mo 0.713607 (12) 0.70931715 (41) 0.632887 (13) 0.632303 (13) Zr 0.6889591 (31)
Nb 0.6531341 (14)

Ag 0.5638131 (26) 0.55942178 (76) 0.4976977 (60) 0.4970817 (60) Rh 0.5339086 (69)
Pd 0.5091212 (42)
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part of the spectrum (‘Bremsstrahlung’) is generated by the rapid
deceleration of the electrons within the target, ranging from
lowest energies as a result of gradual deceleration through to a
cutoff wavelength whose energy corresponds to the initial kinetic
energy of the electron, as a result of instantaneous deceleration.
The discrete spectral lines (‘characteristic radiation’) are the
result of electrons knocking out core electrons from the target
material. This results in emission of ‘fluorescent’ X-rays when the
perturbed atom relaxes to its ground state by filling up the energy
levels of the electrons that have been knocked-out by means of
electron transitions from higher electron shells. The energy of the
fluorescent radiation is characteristic of the atomic energy levels
of the target material. The most commonly used characteristic
radiation is that of Ke, representing the transition of a 2p elec-
tron (L shell) filling a hole in a 1s (K) shell.

The target materials that are commonly in use strongly depend
on the application and the type of X-ray source used. The most
commonly used target materials range from Cr through to Co,
Cu, Mo and Ag. With the recent introduction of liquid-metal
targets, see Section 2.1.6.2.2.2(b), Ga will find increasing use in
applications requiring the smallest spot sizes and highest bril-
liance. A list of characteristic wavelengths and absorption edges
of commonly used metal (Kp) filters is given in Table 2.1.3.

Today’s laboratory X-ray sources can be classified as shown in
Table 2.1.1, and are described in Section 2.1.6.2.2. For perfor-
mance considerations see Section 2.1.6.2.3.

2.1.6.2.2. Types of X-ray sources

The performance of X-ray sources is usually characterized via
brilliance as a measure for the quality of the emitted X-rays. The
brilliance of an X-ray source is determined by several factors
such as electron power density and the take-off angle.

The electron power density is the most important factor. Only
a small fraction of <1% of the applied electron energy is
converted into X-rays, so most of the incident energy is dissipated
within the target as heat. The maximum power density and thus
brightness of the X-ray source is limited by the melting or
evaporation temperature of solid or liquid metal targets,
respectively, and the efficiency with which the heat is removed
from the area on which the electrons impact.

The take-off angle describes the angle under which the focal
spot is viewed, and typically ranges from 3° to 7°, but may be up to
45°, depending on the type of X-ray source. The actual take-off
angle that is chosen represents a compromise. On the one hand, it
should be as small as possible to minimize the effectively seen
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Figure 2.1.13

Illustration of the working principle of laboratory X-ray sources: (a)
fixed target, (b) rotating target, (c) liquid-metal jet. o take-off angle. For
fixed targets (@) the heat mainly flows towards the cooled back end of the
target. For moving targets (b, c¢) cold parts of the target are moved into
the electron beam continously, providing an extremely large effective
cooling efficiency.

width of the focal spot to increase resolution. On the other hand,
it cannot be made arbitrarily small to avoid self-absorption by the
metal target due to the finite depth in which the X-ray radiation is
produced. The higher the tube voltage the larger the take-off
angle should be to avoid intensity losses by self-absorption.
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In the history of laboratory X-ray source development, most
effort has probably been concentrated on techniques for
removing the heat from the metal target as efficiently as possible,
as illustrated in Fig. 2.1.13, leading to two different categories of
X-ray sources for laboratory use: fixed- and moving-target X-ray
sources.

2.1.6.2.2.1. Fixed-target X-ray sources

Fixed-target X-ray sources are used in more than 90% of all
X-ray diffractometer installations (Fig. 2.1.13a). Electrons are
generated by heating a filament (cathode) and accelerated
towards the metal target (anode) by means of a high potential,
typically of the order of 30-60 kV.

In conventional X-ray sources the electrons are focused by an
electrostatic lens onto the anode to form the focal spot. Typical
power ratings range from several hundred watts up to about
3 kW. The anode is water-cooled from the back. Focal spots are of
rectangular shape, and can be viewed at the two long and the two
short faces, giving two line and two point foci, respectively. This
allows up to four instruments to be operated with a single X-ray
source. However, the vast majority of all today’s X-ray diffract-
ometers are equipped with an individual X-ray source (and
sometimes two, see Section 2.1.5.3.1). This significantly eases
alignment as there is no need to align the instrument with respect
to the X-ray source, and allows instrument configurations with
moving X-ray sources. Modern X-ray-source stage designs allow
switching between point and line focus by rotating the X-ray
source 90° without alignment and even without the need to
disconnect the powder cables and water supply.

Conventional X-ray sources have long and wide electron
beams so that a large area of the target is heated (Fig. 2.1.13a).
The heat generated in the middle of this area can mainly flow in
just one direction: towards the water-cooled back of the anode.
Heat flow parallel to the surface is minimal, thus limiting the
cooling efficiency. It is for this reason that conventional X-ray
sources achieve the lowest brilliance of any laboratory X-ray
source. Conventional X-ray sources are usually coupled with
relatively simple optics and are cheap compared to moving-target
systems. In addition they are maintenance-free, apart from
periodic changes of the X-ray source owing to ageing.

‘Micro-focus’ X-ray sources represent another category of
X-ray source and are characterized by very small focal spot sizes
ranging from a few pm up to about 50 pm. In this type of X-ray
source, the improved focusing of the electron beam is achieved by
very fine electrostatic or magnetic lenses. Power requirements are
significantly less than conventional X-ray sources, ranging from a
few watts up to some hundred watts, depending on focal spot size;
water cooling is frequently not required. Again, there is no
maintenance required beyond periodic tube changes.

As the focal spot area is very small, heat can also flow sideways,
improving the thermal cooling efficiency and thus allowing this
type of X-ray-source tube to achieve significantly higher bril-
liance than conventional X-ray sources. To benefit from this
increased performance, relatively large optics of the reflective
type (see Section 2.1.6.3.3) are required, making micro-focus
X-ray source systems significantly more expensive than conven-
tional systems.

The lifetime of a fixed-target X-ray source depends on many
factors, of which operation of the source within specifications
(such as specific loading and cooling) is particularly important.
The ‘useful’ lifetime may be significantly shorter, even though the
X-ray source still operates. Deposition of tungsten from the
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filament on the anode and on the inner beryllium window
surfaces leads to spectral contamination and substantial loss of
intensity with time. Increasing deterioration of the filament may
change its position relative to the electrostatic lens used for
focusing and result in beam inhomogeneity and additional
intensity losses. Further intensity losses and beam inhomogeneity
may arise from pitting of the anode surface as a result of the
intense electron flux on the anode surface.

2.1.6.2.2.2. Moving-target X-ray sources

(a) Rotating-target X-ray sources. Rotating-target X-ray
sources are able to remove heat more efficiently than fixed-target
sources, and can thereby sustain higher fluxes of X-ray photons
(Fig. 2.1.13b). This is achieved by rotating a cooled anode, with a
typical diameter ranging from about 10 to 30 cm, at about 6000-
12 000 revolutions per minute. The maximum power loads
depend on the focal spot size, and can range up to 18 kW for
conventional rotating-target X-ray sources, and 3 kW for micro-
focus rotating-target X-ray sources. Rotating-target X-ray
sources are thus inherently more brilliant, and gain up to an order
of magnitude in brilliance compared to their respective fixed-
target counterparts.

Rotating-target systems do require routine maintenance such
as periodic anode refurbishment and changes of the filament,
bearings and seals. The maintenance requirements of micro-focus
systems are significantly lower than those of conventional
rotating-target systems because of the lower total power loading.

(b) Liquid-metal-jet X-ray sources. A very recent development
is that of liquid-metal-jet micro-focus X-ray sources (Fig. 2.1.13¢),
where a jet of liquid metal acts as the electron-beam target
(Hemberg et al, 2003). A thin (<100-225 um) high-speed
(>50 m s ') liquid-metal jet is injected into vacuum by applying a
backing pressure of about 200 bar and is targeted by a focused
electron beam with a beam power of up to 200 W and a focal spot
size of down to 6 pm. The focal spot is viewed at a take-off angle
of about 45° to obtain a symmetric beam usually coupled into
Montel optics. (Montel optics are described in Section
2.1.6.33.1.)

Ideal materials for use in liquid-jet anodes are electrically
conductive to avoid charging and have low vapour pressure to
simplify vacuum operation. Among a few materials currently
being evaluated, Galinstan (a eutectic mixture of 68.5% Ga,
21.5% In and 10% Sn by weight) is particularly suited for
laboratory X-ray analyses, as it is liquid at room temperature
(melting point 254 K), with the most intense Ga Ko line at
9.25 keV, and less intense In Ko and Sn K lines at 24 and
25.3 keV, respectively.

The obvious advantage of a metal-jet anode is that the
maximum electron-beam power density can be significantly
increased compared to solid-metal anodes and thus the brilliance
can be increased by up to an order of magnitude.

2.1.6.2.3. Performance of X-ray sources

The single most important property of an X-ray source is its
brilliance, which is proportional to the maximum target loading
per unit area of the focal spot, also referred to as the specific
loading.

In Table 2.1.4 the maximum target loading and specific loading
(relative brilliance) for some typical sealed tubes and some
rotating-anode sources with a Cu target are compared. Also
listed are data for the liquid-metal jet with Ga as a target. Micro-
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Table 2.1.4
Maximum target loading and specific loading for some selected fixed-
and moving-target X-ray sources

Focal spot Maximum Specific loading
X-ray source (mm?) load (kW) | (kW mm?)
Fixed target
Broad focus (Cu) 2 x 10 3 0.15
Normal focus (Cu) 1 x10 2.5 0.25
Long fine focus (Cu) 0.4 x 12 2.2 0.5
Micro-focus (Cu) 0.01-0.05 <0.05 5-50
Moving target
Rotating anode (Cu) 0.5 x 10 18 3.6

03 x3 5.4 6

02 x2 3 7.5

01 x1 12 12
Micro-focus rotating 0.1 2.7 27

anode (Cu)

Liquid-metal jet (Ga) | 0.02 x 0.02 | 0.2 >500

focus fixed-target X-ray sources have up to two orders of
magnitude higher specific loadings compared to conventional
fixed target tubes, and even 2 to 5 times higher specific loadings
compared to conventional rotating-anode systems. In contrast to
fixed-target micro-focus X-ray sources, where the specific loading
can only be increased by reducing the source size, moving-target
X-ray sources are also made brighter by increasing the speed of
the target relative to the electron beam. Moving-target X-ray
sources are thus inherently brighter than stationary targets. The
liquid-gallium jet has a higher (by a further order of magnitude)
specific loading than the most brilliant rotating-anode systems,
and now rivals the intensity of second-generation synchrotron
beamlines.

2.1.6.3. X-ray optics

The purpose of X-ray optical elements is to condition the beam
emitted by an X-ray source in terms of desired wavelength
spread, divergence, cross-section size and shape, and to conserve
as much intensity as possible. X-ray optics currently employed in
laboratory X-ray diffractometers may be classified as absorptive,
diffractive and reflective, as shown in Table 2.1.1.

Absorptive and diffractive X-ray optics represent selective
beam-conditioning techniques, where parts of the beam are
eliminated to achieve a particular wavelength distribution and
divergence. In contrast to this, reflective optics modify the beam
divergence to direct the full beam to the specimen or to the
detector. The extremely large number of X-ray optical elements
available allows for an enormous range of incident and diffracted
beam-path configurations. Choosing the most appropriate X-ray
optics and X-ray optics combination for a particular experiment
is a challenge for the user. The general rule to be obeyed in order
to obtain the best data quality is that the beam dimension,
wavelength distribution and divergence should compare to the
specimen dimension and angular spread of the structural features
to be resolved.

In this section the most common features of X-ray optics in
current use will be discussed. A comprehensive survey cannot be
given, since there exists an incredible multitude of variants of the
basic X-ray optic types listed in Table 2.1.1. X-ray optics have
been extensively covered in the literature, for example in Inter-
national Tables for Crystallography Vol. C (2004) and in the
textbooks by He (2009), Pecharsky & Zavalij (2009), Paganin



2. INSTRUMENTATION AND SAMPLE PREPARATION

(2006), Fewster (2003), Bowen & Tanner (1998), Jenkins &
Snyder (1996), Klug & Alexander (1974), and Peiser et al. (1955).
An extensive discussion of the principles of combining X-ray
optics to optimally suit a wide range of different powder
diffraction as well as thin-film applications has been given in the
textbook by Fewster (2003).

2.1.6.3.1. Absorptive X-ray optics
2.1.6.3.1.1. Apertures

The simplest way of beam conditioning is to place apertures
such as slits (line focus) or pinholes (point focus) into the incident
and/or diffracted beam to control beam divergence and shape,
and to reduce unwanted scattering from air or any beam-path
components. Apertures are ‘shadow-casting’ optics and thus
cannot increase flux density. Reducing beam divergence and
beam dimensions by means of apertures invariably results in a
loss of intensity that is inversely proportional to the slit aperture.

The principles are shown in Fig. 2.1.14. The divergence of a
beam is established by the dimensions of the focal spot as well as
the aperture and the distance of the aperture from the source
(Fig. 2.1.144a). The divergence in the diffraction plane is usually
called ‘equatorial divergence’ and the divergence in the axial
direction ‘axial divergence’. Apertures can be of the plug-in type
requiring manual changes of the aperture to obtain different
divergence angles, or — usually only for equatorial divergence slits
— motorized. Motorized slits are mostly used in the Bragg—
Brentano geometry to limit equatorial divergence, which can be
arbitrarily chosen and either be kept constant to keep the
diffracting specimen volume constant (as is invariably the case
with plug-in slits), or varied as a function of 26 to keep the
illuminated specimen length constant. Typical aperture angles
range from 0.1-1".

To provide additional collimation, a second aperture may be
placed at some distance away from the first (Fig. 2.1.145). When
using the same aperture, an almost-parallel beam may be
obtained from a divergent beam at the cost of high intensity
losses. A third aperture is often used to reduce scattering by the
second slit. In laboratory X-ray diffractometers dedicated for
SAXS analysis such collimation systems may reach lengths of
more than 1 m.

Another way to parallelize radiation is to use a parallel-plate
collimator (PPC), which is manufactured from sets of parallel,
equally spaced thin metal plates, as shown in Fig. 2.1.14(c). Each
pair of neighbouring plates works like a double-aperture
arrangement as shown in Fig. 2.1.14(b). In contrast to simple slits
and pinholes, PPCs do not change the shape of the beam. PPCs
arranged parallel to the diffraction plane are usually called
‘Soller slits’ and are used to control axial divergence. Such
devices can be used for focusing as well as parallel-beam
geometries with typical aperture angles ranging from 1-5°. Soller
slits are usually mounted on both the incident- and diffracted-
beam sides of the specimen. PPCs arranged parallel to the
diffraction plane are specifically used in parallel-beam geome-
tries to minimize equatorial beam divergence, with typical aper-
ture angles ranging from 0.1-0.5".

The ways in which the diffracted beam can be conditioned are
limited when employing one- or two-dimensional detectors. A
particular issue related to these types of detectors is unwanted
scattering from air or any beam-path components. Ideally, a
closed, evacuated or He-flushed beam path will be used, but this
is often not feasible owing to collision issues. For smaller detec-
tors it is possible to place the anti-scatter aperture closer to the
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Figure 2.1.14
Apertures used for beam collimation. «: divergence angle, f: virtual
focus. (@) Single slit or pinhole, (b) parallelization through double slits or
pinholes, (c) parallelization through a parallel-plate collimator, (d) a
radial plate collimator.

specimen surface. Alternatively, a knife edge may be placed on
top of the specimen. As knife edges may interfere with divergent
beams at higher 26 angles, it is necessary to move them away from
the specimen at higher 26 angles. Another possibility, limited to
one-dimensional detectors, is to use radial Soller slits as shown in
Fig. 2.1.14(d).

2.1.6.3.1.2. Metal filters

Metal filters are the most frequently used devices for mono-
chromatization of X-rays in laboratory diffractometers. Metal
filters represent single-band bandpass devices where mono-
chromatization is based on the K absorption edge of the filter
material to selectively allow transmission of the Ko characteristic
lines while filtering white radiation, Kf radiation (hence they are
frequently known as ‘Kp filters’), and other characteristic lines.

A properly selected metal filter has its K absorption edge right
between the energies of the Ko and K characteristic lines of the
source. As a rule of thumb, this is achieved by choosing an
element just one atomic number less than the X-ray source target
material in the periodic table. For heavy target materials such as
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Figure 2.1.15
Motorized switchable (a) and rotating (b) absorbers.

Mo or Ag, this rule can be extended to two atomic numbers. A list
of metal filters suitable for the most commonly used target
materials is given in Table 2.1.3.

A major disadvantage of metal filters is that they cannot
completely eliminate K radiation at bearable intensity losses. In
addition, they introduce absorption edges at the high-energy
(low-angle) side of diffraction peaks, the magnitudes of these
being dependent on the wavelength as well as on the filter
material and its thickness. While for point detectors absorption
edges are usually obscured by counting statistics, they are much
more readily visible to position-sensitive detectors owing to the
high number of counts that are typically collected.

Positioning of the metal filter does not make a difference in
terms of filtering of KB or white radiation, but can in the case of
specimen fluorescence. Placing the metal filter in the diffracted
beam can filter some fluorescence radiation, unless the specimen
contains the same element as the metal filter. Taking Cu radiation
as an example, most fluorescence radiation excited by Ni in the
specimen will pass through a diffracted-beam Ni filter. In this
instance, the K g filter should be mounted in the incident beam to
suppress Cu Kp radiation, which is very efficient at exciting Ni
fluorescence. Balanced-filter techniques, employing two (or
more) filters that have absorption edges just above and below
Ko, are no longer in use as the resulting bandpass is still much
wider than that of crystal monochromators at even higher
intensity losses.

Metal filters are generally supplemented by some energy
discrimination by the detector to remove the high-energy white
radiation from the X-ray source. The effectiveness of this white-
radiation removal depends upon the energy resolution of the
detector, and is discussed in Section 2.1.7 for the different
detector technologies currently in use. Recent improvements in
the energy-discrimination capabilities for silicon strip detectors
now even allow filtering of K radiation, completely eliminating
the need for metal filters (see Section 2.1.7.2.3.2). As a conse-
quence, the use of metal filters is likely to decline.

Another type of metal filter is represented by absorbers, e.g.
Cu foils, which are used at high intensities to avoid detector
saturation or even damage. Absorbers can be motorized and
switched in and out automatically depending on the actual count
rates that are detected (Fig. 2.1.15a4). Several absorbers with
different thickness may be combined in the form of motorized
rotating absorbers (Fig. 2.1.15b).
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Figure 2.1.16

Tllustration of flat single-reflection monochromators. (a) Symmetrically
cut crystal, (b) asymmetrically cut crystal with an angle y between the
reflecting lattice planes and the crystal surface.

2.1.6.3.2. Diffractive X-ray optics

Single crystals or highly textured polycrystals (mosaic crystals)
represent effective beam conditioners by allowing the spectral
bandwidth as well as the X-ray beam divergence to be modified.
When they are placed at a specific angle with respect to the
incident and diffracted beams, according to Bragg’s law, only a
small spectral bandwidth will be transmitted depending on the
divergence of the incident beam and the rocking angle (mosaic
spread) of the crystal. Higher harmonics (A/2, A/3,...) are
diffracted as well, but can be successfully suppressed by using
materials with small higher-order structure factors and via energy
discrimination by the detector. Depending on the application, a
crystal monochromator can be either used as a spectral filter
(‘monochromator’), typically used in the incident beam, or as an
angular filter (‘analyser’), typically used in the diffracted beam to
restrict the angular acceptance of the detector.

It is likely that all monochromators currently employed in
laboratory X-ray diffractometers are of the reflective type
(‘Bragg geometry’). Transmission-type monochromators (‘Laue
geometry’) play no role in laboratory powder diffraction. Two
designs are in common use and are described below: (a) single-
reflection monochromators and (b) multiple-reflection mono-
chromators.

2.1.6.3.2.1. Single-reflection monochromators

The most common types of single-reflection monochromators
are illustrated in Figs. 2.1.16 and 2.1.17. Flat crystals (Fig. 2.1.16)
are used in parallel-beam geometry and curved crystals in
focusing geometries (Fig. 2.1.17). A beam reflected from a flat
crystal with the reflecting lattice planes parallel to its surface
(symmetric cut) is nearly parallel (Fig. 2.1.16a). If the crystal is
cut at an angle to the reflecting lattice planes (asymmetric cut),
then the beam will be expanded (Fig. 2.1.16b), or compressed if
reversed (Fankuchen, 1937). Monochromators can be curved
(Johann, 1931) or curved and ground (Johannson, 1933), and may
be cut symmetrically (Fig. 2.1.17a) or asymmetrically (Fig.
2.1.17b). The latter has the particular advantage of providing
different focal lengths for the incident and diffracted beam. A
shortened incident beam allows the monochromator to be
mounted closer to the X-ray source to capture a larger solid angle
of the emitted beam. If the diffracted-beam focusing length is
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Figure 2.1.17

Illustration of curved and ground single-reflection monochromators.
Only the central beam is shown for clarity. (¢) Symmetrically cut crystal,
(b) asymmetrically cut crystal with two different focal lengths a and b.

sufficiently large, then the instrument geometry can be converted
between the Bragg—Brentano and the focusing Debye-Scherrer
geometries by shifting the monochromator crystal and the X-ray
source along the incident-beam X-ray optical bench (see Section
2.1.4.1 and Fig. 2.1.3).

The most commonly used monochromator crystal materials
are germanium and quartz, which have very small mosaic spreads
and are able to separate the Koy/Ko, doublet. In contrast to
germanium and quartz crystals, graphite and lithium fluoride
have large mosaic spreads and thus high reflectivity, but cannot
suppress Ko,. In principle, any of these monochromators can be
mounted in the incident as well as the diffracted beam; the choice
mostly depends on the purpose of the monochromator. Germa-
nium and quartz monochromators are typically used as incident-
beam monochromators to produce pure Ko radiation. Graphite

(a)

(c)
Figure 2.1.18

(focusing geometries) and lithium fluoride (parallel-beam
geometry) are often used as diffracted-beam monochromators to
suppress fluorescence radiation. Germanium and quartz can also
be used as diffracted-beam monochromators, but are usually not
because of their lower reflectivity. Where mounting of diffracted-
beam monochromators is difficult or impossible, which is speci-
fically true for one- and two-dimensional detector applications,
curved graphite monochromators are frequently used as incident-
beam monochromators.

The use of diffracted-beam monochromators — at least in
powder X-ray diffraction — is declining steeply because of the
geometric incompatibility issues with one- and two-dimensional
detector systems (which, since 2010, have been sold with more
than 90% of all diffractometers; see Section 2.1.3.2). With the
recent improvements of energy-discrimination capabilities for
silicon micro-strip detectors, the need for diffracted-beam
monochromators will further diminish (see Section 2.1.7.2.3).

2.1.6.3.2.2. Multiple-reflection monochromators

Multiple-reflection monochromators can reduce the wave-
length dispersion AX /A significantly more than single-reflection
monochromators. Multiple-reflection monochromators are often
made of monolithically grooved single crystals and are also
known as channel-cut monochromators (Bonse & Hart, 1965). In
Fig. 2.1.18 an overview is given of the most common channel-cut
monochromator types; for a detailed discussion see e.g. Hart
(1971) and Bowen & Tanner (1998). Successive reflection of the
X-ray beam at the channel walls by the same lattice planes causes
a strong reduction of the X-ray intensity contained in the tails
of the beam. Depending on the number of reflections,
multiple-reflection monochromators are denoted as two-bounce,
three-bounce etc. channel-cut monochromators. The Bartels
monochromator (Bartels, 1983) comprises two two-bounce
channel-cut crystals. For Cu radiation, such a monochromator
results in a wavelength spread which is less than the natural line
width of the Cu Ko line. The most commonly used crystal
material is germanium, which delivers higher intensity than
silicon, using the 400, 220, or 440 reflections. Crystals may be cut
symmetrically or asymmetrically. In Table 2.1.5 several types of

Y
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Illustration of multiple-reflection monochromators. (a) Symmetrically cut two-bounce channel-cut monochromator, (b) asymmetrically cut two-bounce
channel-cut monochromator for beam compression, or, if reversed, for beam expansion, (¢) symmetrically or asymmetrically cut four-bounce channel-
cut monochromator, (d) symmetrically cut three-bounce channel-cut monochromator.
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Table 2.1.5
Comparison of divergence and intensity for several types of germanium
channel-cut monochromators

In each case, the monochromator is coupled with a graded multilayer providing
3 x 10” counts per second at <0.028° beam divergence. The values in parentheses
denote the percentage of intensity diffracted by the respective monochromator
crystals.

Divergence
Type (hkl) ©) Intensity
Two-bounce | 220, symmetric <0.0052 5.0 x 107 (~1.5%)
Two-bounce | 220, asymmetric | <0.0085 3.3 x 10° (~10%)
Two-bounce | 400, asymmetric | <0.0045 4.8 x 107 (~1.5%)
Four-bounce | 220, symmetric <0.0035 6.5 x 10° (~0.2%)
Four-bounce | 220, asymmetric | <0.0080 2.7 x 107 (~1%)
Four-bounce | 440, symmetric <0.0015 22 x 10° (~0.075%)

germanium channel-cut monochromators are compared in terms
of divergence and intensity.

Switching between different channel-cut monochromators is
extremely easy these days and can be accomplished without the
need for any tools and without realignment. This is also true for
cases where a beam offset is introduced, e.g. by switching
between two- and four-bounce channel-cut monochromators. In
sophisticated instruments such an offset can be compensated
fully automatically by a software-controlled motor.

The combination of different types of channel-cut mono-
chromators in both the incident and diffracted beam allows the
construction of advanced diffractometer configurations with
extremely high resolution capabilities. It should be emphasized
that laboratory X-ray diffractometers can have identical optical
configurations to diffractometers operated at synchrotron
beamlines. The important and obvious difference, however, is the
extremely low flux coming from laboratory X-ray sources, which
is further diminished by each reflection in a channel-cut mono-
chromator (Table 2.1.5). While such configurations work
perfectly for strongly scattering single-crystal layers in thin films,
for example, analysis of ideal powders is normally not possible.

2.1.6.3.3. Reflective X-ray optics
2.1.6.3.3.1. Multilayer mirrors

Multilayer mirrors used in laboratory X-ray diffractometers
are efficient beam conditioners, using total reflection as well as
Bragg reflection on inner interfaces of a multilayer structure to
modify beam divergence, cross-section size, shape and — to some
extent — spectral bandwidth. A comprehensive description of
current mirror designs and important mirror properties is found
in the VDI/VDE Guideline 5575 Part 4 (2011).

Multilayer mirrors consist of a multilayer coating deposited on
a flat or curved substrate. The imaging characteristics are mostly
determined by the contour of the mirror surface as defined by the
substrate surface. The most common contours include planes,
ellipsoids, paraboloids, elliptic cylinders or parabolic cylinders.
The spectral reflection properties are determined by the coating,
which may consist of some 10 up to 1000 alternating layers of
amorphous low-density (‘spacer’) and high-density (‘reflector’)
materials, with a period of a few nanometres. The first curved
mirrors were produced by depositing the multilayers on a flat
substrate that was subsequently bent to the desired contour,
yielding typical r.m.s. slope errors of about 15 arcsec. By using
prefigured substrates with r.m.s. slope errors below 1.7 arcsec,
significantly improved reflectivity and lower beam divergence are
obtained. Laterally graded multilayer mirrors (so-called ‘Gobel
mirrors’) have a layer thickness gradient parallel to the surface
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Figure 2.1.19

Schematic of graded multilayer mirrors. (a) Parabolic mirror for
parallelization of a divergent beam, or, if reversed, focusing of a parallel
beam. In the latter case the mirror will also filter some specimen
fluorescence. (b) Elliptical mirror for focusing of a divergent beam.

(Schuster & Gobel, 1996), which, when combined with a planar,
parabolic or elliptic substrate contour, produce a divergent,
parallel or focusing beam. Fig. 2.1.19 illustrates graded multilayer
mirrors for parallelization and focusing in the plane of diffrac-
tion.

For beam conditioning in two perpendicular directions, two
perpendicularly oriented curved mirrors may be used, as illu-
strated in Fig. 2.1.20. In the Kirkpatrick—-Baez scheme (Kirk-
patrick & Baez, 1948), two mirrors are cross-coupled as shown in
Fig. 2.1.20(a). This setup has some issues related to the inherently
different capture angles and magnification of both mirrors,
resulting in less flux from smaller sources and in different
divergences in both directions for elliptical mirrors. The Montel
optics (Montel, 1957) shown in Fig. 2.1.20(b) overcome these
issues by arranging both mirrors in a ‘side-by-side’ configuration.

Figure 2.1.20

Examples for orthogonally positioned curved mirrors for beam
conditioning. (a) Kirkpatrick-Baez scheme employing two parabolic
mirrors to create a parallel beam, (b) Montel optics employing two
elliptical mirrors side-by-side to create a focusing beam.
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Mirrors are available for all characteristic wavelengths used in
laboratory X-ray powder diffractometers. A wealth of different
materials are being used as double layers (reflector/spacer),
including but not limited to W/Si, W/B,C, Ni/C, Ru/B,C, Ti/B4C,
V/B,C, Cr/B4C and Mo/B,4C. The double-layer materials may be
selected according to the energies of their absorption edges to
make the mirror act as a filter as well. While none of these
mirrors is strictly speaking a monochromator, appropriate
selection of the double-layer materials, depending on the wave-
length used, will allow monochromatization of the radiation to
Ko while KB and Bremsstrahlung are suppressed.

Within the past two decades mirror systems have become
invaluable for all applications requiring a small and/or highly
parallel beam. In particular, coupling of a parallel-beam mirror
with multiple-reflection channel-cut monochromators allows the
use of a wider solid-angle range of the X-ray source and a gain of
nearly two orders of magnitude in intensity (Schuster & Gobel,
1995). For applications requiring ideal powders, however, too-
small as well as too-parallel beams may result in too small a
number of diffracting crystallites, which will generally reduce the
diffracted intensity, and may additionally lead to particle statistics
errors (see also Section 2.1.6.1).

Today, advanced sputtering techniques allow the fabrication of
a wealth of different multilayer optics with virtually arbitrary
beam divergences to generate focusing, parallel and divergent
beams, for both point- and line-focus applications. The most
comprehensive overview of currently available mirrors and up-
to-date specifications will be found in manufacturers’ brochures.

2.1.6.3.3.2. Capillaries

X-ray capillary optics are finding increasing use in applications
where a small focused beam with high intensity is required. Their
design, important properties and applications are discussed by
e.g. Bilderback (2003), He (2009), and the VDI/VDE Guideline
5575 Part 3 (2011).

X-ray capillary optics employ total external reflection by the
inner surface of hollow glass tubes to guide and shape X-ray
radiation. For incidence angles lower than the critical angle of
total reflection the X-ray radiation is guided through the optics at
very low losses. The transmission efficiency depends upon the
X-ray energy, the capillary materials, reflection surface smooth-
ness, the number of reflections, the capillary inner diameter and
the incident beam divergence, and is thus determined by the
particular design of the given optics. Generally, the transmission
efficiency decreases with increasing X-ray energy owing to the
decreasing critical angle of total reflection. The role of X-ray
capillary optics as energy filters is insignificant, therefore capil-
laries are usually used in combination with monochromatization

S
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Figure 2.1.21
Schematic of monocapillary optics. (a) Elliptical and (b) parabolic
monocapillary. S = source; F = focal point.
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Figure 2.1.22
Schematic of polycapillary optics. (a) Focusing and (b) parallel-beam
polycapillary. S = source; F = focal point.

devices such as metal filters, incident-beam graphite mono-
chromators or graded multilayers. Gains in flux density of more
than two orders of magnitude compared to pinhole systems have
been reported. The most common X-ray capillary optics currently
used in laboratory X-ray powder diffractometers can be cate-
gorized as either monocapillaries or polycapillaries.

Monocapillaries consist of ellipsoidal or paraboloidal capil-
laries for focusing or parallelizing X-rays by means of single or
multiple total reflections, as illustrated in Fig. 2.1.21. The exit-
beam divergence is controlled by the capillary diameter and
length as well as the critical angle of total reflection; typical spot
sizes range from some 20 mm down to less than 1 um. Single-
reflection monocapillaries are achromatic and almost 100%
efficient. Their most important limitations are figure slope errors
limiting the spot size. Multi-reflection monocapillaries can have
the smallest spot sizes, which do not depend on the source size.
An important drawback is that the beam is smallest at the
capillary tip. In order to obtain the smallest possible spot size the
sample has to be positioned to within 10-100 times the diameter
of the tip exit size, e.g. 10-100 pm for a capillary with a 1 pm tip
exit size.

Polycapillaries (e.g. Kumakhov & Komarov, 1990) are mono-
lithic systems of micro-structured glass consisting of thousands up
to several millions of channels, which are tapered at one or both
ends to form desired beam profiles as illustrated in Fig. 2.1.22. A
single channel can efficiently turn an 8 keV beam by up to 30° by
multiple total reflections. Polycapillaries can collect a very large
solid angle up to 20°, resulting in very high intensity gains. Typical
spot sizes range from some 20 mm down to about 10 um and are
energy dependent, getting larger at lower energies.

2.1.6.3.4. Combi-optics

The steadily growing trend towards multipurpose instru-
mentation has led to a multitude of X-ray optics combined in
single modules to eliminate reassembling and realignment. Such
‘combi-optics’ are usually motorized and allow a fully automatic,
software-controlled switch between different beam paths to
switch between different instrument geometries or to optimize
beam conditioning (e.g. high flux versus high resolution).

A frequent requirement is the ability to switch between the
divergent-beam Bragg-Brentano and parallel-beam Debye-
Scherrer geometries, which can be achieved by two combi-optics
as illustrated in Fig. 2.1.23. In this example, the incident-beam
combi-optics consist of a variable slit and a Gobel mirror. When
operating as a variable slit (Fig. 2.1.23a), the parallel-beam path is
blocked by the variable slit. Turning the variable slit parallel to
the divergent beam (Fig. 2.1.23)) enables the parallel beam and
blocks the divergent beam. The diffracted-beam combi-optics
consist of a set of two parallel-plate collimators, which are
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Figure 2.1.23
Incident and diffracted beam combi-optics for switching between (a) the
Bragg-Brentano geometry and (b) the parallel-beam geometry. S: X-ray
source; D: detector.

separated by a small gap. When turning the two parallel-plate
collimators into the beam direction, only those diffracted rays
running parallel to the collimator plates will reach the detector
(Fig. 2.1.23b). When turning the collimators by approximately
90°, the gap between the two collimators acts as a variable slit
enabling a divergent beam (Fig. 2.1.23a).

Significantly more sophisticated combi-optics are used in X-ray
diffractometers that are mostly used for thin-film analysis. In Fig.
2.1.24 an example for two different incident-beam and four
different diffracted-beam paths is shown, providing the choice
between eight different beam paths depending on the properties
of the specimen and the application requirements. The incident
beam path is characterized by a fixed-target X-ray source
equipped with a Gobel mirror, attached on a motorized mount.
By rotating this arrangement by about 5°, the beam travels either
through a rotary absorber followed by a two-bounce channel-cut
monochromator and a slit (upper beam path, high-resolution

Primary
combi-optic

setting), or just through a single slit (lower beam path, high-flux
setting). The diffracted beam path represents a double-detector
setup, typically consisting of a point detector (D1) and a position-
sensitive detector (D2). For the point detector three different
beam paths can be chosen by means of a switchable slit, which
either sends the beam through a three-bounce channel-cut
analyser, or through the same two-parallel-plate-collimator
arrangement already discussed in Fig. 2.1.23, either acting as a
parallel-plate collimator or a variable slit. A fourth beam path
without any diffracted-beam X-ray optics allows use of the
position-sensitive detector.

2.1.7. X-ray detectors

The general concepts of X-ray detectors are described here with
the focus on practical aspects. The physics of X-ray detection and
the individual detector technologies are extensively covered in
the literature. He (2009) gives a comprehensive discussion that
also includes the most recent detector technologies. Additional
detailed descriptions are found in International Tables for Crys-
tallography Vol. C (2004), as well as in the textbooks by
Pecharsky & Zavalij (2009), Clearfield et al. (2008), Paganin
(2006), Jenkins & Snyder (1996), and Klug & Alexander (1974).

2.1.7.1. Detector parameters

There are many ways to characterize the properties and
performance of an X-ray detector.

Ideally, in a given detector operated under appropriate
conditions, (1) each photon will produce a detectable signal and
(2) the signal recorded is proportional to the number of photons
detected. If both conditions are fulfilled then the detector has
unit quantum efficiency. The detective quantum efficiency (DQE)
may be defined as the squared ratio of the output signal-to-noise
ratio to the input signal-to-noise ratio, expressed as a percentage.
A detector’s DQE is generally less than 100% because there is
always detector noise and not every photon is detected. The
DQE thus depends on the characteristics of the detector (e.g.
transmission of the detector window, count rates and dead time,
etc.) and varies with the X-ray energy for the same detector.

The detector linearity determines the accuracy of intensity
measurements and depends on the ratio between the photon

Secondary
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Figure 2.1.24

Example of the use of highly sophisticated incident- and diffracted-beam combi-optics in combination with a rotatable X-ray source and a double
detector arm. This setup enables two different incident-beam and four different diffracted-beam paths, and thus provides a choice between eight
different beam paths, depending on the properties of the specimen and the requirements of the application. S: X-ray source, S": X-ray source rotated by

about 5°, D1, D2: detectors.
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count rate and the rate of signals generated and registered by the
detector. In any detector it takes some time to process the
conversion of an individual photon to a voltage pulse, which is
related to the detector dead time: photons arriving while the
detector is still processing the previous photon conversion may
be lost. The detector dead time is related to the physical char-
acteristics of the detector, e.g. the drift time in a gas-ionization
detector, or the read-out time of the counting electronics, e.g. the
shaping time of the amplifier. The effect of dead time becomes a
substantial issue at high photon count rates, when the dead time
becomes a significant part of the average time separation
between two arriving photons, leading to increasing intensity
losses at higher count rates. Detectors can be categorized as being
non-paralysable or paralysable with respect to dead time. A non-
paralysable detector is dead for a fixed time after each count, but
not influenced by photons arriving during the dead time.
Counting losses increase with increasing count rates, but the true
count rate of a nonparalysable detector can be corrected unless
the maximum observed count rate is equal to the inverse of the
dead time. In a paralysable detector, a second photon arriving
within the dead time can not be counted but will extend the dead
time up to a point where the detector will be incapable of
collecting any counts at all (saturation point). Modern detectors
can stand the count rates obtained in powder diffraction
experiments using fixed-target X-ray sources. At very high count
rates, e.g. those obtained in thin-film experiments such as
reflectometry, it may be necessary to attenuate the beam.
Sophisticated instruments are equipped with an electronic feed-
back system and automatic absorbers (see Section 2.1.6.3.1.2) to
ensure that detector saturation is avoided.

The dynamic range of a detector may be defined as the range
between the smallest detectable photon count rates (determined
by inherent detector noise such as readout and dark noise) to the
largest acceptable photon count rates (determined by the dead
time).

Energy resolution is the ability of a detector to resolve two
photons that have different energies. Energy resolution is typi-
cally characterized by the size of the detector energy window,
AE, in electron volts, as determined by the full width at half
maximum (FWHM) of the detector-efficiency curve as a function
of energy, with the detector and counting electronics set to a
specific wavelength. Another frequently used expression for
energy resolution is the ratio of the detector energy window size
to the energy of the monochromatic X-ray beam, E, expressed as
AE/E.

The proportionality of the detector determines how the size of
the generated voltage pulse is related to the energy of the
absorbed X-ray photons, and electronic methods (pulse-height
selection) can be used to discriminate between different energies.
An accurate proportionality thus allows the use of energy
discrimination as a form of monochromatization, where the
energy is filtered by the detector rather than by an optical
element such as a metal filter, crystal or mirror; see Section
2.1.6.3. Signals corresponding to photons with too high or too low
energies are discarded.

The size and weight of detectors may impose several practical
constraints, see also Section 2.1.4.2. For large detectors the
accessible angular range may be limited owing to collision issues.
For heavy detectors a horizontal goniometer may be preferred
over a vertical goniometer (unless horizontal specimen posi-
tioning is imperative) in order to minimize the goniometer load.

X-ray detectors may be broadly classified as counting detectors
or integrating detectors. Counting (digital) detectors are able to
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detect and count individual photons. The number of pulses
counted per unit time is proportional to the incident X-ray flux.
Integrating (or analogue) detectors accumulate photon-induced
signals for a given period of time, prior to the integrated signal
being read out and converted into an (analogue) electrical signal.
The signal size is proportional to the flux density of the incident
X-rays.

Counting and integrating detectors each have their clear
advantages and disadvantages. Counting detectors normally have
a greater dynamic range than integrating detectors, while inte-
grating detectors normally have better spatial resolution (Section
2.1.7.3). Energy resolution is only possible for counting detectors.
Readout and dark noise are usually higher for integrating
detectors. Integrating detectors are not limited by the photon
count rate as there is no dead time; nevertheless, the measure-
ment time has to be kept sufficiently small to avoid saturation.

2.1.7.2. Detector types

Counting and integrating detectors can be further distin-
guished by their working principle, and are represented by
scintillation, gas-ionization and semiconductor detectors. The
most commonly used detector types and their properties are
listed in Tables 2.1.1 and 2.1.6, respectively.

At the end of the 1990s the types of detectors in use were
scintillation, gas-ionization, Si(Li) and image-plate detectors,
with the scintillation counter being the most common by far.
Usage of photographic film had already greatly diminished by
that time. With the introduction of a series of new one- and two-
dimensional detector technologies since the late 1990s, the X-ray
detection landscape changed completely. New semiconductor-
based detectors (silicon micro-strip, silicon pixel) as well as gas-
ionization-based detectors (micro-gap) reached a market share of
>90% in newly sold X-ray powder diffractometers within only a
few years. As a consequence, classical metal-wire-based propor-
tional counters and scintillation counters will probably become
obsolete before 2020. The same is expected for CCD-based
detectors, which will be replaced by the very recently introduced
complementary metal-oxide—semiconductor (CMOS) active
pixel sensor technology.

In the following the working principles of currently available
detector types will be briefly described. Matters that are specific
to zero- (0D), one- (1D) and two-dimensional (2D) detection are
discussed in Section 2.1.7.3. While image plates are still in use,
their market share in newly sold systems has become insignif-
icant. Photographic film techniques are totally obsolete. For these
reasons, these two detector types will not be taken into further
consideration.

2.1.7.2.1. Scintillation counters

Scintillation counters are constructed from a scintillator crystal
optically coupled to a photomultiplier tube. The crystal is typi-
cally made of sodium iodide (Nal) doped with about 1% thal-
lium, frequently denoted as Nal(Tl). When irradiated by X-ray
radiation, blue light (~415nm) is emitted and converted to
electrons in a photomultiplier and amplified; the resulting pulses
are registered as photon counts.

The height of the outgoing pulses is proportional to the energy
of the incoming X-ray photons. This permits the use of pulse-
height selection but only allows for poor energy resolution. The
relatively high count rate and a moderate noise level result in a
moderate dynamic range. These characteristics are the reason for
the formerly wide-ranging acceptance of the scintillation counter



Table 2.1.6
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Important detector properties at 8 keV as reported by various vendors

Only typical values are given to allow approximate comparisons. Detector properties strongly depend on individual detector designs and are subject to high development

rates.
Gas ionization (Xe/CO, gas filling)
Scintillation Wire based (0D) Wire based (1D/2D) Micro-gap (1D/2D)
DQE ~95% ~95% ~80% ~80%
Dynamic range >6 x 10° >10° >10* (1D) >8 x 107 (1D)
>10° (2D) >10° (2D)
Maximum global count rate >2 x 10° c.p.s. >7.5 x 10° >10° (1D) >8 x 10° (1D)
>4 x 10* c.p.s. (2D) >1.6 x 10° c.p.s. (2D)
Maximum local count rate n/a n/a >10* (1D) >9 x 10° c.p.s. mm™2 (1D, 2D)
>10* c.p.s. mm 2 (2D)
Noise ~0.3 c.ps. ~1 c.ps. ~1 c.ps. (1D) <0.01 c.pss. (1D)

<5 x 10~* c.p.s. mm 2 (2D)

<5 x 10~* c.p.s. mm 2 (2D)

Energy resolution

~3500 eV (~45%)

~1600 eV (~20%)

~1600 eV (~20%)

~1600 eV (~20%)

Detection mode

Photon counting

Photon counting

Photon counting

Photon counting

Semiconductor
Si(Li) Strip Pixel CCD CMOS
DQE >98% >98% >98% ~20-60% ~75%
Dynamic range >10° >7 x 10° per strip >10° >5 x 10* >1.6 x 10*
Maximum global count rate | >10° c.p.s. >10° cps >107 c.p.s. mm > n/a n/a
Maximum local count rate n/a >7 x 10° c.p.s. per strip >10* per pixel n/a n/a
Noise ~0.1 c.p.s. ~0.1 c.p.s. per strip ~2.5 x 107% c.p.s. mm 2 <0.1 c.p.s. per pixel <0.05 c.p.s. per pixel
Energy resolution ~200 eV (~4%) ~1600 eV (~20%)+ >1000 eV (~12.5%) n/a% n/a
Detection mode Photon counting Photon counting Photon counting Integrating§ Integrating

T ~380 eV/~5%; Wiacek er al. (2015).

as the detector of choice. An important disadvantage these days
is the limitation to 0D detection.

2.1.7.2.2. Gas-ionization detectors

The gas-ionization detectors in current use are proportional
counters and can be of the 0D, 1D or 2D detection type. Common
to all proportional counters is a gas-filled chamber permeated by
a non-uniform electric field between positive and negative elec-
trodes, held at a constant potential difference relative to each
other. Typically the noble gases Ar or Xe are used as gas fill,
mixed with a small amount of quenching gas such as CH, or CO,
to limit discharges. When an X-ray photon travels through the
gas-filled volume, it may be absorbed by a noble-gas atom,
resulting in the ejection of an electron (photoelectric and
Compton recoil). This electron, accelerated by the electric field
towards the anode, will cause an avalanche by subsequent ioni-
zation along its path (gas amplification), generating an electric
pulse which can be registered. The height of the generated pulse
is proportional to the energy of the incoming X-ray photon and
permits the use of pulse-height selection to achieve moderate
energy resolution.

2.1.7.2.2.1. Wire-based proportional counters

In a point proportional detector (0D detection), the pulses
generated are measured at one end of a wire (or a knife edge).
Position-sensitive (1D and 2D detection) proportional detectors
have the added capability of detecting the location of an X-ray
photon absorption event. In a 1D proportional detector, pulses

$ >300 eV/>6% in photon-counting mode, see text.

§ Photon-counting mode possible, see text.
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are detected at both ends of the wire. Thus the time difference
between the measurements of a given pulse can be used to
determine the location of the discharge. 2D proportional coun-
ters consist of three arrays of wires (multiwire proportional
counter, MWPC; Sauli, 1977; Charpak et al., 1968), where one
array forming the anode plane is placed between two cathode
arrays with their wires oriented parallel and orthogonal to the
anode-plane wires, respectively.

Low count rates and low-to-moderate detector noise result in
low-to-moderate dynamic ranges. Wire-based proportional
counters are not competitive with micro-gap and semiconductor
detectors, as can be seen in Table 2.1.6, and are therefore being
driven out of the market.

2.1.7.2.2.2. Micro-gap detectors

The maximum count rates in ‘classical’ metal-wire-based
proportional counters are severely limited by the long ion-drift
times in the chamber (which typically have a cathode to anode
spacing of ~10 mm). This issue has been successfully addressed
by so-called micro-gap technology using parallel-plate avalanche
chambers with a readout electrode separated from a resistive
anode. The key feature is the resistive anode, which allows a very
small amplification gap (1-2 mm cathode to anode spacing) at an
increased average electric field intensity, while preventing
discharges (Durst et al., 2003; Khazins et al., 2004). As a result,
micro-gap detectors can achieve count rates several orders of
magnitude higher than classical proportional counters at higher
position sensitivity. Micro-gap detectors of the 1D and 2D
detection type are available. Moderate count rates and very small
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noise levels result in very high dynamic ranges. Notably, in
contrast to wire detectors, micro-gap detectors are not likely to
be damaged by accidental exposure to a high-intensity direct
beam, as a patterned anode plane is used rather than wires.

2.1.7.2.3. Semiconductor detectors

Semiconductor (or solid-state) detectors are solid-state ioni-
zation devices in which electron-hole pairs instead of electron—
ion pairs are generated by incoming photons, and they are
sensitive to the entire electromagnetic spectrum from visible light
to X-rays. The energy required for production of an electron—
hole pair is very low compared to the energy required for
production of paired ions in a noble-gas-filled detector. As a
consequence, a larger number of charge pairs with a smaller
statistical variation are generated in semiconductor detectors,
resulting in intrinsically higher energy-resolution capabilities.
The efficiency of semiconductor detectors is very high due to the
high absorption of the semiconductor materials, usually reaching
100%, but may decline at higher photon energies if the photons
are not fully absorbed in the semiconductor e.g. because of
insufficient thickness.

