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ABSTRACT  

Characteristics of Activated Carbons Produced from Herbaceous Biomass Feedstock 
 

Oluwatosin Jerry Oginni 

 

Energy security and environmental protection are at the forefront of research due to the forecasted 
depletion of fossil fuel reserves and the growing concern of its adverse environmental impacts. 
The use of renewable sources for energy applications has centered on the use of biomass feedstocks 
and this include from herbaceous, woody, agricultural waste, forest residues and municipal wastes. 
The thermochemical conversion (pyrolysis) of these biomass feedstocks has potential to produce 
liquid fuel, a solid residue (biochar) and non-condensable gas. The biochar is primarily composed 
of renewable porous carbon and other inorganic compounds. The biochar is used for soil 
amendment, adsorption applications, electrochemical applications, and as a matrix for catalysts 
development. This dissertation has documented utilization of herbaceous biomass for biochar and 
activated carbon production and its use for adsorption applications. Chapter 1 provides basic 
introduction of the research presented in latter chapters while the chapter 2 provides 
comprehensive review of status of knowledge in the area of activated carbon production, 
characterization techniques, and application.  
 
Chapter 3 discusses distribution and properties of pyrolysis products obtained from herbaceous 
biomass feedstocks harvested from reclaimed mine lands in West Virginia. In this study, samples 
of Miscanthus sterile varieties (Private and Public) and Switchgrass sterile varieties (Bomaster and 
Kanlow), grown on reclaimed mine land in West Virginia were used. The oven-dried samples were 
pyrolyzed in a fixed-bed batch reactor under an inert condition and at a temperature of 500 °C to 
produce biochar and bio-oil. Statistical analysis of the pyrolysis data showed that there were no 
significant difference in the biochar yields (about 30% yield) obtained from the two varieties of 
Switchgrass and Miscanthus. The bio-oil yields were in the range of 45 to 51%. The carbon content 
of the biomass, biochar and bio-oil were found to be 46.80 – 48.02%, 77.72 – 80.23% and 54.68 
– 59.68%, respectively. Average heating values were found to be 19.49 MJ/kg, 29.01 MJ/kg and 
24.98 MJ/kg for the biomass, biochar and bio-oil, respectively.  
 
Chapter 4 focused on investigating the effect of pyrolysis temperatures (500, 700 & 900 °C) on 
the thermal stability and physicochemical characteristics of biochars produced from herbaceous 
biomass. The produced biochars were thermally degraded in air at a temperature of 950 °C to 
compare their thermal recalcitrance with graphite. The thermal recalcitrance of the biochars were 
found to increase with the pyrolysis temperature. The pH values increased with the pyrolysis 
temperature from slightly alkaline to highly alkaline. The aromaticity of the biochars increased 
and the biochars became more hydrophobic due to the loss of oxygen as the pyrolysis temperature 
increased.  The BET surface area of the biochars increased with an increase in pyrolysis 
temperature.   
 
Chapter 5 documents the effect of impregnation route on activated carbon properties from 
herbaceous biomass. The objective of this study was to investigate the effect of activating agent 



and impregnation route on the properties of activated carbons synthesized from herbaceous 
biomass. The precursors for the activated carbon synthesis were Kanlow Switchgrass (KSBM) and 
Public Miscanthus (PMBM) biomass and their biochars (KSBC and PMBC respectively). The 
precursors were impregnated with either potassium hydroxide or phosphoric acid. Thereafter, the 
impregnated precursors were activated at a temperature of 900 °C in inert condition. The surface 
morphology, textural properties and surface chemistry of the activated carbons were characterized. 
Also, the activated carbons were used in adsorbing two pharmaceutically active compounds; 
acetaminophen and caffeine. The results of the study showed that the biomass derived activated 
carbons had the highest BET surface area, which comprised of both micropores and mesopores. 
The biomass derived activated carbons were found to have better adsorption capacities for both 
caffeine and acetaminophen.  
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Chapter 1 