2.1.7.2.3.1. The Si(Li) detector

The Si(Li) detector sensor consists of a lithium-drifted silicon
crystal which must be cooled to prevent lithium diffusion and to
reduce dark noise. An important advantage of this detector is its
excellent energy resolution of even better than 200 eV (4%) at
8 keV (Cu radiation), allowing very effective filtering of K8 and
fluorescence radiation and thus operation without a metal filter
or a diffracted-beam monochromator. As Peltier cooling is
sufficient, the Si(Li) detector type has found wide interest for
applications benefitting from high energy resolution, unlike
energy-dispersive detectors requiring operation under cryogenic
conditions [e.g. Ge(Li)]. In particular, the Si(Li) detector signif-
icantly extends the application range of today’s X-ray diffract-
ometers by allowing energy-dispersive X-ray powder diffraction
(EDXRD) as well as — to some extent — XRF (see Section
2.1.4.3).

An important disadvantage of Si(Li) detectors is their large
dead time, which prohibits the handling of higher count rates.
Moderate noise levels result in low-to-moderate dynamic ranges.
An additional important disadvantage is the limitation to 0D
detection.

2.1.7.2.3.2. Silicon micro-strip and silicon pixel detectors

Silicon micro-strip and silicon pixel detectors employ silicon
sensors, which are one- or two-dimensional arrays of p—n diodes
in the form of strips or pixels, respectively, individually connected
to an array of readout channels. The development of this type of
detector technology has obviously been driven by the idea of
massive parallelism: each strip or pixel actually represents an
individual detector. Accordingly, the silicon micro-strip and
silicon pixel detectors are therefore of the 1D and 2D detection
type, respectively.

Count rates recorded by silicon micro-strip and silicon pixel
detectors are very high with very low noise levels, resulting in
very large dynamic ranges. The energy resolution of most
silicon micro-strip and silicon pixel detectors is of the order of
1600 eV (20%) at 8 keV (Cu radiation). Recently, a silicon
micro-strip detector with an energy resolution of better than
380 eVat 8 keV has been introduced (Wiacek et al., 2015). At
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such high energy resolution Cu Kp is filtered out to below the
detection limit while Mn, Fe and Co fluorescence is filtered
completely, allowing this detector to be operated without a
metal filter or a diffracted-beam monochromator for most
applications.

2.1.7.2.3.3. CCD and CMOS detectors

Charge-coupled device (CCD) detectors are represented by
one- or two-dimensional arrays of square or rectangular pixels
consisting of metal-oxide—semiconductor (MOS) capacitors, and
can detect X-ray photons directly or indirectly. The pixel size may
be less than 10 pm. The majority of detectors use indirect
detection, where the incoming X-ray photons are first converted
to visible-light photons by a phosphor layer. CCD detectors
employ the ‘bucket brigade’ readout method, in which charge is
shifted one pixel at a time by phasing the bias on the gate elec-
trodes that overlay each pixel until it reaches the output, resulting
in relatively large readout times ranging from a few tenths of a
second up to several seconds per frame. Cooling (Peltier-type) is
required to reduce the dark-current noise representing the
dominant noise source for long exposures. In some detector
designs fibre-optic demagnification is used to increase the effec-
tive active detector area, resulting in an imaging area larger than
the active area of the CCD chip at the cost of detector sensitivity
and spatial resolution.

CCD detectors are usually operated as integrating detectors.
As such, they have no dead time and therefore provide
excellent linearity over a moderate dynamic range, but cannot
have energy resolution. CCD detectors are the detectors of
choice for single-crystal diffraction and imaging, but are not
favourable for applications with weak diffraction signals, such as
powder X-ray diffraction, owing to the relatively large dark-
current noise.

CCD detectors may also function as counting detectors by
making the exposure time sufficiently short. In single-event mode
the energy of each photon can be determined, providing an
energy resolution down to about 300 eV at 8 keV (Cu radiation)
and allowing a spectrum at each pixel of the CCD array to be
built up by a series of consecutive measurements. Such a detector
can record energy-dispersive X-ray powder diffraction
(EDXRD) as well as — to some extent — XRF (see Section
2.1.4.3); however, owing to the readout time, count rates are
extremely low with high statistical noise.

Unlike the bucket-brigade readout of a CCD, the comple-
mentary metal-oxide—semiconductor (CMOS) active-pixel
sensor (He et al., 2011) uses a completely different architecture in
which each pixel incorporates a readout preamplifier and is then
read out through a bus, as in random-access memory (He et al.,
2011). Cooling is not required. CMOS detectors are immune to
the blooming effect (in which a light source overloads the
sensitivity of the sensor, causing the signal to bleed vertically into
surrounding pixels forming vertical streaks). Additionally, they
offer the very significant advantage of shutter-free operation, that
is dead-time-free continuous scans which improve the efficiency
of data collection and also improve data quality by eliminating
shutter-timing jitter.

As a consequence of these characteristics, CMOS-detector
active-pixel sensors are now replacing CCD chips in a number of
high-end applications (e.g. professional digital photography and
high-definition television), and have reached a level of perfor-
mance where they are also starting to displace CCD chips in the
most demanding scientific applications.
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2.1.7.3. Position sensitivity and associated scanning modes
2.1.7.3.1. Pixel size, spatial resolution and angular resolution

Detectors of the line (1D) or area (2D) type have the impor-
tant property of position sensitivity, which is characterized by the
two parameters pixel size and spatial resolution.

The pixel size of a position-sensitive detector (PSD) can be
represented either by the intrinsic size of the smallest addressable
sensitive component of a detector (e.g. the actual size of the
diodes), which can be binned to form larger pixels, or is set by the
readout electronics (e.g. for wire-based detectors such as
proportional counters). The spatial resolution is determined by
the actual pixel size, the point-spread function (PSF) and
parallax. The PSF represents the spread of a signal produced
by a single photon over several pixels by mapping the
probability density that a photon is recorded by a pixel in the
vicinity of the point that the photon hit. Parallax will lead to an
additional smearing if the photon travels at an angle to the
detector normal. The final angular resolution of a detector system
is given by the spatial detector resolution and the specimen-to-
detector distance.

Point (0D) detectors do not provide position sensitivity,
regardless of the actual size of the active window (representing a
single pixel). Simply speaking, in analogy to PSDs, the spatial
resolution of a point detector is determined by the goniometer
step size representing the actual pixel size, and the size of the
detector slit representing the PSF. As for PSDs, the angular
resolution is given by the spatial resolution and the specimen-to-
detector distance.

Detectors can be operated in fixed as well as in (20) scanning
mode, where the step size is usually determined by the detector
pixel size. Subsampling, that is scanning using an angular step size
smaller than the angular pixel resolution, may be used to improve
observed line profile shapes if the pixel resolution is too small. As
a rule of thumb some 5-8 data points need be collected over the
FWHM of a diffraction peak to allow for an appropriate
description of the line-profile shape.

2.1.7.3.2. Dimensionality

Area detectors can be operated as line or point detectors.
Electronic binning of the pixels into columns will form a line
detector, while binning all pixels together will form a point
detector, each associated with improvements of count rates and
thus dynamic ranges. Alternatively, 1D or OD ‘regions of interest’
can be defined electronically and/or by mounting suitable
diffracted-beam-path X-ray optics. Area detectors — when oper-
ated as such — require point-focus operation.

Line detectors can be used as point detectors, which may be
formed in several ways. One way is to only use one or more
central pixels by either electronically switching off outer pixels
and/or by mounting suitable X-ray optics. Another way is to turn
the detector by 90° and to bin all pixels, leading to an improved
count rate and thus dynamic range.

Obviously, when turning a line detector by 90°, it will function
as an area detector if it is scanned over an angular range; the
trace of the scan will form a cylindrical surface that is a two-
dimensional diffraction image (He, 2009). This scan mode
may be associated with a few advantages, in addition to lower
costs. For example, the elimination of parallax and the
possibility of using diffracted-beam-path optics improve the
angular resolution in the 26 direction and allow air scattering to
be reduced.
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2.1.7.3.3. Size and shape

PSDs are available in different sizes with flat (1D, 2D), curved
(1D), cylindrical (2D) and spherical (2D) detection surfaces.
Curved, cylindrical and spherical detectors are designed for
focusing or parallel-beam geometries with a fixed specimen-to-
detector distance, and cannot normally be used with the Bragg—
Brentano geometry because of its 260-dependent focusing circle
(Section 2.1.4.1). Flat detectors can be used at different
specimen-to-detector distances, with either high angular resolu-
tion at a large distance or large angular coverage at a short
distance. For large flat detectors, parallax errors must be
addressed. Small flat detectors are perfectly suited for operation
in Bragg-Brentano geometry but the angular coverage should
not exceed about 10° 26 (Section 2.1.4.1) to minimize defocusing,
particularly at small 26 angles.
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2.2. Synchrotron radiation and powder diffraction

A. Firca

2.2.1. Introduction

X-rays produced at a synchrotron source are exploited in a
wide range of applications in crystallography and structural
science, and this includes studies by powder diffraction. Many
synchrotron-radiation facilities have one or more dedicated
powder-diffraction beamlines or end stations in regular user
service. The high intensity, collimation and wavelength tunability
of the radiation allow instruments to be designed whose perfor-
mance and flexibility surpass what is possible with conventional
laboratory apparatus. The majority of instruments operate with
monochromatic radiation and an angle-dispersive diffractometer,
but the polychromatic nature of synchrotron radiation means
that an energy-dispersive setup is also possible. The general
properties of synchrotron radiation include:

(a) High brightness, i.e. a highly collimated, intense X-ray beam
and small source size.

(b) High flux of photons delivered to the sample.

(c) A range of wavelengths is available, possibly extending from
the soft to the hard X-ray regimes, depending on the facility.

(d) Polarized source: synchrotron radiation is linearly polarized
with the electric vector lying in the plane of the synchrotron
orbit, but becomes progressively less polarized out of the
plane.

(e) Pulsed source: the distribution of the bunches of electrons
circulating in the storage ring allows the time structure to be
exploited for specialized experiments.

Further information about the nature of synchrotron radiation

can be found in texts by, for example, Margaritondo (1988), Als-

Nielsen & McMorrow (2001) and Kim (2001).

Synchrotrons are usually user facilities, where scientists from
external laboratories visit to perform experiments that have been
approved by a peer-review or other procedure, and are
supported by the scientific and technical staff for the beamlines.
Most facilities have regular rounds in which users submit
proposals for beam time, with special arrangements for access to
carry out proprietary research. Arrangements can also usually be
made for urgent access to the facility (when justified), and some
beamlines run a routine mail-in service, allowing samples to be
measured under defined conditions without the user needing to
attend.

For any powder X-ray diffraction experiment, the wavelength
of the radiation to be used is of high importance. The wavelength,
A, is a measure of the photon energy, ¢, and the terms ‘photon
energy’ and ‘wavelength’ tend to be used interchangeably at
synchrotron beamlines. They can readily be converted by

& =hv =hc/A,
where £ is the Planck constant, v is the frequency of the radiation

and c is the speed of light. If expressed in convenient units with A
in A and ¢ in keV then

¢ [keV] = he/er x 107 [A] ~ 12.3984/A [A] ~ 12.4/x [A],

where e is the elementary charge.

Copyright © 2018 International Union of Crystallography

2.2.2. Production of synchrotron radiation

Synchrotron radiation is emitted by charged particles travelling
at relativistic speeds when they are accelerated to move in a
curved trajectory. In a modern synchrotron facility dedicated to
the production of X-ray beams for scientific experiments, elec-
trons are circulated in a closed horizontal orbit in a storage ring
at an energy of several GeV, steered by magnetic fields from
bending magnets. The overall circumference of the orbit can be
several hundred metres depending on the design and specifica-
tions of an individual ring. The synchrotron ring is built up of cells
(Fig. 2.2.1) comprising a straight section and a bending magnet by
which the electrons are guided into the following straight section.
Beamlines emerge tangentially from the bending magnets where
synchrotron radiation is emitted by the electrons as they curve
from one straight section into the next. Beamlines are also
constructed on the straight sections where insertion devices,
arrays of magnets providing an alternating magnetic field, are
placed to cause the path of the electrons to oscillate and so also
emit synchrotron radiation. By choosing the period of the
magnetic array and by varying the strength of the magnetic field,
the wavelength distribution and divergence of the X-rays emitted
from an insertion device can be controlled. A straight section
may accommodate more than one insertion device in series,
allowing greater intensity or flexibility in the emitted radiation
for the associated beamline. In the storage ring, the energy that
the electrons lose by emitting synchrotron radiation is replaced
by coupling the electrons to radio-frequency radiation supplied
from klystrons or solid-state devices. Thus the synchrotron
facility converts electrical energy, via radio waves and relativistic
electrons, into powerful beams of electromagnetic radiation.
One key parameter of a storage ring is the energy of the
circulating electrons. The energy of an electron moving with
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Figure 2.2.1

Schematic representation of a synchrotron storage ring with beamlines
radiating tangentially from the bending magnets and in line with the
straight sections. ID = insertion device, BM = bending magnet; RF =
radio-frequency.
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speed v is

2
m,c 2

1- v2/62)1/2 =ym.c,

e

where m, is the rest mass of the electron, 9.10938356 (11) x
1073 kg. The term 1/(1 — v?/c?)"/? is referred to as y and is the
factor by which the mass of the electron increases from its rest
mass because of its relativistic speed. Expressed in eV (the
conversion factor from kg to eV is c*/e), the electron rest mass is
5.109989461 (31) x 10° eV, so that

y >~ 1957E, [GeV]

when E, is given in the customary units of GeV. Thus for a 3-GeV
machine, a common energy for a synchrotron-radiation source, y
has the value of 5871. The mass of an electron with energy 3 GeV
is therefore 3.22 atomic mass units, so around 7% more massive
than a stationary atom of *H or *He.

Electrons do not circulate individually in the storage ring but
in a series of bunches that are in phase with the accelerating radio
frequency. Radiation is therefore emitted in pulses as each bunch
passes through a bending magnet or insertion device. Thus the
number and distribution of the electron bunches around the orbit
determine the time structure of the emitted radiation. For most
powder-diffraction applications using synchrotron radiation, the
pulsed nature of the source can be neglected and the radiation
can be regarded as continuous, although attention should also be
paid to the performance of detectors that are more susceptible to
pulse pile-up problems when the radiation arrives at very high
average rates or in concentrated bursts (Cousins, 1994; Laundy &
Collins, 2003; Honkimiki & Suortti, 2007), which can happen
with certain bunch-filling modes. Certain specialized experiments
requiring very fast time resolution can exploit the time structure
of the source. In such experiments the longitudinal dimension of
the bunches controls the pulse duration, which is usually a few
tens of picoseconds.

In discussing the performance of different beamlines, the
spectral brightness (Mills et al., 2005) is often quoted for the
source and is defined as

spectral brightness =

photons per second per 0.1% bandwidth per mrad” per mm?,

where ‘0.1% bandwidth’ represents §A/A = 0.001, the mrad® term
expresses the solid-angle of the emission of the X-rays from the
source and the mm? term relates to the cross-sectional area of the
source. Thus a source of high spectral brightness emits many
photons per second of the specified energy, into a narrow solid
angle, with a small source size. The source size, which may well
differ in the horizontal and vertical directions, is an important
consideration as source size and beam divergence ultimately limit
the performance of the beamline optical system in terms of
collimation, energy resolution and focal spot size.

2.2.2.1. Bending magnets

A bending magnet provides a vertical magnetic field to deflect
the electrons laterally in the horizontal plane from a straight-line
trajectory, and thereby causes the emission of synchrotron
radiation (see Fig. 2.2.2). The lateral Lorentz force, F, acting on
an electron travelling at velocity v in a magnetic field B is
mutually perpendicular to both the magnetic field and the
direction of travel of the electron, and is given by
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Figure 2.2.2
Emission of a fan of radiation by the electron beam as it curves in a
bending magnet from one straight section of the ring to the next.

F = evB.

In a bending magnet the magnetic field is applied over an
extended distance leading to a curved path of radius p. The
centripetal acceleration is F/ym,, which for circular motion is
equal to v¥/p. Since v ~~ c,

_ymgc
" eB

’

so the radius of curvature decreases with magnetic field strength
and increases with machine energy via increased y. With the
electron energy expressed in GeV, this can be approximated to p
~ 3.34E, [GeV]/B (where 10°/c ~ 3.34).

Synchrotron radiation is emitted in a forward cone tangential
to the direction of the electrons’ motion (Fig. 2.2.3) with a
nominal Gaussian distribution and an opening angle of the order
of 1/y. Thus the radiation is highly collimated in the vertical
plane. In the horizontal plane, synchrotron radiation is emitted in
a broad fan, tangential to the curved trajectory of the electrons as
they sweep through the bending magnet. Only a fraction of the
radiation emitted by a bending magnet enters the associated
beamline via a cooled aperture defining a horizontal acceptance
angle of a few mrad. The radiation is polarized in the plane of the
synchrotron orbit. Sometimes, more than one beamline can be
built on a bending magnet with a suitable angular separation
between them.

Photons are emitted over a broad spectral range. The critical
photon energy, ¢., divides the emitted power into equal halves
and is given by

_ 3hcy’  3hy’eB _ 3heE’B

=4.151E’B,
2p 2m,

c

2mict

or, with photon and electron energies in keV and GeV, respec-
tively,

Radiation cone

Figure 2.2.3

Synchrotron radiation is emitted in a cone of opening angle of the order
of 1/y tangential to the electrons as they follow a curved trajectory
through the bending magnet.



2.2. SYNCHROTRON RADIATION

B e

0.0C

40 . . Gﬁ . .100
Photon energy (keV)

0 20

Flux/10" (photons s™' mrad™' per 0.1% bandwidth)

Figure 2.2.4

Spectrum of a bending magnet (B = 0.85 T) at the ESRF with an electron
energy of 6 GeV (y = 11 742), shown as flux per horizontal mrad for a
0.1% energy bandwidth at a storage-ring current of 200 mA. The critical
energy of 20.3 keV divides the emitted power into equal halves.

e [keV] = 0.665E2 [GeV]B.

The higher the critical energy, the greater the number of
photons produced with short X-ray wavelengths. As an example,
consider a bending magnet at the ESRF in Grenoble, France,
which has a 6-GeV storage ring and bending magnets with a field
of 0.85 T. The bending radius is 23.5 m and the critical photon
energy is 20.3 keV (equivalent to a wavelength of 0.61 A) The
spectrum of such a device is shown in Fig. 2.2.4.

The vertical collimation of the radiation varies with photon
energy in a nonlinear manner (Kim, 2001). Nevertheless, the
divergence decreases with increased photon energy, so beams
with the shortest wavelengths are the most vertically collimated.
Various approximations can be written to describe the variation,
such as for a single electron (Margaritondo, 1988),

0.565 76,0425
o,(¢) :—(8—) ,
y

£

where o,(¢) is the standard deviation of the vertical-divergence
distribution of photons of energy ¢. For a population of electrons
circulating in a storage ring, the distribution of the trajectories
with respect to the plane of the orbit (of the order prad) must
also be considered, as these add to the vertical emission distri-
bution. An approximation such as

v (e) = 20,(e) 1.2 (2>1/2
y \¢&

will often be adequate to estimate the vertical divergence W, in
the vicinity of ¢.. Thus for the bending magnet illustrated in Fig.
2.2.4, photons at the critical energy of 20.3 keV will have a
vertical divergence of ~100 prad. A beamline would probably
accept less than this, e.g. a 1.5-mm-high slit at 25 m from the
source defining the beam onto a monochromator crystal defines
an angle of ~60 prad.

2.2.2.2. Insertion devices

Insertion devices can be classified into two main types, termed
‘wigglers’ and ‘undulators’, illustrated in Fig. 2.2.5. A wiggler has
a relatively long magnetic period and the radiation from each
oscillation is emitted like a series of powerful bending magnets,
summing together to provide increased intensity. An undulator
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Figure 2.2.5
Schematic illustration of a wiggler (upper) and an undulator (lower).

has a relatively short magnetic period and the radiation from
sequential oscillations interferes coherently to give modified
beam characteristics.

For insertion devices the magnetic field acting on the electrons
varies sinusoidally along the device,

B(Z) = B() Sil’l(ZﬂZ/)\.u),

where By is the peak magnetic field, z is the distance along the
insertion-device axis and A, is the magnetic period. With a
vertical field, the alternating magnetic field causes the electron
path to oscillate in the horizontal plane. Note that the radiation is
emitted mainly towards the outsides of the oscillations where the
electrons change transverse direction, and where the magnetic
field and beam-path curvature are highest. The maximum angular
deflection of an electron from the axis of the insertion device is
K/y, where the deflection parameter K is given by

_ eBO)"u
2am,c’

which simplifies to K = 0.0934ByA,, [mm] with X, expressed in
mm. K is a crucial parameter that determines the behaviour of
the insertion device.

2.2.2.2.1. Wigglers

If K is large (10 or above), the insertion device is a wiggler and
the electrons oscillate with an amplitude significantly greater
than the emitted radiation’s natural opening angle 1/y. Every
oscillation along the device produces a burst of synchrotron
radiation and these add together incoherently so increasing the
flux in proportion to the number of magnetic periods. The
radiation emerges from the wiggler in a horizontal fan with a
horizontal opening angle ~2K/y. The intensity of a wiggler-based
beamline can be very high because each oscillation produces
synchrotron radiation, and this radiation is directed close to the
axis of the device. Like a bending magnet, wigglers produce a
continuous spectrum but with the critical energy shifted to harder
energies because the magnetic field is (usually) greater. Thus for
a wiggler at a 6-GeV source, with a magnetic field of 1.2 T and a
magnetic period of 125 mm, K is 14, the maximum deflection of
the electrons from the straight-line path is 1.2 mrad and the
critical photon energy is 28.7 ke V. Magnetic fields of several tesla
can be exploited using superconducting magnets to obtain even
higher critical photon energies.

2.2.2.2.2. Undulators

If the value of K is 2 or less, the insertion device is an undu-
lator. The deflection of the electrons is comparable to the natural
opening angle of the emitted radiation 1/y. Radiation emitted
from sequential oscillations interferes coherently, and the beam
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Figure 2.2.6

Photon flux versus energy through a 1-mm? aperture 30 m from the
source, 0.1% bandwidth, for an ESRF u35 undulator (magnetic
periodicity 35 mm, 1.6 m long, magnetic gap of 11 mm, peak magnetic
field By = 0.71 T, electron energy 6 GeV, K = 2.31, storage-ring current
200 mA). Odd-numbered harmonics are labelled, which are those
usually employed for powder-diffraction experiments as they have
maximum intensity on axis.

becomes highly collimated in the horizontal and vertical direc-
tions. Thus, the radiation from an undulator is concentrated into a
central on-axis cone (fundamental and odd harmonics),
surrounded by rings from higher-order even harmonics. The flux
density arriving on a small sample from this central cone is
therefore very high. With high on-axis intensity, it is therefore the
undulators that provide the beams with the highest spectral
brightness at any synchrotron-radiation source. The interference
also modifies the spectrum of the device, which has a series of
harmonics derived from a fundamental energy. At a horizontal
angle 0 to the axis of the insertion device, the wavelength of
harmonic 7 is given by

14+ (K22 + 6

A Ays
n 2ny2 u
which can be simplified on axis (6 = 0) to
. 1+ K22
A, [A] = 13056 ———— A
. [A] JE [Gov] " [
or
E? [GeV
e [kev] = 9.50—"Ee 1OV
&, [mm](1 + K2/2)
A
Polychromatic beam
01"
Figure 2.2.7

Double-crystal monochromator arrangement.
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On axis, only odd-numbered harmonics are emitted and it is
these that are usually employed in a powder-diffraction experi-
ment. The horizontal and vertical divergence of the radiation
emerging from an undulator is of the order of 1/[(nN)"*y], where
N is the number of magnetic periods making up the device. The
spectrum of an undulator at a 6-GeV source with a 35-mm
magnetic period is shown in Fig. 2.2.6. By carefully shimming the
magnetic lattice so that it is highly regular, the higher-order
harmonics persist, allowing the undulator to be a powerful source
of high-energy X-rays. Any imperfections in the magnetic peri-
odicity cause the higher-order harmonics to broaden and fade
away, reducing the utility of the device at higher energies.

2.2.2.23. Tuning

For insertion devices the magnetic field can be modified by
changing the vertical distance between the magnetic poles. By
opening the gap, the magnetic field and K decrease following

B, >~ B,exp(—nG/X,),

where B, is proportional to the remanent magnetic field, which
depends upon the nature of the magnets used in the insertion
device, and G is the magnetic gap. Decreasing K for an undulator
means that the energy of the fundamental harmonic increases;
however, this is at the expense of the intensities of the higher
harmonics. Thus the insertion device can be tuned to produce
high intensity at the wavelength most suitable for a particular
measurement. The smallest gap possible for a device depends on
the design of the storage-ring vacuum vessel in which the elec-
trons circulate. It is difficult to have a vessel smaller than about
10 mm high, and hence for an externally applied field a minimum
magnetic gap of about 11 mm is to be expected. For smaller gaps,
the magnets must be taken into the vacuum of the storage ring, a
so-called ‘in-vacuum’ insertion device.

2.2.3. Optics

The intense polychromatic beam from the source needs to be
conditioned before hitting the sample and diffracting. In the
simplest experimental configuration, the white beam is used in an
energy-dispersive experiment, and conditioning may involve no
more than using slits to define the horizontal and vertical beam
sizes and suppress background scattering. More usually, mono-
chromatic radiation is employed, and the desired wavelength is
chosen from the source by a monochromator. A monochromator
consists of a perfect crystal, or a pair of crystals, set to select the
chosen wavelength by Bragg diffraction. Additional optical
elements can also be incorporated into the beamline for focusing,
collimation, or for filtering out unwanted photons to reduce heat
loads or remove higher-order wavelengths transmitted by the
monochromator.

2.2.3.1. Monochromator

The monochromator is a crucial optical component in any
angle-dispersive powder-diffraction beamline, and consists of one
or a pair of perfect crystals (e.g. Beaumont & Hart, 1974), Fig.
2.2.7, set to a particular angle to the incident beam, 6,,, that
transmits by diffraction wavelengths that satisfy the Bragg
equation, n) = 2d(hkl) sin 0,,, where d(hkl) is the lattice spacing
of the chosen reflection. Note that photons from higher-order
reflections can also be transmitted, corresponding to wavelengths
MA/n, depending on the structure factor of the nth-order reflection
and its Darwin width, but these can be eliminated by use of a
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mirror (see Section 2.2.3.2), or by adjusting the electronic
acceptance windows of the detector system, if possible. They can
also be suppressed to some extent by slightly detuning the second
crystal from the first, because the Darwin width of a higher-order
reflection is narrower than that of a lower-order reflection, and is
thus more seriously affected by the mismatch between Bragg
angles.

For a given reflection, a crystal does not transmit a unique
single wavelength but a narrow distribution. The width of the
distribution, dA, is determined by the effective divergence of the
incident beam W (which corresponds to a range of values for 6,,)
and the Darwin width of the reflection, w, at the chosen wave-
length. The energy resolution of a monochromator crystal can be
estimated via

8e/e = SA/A = cot 8, (V> + )/,

With a highly collimated beam incident on a crystal and with a
narrow Darwin width, high energy resolution is achieved. The
Darwin width of a reflection can be calculated from dynamical
theory [Zachariasen (1945); Chapter 5.1 of International Tables
for Crystallography, Volume B (Authier, 2006)] via

K

_ 2r,\2
N sin26,,°

4%

w

|F(h)]

where r, is the classical electron radius (~2.818 fm), V is the
volume of the unit cell, F(h) is the structure factor and K the
polarization factor (1 for reflection in the vertical plane, cos 26,
for the horizontal plane). Thus for Si(111), with d(111) =
3.1356 A and F(h) >~ 59, a Darwin width of about 8.3 prad is
obtained at 31 keV (A = 04 A) With an effective beam diver-
gence of say 25 prad (delivering a beam 1.1 mm high at 44 m from
the source), an energy resolution of 4.8 x 10*is obtained. Even
better energy resolution can be obtained by increasing the
collimation of the beam before the monochromator, e.g. with a
curved mirror.

Energy resolution is an important quantity to control. Its value
needs to be known when modelling powder-diffraction peak
shapes via a fundamental-parameters approach, and it affects the
angular resolution of the powder-diffraction pattern, broadening
the peaks as 20 increases, as can be seen by differentiating the
Bragg equation to yield

SA
— =cotfs0 or
A

80 = S—Atan 0. (2.2.1)
A

Thus powder-diffraction peaks broaden towards higher 26 angles

because of this effect.

Silicon is a common choice for a monochromator; it forms
large, perfect single crystals, with dimensions of cm if required,
has appropriate mechanical, diffraction and thermal properties,
and can resist prolonged exposure to an intense radiation source.
A monochromator crystal absorbs a large fraction of the energy
incident upon it, and hence must be cooled. Even when cooled,
the high power density (tens or even more than a hundred W
mm ™ ? at normal incidence) can cause local heating of the surface,
which leads to distortion of the lattice planes via thermal
expansion. This degrades the performance, as a heat bump
increases the range of 6,, values, broadening the energy band
transmitted by the crystal. With a double-crystal arrangement,
this bump cannot be matched by the second crystal, which has a
much lower heat load so is flat, with the result that photons from
the first crystal are not transmitted by the second, thus losing
intensity from the monochromatic beam. By cooling to cryogenic
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temperatures, the thermal expansion of Si can be reduced to a
very small value, going through zero at around 120 K (Bilder-
back, 1986; Glazov & Pashinkin, 2001) and thereby alleviating
the heat-bump problem. Thus cryogenically cooled mono-
chromators can be found at high-performance synchrotron
beamlines. Other crystals employed as monochromators are
germanium and diamond, the latter in transmission because of
the small size of available diamond crystals.

Although a monochromator assembly can employ only one
crystal, for example deflecting the beam horizontally into a side
branch of a beamline, a double-crystal arrangement (Fig. 2.2.7) is
more usually used to conserve the direction of the beam from the
storage ring. This can exploit either a channel-cut crystal or two
crystals, with a number of adjustments in the position and
orientation of the second crystal to allow it to be aligned opti-
mally to transmit the wavelength envelope defined by the first
crystal. In some cases, the second crystal can be bent sagittally to
focus X-rays horizontally onto the sample. Although this
increases the divergence of the beam arriving at the sample and
so affects the 26 resolution of the powder pattern, it can lead to a
significant increase in intensity, and is useful to capture more
radiation from a horizontally divergent source such as a bending
magnet or wiggler.

2.2.3.2. Mirror

Some powder-diffraction beamlines are equipped with X-ray
mirrors, which can be used to focus or to improve the collimation
of the already highly collimated beam, and to act as a high-energy
filter for photons with energies above a certain value, e.g. to
remove higher-order wavelengths transmitted by the mono-
chromator. Usually reflecting in the vertical plane, a mirror
consists of a highly polished substrate (e.g. Si) with a thin metal
coating, such as Pt or Rh, set at grazing incidence. The nature of
the coating and the graze angle determine the energy cutoff,
where the reflectivity falls to very low values following

6, [mrad] = 2.324(pZ/A)"*x [A],

where 6, is the critical graze angle for X-rays of wavelength A, p is
the density, Z is the atomic number and A is the atomic weight of
the metal coating. As an example, an Rh-coated mirror set at a
grazing incidence of 2 mrad will only reflect X-rays with a
wavelength longer than around 0.37 A. A Pt-coated mirror set at
the same graze angle will transmit shorter wavelengths, down to
0.30 A. The wavelength cutoff for a particular mirror can be
adjusted by changing the angle of grazing incidence. However,
this then entails realignment of the beamline downstream of the
mirror. To avoid this, some beamlines have mirrors with stripes of
different metals, allowing adjustment of the cutoff by simply
translating the mirror sideways to change the coating while
keeping the graze angle constant.

Curving a mirror concavely as shown in Fig. 2.2.8 allows
focusing or collimation, following

2L,
- (L, + L,)sine’

where R is the radius of curvature, L, is the source-to-mirror
distance, L, is the mirror-to-focus distance and « is the angle of
grazing incidence. For collimation (L, = 00), this reduces to R =
2Ly/sin o. Thus a mirror 25 m from the source set at a graze angle
of 2 mrad must be curved to a radius of 25 km to collimate the
beam. As noted above, silicon is frequently chosen as a substrate
for a mirror as it is sufficiently stiff to help minimize the intrinsic
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Figure 2.2.8
Curved mirror set to collimate the beam.

curvature of the mirror caused by its own weight. Even then, very
careful mounting and precise mechanics are required to
achieve this level of accuracy. If placed in the polychromatic
beam directly from the source, cooling of the mirror will be
necessary.

Other mirror arrangements can be employed, such as a hori-
zontal and vertical pair of focusing mirrors in a Kirkpatrick—Baez
(Kirkpatrick & Baez, 1948) arrangement. Such a device might be
used to produce a small focal spot for powder-diffraction
measurements from a sample in a diamond anvil cell. Multilayer
mirrors can also be found in service on certain beamlines.

2.2.3.3. Compound refractive lens

The refractive index n of a material for X-rays is given
(Gullikson, 2001; Spiller, 2000) by

,
=1-86—if=1-5>Y N,
n lﬂ 27_[ - nfn

where f,, = fi + if, is the complex scattering factor for forward
scattering for atom n and N,, is the number of atoms of type n per
unit volume. § and B are known as the refractive index decrement
and the absorption index, respectively, and vary with photon
energy depending on the proximity of an absorption edge. The
real part of the refractive index is therefore slightly less than 1,
with 8 typically of the order 107°~10~° depending on the energy.
Thus a hole drilled in a piece of metal can act like a conventional
convex lens, as the hole has a higher refractive index than the
surrounding metal. With such a small difference in n between
hole and metal, the focusing power is very slight; however, a
series of holes (Fig. 2.2.9) can be used to focus the X-ray beam
over a reasonable distance (Snigirev et al., 1997, 1998). For a
series of cylindrical lenses, the focal length, f; is given by f= r/2N§,
where r is the radius of the hole and N is the number of holes.

Note that further away from the axis of the device the X-ray
beam must pass through increasing amounts of material which
absorb the radiation. Hence, only relatively small holes and
apertures are possible (a maximum of a few mm in diameter) and
weakly absorbing metals such as Be and Al are preferred. With
hard-energy photons, Ni lenses are possible, and indeed the
construction of such a device is a compromise between refractive
power, absorption, aperture and the desired focal length. Such
devices can be placed in the monochromatic beam or in a poly-
chromatic beam with cooling.

Many variants of the basic scheme exist, with lenses pressed
from foil with a parabolic form to eliminate spherical aberrations,
with axial symmetry to focus in both the horizontal and vertical
simultaneously (Lengeler et al., 1999), etched via lithography
from plastic or other material, or with a more complex profile to
minimize the amount of redundant material attenuating the
transmitted beam by absorption and so allowing a larger aper-
ture. A ‘transfocator’ can be constructed whereby series of lenses
can be accurately inserted or removed from the beam path, thus
allowing the focusing power to be adjusted depending on the
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Figure 2.2.9
Schematic diagram of a set of refractive lenses.

desired focal distance and the wavelength of the experiment
(Vaughan et al., 2011).

2.2.4. Diffractometers

Most powder-diffraction beamlines are angle dispersive, oper-
ating with monochromatic radiation. When scanning a detector
arm or employing a curved position-sensitive detector (PSD),
detection is normally in the vertical plane because the polariza-
tion of the radiation in the plane of the synchrotron orbit means
there is very little effect on the intensities due to polarization. By
contrast, if diffracting in the horizontal plane, the projection of
the electric vector onto the direction of the diffracted beam
means that the intensity is reduced by a factor of cos” 26, going to
zero at 20 = 90°, and so horizontal detection is less useful unless
working at hard energies when 26 angles are correspondingly
small. In addition, for the highest angular resolution, the natural
beam divergence in the vertical plane is usually lower than in the
horizontal plane, particularly if the instrument has a bending
magnet or wiggler as its source.

In general, diffractometers are heavy-duty pieces of equipment
and are designed to have excellent angular accuracy while
working with substantial loads. A high degree of mechanical
accuracy is required to match the high optical accuracy inherent
in the techniques employed. The calibration of the incident
wavelength and any 26 zero-point error is best done by measuring
the diffraction pattern from a sample such as NIST standard Si
(640 series), each of which has a certified lattice parameter (see
Chapter 3.1). It is also good practice to measure the diffraction
pattern of a standard sample regularly and whenever the
instrument is realigned or the wavelength changed, to be sure
that everything is working as expected.

Monochromatic instruments can have an analyser crystal or
long parallel-foil collimators in the diffracted beam (a so-called
parallel-beam arrangement), or can scan a receiving slit, or
possess a one- or two-dimensional PSD, similar to Debye—
Scherrer or Laue front-reflection geometry. Instruments
equipped with a PSD can collect data much faster than those with
a scanning diffractometer, so are exploited especially for time-
resolved measurements. They may also have advantages for rapid
data collection if the sample is sensitive to radiation, or be helpful
if the sample is prone to granularity or texture to assess the extent
of the problem.

Instruments can also be equipped with a sample changer,
allowing measurements on a series of specimens, perhaps
prepared by systematically changing the conditions of synthesis
or the composition in a combinatorial approach. The use of beam
time can be optimized with minimal downtime due to interven-
tions around the instrument, and with the possibility to control
the data acquisition remotely if desired.

2.2.4.1. Parallel-beam instruments

Cox et al. (1983, 1986), Hastings et al. (1984) and Thompson et
al. (1987) described the basic ideas behind these instruments via
their pioneering work at CHESS (Cornell, USA) and NSLS
(Brookhaven, USA). The highly collimated monochromatic
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incident beam is diffracted by the sample and passes via a perfect
analyser crystal [such as Si or Ge(111)] to the detector. The
analyser crystal defines a very narrow angular acceptance for
the diffracted radiation, determined by its Darwin width. The
combination of the collimation of the incident radiation, its
highly monochromatic nature and the stringent angular accep-
tance defines the instrument’s excellent angular resolution. The
detector arm supporting the analyser is scanned through the
desired range of 26 angles either in a step-scan mode or
continuously, reading out at very short intervals the electronic
modules that accumulate the detector counts.

To be transmitted by the analyser crystal, a photon must be
incident on the crystal at the correct angle 6, that satisfies the
Bragg condition. The analyser crystal defines therefore a true
direction (26 angle) for the diffracted beam irrespective of where
in the sample it originates from. This removes a number of
aberrations that affect diffractometers with a scanning slit or PSD
where the 26 angle is inferred from the position of the slit or
detecting pixel. Thus, with a capillary specimen, peak widths are
independent of the capillary diameter, so a fat capillary of non-
absorbing sample can be used to optimize diffracted intensity,
and any modest misalignment of the sample from the diffract-
ometer axis, or specimen transparency or surface roughness for
flat-plate samples, does not lead to shifts in the peak positions.
Modest movement of the sample with temperature changes in a
furnace etc. does not cause shifts in peak positions. These
instruments are therefore highly accurate, and are ideal for
obtaining peak positions for indexing a diffraction pattern of a
material of unknown unit cell (the first step in the solution of a
structure from powder data), or following the evolution of lattice
parameter with temperature etc. For flat samples, the 6/260
parafocusing condition does not need to be satisfied to have high
resolution. The peak width does not therefore depend on sample
orientation, which is useful for measurements of residual strain
by the sin? ¢ technique or for studying surfaces and surface
layers by grazing-incidence diffraction. Interchange between
capillary and flat-plate samples can easily be done as required
without major realignment of the instrument. The stringent
acceptance conditions also help to suppress parasitic scattering
originating from sample-environment windows etc. and inelastic
scattering such as fluorescence and Compton scattering.

On the other hand, at any 26 angle only a tiny fraction of the
diffracted photons can be transmitted by an analyser crystal, so
this is a technique that consumes a lot of photons, and the high
incident flux is essential to keep scan times to reasonable values.
To overcome this, at least to some extent, Hodeau et al. (1998)
devised a system of multiple analyser crystals, with nine channels
mounted in parallel, each separated from the next by 2° (Fig.
2.2.10). In effect, as the detector arm is scanned, nine high-
resolution powder-diffraction patterns are measured in parallel,
each offset from the next by 2°. If the data from the channels are
to be combined, which is the usual procedure, the detectors must
be calibrated with respect to each other, in terms of counting
efficiency and exact angular offset, by comparing regions of the
diffraction pattern scanned by several detectors (Wright et al.,
2003). A multianalyser system speeds up data collection signifi-
cantly and can be found in various modified forms at a number of
powder-diffraction beamlines (e.g. Lee, Shu et al., 2008).

The multianalyser approach is best suited to capillary samples
because of the axial symmetry of the arrangement. With flat
plates in reflection, only one detector can be in the 6/26 condition
where the effect of specimen absorption (for a sufficiently thick
sample) is isotropic. Corrections must therefore be made to the
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Multianalyser stage, nine channels separated by 2°, devised by Hodeau et
al. (1998), originally installed on the BM16 bending-magnet beamline at
the ESRF with Ge(111) analyser crystals. With an undulator source, the
greatly increased flux allows use of Si(111), which has a narrower Darwin
width (by a factor of ~2.4) and thus improved 26 resolution, but with a
lower fraction of the diffracted radiation accepted.

intensities from the other channels (Lipson, 1967; Koopmans &
Rieck, 1968). For a capillary, choosing the wavelength and the
diameter allows absorption to be kept to an acceptable value.
Maximum diffracted intensity is expected at ur = 1 (where p is
the linear absorption coefficient and r the radius of the capillary),
and below this value simple absorption corrections can be
applied (Hewat, 1979; Sabine et al., 1998). A value of ur greater
than 1.5 begins to degrade the quality of the pattern significantly.
If a sample with high absorption is unavoidable, such as when
working close to an absorption edge of an element, e.g. the K
edge of Mn at 6.539 keV (1.896 ;\), then it can be preferable to
stick a thin layer of sample on the outside of a 1-mm-diameter
capillary. The shell-like nature of the sample has no effect on the
peak shape or resolution because of the use of analyser crystals.

Capillaries also have the advantage that preferred orientation
can be significantly less as compared to a flat sample, where there
is a tendency for crystallites to align in the surface layers, espe-
cially if compressed to hold the powder in place. Spinning or
otherwise moving the sample is necessary, whether capillary or
flat plate, to increase the number of crystallites appropriately
oriented to fulfil the Bragg condition and avoid a spotty
diffraction pattern, the likelihood of which is exacerbated by the
highly collimated nature of the incident radiation.

2.2.4.1.1. Angular resolution

Various authors (e.g. Sabine, 1987a,b; Wroblewski, 1991;
Masson et al., 2003; Gozzo et al., 2006) have discussed the reso-
lution of a synchrotron-based diffractometer equipped with a
double-crystal monochromator and an analyser crystal. The most
usual setting of the diffracting crystals, ignoring any mirrors or
other optical devices, is non-dispersive, alternatively described as
parallel or (1, —1, 1, —1).

The approach developed by Sabine (1987a,b) involves
modelling the vertical divergence of the source and the angular
acceptance of the monochromator and analyser crystals as
Gaussian distributions with the same full width at half-maximum
(FWHM) as the real distributions, and considering a powder as a
crystal with an infinite mosaic spread. The rocking curve of the
analyser crystal (equivalent to rocking 26) is given by

w- [ /H(_)( ) +;;—ﬂﬂ},

where
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A(26) calculated from equation (2.2.2) for a beamline with a double-
crystal Si(111) monochromator, an Si(111) analyser (A, = A, and 0, =
6,) and an FWHM vertical divergence of 25 prad at A = 0.4 A (solid line:
A,, ~83 prad, 6, =3.6571°), 1 = 0.8 A (dashed line: A, > 16.6 urad, 0,,
=7.3292°) and X = 1.2 A (dotted line: A, ~ 25.2 prad, 6,, = 11.0319°).

b =tanf,/tan6, —2tan6/tanb,,.

Here « represents the vertical divergence from the source, § is the
difference between the Bragg angles of a central ray reflected
from the monochromator at the angle 6,, and of another ray at
angle 0/, such that § =6/, — 0,,, and 6, is the Bragg angle of the
analyser crystal. The terms «,,, A/, and A/ are related to the
FWHM of the Gaussians representing the vertical divergence
distribution or the Darwin widths of the monochromator and
analyser crystals, «,,, A, and A, respectively, with
o =a,/2(n2)', A=A, /2(n2)"?
From the above equation, the intrinsic FWHM of the
Gaussian-approximated peaks of the powder-diffraction pattern
can be obtained as
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Figure 2.2.12

A, = A,/2(In2)">.

tan 6 tan 6 ’ tan 6 tan 6
A’(20) = o’ “_2 1) +A2 “_2
(20) = aiy <tan 6, tand, + ) 28\ an 6, tand,
+ AL (2.2.2)

Note that the true peak shape is not Gaussian, and a pseudo-
Voigt (e.g. as described by Thompson et al., 1987), Voigt (e.g.
Langford, 1978; David & Matthewman, 1985; Balzar &
Ledbetter, 1993) or other function modelled from first principles
(e.g. Cheary & Coelho, 1992; Ida et al., 2001, 2003) is usually
better. Examples of FWHM curves calculated from equation
(2.2.2) are plotted in Fig. 2.2.11 at three wavelengths. Differ-
entiating the Bragg equation gives Ad/d = —cot 0 A(6), where 6
is in radians.

Gozzo et al. (2006) have extended the formulation of Sabine to
include the effects of collimating and focusing mirrors in the
overall scheme. Axial (horizontal) divergence of the beam
between the sample and the detector causes shifts and broad-
ening of the peaks, as well as the well known low-angle peak
asymmetry due to the curvature of the Debye—Scherrer cones.
Sabine (1987b), based on the work of Hewat (1975) and Hastings
et al. (1984), suggests the magnitude of the broadening, B(26),
due to horizontal divergence ® can be estimated via

B(260) = (1 ®)*(cot 260 + tan§,),
where B and & are in radians. This value is added to A(26).

2.2.4.1.2. Hart—Parrish design

A variant of the parallel-beam scheme replaces the analyser
crystal with a set of long, fine Soller collimators (Parrish et al.,
1986; Parrish & Hart, 1987; Parrish, 1988; Cernik et al., 1990;
Collins et al., 1992) (Fig. 2.2.12). The collimators define a true
angle of diffraction, but with lower 26 resolution than an analyser
crystal because their acceptance angle is necessarily much larger
and so the transmitted intensity is greater. They are not parti-
cularly suitable for fine capillary specimens, as the separation
between foils may be similar to the capillary diameter, resulting
in problems of shadowing of the diffracted
beam. However, they are achromatic, and so do
not need to be reoriented at each change of
wavelength, which may have advantages when
performing  anomalous-scattering  studies
around an element’s absorption edge. Unlike an
analyser crystal, however, they do not suppress
fluorescence. Peak shapes and resolution can be
influenced by reflection of X-rays from the
surface of the foils, or any imperfections in their
manufacture, e.g. if the blades are not straight
and flat. The theoretical resolution curve of
such an instrument can be obtained from
equation (2.2.2) by setting tan 6, to zero and
replacing the angular acceptance of the
analyser crystal A, with the angular acceptance
of the collimator A..

2.2.4.2. Debye-Scherrer instruments

The simplest diffractometer has a receiving
slit at a convenient distance from the sample in
front of a point detector such as a scintillation
counter. The height of the slit should match the

Schematic representation of a parallel-beam diffractometer of the Hart—Parrish design. The
collimators installed on Stations 8.3 and 2.3 at the SRS Daresbury (Cernik et al., 1990;
Collins et al., 1992) had steel blades 50 pm thick, 355 mm long, separated by 0.2 mm spacers,
defining a theoretical opening angle (FWHM A,) of 0.032° and a transmission of 80%.
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capillary diameter, or incident beam height for
flat plates. A slightly larger antiscatter slit near
the sample should also be employed to reduce
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Figure 2.2.13

(a) 120° Mythen detector box, containing helium, mounted on the
powder diffractometer of the materials science beamline at the Swiss
Light Source. (b) Multianalyser detector stage. (¢) Capillary spinner.
(Bergamaschi et al., 2009, 2010.)

background. The detector arm is scanned and a powder pattern
recorded. This arrangement can be used for narrow capillary
samples on lower-flux sources, avoiding the loss of intensity that
use of an analyser crystal entails. The resolution is largely
determined by the opening angle defined by the capillary and the
receiving slit. Despite the simplicity of such an instrument, high-
quality high-resolution data can be obtained.

For much faster data acquisition, a one-dimensional (1D) PSD
or an area detector can be employed. Any sort of 1D detector
with an appropriate number of channels, channel separation,
efficiency, count rate (in an individual channel and overall) and
speed of read out can be employed. Technology evolves and
detectors make continual progress in performance. At the time of
writing the most advanced 1D detector is the Mythen module
developed by the Swiss Light Source (SLS). Mythen modules are
based on semiconducting silicon technology and have 1280
8-mm-wide strips with a 50 um pitch (64 x 8 mm?). They can be
combined to form very large curved detectors such as that on the
powder diffractometer of the materials science beamline at the
SLS (Fig. 2.2.13). This detector consists of 24 modules, 30 720
channels, set on a radius of 760 mm, covering 120° 26. Detector
elements are therefore separated by ~0.004°. The whole detector
can be read out in 250 ps. Being Si based, its efficiency falls off
above 20-25 keV, where the absorbing power of Si falls to very
small values. Nevertheless, at intermediate and low energies a full
powder-diffraction pattern for structural analysis can be
measured in just seconds, or even faster if the intention is to
follow a dynamic process.

Two-dimensional (2D) detectors are generally flat, so cannot
extend to the same 26 values as a curved multistrip detector
unless scanned on a detector arm. This is possible, but usually a
short wavelength is used with a fixed detector. This allows an
adequate data range to be recorded, particularly if the detector is
positioned with the direct beam (26 = 0) near an edge. A 2D
detector records complete or partial Debye-Scherrer rings, which
increases the counting efficiency with respect to scanning an
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analyser crystal by several orders of magnitude. In addition, if the
rings do not appear smooth and homogeneous, this indicates
problems with the sample, such as preferred orientation or
granularity, both of which can seriously affect diffraction inten-
sities when measuring just a thin vertical strip. Detectors that
have been used are diverse and include image plates, though
these have slow read out, charge-coupled devices (CCDs) or Si-
based photon-counting pixel detectors used for single-crystal
diffraction or protein crystallography (e.g. Broennimann et al.,
2006), and medical-imaging detectors, which are designed for
hard-energy operation. Examples include the CCD-based Frelon
camera, developed at the ESRF (Labiche er al., 2007), and
commercially available large flat-panel medical-imaging detec-
tors up to 41 x 41 cm?, based on scintillator-coated amorphous
silicon, which have been exploited at speeds of up to 60 Hz for
selected read-out areas (Chupas, Chapman & Lee, 2007; Lee,
Aydiner et al., 2008; Daniels & Drakopoulos, 2009).

Note that a 2D detector can be used as a 1D detector by
applying a mask and reading out only a narrow strip, which can
enhance the rate of data acquisition. For CCD chips, the elec-
tronic image can be rapidly transferred to pixels behind the
masked part of the detector from where it can be read out while
the active area is re-exposed. Translating an image plate behind a
mask is a simple way of acquiring a series of diffraction patterns
for following a process with modest time resolution.

These instruments are vulnerable to aberrations that cause
systematic shifts in peak positions, such as misalignment of the
capillary or surface of the sample from the diffractometer axis,
and specimen transparency, which also affects the peak width and
shape. The peak width also depends on whether a flat sample is in
the 6/26 condition, or on the diameter of a capillary sample, etc.
Focusing the incident beam onto the detector decreases the peak
width, as fewer pixels are illuminated compared to using a highly
collimated incident beam. PSDs are much more open detectors
than those behind an analyser crystal or set of slits, so are more
susceptible to background and parasitic scatter from sample
environments efc. However, the speed and efficiency of data
acquisition usually outweigh such concerns.

2.2.4.3. Energy-dispersive instruments

The broad, continuous spectrum from a wiggler or bending
magnet is suitable for energy-dispersive diffraction (EDD). Here,
the detector is fixed at an angle 26 and the detector determines
the energy, ¢, of each arriving photon scattered by the sample
(Fig. 2.2.14). The energy [keV] can be converted to d-spacing [A]
via

d > 12.3984/2¢ sin 6.

The detector usually consists of a cryogenically cooled semi-
conducting Ge diode. An absorbed X-ray photon promotes
electrons to the conduction band in proportion to its energy. By
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of an energy-dispersive diffraction arrange-
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analysing the size of the charge pulse produced, the energy of the
photon is determined. The powder-diffraction pattern is recorded
as a function of energy (typically somewhere within the range 10—
150 keV, depending on the source) via a multichannel analyser
(MCA). Instruments may have multiple detectors, at different 26
angles covering different ranges in d-spacing (Barnes et al., 1998),
or arranged around a Debye—Scherrer ring, as in the 23-element
semi-annular detector at beamline 112 at Diamond Light Source
(Korsunsky et al., 2010; Rowles et al., 2012).

Prior to performing the EDD experiment, the detector and
MCA system must be calibrated, e.g. by measuring signals from
sources of known energy, such as **' Am (59.5412 keV) or *’Co
(122.06014 and 136.4743 keV) at hard energies, and/or from the
fluorescence lines of elements such as Mo, Ag, Ba efc. The 26
angle also needs to be calibrated if accurate d-spacings are
desired. This should be done by measuring the diffraction pattern
of a standard sample with known d values.

The detector angle is typically chosen in the range 2-6° 26 and
influences the range of d-spacings accessible via the term 1/sin 6,
i.e. the lower the angle, the higher the energy needed to access
any particular d. Normally, the range of most interest should be
matched to the incident spectrum, taking account also of sample
absorption and fluorescence, to produce peaks with high inten-
sity. More than one detector at different angles can also be
employed. Energy-sensitive Ge detectors do not count particu-
larly fast, up to 50 kHz being a typical value compared to possibly
1-2 MHz with a scintillation detector. Hence they are relatively
sensitive to pulse pile-up and other effects of high count rates
(Cousins, 1994; Laundy & Collins, 2003; Honkimiki & Suortti,
2007), particularly if the synchrotron is operating in a mode with
a few large electron bunches giving very intense pulses of X-rays
on the sample.

The energy resolution of the detector is of the order of 2%,
which dominates the overall resolution of the technique. Its main
uses are where a fixed geometry with penetrating X-rays is
required, e.g. in high-pressure cells, for in situ studies (Hauser-
mann & Barnes, 1992), e.g. of chemical reactions under hydro-
thermal conditions (Walton & O’Hare, 2000; Evans ef al., 1995),
electrochemistry (e.g. Scarlett et al., 2009; Rijssenbeek et al., 2011;
Rowles et al, 2012), or measurements of residual strain
(Korsunsky et al., 2010). Owing to the use of polychromatic
radiation, the technique has very high flux on the sample and can
be used for high-speed data collection, following rapid processes
in situ. However, accurate modelling of the intensities of the
powder-diffraction pattern for structural or phase analysis is
difficult because of the need to take several energy-dependent
effects into account, e.g. absorption and scattering factors, the
incident X-ray spectrum, and the detector response. Never-
theless, examples where this has been successfully carried out
have been published (e.g. Yamanaka & Ogata, 1991; Scarlett et
al., 2009).

A higher-resolution variant of the energy-dispersive technique
can be performed by using a standard detector behind a colli-
mator at fixed 20 scanning the incident energy via the mono-
chromator. The Hart-Parrish design with long parallel foils is
suitable. Such an approach has been demonstrated in principle
(Parrish, 1988), but is rarely used in practice. The advantage is to
be able to measure data of improved d-spacing resolution, as
compared to using an energy-dispersive detector, from sample
environments with highly restricted access. In principle, as a
further variant, white incident radiation could be used with
scanning of 0, the angle of the analyser crystal, and associated
detector at 26, all at fixed 26.
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2.2.5. Considerations for powder-diffraction experiments

Synchrotron radiation allows considerable flexibility for a
powder-diffraction experiment, offering choice and optimization
of a number of quantities such as the wavelength, with high
energy resolution, range in d-spacing, angular resolution, angular
accuracy, and spatial or time resolution (but not all of these can
necessarily be optimized at the same time). Increasingly, powder-
diffraction experiments at synchrotrons are combined with
complementary measurements, simultaneously applying techni-
ques such as Raman spectroscopy (Boccaleri et al., 2007; Newton
& van Beek, 2010), particularly when carrying out in situ studies
of an evolving system. In this respect, the open nature of a
synchrotron instrument, with space around the sample to position
auxiliary equipment, is an advantage.

2.2.5.1. Polarization

Assuming the beam is 100% polarized in the horizontal plane
of the synchrotron orbit and with detection in the vertical plane,
there is no need for any polarization correction to the diffracted
intensities. However, if a small amount of vertical polarization of
the beam does need to be taken into account (possibly up to a few
per cent depending on the source), the polarization factor that
describes its effect on the intensity of the diffracted beam can be
derived, following the approach of Azaroff (1955) and Yao &
Jinno (1982), as

P 1 —dp +dpcos’26cos’ 26, 1 —dp + dp cos’ 20 cos” 20,
o 1 —dp+dpcos?26, N 1 —dpsin®26,

3

(2.2.3)

where dp is the depolarization fraction (i.e. the fraction of the
total intensity incident on the sample that is vertically polarized),
26, is the Bragg angle of the analyser crystal (if any), and the
denominator scales P to unity at 26 equal to zero (Dwiggins,
1983) and is a constant for any particular experimental setup. If
there is no analyser crystal, or we ignore the effect it would have
(i.e. by putting 26, = 0), then

P =1 —dpsin®26.

Beamline staff can usually advise on the appropriate values to
use. These expressions reduce to the usual polarization factor for
unpolarized (dp 0.5) laboratory X-rays without a mono-
chromator or analyser crystal, 3(1 + cos” 26).

An alternative formulation of equation (2.2.3) considers the
ratio of the vertical to horizontal polarization,

dp
1—dp

p
14+

p = and dp =

)

so that

P 1 + rp cos® 26 cos? 20,
N 14 rpcos? 6,

(2.2.4)

Note that rp = 1.0 for unpolarized (laboratory) X-rays. In reality,
because the synchrotron beam is near 100% plane polarized, dp
and rp have similar values. The same expressions can be used if
diffracting and analysing in the horizontal plane, except that now
the value of dp or rp is replaced with the value of (1 — dp) or 1/rp,
respectively.

For Debye-Scherrer rings detected on a 2D detector, the
azimuthal angle around the ring needs to be taken into account,
yielding
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P = (1 — dp)(cos® 26sin” k + cos” k) + dp(cos® 20 cos” k + sin® k)

or

P (cos? 20 sin’ k + cos? k) + rp(cos? 26 cos? k + sin’ k)
B 1+

)

where « is the azimuthal angle (zero in the vertical direction)
(Rowles et al., 2012).

2.2.5.2. Radiation damage

The intensity of the incident beam can be so high that radiation
damage becomes a real concern, particularly for samples
containing organic molecules, such as pharmaceuticals, or
organometallic materials. Radiation damage manifests itself by
progressive shifts (often anisotropic) in the peak positions, a
general reduction in peak intensities and peak broadening as the
sample’s crystallinity degrades. With high-resolution data, the
effects are easily seen and can appear after only a few seconds in
the worst cases. In such circumstances it may be better to use a
1D or 2D PSD to collect data of sufficient statistical quality
before the damage is too severe. However, if the highest-
resolution data are required, via scanning an analyser crystal,
then the problem can be alleviated by filling a long capillary with
sample and translating it between scans to expose fresh sample to
the beam, thus acquiring multiple data sets which can be summed
together. Such an approach necessarily requires a sufficient
amount of disposable sample. If attempting to study the evolution
of a particular part of the sample, e.g. undergoing heat treatment
in the beam, then substituting fresh sample is not necessarily an
option, and radiation damage can be a frustrating hindrance.

2.2.5.3. Beam heating
2 1

With a photon intensity of the order 10'? photons mm s
incident on the sample — a possible value for the unfocused beam
on a beamline based on an insertion device at a modern third-
generation source — the power in the beam corresponds to a few
mW mm 2. If a small fraction is absorbed by the sample this can
represent a significant heat load that becomes troublesome when
trying to work with samples at cryogenic temperatures, where
heat capacities are relatively low.

As an example, consider a sample of microcrystalline silicon,
composed of cubic 1 pm® grains irradiated by a 31 keV beam
(0.4 A wavelength) with 10'? photons mm 2s~'. The power of
the beam is S mW mm > (31 x 10 e x 10> W mm~?). The mass
absorption coefficient of Si at 0.4 A wavelength /p ~ 1.32 cm?
g~ ! (Milledge, 1968) leading to a linear absorption coefficient of
31cm™' (density of Si 233 gcm ). Any problems with
absorption by such a sample might usually be discounted; for a 1-
mm-diameter capillary the value of ur is 0.1, assuming the
powder density is 2/3 of the theoretical density.

A single 1-um® grain of cross section 1pm?” is hit by
10° photons s~1, of which a small fraction are absorbed,

photons absorbed = 10°[1 — exp(—3.1 x 107%)]
=310 photons s,

corresponding to an absorbed power of 1.54 x 10> W. Not all
this energy is retained; significant amounts are lost as fluores-
cence, Compton scatter etc. Consultation of tables of mass
attenuation coefficients and mass energy-absorption coefficients
(Hubbell, 1982; Seltzer, 1993) indicates that for Si at 31 keV
about 80% of the energy is retained, thus a net heating power of
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1.2 x 107> W. The mass of the Si grain is 2.33 x 107" kg. At
ambient temperature, where the specific heat capacity of Si is
704.6 Jkg ' K™', this leads to an instantaneous tendency to
increase the temperature by ~0.7 K s™'. At cryogenic tempera-
tures, e.g. 10 K, the specific heat capacity is over three orders of
magnitude lower, 0.28 J kg~ ' K~! (Desai, 1986), leading to a very
strong tendency for the temperature to rise (1840 Ks™'). The
extent of the potential problem varies depending on the real net
absorption of energy of the sample at the wavelength being used.
However, it is clear that to prevent local beam-heating effects, the
absorbed energy must be removed from the sample as efficiently
as possible, i.e. by having excellent thermal contact between the
grains of the sample and the external medium. At cryogenic
temperatures this can be accomplished via the He exchange gas
in the cryostat. Thus, if using a capillary sample, the capillary
must either be left unsealed, to allow the He to permeate
between the grains of sample, or it must be sealed under He,
allowing transport of the heat to the walls of the capillary. Sealing
under air, nitrogen, argon or other atmosphere leads to a loss of
heat-transport capability when the gas solidifies, with consequent
unpredictable behaviour for the sample caused by the beam-
heating effects. This can involve significant shifts in peak posi-
tions and peak broadening depending on the instantaneous local
temperature gradients. The problems tend to be worse at softer
energies, where X-ray absorption is generally higher. Notwith-
standing the potential problems, good-quality low-temperature
data can be measured with appropriate care.

2.2.5.4. Choice of wavelength

The tunability of synchrotron radiation allows the wavelength
best suited to the measurements to be selected. The collimation
of the beam from the source combined with a perfect crystal
monochromator lead automatically to high energy resolution,
with a narrow wavelength distribution about a mean value.
Consequently there are no issues to contend with such as o, o,
doublets or other effects due to a composite incident spectrum,
contributing to a relatively simple instrumental peak-shape
function. High energy resolution is essential for high 26 resolu-
tion, because, as shown in equation (2.2.1), the effect of the
energy envelope is to broaden the diffraction peaks as 260
increases.

In choosing the wavelength for an experiment, factors to
consider include:

(a) The optimum operational range for the beamline to be used,
which will principally depend on the characteristics of the
source.

(b) Absorption: choosing a sufficiently hard energy generally
reduces absorption and allows the use of a capillary specimen
in transmission for a wide range of compounds, e.g. those
containing transition metals or heavier elements, thus mini-
mizing preferred orientation. Selecting the energy a little way
below (in energy) the K or Ly absorption edge of an element
in the sample may help minimize sample absorption. For any
sample or series of samples, it is good practice in the planning
of the experiment to calculate the linear absorption coeffi-
cient to assess the optimum capillary diameter, the wave-
length to use and those to avoid.

(c) The use of hard energies can be advantageous for penetration
through sample environments, although these should
normally, as much as possible, be designed with appropriate
X-ray windows etc. However, when absorbing environments
are unavoidable, such as containing a sample in a spinning Pt
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Variation of Af" and Af” with photon energy for Sn (solid line) and Sb
(dotted line) in the vicinity of their K absorption edges (from the tables
of Sasaki, 1989). An anomalous-scattering experiment seeking to
distinguish the arrangement of the two elements could make measure-
ments at the Sn edge (29.2001 keV), at a few eV below the edge and at an
energy significantly removed from the edge (arrows). Equivalent
measurements could be made at the Sb edge (30.4912 keV), but as this
is above the energy of the Sn edge careful attention must be paid to the
increase in the sample’s absorption (reflected in the values of Af”’).

capillary for heating to very high temperatures, then high
energy can be a major benefit.

(d) Hard energies are essential to measure to high Q values,
where O = 4msin6/A = 2 /d. For pair distribution function
(PDF) analysis, data to QO > 25 A~ (d < 0.25 A) or more are
required, with patterns of good statistical quality. Such Q
values are not possible with Mo or Ag radiation (Ag Ko, A =
056 A,Q0~22A"at20 = 160°), but are easily accessible at
A =04A (31 keV) by scanning to 26 = 106°. At 80.7 keV
(0.154 A, ten times shorter than Cu Ka) patterns to Q =~
35 A™! can be obtained in minutes (even seconds) with a
large stationary medical-imaging flat-panel detector (Lee,
Aydiner et al., 2008). Even for more classical powder-
diffraction experiments, access to data for high O values can
be advantageous for Rietveld refinement of crystal structures,
or for measuring several orders of reflections for peak-shape
analysis in the investigation of microstructure.

(e) Anomalous scattering: performing measurements near the
absorption edge of an element in a sample and away from
that edge gives element-specific changes in the diffraction
intensities, enhancing the experiment’s sensitivity to that
element (Fig. 2.2.15). The approach can be complimentary to
isotopic substitution in a neutron-diffraction experiment or
may be the only option when no suitable isotope is available.
Good energy resolution is important for these experiments.
The values of Af” and Af” vary sharply over only a few eV at
the edge, so poor energy resolution would average the
abruptly changing values over too broad a range to the
detriment of elemental sensitivity and sample absorption if
part of the wavelength envelope strays above the edge.
Moreover, it is necessary to know accurately where on the
edge the measurement is being made to allow the correct
values of Af” and Af” to be used in the data analysis. Tables
of values have been calculated (e.g. Sasaki, 1989), but these
do not take account of shifts in an edge due to the oxidation
state(s) and chemical environment(s) of the elements. It is
advisable to measure the fluorescence of the sample as the
energy is scanned through the edge (by varying the mono-
chromator angle 6,,) and then use the Kramers—Kronig
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relation to calculate the variation of Af’ and Af” with
energy. A program such as CHOOCH (Evans & Pettifer,
2001) allows this to be done.

(f) A wavelength greater than 1 A may be best when working
with large unit cells, such as found for proteins, organic
molecules or organometallic compounds. Using a long
wavelength helps by moving the diffraction pattern to higher
260 values, away from the zone most affected by background
air scatter or masked by the beam stop, and to where the
peak asymmetry due to axial beam divergence is less severe.
Longer wavelengths are also useful when working in reflec-
tion with plate samples to minimize beam penetration and
thus enhance sensitivity to the surface regions, e.g. in the
study of surfaces or coatings.

(g) The broad continuous spectrum available from a bending
magnet or wiggler allows powder-diffraction measurements
via the energy-dispersive approach, which is exploited when
geometric considerations of the sample or environment mean
that a restricted range of 20 values is accessible or when
attempting to obtain the maximum time resolution from a
source, as a larger fraction of the photons from the source can
be exploited.

2.2.5.5. Angular resolution

The highest angular resolution is obtained from a diffract-
ometer equipped with an analyser crystal such as Si(111) or
Ge(111). This also gives the robust parallel-beam optical
configuration so that peak positions are accurately determined.
For well crystallized high-quality samples, peak FWHMs of a few
millidegrees are possible, thus maximizing the resolution of
reflections with similar d-spacings. For less ideal samples, which
represent the majority, microstructural effects broaden the peaks,
and indeed high-resolution synchrotron data are exploited for
detailed investigation of peak shapes and characterization of a
range of properties such as crystallite size, microstrain (Chapter
5.2), defects, chemical homogeneity efc. Accurate high-resolution
data are particularly useful for solving crystal structures from
powders (Chapter 4.1), increasing the possibilities for indexing
the powder diffraction pattern (Chapter 3.4), assessing the choice
of possible space groups, and providing high-quality data for the
structural solution and refinement steps. With a high-resolution
pattern, the maximum amount of information is stored in the
complex profile composed from the overlapping peaks.

2.2.5.6. Spatial resolution

Focusing the X-ray beam gives improved spatial resolution, e.g.
for studying a small sample contained in a diamond anvil cell at
high pressure. A beam with dimensions of a few um can be
obtained, though at the expense of the divergence of the beam
arriving at the sample. In such cases the use of a 2D detector
to record the entire Debye—Scherrer rings will be required to
accumulate the diffraction pattern in a reasonable time and to
reveal any problems with preferred orientation or granularity in
the sample. With a very small sample only a few grains may be
correctly oriented to provide each powder reflection. Alter-
natively, provided the intensity of the beam is high enough,
simply cutting down the beam size with slits may be appropriate,
e.g. to map residual strain in a weld or mechanical component
where a spatial resolution on the 50-100 pm scale may be
required. Smaller beam sizes may not be useful if they are
comparable to the intrinsic grain size of the material, thus leading
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to a poor statistical average of grain orientations and a spotty
diffraction pattern.

2.2.5.7. Time resolution

The high flux allows powder-diffraction patterns to be
measured quickly, opening up the possibilities for time-resolved
studies, following the evolution of samples on a timescale, if
appropriate, down to milliseconds, e.g. to investigate the kinetics
and the mechanism of a phase transition caused by a change of
the temperature, pressure or other external condition, or a
chemical reaction taking place in the sample, such as self-
propagating combustion synthesis (Labiche et al., 2007). Many
instruments allow great flexibility in the design of experiments to
study systems in situ, helped by the availability of hard radiation
to penetrate through sample environments and reduce the
angular range that must be accessed to measure enough
diffraction peaks to yield the desired information.

2.2.5.7.1. Using fast detectors

Scanning a detector through the d-spacing range of interest
necessarily takes a few seconds, so is too slow to measure the
fastest processes. Thus, for speed, a multichannel detector system
is required that acquires the full diffraction pattern synchro-
nously and that can be read out rapidly, such as via a fast PSD or
using the energy-dispersive approach. Many different types of
detector systems have been exploited for fast powder-diffraction
studies using the monochromatic Debye—Scherrer configuration
(Section 2.2.4.2), including 1D photodiode arrays (Pennartz et al.,
1992; Wong et al., 2006; Palmer et al., 2004), the Mythen curved
1D PSD (Fadenberger et al., 2010), pixel detectors (Yonemura et
al., 2006; Terasaki & Komizo, 2011), CCD-based detectors
(Malard et al., 2011; Elmer et al., 2007), and medical-imaging
detectors (Chupas, Chapman, Jennings et al., 2007; Newton et al.,
2010). The former of these last two studies shows that these large
detectors working at hard X-ray energies above 60 keV register a
wide enough Q range in a single cycle to allow PDF analysis to be
made, thus allowing the conduct of time-resolved PDF analysis of,
for example, catalytic systems composed of evolving nano-
particles. For the latter study, the diffraction measurements were
combined with simultaneous monitoring of the reacting system
with the acquisition of complementary mass and diffuse reflec-
tance infrared Fourier transform spectra (DRIFTS).

2.2.5.7.2. Using the pulse structure

For investigating very fast, reversible processes, use can be
made of the bunch structure of the synchrotron source and the
stroboscopic measurement approach. The time for an orbit of an
electron circulating in a synchrotron is (circumference/c) s. For a
synchrotron such as at the ESRF (with a circumference of
844.4 m), this corresponds to 2.82 us (i.e. a frequency of
355036 Hz). Thus when operating with 16 electron bunches
distributed evenly around the ring, there is a burst of X-rays
delivered to a beamline every 176 ns, and because of the long-
itudinal dimension of the electron bunch (~20 mm), each burst
lasts ~70 ps. Such a pulsed source can be used in pump—probe
powder-diffraction experiments, whereby a sample is excited by a
short laser pulse (~100 fs duration) then probed by the X-ray
beam a chosen delay time later. The scattered X-rays are
recorded with a suitable (probably 2D) detector and the process
is repeated, with the statistical quality of the diffraction pattern
building up over a number of cycles, after which the detector is
read out. A high-speed chopper in the X-ray beam can be used to

63

select the pulse frequency desired for any particular set of
measurements. By varying the delay time the evolution of the
sample as a function of time after the initial excitation can be
investigated. The whole experiment needs fast, accurate elec-
tronics to correlate the timing of the firing of the laser, the arrival
of the X-ray pulse and the phasing of the chopper.

Examples include the study of 4-(dimethylamino)benzonitrile
and 4-(diisopropylamino)benzonitrile (Davaasambuu et al., 2004;
Techert & Zachariasse, 2004), whose fluorescence properties
indicate that photoexcitation leads to the formation of an intra-
molecular charge-transfer state. Powder-diffraction patterns were
collected over 10-minute periods at a frequency of 897 Hz at
delay times ranging from —150 ps (as a reference before the laser
excitation) to +2500 ps after excitation. Only about 5% of the
molecules are excited by the laser, so the powder-diffraction
pattern is from a sample containing both excited and ground-
state molecules. Rietveld refinement of the structures from the
diffraction patterns gave the fraction of excited molecules as a
function of delay time, and the nature of the structural change
induced by the photoexcitation. For the isopropyl analogue, an
exponential relaxation time of 6.3 (2.8) ns was observed for the
excited molecules (compared to 3.28 ns seen spectroscopically).
The main distortion to the molecules was a change in the torsion
angle between the diisopropylamino group and the benzene ring,
from 13-14° determined from the pre-excitation patterns (14.3°
via single-crystal analysis) to 10 (£1-2)°.

2.2.5.8. Beamline evolution

A beamline at a synchrotron source will certainly evolve in its
specifications and capabilities. Users and prospective users
should follow updates on a facility’s website, or contact the
beamline staff, for information concerning possibilities for
experiments.
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2.3. Neutron powder diffraction

C. J. Howarp AND E. H. Kis1

2.3.1. Introduction to the diffraction of thermal neutrons

Diffraction of neutrons occurs by virtue of their wave character,
the de Broglie wavelength A being
h h
A=—=—"%, (2.3.1)
mv  (2mE)"

where m, v and E are the mass, speed and energy of the neutron,
respectively, and 4 is Planck’s constant. It may be convenient to
express the neutron energy in meV, in which case the wavelength
in angstroms is given by

A (A) =9.045/(E)'* (meV). (2.3.2)

Thermal neutrons produced by a fission reactor have a repre-
sentative energy of 25 meV, and accordingly a wavelength of
1.809 A, which is well suited to the study of condensed matter
since it is of the order of the interatomic spacings therein.
Neutrons have a number of distinctive properties making
neutron diffraction uniquely powerful in several applications.
They may be scattered by nuclei or by magnetic entities in the
sample under study.
(a) Scattering by nuclei: The atomic nucleus is tiny compared
with the atomic electron cloud, which is the entity that
scatters X-rays and electrons. The scattering cross section for

a particular nucleus is written as
o = 4nb?*, (2.3.3)

where o is typically of the order of 107 m* (1 x 10 * m® =
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Figure 2.3.1

Representations of the scattering of X-rays and neutrons by selected
elements. The scattering cross sections are proportional to the areas of
the circles shown. For the neutron case, separate entries appear for the
different isotopes and negative scattering lengths are indicated by
shading. The figure is not intended to imply a relationship between the
X-ray and neutron cross sections.
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1 barn) and b, which is termed the scattering length, is of the
order of femtometres. The small size of the nucleus relative to
the wavelength of interest means that the scattering is
isotropic — there is no angle-dependent form factor, as occurs
in the X-ray case (cf. Section 1.1.3.1). This confers advantages
in studies aimed at determining atomic displacement para-
meters (ADPs)," and indeed for the total-scattering studies
requiring data over a large O range (Q = 4msin@/)) that are
described in Chapter 5.7. Importantly, scattering lengths vary
somewhat erratically with atomic number Z; this is in marked
contrast to the X-ray case in which the form factor increases
monotonically with Z (see Figs. 2.3.1 and 2.3.2). This can
make it much easier to detect the scattering from light (low-
Z) elements in the presence of much heavier ones; it also
makes it easier to distinguish scattering from elements
adjacent in the periodic table, e.g. Cu with Z = 29, b =
7.718 fm and Zn with Z = 30, b = 5.680 fm. The scattering
length is also different for different isotopes of the same
element,? e.g. for '"H b = —3.741 fm, whereas for *H b =
6.671 fm, so that sometimes isotopic substitution can be
employed to obtain contrast as desired.

(b) Scattering by magnetic entities: The neutron carries a
magnetic moment of —1.913 uy (where wuy is the nuclear
magneton) and accordingly it interacts with magnetic entities
in the sample. These may be nuclei, with magnetic moments
of the order of the nuclear magneton, or atoms with much
larger magnetic moments, of the order of the Bohr magneton
(). If the magnetic entities are disordered, then the result is
magnetic diffuse scattering, but if they are in some way
ordered then the magnetic structure can be studied via the
magnetic Bragg reflections that arise. (These may not be so
obvious if they coincide with the nuclear Bragg reflections.)
The magnetic moment of the neutron interacts with atomic
magnetic moments, attributable to unpaired electrons in the
atoms. These electrons tend to be the outer electrons, spread
over dimensions comparable with atomic spacings and hence
with the wavelengths used for diffraction; a consequence is
that magnetic scattering is characterized by a magnetic form
factor which falls off with O more rapidly than does the form
factor for the X-ray case (Fig. 2.3.3). The confirmation of the
antiferromagnetic ordering in MnO below its ordering (Néel)
temperature of 120 K (Fig. 2.3.4; Shull er al., 1951) was the
first of numerous studies of magnetic structure by neutron
powder diffraction that have continued to the present day
(Izyumov & Ozerov, 1970; Chatterji, 2006; Chapter 7 in Kisi
& Howard, 2008). Investigations of nuclear moments are
more challenging largely because the smaller moments mean
extremely low ordering temperatures; nevertheless neutron
diffraction has been used, for example, to study the ordering

! The atomic displacements (e.g. thermal vibrations) smear the scattering sites to
an extent that is likely to be considerably smaller than the atom itself, but very
much larger than the nucleus.

2 If the nucleus in question carries spin, the scattering length also depends on the
relative orientation of the neutron and nuclear spins.
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TiO,, XRD, Daresbury Synchrotron, A = 1.377 A

that it takes about 10 cm of Al to
reduce the intensity by a factor 1/e.
The fact that neutrons are so little
attenuated by these materials
makes it easier to design large and
complex sample-environment cham-
bers which may be used for in situ
studies at high temperature, under
pressure or stress, in magnetic fields,
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and in reaction cells (Chapters 2.6—
2.9; Chapter 3 in Kisi & Howard,
2008). Neutron powder diffraction is
well suited to quantitative phase
analysis (QPA, see Chapter 3.9 and
Chapter 8 in Kisi & Howard, 2008);
as pointed out in Chapter 8, Section 8
of Kisi & Howard (2008), neutron
QPA provides a better sampling
ability and is less prone to micro-
absorption errors than the X-ray
technique; indeed, neutron diffrac-
tion was the method employed in
one of the earliest and most convin-
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Figure 2.3.2

Comparison of X-ray and neutron powder-diffraction patterns from rutile, TiO,. The patterns were
recorded at the same wavelength, 1.377 A. The differences between form factors and scattering
lengths give rise to large differences in the relative intensities of the different peaks; note also that
the fall off in the form factor evident in the X-ray case does not occur for neutrons.
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Figure 2.3.3
The magnetic form factor for Mn** compared with the normalized X-ray
form factor and the normalized neutron nuclear scattering length.

of nuclear moments in metallic copper (®*Cu) at tempera-
tures below 60 nK (Hakonen et al., 1991).?

(c) Low attenuation: The combination of the small scattering
cross sections and generally low cross sections for
absorption (notable exceptions are B, Cd and Gd) gives
thermal neutrons the ability to penetrate quite deeply
into most materials. Indeed, the linear attenuation coefficient
for thermal (25 meV) neutrons in Fe is 110 m~', and for
neutrons in Al it is only about 9.8 m™'; the implication is

3 This study depends on the spin-dependent scattering lengths rather than
magnetic scattering per se.
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cing demonstrations of the Rietveld

method in QPA (Hill & Howard,

1987). Another advantage conferred

by the deep penetration of neutrons

is the ability to probe below the

surface of samples to measure such

aspects as structure, phase composi-

tion and stress; a particular example

is the application to the analysis of
zirconia ceramics (Kisi et al, 1989) where the surface
composition (as would be measured by X-rays) is unrepre-
sentative of the bulk. A downside of the small scattering
cross sections (along with neutron sources of limited
‘brightness’) is that relatively large samples may be
required.

(d) Low energy: We note from equation (2.3.1) that, for a
specified wavelength, the energy of the neutron is much less
than that for lighter probes, such as electrons or photons. This
is critically important for studying inelastic processes (e.g.
measurement of phonon dispersion curves), but is usually not
a factor in neutron powder diffraction.*

Neutron sources, in common with synchrotrons, are large
national or international facilities, set up to cater for scientists
from external laboratories. There are usually well defined access
procedures, involving the submission and peer review of
research proposals. Visiting users are usually assisted in their
experiments by in-house staff. In some cases external users can
mail in their samples for collection of diffraction data by the
resident staff.
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2.3.2. Neutrons and neutron diffraction — pertinent details
2.3.2.1. Properties of the neutron

The basic properties of the neutron are summarized in Table
2.3.1.

4 However, if the incident beam is monochromatic, a crystal monochromator
placed in the diffracted beam can be used to exclude inelastic scattering from the
‘background’.



2. INSTRUMENTATION AND SAMPLE PREPARATION
Table 2.3.1

Properties of the neutron (adapted from Kisi & Howard, 2008)

S

9'ﬁ;nical

unit cell

Magnetic unit cell

Figure 2.3.4

Magnetic structure for MnO proposed by Shull er al. (1951). The figure
shows only the Mn atoms, and indeed only those Mn atoms located on
the visible faces of the cubic cell. [From Shull et al. (1951), redrawn using
ATOMS (Dowty, 1999).]

2.3.2.2. Neutron scattering lengths

The scattering lengths of most interest in neutron powder
diffraction are those for coherent elastic scattering, b..,, often
abbreviated to b. As already mentioned, there is no angle (Q)
dependence, since the scattering from the nucleus is isotropic. A
selection of scattering lengths for different isotopes and different
elements is given in Table 2.3.2.

The first thing to note is the variation in scattering length from
element to element and indeed from isotope to isotope. The
scattering lengths are in most cases positive real numbers, in
which case there is a phase reversal of the neutron on scattering,
but for some isotopes the scattering lengths are negative, so there
is no change in phase on scattering. The scattering lengths are
determined by the details of the neutron-nucleus interaction
(Squires, 1978).5 In the event that the neutron-nucleus system is
close to a resonance, such as it is for '°B, '*Gd and '*’Gd, scat-
tering lengths will be complex quantities and the scattered
neutron will have some different phase relationship with the
incident one. The imaginary components imply absorption, which
is reflected in the very high absorption cross sections, o, for these
isotopes.

The total scattering cross section, o, is given by o, = 47b%,
when only coherent scattering from a single isotope is involved,
which is very nearly the case for oxygen since 99.76 % of naturally
occurring oxygen is zero-spin '°O. In most cases there is a more
substantial contribution from incoherent scattering, which may
be either spin or isotope incoherent scattering. Spin incoherent
scattering arises because the scattering length depends on the
relative orientation of the neutron and nuclear spins, parallel and
antiparallel arrangements giving rise to scattering lengths b and
b_, respectively. Isotope incoherent scattering arises because of
the different scattering of neutrons from different isotopes of the
same element. In almost all circumstances (except, for example,
at the extraordinarily low temperatures mentioned in Section
2.3.1) the distributions of spins and isotopes are truly random,
which means that there is no angle dependence in this scattering:
this is sometimes described as Laue monotonic scattering.

5 It is evident from Fig. 2.3 in this reference that even for an attractive interaction
between neutron and nucleus positive scattering lengths will predominate.
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Mass (1) 1.675 x 107*" kg
Charge 0

Spin i

Magnetic moment (t,,) —1.913 uy
Wavelength () himv

Wavevector (k) Magnitude 27/
Momentum (p) hk

Energy (E) 1/2)mv* = b /2mA?

When b varies from nucleus to nucleus (even considering just a
single element), the coherent scattering is determined by the
average value of b, that is b, = b, 0., = 4n(5)2,_and the
average incoherent cross section is given by o,,. = 47n[b* — (5)2].
The total scattering cross section oy is the sum of the two cross
sections (Squires, 1978; see also Section 2.3.2 in Kisi & Howard,
2008). For the particular case of a nucleus with spin 7, the states /
+ 1/2 and I — 1/2 give scattering determined by b, and b_,
respectively, and have multiplicities 2/ + 2 and 21, respectively,
from which it follows that

_ I+1 I
b, =b= b b
coh 21 +1 ++21+1 -
— I(1+1
bi2nc = I:bz - (b)z:l = ( ha )2 + bf)z.
(I +1)

More information, including a comprehensive listing of scat-
tering lengths, can be found in Section 4.4.4 of International
Tables for Crystallography Volume C (Sears, 2006). This listing
presents the spin-dependent scattering lengths via b, and b;, as
just defined. Other compilations can be found in the Neutron
Data Booklet (Rauch & Waschkowski, 2003), and online through
the Atominstitut der Osterreichischen Universitiiten, Vienna, at
http://www.ati.ac.at/~neutropt/scattering/table.html. In addition,
the majority of computer programs used for the analysis of data
from neutron diffraction incorporate, for convenience, a list of
b.on values for the elements.

2.3.2.3. Refractive index for neutrons

The coherent scattering lengths of the nuclei determine the
refractive index for neutrons through the relationship (Squires,
1978)

(2.3.4)

L.y
n=1 _ﬁk Nb..,,
where N is the number of nuclei per unit volume. For elements
with positive values of the coherent scattering length the
refractive index is slightly less than one, and that leads to
the possibility of total external reflection of the neutrons by the
element in question. In fact, when the coherent scattering length
is positive, neutrons will undergo total external reflection for
glancing angles less than a critical angle y, given by

1 2
cosy,=n=1——»ANb_,, (2.3.5)
2
which, since y. is small, reduces to
Nb 12
Y. = x( °°“> ) (2.3.6)
b4

It can be seen that the pertinent material quantity is Nb..y,, the
‘coherent scattering length density’; for materials comprising
more than one element this is the quantity that would be
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Coherent scattering lengths and absorption cross sections (for 25 meV neutrons) for selected isotopes

Data are taken from Section 4.4.4 of Volume C (Sears, 2006). Where not stated, the values are for the natural isotopic mix. The X-ray atomic form factors, f, evaluated at
Q =127 A, are included for comparison.

Element Isotope ‘ beon (fm) Og(ony (107
H —3.7390 (11) 82.02 (6)
1 —3.7406 (11) 82.03 (6)
2 6.671 (4) 7.64 (3)
3 4792 (27) 3.03 (5)
B 5.30 (4) — 0.213 (2)i 524 (11)
10 —0.1 (3) — 1.066 (3)i 3.1(4)
1 6.65 (4) 5.78 (9)
C 6.6460 (12) 5.551 (3)
12 6.6511 (16) 5.559 (3)
13 6.19 (9) 4.84 (14)
0 5.803 (4) 4232 (6)
Ti —3.370 (13) 4.06 (3)
46 4725 (5) 2.80 (6)
47 3.53(7) 3.1(2)
48 —5.86 (2) 432 (3)
49 0.98 (5) 3.4 (3)
50 5.88 (10) 434 (15)
\% —0.3824 (12) 5.10 (6)
Ni 10.3 (1) 18.5 (3)
58 14.4 (1) 26.1 (4)
60 2.8 (1) 0.99 (7)
61 7.60 (6) 92 (3)
62 —87(2) 9.5 (4)
64 —037 (7) 0.017 (7)
Cu 7.718 (4) 8.03 (3)
63 6.43 (15) 52(2)
65 10.61 (19) 14.5 (5)
Zn 5.680 (5) 4.131 (10)
Zr 7.16 (3) 6.46 (14)
Gd 6.5 (5) 180 (2)
155 6.0 (1) — 17.0 (1)i 66 (6)
157 —1.14 (2) — 71.9 (2)i 1044 (8)
Pb 9.405 (3) 11.118 (7)

Isotopic
abundance

Zem?) o, (1072 cm?) f (%)

0.3326 (7) 0.25

0.3326 (7) 99.985

0.000519 (7) 0.015

0 _

767 (8) 1.99

3835 (9) 20.0

0.0055 (33) 80.0

0.00350 (7) 2.50

0.00353 (7) 98.90

0.00137 (4) 1.10

0.00019 (2) 4.09

6.43 (6) 13.2

0.59 (18) 8.2

1.7 (2) 7.4

8.30 (9) 73.8

22 (3) 5.4

0.179 (3) 52

5.08 (2) 14.0

4.49 (16) 18.7

4.6 (3) 68.27

29 (2) 26.10

2.5(8) 1.13

14.5 (3) 3.59

1.52 (3) 0.91

378 (2) 19.9

4.50 (2) 69.17

2.17 (3) 30.83

1.11 (2) 20.8

0.185 (3) 27.0

49700 (125) 45.9

61100 (400) 14.8

259000 (700) 15.7

0.171 (2) 60.9

computed. Since the critical angle for total external reflection is
proportional to the neutron wavelength, it is convenient to
express this as degrees per angstrom of neutron wavelength.
These are important considerations in the design and develop-
ment of neutron guides (Section 2.3.3.4).

2.3.2.4. Neutron attenuation

Neutron beams are attenuated by coherent scattering, inco-
herent scattering and true absorption. The cross sections for all
these processes are included in the tables cited above. For
powder diffraction, the coherent scattering is usually small
because it takes place only in that small fraction of crystallites
correctly oriented for Bragg reflection; the other processes,
however, take place throughout the sample.

If a particular scattering entity i with scattering cross sections
(0)inec and (0;).ps 1S present at a number density N, then the
contribution it makes to the linear attenuation coefficient p is
Wi = N(0)ine + (0)ans)- If the mass is M;, then the density is
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simply p; = N;M,, so we have the means to evaluate the mass
absorption coefficient (1/p);. The calculation of absorption for
elements, compounds and mixtures commonly proceeds by the
manipulation of mass absorption coefficients, in the same manner
as is employed for X-rays (see Section 2.4.2 in Kisi & Howard,
2008).

2.3.2.5. Magnetic form factors and magnetic scattering lengths

For a complete treatment of the magnetic interaction between
the neutron and an atom carrying a magnetic moment, and the
resulting scattering, the reader is referred elsewhere [Marshall &
Lovesey, 1971; Squires, 1978; Section 6.1.2 of Volume C (Brown,
2006a)]. The magnetic moment of an atom is associated with
unpaired electrons, but may comprise both spin and orbital
contributions. The magnetic interaction between the neutron and
the atom depends on the directions of the scattering vector and
the magnetic moment vector according to a triple vector product.
The direction of polarization of the neutron must also be taken
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into account. For an unpolarized incident beam, the usual case in
neutron powder diffraction, it is a useful consequence of the
triple vector product that the magnetic scattering depends on
the sine of the angle that the scattering vector makes with the
magnetic moment on the scattering atom (see Section 2.3.4 and
Chapter 7 in Kisi & Howard, 2008). The extent of the unpaired
electron distribution (usually outer electrons) implies that the
scattering diminishes as a function of Q, an effect that can be
described by a magnetic form factor. For a well defined direction
for the magnetic moment M, and with a distribution of moment
that can be described by a normalized scalar m(r), the form factor
as a function of the scattering vector h [defined in equation
(1.1.17) in Chapter 1.1]% is the Fourier transform of m(r),

f(h) = [m(r)exp(27ih - r) dr,

where m(r) can comprise both spin and orbital contributions
[Section 6.1.2 of Volume C (Brown, 2006a)]. The tabulated form
factors are based on the assumption that the electron distribu-
tions are spherically symmetric, so that m(r) = m(r) = U*(r),
where U(r) is the radial part of the wave function for the
unpaired electron. In the expansion of the plane-wave function
exp(2mih - r) in terms of spherical Bessel functions, we find that
the leading term is just the zeroth-order spherical Bessel function
jo(2mhr) with a Fourier transform

(o(h)) = 47r0fo U (r)j,(2chr)r? dr.
0

This quantity is inherently normalized to unity at 4 = 0, and
may suffice to describe the form factor for spherical spin-only
cases. In other cases it may be necessary to include additional
terms in the expansion, and these have Fourier transforms of the
form

(i)(h)) = 4n°fo U*(r)j,2chr)r? dr
0

with [ even; these terms are zero at &2 = 0 (Brown, 2006a). In
practice these quantities are evaluated using theoretical calcu-
lations of the radial distribution functions for the unpaired
electrons [Section 4.4.5 of Volume C (Brown, 2006b)].

Form factors can be obtained from data tabulated in Section
445 of Volume C (Brown, 2006b). Data are available for
elements and ions in the 3d- and 4d-block transition series, for
rare-earth ions and for actinide ions. These data are provided by
way of the coefficients of analytical approximations to (j,(h)), the
analytical approximations being

(o(s)) = A exp(—asz) +B exp(—bsz) +C eXP(_cSZ) +D
and for [ # 0
Gi(s)) = 5°[A exp(—as®) + Bexp(~bs®) + Cexp(—cs®) + D],

where s = h/2 in A™". These approximations, with the appropriate
coefficients, are expected to be coded in to any computer
program purporting to analyse magnetic structures. Although the
tabulated form factors are based on theoretical wave functions, it
is worth noting that the incoherent scattering from an ideally
disordered (i.e., paramagnetic) magnetic system will display the
magnetic form factor directly.

It is often convenient to define a (Q-dependent) magnetic
scattering length

% To reiterate, h = s —s;, where s, and s are vectors, each of magnitude 1/A,
defining the incident and scattered beams. Note that Q = 2rh.
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e’y
= Jf,
p <2mgcz)g f

where m, and e are the mass and charge of the electron, y (= u,,)
is the magnetic moment of the neutron, c is the speed of light, J is
the total angular momentum quantum number, and g is the
Landé splitting factor given in terms of the spin S, orbital angular
momentum L, and total angular momentum quantum numbers
by

JJ+1)+8S+1)— LIL+1)

=1
+ 2J(J + 1)

For the spin-only case, L = 0, J = S, so g = 2. The differential
magnetic scattering cross section per atom is then given by g>p>
where |g| = sin o, « being the angle between the scattering vector
and the direction of the magnetic moment. This geometrical
factor is very important, since it can help in the determination of
the orientation of the moment of interest; there is no signal, for
example, when the moment is parallel to the scattering vector.
Further discussion appears in Chapters 2 (Section 2.3.4) and 7 in
Kisi & Howard (2008).

2.3.2.6. Structure factors

The locations of the Bragg peaks for neutrons are calculated as
they are for X-rays’ (Section 1.1.2), and the intensities of these
peaks are determined by a structure factor, which in the nuclear
case is [cf. Chapter 1.1, equation (1.1.56)]

nuc

hkl = (23.7)

m

> b, T, exp(2rih - u,),
i=1

where b; here denotes the coherent scattering length, 7; has been
introduced to represent the effect of atomic displacements
(thermal or otherwise, see Section 2.4.1 in Kisi & Howard, 2008),
h is the scattering vector for the ikl reflection, and the vectors u;
represent the positions of the m atoms in the unit cell.

For coherent magnetic scattering, the structure factor reads

m

Fof = piq;T;exp(2mih - w,), (2.3.8)
i=1
where p; is the magnetic scattering length. The vector ; is the
‘magnetic interaction vector’ and is defined by a triple vector
product (Section 2.3.4 in Kisi & Howard, 2008), and has modulus
sin « as already mentioned. In this case the sum needs to be taken
over the magnetic atoms only.

As expected by analogy with the X-ray case, the intensity of
purely nuclear scattering is proportional to the square of the
modulus of the structure factor |F2i¢|%. In the simplest case of a
collinear magnetic structure and an unpolarized incident neutron
beam, the intensity contributed by the magnetic scattering is
proportional to |FIY|*, and the nuclear and magnetic contribu-
tions are additive.

2.3.3. Neutron sources
2.3.3.1. The earliest neutron sources

The earliest neutron source appears to have been beryllium
irradiated with «-particles (helium nuclei), as emitted for
example by polonium or radon. First described as ‘beryllium
radiation’, the radiation from a Po/Be source was identified by

7 The nuclear unit cell is expected to coincide with the X-ray unit cell, but the
magnetic unit cell may be larger. So, although the methods of calculation are the
same, the larger magnetic cell may give rise to additional (magnetic) Bragg peaks.
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Chadwick (1932) as comprising neutrons:
4He + JBe — 2C + In.

It was soon found (Szilard & Chalmers, 1934) that the disin-
tegration of beryllium under irradiation by the y-rays from
radium also led to the release of neutrons; this represented an
alternative neutron source. The first demonstrations of the
diffraction of neutrons (Mitchell & Powers, 1936; von Halban &
Preiswerk, 1936) made use of Rn/Be sources, analogous to
Chadwick’s Po/Be source. These were now surrounded by
paraffin to reduce the energy (‘moderate’) and hence increase the
de Broglie wavelength of the neutrons, and so provide a
reasonable match to the atomic spacings in the crystalline
samples; in the Mitchell & Powers’ demonstration the reflection
of neutrons of estimated wavelength 1.6 A from (100) planes in
large single crystals of MgO, the separation of these planes being
42 A, showed a dependence on crystal orientation that was
indicative of Bragg reflection. The intensities available from
these sources, however, were not sufficient to allow the obser-
vation of diffraction from polycrystalline (powder) samples.

A source based on the bombardment of Be by cyclotron-
accelerated MeV deuterons (nuclei of deuterium)

H+;Be — "B+ n

was also employed in early work, notably by Alvarez & Bloch
(1940) in their determination of the neutron magnetic moment.