Introduction 

Energy security is one of the most important issues of modern times for every country in the 

world. Energy security is also directly tied with the nexus of food, water, and social security.  Given 

the finite supply of fossil-based energy resources, significant investment is being made by various 

governments to diversify their energy portfolios to incorporate renewable energy resources, which is 

assisted by amicable energy policies and acts [1]. For example, in the United States, the total primary 

energy consumption per year for all sectors has been projected to increase from 97.1 quadrillion Btu in 

2013 to 105.7 quadrillion Btu in 2040, the majority of which is expected to be supplied from fossil 

resources, a leading source for greenhouse gas emissions [2]. According to one estimate, consumption 

of gasoline and diesel in the United States resulted in 1522 million metric tons of CO2 greenhouse gas 

emissions, which was equivalent to 83% of the total CO2 emissions by the U.S. transportation sector 

and 28% of total U.S. energy-related CO2 emissions [3]. 

To address issues relating to energy security and climate change, the United States government 

has enacted legislation, including the Energy Independence and Security Act (EISA) of 2007, National 

Environmental Policy Act, Recovery Acts and Clean Energy, American Renewable Energy and 

Efficiency Act, Renewable Fuel Standard (RFS) and Renewable Portfolio Standards (RPS). The EISA 

[4] mandates an increase in the amount of renewable fuels used in the United States transportation 

sector from 2012 level of 15 billion gallons to 36 billion gallons by 2022. The mandate further stipulates 

that, of the 36 billion gallons of renewable fuel, the goal is to produce 21 billion gallons of advanced 

biofuels derived mainly from cellulosic feedstock (forest residues, woody biomass, dedicated energy 

crops, agriculture residues, etc). The United States has the potential to produce over 1 billion dry tons 

of biomass annually for bioenergy applications, which can be converted into 90 billion gallons of liquid 

fuels, enough to meet more than 30% of the 2015 U.S. petroleum consumption (297.36 billion gallons) 

[5].  

The portion of the CO2 released from the biomass derived fuel is CO2 that has been recently 

sequestered from the atmosphere by plant growth. In contrast, the large amounts of CO2 released by 

fossil fuel combustion is from long-term stored carbon. The use of renewable energy resources will 

thus result in a relatively large net reduction of atmospheric carbon emission, hence mitigating the 

threats of global climate change [6]. For example, the CO2 emissions from using dedicated energy crops 
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for energy generation are about 7, 12, and 13 times lower than those produced by gas, petroleum, and 

coal respectively [7]. Specifically, CO2 emissions from switchgrass is 1.9 kg C/GJ compared with 13.8, 

22.3 and 24.6 kg C/GJ [6]   

However, it is noteworthy that the production of these biomass resources will compete with 

food production in terms of cultivable land use. This has led to investigation on the potential use of 

marginal lands (including abandoned mine lands and other non-arable lands) for growing dedicated 

energy crops to reduce competition for land between energy and food production. Marginal lands are 

usually described as unproductive or unsuitable for crop production due to inherent edaphic or climatic 

limitations or because they are located in areas that are vulnerable to erosion or other environmental 

risks when cultivated [8,9]. Marginal lands are characterized as having little or no agricultural 

importance with poor soil qualities, hence making them unsuitable for food production. According to 

Blanco-Canqui [10], reclaimed mine land is considered marginal because they are often rocky and 

gravelly, with low soil organic matter concentrations and adverse soil physical and chemical properties. 

While the United States has about 4.4 million ha of mine lands, West Virginia is estimated to have 

about 81,200 ha of mine lands. Out of these 81,200 hectares of land, about 200 acres had been reclaimed 

and planted with biomass crops [11,12]. The current state of reclaimed mine lands in West Virginia 

used for herbaceous biomass production has shown a great potential for high yield. Target yields of 

5,000 kg/ha for Switchgrass and 15,000 kg/ha for Miscanthus has been established for reclaimed lands 

by the WV Department of Environmental Protection [13]. In a study by Skousen et al. [13], 4,900 kg/ha 

yield was obtained for a variety of Switchgrass and 21, 880 kg/ha yield was achieved for a variety of 

Miscanthus in 2012. 