The further development of neutron diffraction, and indeed
the first observation of neutron powder diffraction, awaited the
development of much more intense neutron sources; the first
suitably intense neutron sources were nuclear reactors. The
neutron-induced fission of uranium isotope %3U was observed in
1938 and reported early in 1939 (Hahn & Strassmann, 1939;
Meitner & Frisch, 1939; Anderson et al., 1939). By this time Fermi
and his co-workers (Fermi, Amaldi, D’Agostino et al, 1934;
Fermi, Amaldi, Pontecorvo ef al., 1934) had already carried out
studies on neutron activation, in the course of which they found
that neutrons could be moderated by hydrogenous materials,
providing ‘slow’ neutrons for which the activation cross sections
were enhanced. Once it was established that the neutron-induced
fission of a %3U nucleus also led to the release of ~2-3 ‘fast’
neutrons plus energy (von Halban et al., 1939; Zinn & Szilard,
1939), then a self-sustaining ‘chain reaction’ based on the fission
of 23U by a slow neutron, the slowing in a moderator of the
several fast neutrons released, followed by the slow-neutron-
induced fission of additional 33U nuclei, became a realistic
possibility. The translation of this possibility into reality was given
great impetus by the military potential of the chain reaction; the
reader is referred to Mason et al. (2013) for the history of this
development. The first self-sustaining chain reaction took place
in Chicago Pile 1 (CP-1) on 2 December 1942. CP-1 made use of
uranium oxide mixed with some metallic uranium as fuel, high-
purity graphite as the neutron moderator and rods of neutron-
absorbing cadmium for control. CP-1 was located on a squash
court under the spectator stand at a sports field at the University
of Chicago; remarkably, its construction took less than a month.
In November 1943, an essentially scaled up version of this
reactor, the X-10 pile (also known as the Oak Ridge Graphite
Reactor) achieved criticality. The fuel was now metallic uranium,
and the greater power (1 MW as compared with the 200 W of
CP-1) necessitated an air cooling system; the neutron flux® was a

8 The powers and fluxes given here are taken from a presentation by T. E. Mason
at the Bragg Symposium, Adelaide, 6 December 2012.
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creditable 10 ncm2s™' and the main purpose was the

production of plutonium. May 1944 saw the completion of yet
another reactor, Chicago Pile 3 (CP-3), outside Chicago at the
site of the present Argonne laboratories. This was a 300 kW
reactor, using natural uranium fuel, with heavy water serving
as both moderator and coolant; this also provided a flux of
102 ncem s~ L

Early diffraction experiments using reactor neutrons were
carried out ‘in the wings of the Manhattan project’ (Mason et al.,
2013). Evidently, Wollan & Borst (1945) obtained rocking curves
when collimated thermal neutrons from X-10 were beamed onto
single crystals of gypsum and rocksalt, while Zinn was able to
reflect neutrons from a calcite crystal [see, for example, the post-
war publication by Zinn (1947)]; much of the wartime interest
was in using these crystals for neutron spectrometry. However,
the potential use of these copious sources of neutrons was
recognized, so by the early months of 1946 (according to Shull,
1995) the first neutron powder-diffraction patterns, from poly-
crystalline NaCl and from light and heavy water, had been
recorded. Wollan and co-workers (Wollan & Shull, 1948; Shull et
al., 1948) published a number of these early diffraction patterns,
along with a schematic of the diffractometer employed.

Although accelerator-based neutron sources had been around
as early as 1940 (see above), the development of such sources, at
least for diffraction applications, proceeded at a relatively slower
pace. Indeed, it was not until 1968 that the first reports of neutron
powder diffraction using accelerator-based sources appeared in
the literature (Moore et al., 1968; Kimura et al., 1969; Day &
Sinclair, 1969). All this work involved the use of linear electron
accelerators (LINACS) delivering pulses of ~150 MeV electrons
onto a heavy-metal target; the deceleration results in Brems-
strahlung radiation (photons) of sufficient energy to bring about
the release of neutrons from the target. These fast neutrons were
moderated, and the result was a pulsed source of thermal
neutrons. Diffraction patterns were recorded by time-of-flight
methods which had already been developed on reactor sources
(Buras & Leciejewicz, 1964).

It may be helpful to describe one of these experiments in more
detail (Kimura et al., 1969). A tungsten target immersed in water
was bombarded by 2.5 ps pulses of 250 MeV electrons from the
Tohoku LINAGC; the water, which served as a moderator, was also
‘poisoned’ by the addition of neutron-absorbing boric acid. The
thermal neutron pulses were of 30-50 ps duration. It is a funda-
mental problem that the time taken to moderate the fast neutrons
produced at an accelerator-based source degrades the time
structure, and the addition of boron here was one method to
counteract this effect. Kimura et al. presented a selection of time-
of-flight diffraction patterns, from Al at different temperatures,
as well as from Si, Ni, ZnO, CaFe,O, and «-Fe,Os.

The next generation of accelerator-based sources were spal-
lation sources, based on the breaking up of heavy target elements
by bombardment with 10-1000 MeV protons; up to ~30 neutrons
are ejected in each spallation event; such sources can be operated
in either a pulsed mode or continuously. The first spallation
sources were ZING-P (100 nA of 300 MeV protons, pulsed at
30 Hz, target Pb, moderator polyethylene) and ZING-P’ (3 pHA of
500 MeV protons, 30 Hz, target W/natural U, moderator poly-
ethylene/liquid hydrogen), both at the Argonne National
Laboratory (Carpenter, 1977), and at the TRIUMF laboratory
(400 pA  of 500 MeV protons, steady, target liquid Pb/Bi,
moderator light/heavy water) in Vancouver. The KENS facility
(operational from 1980 to 2005, 9 pA of 500 MeV protons, 20 Hz,
target W, moderator solid methane/ice) in Tsukuba, Japan, and
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the Intense Pulsed Neutron Source (IPNS) at the Argonne
National Laboratory (operational from 1981 to 2008, 15 pA of
450 MeV protons, 30 Hz, target depleted U, moderator solid/
liquid methane) are both worthy of mention for their work on
techniques and applications at pulsed neutron sources; notable
are contributions from IPNS on the subjects of high-temperature
superconductors (Jorgensen et al.,, 1987) and colossal magneto-
resistance (Radaelli ez al., 1997).

The specifications and performance of modern currently
operating spallation neutron sources will be presented in Section
2.3.3.3.

2.3.3.2. Fission reactors for neutron-beam research

Reactors used for neutron-beam research all rely on the fissile
uranium isotope’ %3U. This constitutes only about 0.7% of
natural uranium; however, enrichment in this isotope is possible.
A representative fission event would be

In+ 75U - 25U — “¥Ba + 2Kr + 30 4 170 MeV.

This equation indicates that a neutron of thermal energy is
captured by ***U to form **°U in an unstable state, and in the
majority of cases (88%) this breaks up almost instantly to yield
fission products of intermediate mass, fast neutrons and energy.
The unstable *°U can break up in many different ways — there
are usually products of intermediate but unequal masses, with
masses distributed around 95 and 135 (Burcham, 1979), with the
release of usually 2 or 3 neutrons (average 2.5; one of these
neutrons is needed to initiate the next fission event), and of
different amounts of energy (average around 200 MeV). As
explained in Section 2.3.3.1, a chain reaction becomes possible if
the fast neutrons released in the fission process are moderated to
thermal energies so that they can be captured by another **°U
nucleus. Neutrons will lose energy most rapidly through collisions
with nuclei of mass equal to the neutron mass, namely nuclei of
hydrogen atoms, but collisions with other light nuclei are also
quite effective. Hydrogenous substances are evidently useful, and
water would seem ideal; however, there is some absorption of
neutrons in water, so in some reactors, heavy water (D,O, where
D is 2H) is used since, as can be seen from the absorption cross
sections (Table 2.3.2), thermal neutron capture in D is orders of
magnitude less than for H. It has not been possible to achieve a
self-sustaining chain reaction using natural uranium and light
water as a moderator — for this reason uranium fuel enriched in
25U and/or heavy-water moderators are in use. Adjacent to the
reactor core is a so-called reflector, which is simply in place to
moderate neutrons and prevent their premature escape. The
energy released in the fission process ends up as heat, which must
be dissipated (or used), so cooling is required — where light or
heavy water is used as the moderator it can also serve as the
coolant. Control rods are also essential — these are rods
containing highly neutron absorbing materials, such as boron,
cadmium or hafnium, which can be inserted into or withdrawn
from the reactor to increase, maintain or reduce the thermal
neutron flux as required. These control rods provide the means
for reactor shutdown.

The neutrons in a reactor core range from the fast neutrons
(~1 MeV) released in the fission process, through epithermal
neutrons (in the range eV to keV), which are neutrons in the
process of slowing down, to thermal neutrons (~25 meV), which

? Bombardment with >1 MeV neutrons can cause the fission of the predominant
uranium isotope 238U, however, there are too few neutrons at these energies to
support a chain reaction based on this isotope.
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Figure 2.3.5
The Maxwellian distribution of neutron wavelengths produced within
moderators at different temperatures. Reproduced from Kisi & Howard
(2008) by permission of Oxford University Press.

are neutrons in equilibrium with the moderator (see Carlile,
2003). Evidently, for sustaining the chain reaction and for
providing neutrons for diffraction instruments, the thermal
neutrons are of the greatest interest. Neutrons in thermal equi-
librium with the moderator have a Maxwellian distribution of
energies, such that the number of neutrons with energies between
E and E + dE is given by N(E) dE, where

27N,
N(E) = 0

ko T)" (E)'"* exp(—E/kyT).

(2.3.9)

Here N, is the total number of neutrons, T is the temperature (in
kelvin) of the moderator, and kp is Boltzmann’s constant. The
neutron flux is the product of the neutron density with the
neutron speed, so the energy dependence of the flux distribution
takes the form

@(E) =

exp(—E/k,T). (2.3.10)

E
H k1)

This distribution takes its peak value at E = kgT; for a
temperature of 293 K, this leads to a peak in the flux distribution
at 252 meV (cf. Section 2.3.1). In the diffraction context the
wavelength dependence of the flux is of more interest. Making
use of the relationships E = h*/2mA? and dE/dA = —h* /mA>, we
find that the variation of flux with wavelength can be described by
@(1) di, where

@(A) o A7 exp(—h*/2mA’kyT). (2.3.11)
This distribution peaks at A = h/(5mk,T)"/*; at 293 K the peak in
this wavelength distribution is at 1.15 A. For some applications of
neutron diffraction it may be desirable to have a greater neutron
flux at shorter or longer wavelengths; as indicated in Fig. 2.3.5 this
can be achieved by cooling or heating strategically placed special
moderators.

As one specific example of a research reactor, we consider the
NBSR located at the National Institute of Standards and Tech-
nology, Gaithersburg, USA. This reactor uses highly enriched
(93% 235U) uranium in U;Og-Al as fuel, and heavy water as
moderator and coolant. The thermal neutron flux in this reactor is
4 x 10" n cm~?s ' It uses four cadmium control blades. An early
plan view of this reactor and a cutaway view of the core assembly



2.3. NEUTRON POWDER DIFFRACTION

THERMAL
SHIELD

O FUEL ELEMENT
® VERTICAL THIMBLE

© REGULATION ROD

. (b)
Figure 2.3.6
The NBSR at the National Institute of Standards and Technology Center
for Neutron Research. Part (a) is a plan view (reproduced from Rush &
Cappelletti, 2011) while (b) is a recent cutaway view of the reactor core
showing the liquid-hydrogen cold source on the right-hand side.

are shown in Fig. 2.3.6. Note the presence of numerous beam
tubes that allow neutrons to be taken out from the vicinity of the
reactor core. This view of the NBSR (Fig. 2.3.6a) shows provision
for a cold neutron source, and for beam tubes to transport cold
neutrons to experiments, but it was years before any cold neutron
source was installed. The first cold source, installed in 1987, was
frozen heavy water; this was replaced in 1995 by a liquid-
hydrogen cold source, and that was upgraded in turn in 2003. The
NBSR first went critical in December 1967; the history of its
subsequent development and use in neutron-beam research has
been recounted by Rush & Cappelletti (2011).

The HFR at the Institut Laue-Langevin (ILL), considered to
be the premier source for reactor-based neutron-beam research,
serves as our second example. It too uses highly enriched
uranium, here in a single centrally located UsAl,-Al fuel element,
and it relies on heavy water for moderator and coolant. It
operates at 58 MW and the thermal neutron flux is 1.5 x
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Figure 2.3.7

Schematic diagram of the HFR operated by the Institut Laue-Langevin
in Grenoble, France. It has a compact core — the beam tubes avoid
viewing the central core in favour of the surrounding moderator.
This reactor also features hot (red) and cold (blue) sources. (Diagram
reproduced with permission from the ILL from The Yellow
Book 2008, https://www.ill.eu/fileadmin/users_files/Other_Sites/Yellow-
Book2008CDRom/index.htm.)

10" nem™?s™". The reactor incorporates two liquid-deuterium
cold sources, operating at 20 K, and a graphite hot source oper-
ating at 2000 K. In the HFR, being of modern design and
purpose-built for neutron-beam research, the beam tubes do not
view the core directly, but are ‘tangential’ to it (Fig. 2.3.7); this
reduces the unwelcome fast-neutron component of the emerging
beams. The HFR achieved criticality in July 1971. More details on
this reactor can be found in the “Yellow Book’ which is main-
tained on the ILL web site, https://www.ill.eu.

From the opening paragraph of this section, it might be
concluded that the more heavy water deployed, and the more
highly is the uranium enriched in the fissile isotope *°U, the
greater the neutron fluxes that can be obtained. This conclusion
would be correct, but concerns about nuclear proliferation have
brought a shift to the use of low-enrichment uranium (LEU) in
which the 2*°U is enriched to less than 20%: however, in some
reactors highly enriched uranium (HEU) with enrichment levels
greater than 90% remains in use. Table 2.3.3 gives pertinent
details on a number of research reactors important for neutron
diffraction. Additional reactors are listed by Kisi & Howard
(2008) in their Table 3.1, and a complete listing is available from
the International Atomic Energy Agency Research Reactor
Database (IAEA RRDB, https://nucleus.iaca.org/RRDB/RR/
ReactorSearch.aspx).

2.3.3.3. Spallation neutron sources

The bombardment of heavy-element nuclei by high-energy
protons, i.e. protons in the energy range 100 MeV to GeV, causes
the nuclei to break up with the release of large numbers of
neutrons. The word ‘spallation’ might suggest that neutrons are
simply being chipped off the target nucleus, and indeed neutrons
can be ejected by protons in a direct collision process with
transfer of the full proton energy, but such simple events are
relatively rare. In most cases there is a sequence involving
incorporation of the bombarding proton into the nucleus, intra-
and internuclear cascades accompanied by the ejection of
assorted high-energy particles, including neutrons, and then an
‘evaporation’ process releasing neutrons from excited nuclei with
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Details on selected research reactors

The primary source of data is the IAEA Research Reactor Database (RRDB). The publicly accessible RRDB does not include information on fuel: limited information

on this has been found from other internet sources.

Cold/hot
Reactor Power Moderator/ Thermal flux neutron
(type) (MW) | Location Fuel (see text) coolant Reflector (nem?s7h) sources
CARR 60 CIAE, Beijing, China UsSi-Al, LEU 19.75% Light water Heavy water 8 x 10" 1 cold
(tank in pool)
FRM-IT 20 TUM, Garching, Germany UsSi,-Al, HEU Light water Heavy water 8 x 10 1 cold,
(pool) 1 hot
HANARO 30 KAERI, Daejeon, Korea UsSi, LEU 19.75% Light water Heavy water 45 x 10" 1 cold
(pool)
HFIR 85 ORNL, Oak Ridge, USA U;04-Al, HEU 93% Light water Beryllium 2.5 x 10" 1 cold
(tank)
HFR 58.3 ILL, Grenoble, France UsAl.-Al, HEU Heavy water Heavy water 1.5 x 10° 2 cold,
(heavy water) 1 hot
JRR-3M+ 20 JAEA, Tokai, Japan U;054-Al, UsSi,-Al, LEU Light water Light water, 2.7 x 10" 1 cold
(pool) heavy water,
beryllium
NBSR 20 NIST, Gaithersburg, USA U;05-Al HEU 93% Heavy water | Heavy water 4 x 10" 1 cold
(heavy water)
OPAL 20 ANSTO, Sydney, Australia | U;Si,-Al, LEU 19.75% Light water Heavy water 2 x 10" 1 cold
(pool)

F This reactor has been temporarily shut down.

energies comparable to those released in the fission process
(Carpenter, 1977; Carlile, 2003; Arai & Crawford, 2009). The
numbers of neutrons released in these various processes depend
on the proton energies and the target materials employed; for
1 GeV protons on a Pb target, around 25 neutrons are released
per bombarding proton (Arai & Crawford, 2009). Target mate-
rials in use include Hg, Pb, W, Ta and ***U (depleted uranium).
The yield of neutrons per proton for non-fissionable target
materials is approximated by 0.1(E — 0.12)(A + 20) where E is
the proton energy in GeV and A is the atomic number of the
target nucleus; for a target such as ***U that is fissionable under
bombardment by high-energy neutrons the yield is almost
double that. Generally, the energy to be dissipated as heat
in the spallation process will be no more than the energy
of the bombarding proton, so for the example of 1 GeV
protons on Pb it should not exceed 40 MeV per neutron
produced. Nevertheless, cooling requires attention. The use of
liquid targets such as Hg, and Pb either in pure form or in a Pb-Bi
eutectic alloy, facilitates the dissipation of heat. Solid targets are
usually water cooled. The fast neutrons from spallation need to
be moderated, not in this case for sustaining the process, but
simply to make them useful for diffraction and other applications.
Moderators in common use include water, heavy water, liquid or
solid methane (CH,), and liquid hydrogen (H,). The volumes of
moderator are usually small, for reasons that will be explained
below.

Most spallation neutron sources, though by no means all,
operate in ‘short-pulse mode’, then employ time-of-flight
methods in their instrumentation. The duration of the neutron
pulse is critical in determining the time-of-flight resolution.
Short-pulse operation depends first of all on a short-pulse
structure of the bombarding protons. This is inherent in proton-
accelerating systems that incorporate synchrotron accelerators or
accumulator rings, since the protons become bunched' while
travelling around these rings, and pulses of duration <1 ps are

12 At the ISIS spallation neutron source, for example, the protons are injected
into the synchrotron in 200 ps bursts, where they form two bunches each only
100 ns wide (detail from https://www.isis.stfc.ac.uk/Pages/How-ISIS-works—in-
depth.aspx).
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delivered. The frequency of these pulses is modest, say 50 Hz, in
part to reduce power requirements, but also to avoid the situation
in which the desired thermal (or cold) neutrons from one pulse
are overtaken by fast neutrons from the next. For short-pulse
operation, the proton pulse must be translated into a still-short
pulse of moderated neutrons; this has significant implications
for moderator design (Tamura et al., 2003; Arai, 2008; Arai &
Crawford, 2009; Batkov et al., 2013; Zhao et al., 2013; Thomsen,
2014). The normal processes of moderation — neutrons giving
up energy in collisions with nuclei in the moderator until
thermal equilibrium is achieved — need to be to some extent
curtailed. One means to curtail these processes is to use only a
small volume of moderator, so neutrons escape before spending
excessive time in it. Another is to place neutron absorbers —
cadmium or gadolinium - around the moderator, or indeed
incorporate these absorbing materials into it, so that the slow
neutrons remaining in the moderator are absorbed before the
pulse length becomes excessive; in this case the moderator is
said to be ‘decoupled’ from the target. For cold-neutron
moderators on short-pulse spallation sources the use of an
ambient-temperature ‘pre-moderator’ may be advantageous.
Whatever the means to limit the dwell time in the moderator,
the emerging neutrons will be under-moderated, hence their
spectrum will contain more epithermal neutrons (i.e. neutrons
with energies of the order of eV to keV) than fully moderated
neutrons from a continuous source. Fig. 2.3.8 shows the results
for energy spectra and pulse length, from Monte Carlo calcula-
tions, for different cryogenic moderators for the J-PARC
spallation neutron source, Tokai, Japan. The neutron dwell time
and therefore the pulse length are calculated to be smaller in
the decoupled moderators (Fig. 2.3.8b), but comparison with
the coupled moderator (Fig. 2.3.84) shows that intensity is
sacrificed. The pulse length in the high-energy region, and at
lower energies for the poisoned moderators, varies as roughly
1/(E)"?; from equation (2.3.1) this makes the pulse length At
proportional to the wavelength A. In a time-of-flight analysis
we measure the flight time ¢ over a length L; noting that v = L/t
and using that same equation we find that ¢ is also proportional
to A, viz. t = (mL/h)A. The result is that the time resolution Ar/t
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(a) The neutron energy distribution (flux) of the J-PARC neutron source for coupled, decoupled and poisoned decoupled moderators. The flux consists
of a Maxwell distribution at low energies and a 1/E region at higher energies. (b) Pulse duration as a function of energy calculated for the same
moderators. For the decoupled moderators, the peak widths vary approximately as 1/E"%. Reproduced from Tamura et al. (2003).

is independent of flight time (or wavelength), which is a very
satisfactory state of affairs (see Section 2.3.4.2.1).

As mentioned earlier, there is the problem for time-of-flight
analysis that the slower neutrons from one pulse might be over-
taken by the first arrivals from the next — a problem known as
‘frame overlap’. Taking the example of 25 meV thermal neutrons,
at a speed of 2190 m s~ ' and a 50 Hz pulse repetition frequency,
the neutrons from one pulse will have travelled 44 m when the
next pulse occurs. If instrument flight paths are longer than this,
or indeed if slower neutrons are involved, then the frame-overlap
problem is encountered. A conceptually simple approach is to
reduce the pulse frequency, and this has been implemented at the
UK’s ISIS neutron facility where Target Station 2 takes just one
pulse in five from the proton-acceleration system, reducing the
effective pulse frequency to 10 Hz; the other four pulses are
directed to Target Station 1. Neutron choppers provide an
alternative means to address this problem. The simplest kind of
chopper is a disc (Fig. 2.3.9), usually of aluminium, nickel alloy or

Figure 2.3.9

One of the disc choppers in use at the ISIS neutron facility. This is an
aluminium (2014A) alloy disc, and the neutron-absorbing coating (the
darker region) is boron carbide in a resin. The cut-out on the right-hand
side provides the aperture for neutrons. (Credit: STFC.)
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carbon fibre, coated in part with neutron-absorbing material such
as boron, cadmium or gadolinium, rotating in a synchronous
relationship with the source. A chopper located near to the
source can be adjusted to block the fast neutrons and y-rays that
emerge immediately, but allow through neutrons in a restricted
time window, from T to T, + AT, measured from the time of the
pulse. Evidently, time 7, + AT cannot exceed the time for a single
rotation of the disc; when the disc is rotating at the pulse-
repetition frequency this is the time between pulses. If the disc-
rotation frequency is a submultiple of the pulse frequency, i.e. the
rotation frequency is the pulse frequency divided by #, then the
time window AT can be set to select only every nth pulse from
the source. A two-chopper arrangement is used, for example, in
the 96 m flight path of the High Resolution Powder Diffract-
ometer (HRPD) at the ISIS facility; the first chopper at 6 m from
the source runs at the pulse frequency and the second at 9 m from
the source runs at one-fifth or one-tenth of that frequency, so that
only every fifth or tenth pulse is used (HRPD user manual, http://
www.isis.stfc.ac.uk/Pages/hrpd-manual.pdf).

Although we have introduced neutron choppers in the context
of spallation sources, we should acknowledge that mechanical
choppers and velocity selectors have a long history, dating back
long before the advent of spallation sources. In fact, the first
report on a velocity selector (Dunning et al., 1935) pre-dates even
the earliest demonstrations of neutron diffraction. Mechanical
systems have long been used at continuous neutron sources to act
as velocity (wavelength) selectors, and/or to tailor pulses of
neutrons suitable for time-of-flight studies. Two disc choppers can
be arranged to serve both purposes — the first chopper has a
limited aperture transmitting a short pulse of neutrons, and the
second chopper, with a similar aperture and located at some
distance from the first, is phased so as to allow through only those
neutrons with a particular velocity. This arrangement can provide
short pulses of more-or-less monochromatic neutrons to an
experiment. The helical velocity selector (Friedrich et al., 1989) is
conceptually somewhat similar. This takes the form of a cylinder,
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Figure 2.3.10
Layout of the ISIS spallation neutron source. (Credit: STFC.)

or indeed a stack of discs, rotating around an axis parallel to the
neutron beam, with helical slits such that exits are offset from the
entrance apertures in much the same manner as described
above; the difference from the two-chopper arrangement is that
there are apertures located all around the cylinder, giving
closely spaced pulses unsuitable for time-of-flight studies. The
purpose of mechanical wavelength selection at a continuous
source is to select longer wavelengths and a broader range of
wavelengths than a crystal monochromator (Section 2.3.4.1.2)
could provide. Also worthy of mention is the Fermi chopper
(Fermi et al., 1947), comprising a package of neutron-transmitting
slits set into a cylinder that rotates at rates of some hundreds
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of hertz around an axis in the plane of the slits, coincident with
the cylinder axis, and perpendicular to the neutron beam.
Neutrons above a threshold velocity are transmitted for the brief
periods in which the slits are suitably aligned, so short (us) but
frequent pulses of neutrons are delivered. In a variation of the
Fermi chopper (Marseguerra & Pauli, 1959), the transmitting slits
are curved, providing for the transmission of rather slower
neutrons while preventing the transmission of faster ones; in this
variant the chopper not only delivers short pulses of neutrons but
acts as a velocity selector as well. Neutron choppers are used in
various combinations at both continuous and pulsed neutron
sources; the Fermi chopper in particular can be used for ‘shaping’
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the pulses at long-pulse spallation neutron sources (Peters et al.,
2006).

As an initial case study, we consider the ISIS neutron facility,
located in Oxfordshire, England, at the Rutherford Appleton
Laboratory. This is a well established neutron spallation source
supporting a strong programme of research using neutron beams.
Of particular note are the excellent facilities for powder
diffraction. First neutrons were delivered in 1984, but there have
been upgrades since then, including the commissioning of a
second target station in 2009. Fig. 2.3.10 is a schematic showing
the layout of this facility. Some details about its operation are
available on the ISIS web site, at https://www.isis.stfc.ac.uk/Pages/
How-ISIS-works.aspx. Briefly, an ion source and radio-frequency
quadrupole accelerator (not shown) inject bunches of negative
hydrogen ions, H™, into the linear accelerator where they are
accelerated to 70 MeV. These are passed through aluminium foil,
which strips them of their electrons, so they become protons, H,
which are then accelerated to 800 MeV in the proton synchro-
tron. The protons, then travelling in two 100 ns bunches 230 ns
apart, are kicked out of their synchrotron orbits and directed
toward the targets. The whole process is repeated at a frequency
of 50 Hz; the kickers are arranged to send one pulse in five to
Target Station 2 (so that the pulse frequency there is just 10 Hz),
and the remainder to Target Station 1. Both targets are made of
tantalum-coated tungsten, as a stack of water-cooled plates in
Target Station 1 and as a heavy-water surface-cooled cylinder in
Target Station 2. As explained earlier, the fast neutrons produced
in the spallation process must be moderated, and for this purpose
moderators are located adjacent to the targets: two water
moderators at 300 K, one liquid-methane moderator at 100 K
and one liquid-hydrogen moderator at 20 K at Target Station 1;
and one decoupled solid-methane moderator at 26 K and one
coupled liquid-hydrogen/methane moderator at 26 K at Target
Station 2. The widths of the pulses of the moderated neutrons are
typically 30-50 ps, but 300 s for the coupled moderator at Target
Station 2. The target/moderator assemblies are surrounded, apart
from beam exit ports, by beryllium reflectors. The schematic of
Fig. 2.3.10 indicates the placement of the various neutron-beam
instruments around the target stations.

The Swiss neutron spallation source, SINQ, located at the Paul
Scherrer Institute in Villigen, is the only spallation source oper-
ating in continuous mode. SINQ reached full power in 1997.
Since there is no time structure to be preserved, more generous
quantities of moderator can be used; in fact the target, which
becomes the source of neutrons, is located centrally in a
moderator tank. The situation here is not very different from that
in a medium-flux research reactor. The target comprises lead rods
in Zircaloy tubes, the moderator is heavy water and there is a
light-water reflector outside the moderator tank. Protons accel-
erated first by a Cockroft—Walton accelerator, then to 72 MeV by
an injector cyclotron, and finally to 590 MeV in a proton ring
cyclotron are directed onto the target from below (Fig. 2.3.11).
The proton current is initially 2.4 mA, but this is reduced in muon
production, so that only about 1.65 mA reaches the spallation
target. The power is thus close to 1.0 MW. A horizontal insert in
the moderator tank houses a liquid-deuterium cold source at
25 K.

As a final example we describe the S MW long-pulse European
Spallation Source, now under construction in Lund, Sweden (see
Fig. 2.3.12). A more detailed description is available at the ESS
web site, https://europeanspallationsource.se/technology. The
proton-acceleration system, although comprising a number of
different components, will be linear. The protons from the ion
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source will be accelerated through a radio-frequency quadrupole
and drift tube LINAC up to 90 MeV, then through a series of
superconducting cavities up to the final energy of 2 GeV. This
system will deliver proton pulses of 2.86 ms duration at a 14 Hz
repetition rate; the average current will be 6.26 mA and hence
the total power 5 MW. The target material will be helium-
cooled tungsten encased in stainless steel, in the form of a
2.5 m-diameter rotating wheel. Such an arrangement assists in
dissipation of the heat deposited in the target. Coupled liquid-
hydrogen moderators will be located above and below the
rotating wheel, and this assembly will be partially surrounded by
a water pre-moderator and beryllium reflector. Neutron choppers
will be used to shape the neutron pulses as required, and neutron
optical systems will deliver neutrons to the experiments. First
beam on target is expected in 2019.

Characteristics of these and other neutron spallation sources
are recorded in Table 2.3.4. The information included there has
been taken from the respective facility web sites.

2.3.3.4. Neutron beam tubes and guides

Ideally, neutron diffractometers should be designed following
a holistic approach, designing the source of moderated neutrons,
through the delivery system, to the instrument itself. This is not
often possible in practice; for example the source must often be
taken as a given, and in some cases the delivery of the neutrons as
well. The holistic approach is commonly a very large Monte Carlo
simulation, not suitable for purposes of description; in this
chapter, therefore, we provide separate descriptions of these
different components.

The simplest delivery system is a neutron beam tube or colli-
mator. A collimator could comprise just two pinholes of diame-
ters a; and a, cut into neutron-absorbing material, and placed at a
distance L apart; this limits the divergence of the beam to (full
angle) 2« = (a; + a,)/L. It is of course possible to use apertures
of different cross section, for example rectangular slits, if the
divergence must be smaller in one direction than another.

Neutron guides are now widely used at both reactor and
spallation neutron sources. These are able to transport neutrons
over distances ranging to 100 m or more. They are evacuated
tubes, normally of rectangular cross section, and transmission
depends on the reflection of glancing-angle neutrons from
the walls of the guide. The guides are constructed from glass
plates with a reflective coating deposited on the internal
surfaces.

Initially, total external reflection (Section 2.3.2.3) provided the
basis for reflection; the coating was nickel, or preferably **Ni.
Given that nickel has a face-centred cubic structure (4 atoms per
unit cell) with lattice parameter 3.524 A, and taking the scattering
lengths from Table 2.3.2, we find from equation (2.3.6) that the
critical glancing angles per unit wavelength for total external
reflection are 0.10° A~' and 0.12° A~! for nickel and 3N,
respectively. Taking wavelengths of 0.4, 1.2 and 5 A as repre-
sentative of hot, thermal and cold neutrons, respectively (cf. Fig.
2.3.5), these angles for a nickel mirror are just 0.04, 0.12 and 0.5°.
Consequently, these guides are most useful for transmitting cold
neutrons and are moderately useful for thermal neutrons, but are
not used for hot neutrons. The small glancing angles are
demanding, not only on the precision of manufacture, but also
because it is highly desirable to use a curved guide tube so there is
no direct line of sight to the source (as in Fig. 2.3.13); this is a way
of preventing fast neutrons and y-radiation from impacting on
the experiment. The guide tube still transmits a range of wave-
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lengths, although only the longest wavelengths can travel by the
zig-zag path indicated in Fig. 2.3.13. If the guide width is a, and its
radius of curvature p (see Fig. 2.3.13), then the minimum length
to avoid direct transmission is (Sap)l/ *_ Critical to the transmis-
sion of a guide tube is the angle 6%, which is the minimum glan-

v
(a)

Thermal neutron port

Target
Central tube

H,O scatterer
insertion port

Neutron guides

D, cold moderator

D,O reflector

(b)

Layout at the SINQ neutron source. (a) Elevation: the target is located in the moderator tank, the high-energy protons being delivered from below.
(b) Plan: showing the location of guide tubes relative to this central target. (Courtesy: Dr Bertrand Blau, Paul Scherrer Insitut.)
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cing angle of incidence onto the outer surface that permits
subsequent reflection from the inner surface, and is given by
0" = (2a/p)"*. The shortest wavelength, then, that can be
transmitted involving reflection from the inner surface is given by
[¢f: equation (2.3.6)]
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Table 2.3.4
Details of selected spallation neutron sources

Proton Average Repetition
Source Type Location energy Current power Target(s) rate (Hz) Moderator(s)
CSNS+t Short pulse | Institute of High 1.6 GeV 62.5 pA 100 kW Tungsten 25 Water, 2 x liquid
Energy Physics, hydrogen
Guangdong, China
ESST Long pulse | European Spallation 2 GeV 2.5 mA 5 MW Tungsten wheel 14 2 x Liquid hydrogen
Source, Lund, (helium cooled) (pancake geometry)
Sweden
ISIS Short pulse | Rutherford Appleton 800 MeV | 200 pA 160 kW 2 x Tungsten 50 2 x Water,
Laboratory, liquid methane,
Oxfordshire, UK liquid hydrogen
10 Hydrogen/methane,
solid methane
at 26 K
JSNSE Short pulse | J-Parc Centre, 3GeV 333 pA 1MW Liquid mercury 25 Superecritical
Tokai-mura, Japan hydrogen
LANSCE | Long pulse | Los Alamos National 800 MeV | 125 pA 100 kW Tungsten 20 Water, 2 x liquid
Laboratory, Los hydrogen
Alamos, USA
SINQ Continuous | Paul Scherrer Institute, & 590 MeV | 1.64 mA§ | 0.97 MW | Lead — Heavy water; cold
Villigen, Switzerland source: liquid
deuterium at 20 K
SNS Short pulse | Oak Ridge National 1 GeV 1.4 mA 1.4 MW Liquid mercury 60 2 x Water, 2 X
Laboratory, Oak liquid hydrogen
Ridge, USA

1 Under construction.

Figure 2.3.12

Schematic diagram of the ESS facility. The proton beam enters at the
right, strikes the target and liberates neutrons for instruments in the
three neutron experiment halls. (Image courtesy of the ESS.)

____ Garland reflection y < y*
—-— Zig-zag reflection y >y*

p

Figure 2.3.13

Plan of a curved neutron guide, indicating different possible neutron
paths, labelled ‘garland’ and ‘zig-zag’. Only the longer-wavelength
neutrons can travel the zig-zag path because the glancing angles on this
path (which must be less than the critical angle) are greater. In this
schematic, the glancing angles, the width and the curvature have all been
exaggerated. [From Section 4.4.2 of Volume C (Anderson & Schérpf,
2006).]
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i Currently operating at <0.5 MW. § Current reaching spallation target after attenuation in muon source.
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This is known as the ‘characteristic’ wavelength of the guide [see
Section 4.4.2 of Volume C by Anderson & Schirpf (2006)]; the
majority of transmitted neutrons will have longer wavelengths
than this.

The desire to use guides for shorter (e.g. thermal-neutron)
wavelengths, and for retaining more neutrons at a given wave-
length, has motivated the development of mirrors capable of
reflecting neutrons incident at greater glancing angle. The earliest
such mirrors were in fact monochromating mirrors obtained by
laying down alternate layers of metals with contrasting coherent-
scattering-length densities (Fig. 2.3.14). For a bilayer thickness d
and angle of incidence 6 these would select wavelengths
according to Bragg’s law [equation (1.1.3)],

A = 2dsin(h).

In an early implementation (Schoenborn et al., 1974), the
metals were Ge and Mn (which have coherent scattering lengths
opposite in sign) and the bilayer thickness was of the order of
100 A; this is a larger d-spacing giving access to longer wave-

(@) (b)
Figure 2.3.14

Schematic diagrams of (a) a multilayer monochromator and (b) a
neutron supermirror.
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lengths than would be accessible with the usual crystal mono-
chromator (Section 2.3.4.1.2). The idea of supermirrors,
comprising bilayers of graduated thickness, and in effect
increasing the critical angle, was suggested by Turchin (1967) and
Mezei (1976). For a perhaps simplistic explanation, we note first
that since the bilayer dimension d is large compared with the
neutron wavelength, we can approximate the above equation for
reflection as

1
0~xr—,
2d
in which form it is reminiscent of equation (2.3.6). If we take dp;,
to be the thickness of the thinnest bilayer, then we can propose
that the critical angle for reflection by the supermirror should be

1

M ~ .
¢ dein

(2.3.13)
In order to ensure that all neutrons incident at angles less than
this critical angle should be reflected, we need to incorporate a
more-or-less continuous range of thicker bilayers into the
supermirror (Fig. 2.3.14b). A more rigorous treatment (Hayter &
Mook, 1989; Masalovich, 2013) takes account of the transmission
and reflection at each interface, and lays down a prescription as to
how the thicknesses should be varied. The most common pairing
for the bilayer is now Ni with Ti; the coherent scattering cross
sections are of opposite sign (see Table 2.3.2). The performance
of a supermirror is normally quoted as the ratio m of the critical
angle for the supermirror, 6™, to that for natural nickel, 6'; a
high value for reflectivity is also important. Supermirrors to m of
2 or 3 are in quite common use, while now Ni/Ti supermirrors
with m up to 7 are offered for purchase (Swiss Neutronics AG;
see also Maruyama et al., 2007).

Consideration is currently being given to the variation of the
cross section of the guide along its length. There is some loss on
reflection by supermirrors, so these studies aim to reduce the
number of reflections involved in transmission along the guide.
One suggestion (also attributable to Mezei, 1997) is to use a
‘ballistic guide’, in which neutrons from the source travel through
a taper of widening cross section into a length of larger guide,
then through a taper of narrowing cross section to restore the
original cross section at the exit. This is said to reduce the number
of reflections suffered by the neutron by a factor of (wo/w)2,
where wy is the width at entrance and exit and w the larger width
along the main part of the guide (Hése et al., 2002). Such a guide
has been installed and is operating successfully on the vertical
cold source at the Institut Laue-Langevin (Abele et al., 2006). An
extension of this idea is based on the well known property of
ellipses that a ray emanating from one focus is reflected (just one
bounce) to pass through the other; so if the guide cross section
could be varied to give a very long ellipse, a source of neutrons
placed at one focus, and the target point at the other, then
perhaps the neutrons could be transmitted along the guide with
just a single reflection (Schanzer et al., 2004; Rodriguez et al.,
2011). Accordingly a number of neutron facilities have installed
elliptical guides, and indeed a number of neutron powder
diffractometers now are located on elliptical guides; these include
diffractometer POWTEX at FRM-II, the high-resolution
diffractometers HRPD and WISH at ISIS, and Super-HRPD at
JSNS. Computer simulation by Cussen et al. (2013), however,
questions whether, given the practicalities of finite source sizes
and the approximation of elliptical variation by a number of
linear segments, the theoretical improvement is fully realized.
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2.3.4. Diffractometers

Put simply, the diffracted neutron beams associated with the
different d-spacings in the sample under study satisfy Bragg’s law,

A = 2dsin(0). (2.3.14)

As always, A is the wavelength of the incident neutrons, and these
neutrons are scattered through an angle 26.

There are basically two ways of exploiting this relationship.
The first is to use a single wavelength for the investigation, in
which case diffracted neutrons are observed at different angles 26
corresponding to different d-spacings in the sample. A neutron
powder diffractometer designed to carry out an investigation by
this means we choose to call a ‘constant wavelength® (CW)
diffractometer. The other means is to fix the angle 26, illuminate
the specimen with a range of wavelengths, and note the different
wavelengths that are diffracted. In this case, we determine the
wavelengths of the diffracted neutrons via their speed
A = h/(mv) [equation (2.3.1)], and that in turn is measured by
their flight time ¢ over a path of length L, v = L/t; this leads to

A= ﬂ (2.3.15)

mL
A diffractometer designed to carry out such an analysis of
wavelengths we call a ‘time-of-flight (TOF) diffractometer’.

The distinction between these two modes of operation can also
be indicated via the Ewald construction in reciprocal space
(Section 1.1.2.4). In this, the ideal powder is represented by
concentric spheres in reciprocal space. In the constant-
wavelength situation, the primary beam is fixed in direction and
the Ewald sphere has a fixed radius; diffracted (reflected) beams
are observed at any angle at which the surface of the Ewald
sphere intersects one of the concentric spheres mentioned just
above. In the wavelength-analysis (time-of-flight) situation, the
directions of the primary and diffracted beams are fixed, but the
radius of the Ewald sphere (1/A) is variable through a range;
diffracted beams are observed whenever the wavelength is such
that the tip of the vector representing the reflected beam lies on
one of the concentric spheres.

2.3.4.1. Constant-wavelength neutron diffractometers

The salient features of a constant-wavelength diffractometer
are perhaps most easily explained by reference to a particular
example; for this purpose we consider the High Resolution
Powder diffractometer for Thermal neutrons (HRPT) installed at
the SINQ continuous spallation source (Fischer et al, 2000).
Neutrons from the source travel through a guide tube to the
crystal monochromator, which directs neutrons of a selected
wavelength toward the sample. The diffracted neutrons are
registered in a detector or detectors that cover a range of angles
of scattering from the sample. Collimation is used to better define
the directions of the neutron beams; in this instance a primary
collimator is included in the guide tube and additional collima-
tion is included between the sample and the position-sensitive
detector. The various components will be described in more
detail below.

2.3.4.1.1. Collimation

There need to be restrictions on the angular divergences of the
neutron beams. The divergence of the beam impinging upon
the crystal monochromator must be limited to better define the
wavelength of the neutrons directed to the sample, whereas
the divergences of the beams incident upon and diffracted from
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Figure 2.3.15

A constant-wavelength neutron powder diffractometer. This figure
shows (a) a layout diagram and (b) the physical appearance (dominated
by the monochromator and detector shieldings) for the HRPT
diffractometer installed at the SINQ continuous spallation source.
(Figures from https://www.psi.ch/sing/hrpt/.)

the sample will control the precision with which the scattering
angle 260 can be determined. For a diffractometer detecting
neutrons and measuring scattering angles in the horizontal plane
(as shown in Fig. 2.3.15) the horizontal divergences are critical,
the vertical divergences less so."' Indeed, the horizontal diver-
gences are key parameters in the determination of resolution and
intensity (Section 2.3.4.1.4); for this reason we denote by oy, o,
and o3 the (half-angle) angular divergences of the primary beam
(i.e. the beam onto the monochromator), the monochromatic
beam (from monochromator to sample) and the diffracted beam
(from sample to detector), respectively.

" For this reason large vertical divergences are employed to increase intensity;
they do however have second-order impacts on the shapes (asymmetry) and
positions of diffraction peaks (Howard, 1982; Finger et al., 1994; see also Section
4.2 in Kisi & Howard, 2008).
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The divergences are limited by various forms of collimation.
The divergence of the primary beam will be limited in the first
instance by the delivery system. For delivery through a simple
beam tube of length L, with entrance and exit apertures of
dimensions a; and a,, respectively, the angular divergence (half-
angle) is given by (as already noted in Section 2.3.3.4)

@ = alz‘;‘lz

(2.3.16)

Neutrons emerging from a guide tube would have divergence
equal to the critical angle of the guide, o; = 6,. Soller collimators
(see below) can be used if there is a need to further reduce the
horizontal divergence of the primary beam. The divergence of the
monochromatic beam may be limited by slits, or a beam tube. The
divergence of the diffracted beam, o3, is often defined using
another Soller collimator. Sometimes this divergence is limited
just by the dimensions of the sample and the detecting elements;
equation (2.3.16) gives «j3 if it now references the sample and
detector element dimensions and the distance between them.
Even in this circumstance (as in HRPT), Soller collimators may
be used in front of the detector to reduce scattering from ancil-
lary equipment and other background contributions.

Soller collimators (Soller, 1924) are used to transmit beams of
large cross section while limiting (for example) horizontal
divergence. They are in effect narrow but tall rectangular colli-
mators stacked side by side; in practice they comprise thin
neutron-absorbing blades equally spaced in a mounting box. It
should be evident from equation (2.3.16) that if the length of the
collimator is L and the separation between the blades is a, then
the (half-angle) horizontal divergence is a/L. The transmission
function for a Soller collimator is ideally triangular. It is tech-
nologically challenging to make compact Soller collimators, since,
for a given collimation, a shorter collimator needs a smaller blade
spacing. One very successful approach, due to Carlile et al
(1977), has been to make the neutron-absorbing blades from
Mylar, stretched on thin steel or aluminium alloy frames, and
subsequently coated with gadolinium oxide paint; these blades
are stacked and connected via the frames which become the
spacers in the final product. The collimators made by Carlile et al.
were 34 cm long, and the blade spacing was 1 mm, giving a
horizontal divergence of 0.17°. Compact Soller collimators of this
type (Fig. 2.3.16) are now commercially available, with blade
spacings down to 0.5 mm.

Even more compact collimators can be produced by elim-
inating the gaps in favour of solid layers of neutron-transmitting
material; for example, a collimator only 2.75 cm long made by
stacking 0.16 mm thick gadolinium-coated silicon wafers gave a
divergence of 0.33° (Cussen et al., 2001). Microchannel plates
(Wilkins et al., 1989) may offer additional possibilities for colli-
mation and focusing.

2.3.4.1.2. Monochromators

The wavelength in a constant-wavelength powder diffract-
ometer is almost invariably selected by a single-crystal mono-
chromator. If the primary beam is incident onto the
monochromator in such a way as to make an angle 6,, with a
chosen set of planes in the crystal, then the wavelength that will
be reflected from these planes is given by Bragg’s law,

A = 2dsin(6,,),

where d is the spacing of the chosen planes. A spread of angles of
incidence represented by A6#,, will result in the selection of a
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Figure 2.3.16 .
Commercially available compact Soller collimators. (Reproduced with
permission from Eurocollimators Ltd, UK.)

band of wavelengths AA given by

% = cotf,,Ab,,. (2.3.17)
For high-resolution performance we need a rather precisely
defined wavelength, so AA should be small; if, on the other hand,
intensity is an issue then a wider band of wavelengths needs to be
accepted. It should be evident from equation (2.3.17) that a high-
resolution diffractometer will operate with a take-off angle from
the monochromator, 26,,, as high (i.e. as close to 180°) as prac-
ticable, and with tight primary collimation o;.

It might be noticed that the integer n appearing on the right-
hand side of equation (1.1.3) has been omitted from our formu-
lation of Bragg’s law. If the Miller indices of the chosen planes are
hkl, if the spacing of these planes is d,,;;, and if we introduce
Appnie = dp/n [cf. equation (1.1.23)], then the factor n is
effectively restored. This means that, as well as reflecting the
selected wavelength through the hkl reflection, the mono-
chromator has the potential to reflect unwanted harmonics A /n of
the desired wavelength through the nh,nk,nl reflections. This
problem can be largely overcome using the ikl planes with &, k, [
all odd in crystals with the diamond structure, such as silicon and
germanium; for this structure the structure factors [equation
(2.3.7)] for the 2h,2k,2l reflections are zero so that there is no
contamination by A/2, and at the shorter wavelengths, A /3 and so
on, there are very few neutrons in the thermal neutron spectrum
(Fig. 2.3.5).

Since ‘perfect’ crystals (of silicon and germanium, for example)
have low reflectivity, for monochromator applications imperfect
or ‘mosaic’ crystals are usually preferred. A mosaic crystal can be
pictured as comprising small blocks of crystal with slightly
differing orientations, the distribution in angle of these blocks
being characterized by a full-width at half-maximum angle, B,
known as the ‘mosaic spread’. In addition to improving the
intensity markedly," this ‘mosaic spread’ will also increase the
range of wavelengths obtained. Crystals intended for use as
monochromators are very often deliberately deformed to achieve
the desired mosaic structure. Further gains in intensity are sought
by using vertically focusing monochromators, since the vertical
divergence can be increased without serious detriment to the
diffraction patterns. Vertically focusing monochromators usually
comprise a number of separate monochromator crystals either
individually adjustable (Fig. 2.3.17) or in fixed mountings on a
bendable plate.

It is not common to find polarized neutrons being used in
neutron powder diffractometers. Nevertheless, we think it
appropriate to mention here that one means to obtain a polarized

12 Most of the improvement is due to a change from a ‘dynamical’ to a ‘kinematic’
scattering regime.
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Figure 2.3.17

The vertically focusing monochromator constructed at the Brookhaven
National Laboratory (Vogt e al, 1994) and now used by the high-
resolution powder diffractometer ECHIDNA at OPAL. The 24
monochromating elements are individually adjustable, and each of these
is a 30-high stack of 0.3 mm thick Ge wafers, deformed to yield a suitable
mosaic structure and then brazed together. (Reproduced with permis-
sion from ANSTO.)

neutron beam is to use an appropriate polarizing crystal mono-
chromator.” The 111 reflection from the ferromagnetic Heusler
alloy Cu,MnAl is commonly used for this purpose; the nuclear
and magnetic structure factors [equations (2.3.7) and (2.3.8)] are
of similar magnitude and they add or subtract depending on
whether the neutron spin is antiparallel or parallel to the
magnetization of the alloy. The beam reflected from such a
monochromator can be polarized to better than 99%.

The reader is referred to Section 4.4.2 of Volume C (Anderson
& Schirpf, 2006) and to Kisi & Howard (2008) Sections 3.2.1 and
12.3 for further details.