The intention of growing these dedicated bioenergy crops with significant capital investment 

was to supply a bioethanol plant to be opened in near future, however, there is currently no outlet for 

the harvested bioenergy crops. Therefore, there is a need to provide an alternate use of these available 

biomass feedstock to generate an economic return. The thermochemical conversion of biomass 

feedstocks have been reported to produce bio-oil, biochar and incondensable gas [14]. The use of 

biochar for soil amendment, animal feed and fuel [15] can serve an alternate option for generating 

economic returns for the biomass feedstocks. In recent times, the need for producing activated carbon 

from cheap and available precursors have led to significant research on the use of biomass for activated 

carbon production. This is also a viable valued-added use of the biomass feedstocks.  
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Activated carbon is broadly defined to include a wide range of amorphous carbon-based 

materials prepared in such a way that they exhibit a high degree of porosity and an extended surface 

area [16]. It is a versatile adsorbent that is used for removal, recovery, separation and modification of 

harmful constituents from gases and liquid solutions. The structure of activated carbon is best described 

as a twisted network of defective carbon layer planes, cross linked by aliphatic bridging groups. This 

structure contributes to its highly developed and accessible internal pore structure [17]. These intrinsic 

features are responsible for its exceptional adsorptive capability, which has found application in 

adsorbing molecules from both the liquid and gas phase [18,19]. As a result, its adsorption application 

is as diverse as pharmaceuticals, food, chemical as well as treatment of drinking water, industrial and 

urban waste water, and industrial flue gases [16,17].  

The detection of pharmaceutically active compounds and endocrine disrupting compounds in 

waste water and finished drinking water albeit at trace levels; and the potential of these compounds to 

cause harm to human health if they accumulate in human bodies [20], have led to greater interest in the 

application of activated carbon for water treatment. In 2008, there was a published report that the 

drinking water supplies for at least 41 million Americans had pharmaceuticals in them. Although, the 

concentrations of these pharmaceuticals were in trace levels (parts per billion), their presence in 

drinking water has heightened the concerns of researchers about the long term consequences to human 

health [21]. The growing concern about these compounds in recent times is not solely a result of 

increase in the concentration of these compounds in drinking water but also by the improved ability to 

detect them at very low concentrations. Also, another factor for the growing concern is the potential 

for synergistic effects of mixtures of these compounds [22]. In a study conducted by Kim et al. [23] on 

degradability of 30 pharmaceuticals and personal care products, it was reported that certain compounds 

that coexist in water pose greater threats than if they exist alone.   

Activated carbon adsorption, a surface phenomenon by which components of a fluid (gas or 

liquid) is attracted to the surface of an adsorbent and forms attachments via physical or chemical bonds, 

has been recognized as the most efficient, promising and widely used fundamental approach in drinking 

water and waste water treatment processes, mainly due to its simplicity, economic viability, technical 

feasibility and social acceptability [24,25]. The activated carbon adsorption involves two types of 

forces: physical forces that may be dipole moments, polarization forces, dispersive forces, or short 

range repulsive interactions and chemical forces that are valency forces arising out of the redistribution 

of electrons between the solid surface and the adsorbed atoms [16]. Depending upon the nature of the 
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forces involved, the adsorption is of two types: physical adsorption and chemisorption. In the case of 

physical adsorption, the adsorbate is bound to the surface by relatively weak van der Waals forces, 

which are similar to the molecular forces of cohesion and are involved in the condensation of vapors 

into liquids. Chemisorption, on the other hand, involves exchange or sharing of electrons between the 

adsorbate molecules and the surface of the adsorbent resulting in a chemical reaction. The bond formed 

between the adsorbate and the adsorbent is essentially a chemical bond and is thus much stronger than 

in physisorption [16]. 

The adsorption process is usually described through isotherms, which shows the amount of 

adsorbate on the adsorbent as a function of its pressure (if gas) or concentration (if liquid) at constant 

temperature [24]. Established isotherm models such as Langmuir, Freundlich and Brunauer-Emmett-

Teller (BET) isotherm models are used in assessing the suitability of an adsorbent in an adsorption 

system, where the experimental data are fitted to any of these models [26]. The isotherms are critical 

for optimization of the adsorption mechanism pathways, expression of the surface properties and 

capacities of the adsorbents, and effective design of the adsorption systems [24]. 

Despite the prolific use of activated carbon in adsorption processes, its use is faced with 

challenges ranging from high cost of production and unavailability of precursors due to its non-

renewable source to difficulties associated with regeneration of the activated carbon for reuse [24,27]. 

The commercial activated carbon is generally derived from coal and lignite as 90% of its constituents 

is made of carbon. In light of this, research attention has shifted to the possibility of using agricultural 

wastes, forest residues and biomass feedstock as the precursor for activated carbon production.  

These raw materials are being explored because they are inexpensive, abundant, renewable and 

their use pose no threat to the environment. The several published works on the use of biomass 

feedstocks for activated carbon preparation have been on biomass feedstocks harvested on 

agriculturally viable lands. To the best of our knowledge, there are no published research work on the 

use of biomass feedstocks harvested on marginal or reclaimed mine lands for the production of 

activated carbon. Large scale production of activated carbon will require a large quantity of precursors, 

which will ultimately compete with agricultural lands needed for food production. These biomass 

feedstocks can be produced on marginal lands if the properties of the activated carbon produced from 

them are similar to the properties of commercial activated carbon. This is the basis for this research 

work 
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1.2 Research Objectives 

The aim of this research is to test the efficacy of activated carbons produced from various 

herbaceous biomass grown on marginal and reclaimed mine lands of West Virginia through different 

activation agents. The specific objectives are outlined below:   
 

Objective 1: Evaluate the yield and properties of pyrolysis products obtained from bioenergy crops 

harvested on reclaimed mine land in West Virginia.  

Rationale: While literature is available on pyrolysis of switchgrass harvested from agricultural viable 

soil at Mead, NE [28,29] and Miscanthus grown in Tifton, Georgia [30], the distribution and properties 

of the pyrolysis products from biomass harvested on a marginal land (such as reclaimed mine land) 

might differ from that harvested on cultivable soils. The results of the biochar yield and the carbon 

conversion efficiency will allow for accurate estimation of the economic feasibility of activated carbon 

production from these feedstocks.  

Objective 2: Effect of pyrolysis temperature on the thermal stability and physico-chemical 

characteristics of biochars produced from herbaceous biomass.  

Rationale: The significance of biochar as soil amendment and carbon sink is due to its resistance to 

abiotic and biotic degradation. The recalcitrant nature of the biochar determines its stability and its rate 

of mineralization. A highly recalcitrant biochar has high carbon content, very low volatile content and 

low content of oxygen and hydrogen in relation to the carbon content. This type of recalcitrant nature 

is directly related to the temperature at which the biochar is produced. Therefore, this work investigates 

the recalcitrance and agronomic properties of biochars produced at three different pyrolysis 

temperatures. The results of the work can be used in the selection of an appropriate biochar for soil 

amendment.  

Objective 3: Effect of activating agent and impregnation route on activated carbons properties using 

acidic and alkaline activating agents  

Rationale: The production of activated carbon from biomass using chemical activation process can be 

divided into two pathways. The first pathway involves impregnation of the biomass with chemical 

agent and subsequent carbonization of the impregnated biomass at an elevated temperature to produce 

the activated carbon. The second pathway involves the initial biochar production, biochar impregnation 

with chemical agent and the activation of the impregnated biochar to produce the activated carbon. 

While there are reports of the chemical activation of biomass precursors [31-34] and biochar precursors 

[35-38] for the production of activated carbons, there is a sparsity of literature where both pathways 
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were evaluated for the same biomass. Therefore, this study aimed at investigating the effect of 

impregnation route on activated carbon properties using an acidic and alkaline activating agent.  

1.3 Technical Merit of the Research 

The technical merit of this research is in the fact that it seeks to elucidate how the type of 

chemical activating agents and impregnation route play a significant role in influencing not only the 

total specific surface area and proportion of disordered carbon clusters of an activated carbon but also 

the distribution of the surface area in various pore sizes, which directly influence the adsorption 

characteristics of the activated carbon.  