2.3.4.1.3. Neutron detectors

Neutrons, being electrically neutral, do not themselves cause
ionization and so cannot be detected directly; their detection and
counting therefore depend on their capture by specific nuclei and
the production of readily detectable ionizing radiation in the
ensuing nuclear reaction. Only a limited number of neutron-
capture reactions are useful for neutron detection [see Chapter
7.3 of Volume C (Convert & Chieux, 2006)]; they include

on+3He —
an+4SLi —
g,n + 12B —
In +9Gd —

+ < 0.18 MeV

1H+{H+0.76 MeV
TH + He + 4.79 MeV
JLi +5He + 2.8 MeV

8Gd + y-rays + conversion electrons

U — fission fragments + ~200 MeV

on +
(cf- Section 2.3.3.2).

13 Polarized beams can also be produced using suitable mirrors or filters [see
Section 4.4.2 of Volume C by Anderson & Schirpf (2006)].
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The attenuation of neutrons in these materials (Section 2.3.2.4)
will be dominated by the high absorption (by capture) cross
sections (Table 2.3.2), so the linear attenuation coefficient will be
given by u = No,,, where N is the number of absorbing nuclei
per unit volume. We remark that absorption cross sections, with
the exception of Gd, increase linearly with wavelength. The
factor by which the neutron beam is diminished in a detector of
thickness x is exp(—ux) = exp(—No,x). The detector efficiency,
then, given by the fraction of neutrons absorbed (captured) in the
detector, is 1 — exp(—No,,x). In most cases the aim is to have
high detector efficiency; however, in some circumstances it is
desirable to monitor an incident neutron beam, in which case
attenuation should be kept to a minimum. The account of
neutron detection given here will be kept relatively brief since
much has been written on this subject elsewhere [Oed, 2003;
Chapter 7.3 of Volume C (Convert & Chieux, 2006)].

The task, following the neutron-capture reaction, is to detect
the various charged particles or ionizing radiations that are
produced. These are registered by the electrical signals they
generate in a gas-filled proportional counter or ionization
chamber, or in a semiconductor detector, recorded on film, or
detected from the flashes of light they produce in a scintillator,
for example ZnS. It is well worth noting that the secondary
radiation carries no record of the energy of the detected
neutrons; so whatever the means of detection, detectors can
count neutrons but can provide no information on their energy
distribution.

The gas-filled radiation detectors are essentially Geiger
counters, comprising a gas-filled tube with a fine anode wire
running along its centre. The anode collects the electrons
released by ionization of the gas; if the anode voltage is high
enough, there is a cascade of ionization providing amplification of
the signal.14 Detectors filled with boron trifluoride, ‘°BF;, and
helium-3, *He, have high efficiencies and are in common use; in
these the nucleus designated to capture neutrons is incorporated
in the filling gas. Such detectors operate with pulse-height
discrimination, not in any attempt to determine neutron energy,
but to discriminate against lower-voltage signals from y-rays and
other unwanted background. Another approach is to have a thin
solid layer™ of neutron-absorbing material, >*°U for example,
releasing secondary radiation, in this case fission products, into a
gas proportional counter filled with a standard argon/methane
mixture; this would represent a low-efficiency neutron detector
suitable for use as an incident-beam neutron monitor. Neutron
detection based on semiconductor particle detectors is still in the
developmental stage. The main problem is that the semi-
conductors used for charged-particle detection do not contain
neutron-absorbing isotopes. Semiconductor particle detectors
could be used to register the secondary radiation from an abut-
ting layer of neutron-absorbing solid, but that layer would need
to be thin, and another low-efficiency neutron detector would
result. Scintillation detectors involve the placement of neutron-
absorbing materials, such as °LiF, adjacent to a scintillator such as
a ZnS screen, or perhaps the use of a Ce-doped lithium silicate
glass, and counting the flashes of light that are produced. These
light flashes can be recorded by photomultiplier tubes or on
film. Scintillation detectors are, however, not used in constant-
wavelength diffractometers because of their sensitivity to
y-radiation. They are used in time-of-flight diffractometers at

14 Strictly speaking, the term ‘Geiger counter’ should be reserved for detectors
operating in this amplification regime.

!5 The layer must be thin so that the secondary radiation, which has a short range
in solids, can escape into the charged-particle detector.
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spallation sources by exploiting the fact that the unwanted fast
neutrons and y-rays, and the thermal neutrons of interest, are
separated in time (Section 2.3.4.2.2).

Much of the preceding description refers to single neutron
counters, although it should be noted that there is a position-
sensitive capability inherent in a film or scintillator screen. The
earliest CW diffractometers employed just a single detector set
on an arm that scanned through the scattering angle 26; the
deployment of a Soller collimator just in front of the detector was
advantageous. Conceptually the simplest but not necessarily the
cheapest means for improvement was to mount a number of
collimator/detector pairs on the detector arms. Such an
improvement was made to diffractometer D1A at the Institut
Laue-Langevin (Hewat & Bailey, 1976) by mounting ten sets of
10’ divergence Soller collimators/*He detectors at intervals of 6°.
The BT-1 diffractometer at NBSR operates with 32 *He detectors
set at 5° intervals, so a scan through 5° covers a total angular range
of 160°. The ultimate level for this kind of development was
reached when D2B at the Institut Laue-Langevin operated in its
former mode, with 64 detectors set at 2.5° intervals, each with its
own 5’ Mylar Soller collimator; this required a scan through only
2.5° to record 160° of diffraction.

The alternative to using large numbers of individual detectors
is to make use of position-sensitive neutron detectors (PSDs),
and these have been in use for quite some time. The technology is
that of the position-sensitive detection of charged particles, the
important issue for neutrons being that the charged-particle
detection should be located close to the neutron-capture event so
that positional information is retained. A gas-filled *He detector
with a single anode wire can serve as a linear PSD, for example by
comparing the charges collected, after the capture event, at the
opposite ends of the wire. The D2B diffractometer at the Institut
Laue-Langevin has now been upgraded to ‘SuperD2B’, which
uses 128 linear PSDs with their axes (anode wires) vertical, at
26 intervals of 1.25°; this operates as a quasi-two-dimensional
PSD. Diffractometers SPODI at FRM-II (80 detectors) and
ECHIDNA at OPAL (128 detectors) are fitted with similar
detector arrays. A single gas-filled chamber containing a number
of separate parallel vertically aligned anodes, termed a multi-wire
proportional counter (MWPC), provides another approach; the
electronics needs to register at which of the wires the capture
event occurred. This technology has extended from the first
multi-wire PSD with 400 wires at 5 mm (0.2°) separation, used on
the D1B diffractometer at the Institut Laue-Langevin in the
1970s, to a PSD with 1600 wires at 0.1° separation now in use on
HRPT at SINQ (Fig. 2.3.15). A further advance is the develop-
ment of the micro-strip gas chamber (MSGC) detector (Oed,
1988). In this detector the anodes and the cathodes are printed
circuits on glass substrates, which are then mounted into the
chamber. With this arrangement, an anode separation of 1 mm is
achievable and the stability is excellent. The high-intensity
diffractometer D20 at the Institut Laue-Langevin has a detector
assembled from plates of micro-strip detectors and achieves 1600
anodes at 0.1° angle separation.

As pointed out above, the detection systems on SuperD2B,
SPODI and ECHIDNA achieve a quasi-two-dimensional posi-
tion capability by using banks of linear PSDs located side by side.
An MWPC detector can achieve two-dimensional capability in a
very similar manner, using the anode position to locate in the
horizontal direction and charge division measurements at the
ends of each anode wire to find the vertical position. An MWPC
detector can also be fitted with segmented cathodes, either side of
the anodes, one returning positional information in the horizontal



2. INSTRUMENTATION AND SAMPLE PREPARATION

direction and the other giving the vertical position. A detector of
this kind is used on the WOMBAT diffractometer at the OPAL
reactor. MSGC detectors can also be adapted to provide two-
dimensional positional information after printing a set of cath-
odes orthogonal to the primary set on the back surface of the
glass.

A few general comments about detecting systems are in order.
The time for a detector to recover after registering a neutron
count is known as the dead time, and this may be significant when
count rates are high, in which case corrections are needed
[Chapter 7.3 of Volume C (Convert & Chieux, 2006)]. For banks
of detectors, and also for position-sensitive detectors, calibration
for position and sensitivity becomes a critical issue. In the case of
a smaller bank of detectors, it may be possible to scan the
detector bank so the same diffraction pattern is recorded in the
different detectors, in which case the relative positions and effi-
ciencies of the different detectors can be determined quite well
(see Section 4.1 of Kisi & Howard, 2008). For more extensive
banks or large position-sensitive detectors, detector sensitivity
calibration is performed by examining the very nearly isotropic
incoherent scattering from vanadium. In this case checking for
angular accuracy can be more difficult. The time taken to register
a neutron count cannot be said to be a fundamental issue in CW
powder diffraction, since in some applications it is scarcely
relevant, although in other applications, such in the study of very
fast reaction kinetics (Riley ef al., 2002), the constraints on time
are very demanding.

2.3.4.1.4. Resolution and intensity

The resolution and intensity of a CW powder diffractometer
are strongly influenced by the divergences oy, o, and a3 of the
primary, monochromatic and diffracted beams, respectively,
along with the mosaic spread B of the crystal monochromator.
The situation was analysed by Caglioti e al. (1958) on the basis
that the triangular transmission factor of each collimator, total
width 2, could be approximated by a Gaussian with full-width at
half-maximum (FWHM) «, that the mosaic distribution of the
monochromator could also be described by a Gaussian with
FWHM B, but that there was no sample contribution to the peak
widths. On this basis the diffraction peaks were found to be
Gaussian, with the FWHM of the diffraction peak occurring at
scattering angle 26 given by (Hewat, 1975)

FWHM? = Utan*6 + Vtan6 + W, (2.3.18)
where
4 2.2 22 202
y=dmtaf taof) (2.3.180)
tan? 0, (a7 + a5 +4p°)
_ —405(c8 +28%) (2.3.185)
tan 0,,(c? + a3 + 4p%)’
W 4198 + aled + adad + 4o + &) (2.3.180)

o} + a3+ 48

and 6, is the Bragg angle (26,, is the take-off angle) at the
monochromator. Under these conditions the total (integrated)
intensity in the diffraction peak is given by
o050

(o + 05 +46")

L

o (2.3.19)

These equations have important implications and accordingly
have received a good deal of attention. They return at once the
well known resolution advantage in setting up the diffractometer
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in the parallel configuration (that seen in Fig. 2.3.15, in this
configuration 6,, taken to be positive). Caglioti et al. (1958)
deduced that for the simple case of oy =, =3 ==«
equations (2.3.18) and (2.3.19) reduce to

11 — 12a + 124°

1/2
FWHM = a< . ) and L o o/(6)"?,

where a = tan6/tan6,,; they went on to record results for a
number of other combinations. In his design for a high-resolution
diffractometer, Hewat (1975) considered the case o, =
2B > a; =~ a;. Under these conditions, the peak widths are close
to their minimum around the parallel focusing condition 6 = 6,,,
their widths there are given by

o

2 2
-5 X o] t o3,
o} +od +4p°

FWHM® = (o} 4 o3) —

and the total intensity is approximately
L a1a3,8/(2)1/2.

Hewat’s conclusions, put briefly, were that good resolution could
be obtained by keeping divergences «; and «3 small, while
intensity could be somewhat recovered by adopting relatively
large values for the monochromator mosaic spread 8 and diver-
gence o, of the monochromatic beam. Hewat also argued for a
high monochromator take-off angle 26,,, not only to reduce peak
widths [through the term cot#,, appearing in equation (2.3.17)
and reappearing in equations (2.3.18)], but also to match the
region of best resolution to that of the most closely spaced peaks
in the diffraction pattern. Hewat’s design was implemented in the
D1A diffractometer at the Institut Laue-Langevin (Hewat &
Bailey, 1976), subsequently in the D2B diffractometer at the same
establishment, and elsewhere. In a version installed at the (now
retired) HIFAR reactor in Sydney, Howard et al. (1983), using an
AlL,O; (corundum) ceramic sample, reported a peak-width
variation in close agreement with that calculated from equation
(2.3.18). Although more sophisticated analyses are available in
the literature (Cussen, 2000), this result would suggest that
equations (2.3.18) still provide a good starting point.

The usual trade-off between intensity and resolution applies,
and since neutron sources are rather less intense than X-ray
sources, this is an important consideration. Intensity is sacrificed
by using high monochromator take-off angles to limit the
wavelength spread [equation (2.3.17)], and by using tight colli-
mation [equation (2.3.19)]. Evidently intensities could be
increased by relaxing these constraints. These days it is more
common to build diffractometers of good-to-high resolution, and
then to seek other means to improve data-collection rates.
Focusing monochromators, such as described in Section 2.3.4.1.2,
serve to increase the neutron intensity at the sample position
without seriously degrading the resolution. In addition, the use of
multi-detector banks and the development and deployment of
position-sensitive detectors, as described in Section 2.3.4.1.3, has
been very much driven by the desire to increase the speed of data
collection. As mentioned earlier, the design and analysis of
neutron powder diffractometers should be treated in a holistic
fashion, and although some advanced analytical methods have
been applied (Cussen, 2016 and references therein), Monte Carlo
analyses using programs such as McStas (Willendrup et al., 2014)
and VITESS (Zendler et al., 2014) to track large numbers of
neutrons from the source right through to the neutron detectors
are now widely employed.
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Figure 2.3.18

(b)

(a) Schematic cross section of the POLARIS diffractometer at the ISIS facility, UK, and (b) a three-dimensional solid model of the detector chamber.

(Credit: STFC.)

2.3.4.2. Time-of-flight (TOF) diffractometers

Time-of-flight (TOF) diffractometers differ substantially from
CW diffractometers. Neutrons delivered to the instrument are
already partially collimated and TOF instruments have no
monochromator and consequently no moving parts. The full
incident neutron spectrum is utilized and needs to be well char-
acterized in order to extract meaningful intensities; in addition
the wavelength dependence of detector efficiencies needs to be
taken into account. In principle, measurements from an inco-
herently (therefore isotropic and wavelength-independent)
scattering sample such as V or H,O provide the required char-
acterization.'® In practice, however, incident spectra are usually
recorded using a low-efficiency detector (beam monitor) in the
incident beam. Data from V are still required to correct for the
relative efficiency of individual detectors or detector elements
and their wavelength dependence (Soper et al., 2000).

16 The much larger incoherent scattering cross section of H allows normalization
data to be recorded much more quickly using H,O; however, the small amount of
additional moderation of the beam that occurs is usually considered undesirable.
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The basic components of a TOF powder diffractometer are the
flight tube from the neutron source or a neutron guide, a precisely
located sample position, banks of detectors at various positions
around the sample position and a neutron-absorbing beam stop.
In early TOF diffractometers, detector banks were relatively
localized typically in forward scattering, close to 26 = 90° and
backscattering locations. More modern diffractometers have very
extensive detector arrays such as the newly upgraded POLARIS
instrument at the ISIS facility, which is illustrated in Fig. 2.3.18.
Neutrons enter the diffractometer at the right of Fig. 2.3.18(a)
through a number of adjustable neutron-absorbing jaws which
trim the beam size to match the sample size. The beam is then
incident on the sample, which is located within the chamber
where the detectors, arranged in numbered banks, are housed.
The entire sample/detector chamber (and flight tube) is evac-
uated during data collection in order to reduce absorption and
scattering of the incident neutron beam by air, effects which both
decrease the intensity of the neutrons incident on the sample and
increase the background scattering. A human figure in Fig.
2.3.18(a) indicates the large scale of the device and it should be
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noted that the substantial neutron shielding surrounding the
detector chamber (known as the blockhouse) is not shown.

2.3.4.2.1. Instrument resolution and design

In a TOF instrument, all of the incident spectrum of neutron
wavelengths is utilized, appropriately trimmed by the chopper
system as previously described. The different wavelengths (1) are
identified through their time-of-flight (¢) according to equation
(2.3.15). Substituting that equation into Bragg’s law, we obtain

ht

dy,=—
"KL 2l sin O
t

T 505.554L sin 0

(2.3.20)

for ¢ in microseconds, d in angstroms and L in metres.

The resolution of a TOF diffractometer is defined by the
uncertainty in the d-spacing (Ad) relative to its absolute value d.
Apparent as the width of the diffraction peaks, the resolution is
given primarily by (Buras & Holas, 1968; Worlton et al., 1976)

12
Af\® (ALY
= |:A92 C0t29+ <I> + <L> :| .

There are a number of important things to note concerning this

equation:

(i) The terms Afcotf and AL/L are fixed and independent of
flight time once the diffractometer is constructed; in addi-
tion, as we have already noted (Section 2.3.3.3), for a spal-
lation source with a suitably poisoned moderator the time
resolution At/t is practically constant. Thus the resolution of
a TOF diffraction pattern is virtually constant across the
entire range of d-spacing explored in a given detector
bank."”

(ii) Uncertainties in the neutron path length, AL, can arise due
to measurement uncertainty in determining L; however,
these are usually overshadowed by the uncertainty that
arises because neutrons can emerge into the neutron guide
from any position within the finite-sized moderator and this
uncertainty constitutes the major contribution to AL.

(iii) As AL is a constant, a linear improvement in resolution can
be achieved merely by making the instrument longer, such as
HRPD at ISIS and S-HRPD at J-PARC, which are almost
100 m long.

(iv) The contribution of the diffraction angle 26 to resolution is
considerable. For a fixed angular uncertainty (detector
positioning and finite width) the cot 6 term varies from
infinite at 26 = 0 to zero at 26 = 180°. Therefore, the higher
the detector angle, the better the resolution.

With these matters considered, we can return to our example
of a modern TOF diffractometer in Fig. 2.3.18 and in particular
the arrangement of the detectors. The strategy employed is to
group multiple individual detector elements into a number of
discrete banks. It may be seen from equation (2.3.21) that
decreasing 260 and increasing L have opposing effects on reso-
lution. By appropriate manipulation of the equation and by
expressing the overall neutron flight path as L = L, + L, where L,
is the moderator-to-sample distance and L, is that from the
sample to the detector, it is straightforward to obtain

Ad

y (2.3.21)

17 A small effect due to a time-dependent component of A/t might be observed
depending on the source and instrument configuration.
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Therefore by adjusting 26 and L, correctly, it is possible to
construct banks of detectors covering a range of 26, for which the
resolution is identical. This allows neutrons recorded in the entire
detector bank to be ‘focused’ into a single diffraction pattern.
The resulting curved detector arrangement is obvious in the high-
resolution detector bank labelled 5 and 6 in Fig. 2.3.18(a). For a
fixed (small) value of Ad/d, eventually space limitations impose
restrictions on L, and a new, lower-resolution detector bank (4)
commences. As the benefits of a curved arrangement become
insignificant, the appropriate curve is approximated by a straight
arrangement in the lower-angle banks and dispensed with alto-
gether in the very low angle bank. In Fig. 2.3.18 the back-
scattering (5, 6), 90° (4), two separate low-angle (2 & 3) and the
very low angle (1) detector banks of POLARIS are identified.
These have average 260 angles of 146.72, 92.59, 52.21, 25.99 and
10.40°, respectively.

Raw diffraction patterns recorded in the various detector
banks are compared in Fig. 2.3.19. Note that the curved back-
ground due to the incident spectrum is flattened when the
patterns are normalized. A logarithmic scale is necessary to
display the very wide range of d-spacings accessible across the
whole instrument and this scale emphasises the near-constant
resolution across each pattern. In keeping with equations (2.3.21)
and (2.3.20), the effects of changing the detector angle are
obviously greater resolution and access to shorter d-spacings as
26 increases. Each detector bank can provide data for a different
purpose according to its resolution and d-spacing coverage. For
example, the combination of good resolution (4 x 107°) and a
wide range of d-spacing (0.2-2.7 A) makes data from the back-
scattering bank (Fig. 2.3.19¢) ideal for the refinement of medium-
to large-scale crystal structures. The 90° bank (Fig. 2.3.19d) is
optimized for use with complex sample environments such as
high-pressure cells or reaction vessels, as this geometry combined
with appropriate collimation of the incident and scattered
neutron beams enables diffraction patterns to be collected that
only contain Bragg reflections from the sample being studied. It
can be used to obtain good-resolution data (7 x 10~7) during a
variety of in situ studies. The low-angle and very low angle banks
with their access to very large d-spacings up to 20 A are invalu-
able in determining unknown crystal structures and complex
magnetic structures by allowing the indexing of low-index
reflections and determining reflection conditions.

In order to reduce unwanted background counts and give
better localization of the diffraction pattern from the sample, i.e.
to better exclude sample environments such as cryostats or
furnaces, the instrument is fitted with a radial collimator
surrounding the sample position."® For more common sample
environments, e.g. furnaces, this collimation allows all detector
banks to view the sample unimpeded. The detector banks are
contained within the large vacuum vessel shown in Fig. 2.3.18(b).
This reduces attenuation and background due to scattering by air.
The detector coverage on such an instrument is very large, in the
case of POLARIS up to 45% of the available solid angle is
covered. A full description of this instrument may be found in
Smith et al. (2018).

8 Although typically constructed from planar vanes which are oscillated to
average their shadow across all the detectors, the POLARIS collimator vanes are
stationary, and are conical to follow the Debye—Scherrer cones of the diffracted
neutrons.
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Figure 2.3.19

Raw neutron diffraction patterns from Y3AlsO,, (YAG). Patterns from the five POLARIS detector banks, (a) very low angle, (b) low angle 1, (c) low
angle 2, (d) 90° and (e) backscattering, are shown separately. Note that the very wide range of d-spacings accessible (~0.2-25 A) necessitates the use of
a logy scale. Insets for the backscattering bank illustrate that useful data are obtained even at very small d-spacing (red) and that the resolution is very
good (blue). Note the asymmetric peak shape that results from a rapid rise, followed by a slower exponential decay, in the number of neutrons
emerging from the moderator after each incident proton pulse.

2.3.4.2.2. Detection have efficiencies governed by the neutron energy (or wave-
length). Detectors on CW diffractometers are optimized for the

All the neutron detector types discussed in Section 2.3.4.1.3 are narrow band of wavelengths available when using a crystal
capable of detecting the scattered neutrons in a TOF pattern. monochromator, say 1-2.4 A. The wavelength range in TOF
Gas-filled proportional counters such as BF; and *He detectors diffraction is generally much wider; as much as 0.2-6 A or more,
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and proportional detectors need to be specifically optimized.
There is of course the added complexity of tracking the arrival
time of each neutron and this has worked against the use of multi-
wire proportional detectors and microstrip detectors as described
in Section 2.3.4.1.3. Instead, there is extensive use of scintillation
detectors, which are usually based on the °Li(n;t,r) reaction
(Section 2.3.4.1.3). When doped into the ZnS film of a scintillator,
the °Li provides excellent detection sensitivity and energy range.
Discrimination against fast neutrons and y-ray contamination in
the incident beam is easily accommodated as these have different
velocities to the thermal and epithermal neutrons used for TOF
diffraction and are therefore readily excluded by the chopper
system and detector electronics.

The detector electronics on older instruments recorded the
diffraction pattern in a fixed set of time channels or bins; typically
1024 to begin with and progressively more as electronic and
computational advances occurred. More recently, the technique
has shifted to recording the data to memory in a continuous
stream known as event mode, where the arrival time of each
neutron is recorded. The user may then bin (and re-bin) the data
into time channels to suit the resolution of the diffraction pattern,
which may differ significantly from the instrument resolution
because of microstructural features of the sample. Such features
are discussed at length in Chapters 5.1 and 5.2.

In a new development, a neutron-sensitive microchannel plate
detector has been developed (Tremsin, McPhate, Vallerga,
Siegmund, Feller et al., 2011). Microchannel plate detectors
(MCPs) are divided into discrete pixels and record the arrival
time of each neutron in each pixel. Initially used for high-
resolution radiography at pulsed neutron sources, it was quickly
realized that MCP detectors can be used for diffraction via the
Bragg-edge phenomenon (Tremsin, McPhate, Vallerga, Sieg-
mund, Kockelmann et al., 2011). The resolution is typically 55 um
due to the data-acquisition electronics but can be sharpened to
less than 15 pm using centroiding techniques. This type of
detector opens the door to spatially resolved neutron powder
diffraction in materials as well as strain-imaging applications on
TOF neutron diffractometers.

2.3.4.3. Variations on a theme

The diffractometers HRPT (Fig. 2.3.15) and POLARIS (Fig.
2.3.18) are general-purpose instruments suitable for solving and
studying medium-sized crystal structures under a range of non-
ambient conditions and in some cases the study of non-crystalline
or poorly crystalline materials. There are several such diffract-
ometers at reactors [HB-2A at Oak Ridge (https://neutrons.
ornl.gov/powder), D1B at ILL (https://www.ill.eu/instruments-
support/instruments-groups/instruments/d1b/description/instru-
ment-layout/), HRPD at KAERI (http://www.kaeri.re.kr:8080/
english/sub/sub03_04_01_01.jsp), C2 at CINS (http://cins.ca/get-
beam-time/beamline-specs/c2/)] and spallation sources around
the world [POWGEN and NOMAD at SNS (https://neutrons.
ornl.gov/powgen; https://neutrons.ornl.gov/nomad), GEM at
ISIS (http://www.isis.stfc.ac.uk/instruments/gem/gem2467.html),
iIMATERIA at J-PARC (https:/j-parc.jp/researcher/MatLife/en/
instrumentation/images/BL20.gif) etc].

A more specialized type of TOF powder diffractometer is
the High Resolution Powder Diffractometer (HRPD) at ISIS
(https://www.isis.stfc.ac.uk/Pages/Hrpd.aspx) and a similar instru-
ment, Super-HRPD at J-PARC (https://j-parc.jp/researcher/
MatLife/en/instrumentation/images/BL08.jpg). Although both of
these instruments have 90° and low-angle detector banks, their
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overall design has strongly centred on extremes of resolution,
attaining Ad/d values of 4 x 10~* and 3 x 10~*, respectively.
Such extremes of resolution are attained primarily through
making the flight path of both instruments nearly 100 m long and
placing detectors at very high Bragg angles (150-176°). Data
from these can supply individual peak positions to a precision of
approximately 5 parts per million and whole pattern fitting can
give correspondingly precise lattice parameters. Recalling that in
TOF powder diffraction the resolution is constant across the
whole pattern, this makes the instruments ideal for the solution
of large crystal structures in which a great many diffraction
peaks need to be resolved, for tracking phase transitions, and for
solving structures involving pseudo-symmetry, which even in
relatively small structures (e.g. perovskites) can be a challenge
for lower-resolution instruments. Example diffraction patterns
are shown in Fig. 2.3.20 for the structural transitions in SrZrO;
(Howard et al., 2000).

At the other extreme of instrument design are the very
high intensity diffractometers exemplified by the CW
instruments D20 at ILL (https://www.ill.eu/instruments-support/
instruments-groups/instruments/d20/) and WOMBAT at ANSTO
(http://www.ansto.gov.au/ResearchHub/Bragg/Facilities/Instruments/
Wombat/). These diffractometers use a large degree of vertical
focusing to greatly increase the incident flux on the sample and
are fitted with large position-sensitive detectors from which the
data can be stored at 1 MHz or faster. If there is a periodic time
structure to the phenomenon under study due to some driving
stimulus (e.g. a periodic laser, electric or magnetic field pulse),
then the data can be analysed stroboscopically by synchronizing
with the driving stimulus, giving an effective time resolution in
the MHz range. Even in the absence of a periodic stimulus, useful
diffraction patterns on these diffractometers can in favourable
circumstances be stored at rates of 2, 10 or with a large enough
sample even 50 Hz (Fig. 2.3.21).

It should be noted that for TOF diffractometers, the time
structure imposed by the pulsed neutron source and chopper
system places absolute limitations on the most rapid diffraction
pattern that can be recorded. This is typically ~0.1 s at sources
such as ISIS, J-PARC or SNS. An additional time penalty is often
paid due to the time taken to save such large amounts of data
(typically between 10 and 30s). There is therefore no TOF
equivalent of the very rapid stroboscopic mode of operation.

Other forms of specialized neutron powder diffractometer
have also been developed. Among these are the engineering
or residual stress diffractometers, exemplified by the TOF
diffractometers ENGIN-X at ISIS (https://www.isis.stfc.ac.uk/
Pages/Engin-X.aspx), VULCAN at SNS (https:/neutrons.
ornl.gov/vulcan), TAKUMI at J-PARC (https://j-parc.jp/
researcher/MatLife/en/instrumentation/ns.html) and the CW
diffractometers SALSA at ILL (https://www.ill.eu/instruments-
support/instruments-groups/instruments/salsa/description/instru-
ment-layout) and KOWARI at ANSTO (http://www.ansto.gov.au/
ResearchHub/Bragg/Facilities/Instruments/Kowari/). The pur-
pose of these diffractometers is to measure accurate interplanar
spacing (d) within a small gauge volume defined by the inter-
section of incident and diffracted beams inside a larger sample, as
illustrated for constant wavelength in Fig. 2.3.22.

Variations in the d-spacing relative to a strain-free reference
value (d,) represent the average strain in the gauge volume
parallel to the scattering vector (i.e. perpendicular to the
diffracting planes) as is also illustrated in Fig. 2.3.22. By
determining strains in several directions, it is possible to
reconstruct the full strain tensor within each gauge volume, and
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Figure 2.3.20

Parts of the very high resolution neutron powder-diffraction patterns recorded by the backscattering detector bank on the instrument HRPD at ISIS
from SrZrOj at (a) 1403, (b) 1153, (¢) 1053, (d) 933 and (e) 293 K. Insets to the left and right show subtle changes to the reflection shapes and splitting
of reflections due to phase transitions from the cubic (Pm3m) in pattern (a), to the tetragonal phase (I4/mcm) in (b), an orthorhombic phase (Imma) in
(c) and a second orthorhombic phase (Pnma) in (d) and (e). Note the intensity reversal in the 002 reflection (right insets), which was pivotal in finding

and solving the orthorhombic phase in Imma (Howard et al., 2000).

this may be converted into the stress tensor, the desired
outcome for engineering purposes (Noyan & Cohen, 1987,
Fitzpatrick & Lodini, 2003; Kisi & Howard, 2008). This
procedure is widely used in residual stress analysis to study stress
distributions in fabricated or welded components and also to
observe the internal stress distribution due to an externally
imposed load. An example is illustrated in Fig. 2.3.23 in relation
to in situ experiments and the stress distribution in granular
materials.

89

The required localization of the gauge volume is achieved by
shaping the incident and diffracted beams with slits/collimators
and is greatly assisted by fixing the diffraction angle 26 at £90°. In
CW instruments, the need for high resolution and good intensity
is met by using a focusing (bent Si) monochromator and a small
area detector to record the data. This generally limits the
investigation to a single Bragg peak (reflection), the position of
which is carefully mapped over the sampled area for each strain
component under investigation.
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Figure 2.3.21

Neutron powder-diffraction patterns during combustion synthesis of
Ti;SiC, recorded in 400 ms each on the diffractometer D20 at ILL (Riley
et al., 2002). Panel (a) shows an overview of the reaction process with
time vertical, diffraction angle horizontal and intensity as colour/
brightness. Panel (b) is a three-dimensional view of the portion enclosed
by dashed lines in (a), representing 140 s of reaction, wherein the
numbered reflections show (i), (ii) a phase change in Ti, (iii) SiC, (iv)
formation of an intermediate phase Ti(Si,C) and (v) growth of the
Ti5SiC, product. Panel (c) illustrates via Rietveld refinement the high
quality of diffraction patterns even on this short timescale.

TOF engineering diffractometers record a full diffraction
pattern at each position. Localization of the gauge volume is
achieved using symmetric detector banks and radial collimators
on either side of the sample position (Fig. 2.3.24). All other
instrument-design criteria are generally secondary to this, as a
parallelepiped-shaped gauge volume allows a seamless strain
(stress) map to be obtained. These instruments are usually 40—
50 m long and have moderately high resolution, which allows
peak positions and hence strains to be measured to a precision of
5 x 107" in favourable circumstances. In common engineering
materials (steels, aluminium alloys etc.) this equates to an abso-
lute minimum stress uncertainty of 4-10 MPa. The extreme
resolution that would be available using very high resolution
designs like HRPD and Super-HRPD (above) is sacrificed in
order to obtain data on a reasonable timescale given the gener-
ally small gauge volume (0.5-30 mm®) and the need to map the
strain field piecewise over an extended region of the sample.

Although it is not usual for instruments to be specifically
designed for the purpose, neutron diffraction is also particularly
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Figure 2.3.22
Illustrating (a) a CW engineering diffractometer and (b) the formation of
a gauge volume at the intersection of the incident and diffracted beams.

useful for studying crystallographic texture in materials, as the
neutron-diffraction pattern is not distorted by surface coatings or
preparation methods. In principle, any diffractometer can be used
for measuring texture simply by recording a large number of
diffraction patterns with the sample rastered in small angular
intervals (5° is common) about two mutually perpendicular axes
to form a grid over all orientations. This is extremely time
consuming on a conventional CW diffractometer, although the
whole pattern is captured each time, as the intensity recorded for
the different reflections is subject to different corrections. This
can be greatly sped up by using a CW engineering diffractometer
(SALSA, KOWARI) with an intense, well collimated incident
beam and fitted with an area detector. For example, on
KOWARLI, the detector spans 15° in both horizontal and vertical
directions and so the sample needs to be re-positioned far fewer
times. An added advantage is that the diffraction geometry is
identical for each sample position and almost so for each
reflection studied, and so a pure (i.e. model-independent) texture
measurement is obtained. Texture measurements on modern
TOF diffractometers (e.g. GEM, POLARIS, POWGEN,
NOMAD and iMATERIA) are in principle quite straightfor-
ward. Because there are detectors in many positions all around
the sample, the scattering vector and hence orientation of
diffracting planes (crystal orientation) is sampled in many
orientations all in one data collection. If data from the individual
detectors are not ‘focused’ into composite diffraction patterns as
for crystal-structure studies, then very few re-orientations are
required to record data representing the full texture. However,
since each reflection in each detector bank is sampled using



2.3. NEUTRON POWDER DIFFRACTION

Hoop Stress [MPa]

Axial Stress [MPa]

& 8 &

Axial Position [mm]
S

-10 0 10
Radial Position [mm]

-10 0
Radial Position [mm]

10

Figure 2.3.23

Radial Stress [MPa]

-10 0 10
Radial Position [mm]

-10 0
Radial Position [mm]

10

Stress distribution for four stress components in an iron powder compacted within a convergent die (see also Zhang et al., 2016).

neutrons of different wavelength, each is recorded under
different conditions for attenuation and extinction. In addition,
to make full use of all the data, whole pattern or Rietveld analysis
using a preferred-orientation (texture) model has to be
conducted for each of the multitude of diffraction patterns
recorded. As well as being time consuming, the reliability of the
resultant pole figures and orientation density function is
governed by the quality of all the individual models (for back-
ground, peak shape, peak width, sample centring, attenuation
etc.) within the Rietveld refinement as well as the ability of the
preferred-orientation model in the Rietveld program to accu-
rately fit the real texture. A pure model-independent texture
measurement can only be obtained using CW or TOF single-peak
methods.

The instrument WISH at ISIS represents a departure from the
normal TOF diffractometer design in that it receives long
wavelength neutrons (1.5-15 A) from a cold neutron source at
Target Station 2. Ballistic supermirror neutron guides and three
choppers deliver neutrons in an active bandwidth of 8 A for a
given chopper setting (https://www.isis.stfc.ac.uk/Pages/Wish.
aspx). The pixelated *He detectors cover Bragg angles in the very
wide range 10-170°. WISH is designed for the study of complex

Radial collimator Incident beam slit

Sample positioning table

Figure 2.3.24

The engineering diffractometer ENGIN-X at ISIS. The incident beam
enters through the flight tube at the top and the left (L) and right (R) 90°
detector banks simultaneously record patterns with the scattering vector
perpendicular and parallel to the sample axis, respectively. A mechanical
testing machine used for in situ application of loads is also shown (https:/
www.isis.stfc.ac.uk). (Credit: STFC.)
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magnetic structures and large-unit-cell structures in chemistry
and biology. Polarization analysis is available to assist the former.

The concept of long-wavelength neutron powder diffraction
will be taken a step further in the DREAM instrument
planned for the European Spallation Source (ESS, https:/
europeanspallationsource.se/realizing-dream-versatile-powder-
diffractometer). This instrument will receive neutrons simulta-
neously from thermal and cold neutron moderators. It will have a
complex array of choppers to shape the incident pulse prior to
arrival at the sample. Modelling has indicated that intensity gains
of a factor of 10-30 are to be expected and that the instrument
may be able to deliver Ad/d as low as 4 x 1077, albeit at very
long wavelengths. More typically the projection is that Ad/d as
low as 1 x 107" could be achieved with more conventional
wavelengths. Perhaps the major advantage of the instrument will
not be its absolute resolution but the ability to change resolution
over the full range during the experiment by simply altering the
chopper settings. Therefore unexpected phenomena (phase
transitions efc.) can be tracked during the initial experiment with
no time lost by having to prepare a proposal for a different
higher-resolution instrument.

2.3.4.4. Comparison of CW and TOF diffractometers

The preceding discussion has demonstrated that, although not
necessarily the case for other types of neutron scattering, powder
diffraction can be very successfully conducted on either CW or
TOF instruments. Their relative advantages for the various types
of powder-diffraction experiment are embedded in the discussion
above and summarized in Table 2.3.5.

Plotting and summarizing the approximate intensity and
resolution of different types of neutron diffractometer may be of
assistance in assessing the options (Fig. 2.3.25). In the figure,
resolution is shown as the inverse of the FWHM (Ad/d) and
intensity is shown as the inverse of the time in seconds taken to
record a single diffraction pattern, so that improvements follow
the positive x and y axes.

There are two particular cases where the distinction between
CW and TOF instruments can determine the success or failure of
a neutron powder-diffraction experiment. The first is where
crystal structures or phase transitions involving extreme pseu-
dosymmetry are being studied. In this case, the very high reso-
lution available over the entire Q-range (d-spacing range) using
high-resolution TOF instruments such as HRPD at the ISIS
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Table 2.3.5

Advantages of CW and TOF instruments (modified from Kisi & Howard, 2008)

(&%

TOF

(1) Incident beam may be essentially monochromatic, in which case the
spectrum is well characterized

(2) Large d-spacings are easily accessible for study of complex magnetic and
large-unit-cell structures

(3) Can fine tune the resolution during an experiment

(4) More common

(5) Peak shapes are simpler to model

(6) Absorption and extinction corrections are relatively straightforward

(7) Data storage and reduction is simpler

(8) Extremely rapid data collection and stroboscopic measurements are
feasible

(9) Engineering diffractometers are very well suited for strain scanning in
complex objects

(10) Texture is straightforward to measure on engineering diffractometers

(1) The whole incident spectrum is utilized, but it needs to be carefully
characterized if intensity data are to be used

(2) Data are collected to very large Q values (small d-spacings)

(3) Few cold neutron instruments are available for study of complex
magnetic and large-unit-cell structures

(4) Resolution is constant across the whole pattern

(5) Very high resolution is readily attained by using long flight paths

(6) Complex sample environments are very readily used if 90° detector banks
are available

(7) Simpler to intersect a large proportion of the Debye—Scherrer cones with
large detector banks

(8) Very fast data collection is feasible

(9) Engineering diffractometers use an extended diffraction pattern, ideal
for in situ loading and/or heating

(10) Texture can be measured on universal instruments

facility (UK) or SuperHRPD at J-PARC confers a particular
advantage. The CW equivalent high-resolution powder diffract-
ometers such as D2B at ILL and ECHIDNA at ANSTO can
almost match the absolute resolution of the TOF instruments,
D2B achieving Ad/d of 5.6 x 10~* however, the resolution
function for a CW diffractometer [equation (2.3.18)] has a strong
minimum and so this resolution can only be achieved over a
restricted range of d-spacing. The reflections appearing in the
highest-resolution zone can be shifted by wavelength changes,
which of necessity require re-recording of the pattern.
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Figure 2.3.25

Schematic showing regions of intensity-resolution space in which
different diffractometer types typically operate. High-resolution TOF
diffractometers operate in the green area, engineering diffractometers
(TOF or CW) in the purple area, multi-purpose TOF diffractometers
such as POLARIS in the orange area and very high intensity CW
diffractometers in the blue area.
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The second extreme case is when rapid kinetic behaviours are
to be studied. In this case, a small number of CW diffractometers
(e.g. D20 at the Institut Laue-Langevin or WOMBAT at
ANSTO) have a distinct advantage. Therefore at this time,
processes that occur reproducibly and uniformly over a large
sample on sub-1s timescales are best suited to stroboscopic
studies using one of the very rapid CW diffractometers available.
There are nonetheless a great number of processes that can be
studied on the timescales accessible using TOF, where near-
constant resolution across the entire diffraction pattern lends
considerable advantage.

If unaffected by extremes of resolution, intensity or highly
specialized data types (stress, texture etc.), the choice between a
CW or TOF instrument can be made based more casually on
proximity to neutron sources and the access arrangements for
national or regional neutron users.

2.3.5. Experimental considerations
2.3.5.1. Preliminary considerations

Neutron-diffraction studies are motivated by a desire to
exploit the unique properties of neutrons as listed in Sections
23.1 and 2.3.2. As access to neutron diffraction is carefully
regulated through an experiment proposal system, considerable
planning is required in order to write a successful proposal.
Owing to the expense of operating a neutron source and pressure
on instrument time, there is an onus on the experimental team to
make the best use of neutron beam time. Consideration should be
given to the type of instrument required, the resolution that is
needed, the d-spacing range of interest, how long each pattern
will take to record, the requirement (or not) for standard samples
and whether a special sample environment is needed.



Table 2.3.6

Suitability of problems to high-resolution or high-intensity diffractometers

Reproduced from Kisi & Howard (2008) by permission of Oxford University Press.
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Problem

High resolution

High intensity (medium resolution)

Solve a complex crystal or magnetic structure

Refine a complex crystal or magnetic structure

Solve or refine small inorganic structures

Quantitative phase analysis

Phase transitions

Line-broadening analysis

Rapid kinetic studies

Essential, especially in the presence of pseudo-
symmetry

Essential. Will benefit from a high Q-range if
available

Beneficial, but not usually essential unless
pseudosymmetry is present

Only required when peaks from the different
phases are heavily overlapped

Depends on the nature of the transition and
complexity of the structures. Essential for
transitions involving subtle unit-cell distortions
and pseudosymmetry

Essential for complex line broadening such as

from a combination of strain and particle size,
dislocations, stacking faults erc.

Not appropriate

Not usually suitablefi

Not usually suitablefi

Usually adequate

Usually adequate. Allows phase quantities to
be tracked in fine environmental variable steps
(T, P, E, H etc.) during in situ experiments

Often adequate for small inorganic structure
transitions and order—disorder transitions.
Allows fine steps in an environmental variable
(T, P, E, H etc.)

Adequate for tracking changes in severe line
broadening as a function of an environmental
variable (7, P etc.) especially if the pure
instrumental peak shape is well characterized

Essential

+ In some cases the symmetry and lattice parameters are such that the diffraction peaks are well spaced and not severely overlapped even at modest resolution.

+ May be necessary to

supplement high-resolution data to observe weak superlattice reflections in the presence of very subtle or incomplete order—disorder transitions.

Table 2.3.7
Guidance on choice of wavelength/detector bank

Reproduced from Kisi & Howard (2008) by permission of Oxford University Press.

Problem Choice

Solve complex or low-symmetry structures Longer wavelength

Refine a large or complex crystal structure Shorter wavelength

Solve or refine magnetic structures Longer wavelength
Quantitative phase analysis

Phase transitions Shorter wavelength

Longer wavelength

Usually shorter wavelength

Reasons

Increase d-spacing resolution to allow correct symmetry and space
group to be assigned

Ensure that the number of peaks greatly exceeds the number of
parameters. Improve determination of site occupancies and
displacement parameters

Ensure that large d-spacing peaks are observed. Spread the magnetic
form factor over the entire diffraction pattern

Improve the accuracy of the determination. Longer wavelengths only
required if peak overlap is severe

Ensures adequate data for order—disorder or other unit-cell-enlarging
transitions
Subtle unit-cell distortion or pseudosymmetric structures

In the general case, there is competition between the resolu-
tion and the intensity of diffractometers, although some of the
modern TOF diffractometers (e.g. POLARIS, GEM, POWGEN,
NOMAD and iMATERIA) simultaneously record patterns of
moderate resolution and intensity, and high-intensity patterns at
low resolution, in different detector banks. For the purposes of
this chapter, high resolution is defined as a minimum diffraction
peak width at half maximum height corresponding to
Ad/d < 107> This is the resolution typically required to observe
lattice-parameter differences [e.g. (a — b)/a] of as little as 4 x
107> or so in the absence of sample-related peak broadening.
Such a diffractometer is typically of the order of 10 to 1000 times
slower than corresponding high-intensity diffractometers at the
same neutron source. The decision to opt for a high-resolution
diffractometer or a high-intensity diffractometer will depend
critically on the nature of the problem under study. This situation
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was considered in Kisi & Howard (2008) and their conclusions
are reproduced in Table 2.3.6.

It might be expected that the total information content in a
diffraction pattern correlates with the d-spacing range covered
and therefore this should be maximized. However, this expecta-
tion overlooks the different purposes for which powder-
diffraction patterns are used. A greater density of diffraction
peaks (e.g. in a CW pattern recorded using a short neutron
wavelength) makes the detailed refinement of complex crystal
structures more precise; however, it makes the determination of
unit cell and systematic absences more difficult as well as redu-
cing access to information contained within the peak shapes
concerning the sample microstructure. Table 2.3.7 summarizes
these effects. It should be noted that in this context parallels
exist between a short-wavelength CW diffraction pattern and
a low-angle-detector-bank TOF pattern; and between a longer-



2. INSTRUMENTATION AND SAMPLE PREPARATION

wavelength CW pattern and a high-angle-detector-bank TOF

pattern, subject to limitations imposed by the wavelength distri-

bution in the incident spectrum.

A decision must be made on how long to spend recording each
diffraction pattern, such that the greatest number of patterns
(samples) may be studied without compromising the information
content of each pattern. Since counting is governed by Poisson
statistics, the statistical precision of N counts in a radiation
detector (X-ray, electron or neutron) is represented by the
standard deviation o:

o =N (2.3.23)

This is true regardless of whether a single count is made or

multiple counts are summed to give an integrated intensity or a

total count from several detectors. For a relatively constant

arrival rate of neutrons, the precision of each data point will
increase with counting time ¢ in proportion to ", and this will be
reflected in the agreement indices (e.g. Ry,,; Chapter 4.7) between
the observed and calculated neutron intensities during structure
refinements (e.g. Rietveld refinement) as well as in the estimated
standard deviation (e.s.d.) of the refined crystal structure and

other parameters. It has been shown by Hill & Madsen (1984)

using CW X-ray powder-diffraction patterns that this is the case

for small counting time; however, the agreement and e.s.d.’s

quickly attain a plateau for counting times where 2000-5000

counts are recorded at the top of the largest diffraction peak.

Beyond this, systematic errors in the models used for peak

shapes, background efc. begin to dominate the fitting

procedure. An important consequence is that since the
expected values of the parameter e.s.d.’s fall in proportion to ¢~
whereas their actual values plateau, the statistical x* increases for
patterns recorded beyond the limit suggested by Hill & Madsen.

A number of recommendations may be derived from these

results:

(i) It is of no benefit for routine crystal structure refinements to
record data beyond the point where the strongest peak has
5000 or so counts at its apex and to do so may render
parameter e.s.d.’s invalid.

(ii)) Counting for longer times is however recommended for
problems that hinge upon weak superlattice or magnetic
peaks. Similarly, it may be of benefit when minor phases are
of interest, such as in complex engineering materials, in
samples undergoing phase transitions or in multi-component
geological materials.

(iii) An equally important result from Hill & Madsen is that
respectable refined parameter estimates could be obtained
using powder-diffraction patterns with only 200-500 counts
at the apex of the strongest peak. This is extremely useful
when assessing counting times in rapid kinetic studies where
the shortest acceptable counting time is preferred. Modern
data-acquisition electronics are often configured to allow
very short acquisition times or ‘event-mode operation’
(Section 2.3.4.2.2) with patterns subsequently added toge-
ther to obtain the required statistical and/or time resolution.
In this case, the shortest time step available should be used
provided sufficient data storage capacity is at hand.

In CW measurements with a detector bank scanned in small
angular steps, similar arguments to those above apply to the
sampling interval. This too has been investigated by Hill &
Madsen (1986) and again, improvements to the agreement
between the calculated and observed patterns and indeed
improvements to refined parameter e.s.d.’s were only observed

until systematic errors begin to dominate the fit. As a general rule

of thumb, once the applicable counting time has been established,

the counting interval should be adjusted to give at least 2 (but

typically around 5) sampling points in the top half of the

diffraction peak for routine crystal structure refinements. Finer

sampling intervals are however beneficial in the case of:

(i) subtle symmetry changes that manifest in the peak shape
well before peak splitting is observable,

(ii) following the evolution of a minor phase during an in situ
experiment, or

(iii) peak-shape analyses to explore the sample microstructure
(crystallite size, strain distribution, dislocation density,
stacking-fault probability etc.).

CW measurements using instruments with a fixed position-
sensitive detector and TOF measurements both have their raw
sampling interval fixed by the instrument architecture, which
cannot be varied. The recorded patterns can be subsequently re-
binned to a larger sampling interval, although this would usually
only be considered to reduce serial correlations during profile
refinement (Hill & Madsen, 1986).

2.3.5.2. Sample-related factors

Recording a neutron powder-diffraction pattern is in itself a
simple operation. There are, however, a number of sample-
related variables that can affect the accuracy or the precision of
the resulting patterns, or the ability to analyse them. It is worth
mentioning here that neutron-diffraction samples are often large,
in the range 1-40 g, to compensate for the lower incident fluxes
and scattering cross sections as compared with the X-ray case.
Large sample size has a strong mitigating effect on many of the
sample-induced problems to be discussed in Chapter 2.10 and
below.