Another technical merit of this research is that it unravels how processing temperature changes 

both the pore characteristics and surface functionalities of biochars produced from herbaceous biomass.   

1.4 Broader Impacts of Research on Society and on U.S Agriculture 

This research will provide a basis to process biomass crops currently grown in the state of West 

Virginia into usable activated carbons, thereby, promoting rural economic development in the state.  
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Chapter 2: Literature Review 
2.1 Pharmaceuticals  

Pharmaceuticals are regarded as emerging contaminants on our aquatic ecosystems and are 

described as large class of chemical contaminants arising from products such as prescription medicines, 

over-the-counter medications, fungicides and disinfectants used for domestic, industrial, and 

agricultural practices [1]. Pharmaceuticals are defined as used primarily to prevent or treat human and 

animal diseases. This group includes antibiotics, hormones, anti-inflammatory drugs, antiepileptic 

drugs, blood lipid regulators, cytostatic drugs [2].  

Pharmaceuticals are widely released into the aquatic environment, where they mix at low 

concentrations over extended time via diverse pathways, resulting in a very complex fate [3]. 

Significant sources of pharmaceutical compounds include pharmaceuticals and chemical 

manufacturing facilities, hospital, pharmacies, veterinary facilities, and runoff from confined animal 

feeding operations or farms, where large quantities of antibiotics and other drugs are used. One of the 

largest sources of pharmaceutical compounds has been identified to be typical households where 

pharmaceutical compounds enter wastewater treatment plants through human excrement, flushing of 

unused medications and washing chemicals down the drains [4]. The major pathways in which these 

compounds are release into the environment are illustrated in Figure 2.1.   

In 2008, there was a published report that the drinking water supplies for at least 41 million 

Americans contained pharmaceuticals [5]. Although, the concentrations of these pharmaceuticals were 

in trace levels (parts per billion), their presence in drinking water has heightened the concerns about 

the long-term consequences to human health [5]. The growing concern about these compounds in recent 

times is not solely a result of increase in the concentration of these compounds in drinking water but 

also by the improved ability to detect them at very low concentrations. Also, another factor for the 

growing concern is the potential for synergistic effects of mixtures of these compounds [6]. In a study 

conducted by Kim et al. [7] on degradability of 30 pharmaceuticals and personal care products, it was 

reported that certain compounds that coexist in water pose greater threats than if they exist alone.   
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Figure 2.1: Major pathways for pharmaceutical compounds into the environment [8] 

 
The assessment of the potential adverse effects on human health associated with chronic 

exposure to trace levels of the pharmaceutical compounds in drinking water ranked the number 1 

question among the 22 scientific priorities regarding pharmaceutical compounds in the environment as 

part of a ‘big question exercise’ hosted by the Society of Environmental Toxicology and Chemistry, 

involving more than 500 environmental scientists from 57 countries [3]. These compounds are soluble 

in water due to their low concentration and polar nature; therefore, a large number of the compounds 

have been detected in the aquatic environment, worldwide [9]. Pharmaceutical compounds consistently 

produce sublethal effects even at low concentrations but usually do not present clear evidence of 

lethality even a high concentration. The complexity of the fate of pharmaceutical compounds and their 

sublethal effects pose important challenges to the present understanding of pollutant mixture effects 

[3]. 

There is no statutory maximum concentration limit for pharmaceutically active compounds in 

drinking water [1, 10]. Therefore, the removal of these compounds is an emerging concern and poses 

a unique challenge for analytical detection and assessment of removal performance by available 

conventional water treatment technologies for several reasons. Firstly, the number of compounds 

detected is large and it is continuously increasing. Secondly, their physicochemical properties are 

highly diverse and lastly, they occur in water at concentrations as low as part per trillion [10, 11].  
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2.2 Treatment Methods for Pharmaceutical Compounds  

Common conventional water treatment technologies employed in the removal of 

pharmaceutical compounds are similar to those contaminants such as phenolic compounds and dyes. 

These technologies can be divided into three main categories; biological, chemical and physical.  

The biological method includes microbial degradation and bioremediation systems. These methods 

involve the use of microorganisms that are capable of accumulating and degrading different 

contaminants. However, the effectiveness of biological treatment is hampered by its large land area 

requirement, sensitivity towards toxicity of chemicals and less flexibility in design and operation. Also, 

although many organic molecules are degraded, many others are recalcitrant due to their complex 

chemical structure and synthetic organic origin [12]. 

The chemical methods include coagulation, sedimentation, filtration, electroflotation, 

conventional oxidation methods by ozone, irradiation or electrochemical processes [11, 12]. Chemical 

coagulation helps in the removal of suspended solids (turbidity) from water and aid in removing 

dissolved organic carbon (DOC). This procedure employs aluminum or iron based salts, which 

precipitate as metal hydroxides. Chemical lime softening removes dissolved calcium and magnesium, 

using lime and soda ash to precipitate calcium carbonate at lower pH and magnesium at hydroxide at 

pH > 11. Coagulation and softening alone are generally not effective in the removal of trace levels of 

pharmaceutical compounds [11]. Chemical techniques are often expensive and there is usually an 

accumulation of concentrated sludge creating disposal problem. There is also a possibility of secondary 

pollution problem arising due to excessive chemical use [12]. 

The physical methods widely used include membrane filtration processes (such as 

nanofiltration, reverse osmosis, electro-dialysis) and adsorption techniques. The major disadvantage of 

the membrane processes is that they have limited lifetime before membrane fouling occurs and the cost 

of periodic replacement must be considered and reduces economic viability [12]. However, the 

adsorption technique has been considered to be superior to other techniques in the removal of the 

emerging contaminants during drinking water and wastewater treatment. This is due to its simplicity of 

design and operation, ease of operation, no addition of undesirable by-products (since it is a mass 

transfer process which involves the accumulation of substances at the interface of two phases), 

insensitivity to toxic contaminants, applicability at very low concentrations, suitability for both batch 

and continuous processes, possibility of regeneration and low initial cost [10, 12].  
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The most widely used adsorbent for the adsorption process is activated carbon. Activated carbon 

adsorption is a surface phenomenon by which multicomponent fluid mixture is attracted to the surface 

of the adsorbent and forms attachment via physical or chemical bonds [13, 14]. The activated carbon 

adsorption involves two types of forces: physical forces that may be dipole moments, polarization 

forces, dispersive forces, or short range repulsive interactions and chemical forces that are valency 

forces arising out of the redistribution of electrons between the solid surface and the adsorbed atoms 

[15]. Depending upon the nature of the forces involved, the adsorption is of two types: physical 

adsorption and chemisorption. In the case of physical adsorption, the adsorbate is bound to the surface 

by relatively weak van der Waals forces. Chemisorption, on the other hand, involves exchange or 

sharing of electrons between the adsorbate molecules and the surface of the adsorbent resulting in a 

chemical reaction. The bond formed between the adsorbate and the adsorbent is essentially a chemical 

bond and is thus much stronger than in the physisorption [15]. 

2.3 Recent Studies on Adsorption of Pharmaceutical Compounds using Activated Carbon 

Extensive research studies have been conducted on the adsorption of pharmaceutical 

compounds using activated carbons. The common categories of pharmaceuticals that have been 

investigated in recent times includes antibiotics, pain killers, muscle relaxants and hormonal drugs [16]. 

Since the mere disappearance of the parent pharmaceutical compounds cannot be considered as a 

certain sign of the complete removal of these compounds, but as an indication of the biotransformation 

of the compounds, intensive research focus had been more on the use of powdered activated carbon on 

the removal of these compounds [9]. 

Alvarez-Torrellas et al. [17] studied the adsorption of non-biodegradable pharmaceuticals 

(carbamazepine and ciprofloxacin) from hospital wastewater using both commercial granular activated 

carbon and laboratory prepared activated carbons. The kinetic tests revealed that the equilibrium time 

was established in the first 4 hours for both compounds. So, the adsorption process seemed to be an 

efficient technology for the removal of these micropollutants from water. Also, the result of the 

multicomponent adsorption study showed that all the activated carbons achieved a removal efficiency 

above 60%. The removal efficiency was reported to have decreased in comparison to the one obtained 

for the single component adsorption study and this decrease was attributed to the competitive effect 

among the contaminants for the active sites in the activated carbon.  