The absolute accuracy of the position, intensity and shape of
neutron powder-diffraction peaks is primarily determined by:

(i) How representative the whole sample is of the whole system.
Known as disproportionation, this problem results from any
non-random factor during sampling. For example, within
rocks there is spatial variability in the mineral content
(where to sample), hardness differences (different mineral
particle sizes) and differing density (settling effects). Similar
considerations apply to multiphase ceramic materials and
metal alloys. With highly penetrating neutrons, this can be
greatly reduced by using the polycrystalline solid sample
provided that the crystallite size is relatively small [see (iii)
below]. Disproportionation primarily influences quantitative
phase analysis studies. Crystal-structure results are unaf-
fected provided there is enough of each phase of interest to
give a high-quality diffraction pattern.

(i) How representative the irradiated part of the sample is of the
whole system. Although ideally the entire sample is bathed in
the incident beam, for highly focused neutron beams on
high-intensity and/or strain-scanning diffractometers, the
beam-sample interaction volume is smaller than the whole
sample. In such cases, if a gradient in an experimental vari-
able such as temperature, pressure or composition is present,
then the irradiated portion of the sample can be quite
unrepresentative and this needs to be addressed in the
overall experiment plan.

(iii) How representative the diffracting part of the sample is of the
whole sample. There are two circumstances in which the
observed diffraction pattern may be unrepresentative of the
irradiated portion of the sample. First, very large crystallite
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size leads to the phenomenon of granularity, which is dealt
with in detail in Section 2.10.1.1. Crystallites diffract only
when the Bragg condition is met, so if the crystallite size is a
sizable fraction of the irradiated part of the sample, only a
small number of crystallites are aligned for diffraction. With
only relatively few crystals diffracting, the peak shapes,
intensities and apparent d-spacings are strongly distorted.
Second, when there is amorphous material present, it is
visible in the diffraction pattern only as structure in the
background signal and is not analysed using standard crys-
tallographic techniques.

(iv) How representative the recorded pattern is of the sample.
There are two other factors that can affect accuracy of the
diffraction pattern.

The first is that the crystallites may have preferred (rather
than random) orientations, so that some sets of atomic
planes are overrepresented and others underrepresented in
the diffraction pattern. This effect and the means to over-
come it in X-ray diffraction measurements are covered in
Section 2.10.1.2. Neutron powder diffraction, by using large
samples on a rotating sample holder in transmission
geometry, is generally far less susceptible to preferred
orientation than X-ray diffraction. In cases where preferred
orientation is unavoidable, it is generally of a simple axial
form due to the sample rotation. Quite good analytical
means for modelling preferred orientation of this type are
available in the various refinement programs described in
Chapter 4.7.

The second effect is attenuation. For most materials,
thermal neutrons are attenuated comparably by true
absorption and scattering, the overall effect being very
minor. For a small number of elements (e.g. B, Cd, Gd — see
Table 2.3.2) the absorption is high, and in an even smaller
number of isotopes (e.g. H) the incoherent scattering is high
enough to give significant attenuation. Details of these
processes are dealt with in Section 2.10.2.4 as well as in
Sections 2.4.2 and 3.5.3 of Kisi & Howard (2008). In
summary, when using transmission geometry and absorbing
samples, diffraction peaks at low angle (CW) are attenuated
more than those at higher angles. An additional linear
dependence on neutron wavelength occurs in TOF patterns.
Therefore the relative intensities are incorrect and during
structure refinements unreasonable (often negative) displa-
cement parameters will result. When strongly attenuating
elements or isotopes are present three approaches are
available; the data can be recorded in reflection geometry,
the capillary-coating method can be adapted from X-ray
diffraction, or the sample can be diluted with a large amount
of a weakly absorbing material. The latter two methods are
explained in Section 2.10.1.4.2.2.

Sample-related factors that interact with the precision of
various crystallographic and microstructural parameters deter-
mined from a given diffraction pattern are:

(i) The crystallite size within the sample. As discussed at length in
Chapter 2.10, the ideal size for crystallites in a powder-
diffraction measurement is 2-5 um. The upper limit is
determined by onset of granularity [see (iii) above]. The
lower limit is set by the onset of detectable crystallite size
broadening (Chapter 5.1). To first order, the broadening of
diffraction peaks due to small crystallite size is well under-
stood. It has negligible effect on the measured intensity of
diffraction peaks and does not affect the numerical value of
the peak positions (hence d-spacings); however, the precision
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or standard error of such measured positions is strongly
affected. In addition, the precision (standard error) of
measurements of other microstructural features such as
strain distributions, dislocation density or stacking-fault
probability are strongly affected. Powdered samples should
be sized to lie within the range 2-5 um with the lower limit
being the more important in this case. The crystallite size
within solid polycrystalline samples is an inherent part of the
system. Forming a material with a fine grain size is a universal
method for strengthening metals and ceramics alike. In
systems undergoing phase transitions the crystallites typically
subdivide into small portions during the transition. Conse-
quently, crystallite size broadening is often an inevitable part
of a powder-diffraction experiment.

(i) How ideal the crystal structure is within the crystallites. The
preparation of powder samples can induce several types
of lattice defects (dislocations, stacking faults, twin faults
etc.) into the material under study. Each of these leads to
changes to the peak positions, shapes and breadths.
Likewise, in solid polycrystalline samples, thermal-expansion
anisotropy and mismatch between different phases cause
intergranular strains which manifest themselves in broadened
peaks. Each new source of broadening strongly affects the
precision with which other microstructural features of the
sample can be determined from peak-shape analysis. In
ground powders, it is sometimes possible to relieve stresses
and repair defects by annealing, but only if it is certain that
no detrimental changes to the material occur under the
annealing conditions.

A common prerequisite for the detailed analysis of diffraction
patterns is a good understanding of the instrument’s character-
istic peak shapes and widths, i.e. the resolution function (Sections
2.3.4.1.4 and 2.3.4.2.1). The parameters of the resolution function
are needed to enable Rietveld (Chapter 4.7) or whole-pattern
(Chapter 3.6) analysis of the diffraction patterns. A good
description for the instrument resolution function is important in
the study of sample microstructure (e.g. crystallite size, strain
distribution or dislocation studies) and may be established using
standard samples. Early versions of the NIST LaBg lattice-
parameter and peak-shape standards (SRM 660) were unsuitable
because of the high neutron absorption of natural boron. More
recently, NIST has developed LaBg standards SRM 660b and
660c made with ''B that can be used for neutron diffraction (see
Section 3.1.4). Suitable air- and moisture-stable alternatives with
a closely regulated crystallite size and a moderate density of
diffraction peaks include Al,Os;, CeO,, Y,O; and some inter-
metallic compounds such as CugAl, and CusZng.

One’s ability to successfully analyse a diffraction pattern is
then strongly affected by:

(i) Smooth and locally monotonic peak shapes. The two primary
causes of failing to meet this requirement are granularity
(crystallites significantly above the preferred 2-5 pm size)
and unusual sample shapes such as hollow samples. Exam-
ples of the former may be seen in Figs. 2.10.2 and 2.10.3,
where large single crystals in the sample each give a discrete
diffraction peak, the composite of which looks nothing like
the true powder peak shape. The case of hollow samples is
rarely seen unless the ‘capillary-coating’ technique (see
Section 2.10.1.4.2.2) is adopted for a highly absorbing sample
or diffraction peaks from a hollow sample container are also
to be analysed. In this case, the peak shape will have a
depression in the centre due to the non-uniform distribution
of diffracting matter across the specimen.



2. INSTRUMENTATION AND SAMPLE PREPARATION

(ii) Crystallite perfection. For crystal-structure studies, it is
preferred that the crystallites in the sample be as near
perfect’ as possible. However, materials of interest are
often far from perfect, containing stacking faults, domain
walls, antiphase boundaries, compositional gradients, strain
gradients efc. Fig. 9.22 in Kisi & Howard (2008) illustrates
this for a ferroelectric material. Here the individual crys-
tallites are subdivided into ferroelectric domains with
different orientations defined by the symmetry relationship
between the parent (cubic) and daughter (tetragonal)
structures. Where differently oriented domains abut, there is
a strain gradient over a finite portion of crystal. This is visible
in the diffraction pattern as a plateau between twin-related
pairs of peaks such as the 200/002 pair shown, because in the
strain gradient all d-spacings between d,o, and dgyy, are
present.

(iii) Sample perfection. The major types of imperfection in
sampling are described under accuracy in the preceding
discussion. Our main interest here is in the preferred
orientation of crystallites, which means some diffraction
peaks are exaggerated and others underrepresented in the
diffraction pattern. Methods for avoiding or reducing
preferred orientation are dealt with in Section 2.10.1.2. In
addition, whole-pattern fitting and reasonably robust math-
ematical models for preferred orientation, principally the
March-Dollase model (Dollase, 1986) and models based on
spherical harmonics (Ahtee et al., 1989), have reduced the
effect of preferred orientation on crystal-structure para-
meters and quantitative phase analyses derived from
powder-diffraction patterns. In a small number of cases of
severe and/or multi-axis preferred orientation, these models
can fail and efforts to reduce the effect within the sample
need to be revisited.

2.3.5.3. Sample environment and in situ experiments

It is more often the case with neutron diffraction than with
X-ray or electron diffraction that the purpose is an experimental
study involving rather more than a simple room-temperature
data collection®® As such, there are a great variety and
complexity of sample environments available, relating to studies:
at room temperature, cryogenic temperatures, high temperature
and high pressure; under magnetic fields, electric fields or applied
stress; during gas—solid, liquid-solid, solid—solid or -electro-
chemical reactions; and almost any combination of these. There
are several other chapters in this volume that include descriptions
of sample environments for neutron powder-diffraction experi-
ments under high (hydrostatic) pressure (Chapter 2.7), electric
and magnetic fields (Chapter 2.8) and chemical and electro-
chemical reactions (Chapter 2.9). Some general guidance on the
mounting of samples is also given in Chapter 2.10. Additional
information concerning sample containers for non-ambient
studies, as well as sample environments not expressly covered in
these chapters, will be presented briefly below.

2.3.5.3.1. Sample containers

Solid polycrystalline samples can be directly mounted on the
diffractometer; however, powder samples require careful
containment. Powder spillage must be avoided because samples

19 1f the crystallites are too perfect, then diffracted intensities might be affected by
‘extinction’ (Sabine, 1985), so an ‘ideally imperfect’ crystallite is to be preferred.
20 For example, more than 90% of recent neutron powder-diffraction proposals to
Oak Ridge have requested non-ambient conditions (Kaduk, personal commu-
nication).
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may become activated in the neutron beam and spilled powders
present a radiological hazard. Owing to the low neutron
attenuation by most materials, neutron diffraction patterns are
generally recorded in transmission (Debye—Scherrer) geometry.
Therefore sample containers that do not contribute significantly
to the diffraction pattern are required. Fortunately there are
several materials that have essentially zero coherent neutron
scattering length, i.e. they give no discernible diffraction peaks
and minimal contribution to the background. Most versatile is
elemental vanadium, which has a scattering length of just
—0.3824 fm (Table 2.3.2), making its diffraction pattern 100-750
times weaker than most other metals. Coupled with excellent
room-temperature resistance to atmospheric corrosion, it is not
surprising that it is the material that is used most often for
neutron powder diffraction sample holders. Typical designs are
discussed in Section 2.10.2.3. Another useful material for room-
temperature containment is Al, which has very low attenuation
and few diffraction peaks of its own. This is especially useful in
cases where only the large d-spacing peaks are of interest, for
example with magnetic materials or large-scale structures, or
where a fine radial collimator is able to exclude diffraction from
the sample container.

Sample containers for specialized sample environments vary
greatly. Low-temperature studies routinely use V or Al cans, as
for room-temperature studies. High-temperature studies of
powders can use V cans up to approximately 1073 K provided
that an inert gas or vacuum environment is present. At higher
temperatures, thin-walled fused silica (silica glass) can be used as
it has several advantages: it is amorphous and therefore gives no
sharp diffraction peaks; it is vacuum tight and relatively easy to
seal to vacuum fittings via O-rings outside or graded glass—metal
seals within the hot zone of the furnace; it is transparent, so the
state of the sample can be viewed during loading and after the
experiment; and it is immune to thermal shock. Silica can survive
at temperatures up to 1473 K and for short periods can resist
temperatures up to 1673 K, although some devitrification may
occur. Care should be exercised since although fused silica has no
sharp diffraction peaks, its short-range order does give a struc-
tured background which has to be carefully treated in subsequent
analyses. Containers for still higher temperatures can be made
from other ceramics such as alumina or from refractory metals
such as Nb, Ta or W in increasing order of temperature resistance.
Noble metals such as Pt may seem to have some advantages;
however, they are extremely weak and fragile after high-
temperature annealing. All high-temperature sample-container
materials are able to chemically react with some samples at high
temperature and great care must be taken when selecting them. If
possible, a trial heating should be conducted off-line prior to the
experiment.

2.3.5.3.2. Non-ambient temperature

As neutron powder diffraction is routinely conducted in
transmission geometry, non-ambient sample environments have
many common features. They are typically cylindrical in shape,
with the sample can loaded centrally from above on a ‘sample
stick’, which goes by various names in different fields.

An example is the liquid-helium cryostat developed at the
Institut Laue-Langevin, shown in Fig. 2.3.26. The internal space
is evacuated and heat is removed from the sample via conduction
through the sample stick to cold reservoirs in contact with the
liquid-helium tank. The sample protrudes below the helium and
nitrogen tanks into the ‘tails’, which are thin-walled Al or V
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Figure 2.3.26
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(a) Exterior and (b) interior of the standard ILL liquid-helium cryostat for cooling samples in the range 1.8-295 K. An internal heater allows samples
to be studied without interruption from 1.8-430 K. Reproduced with permission from the ILL.

cylindrical sections that allow ready transmission of neutrons
but preserve the vacuum and exclude radiant heat from
the outside world. Liquid-helium cryostats can generally attain
base temperatures of 4.2 K (He alone) or 1.9 K if pumped.
Liquid-nitrogen cryostats are limited to 77 K. A second type of
low-temperature device is the closed-cycle He refrigerator,
commonly referred to by the trade name Displex. These are
more compact than a liquid-helium cryostat and do not
require refilling. Depending on the number of stages and internal
design, refrigerators with base temperatures as low as 4 K are
available.

Samples are typically first cooled to base temperature and then
studied at the chosen sequence of increasing temperatures. This is
achieved through a small electric resistance heater and control
system. As heat transfer to and from the sample is deliberately
poor in these devices, sufficient time should be allowed for the
(often large) sample to reach thermal equilibrium before
recording its neutron-diffraction pattern. It is worth noting that
the attainment of thermal equilibrium does not guarantee that
the sample has attained thermodynamic equilibrium. Some phase
transitions are notoriously slow, for example the ordering of
hydrogen (or deuterium) in Pd metal at 55 K and 75 K, which can
take up to a month (Kennedy et al., 1995; Wu et al., 1996), or the
ordering of Cin TiC, (0.6 < x < 0.9) around 973 K, which can take
a week to complete (Moisy-Maurice et al., 1982; Tashmetov et al.,
2002).

Raising samples to above ambient temperature is, for X-ray
diffraction, the subject of a separate chapter (Chapter 2.6);
however, neutron-diffraction high-temperature devices are
somewhat different. Most commonly used and most versatile is
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the foil element resistance furnace, in which Cu bus bars transfer
electric current to a cylindrical metal foil which heats up as a
result of its electrical resistance. Foil elements are typically 30—
60 mm in diameter and up to 200 or 250 mm long so as to provide
a long hot zone of uniform temperature within the furnace. The
sample is located, via a sample stick from above or occasionally
via a pedestal support from below, in the centre of the foil heating
element, ensuring that it is uniformly bathed in radiant heat.
Concentric metal-foil heat shields greatly reduce heat loss to the
exterior by radiation, while convective losses are avoided by
evacuating the interior of the furnace to ~10~> mbar. Metals for
manufacture of the foil elements include V, which has almost no
coherent diffraction pattern and can operate continuously up to
1173 K or intermittently to 1273 K. For temperatures above this,
progressively more refractory metals are chosen such as Nb
(<1773 K), Ta (<2473 K) or W (2773 K). These materials will
contribute some small diffraction peaks to the observed patterns,
which requires the recording of reference patterns from the
empty furnace before commencing. Owing to the internal
vacuum, some types of sample are at risk of subliming, decom-
posing or disproportioning during the experiment. In such cases,
sample cans that extend outside the hot zone, where they can be
coupled to a gas-handling system and filled with an internal
atmosphere of air, an inert gas or a reactive gas of interest as
required, are used.

Alternatives to foil furnaces include variations of the wire-
wound laboratory furnace with a split winding and reduced
insulating material in the neutron beam path, Peltier devices, hot-
air blowers and induction heaters. The first three of these are
discussed by Kisi & Howard (2008).
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Elements of a typical mechanical testing machine used for applying
uniaxial stress (pressure) to samples on an engineering neutron
diffractometer. This example of a 100 kN device is from the instrument
ENGIN-X at the ISIS facility, UK. (Credit: STFC.)

Non-ambient temperature devices are usually designed for
operation either below or above ambient temperature. However,
there are a large number of phase transitions and other
phenomena that span from below to above ambient temperature.
In order to avoid transferring samples from one sample envir-
onment to another mid-experiment, a useful hybrid device is the
cryo-furnace. Cryo-furnaces are based around the liquid-helium
cryostat and are equipped with more powerful heaters, allowing
temperatures typically in the range 4-600 K to be covered.

2.3.5.3.3. Uniaxial stress

There are two major applications of in sifu uniaxial loading. In
the first, stress-induced phase transitions, ferroelasticity or simply
mechanical response are studied throughout the whole sample as
a function of applied stress. This may be undertaken on any
powder diffractometer with a reasonable data-collection rate,
depending on the resolution required. Parameters typically
monitored are the relative phase proportions of parent and
daughter structures, lattice parameters, individual peak shifts,
which can yield the single-crystal elastic constants (Howard &
Kisi, 1999), peak widths, which can indicate the breadth of strain
distributions, and preferred-orientation parameters, which can
indicate the degree of ferroelasticity (Kisi et al., 1997; Ma et al.,
2001; Forrester & Kisi, 2004; Forrester et al., 2005). The second
application involves strain scanning using an engineering
diffractometer as described in Section 2.3.4.3; however, in this
instance an external load is applied to the object under study.
This technique can be used to validate finite element analysis
simulations of complex components with or without internal
residual stresses.

Devices for the in situ application of uniaxial stress include
adaptations of laboratory universal testing machines such as the
100 kN hydraulic load frame shown in Fig. 2.3.27. Devices such as
this may be used in tension, compression, fatigue or even creep
conditions depending on the sample and the problem under
study.

For more specialized applications, it is sometimes possible to
create a more compact device. A recent adaptation of strain
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Figure 2.3.28
(a) Cross section and (b) exterior of a self-loading die for the study of
stresses in granular materials.

scanning is to study the stress distribution within granular
materials subjected to a variety of load cases as either the average
stresses shown in Fig. 2.3.23 (Wensrich et al., 2012; Kisi et al.,
2014), or the stress tensor in individual particles throughout a
granular material bed. The latter provides insight into inhomo-
geneous stress distributions such as force chains (Wensrich et al.,
2014). The device that was used in these studies (Fig. 2.3.28) is a
self-loading die within which a granular material is compacted
while diffraction studies are conducted.

2.3.6. Concluding remarks

Neutron powder diffraction is just one of many neutron-
scattering techniques available; however, it is one that is very
commonly used. In fact, the demand for this particular neutron
technique is rivalled only by that for small-angle neutron scat-
tering. The close analogy with X-ray powder diffraction makes
the technique very familiar to many practitioners of that tech-
nique. The differences from X-rays are also critical (Sections 2.3.1
and 2.3.2), since these are the means by which neutron diffraction
can obtain information not otherwise accessible. In this chapter
we have included descriptions of the various types of neutron
source, the neutron powder diffractometers installed at these
sources, and a selection of routine and more specialized appli-
cations. Demand for the technique is expected to continue,
buoyed by further developments in instrumentation and the
exploration of new applications.
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2.4. Electron powder diffraction

J-M. Zvo, J. L. LABAR, J. Zuang, T. E. GoreLIK AND U. KoLB

2.4.1. Introduction

Electron powder diffraction is commonly performed in trans-
mission geometry inside a transmission electron microscope
using ~80-300 kV high-energy electrons with wavelengths from
0.0418 to 0.0197 A (Cowley, 1992; Peng et al., 2004). The incident
electron beam can be as small as a few nm or as large as tens of
pm in diameter. Transmission electron powder diffraction can be
obtained from randomly oriented nanocrystalline or amorphous
materials. The short electron wavelengths allow the observation
of powder diffraction rings over a large range of S (= sinf/1).
Electron powder diffraction can also be performed using the
Bragg reflection geometry in reflection high-energy electron
diffraction (RHEED) with 10-30 kV electrons (Ichimiya &
Cohen, 2004). RHEED has a limited penetration depth and
therefore is mostly used for the study of supported nanoparticles.

Because the electron beam can be formed into a small probe
using electromagnetic lenses in a transmission electron micro-
scope, electron diffraction has the advantage of being able to
address individual particles in a powder as single crystals. Single-
crystal electron diffraction data are often used for the determi-
nation of unit-cell parameters (Zuo, 1993; Zuo et al., 1998;
Gramm et al., 2006; Sun et al., 2009; Kolb et al., 2006; Zhuang et
al., 2011), phase identification (Gramm et al., 2006) or quantita-
tive structural analysis (Vincent & Exelby, 1991; Jansen et al.,
1998; Tsuda & Tanaka, 1999; Hovmoller et al., 2002; Sun et al.,
2009; Gorelik et al., 2010; Mugnaioli ef al., 2012), or in combi-
nation with X-ray and neutron powder diffraction for structure
determination (Wu et al., 2006; Baerlocher et al., 2007; McCusker
& Baerlocher, 2009).

The principle of electron diffraction is similar to that of X-ray
diffraction. Both use atomic scattering and interference of the
scattered waves to probe the atomic structure. The difference is
that electrons are charged particles and interact with both the
electrons and nucleus of the atom with a large elastic scattering
cross section (several orders of magnitude larger than that of
X-rays). The combination of short wavelength, the large scat-
tering cross section and the small electron beam makes electron
powder diffraction a powerful technique for the analysis of
amorphous or nanocrystalline thin films, nanoparticles and
‘small” crystals in general (see Fig. 2.4.1 for an example).

A drawback of the strong interaction of electrons with matter
is the presence of multiple-scattering effects. In X-ray diffraction,
the measured integrated intensity is often less than predicted by
the theory for an ideally imperfect crystal (because of extinction)
but larger than predicted by the theory for an ideal perfect
crystal. There are two types of extinction: primary and secondary.
Primary extinction describes the multiple scattering within a
single mosaic block. Primary extinction diminishes the intensity
when the mosaic blocks are so large that they behave as frag-
ments of perfect crystals. The effect of electron multiple scat-
tering is similar to primary extinction in X-ray diffraction, except
the electron extinction length is short and comparable with the
sample thickness. Strong extinction can be an issue when analysis
based on kinematical diffraction (single-scattering) theory, as in
X-ray powder diffraction, is used for electron diffraction inten-
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sities; thus dynamic theory, which takes into account multiple
scattering of the incident and diffracted waves inside a crystal, is
necessary. Secondary extinction also occurs in electron powder
diffraction. However, so far there is no satisfactory treatment of
this effect in electron diffraction. For small nanoparticles or
nanocrystalline thin films the electron multiple-scattering effects
are typically reduced, so quantitative structural information can
be extracted from electron powder diffraction using the kine-
matical approximation (Cockayne & McKenzie, 1988; Ishimaru et
al., 2002; Chen & Zuo, 2007; Cockayne, 2007). Recent studies
have demonstrated that multiple-scattering effects can be
significantly reduced by averaging over a range of crystal orien-
tations using precession electron diffraction (Vincent & Midgley,
1994; Gjonnes et al., 1998; Gemmi et al., 2003; Own et al., 2006;
Oleynikov & Hovmoller, 2007). The same benefit is expected in
electron powder diffraction with 360° orientation averaging.
The quality of electron powder diffraction work has also
benefited from the development of TEM (transmission electron
microscopy) technologies. The adoption of field emission guns
(FEGs) in conventional transmission electron microscopes led to
the development of electron sources with high brightness, small
probe size and improved coherence. Electron energy filters, such
as the in-column 2 energy filter, allow a reduction of the inelastic
background due to plasmon scattering, or higher electron energy
losses, with an energy resolution of a few eV (Rose & Krahl,
1995). The development of array detectors, such as charge-
coupled device (CCD) cameras or image plates, enables the
recording of entire powder diffraction patterns and direct
quantification of diffraction intensities over a large dynamic
range that was not possible earlier (Zuo, 2000). The latest

Figure 2.4.1

An electron powder diffraction pattern recorded on an imaging plate
from a polycrystalline Al thin film using selected-area electron
diffraction geometry with 200 kV electrons.
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Schematic diagram of the Ewald sphere construction and the geometry for recording electron diffraction patterns.

development in time-resolved electron diffraction at a time
resolution approaching femtoseconds (Elsayedali & Herman,
1990; Siwick et al., 2003) will significantly improve the ability to
interrogate structures at high spatial and time resolution.

Irradiation of both organic and inorganic materials with an
electron beam can cause severe modification of the structure. The
amount of energy deposited into the material can be estimated
through the ratio of the elastic and inelastic scattering cross
sections. For carbon the ratio for electrons (300 keV) and X-rays
(with a wavelength of less than 1 A) is comparable, meaning that
the radiation damage caused by these sources is on the same scale
(Henderson, 1995). Electron radiation damage is caused by all
kinds of ionization processes, including bond breakdown and
subsequent recombination of radicals and active molecular
species. Inorganic materials can show knock-on damage (atomic
displacement) or sputtering effects (loss of atoms). This damage
may lead to a total structural collapse. The collective damage due
to electron radiation is quantified using the electron dose and
electron dose rates. In many cases the damage can be reduced by
minimizing the electron dose received by the sample, cryo-
protection, or deposition of a protective conductive layer
(Reimer & Kohl, 2008).

This chapter covers the practical issues and theory of electron
powder diffraction as well as applications for material analysis. A
fundamental description of electron diffraction can be found in
International Tables for Crystallography, Vol. C (2004) and the
book by Zuo & Spence (2017). The present chapter is subdivided
into seven sections. Sections 2.4.2 and 2.4.3 cover the theory
and the experimental setup of an electron powder diffraction
experiment using transmission electron microscopes, respectively.
Sections 2.4.4 and 2.4.5 discuss the application of electron powder
diffraction data to phase and texture analysis and related tech-
niques. Rietveld refinement with electron powder diffraction data
is a relatively new field; this is discussed in Section 2.4.6. The last
section reviews pair distribution function (PDF) analysis using
electron diffraction data.

2.4.2. Electron powder diffraction pattern geometry and intensity
By J-M. Zuo anD J. L. LABAR

The powder diffraction rings in transmission geometry appear
where the cone of diffracted electron beams intersects the Ewald
sphere. The intersection creates a ring of diffracted beams, which
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is then projected onto the planar detector (see Fig. 2.4.2) with a
radius (R) according to

R = Ltan26y. (2.4.1)

Here 63 is the Bragg diffraction angle and L is the camera length.
The d-spacing can be obtained by measuring the length of R in
an experimental diffraction pattern using
A
© 2sin@y

(2.4.2)

The electron wavelength is determined by the electron accel-
erating voltage (@), in volts:

h 1.226
A= i = 72"
(2m,®) [@(1 4 0.97845 x 10-6D)]

(2.4.3)

The wavelength of high-energy electrons is relatively short. For
200 kV electrons, the wavelength is 0.025 A and the Bragg angle
is very small. For example, for d = 2.5 A the electron scattering
angle 6 is 5 mrad. For a small Bragg angle one can use the
approximation sin 6 >~ tan 6 ~~ 6. This gives the relationship

L

d~—. 2.4.4
Rd (2.4.4)

At large scattering angles with sin /A 2 A~ 'or greater, a better
approximation is given by (Cowley & Hewat, 2004)

( 3R?

1+2—).
+8L2)

The camera length L can be determined using a sample with
known d-spacings, while the electron wavelength or acceleration
voltage can be calibrated using high-order Laue zone (HOLZ)
lines in convergent-beam electron diffraction (CBED) patterns
(Zuo, 1993).

For a small parallelepiped crystal fully illuminated by a
coherent electron beam of intensity /;, the kinematic diffraction
intensity is given by

LA
d~—

- (2.4.5)

2
|Fhk,}2 sin[zS,,;; - N;a] sin[nS,,;, - N,b]sin[xS,,, - N;c]

Isc =1, 12

’

sin[nS,,, - a]  sin[7S,,, - b] sin[xS,,, - ¢

(2.4.6)

where Ny, N, and N; are the number of unit cells along the three
axis directions, and Fj,; is the electron structure factor of the hkl
reflection:
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Foy = Y T exp2mi(hx; + ky; + Iz;)]. (2.4.7)
i=1

Here T is the atomic displacement factor, which accounts for
atomic thermal vibrations, and the electron atomic scattering
factor f is defined by equation (4.3.1.13) in International Tables
for Crystallography, Vol. C (2004). For a reflection with the
scattering vector g,,, the deviation from the Bragg condition of
the hkl reflection is expressed by the excitation error S;;;:

k — Ky =gy + Sp- (2.4.8)

The diffraction intensity recorded in a powder diffraction
pattern is the integrated intensity over the crystal orientation and
the detector area. A change in crystal orientation leads to a
change in the excitation error normal to the diffracted beam in
the plane of Bragg reflection. The integration in these three
directions is equivalent to integration over the reciprocal-space
volume around the Bragg peak. The result gives the diffraction
power of a sample with a large number of crystallites for the hkl
reflection as (Warren, 1990)

Vsample dhkl 2

v , (2.4.9)

|Fhkl

where Vampie is the sample volume, 71, is the multiplicity of the
reflection based on the symmetry-equivalent number of hkl
reflections, and V, is the volume of the unit cell. For randomly
oriented powder samples, the diffraction power is uniformly
distributed over the bottom edge of a cone of half apex angle
26, and height L, and the peak intensity is more appropriately
described by the power per unit length of the diffraction circle
(Vainshtein, 1964):

P hkl

7 Iy gV
K 2rLsin26,,, 47l

ample

Fl’. (24.10)

2
VZzcosb,,

Here cos 6,,, > 1 is a good approximation for electron diffraction
and this formula is presented in equation (2.4.1.3) in International
Tables for Crystallography, Vol. C (2004).

The kinematic approximation in electron diffraction is valid
only for very small crystals. Defining the validity of the kinematic
approximation for different crystals has been difficult and the
subject of extensive debate (Blackman, 1939; Vainshtein, 1964;
Turner & Cowley, 1969; Cowley, 1995). For single-crystal electron
diffraction, numerous studies using CBED have demonstrated an
almost perfect fit to experimental diffraction intensities using
dynamic theory. Using this fitting approach, experimental
structure-factor amplitudes and phases can be measured through
a refinement process with high accuracy (Saunders et al., 1995;
Tsuda et al., 2002; Zuo, 2004). However, this approach requires
knowledge of the approximate crystal structure and can rarely be
used for powder electron diffraction, where unknown crystal
structures are often studied. In developing a theory for the
integrated intensity for powder electron diffraction, the magni-
tude of the dynamic effect and its dependence on crystal orien-
tations, defects, thickness variations and crystal shape must be
considered. In X-ray and neutron diffraction, the combination of
these factors led to the highly successful kinematical theory of
ideal imperfect crystals with randomly distributed mosaic blocks.
For electron diffraction, an all-encompassing theory of integrated
intensity has been elusive because of the small electron coher-
ence length, which is much less than the size of typical mosaic
blocks detected by X-ray and neutron diffraction, and strong
scattering. An approximation has been developed to take

104

account of dynamical scattering using the two-beam theory
(Blackman, 1939). Under this approximation, the integrated
dynamic intensity I, over a large range of excitation is given by
the expression

A
1, o || [ Jo(20)dx. 2.4.11)
0
Here
AV Foglt Ay Elt
. V|Fwalt 2y |Fi] (2.4.12)

V . ’

c

V,.cos b,

where ¢ is the thickness of the crystallite along the electron-beam
direction, y is the relativistic constant of electrons and Jy(2x) is
the zero-order Bessel function. For a very small value of A, the
Bessel function Jy(2x) is nearly constant with a value of 1 and the
diffraction intensity approaches that of the kinematical limit.
From this, the following formula can be derived for the dynamical
intensity:

Apkl
/ Jo(2x) dx.

0
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For very large A,;, the integral over the Bessel function
approaches the value of 1/2 and in this case the diffraction
intensity is proportional to the structure-factor amplitude instead
of its square as predicted by kinematical theory.

The extent of dynamic effects that can be reduced by
averaging over crystal orientations has been demonstrated by
precession electron diffraction (PED). This technique was
originally developed by Vincent & Midgley (1994) to improve the
single-crystal electron diffraction intensities for structural
analysis. In PED, the incident electron beam is tilted and
precessed along a conical surface that is centred on the electron
optical axis. Below the crystal, the diffraction pattern is tilted
back with the position of the direct beam remaining approxi-
mately constant during precession. The diffraction pattern then
generally appears similar to a conventional electron diffraction
pattern. The measured diffraction intensity, however, is a double
integration over the two-dimensional detector and the incident-
beam angles defined by the precession cone surface. Experi-
mental and theoretical studies of PED integrated intensities
have shown an overall ‘more kinematical’ behaviour with less
sensitivity to crystal thickness and exact orientation than for
conventional electron diffraction patterns. Simulations also
showed that the dynamical effects are still present in the PED
integrated intensities, but the extent of the dynamic effect as
measured by the correlation between the integrated intensity and
the squared amplitude of the structure factor follows the
empirical rules:

(i) The correlation increases with the precession angle.

(ii) The correlation is more pronounced for higher-order
reflections than lower-order ones, for which the integration
over the different excitation error is less complete.

(iii) The correlation also improves as the crystal thickness
decreases.

In the electron powder diffraction of randomly oriented crys-
tals, the angular integration is performed over the entire solid
angle. Zone-axis patterns with enhanced dynamical interaction
between the diffracted beams are also included in this solid angle.
However, the overall probability for a crystal to be in exact zone-
axis orientation is very small, even if the zone axis is defined
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within a wedge of tens of milliradians. Thus, powder electron data
generally tend to be more kinematical than single-crystal data.

2.4.3. Electron powder diffraction techniques

By J.-M. Zuo AND J. ZHANG

The basic setup for electron powder diffraction uses a transmis-
sion electron microscope equipped with an area electron detector
(photographic film, CCD camera etc.). Thin films, such as amor-
phous carbon or holey carbon films supported on metal grids, are
typically used to support powder samples, which are then
mounted and inserted into the transmission electron microscope
inside a TEM sample holder. Solid free-standing thin films can be
placed directly on top of a metal grid.

The electron beam used for a powder electron diffraction
experiment is shaped using electromagnetic lenses. A modern
transmission electron microscope uses at least three sets of
magnetic lenses for the illumination system: condensers I and II,
and the objective prefield. The prefield is part of the objective
lens system before the sample acting as a lens. Some transmission
electron microscopes come with an additional condenser lens
(condenser III, or condenser mini-lens), which can be used for
nanodiffraction. These lenses are used in various combinations to
set up electron illumination for selected-area electron diffraction
(SAED) or nano-area electron diffraction (NAED) (Zuo, 2004).
The major difference between these two is the area of illumina-
tion, which is controlled by the strength (or focal length) of the
condensers II and III.

An issue to be considered during setup of the electron beam
for powder diffraction is the electron lateral coherence length. In
a transmission electron microscope, the electron coherence is
defined by the coherence length seen at the condenser aperture.
According to the Zernike—Van Cittert theorem, the degree of
coherence between electron wavefunctions at two different
points far away from a monochromatic electron source is given by
the Fourier transform of the source intensity distribution
(Cowley, 1999). If we assume that the source has a uniform
intensity within a circular disc, the coherence function is then
given by AJ,(zwBr/A)/Pr with J; being the first-order Bessel
function, r the radial distance at the aperture and B the angle
sustained by the electron source. The lateral coherence length L,
which is often referred to in the literature, is defined by r at the
first zero of J;, which has the value of L = 1.2A/f. The source
seen by the condenser aperture inside a transmission electron
microscope is the source image formed after the condenser-I lens.
For a Schottky emission source, the emission diameter is between
20 and 30 nm according to Botton (2007). For a condenser
aperture placed 10 cm away from the electron source image, a
factor of 10 source demagnification provides a coherence length
from 100 to 150 pm. When a smaller condenser aperture is used,
such as in NAED, the electron beam can be considered as
approximately coherent and the lateral coherence length on the
same is limited by the beam convergence angle o with
L =1.2A/a.

sample

2.4.3.1. Selected-area electron diffraction (SAED)

SAED is formed using the transmission electron microscope
illumination, which is spread out over a large area of the
specimen to minimize the beam convergence angle. The diffrac-
tion pattern is first formed at the back focal plane of the objective
lens and then magnified by the intermediate and projector lenses

105

Co’
.ﬂ -
Specimen plane

3

J ——= Objective lens

m— N

Back focal plane

Selected area aperture
Conjugate plane

Intermediate & projector
lenses

Diffraction pattern (screen)

Figure 2.4.3
Schematic illustration of selected-area electron diffraction in conven-
tional TEM. (Provided by Jun Yamasaki of Nagoya University, Japan.)

(only one is shown) onto the screen or electron detector (Fig.
2.4.3). The recorded diffraction pattern is from an area of interest
selected by placing an aperture in the conjugate (imaging) plane
of the objective lens. Only electron beams passing through this
aperture contribute to the diffraction pattern. For a perfect lens
without aberrations, electron beams recorded in the diffraction
pattern come from an area that is defined by the image of the
selected-area aperture at the specimen plane. The aperture image
is demagnified by the objective lens. In a conventional electron
microscope, rays at an angle to the optic axis are displaced away
from the centre because of the spherical aberration of the
objective lens (C;) as shown in Fig. 2.4.3. The displacement is
proportional to C,o’, where « is twice the Bragg angle. The
smallest area that can be selected in SAED is thus limited by the
objective lens aberrations. This limitation is removed by using an
electron microscope equipped with a transmission electron
microscope aberration corrector placed after the objective lens
(Haider et al., 1998).

The major feature of SAED is that it provides a large illumi-
nation area, which is beneficial for recording diffraction patterns
from polycrystalline samples as it leads to averaging over a large
volume (for example, a large number of nanoparticles). SAED
can also be used for low-dose electron diffraction, which is
required for studying radiation-sensitive materials such as
organic thin films.

2.4.3.2. Nano-area electron diffraction (NAED)

NAED uses a small (nanometre-sized) parallel illumination
with the condenser/objective setup shown in Fig. 2.4.4 (Zuo et al.,
2004). The small beam is achieved by reducing the convergence
angle of the condenser-II crossover and placing it at the focal
plane of the objective prefield, which then forms a parallel-beam
illumination on the sample for an ideal lens. A third condenser
lens, or a mini-lens, is required for the formation of a nanometre-
sized parallel beam. For a condenser aperture of 10 um in
diameter, the probe diameter is ~50 nm with an overall magni-
fication factor of 1/200 in the JEOL 2010 electron microscopes
(JEOL, USA). The smallest beam convergence angle in NAED is
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Schematic illustration of electron nanoprobe formation using a
combination of condenser lenses (II and III) and the objective lens.
The beam divergence angle is kept at a minimum by forming a crossover
at the front focal plane of the objective lens. An image of an
experimental electron nanoprobe is shown on the right with a carbon
nanotube contained inside the probe.

limited by the aberrations of the illumination lenses. A beam
convergence angle as small as ~0.05 mrad has been reported
(Zuo et al., 2004). A diffraction pattern recorded using NAED is
similar to one recorded by SAED. The major difference is that
the diffraction volume is defined directly by the electron probe in
NAED. Since all electrons illuminating the sample are recorded
in the diffraction pattern, NAED in an FEG microscope also
provides higher beam intensity than SAED (the probe current
intensity using a 10 um condenser-II aperture in a JEOL 2010F is
~10° e s~ nm?) (Zuo et al., 2004).

The small probe size is most useful for studying a small section
of thin films or for selection of nanoparticles for powder
diffraction. The small beam size reduces the background in the
electron diffraction pattern from the surrounding materials.

2.4.3.3. Sample preparation

The success of an electron powder diffraction experiment to a
large extent depends on sample preparation. The powder sample
has to be suitable for electron-beam observation, and the sample
also needs to be compatible with the vacuum environment of the
microscope. In situ experiments can be carried out using special
holders for cooling, heating and cryogenic or environmental
transfer. Special microscopes are also available to provide a
gaseous or ultra high vacuum environment for the investigation
of structures under a gas or at ultra low pressure, or in situ sample
preparation.

The observed area of the sample must be electron transparent,
i.e. have a thickness of less than or comparable to the inelastic
mean free path of electrons. The inelastic mean free path
increases with the electron voltage (Egerton, 2011). The typical
sample thickness ranges from a few tens to hundreds of nano-
metres for 200 kV high-energy electrons (see Table F.1 in Zuo &
Spence, 2017).

The sample-preparation techniques can be divided into three
categories: (i) bulk-based for bulky materials and supported thin
films, (ii) powder-based techniques and (iii) free-standing thin
films over a supporting grid prepared by vacuum evaporation or
sputtering.
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ZnO Nanoparticles
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Figure 2.4.5
Sample preparation and lift-out using a focused ion beam (FIB). A thin
section of the sample is cut out using the FIB and attached to a
mechanical probe for lift-out (inset). The image shows the lift-out section
containing ZnO nanoparticles in bright dot-like contrast supported on an
Si substrate.

The bulk-based techniques involve mechanical cutting, thin-
ning/polishing and perforation. An ion beam is typically used in
the last step of perforation to create a thin area around the edge
of a hole for electron-beam observation. Chemical and electro-
lytic methods are also often used for preparing electron-
transparent samples. While these methods have been applied to a
broad range of materials, they are mostly used for metals or
semiconductors to create smooth sample surfaces free from
defects or sample heating caused by ion-beam irradiation.
Mechanical thinning and polishing are sometimes done with a
wedge angle with the help of a tripod. The thin region next to the
edge only requires a brief ion-beam bombardment to make it
electron transparent. A detailed description of traditional
sample-preparation techniques for TEM can be found in Barna &
Pécz (1997). The above techniques are applicable to both thin
films and bulk nanocrystalline materials. The powder-based
techniques use dispersion of powders on thin supporting films
placed on metal grids specially made for TEM observations. This
technique is most suitable for nanoparticles. For micron or larger-
sized powders, additional grinding is used to produce smaller
particles. The most commonly used supporting films are contin-
uous amorphous carbon films, holey carbon films, networked
carbon fibres (lacey carbon), amorphous silicon nitride and SiO,.
For amorphous carbon films, an ultra thin version is available
which is especially useful for nanoparticle samples.

A recent development in TEM sample preparation is the use of
a focused ion beam of Ga" ions for cross-sectioning a sample. The
focused ion beam can drill a precise hole in the sample. The same
ion beam can also be scanned over a sample surface to form an
image by collecting the secondary electrons or ions generated by
the beam. The ion column can be integrated into an electron
column in a scanning electron microscope in the so-called dual-
beam configuration. An image can be formed using either elec-
trons or ions. Most often the electron beam is used for sample
inspection, while the ion beam is used for patterning and milling.
This allows precise control over the position and thickness of the
cross section, which is very practical for characterization of
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semiconductor devices or failure analysis in general (Fig. 2.4.5).
Further details about ion-beam techniques can be found in Labar
& Egerton (1999) and Orloff et al. (2002). For a comprehensive
review of sample-preparation techniques for TEM, see Ozdél et
al. (2012).

2.4.3.4. Diffraction data collection, processing and calibration

Experimental electron powder diffraction data are collected
using two-dimensional area electron detectors. Experimental
issues involved in the diffraction-pattern recording procedure are
electron optical alignment, diffraction-pattern collection and
calibration, with particular care taken in adjusting the specimen
height position (eucentric position), selection of a suitable
illumination-beam convergence angle and diffraction-camera
length, and finally projector-lens focusing. The diffraction-camera
length is determined by the setting of intermediate and projector
lenses in combination with the objective lens. To calibrate the
diffraction-camera length, a standard sample is placed in the
eucentric position of the objective lens at the standard focus. At
this setting, the specimen plane is conjugate to the selected-area
aperture (Fig. 2.4.3) and the sample image appears in focus. To
obtain a sharp diffraction pattern, the detector plane must be
conjugate to the back focal plane of the objective lens. This can
be achieved by setting up a parallel-beam illumination and
adjusting the intermediate-lens focus length to bring the direct
beam into a sharp focus.

Currently available area electron detectors are CCD and
CMOS cameras, imaging plates (IPs) and photographic film.
While photographic film has a long history of use in electron
microscopy, its limited dynamic range makes it less useful for
electron diffraction data collection. Both CCD cameras and IPs
are digital recorders capable of collecting electron intensity over
a large dynamic range. The crucial characteristics of digital
recording systems are the gain (g), linearity, resolution, detector
quantum efficiency (DQE) and the dynamic range. The gain of a
CCD or CMOS camera can be normalized using a flat-field illu-
mination; the gain in IPs is assumed to be constant. The detector
resolution is characterized by the point-spread function (PSF),
which is roughly the detector’s response to a point-like illumi-
nation. These characteristics for CCDs and IPs have been
compared by Zuo (2000). The intensity of an electron diffraction
pattern recorded with a digital detector is given by

Irecorded(i’j) — g(i,j)H(i,j) ® ]Original(i’]-) +n(i, ),

where g(i, j) is the detector gain image, H is the PSF of the
detector, n is the detector noise and I°"€™ is the intensity of
scattered electron beams originally received by the detector. The
i and j are the pixel coordinates of the detector. The PSF is
experimentally characterized and measured by the amplitude of
its Fourier transform, or the so-called modulated transfer func-
tion (MTF). The effects of the PSF can be removed by decon-
volution. The Richardson-Lucy method is specifically targeted
for Poisson processes, which can be applied to CCD images (Zuo,
2000). The alternative to the removal of the PSF is to treat it as
part of the peak broadening that can be used to fit the powder
pattern.

The noise in the experimental data is characterized by the
DQE:

(2.4.14)

mgl

Var(]) = m .

(2.4.15)

Here I is the experimentally measured intensity, var stands for
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the variance, m is the area under the MTF and g is the average
gain of the detector. Once the DQE is known, this expression
allows an estimation of the variance in measured intensity, which
is essential for quantitative intensity analysis where the variance
is often used as the weight for comparing experimental and fitted
data.

The performances of CCDs and IPs for electron diffraction
pattern recording are different at different electron dose rates. At
low dose rates, the DQE of the CCD camera is limited by the
readout noise and the dark current of the CCD. IPs have better
performance in the low dose range due to the low dark current
and low readout noise of the photomultipliers used in IP readers.
At medium and high dose rates, the IP signal is affected mostly by
the linear noise due to the granular variation in the phosphor and
instability in the readout system, while for CCDs the noise is
mostly linear noise in the gain image.

Electromagnetic lenses are not perfect and have aberrations
affecting the collected data. In most transmission electron
microscopes, electron diffraction patterns are produced using the
post-specimen magnetic lenses. For electron diffraction, the most
important aberration is the distortion of the projector lens,
causing a shift of an image point. There is no blurring in
diffraction patterns associated with the lens distortion. However,
the distortion affects the overall shape of diffraction patterns.
The distortion is most obvious at low camera lengths, where the
pattern may seem stretched or twisted at high scattering angles.
There are three types of distortion of the same order as the
spherical aberration of the lens. They are called pin-cushion,
barrel and spiral distortions (Reimer, 1984). A distortion can
also arise from the use of an electron energy filter, where a
lower order of distortion can be introduced with the use of non-
spherical lenses (Rose & Krahl, 1995).

For quantitative analysis an electron powder diffraction
pattern recorded on an area detector needs to be integrated into
one-dimensional powder diffraction data (Fig. 2.4.6). The inte-
gration involves four separate steps: (i) identifying areas of the
diffraction pattern for integration, (ii) centring the diffraction
pattern, (iii) applying a diffraction pattern distortion correction,
if there is any, and (iv) integrating intensities for a constant
diffraction angle. Electron powder diffraction patterns can be
recorded on a crystalline support film, which gives sharp
diffraction spots distinct from the powder diffraction rings. The
sharp diffraction patterns from the support film can be excluded
from the powder diffraction intensity integration in step (i) by
using a mask. The same approach can be used to eliminate any
alien features from a diffraction pattern caused, for instance, by
the aperture or the energy filter. The diffraction pattern centring
is based on the analysis of the transmitted beam in the centre of
the pattern. As the transmitted beam is usually very strong and is
often overexposed, finding its centre may be a non-trivial task. In
order to prevent detector damage in the area of the transmitted
beam a beam stop is often used. In this case, the central area in
the pattern may have an irregular shape not suitable for the
centring procedure. Non-distorted diffraction patterns can be
centred by finding the centre of the concentric diffraction rings
either by locating the position of the maximum diffraction peak
intensity along the ring and using these positions to determine
the centre of the ring, or by searching for the centre that gives the
maximum correlation between I(g) and I(—g). For distorted
diffraction patterns, the centring and the distortion correction
must be carried out simultaneously.

The distortion correction requires a powder sample with
known d-spacings. The amount of distortion can be obtained by
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An example of electron powder diffraction recording for nanodiamonds. (a) A TEM image showing nanodiamond particles supported on amorphous
carbon, (b) the magnified image from the boxed region of (a), and (c¢) the recorded electron powder diffraction pattern from nanodiamond particles

and the obtained radial intensity profile.

fitting the diffraction ring position R,(¢) using a cosine expansion
with
N
R(@) = R+ AR, cosn(p — ¢,). (2.4.16)
n=1
where R is the average radius (zero order) of the diffraction ring,
AR represents the amplitude of distortion of order n and ¢ is the
azimuthal angle. Once the distortion is calibrated and excluded
from the data, the diffraction intensity integration can be simply

carried out by summing the recorded diffraction intensity
according to the radius using

In 2%21[171]9

where the sum is taken over R(i,J, i, jo, AR) € {nd, (n + 1)8}.
Here the powder diffraction intensity is integrated in fine discrete
steps along the radius of a diffraction pattern (corresponding to
increasing scattering angle) with an interval of §, the summation
is done over all diffraction pixels that fall between the radius of
nd and (n + 1)§ and N is the number of these pixels.

Filtering the inelastic background is an option for electron
microscopes equipped with an electron energy filter. A major
contribution to the inelastic background in electron diffraction
patterns comes from bulk plasmon excitation (Egerton, 2011).
This can be filtered out by dispersing the electrons according to
their energies using magnetic or electrostatic fields inside an
electron energy filter and using a slit of a few eV in width around
the elastic (zero-loss) electron beam. For use with an area elec-
tron detector for electron diffraction, the filter must also have a

(2.4.17)
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double focusing capability to function as an imaging lens. There
are two types of electron imaging energy filters that are currently
employed: one is the in-column 2 energy filter and the other is
the post-column Gatan imaging filter (GIF). The in-column 2
filter is placed between the transmission electron microscope’s
intermediate and projector lenses and can be used in combina-
tion with IPs, as well as with a CCD or CMOS camera. The GIF is
placed after the projector lens and the use of a GIF for electron
diffraction typically requires the transmission electron micro-
scope to be switched to a special low-camera-length setting. For
electron diffraction, geometric distortions, isochromaticity and
the angular acceptance are important characteristics of the
imaging filter (Rose & Krahl, 1995). Geometrical distortions arise
from the use of non-cylindrical lenses inside the energy filter. The
distortion can be caused by optical misalignment, which is an
issue with the GIF with its low camera-length setting. The amount
of distortion can be measured using a standard calibration sample
and corrected using numerical methods. Isochromaticity defines
the range of electron energies for each detector position. Ideally,
this should be the same across the whole detector area. The
angular acceptance defines the maximum range of diffraction
angles that can be recorded on the detector without a significant
loss of isochromaticity (Rose & Krahl, 1995).

2.4.4. Phase identification and phase analysis
By J. L. LABAR

For known structures, powder diffraction patterns can be used for
identification of the crystalline phases and quantification of their
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volume fraction for samples containing multiple phases. These
procedures are usually performed in two steps. First, the candi-
date phases must be selected to produce a shortlist of the
structures that may be present in the sample. Preparation of the
shortlist generally relies on a priori chemical information
[obtained e.g. from energy-dispersive X-ray spectroscopy (EDS)
or electron energy-loss spectrometry (EELS)] to reduce the
number of candidate phases (crystalline structures) that are
searched for (Labar & Adamik, 2001; Labar, 2006) in a
comprehensive database such as the Powder Diffraction File
(Faber & Fawcett, 2002). The identification of the crystalline
phases in the experimental data is done through pattern finger-
printing. Final confirmation of phase identification is provided by
the success of quantitative or semi-quantitative phase analysis,
which determines the phase fractions and amount of texture.

In principle, the Le Bail structure-factor extraction (decom-
position) method (see Chapter 3.5) could also be used for elec-
tron diffraction ring patterns from nanocrystals that are small
enough to scatter kinematically or quasi-kinematically (Moeck &
Fraundorf, 2007). The main advantage of this approach would be
that no assumptions about the structure have to be made.
However, none of the methods available for electron diffraction
data follow this approach and identification of crystalline phases
generally follows a different route [qualitative phase analysis
(Labar & Adamik, 2001) or traditional structural fingerprinting
(Moeck & Rouvimov, 2010)].

After a two-dimensional ring pattern is integrated into a one-
dimensional intensity distribution, the positions and intensities of
peaks are extracted. The positions of the diffraction peaks are
used as minimum information for fingerprinting. For successful
phase identification the largest d values (at the smallest scattering
angles) are crucial. Unfortunately, they are not always listed in
the X-ray diffraction databases (Moeck & Fraundorf, 2007). Use
of diffraction-peak intensities for fingerprinting has limited
validity due to the deviation of electron diffraction intensities
from the kinematic scattering formalism and the possible
presence of texture in the sample. Phase analysis (fingerprinting)
is complete when only one (set of) model structure(s) remains
(out of several candidates listed in the previous step) on the basis
of best fit between the model and the measured diffraction
patterns. The addition of features to the Powder Diffraction File
to make it more useful for phase identification using electron
diffraction data is an active area of development.

Once a structural model is selected, the quantitative fit of
diffraction intensities is performed. The quantitative modelling
requires knowledge of the atomic positions within the unit cell.
Atomic coordinates are not listed in the older PDF-2 database,
but are given for many phases in the PDF-4+ database that
combines five collections provided by different institutions. There
are also open databases, like COD (http://www.crystallo-
graphy.net/cod/), NIMS_MatNavi (http:/crystdb.nims.go.jp/
index_en.html) or AMCDS (http:/rruff.geo.arizona.edu/AMS/
periodictable.php). They also list atomic coordinates and can
export structure data as CIF files.

For calculation of the electron structure factors, the electron
atomic scattering factors are given in International Tables for
Crystallography, Vol. C (2004). In the case of kinematical scat-
tering, the intensity is proportional to the square of the electron
structure factor F,;,. If necessary, an absorption correction can be
performed using the Weickenmeier & Kohl (1991) formalism.

Application of the quasi-kinematic formalism paves the way to
giving an estimate of grain size in the beam direction (Labar et al.,
2012). However, there is no straightforward correlation of this
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value with the actual crystal size or the thickness of the TEM
sample. The grain size coming from the quasi-kinematic formula
is also different from the size of the coherently scattering
domains that could be determined from the broadening of the
diffraction peaks (Ungar et al, 2001), which is related to the
lateral size of the crystallites (grains, particles) in the TEM
sample.

In addition to peak positions and intensities, the peak shape
and the background intensity have to be fitted. The pseudo-Voigt
peak shape is most frequently used in electron diffraction phase
analysis. The background intensity distribution in powder elec-
tron diffraction patterns is modelled empirically. The width of the
diffraction peaks is an empirical parameter in the present
implementation of phase analysis (Labar, 2009). A Williamson—
Hall type analysis of the variation of the experimentally observed
peak width with the diffraction vector is also possible for simple
profiles with well separated peaks (Gammer et al., 2010);
however, so far it has only been done for single-phase diffraction
profiles with a known material without an attempt to combine it
with phase analysis. Making the peak width dependent on grain
size and defect structure (Ungar et al., 2001) would in principle
also be possible for phase analysis from powder electron
diffraction data, but has not been implemented so far.

Selection of the appropriate structure model is done based on
the value of the goodness-of-fit (GOF) criterion. For a one-
dimensional electron diffraction profile recorded for n pixels, the
GOF is given by

1

(I7® — Iy, (2.4.18)

where p is the number of parameters used in fitting, w, is a
relative weight of the intensity value at the kth pixel, and I;"" and
I$° are the experimentally measured and calculated intensity
values for the kth pixel, respectively.

Structure models are described in parametric form (including
experimental parameters, peak-shape parameters together with
volume fractions of the phases and their fibre-textured compo-
nents: p parameters altogether) and the p-dimensional parameter
space is explored to calculate the GOF. The model with the
smallest GOF is accepted. In phase analysis the best match is
searched for by using the downhill simplex algorithm (Nelder &
Mead, 1965). The semi-global simplex was found to be robust and
allowed easy escape from local minima (Zuo & Spence, 1991)
when used for fitting CBED patterns.

For polyphasic diffraction profiles, the volume fraction of
phases is calculated at the end of the fitting procedure. It is
assumed that the net diffraction intensity in each pixel is a linear
combination of contributions of the individual phases (random
and textured fractions are treated as independent model
components). The over-determined set of equations is solved
using least-squares minimization. The number of equations is
reduced, while keeping the information content of all equations,
by forming matrix A as

a;; = »_Model,(i)Model, (j), (2.4.19)
3

where summation is performed for all pixels k& for the model
functions of the ith and jth phases, and vector b as

b, = Y (Measured, — Background,)Model, (i). (2.4.20)
3

The coefficients of the linear combination are obtained by solving
for vector x the matrix equation Ax = b using matrix inversion.



2. INSTRUMENTATION AND SAMPLE PREPARATION

The coefficients of this linear combination [x(i)] put the
intensities of the peaks in phase i on the absolute scale. ,,,(i),
the intensity calculated on the absolute scale for the strongest
(100%) diffraction peak of phase i, gives the intensity diffracted
by one unit cell (structure factors are calculated for the atoms of
one unit cell). Then x(i)/I,.({) is the number of unit cells of
phase i in the analysed volume. Consequently, the volume
extended by phase i in the analysed volume is V(2)x(i)/1,,,,(?),
where V(i) is the volume of the unit cell of phase i. The volume
fraction of phase f; is then given by

f= V()x(@) V()x (i)
' Imax (l) Imax (l) ’

In addition to volume fractions of phases and their fibre-textured
components, the same method can determine the variation
(contraction, dilation, distortions) of the unit cell, provided
experimental parameters specific to electron diffraction (e.g. the
camera length and pattern distortion) are properly calibrated.
The reliability of the camera-length calibration (systematic error)
is usually around 2% (Williams & Carter, 2009); in the best cases
accuracy of better than 0.3% has been reported (Labar et al.,
2012). Consequently, only large variations in the lattice para-
meter can be determined reliably from powder electron diffrac-
tion data and the typical accuracy of powder X-ray diffraction
cannot be attained.

There are two main advantages of phase analysis from powders
by electron diffraction compared with X-ray diffraction. First,
much smaller volumes can be studied. Diffraction information
can be collected from thin layers of a few tens of nanometres
thickness, enabling precise identification of the inspected volume.
If needed, different lateral sections from different depths
of a bulk sample can be studied by TEM, thus providing
three-dimensional information about the sample. In a non-
homogeneous sample, electron diffraction data can be collected
from different areas, allowing detection of different phases or
texture components at a spatial resolution and sensitivity
superior to X-ray diffraction methods (Labar er al., 2012).

The accuracy of the phase-content identification in a mixture
for the major components is around 10-15% (Labar et al., 2012).
The detection limit depends on the scattering power of the
component. A weakly scattering phase of Cr in a strongly scat-
tering matrix of Ag could only be detected at the content of 2%,
while the presence of 5% Ag in a relatively weakly scattering Ni
matrix allowed full quantification of the two phases (Labar et al.,
2012). Thus, generally 5% (by volume) is accepted as the
detection limit for powder electron diffraction experiments.

(2.4.21)

2.4.5. Texture analysis
By J. L. LABAR

The orientation distribution in a polycrystalline (nanocrystalline)
TEM sample (used for powder electron diffraction) can either be
random or a large fraction of grains can favour a special direc-
tion, i.e. the sample is textured. The texture can originate from
the non-spherical shape of the particles (as in sedimentation
geology or drop-drying of a suspension of nanoparticles on a
TEM grid) or from energetic and/or kinetic conditions during
nucleation and growth of grains in the formation of polycrystal-
line thin films on a substrate or, alternatively, the texture can be a
result of mechanical deformation (as in drawing wires or rolling
sheets of metals). Although the distribution of the preferred
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orientations can be very different, a few general types are
frequently observed.

In the simplest case only one preferred-orientation vector
characterizes the sample and the orientations of the grains are
distributed arbitrarily around that direction. This situation is
called fibre texture (single-axis texture). The most typical repre-
sentatives of this texture class are sedimentation platy particles
on a flat surface where the preferred-orientation vector is normal
to the flat face of the particles, or a drawn metal wire where the
preferred-orientation vector is directed along the wire axis.
Another texture type frequently observed in the sedimentation
of rod-shaped particles is described by the preferred-orientation
vector being confined within a plane, but being arbitrarily
oriented within this plane. Rolling of metal sheets results in
other, more complex, but well characterized texture types:
‘copper-type’, ‘brass-type’ and ‘S-type’ (Mecking, 1985).

There are different ways to handle texture with electron
diffraction. One approach is to collect the orientation informa-
tion from individual nanograins in an automated area scan and
reconstruct pole figures and inverse pole figures on a medium-
sized population of grains (Rauch et al., 2008). In principle, this is
a single-crystal method analysing the information from an
assembly of crystals. The Russian crystallography group devel-
oped the theory of arcs in oblique texture and used such textured
patterns in structure analysis (Vainshtein, 1964; Vainshtein &
Zvyagin, 1992). The TexPat software (Oleynikov & Hovmoller,
2004) was designed and effectively applied to determining unit-
cell parameters and refining structure from oblique textured
electron diffraction patterns. Tang et al. (1996) developed a
method to determine the axis of texture and distribution of
directions around that axis. The March-Dollase model (Dollase,
1986) for the description of pole densities was adapted for elec-
tron diffraction and used for the simulation of ring patterns (Li,
2010); however, no attempt was made to determine the phase
fractions or textured fractions automatically.

A simplified automatic treatment of texture was implemented
in the ProcessDiffraction software (Labar, 2008, 2009). Partial
texture is approximated by a linear combination of an ideally
sharp fibre texture and a random distribution of components.
Both the textured and the random components are treated as
separately determined volume fractions during quantitative
phase analysis (see Section 2.4.4). The advantage of the method is
that the determination of the textured fraction is combined with
simultaneous handling of a quasi-kinematic scattering by the
Blackman approximation, and these two effects, which both
modify the relative intensities, are treated simultaneously on a
unified platform.

The application of the most general method for determining
texture from powder electron diffraction patterns is restricted to
the thinnest samples where kinematic scattering holds (Gemmi,
Voltolini et al., 2011). The method consists of recording a set of
powder electron diffraction patterns at defined tilt steps of the
two-axis goniometer, covering a considerable part of the solid-
angle range usually used for recording pole figures. Azimuthal
sections are integrated separately in 10° steps. The resulting large
three-dimensional data set is fed into a variant of the Rietveld
method called MAUD (Lutterotti et al., 1997), which has built-in
scattering factors for electrons. The orientation density function
(ODF) is determined from the measured data by discretization of
the orientation space. For texture fitting the EWIMYV algorithm is
used (Lutterotti et al., 2004), which can be applied with irregular
pole figure coverage and includes smoothing methods based on a
concept of the tube projection. Pole figures from the smoothed
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ODF were obtained for both sediment aggregates and evapo-
rated thin films (Gemmi, Voltolini et al., 2011).

2.4.6. Rietveld refinement with electron diffraction data

By T. E. GoreLIK AND U. KoLB

The Rietveld refinement method was initially developed for
neutron diffraction data (Rietveld, 1967, 1969). It has now
become a standard technique which is extensively used with
neutron, laboratory X-ray and synchrotron diffraction data. A
detailed description of the method can be found in Chapter 4.7.

Compared with the popularity of Rietveld refinement in X-ray
and neutron powder diffraction, its application to powder elec-
tron diffraction data is very limited. So far, Rietveld refinement
with electron diffraction data has only been done for nanocrys-
talline Al, @-MnS (Gemmi, Fischer et al., 2011), hydroxyapatite
(Song et al., 2012), intermetallic AuFe (Luo et al., 2011), TiO,
(Weirich et al., 2000; Tonejc et al., 2002; Djerdj & Tonejc, 2005,
2006) and MnFe,O, (Kim et al., 2009). An example of a fit with
powder electron diffraction data obtained by Rietveld refinement
for hydroxyapatite is shown in Fig. 2.4.7.

Two major factors limit the application of Rietveld refinement
to electron powder diffraction. First, electron powder diffraction
data are collected from a sample volume far smaller than that
used in an X-ray experiment. Therefore, the average statistics are
poor compared with those of X-ray data. Nevertheless, electron
powder diffraction data from a small sample area or thin films can
give specific information which is difficult to obtain using other
methods. Second, the presence of dynamical effects in the elec-
tron diffraction data hinders quantitative assessment of reflection
intensities. Dynamical effects are strongest in zone-axis electron
diffraction geometry, when many beams belonging to the same
systematic rows are excited simultaneously. In powder electron
diffraction crystals are randomly oriented towards the electron
beam, thus making the fraction of zonal patterns low, thereby
reducing the dynamical scattering in the data (see Section 2.4.2
for a more detailed discussion).

Within the limit of kinematical diffraction, the principle of
Rietveld refinement is the same for electrons and X-rays, except
the electron atomic scattering factors are different. The refine-
ment procedure can thus be performed using existing programs if
it is possible to input the scattering factors for electrons. Most of
the reported Rietveld refinements on electron powder diffraction
data have been performed using FullProf (Rodriguez-Carvajal,

10000 |-
8000 |-
6000 |-

4000 -

o M

-2000 W-—*WWW—“H‘%—‘

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

26 (%)

Intensity (arbitrary units)

Figure 2.4.7

Rietveld analysis result with powder electron diffraction data of
hydroxyapatite. Reproduced from Song ez al. (2012) with permission
from Oxford University Press.

Figure 2.4.8
Powder electron diffraction pattern of nanocrystalline gold demon-
strating non-symmetrical background features.

1993); a refinement in MAUD (Lutterotti et al., 1999) has also
been reported (Gemmi, Voltolini et al., 2011).

Electron powder diffraction patterns are recorded on an area
detector. For a Rietveld refinement the two-dimensional
diffraction patterns have to be integrated into one-dimensional
profiles. The zero shift is treated as for the X-ray data integrated
from a two-dimensional position-sensitive detector. Details about
electron diffraction data processing and calibration are given in
Section 2.4.3.4.

The background in electron powder patterns is a complex
combination of inelastic scattering, scattering from the
supporting film (when it is present) and other factors. For the
Rietveld refinement procedure the background of a one-
dimensional integrated profile is fitted by a polynomial function.
If a supporting thin amorphous carbon film is used, the back-
ground can include broad rings, which after the one-dimensional
integration can produce pronounced broad peaks. These peaks
are difficult to subtract using a model based on a polynomial
function; therefore, these intensities may hamper the powder
diffraction profile matching (Kim et al., 2009). In some cases, the
background can even include radially non-symmetric features
originating from the shape of the tip within the electron source
(see Fig. 2.4.8); it can have blooming due to oversaturated CCD
pixels, or streak shadows due to the fast transmission electron
microscope beam-shutter movement. In these cases, a diffraction
pattern from the adjacent ‘empty’ area of the sample can be
acquired and subtracted from the diffraction pattern of the
material prior to the integration into one dimension. This
procedure allows elimination of some of the artifacts discussed
above, which otherwise after the one-dimensional integration
may be falsely interpreted as diffraction peaks, and are generally
more difficult to fit.

Unit-cell parameters are mostly subject to the error due to the
accuracy of the electron diffraction camera-length calibration.
Although examples have been published showing 0.3% accuracy
of the camera-length calibration, in most cases accuracy of about
2% can be achieved (Williams & Carter, 2009). The effective
camera length depends on many instrumental parameters such as
the convergence of the electron beam, the diffraction lens focus,
the mechanical position of the sample within the objective lens,
or the hysteresis of the electromagnetic lenses. Thus, while the
ratio of the lattice parameters within one aligned diffraction
pattern can be very precise, the absolute values might not be.
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Atomic displacement parameters can be refined from electron

powder diffraction data; however, the interpretation of the
results can be manifold. For nanocrystalline materials, which have
arelatively high surface-to-volume ratio, the surface effect can be
enhanced compared with that of the bulk. Thus, the average
atomic displacement factors can increase because of the high
fraction of near-surface relaxed atoms. Consequently, the
isotropic displacement parameter B resulting from the Rietveld
refinement can be relatively high. Local heating (Reimer, 1984)
during the electron illumination may also contribute to higher
average displacement parameters. Finally, if the electron beam
exceeds a material-dependent threshold acceleration voltage, it
can cause knock-on damage (Williams & Carter, 2009) in both
organic and inorganic materials. This is a dynamical process
which can cause both material loss and rearrangement of atoms.
The presence of defects resulting from the rearrangement of
atoms may lead to an increase in the average displacement
factors. Nevertheless, the refinement using polycrystalline
anatase data showed the expected displacement parameters of
1.4 (1) A% for Ti and 1.9 (2) A2 for oxygen (Weirich et al., 2000).
Of all the parameters used during Rietveld refinement, the
displacement parameters and atomic coordinates are probably
the most sensitive to a possible dynamical-scattering contribution
in the data. It is noticeable that after the refinement of the
anatase structure the atomic coordinates converged to reason-
able positions: [0, 1, 0.1656 (5)] for oxygen (Weirich et al., 2000)
compared with the previous range obtained in neutron diffrac-
tion studies of [0, 3, 0.16686 (5)] (Burdett er al, 1987) to
[0, £, 0.20806 (5)] (Howard et al., 1991).
The relative ratio of two components in a mixture can be
determined using the Hill-Howard approach (Hill & Howard,
1987): the relative weight of a phase in a mixture of phases is
proportional to the scaling factor of the phase given by the
Rietveld refinement combined with the mass and the volume of
the unit cell of the component. The relative content of a mixture
of anatase and brookite was successfully determined from elec-
tron powder diffraction data (Djerdj & Tonejc, 2005, 2006).

For the modelling of the Bragg reflection shape the Pearson
VII function can be used (Weirich et al., 2000; Kim et al., 2009),
although recently the more popular pseudo-Voigt peak shape
function has been used (Tonejc et al., 2002; Djerdj & Tonejc, 2005,
2006) and provides a satisfactory fit between the experimental
and calculated data.

The average crystalline domain size can be determined using
line-broadening analysis. The measured intensity profile is a
convolution of the physical line profile given by the sample with
the instrumental profile broadening. When expressed in terms of
the scattering angle 6, the width of the electron diffraction peaks
is much smaller than that for X-rays. On the other hand, electrons
generally have a smaller coherence length than X-rays. As a
result, for the same material, the effective peak width for electron
diffraction is larger than that for powder X-ray data (Song et al.,
2012). Because of this, it is sometimes difficult to separate the
domain size and the instrumental contributions to the peak
broadening. Therefore, the average domain size obtained after
the refinement procedure should be cross-checked with the
domain size determined from TEM images obtained, for instance,
using the dark-field technique (Williams & Carter, 2009).

In electron diffraction various instrumental parameters can
affect the peak width. The energy spread of the electrons causes
additional broadening of diffracted spots. This effect can be
partially reduced by energy filtering of the diffraction patterns
(Kim et al., 2009; Egerton, 2011). Finally, the electron diffraction
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Figure 2.4.9
Electron powder diffraction profiles of gold nanoparticles (range
2-6 nm™ ') recorded at different electron diffraction camera lengths.

camera length must be large enough that the detector broadening
is much smaller than the peak width, as demonstrated in Fig.
2.4.9: large values of the camera length (‘zoomed in’ diffraction
patterns) result in thinner, better separated peaks.

Preferred orientation can be an issue for electron powder
diffraction: when the powder material is supported on a thin film,
the crystals tend to orient themselves with their most developed
facet facing the support. As a result, the relative intensities of the
diffracted peaks are modified (Kim et al., 2009). Texture within
nanocrystalline powders introduced by the sample preparation
on a support for TEM can be analysed using electron powder
diffraction patterns recorded at different tilt positions of the
sample. Refinement of the preferred orientation of two different
materials — nanocrystalline aluminium and o-MnS powders —
showed that the aluminium particles tend to have strong
preferred orientation due to their facet morphology, while «-MnS
particles are randomly oriented (Gemmi, Fischer et al., 2011).

Although dynamical effects are believed to be reduced for
nanocrystalline materials and additionally reduced by data
collection from non-oriented crystals, the dynamical component
of the scattering cannot be neglected. For the dynamical
correction using the two-beam approximation formalism of
equation (2.4.12), the reader is referred to Section 2.4.2. For a
range of electron-beam energies from 20 to 50 kV it has been
shown that polycrystalline electron diffraction patterns of
aluminium crystals smaller than 9 nm have a dynamical scattering
component below 10% (Horstmann & Meyer, 1962). For poly-
crystalline MnFe,O, with an average crystal size of 11 nm
measured using a 120 kV electron beam, the ratio of the kine-
matical to dynamical contributions in the structure factor was
about 1:1.5 (Kim et al., 2009). The application of the small (less
than 3%) correction for the dynamical component during Riet-
veld refinement of nanocrystalline intermetallic AusFe;_,
improved the refined long-range order parameter of the alloy
(Luo et al., 2011).

In summary, the Rietveld refinement technique applied to
electron powder diffraction data is a new area of research. It can
be successfully carried out for small volumes of nanocrystalline
materials, for which the small electron beam is an advantage.
Results obtained from Rietveld analysis of electron powder
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diffraction data of nanocrystalline materials are encouraging. The
refinement for powders containing large crystal grains is
problematic because of dynamical scattering present in the data.
There are also uncertainties caused by instrumental effects. The
dynamical effects can be accounted for using the Blackman
formalism, while the influence of diverse instrumental para-
meters needs further systematic study.

2.4.7. The pair distribution function from electron diffraction
data

By T. E. GoreLik AND U. KoLB

An extensive description of pair distribution function (PDF)
analysis covering data acquisition, reduction and interpretation
can be found in Chapter 5.7. Here, only a short outline is
presented, concentrating on aspects that are specific to PDFs
obtained by electron diffraction.

Poorly crystalline and amorphous materials exhibit no long-
range order and therefore show no pronounced Bragg peaks in
diffraction patterns. Nevertheless, owing to defined bonding
geometry, these materials do have a specific local arrangement of
atoms, denoted as short-range order. The short-range order can
be analysed using the PDF obtained from the total scattering
profile. The PDF can provide general information about the
degree of order, the character of local atomic packing and the
size of the correlation domains. The total scattering function is
collected over a wide range of reciprocal space and includes not
only the Bragg reflections (if present), but also the diffuse scat-
tering information between them (Egami & Billinge, 2003).

The PDF G(r) represents the probability of finding a pair of
atoms with an interatomic distance r, weighted by the scattering
power of the individual atoms. After normalization and suitable
corrections, the reduced scattering function F(Q) is derived. [In
the PDF analysis, the scattering vector O, which is related to
the scattering angle 6 as Q = (4mrsin6)/A is used, instead of S =
sin 6/A.] The PDF can be calculated by the Fourier transformation
of F(Q) into direct space (Warren, 1990; Egami & Billinge, 2003;
Farrow & Billinge, 2009).

Powder diffraction data for PDF analysis should be measured
over a sufficiently large range of the scattering angle 0; therefore,
neutron or synchrotron sources or laboratory X-ray data with a
short-wavelength source (Mo or Ag anode) are used. Powder
electron diffraction data, with their flexibility in electron
diffraction camera length, short wavelength and nuclear scat-
tering at large scattering angles, can also cover the desired large
range of scattering angles and are therefore highly suitable for
PDF analysis. In addition, atoms have a much larger scattering
cross section for electrons than for X-rays or neutrons, allowing
sufficient signal collection from very small volumes. Finally,
electrons can be focused with lenses down to a few nanometres.
All these reasons make electron diffraction analysis attractive for
the study of the structure of nanovolumes. The electron PDF is
therefore a powerful tool for the investigation of the structures of
amorphous or poorly crystalline thin films, or for small sample
volumes of inhomogeneous samples.

There are several practical issues to consider when collecting
electron diffraction data for PDF analysis:

Energy filtering. Traditionally, electron diffraction data for
PDF analysis are collected using energy filtering in order to
exclude the inelastic scattering contribution. However, quanti-
tative or semi-quantitative electron PDFs can be obtained
without filtering (Abeykoon et al., 2012).
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Multiple scattering/dynamical effects. In order to keep the
contribution of non-kinematic scattering low, the sample thick-
ness and the nanoparticle size should be as small as possible.
Generally, particles 10 nm and smaller should scatter kinemati-
cally, and this is the size range that benefits most from PDF
analysis (Abeykoon et al., 2012).

Powder average. Proper statistics are important for PDF
analysis. In order to decrease measurement errors one can
increase the illumination area on the sample (or the selected-area
aperture in the case of SAED), collect several diffraction
patterns from different areas and average them.

Scattering angle range. A large 6 range is essential for PDF
analysis. An electron diffraction experiment offers significant
flexibility in selecting the scattering range through the adjustment
of the electron diffraction camera length and illumination
wavelengths. Additionally, in order to enhance the data quality,
merging of different scattering ranges recorded in a set of
diffraction patterns is possible (Petersen et al., 2005).

An electron diffraction pattern is a combination of signals
produced by elastically and inelastically scattered electrons. The
inelastic component is a result of electron energy loss due to
plasmon or inner-shell excitation, electron Compton or thermal
diffuse scattering (Egerton, 2011). For crystalline materials with
distinct Bragg peaks the inelastic scattering is not particularly
critical, as it mainly contributes to the background in diffraction
patterns and can be neglected when only the intensities of the
Bragg peaks are analysed. For PDF analysis the total scattering
profile is used; thus, the inelastic scattering, which can signifi-
cantly modify the scattering profile, needs to be considered
(Ishimaru, 2006). Two strategies are followed in this respect: (i)
energy filtering of diffraction patterns, which is the more accurate
approach but demands specific instrumentation, and (ii)
subtraction of the background scattering taken from an area
adjacent to the sample (ie. from the supporting film), which
assumes that the main inelastic scattering component originates
from the support, and the contribution from the sample can be
neglected (Cockayne, 2007). The validity of this approximation
depends on the level of quantification intended in the particular
study.

The PDF formalism presented above is based on the single-
scattering approximation. Multiple scattering, which is much
stronger in electron diffraction than for X-rays and neutrons,
significantly affects the total scattering profile and therefore the
PDF. The multiple-scattering effects can modify the peak posi-
tions in the PDF as well as the relative intensities of the peaks, the
latter being more sensitive to multiple scattering (Anstis et al.,
1988). It has been shown that for amorphous materials, owing to
the contribution of the multiple scattering, the total scattering
profile depends on the thickness of the foil (Childs & Misell,
1972; Rez, 1983). Knowledge of the film thickness allows
extraction of the single-scattering distribution. An improved
agreement with the expected PDF was shown for hydrogenated
amorphous silicon (Anstis et al., 1988) and amorphous germa-
nium (Ankele et al., 2005) using the single-scattering profile.

Experimentally, it is difficult to determine the sample thickness
along the incident-electron-beam direction. In this case, the
thickness parameter employed in calculations can be varied,
adjusting the amplitudes of the PDF. An estimate for the sample
thickness is found when the optimal fit is obtained. Different
input values of the thickness result in different principal gradients
of the oscillations. Once a reasonable fit is found, the correct
thickness is determined and the contribution of multiple scat-
tering can be eliminated (Ankele et al., 2005). This method was



2. INSTRUMENTATION AND SAMPLE PREPARATION

applied to amorphous NiNb alloy, allowing an estimate of the foil
thickness, and thereafter improved the fit to the PDF obtained
from Ag-anode X-ray scattering experiments (Ankele et al.,
2005).

Alternatively, the wavelength dependence of the multiple-
scattering term can be used. A set of diffraction patterns of a
glassy carbon film was collected from the same sample (appar-
ently having the same thickness) using different wavelengths
(Petersen et al., 2005). These patterns were then processed in
order to retrieve the single-scattering profile of tetrahedral
amorphous carbon, which showed an improved fit to the reduced
scattering function obtained with neutrons (Petersen et al., 2005).
This method can be applied to materials for which significant
multiple scattering is expected and the thickness of the foil
cannot be determined a priori. For very thin films the contribu-
tion of the multiple scattering is very low and, therefore, often
neglected.

The PDF of elemental materials arising from only one
contributing atomic scattering function can be directly inter-
preted in terms of coordination numbers and allows conclusions
to be drawn about the local structure. PDF analysis of amorphous
silicon prepared by deposition showed the existence of voids in
the structure (Moss & Graczyk, 1969) which anneal on progres-
sive heating. PDF investigation of amorphous carbon films
prepared by arc plasma deposition showed that the material
mainly consists of tetrahedrally coordinated carbon rather than
having a graphitic structure (McKenzie et al., 1991).

For ZrNi and ZrCu metallic glasses, partial PDFs were
obtained by reverse Monte Carlo simulation (McGreevy &
Pusztai, 1988) and fitted to the experimentally obtained electron
scattering data. The analysis of the polyhedral statistics showed
that the average coordination number of Cu was 11, while for Ni
it was less than 10 (Hirata et al., 2007). Study of amorphous FeB
alloys (Hirata et al., 2006) and Feq,Zr,B; (Hirotsu et al., 2003) by
PDF analysis allowed detection of nanoscale phase separation
resulting in the formation of a mixture of different clusters.

Nanocrystals can be efficiently analysed by electron PDF
analysis, giving information complementary to TEM imaging.
The electron PDF of detonation nanodiamonds (DND) was used
to estimate the average domain size (Zhang, 2011). Studies of
phase separation in AgCu alloys showed the complex behaviour
of the material with variation of temperature (Chen & Zuo,
2007). In the first stage, the nanodomains of the two terminal
phases (Ag- and Cu-rich) are built; in the second stage, de-
wetting of the thin film and formation of large Ag and Cu grains
occur. A comparison of electron PDFs from nanocrystalline,
partially ordered and amorphous parts of silica glasses (Kovacs
Kis et al., 2006) allowed the estimation of the degree of order
developed by changing the connectivity and orientation of the
undistorted SiO, tetrahedra. Indirect detection of hydrogen
atoms was performed from a modified distribution of atomic
distances in soot samples using electron PDF analysis (Kis ef al.,
2006).

With an increase in the particle size the deviations from the
kinematical scattering become severe. Nevertheless, the electron
PDF calculated for 100 nm Au crystals reproduced the simulated
data quite well: the peak positions and relative amplitudes were
not significantly modified (Abeykoon ef al., 2012).

2.4.8. Summary

Powder electron diffraction can be used for materials structural
characterization, just as is routinely done using X-rays and
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neutrons. The specific characteristics of electron scattering result
in both benefits and drawbacks to using electron diffraction data.
Strong scattering of electrons allows collection of a sufficient
signal from nanovolumes of material, thus offering the possibility
of studying small amounts of material and thin films. The
opportunity to couple the diffraction information with imaging
gives the unique possibility of performing a structural study on
the nanoscale in a controlled way. The strong interaction of
electrons with matter leads to dynamical-scattering effects that
result in deviation of the electron diffraction intensities from the
kinematical model. Since the amount of the dynamical-scattering
component in a powder sample is difficult to quantify, the
quantitative use of electron diffraction intensity data is limited.
For large crystals, the dynamical treatment of electron diffraction
data is efficiently done in CBED analysis, providing exclusive
information about the structure. For nanocrystalline or amor-
phous materials, an increasing number of sets of experimental
data show that quantitative structure information can be
obtained using electron powder diffraction. This encourages
further applications of different kinds of electron diffraction
data, giving new perspectives for the quantitative use of electron
diffraction in general.

APPENDIX A24.1
Computer programs for electron powder diffraction

CHECKCELL is a graphical powder-pattern indexing helper
and space-group-assignment program that links into the CRY'S-
FIRE powder indexing suite. More information and the
program are available at http://www.ccpl4.ac.uk/tutorial/lmgp/
achekcelld.htm.

CRYSFIRE is a powder-pattern indexing system for DOS/
Windows for unit-cell parameter determination from powder
data (free for academic use). More information and the program
are available at http://www.ccpl4.ac.uk/tutorial/crys/.

ELD is a commercial program for calibrating and integrating
two-dimensional electron diffraction patterns. The program is
commercially available from Calidris, Sweden. More information
is available from http://www.calidris-em.com/eld.php.

Electron diffraction pattern atlas. The website of Professor
Jean-Paul Morniroli (http://electron-diffraction.fr/) provides an
atlas of electron diffraction patterns that can be used to identify
the space group of a crystal from observation of a few typical
PED and CBED zone-axis patterns.

FIT2D is a general-purpose image and diffraction processing
program, designed for use with synchrotron data, that integrates
pre-selected sections of either one-dimensional or two-dimen-
sional data. Corrections for geometrical distortion and for
nonlinearity of intensity are included. It is available both for the
Windows operating system (and DOS window) and for Macin-
tosh OSX. The program is freely available for academic users.
More information and the program are available at http://
www.esrf.eu/computing/scientific/FIT2D/.

JEMS is a popular suite of simulation routines for a variety of
platforms, mainly used for simulating high-resolution TEM
(HRTEM), CBED, PED and SAED patterns. Simulation of
powder diffraction rings is also included. The student version is
free of charge. A licence is available from the author: http://
www.jems-saas.ch/.

PCED is a program for the simulation of polycrystalline
electron diffraction patterns (Li, 2010). A licence file is needed to
unlock the program for loading input data files. More information
is available at http://www.unl.edu/ncmn-cfem/xzli/.
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PDFgui and PDFfit2 are programs for full-profile fitting of the
atomic PDF derived from X-ray or neutron diffraction data.
PDFgui is a graphical front end for the PDFfi2 refinement
program, with built-in graphical and structure-visualization
capabilities. PDFgui is currently in beta release and it is distrib-
uted as part of the DiffPy library. More information and the
program are available at http://www.diffpy.org.

Process Diffraction is designed for processing of SAED and
NAED patterns. It includes quantitative determination of phase
fractions and texture from ring patterns recorded from nano-
crystalline thin films in TEM. More information and the program
are available at http://www.energia.mta.hu/~labar/ProcDif. htm.

QPCED and PCED are Java-based software for digitization,
processing, quantification and simulation of powder electron
diffraction patterns. For information contact Dr X. Z. Li
(xzli@unl.edu) or visit http://www.unl.edu/ncmn-cfem/xzli.

TexPat is a program for quantification of texture (preferred
orientation) from a tilt series of ring patterns recorded from
nanocrystalline thin films in TEM (Oleynikov & Hovmoller,
2004).

WebEMAPS is a suite of computer programs that can be
obtained at http://cbed.matse.illinois.edu/software_emaps.html.
The programs include functions for visualization of crystal
structures, simulation of single-crystal diffraction patterns,
dynamic electron diffraction simulation, and calculations of
electron structure factors and lattice d-spacings.

WinPLOTR 1is a peak-search program for plotting powder
diffraction patterns and can be used as a graphical user interface
for several programs used frequently in powder diffraction data
analysis (e.g. FullProf, DicVOL, SuperCELL). WinPLOTR has
been developed to run on PCs with a 32-bit Microsoft Windows
operating system. More information and the program are avail-
able at http://www.cdifx.univ-rennesl.fr/winplotr/readme.htm.
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2.5. Two-dimensional powder diffraction

B. B. HE

2.5.1. Introduction
2.5.1.1. The diffraction pattern measured by an area detector

The diffracted X-rays from a polycrystalline or powder sample
form a series of cones in three-dimensional space, since large
numbers of crystals oriented randomly in the space are covered
by the incident X-ray beam. Each diffraction cone corresponds to
the diffraction from the same family of crystal planes in all the
participating grains. The apex angles of cones are given by
Bragg’s law for the corresponding crystal interplanar d-spacing.
A conventional X-ray powder-diffraction pattern is collected by
scanning a point or linear detector along the 26 angle. The
diffraction pattern is displayed as scattering intensity versus 26
angle (Klug & Alexander, 1974; Cullity, 1978; Warren, 1990;
Jenkins & Snyder, 1996; Pecharsky & Zavalij, 2003). In recent
years, use of two-dimensional (2D) detectors for powder
diffraction has dramatically increased in academic and industrial
research (Sulyanov et al., 1994; Rudolf & Landes, 1994; He, 2003,
2009). When a 2D detector is used for X-ray powder diffraction,
the diffraction cones are intercepted by the area detector and the
X-ray intensity distribution on the sensing area is converted to an
image-like diffraction pattern, also referred to as a frame. Since
the diffraction pattern collected with a 2D detector is typically
given as an intensity distribution over a two-dimensional region,
so X-ray diffraction with a 2D detector is also referred to as two-
dimensional X-ray diffraction (2D-XRD) or 2D powder diffrac-
tion. A 2D diffraction pattern contains far more information than
a conventional diffraction pattern, and therefore demands a
special data-collection strategy and data-evaluation algorithms.
This chapter covers the basic concepts and recent progress in 2D-
XRD theory and technologies, including geometry conventions,
X-ray source and optics, 2D detectors, diffraction-data inter-
pretation, and various applications, such as phase identification
and texture, stress, crystallinity and crystallite-size analysis. The
concepts and algorithms of this chapter apply to both laboratory
and synchrotron diffractometers equipped with 2D detectors.

2.5.1.2. Comparison between 2D-XRD and conventional XRD

Fig. 2.5.1 is a schematic of X-ray diffraction from a powder
(polycrystalline) sample. For simplicity, it shows only two
diffraction cones; one represents forward
diffraction (260 <90°) and one represents
backward diffraction (26 > 90°). The diffrac-

Forward diffraction_

plane are not detected, the structures in the material that are
represented by the missing diffraction data will either be ignored,
or extra sample rotation and time are needed to complete the
measurement.

With a 2D detector, the diffraction measurement is no longer
limited to the diffractometer plane. Depending on the detector
size, the distance to the sample and the detector position, the
whole or a large portion of the diffraction rings can be measured
simultaneously. Diffraction patterns out of the diffractometer
plane have for a long time been recorded using Debye—Scherrer
cameras, so the diffraction rings are referred to as Debye rings.
However, when a Debye-Scherrer camera is used, only the
position of the arches in the 20 direction and their relative
intensities are measured for powder-diffraction analysis. The
diffraction rings collected with a large 2D detector extend further
in the ‘vertical’ direction and the intensity variation in the vertical
direction is also used for data evaluation. Therefore, the terms
‘diffraction cone’ and ‘diffraction ring’ will be often be used in
this chapter as alternatives to ‘Debye cone’ and ‘Debye ring’.

2.5.1.3. Advantages of two-dimensional X-ray diffraction

A 2D diffraction frame contains far more information than a
diffraction pattern measured using a conventional diffraction
system with a point detector or a linear position-sensitive
detector. In addition to the significantly higher data-collection
speed, the intensity and 26 variation along the diffraction rings
can reveal abundant structural information typically not available
from a conventional diffraction pattern. Fig. 2.5.2 shows a 2D
pattern collected from a battery component containing multiple
layers of different phases. Some diffraction rings have strong
intensity variation due to preferred orientation, and the spotty
diffraction rings are from a phase that contains large crystal
grains. It is apparent that different diffraction-ring patterns are
from different phases. 2D-XRD analyses commonly performed
on polycrystalline materials include phase identification, quanti-
tative phase analysis, preferred-orientation quantification and
characterization of residual stresses.

Phase identification (phase ID) can be done by integration in a
selected 20 range along the diffraction rings (Hammersley et al.,

tion measurement in a conventional diffract-
ometer is confined within a plane, here

Point detector

referred to as the diffractometer plane. A
point (0D) detector makes a 26 scan along a
detection circle. If a line (1D) detector is used
in the diffractometer, it will be mounted on
the detection circle. Since the variations in
the diffraction pattern in the direction (Z)
perpendicular to the diffractometer plane are

not considered in a conventional diffract-
ometer, the X-ray beam is normally extended
in the Z direction (line focus). Since the
diffraction data out of the diffractometer

Figure 2.5.1
Diffraction patterns in 3D space from a powder sample and the diffractometer plane.
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Figure 2.5.2

Diffraction pattern from a battery component containing multiple layers.

1996; Rodriguez-Navarro, 2006). The integrated data give better
intensity and statistics for phase ID and quantitative analysis,
especially for those samples with texture or large grain sizes, or
where the sample is small. Then the integrated diffraction profiles
can be analysed with existing algorithms and methods: profile
fitting with conventional peak shapes and fundamental para-
meters, quantification of phases, and lattice-parameter indexing
and refinement. The results can be used to search and match to
entries in a powder-diffraction database, typically the Powder
Diffraction File.

Texture measurement with 2D-XRD is extremely fast
compared to measurement using a point or linear detector. The
area detector collects texture data and background values
simultaneously for multiple poles and multiple directions. Owing
to the high measurement speed, pole figures can be measured at
very fine steps, allowing detection of very sharp textures (Smith
& Ortega, 1993; Bunge & Klein, 1996; He, 2009).

Stress measurement with 2D-XRD is based on a direct rela-
tionship between the stress tensor and distortion of the diffrac-
tion cones. Since the whole or a part of the diffraction ring is used
for stress calculation, 2D-XRD can measure stress with high
sensitivity, high speed and high accuracy (He & Smith, 1997; He,
2000). It is highly suitable for samples containing large crystals
and textures. Simultaneous measurement of stress and texture is
also possible, since 2D data contain both stress and texture
information.

Concentrations of crystalline phases can be measured faster
and more accurately with data analysis over 2D frames, especially
for samples with an anisotropic distribution of crystallite orien-
tations and/or amorphous content. The amorphous region can be
defined by the user to consist of regions with no Bragg peaks, or
the amorphous region can be defined with the crystalline region
included when the crystalline region and the amorphous region
overlap.

Microdiffraction data are collected with speed and accuracy.
Collection of X-ray diffraction data from small sample amounts
or small sample areas has always been a slow process because of
limited beam intensity. The 2D detector captures whole or a large
portion of the diffraction rings, so spotty, textured or weak
diffraction data can be integrated over the selected diffraction
rings (Winter & Squires, 1995; Bergese et al., 2001; Tissot, 2003;
Bhuvanesh & Reibenspies, 2003; He, 2004). The point beam used
for microdiffraction allows diffraction mapping with fine space
resolution, even on a curved surface (Allahkarami & Hanan,
2011).

Data can be collected from thin-film samples containing a
mixture of single-crystal and polycrystalline layers with random
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orientation distributions, and highly textured layers, with all the
features appearing simultaneously in diffraction frames (Dick-
erson et al., 2002; He, 2006). The pole figures from different layers
and the substrate can be overlapped to reveal the orientation
relationships. The use of a 2D detector can dramatically speed up
the data collection for reciprocal-space mapping on an in-plane
reciprocal-lattice point (Schmidbauer et al., 2008).

Because of the penetrating power of the X-ray beam, fast
nondestructive data collection and the abundant information
about atomic structure, two-dimensional X-ray diffraction can be
used to screen a library of materials with high speed and high
accuracy. Two-dimensional X-ray diffraction systems dedicated
for combinatorial screening are widely used in the pharmaceu-
tical industry for drug discovery and process analysis (Klein et al.,
1998; He et al., 2001).

Forensic science and archaeology have benefited from using
two-dimensional X-ray diffraction for identifying materials and
structures from small specimens (Kugler, 2003; Bontempi
et al., 2008). It is nondestructive and does not require special
sample treatment, so the original evidence or sample can be
preserved. Two-dimensional diffraction patterns contain abun-
dant information and are easy to observe and explain in the
courtroom.

2.5.2. Fundamentals

A conventional powder-diffraction pattern is displayed as the
scattering intensity versus scattering angle 26 or d-spacing. A 2D-
XRD pattern contains the scattering-intensity distribution as a
function of two orthogonal dimensions. One dimension can be
expressed in 260, which can be interpreted by Bragg’s law. The
distribution in the dimension orthogonal to 26 contains addi-
tional information, such as the orientation distribution, strain
states, and crystallite-size and -shape distribution. In order to
understand and analyse 2D diffraction data, new geometry
conventions and algorithms are introduced. The geometry
conventions and algorithms used for 2D-XRD should also be
consistent with conventional XRD, so that many existing
concepts and algorithms are still valid when 2D diffraction data
are used.

The geometry of a 2D-XRD system can be explained using
three distinguishable and interrelated geometry spaces, each
defined by a set of parameters (He, 2003). The three geometry
spaces are the diffraction space, detector space and sample space.
The laboratory coordinate system X;, Y, Z; is the basis of all
three spaces. Although the three spaces are interrelated, the
definitions and corresponding parameters should not be
confused. Except for a few parameters introduced specifically for
2D-XRD, many of these parameters are used in conventional
X-ray diffraction systems. Therefore, the same definitions are
maintained for consistency. The three-circle goniometer in
Eulerian geometry is the most commonly used, and all the
algorithms for data interpretation and analysis in this chapter are
based on Eulerian geometry. The algorithms can be developed
for the geometries of other types (such as kappa) by following the
same strategies.

2.5.2.1. Diffraction space and laboratory coordinates
2.5.2.1.1. Diffraction cones in laboratory coordinates

Fig. 2.5.3(a) describes the geometric definition of diffraction
cones in the laboratory coordinate system X;, Y;, Z;. The
laboratory coordinate system is a Cartesian coordinate system.
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The plane given by X; and Y, is the
diffractometer plane. The axis Z; is perpen-
dicular to the diffractometer plane. The axes
X;, Y, and Z; form a right-handed rectan-
gular coordinate system with the origin at the
instrument centre. The incident X-ray beam
propagates along the X axis, which is also the
rotation axis of all diffraction cones. The apex
angles of the cones are determined by the 20
values given by the Bragg equation. The apex
angles are twice the 26 values for forward
reflection (260 < 90°) and twice the value of
180° — 26 for backward reflection (20 > 90°).
For clarity, only one diffraction cone of
forward reflection is displayed. The y angle is
the azimuthal angle from the origin at the six

Diffractometer plane

o’clock direction with a right-handed rotation
axis along the opposite direction of incident
beam (—X, direction). A given y value
defines a half plane with the X, axis as the
edge; this will be referred to as the y plane
hereafter. The diffractometer plane consists
of two y planes at y = 90° and y = 270"

Diffraction cone

(a)

Diffraction-vector cone

Therefore many equations developed for 2D-
XRD should also apply to conventional XRD
if the y angle is given as a constant of 90° or
270°. A pair of y and 20 values represents the
direction of a diffracted beam. The y angle
takes a value of 0 to 360° for a complete
diffraction ring with a constant 26 value. The
y and 26 angles form a spherical coordinate
system which covers all the directions from
the origin of sample (instrument centre). The
y—26 system is fixed in the laboratory system
X;, Y, Z;, which is independent of the
sample orientation and detector position in
the goniometer. 260 and y are referred to as
the diffraction-space parameters. In the
laboratory coordinate system X;, Y;, Z;, the
surface of a diffraction cone can be mathe-

matically expressed as

y; + 23 = x} tan® 20, (2.5.1)

with x, >0 or 20<90° for forward-
diffraction cones and x; <0 or 20> 90° for
backward-diffraction cones.

Figure 2.5.3

Ewald sphere

(b)

The diffraction cone and the corresponding diffraction-vector cone.

2.5.2.1.2. Diffraction-vector cones in labora-
tory coordinates

Fig. 2.5.3(b) shows the diffraction-vector cone corresponding
to the diffraction cone in the laboratory coordinate system. C is
the centre of the Ewald sphere. The diffraction condition can be
given by the Laue equation as

s —§
A

= Hyy, (25.2)

where s, is the unit vector representing the incident beam, s is the
unit vector representing the diffracted beam and Hy,; is the
reciprocal-lattice vector. Its magnitude is given as

1

_ 2sin 6
Ay’

A

.

1 = |Hhkl| =

(2.5.3)
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in which d,,, is the d-spacing of the crystal planes (Akl). It can be
easily seen that it is the Bragg law in a different form. Therefore,
equation (2.5.2) is the Bragg law in vector form. In the Bragg
condition, the vectors sy/A and s/A make angles 6 with the
diffracting planes (hk/) and Hy,; is normal to the (hkl) crystal
plane. In order to analyse all the X-rays measured by a 2D
detector, we extend the concept to all scattered X-rays from a
sample regardless of the Bragg condition. Therefore, the index
(hkl) can be removed from the above expression. H is then a
vector which takes the direction bisecting the incident beam and
the scattered beam, and has dimensions of inverse length given
by 2sin6/A. Here 20 is the scattering angle from the incident
beam. The vector H is referred to as the scattering vector or,
alternatively, the diffraction vector. When the Bragg condition is
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satisfied, the diffraction vector is normal to the diffracting lattice
planes and its magnitude is reciprocal to the d-spacing of the
lattice planes. In this case, the diffraction vector is equivalent to
the reciprocal-lattice vector. Each pixel in a 2D detector
measures scattered X-rays in a given direction with respect to the
incident beam. We can calculate a diffraction vector for any pixel,
even if the pixel is not measuring Bragg scattering. Use of the
term ‘diffracted beam’ hereafter in this chapter does not neces-
sarily imply that it arises from Bragg scattering.

For two-dimensional diffraction, the incident beam can be
expressed by the vector sy/A, but the diffracted beam is no longer
in a single direction, but follows the diffraction cone. Since the
direction of a diffraction vector is a bisector of the angle between
the incident and diffracted beams corresponding to each
diffraction cone, the trace of the diffraction vectors forms a cone.
This cone is referred to as the diffraction-vector cone. The angle
between the diffraction vector and the incident X-ray beam is
90° + 6 and the apex angle of a vector cone is 90° — 6. It is
apparent that diffraction-vector cones can only exists on the —X
side of the diffraction space.

For two-dimensional diffraction, the diffraction vector is a
function of both the y and 26 angles, and is given in laboratory
coordinates as

cos260 — 1
—sin26sin y
—sin26cosy

(2.5.4)

The direction of the diffraction vector can be represented by its
unit vector, given by

h —sin6
H X
hy =—=|h, | =| —cosfsiny |, (2.5.5)
[H| '
h, —cosfcosy

where h; is a unit vector expressed in laboratory coordinates and
the three components in the square brackets are the projections
of the unit vector on the three axes of the laboratory coordinates,
respectively. If y takes all values from 0 to 360° at a given Bragg
angle 26, the trace of the diffraction vector forms a diffraction-
vector cone. Since the possible values of 6 lie within the range 0 to
90°, h, takes only negative values.

LZL

(7
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Figure 2.5.5
Relationship between a pixel P and detector position in the laboratory
coordinates.

2.5.2.2. Detector space and pixel position

A typical 2D detector has a limited detection surface, and the
detection surface can be spherical, cylindrical or flat. Spherical or
cylindrical detectors are normally designed for a fixed sample-to-
detector distance, while a flat detector has the flexibility to be
used at different sample-to-detector distances so as to choose
either high resolution at a large distance or large angular
coverage at a short distance.

2.5.2.2.1. Detector position in the laboratory system

The position of a flat detector is defined by the sample-to-
detector distance D and the detector swing angle . D and « are
referred to as the detector-space parameters. D is the perpendi-
cular distance from the goniometer centre to the detection plane
and o is a right-handed rotation angle about the Z; axis.
Detectors at different positions in the laboratory coordinates X,
Y, Z; are shown in Fig. 2.5.4. The centre of detector 1 is right on
the positive side of the X; axis (on-axis), o« = 0. Both detectors 2
and 3 are rotated away from the X; axis with negative swing
angles (o, < 0 and o3 < 0). The detection surface of a flat 2D
detector can be considered as a plane, which intersects the

diffraction cone to form a conic section.
Depending on the swing angle « and the 26
angle, the conic section can appear as a circle,
an ellipse, a parabola or a hyperbola.

2.5.2.2.2. Pixel position in diffraction space
for a flat detector

v/  ____

The values of 26 and y can be calculated for
each pixel in the frame. The calculation is

Figure 2.5.4
Detector positions in the laboratory-system coordinates.
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based on the detector-space parameters and
the pixel position in the detector. Fig. 2.5.5
shows the relationship of a pixel P(x, y) to the
laboratory coordinates X;, Y;, Z;. The
position of a pixel in the detector is defined by
the (x, y) coordinates, where the detector
centre is defined as x = y = 0. The diffraction-
space coordinates (26, y) for a pixel at P(x, y)
are given by

/
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(a)

b
I P(x, y)
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B B \\ 0(0.0) _:'
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. (b)
Figure 2.5.6
Cylinder-shaped detector in vertical direction: (a) detector position in
the laboratory coordinates; (b) pixel position in the flattened image.

xsina + D cos o

20 = arccos m (0 <20 < T[)» (256)
xcosa — Dsina —y
y = - arccos — — 17
|xcosa — D sinq| [y? 4+ (x cosa — D sin@)?)]
(—r<y <m. (2.5.7)

2.5.2.2.3. Pixel position in diffraction space for a curved detector

The conic sections of the diffraction cones with a curved
detector depend on the shape of the detector. The most common
curved detectors are cylinder-shaped detectors. The diffraction
frame measured by a cylindrical detector can be displayed as a
flat frame, typically a rectangle. Fig. 2.5.6(a) shows a cylindrical
detector in the vertical direction and the corresponding labora-
tory coordinates X;, Y;, Z;. The sample is located at the origin of
the laboratory coordinates inside the cylinder. The incident
X-rays strike the detector at a point O if there is no sample or
beam stop to block the direct beam. The radius of the cylinder is
R. Fig. 2.5.6(b) illustrates the 2D diffraction image collected with
the cylindrical detector. We take the point O as the origin of the
pixel position (0, 0). The diffraction-space coordinates (26, y) for
a pixel at P(x, y) are given by

20 = arccos [R cos (%) J(R* + yz)l/z],

X 2 22 (X\1?
arccos —y/[y + R”sin (ﬁ)] (—r<y=<n).

y="
(2.5.9)

(2.5.8)

|x
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Figure 2.5.7
Sample rotation and translation. (a) Three rotation axes in laboratory
coordinates; (b) rotation axes (w, ¥, ¢) and sample coordinates.

The pixel-position-to-(20, y) conversion for detectors of other
shapes can also be derived. Once the diffraction-space coordi-
nates (26, y) of each pixel in the curved 2D detector are deter-
mined, most data-analysis algorithms developed for flat detectors
are applicable to a curved detector as well.

2.5.2.3. Sample space and goniometer geometry

2523.1.
geometry

Sample rotations and translations in FEulerian

In a 2D-XRD system, three rotation angles are necessary to
define the orientation of a sample in the diffractometer. These
three rotation angles can be achieved either by a Eulerian
geometry, a kappa (k) geometry or another kind of geometry. The
three angles in Eulerian geometry are @ (omega), ¥ (psi) and ¢
(phi). Fig. 2.5.7(a) shows the relationship between rotation axes
(w, ¥, @) in the laboratory system X;, Y;, Z;. The w angle is
defined as a right-handed rotation about the Z; axis. The w axis is
fixed in the laboratory coordinates. The ¥ angle is a right-handed
rotation about a horizontal axis. The angle between the i axis
and the X axis is given by w. The v axis lies on X; when w is set
at zero. The ¢ angle defines a left-handed rotation about an axis
on the sample, typically the normal of a flat sample. The ¢ axis lies
on the Y, axis when w = ¥ = 0. In an aligned diffraction system,
all three rotation axes and the primary X-ray beam cross at the
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origin of the X;, Y;, Z; coordinates. This cross point is also
known as the goniometer centre or instrument centre.

Fig. 2.5.7(b) shows the relationship and stacking sequence
among all rotation axes (w, ¥, ¢) and the sample coordinates S,
S5, S3. w is the base rotation; all other rotations and translations
are on top of this rotation. The next rotation above w is the ¥
rotation. The next rotation above w and v is the ¢ rotation. The
sample coordinates Sy, S,, S5 are fixed to the sample regardless
of the particular sample orientation given by the rotation angles
(w, ¥, ). The @ rotation in the goniometer is intentionally chosen
as a left-handed rotation so that the diffraction vectors will
make a right-hand rotation observed in the sample coordinates
S1, 82, Sa.

2.5.2.4. Diffraction-vector transformation

2.5.2.4.1. Diffraction unit vector in diffraction space and sample
space

In 2D-XRD data analysis, it is crucial to know the diffraction-
vector distribution in terms of the sample coordinates Sy, S,, Ss.
However, the diffraction-vector distribution corresponding to the
measured 2D data is always given in terms of the laboratory
coordinates X;, Y, Z; because the diffraction space is fixed to
the laboratory coordinates. Fig. 2.5.8 shows the unit vector of a
diffraction vector in both (a) the laboratory coordinates X;, Y;,
Z; and (b) the sample coordinates Sy, S,, S;. In Fig. 2.5.8(a) the
unit vector hy, is projected to the X;, Y, and Z, axes as h,, h, and
h., respectively. The three components are given by equation
(2.5.5). In order to analyse the diffraction results relative to the
sample orientation, it is necessary to transform the unit vector to
the sample coordinates S;, S,, S;. Fig. 2.5.8(b) shows the same
unit vector, denoted by hy projected to Sy, S, and S; as 4y, h, and
hs, respectively.

2.5.2.42. Transformation from diffraction space to sample
space
The transformation of the unit diffraction vector from the
laboratory coordinates X;, Y, Z; to the sample coordinates S,
S,, S5 is given by
h, = Ah,, (2.5.10)

where A is the transformation matrix. For Eulerian geometry in
matrix form, we have

hy a4y dg h,
hy | = | ay an ay hy
hy asz; 4z dsg h,

[ —sinwsin¥sing coswsin ysin @ —cos¥sing |

— COSwCOos ¢ —sina)cosgp

= | sinwsin Y cos @ —coswsin Y cosg cos Y cos

— cos wsin @ — sin @ sin @
| —sinwcosy cos w cos Y sin |
—sinf
X | —cos@siny (2.5.11)
—cosfcosy
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Figure 2.5.8
Unit diffraction vector in (a) the laboratory coordinates and (b) the
sample coordinates.

In expanded form:

h, = sin O(sin @ sin ¥ sin @ 4 cos ¢ cos ) + cos O cos y sin ¢ cos P
— cos 6'sin y(sin ¢ sin ¥ cos @ — cos @ sin w)
h, = — sin O(cos ¢ sin Y sin w — sin ¢ cos w)
— cos 6 cos y cos ¢ cos Y
+ cos 6 sin y(cos @ sin ¥ cos w + sin @ sin w)
hy = sin 6 cos Ysin w — cos fsin y cos Y cos w — cos B cos y sin Y
(2.5.12)

In addition to the diffraction intensity and Bragg angle corre-
sponding to each data point on the diffraction ring, the unit
vector hgh;, h,, h3} provides orientation information in the
sample space. The transformation matrix of any other goni-
ometer geometry, such as kappa geometry (Paciorek et al., 1999),
can be introduced into equation (2.5.10) so that the unit vector
hy{hy, hy, h3} can be expressed in terms of the specified geometry.
All equations using the unit vector hy{h,, h,, h3} in this chapter,
such as in data treatment, texture analysis and stress measure-
ment, are applicable to all goniometer geometries provided that
the unit-vector components are generated from the corre-
sponding transformation matrix from diffraction space to the
sample space.

2.5.2.43. Transformation from detector space to reciprocal
space

Reciprocal-space mapping is commonly used to analyse the
diffraction patterns from highly oriented structures, diffuse
scattering from crystal defects, and thin films (Hanna & Windle,
1995; Mudie et al., 2004; Smilgies & Blasini, 2007; Schmidbauer et
al., 2008). The equations of the unit-vector calculation given
above can also be used to transform the diffraction intensity from
the diffraction space to the reciprocal space with respect to the
sample coordinates. The direction of the scattering vector is given
by the unit vector hy{h,, h,, h3} and the magnitude of the scat-
tering vector is given by 2sin6/A, so that the scattering vector
corresponding to a pixel is given by

2sin 6
S;n h,. (2.5.13)

The three-dimensional reciprocal-space mapping can be obtained
by applying the normalized pixel intensities to the corresponding
reciprocal points. With various sample orientations, all pixels on
the detector can be mapped into a 3D reciprocal space.
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2.5.3. Instrumentation
2.5.3.1. X-ray source and optics

2.5.3.1.1. Beam path in a diffractometer equipped with a 2D
detector

The Bragg-Brentano (B-B) parafocusing geometry is most
commonly used in conventional X-ray diffractometers with a
point detector (Cullity, 1978; Jenkins & Snyder, 1996). In the
Bragg-Brentano geometry, the sample surface normal is always a
bisector between the incident beam and the diffracted beam. A
divergent incident beam hits the sample surface with an incident
angle 6. The area of the irradiated region depends on the incident
angle 6 and the size of the divergence slit. The diffracted rays
leave the sample at an angle 20, pass through the anti-scatter slit
and receiving slit, and reach the point detector. Soller slits are
used on both the primary side and secondary side to minimize the
effects of axial divergence due to the line-focus beam. The
primary line-focus beam sliced by the Soller slits can also be
considered as an array of point beams parallel to the diffract-
ometer planes. Each of these point beams will produce a
diffraction cone from the sample. The overlap of all the diffrac-
tion cones will create a smeared diffraction peak. The Soller slits
on the receiving side allow only those diffracted beams nearly
parallel to the diffractometer plane to pass through, so the
smearing effect is minimized. In another words, the so-called
‘line-focus geometry’ in conventional diffractometry is actually a
superposition of many layers of ‘spot-focus geometry’.

The beam path in a diffractometer equipped with a 2D
detector is different from that in a conventional diffractometer in
many respects (He & Preckwinkel, 2002). In a 2D-XRD system
the whole or a large portion of the diffraction rings are measured
simultaneously, and neither slits nor monochromator can be used
between the sample and detector. Therefore, the X-ray source
and optics for 2D-XRD systems have different requirements in
terms of the beam spectral purity, divergence and beam cross-
section profile. Fig. 2.5.9 shows the beam path in a 2D-XRD
system with the 6-6 configuration. The geometry for the 6-260
configuration is equivalent. The X-ray tube, monochromator and
collimator assembly are all mounted on the primary side. The
incident-beam assembly rotates about the instrument centre and
makes an incident angle 6; to the sample surface. The first main
axis is also called the 6, axis. The diffracted beams travel in all
directions and some are intercepted by a 2D detector. The
detector is mounted on the other main axis, 6,. The detector
position is determined by the sample-to-detector distance D and
the detector swing angle « (= 6; + 6,).

All the components and space between the focal spot of the
X-ray tube and sample are collectively referred to as the primary
beam path. The primary beam path in a 2D-XRD system is
typically sheltered by optical components except between the
exit of the collimator and the sample. The X-rays travelling
through this open incident-beam path are scattered by the air
with two adverse effects. One is the attenuation of the primary
beam intensity. The more harmful effect is that the scattered
X-rays travel in all directions and some reach the detector, as is
shown by the dashed lines with arrows in Fig. 2.5.9. This air
scatter introduces a background over the diffraction pattern.
Weak diffraction patterns may be buried under the background.
Obviously, the air scatter from the incident beam is significantly
stronger than that from diffracted X-rays. The intensity of the air
scatter from the incident beam is proportional to the length of the
open incident-beam path. The effect of air scatter also depends
on the wavelength of the X-rays. The longer the wavelength is,
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Figure 2.5.9
X-ray beam path in a two-dimensional X-ray diffraction system.

the more severe is the air scatter. The secondary beam path is the
space between the sample and the 2D detector. The diffracted
X-rays are also scattered by air and the diffraction pattern is both
attenuated and blurred by the air scattering. In a conventional
diffractometer, one can use an anti-scatter slit, diffracted-beam
monochromator or detector Soller slits to remove most of the air
scatter that is not travelling in the diffracted-beam direction.
These measures cannot be used for a 2D-XRD system, which
requires an open space between the sample and the 2D detector.
Therefore, the open incident-beam path should be kept as small
as possible. In order to reduce the air attenuation and air scatter
of the incident beam, a helium-purged beam path or a vacuum
beam path are sometimes used in a diffractometer. The air scatter
from the diffracted X-rays is relatively weak and the effect
depends on sample-to-detector distance. It is typically not
necessary to take measures to remove air scatter from the
diffracted X-rays between the sample and 2D detector if the
sample-to-detector distance is 30 cm or less with Cu Ko radiation.
However, if the sample-to-detector distance is larger than 30 cm
or longer-wavelength radiation, such as Co K« or Cr Ko, is used,
it is then necessary to use an He beam path or vacuum beam path
to reduce the air scatter.

2.5.3.1.2. Liouville’s theorem

Liouville’s theorem can be used to describe the nature of the
X-ray source, the X-ray optics and the coupling of the source and
optics (Arndt, 1990). Liouville’s theorem can be stated in a
variety of ways, but for X-ray optics the best known form is

S =3S,8, (2.5.14)
where S; is the effective size of the X-ray source and « is the
capture angle determined by the effective size of the X-ray optics
and the distance between the source and optics. S, is the size of
the image focus. f is the convergence angle of the X-ray beam
from the optics, which is also determined by the effective size of
the X-ray optics and the distance between the optics and the
image focus. The B angle is also called the crossfire of the X-ray
beam. S, and B are typically determined by experimental
requirements such as beam size and divergence. Therefore, the
product S« is also determined by experimental conditions. In
another expression of Liouville’s theorem, the space volume
containing the X-ray photons cannot be reduced with time along
the trajectories of the system. Therefore, the brilliance of an
X-ray source cannot be increased by optics, but may be reduced
because of the loss of X-ray photons passing through the optics.
In practice, no optics can have 100% reflectivity or transmission.
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Considering this, Liouville’s theorem given in equation (2.5.14)
should be expressed as

S < S,B. (2.5.15)
This states that the product of the divergence and image size can
be equal to or greater than the product of the capture angle and
source size. If the X-ray source is a point with zero area, the focus
image from focusing optics or the cross section of a parallel beam
can be any chosen size. For focusing optics, the source size must
be considerably smaller than the output beam size in order to
achieve a gain in flux. In this case, the flux gain is from the
increased capture angle. For parallel optics, the divergence angle
B is infinitely small by definition, so it is necessary to use an X-ray
source as small as possible to achieve a parallel beam. Focusing
optics have an advantage over parallel optics in terms of beam
flux. Using an X-ray beam with a divergence much smaller than
the mosaicity of the specimen crystal does not improve the
resolution, but does sacrifice diffraction intensity. For many X-ray
diffraction applications with polycrystalline materials, a large
crossfire is acceptable as long as the diffraction peaks concerned
can be resolved. The improved peak profile and counting statis-
tics can most often compensate for the peak broadening due to
large crossfire.

2.5.3.1.3. X-ray source

A variety of X-ray sources, from sealed X-ray tubes and
rotating-anode generators to synchrotron radiation, can be used
for 2D powder diffraction. The history and principles of X-ray
generation can be found in many references (Klug & Alexander,
1974; Cullity, 1978). The X-ray beam intensity depends on the
X-ray optics, the focal-spot brightness and the focal-spot profile.
The focal-spot brightness is determined by the maximum target
loading per unit area of the focal spot, also referred to as the
specific loading. A microfocus sealed tube (Bloomer & Arndt,
1999; Wiesmann et al., 2007), which has a very small focal spot
size (10-50 pm), can deliver a brilliance as much as one to two
orders of magnitude higher than a conventional fine-focus sealed
tube. The tube, which is also called a ‘microsource’, is typically air
cooled because the X-ray generator power is less than 50 W. The
X-ray optics for a microsource, either a multilayer mirror or a
polycapillary, are typically mounted very close to the focal spot so
as to maximize the gain on the capture angle. A microsource is
highly suitable for 2D-XRD because of its spot focus and high
brilliance.

If the X-rays used for diffraction have a wavelength slightly
shorter than the K absorption edge of the sample material, a
significant amount of fluorescent radiation is produced, which
spreads over the diffraction pattern as a high background. In a
conventional diffractometer with a point detector, the fluorescent
background can be mostly removed by either a receiving
monochromator mounted in front of the detector or by using a
point detector with sufficient energy resolution. However, it is
impossible to add a monochromator in front of a 2D detector and
most area detectors have insufficient energy resolution. In order
to avoid intense fluorescence, the wavelength of the X-ray-tube
Ko line should either be longer than the K absorption edge of the
sample or far away from the K absorption edge. For example, Cu
Ko should not be used for samples containing significant amounts
of the elements iron or cobalt. Since the Ko line of an element
cannot excite fluorescence of the same element, it is safe to use an
anode of the same metallic element as the sample if the X-ray
tube is available, for instance Co Ko for Co samples. In general,
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intense fluorescence is produced when the atomic number of the
anode material is 2, 3, or 4 larger than that of an element in the
sample. When the sample contains Co, Fe or Mn (or Ni or Cu),
the use of Cu Ko radiation should be avoided; similarly, one
should avoid using Co Ko radiation if the sample contains Mn, Cr
or V, and avoid using Cr K« radiation if the sample contains Ti, Sc
or Ca. The effect is reduced when the atomic-number difference
increases.

2.5.3.1.4. X-ray optics

The function of the X-ray optics is to condition the primary
X-ray beam into the required wavelength, beam focus size, beam
profile and divergence. Since the secondary beam path in a 2D-
XRD system is an open space, almost all X-ray optics compo-
nents are on the primary side. The X-ray optics components
commonly used for 2D-XRD systems include a B-filter, a crystal
monochromator, a pinhole collimator, cross-coupled multilayer
mirrors, a Montel mirror, a polycapillary and a monocapillary.
Detailed descriptions of these optic devices can be found in
Chapter 2.1. In principle, the cross-sectional shape of the X-ray
beam used in a 2D diffraction system should be small and round.
In data-analysis algorithms, the beam size is typically considered
to be a point. In practice, the beam cross section can be either
round, square or another shape with a limited size. Such an X-ray
beam is typically collimated or conditioned by the X-ray optics in
two perpendicular directions, so that the X-ray optics used for the
point beam are often called ‘two-dimensional X-ray optics’.

A pinhole collimator is normally used to control the beam size
and divergence in addition to other optic devices. The choice of
beam size is often a trade-off between intensity and the ability to
illuminate small regions or resolve closely spaced sample
features. Smaller beam sizes, such as 50 pm and 100 pm, are
preferred for microdiffraction and large beam sizes, such as
0.5 mm or 1 mm, are typically used for quantitative analysis, or
texture or crystallinity measurements. In the case of quantitative
analysis and texture measurements, using too small a collimator
can actually be a detriment, causing poor grain-sampling statis-
tics. The smaller the collimator, the longer the data-collection
time. The beam divergence is typically determined by both the
collimator and the coupling optic device. Lower divergence is
typically associated with a long beam path. At the same time, the
beam flux is inversely proportional to the square of the distance
between the source and the sample. There are two main factors
determining the length of the primary beam path: the first is the
required distance for collimating the beam into the required
divergence, the second is the space required for the primary
X-ray optics, the sample stage and the detector. On the condition
that the above two factors are satisfied, the primary X-ray beam
path should be kept as short as possible.

2.5.3.2. 2D detector

Two-dimensional (2D) detectors, also referred to as area
detectors, are the core of 2D-XRD. The advances in area-
detector technologies have inspired applications both in X-ray
imaging and X-ray diffraction. A 2D detector contains a two-
dimensional array of detection elements which typically have
identical shape, size and characteristics. A 2D detector can
simultaneously measure both dimensions of the two-dimensional
distribution of the diffracted X-rays. Therefore, a 2D detector
may also be referred to as an X-ray camera or imager. There are
many technologies for area detectors (Arndt, 1986; Krause &
Phillips, 1992; Eatough et al., 1997; Giomatartis, 1998; Westbrook,
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1999; Durst et al., 2002; Blanton, 2003; Khazins et al., 2004). X-ray
photographic plates and films were the first generation of two-
dimensional X-ray detectors. Now, multiwire proportional
counters (MWPCs), image plates (IPs), charge-coupled devices
(CCDs) and microgap detectors are the most commonly used
large area detectors. Recent developments in area detectors
include X-ray pixel array detectors (PADs), silicon drift
diodes (SDDs) and complementary metal-oxide semiconductor
(CMOS) detectors (Ercan et al., 2006; Lutz, 2006; Yagi & Inoue,
2007; He et al., 2011). Each detector type has its advantages over
the other types. In order to make the right choice of area detector
for a 2D-XRD system and applications, it is necessary to char-
acterize area detectors with consistent and comparable para-
meters. Chapter 2.1 has more comprehensive coverage on X-ray
detectors, including area detectors. This section will cover the
characteristics specifically relevant to area detectors.

2.5.3.2.1. Active area and pixel size

A 2D detector has a limited detection surface and the detec-
tion surface can be spherical, cylindrical or flat. The detection-
surface shape is also determined by the detector technology. For
example, a CCD detector is made from a large semiconductor
wafer, so that only a flat CCD is available, while an image plate is
flexible so that it is easily bent to a cylindrical shape. The area of
the detection surface, also referred to as the active area, is one of
the most important parameters of a 2D detector. The larger the
active area of a detector, the larger the solid angle that can be
covered at the same sample-to-detector distance. This is espe-
cially important when the instrumentation or sample size forbid a
short sample-to-detector distance. The active area is also limited
by the detector technology. For instance, the active area of a CCD
detector is limited by the semiconductor wafer size and fabrica-
tion facility. A large active area can be achieved by using a large
demagnification optical lens or fibre-optical lens. Stacking several
CCD chips side-by-side to build a so-called mosaic CCD detector
is another way to achieve a large active area.

In addition to the active area, the overall weight and dimen-
sions are also very important factors in the performance of a 2D
detector. The weight of the detector has to be supported by the
goniometer, so a heavy detector means high demands on the size
and power of the goniometer. In a vertical configuration, a heavy
detector also requires a heavy counterweight to balance the
driving gear. The overall dimensions of a 2D detector include
the height, width and depth. These dimensions determine the
manoeuvrability of the detector within a diffractometer, espe-
cially when a diffractometer is loaded with many accessories, such
as a video microscope and sample-loading mechanism. Another
important parameter of a 2D detector that tends to be ignored by
most users is the blank margin surrounding the active area of the
detector. Fig. 2.5.10 shows the relationship between the
maximum measurable 26 angle and the detector blank margin.
For high 260 angle measurements, the detector swing angle is set so
that the incident X-ray optics are set as closely as possible to the
detector. The unmeasurable blank angle is the sum of the
detector margin m and the dimension from the incident X-ray
beam to the outer surface of the optic device 4. The maximum
measurable angle is given by

(2.5.16)

It can be seen that either reducing the detector blank margin or
optics blank margin can increase the maximum measurable angle.
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Figure 2.5.10
Detector dimensions and maximum measurable 26.

The solid angle covered by a pixel in a flat detector is depen-
dent on the sample-to-detector distance and the location of the
pixel in the detector. Fig. 2.5.11 illustrates the relationship
between the solid angle covered by a pixel and its location in a
flat area detector. The symbol S may represent a sample or a
calibration source at the instrument centre. The distance between
the sample S and the detector is D. The distance between any
arbitrary pixel P(x, y) and the detector centre pixel P(0, 0) is r.
The pixel size is Ax and Ay (assuming Ax = Ay). The distance
between the sample S and the pixel is R. The angular ranges
covered by this pixel are Ao and A in the x and y directions,
respectively. The solid angle covered by this pixel, A2, is then
given as

D D
AQ = AaAp = 5 AyAx = -5 AA, (2.5.17)

where AA = AxAy is the area of the pixel and R is given by

R=(D*+x>+y)"* = (D*+ )" (2.5.18)

When a homogeneous calibration source is used, the flux to a
pixel at P(x, y) is given as

AADB AADB

R3

F(x,y) = AQB = (2.5.19)

_(DZ +x2 +y2)3/2’

h)

Figure 2.5.11
Solid angle covered by each pixel and its location on the detector.
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where F(x, y) is the flux (in photons s ') intercepted by the pixel
and B is the brightness of the source (in photons s~ mrad?) or
scattering from the sample. The ratio of the flux in pixel P(x, y) to
that in the centre pixel P(0, 0) is then given as

F(x,y) D? B D?

R (D + x> + y2)3/2

FO0 - B (2.5.20)

= cos3¢,

where ¢ is the angle between the X-rays to the pixel P(x, y) and
the line from S to the detector in perpendicular direction. It can
be seen that the greater the sample-to-detector distance, the
smaller the difference between the centre pixel and the edge
pixel in terms of the flux from the homogeneous source. This is
the main reason why a data frame collected at a short sample-to-
detector distance has a higher contrast between the edge and
centre than one collected at a long sample-to-detector distance.

2.5.3.2.2. Spatial resolution of area detectors

In a 2D diffraction frame, each pixel contains the X-ray
intensity collected by the detector corresponding to the pixel
element. The pixel size of a 2D detector can be determined by
or related to the actual feature sizes of the detector structure,
or artificially determined by the readout electronics or data-
acquisition software. Many detector techniques allow multiple
settings for variable pixel size, for instance a frame of 2048 x
2048 pixels or 512 x 512 pixels. Then the pixel size in 512 mode is
16 (4 x 4) times that of a pixel in 2048 mode. The pixel size of a
2D detector determines the space between two adjacent pixels
and also the minimum angular steps in the diffraction data,
therefore the pixel size is also referred to as pixel resolution.

The pixel size does not necessarily represent the true spatial
resolution or the angular resolution of the detector. The resolving
power of a 2D detector is also limited by its point-spread function
(PSF) (Bourgeois et al., 1994). The PSF is the two-dimensional
response of a 2D detector to a parallel point beam smaller than
one pixel. When the sharp parallel point beam strikes the
detector, not only does the pixel directly hit by the beam record
counts, but the surrounding pixels may also record some counts.
The phenomenon is observed as if the point beam has spread
over a certain region adjacent to the pixel. In other words, the
PSF gives a mapping of the probability density that an X-ray
photon is recorded by a pixel in the vicinity of the point where the
X-ray beam hits the detector. Therefore, the PSF is also referred
to as the spatial redistribution function. Fig. 2.5.12(a) shows the
PSF produced from a parallel point beam. A plane at half
the maximum intensity defines a cross-sectional region within the
PSF. The FWHM can be measured at any direction crossing the
centroid of the cross section. Generally, the PSF is isotropic, so
the FWHMs measured in any direction should be the same.

Measuring the PSF directly by using a small parallel point
beam is difficult because the small PSF spot covers a few pixels
and it is hard to establish the distribution profile. Instead, the
line-spread function (LSF) can be measured with a sharp line
beam from a narrow slit (Ponchut, 2006). Fig. 2.5.12(b) is the
intensity profile of the image from a sharp line beam. The LSF
can be obtained by integrating the image from the line beam
along the direction of the line. The FWHM of the integrated
profile can be used to describe the LSF. Theoretically, LSF and
PSF profiles are not equivalent, but in practice they are not
distinguished and may be referenced by the detector specification
interchangeably. For accurate LSF measurement, the line beam is
intentionally positioned with a tilt angle from the orthogonal
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Figure 2.5.12
(a) Point-spread function (PSF) from a parallel point beam; () line-
spread function (LSF) from a sharp line beam.

direction of the pixel array so that the LSF can have smaller steps
in the integrated profile (Fujita et al., 1992).

The RMS (root-mean-square) of the distribution of counts is
another parameter often used to describe the PSF. The normal
distribution, also called the Gaussian distribution, is the most
common shape of a PSF. The RMS of a Gaussian distribution is
its standard deviation, o. Therefore, the FWHM and RMS have
the following relation, assuming that the PSF has a Gaussian
distribution:

FWHM = 2[—21n(1/2)]"’RMS = 2.3548 x RMS.  (2.5.21)

The values of the FWHM and RMS are significantly different, so
it is important to be precise about which parameter is used when
the value is given for a PSF.

For most area detectors, the pixel size is smaller than the
FWHM of the PSF. The pixel size should be small enough that at
least a 50% drop in counts from the centre of the PSF can be
observed by the pixel adjacent to the centre pixel. In practice, an
FWHM of 3 to 6 times the pixel size is a reasonable choice if use
of a smaller pixel does not have other detrimental effects. A
further reduction in pixel size does not necessarily improve the
resolution. Some 2D detectors, such as pixel-array detectors, can
achieve a single-pixel PSF. In this case, the spatial resolution is
determined by the pixel size.

2.5.3.2.3. Detective quantum efficiency and energy range

The detective quantum efficiency (DQE), also referred to as
the detector quantum efficiency or quantum counting efficiency,
is measured by the percentage of incident photons that are
converted by the detector into electrons that constitute a
measurable signal. For an ideal detector, in which every X-ray
photon is converted to a detectable signal without additional
noise added, the DQE is 100%. The DQE of a real detector is less
than 100% because not every incident X-ray photon is detected,
and because there is always some detector noise. The DQE is a
parameter defined as the square of the ratio of the output and
input signal-to-noise ratios (SNRs) (Stanton ef al., 1992):

(/N
POE= ((S/N)m> |

The DQE of a detector is affected by many variables, for
example the X-ray photon energy and the counting rate. The
dependence of the DQE on the X-ray photon energy defines the

(2.5.22)
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energy range of a detector. The DQE drops significantly if a
detector is used out of its energy range. For instance, the energy
range of MWPC and microgap detectors is about 3 to 15 ke V. The
DQE with Cu K« radiation (8.06 keV) is about 80%, but drops
gradually when approaching the lower or higher energy limits.
The energy range of imaging plates is much wider (4-48 keV).
The energy range of a CCD, depending on the phosphor, covers
from 5 keV up to the hard X-ray region.

2.5.3.2.4. Detection limit and dynamic range

The detection limit is the lowest number of counts that can be
distinguished from the absence of true counts within a specified
confidence level. The detection limit is estimated from the mean
of the noise, the standard deviation of the noise and some
confidence factor. In order to have the incoming X-ray photons
counted with a reasonable statistical certainty, the counts
produced by the X-ray photons should be above the detector
background-noise counts.

The dynamic range is defined as the range extending from the
detection limit to the maximum count measured in the same
length of counting time. The linear dynamic range is the dynamic
range within which the maximum counts are collected within the
specified linearity. For X-ray detectors, the dynamic range most
often refers to linear dynamic range, since only a diffraction
pattern collected within the linear dynamic range can be correctly
interpreted and analysed. When the detection limit in count rate
approaches the noise rate at extended counting time, the dynamic
range can be approximated by the ratio of the maximum count
rate to the noise rate.

Dynamic range is very often confused with the maximum count
rate, but must be distinguished. With a low noise rate, a detector
can achieve a dynamic range much higher than its count rate. For
example, if a detector has a maximum linear count rate of 10° s~*
with a noise rate of 107> s, the dynamic range can approach 10°
for an extended measurement time. The dynamic range for a 2D
detector has the same definition as for a point detector, except
that with a 2D detector the whole dynamic range extending from
the detection limit to the maximum count can be observed from
different pixels simultaneously. In order to record the entire two-
dimensional diffraction pattern, it is necessary for the dynamic
range of the detector to be at least the dynamic range of the
diffraction pattern, which is typically in the range 10 to 10° for
most applications. If the range of reflection intensities exceeds
the dynamic range of the detector, then the detector will either
saturate or have low-intensity patterns truncated. Therefore, it is
desirable that the detector has as large a dynamic range as
possible.

2.5.3.2.5. Types of 2D detectors

2D detectors can be classified into two broad categories:
photon-counting detectors and integrating detectors (Lewis,
1994). Photon-counting area detectors can detect a single X-ray
photon entering the active area. In a photon-counting detector,
each X-ray photon is absorbed and converted to an electrical
pulse. The number of pulses counted per unit time is proportional
to the incident X-ray flux. Photon-counting detectors typically
have high counting efficiency, approaching 100% at low count
rate. The most commonly used photon-counting 2D detectors
include MWPCs, Si-pixel arrays and microgap detectors. Inte-
grating area detectors, also referred to as analogue X-ray
imagers, record the X-ray intensity by measuring the analogue
electrical signals converted from the incoming X-ray flux. The
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signal size of each pixel is proportional to the fluence of incident
X-rays. The most commonly used integrating 2D detectors
include image plates (IPs) and charge-coupled devices (CCDs).

The selection of an appropriate 2D detector depends on the
X-ray diffraction application, the sample condition and the X-ray
beam intensity. In addition to geometry features, such as the
active area and pixel format, the most important performance
characteristics of a detector are its sensitivity, dynamic range,
spatial resolution and background noise. The detector type,
either photon-counting or integrating, also leads to important
differences in performance. Photon-counting 2D detectors typi-
cally have high counting efficiency at low count rate, while inte-
grating 2D detectors are not so efficient at low count rate because
of the relatively high noise background. An MWPC has a high
DQE of about 0.8 when exposed to incoming local fluence from
single photons up to about 10° photons s~' mm ™. The diffracted
X-ray intensities from a polycrystalline or powder sample with a
typical laboratory X-ray source fall into this fluence range. This is
especially true with microdiffraction, where high sensitivity and
low noise are crucial to reveal the weak diffraction pattern.
Owing to the counting losses at a high count rate, the DQE of an
MWPC decreases with increasing count rate and quickly satu-
rates above 10° photons s™' mm™2. Therefore, an MWPC is not
suitable for collecting strong diffraction patterns or for use with
high intensity sources, such as synchrotron X-ray sources. An IP
can be used in a large fluence range from 10 photons s~ ' mm
and up with a DQE of 0.2 or lower. An IP is suitable for strong
diffraction from single crystals with high-intensity X-ray sources,
such as a rotating-anode generator or synchrotron X-ray source.
With weak diffraction signals, the image plate cannot resolve the
diffraction data near the noise floor. A CCD detector can also be
used over a large X-ray fluence range from 10 photons s~ mm ™
to very high fluence with a much higher DQE of 0.7 or higher. It
is suitable for collecting diffraction of medium to strong intensity
from single-crystal or polycrystalline samples. Owing to the
relatively high sensitivity and high local count rate, CCDs can be
used in systems with either sealed-tube X-ray sources, rotating-
anode generators or synchrotron X-ray sources. With a low DQE
at low fluence and the presence of dark-current noise, a CCD is
not a good choice for applications with weak diffraction signals.
A microgap detector has the best combination of high DQE, low
noise and high count rate. It has a DQE of about 0.8 at an X-ray
fluence from single photons up to about 10° photons s~ ' mm?. It
is suitable for microdiffraction when high sensitivity and low
noise are crucial to reveal weak diffraction patterns. It can also
handle high X-ray fluence from strong diffraction patterns or be
used with high-intensity sources, such as rotating-anode genera-
tors or synchrotron X-ray sources.

2.5.3.3. Data corrections and integration

2D diffraction patterns contain abundant information. In order
to interpret and analyse 2D patterns accurately it is necessary to
apply some data-treatment processes (Sulyanov et al., 1994;
Scheidegger et al., 2000; Cervellino et al., 2006; Boesecke, 2007;
Rowe, 2009). Most data-treatment processes can be categorized
as having one of the following four purposes: to eliminate or
reduce errors caused by detector defects; to remove undesirable
effects of instrument and sample geometry; to transfer a 2D
frame into a format such that the data can be presented or
further analysed by conventional means and software; and
cosmetic treatment, such as smoothing a frame for reports and
publications.



2.5. TWO-DIMENSIONAL POWDER DIFFRACTION

2.5.3.3.1. Nonuniform response correction

A 2D detector can be considered as an array of point detectors.
Each pixel may have its own response, and thus a 2D detector
may exhibit some nonuniformity in intensity measurement when
exposed to an isotropic source. The nonuniform response can be
caused by manufacturing defects, inadequate design or limita-
tions of the detector technology. For instance, a nonuniform
phosphor screen or coupling fibre optic for a CCD detector may
cause nonuniformity in quantum efficiency (Tate ef al., 1995). A
gas-filled detector may have a different intensity response
between the detector edge and centre due to the variation in the
electric field from the centre to the edge. A thorough correction
to the nonuniformity of the intensity response can be performed
if the detector counting curves of all pixels are given. In practice,
this is extremely difficult or impossible, because the behaviour of
a pixel may be affected by the condition of the adjacent pixels
and the whole detector. The practical way to correct the non-
uniformity of the intensity response is to collect an X-ray image
from an isotropic point source at the instrument centre and use
the image data frame to generate a correction table for the future
diffraction frames. The frame collected with the isotropic source
is commonly referred to as a ‘flood-field’ frame or a flat-field
image, and the correction is also called a flood-field correction or
flat-field correction (Stanton er al., 1992). Another type of
correction for a nonuniform response is background correction.
Background correction is done by subtracting a background
frame from the data frame. The background frame is collected
without X-ray exposure. Integrating detectors, such as image
plates or CCDs, have a strong background which must be
considered in nonuniform response correction. Photon-counting
detectors, such as MWPC and microgap detectors, have negligible
background, so background correction is not necessary.

The X-ray source for calibration for flood-field correction
should be a uniform, spherically radiating point source. Identical
brightness should be observed at any pixel on the detector. The
radiation strength of the source should match the intensity of the
diffraction data to be collected. The photon energy of the source
should be the same as or close to the X-ray beam used for
diffraction-data collection so that the detector behaves the same
way during calibration and data collection.

There are many choices of calibration sources, including X-ray
tubes, radioactive sources, diffuse scattering or X-ray fluores-
cence. The radioactive source Fe-55 (*°Fe) is the most commonly
used calibration source for a diffraction system because of its
major photon energy level of 5.9 keV. X-ray fluorescence is an
alternative to a radioactive source. Fluorescence emission is
generated by placing a fluorescent material into the X-ray beam.
Fluorescence radiation is an isotopic point source if the irradiated
area is a small point-like area. For example, Cu Ko can produce
intense fluorescence from materials containing significant
amounts of iron or cobalt and Mo K« can produce intense
fluorescence from materials containing yttrium. In order to avoid
a high localized intensity contribution from X-ray diffraction, the
fluorescent material should be amorphous, such as a glassy iron
foil. An alternative to a glassy alloy foil is amorphous lithium
borate glass doped with the selected fluorescent element up to a
10% concentration (Moy et al., 1996).

There are many algorithms available for flood-field correction
depending on the nature of the 2D detector. The correction is
based on the flood-field frame collected from the calibration
source. The simplest flood-field correction is to normalize the
counts of all pixels to the same level assuming that all pixels have
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the same response curve. The corrected frame from an isotropic
source is not flat, but maintains the cos’ ¢ falloff effect, which
will be considered in the frame integration. For gas-filled detec-
tors, such as MWPC and microgap detectors, the pixel intensity
response is not independent, but is affected by X-ray exposure to
surrounding pixels and the whole detector. Flood-field correction
is carried out by applying a normalization factor to each pixel in
which a ‘rubber-sheet’ kind of stretching and shrinking in regions
along the x and y detector axes slightly alters the size of each
pixel (He, 2009). The total number of counts remains the same
after the correction but is redistributed throughout the pixels so
that the image from an isotropic source is uniformly distributed
across the detector. The flood-field calibration must be done with
the same sample-to-detector distance as for the diffraction-data
collection.<

2.5.3.3.2. Spatial correction

In an ideal flat 2D detector, not only does each pixel have the
same intensity response, but also an accurate position. The pixels
are aligned in the x and y directions with equal spacing. In most
cases we assume that the detective area is completely filled by
pixels, so the distance between two neighbouring pixels is
equivalent to the pixel size. The deviation from this perfect pixel
array is called spatial distortion. The extent of spatial distortion is
dependent on the nature and limitation of the detector tech-
nology. A CCD detector with 1:1 demagnification may have a
negligible spatial distortion, but the barrel distortion in the
coupling fibre-optic taper can introduce substantial spatial
distortion. An image-plate system may have spatial distortion
caused by imperfections in the scanning system (Campbell et al.,
1995). MWPC detectors typically exhibit more severe spatial
distortion due to the window curvature and imperfections in the
wire anode (Derewenda & Helliwell, 1989).

The spatial distortion is measured from X-ray images collected
with a uniformly radiating point source positioned at the
instrument centre and a fiducial plate fastened to the front
surface of the detector. The source for spatial correction should
have a very accurate position, point-like shape and small size. The
fiducial plate is a metal plate with accurately distributed pinholes
in the x and y directions. The X-ray image collected with this
setup contains sharp peaks corresponding to the pinhole pattern
of the fiducial plate. Since accurate positions of the peaks are
given by the fiducial plate, the spatially corrected image is a
projection of the collected image to this plane. Therefore, the
detector plane is defined as the contacting plane between the
fiducial plate and detector front face.

Spatial correction restores the spatially distorted diffraction
frame into a frame with correct pixel positions. Many algorithms
have been suggested for spatial correction (Sulyanov et al., 1994,
Tate et al., 1995; Stanton et al., 1992; Campbell et al., 1995). In the
spatially corrected frame each pixel is generated by computing
the pixel count from the corresponding pixels based on a spatial-
correction look-up table. In a typical spatial-correction process,
an image containing the spots from the calibration source passing
through the fiducial plate is collected. The distortion of the image
is revealed by the fiducial spots. Based on the known positions of
the corresponding pinholes in the fiducial plate, the distortion of
each fiducial spot can be determined. The spatial correction for
all pixels can be calculated and stored as a look-up table.
Assuming that the detector behaves the same way in the real
diffraction-data collection, the look-up table generated from the
fiducial image can then be applied to the real diffraction frames.



2. INSTRUMENTATION AND SAMPLE PREPARATION

The spatial calibration must be done at the same sample-to-
detector distance as the diffraction-data collection.

2.5.3.3.3. Frame integration

2D frame integration is a data-reduction process which
converts a two-dimensional frame into a one-dimensional
intensity profile. Two forms of integration are generally of
interest in the analysis of a 2D diffraction frame from poly-
crystalline materials: y integration and 26 integration. y inte-
gration sums the counts in 20 steps (A26) along constant 26 conic
lines and between two constant y values. y integration produces a
data set with intensity as a function of 26. 20 integration sums the
counts in y steps (Ay) along constant y lines and between two
constant 26 conic lines. 20 integration produces a data set with
intensity as a function of y. y integration may also be carried out
with the integration range in the vertical direction as a constant
number of pixels. This type of y integration may also be referred
to as slice integration. A diffraction profile analogous to the
conventional diffraction result can be obtained by either y inte-
gration or slice integration over a selected 260 range. Phase ID can
then be done with conventional search/match methods. 26 inte-
gration is of interest for evaluating the intensity variation along y
angles, such as for texture analysis, and is discussed in more depth
in Chapter 5.3.

The y integration can be expressed as

Y2
120) = [ 120, y)dy, 26, <260 <20,

"

(2.5.23)

where J(26, y) represents the two-dimensional intensity distri-
bution in the 2D frame and /(26) is the integration result as a
function of intensity versus 26. y, and y, are the lower limit and
upper limit of integration, respectively, which are constants for y
integration. Fig. 2.5.13 shows a 2D diffraction frame collected
from corundum («-Al,O3) powder. The 26 range is from 20 to 60°
and the 26 integration step size is 0.05°. The y-integration range is
from 60 to 120°. In order to reduce or eliminate the dependence
of the integrated intensity on the integration interval, the inte-
grated value at each 26 step is normalized by the number of
pixels, the arc length or the solid angle. y integration with
normalization by the solid angle can be expressed as

), 120, y)(A20) dy
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Since the A26 step is a constant, the above equation becomes

[ 726, y)dy
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There are many integration software packages and algorithms
available for reducing 2D frames into 1D diffraction patterns
for polycrystalline materials (Cervellino et al., 2006; Rodriguez-
Navarro, 2006; Boesecke, 2007). With the availability of
tremendous computer power today, a relatively new method is
the bin meth