Rakic et al. [9] studied the adsorption of four pharmaceutically active compounds, namely; 

salicylic acid, acetylsalicylic acid, atenolol and diclofenac-Na using three different commercial 
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activated carbons. The study showed that the maximum adsorption capacities of investigated activated 

carbons for all target pharmaceuticals were in the range of 0.1 and 0.4 mmol/g. The obtained maximum 

retention capacities were correlated with the textural properties of applied activated carbon. The authors 

concluded that the results showed the possibility of using the activated carbons for removal of the 

investigated pharmaceuticals from waters. 

Boudrahem et al. [18] conducted a study on the single and multicomponent adsorption of 

clofibric acid, tetracycline and paracetamol onto activated carbon developed from cotton cloth residue. 

The activated carbons were chemically prepared using H3PO4 at different impregnation ratios. The 

results showed that the activated carbon produced at 50% H3PO4 impregnation ratio adsorbed 97.03 % 

of tetracycline, 84 % of paracetamol and 83 % of clofibric acid. This high adsorption performance was 

attributed to the high surface area, microporosity development and availability of more active sites in 

the activated carbon. The adsorption equilibrium was attained after 20 min at low concentrations and 

60 min at concentrations above 50 mg/L regardless of the tested molecule. The amount of clofibric 

acid, tetracycline and paracetamol adsorbed increased with the increase in their initial concentration. 

The authors also reported a decrease in the adsorption capacities of the activated carbon when used in 

multicomponent adsorption tests. This reduction was explained to be the effect of competition for the 

available adsorption sites.  

2.4 Adsorption Mechanism  

Adsorption is the accumulation or concentration of substances at a surface or interface. 

Adsorption can also be said to be the process in which molecules accumulate in the interfacial layer 

[19]. For a liquid phase adsorption, the solute transfer or adsorption rate is usually characterized by 

either external mass transfer (boundary layer diffusion) or intra-particle diffusion or both. Sotelo et al. 

[20] stated that stirring or agitation in a batch adsorption process favors external diffusion. This allows 

the equilibrium between the adsorbate and the adsorbent to be reached in a lower operation time and 

increases the adsorption of the adsorbate onto the adsorbent. Also, for the fixed bed adsorption process, 

mainly the intra-particle diffusion controls the adsorption process and this implies longer operation 

time and lower adsorption capacities due to mass transfer resistance inside the smaller pores.  

The adsorption mechanism can be explained in three consecutive steps described below [21]; 

(i) transport of the adsorbate from bulk solution to the exterior surface of the adsorbent (film diffusion); 

(ii) transport into the adsorbent by either pore diffusion and/or surface diffusion (intra-particle 
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diffusion); (iii) adsorption on the surface of the adsorbent. The overall rate of adsorption is controlled 

by the slowest step, which would either be film diffusion or pore diffusion controlled [12]  

2.4.1 Adsorption isotherms  

The adsorption isotherm describes how the adsorbed molecules are distributed between the 

liquid phase and the solid phase when the adsorption process reaches an equilibrium state [18]. 

Adsorption isotherm is the most extensively employed method for representing the equilibrium states 

of an adsorption system [22]. It can give useful information regarding the adsorbate, the adsorbent, and 

the adsorption process. The analysis of the isotherm data is important to develop an equation which 

accurately represents the results and which could be used for design purposes [15, 23]. The commonly 

used two- parameter adsorption isotherms include Langmuir, Freundlich, Temkin, and Dubinin-

Radushkevich [24] while the widely used three- parameter isotherms include Redlich-Peterson, Sips 

and Toth [13, 23]. The isotherms and their respective linear forms are shown in Table 2.1. 

Langmuir equation is based on the following assumptions; (i) during an entire adsorption 

process, only monolayer adsorption occurs; (ii) the adsorbed entities are attached to the surface at 

definite localized sites with no adsorbate-adsorbate interactions; (iii) The heat of adsorption is 

independent of surface coverage, that is, the adsorbent has an energetically homogenous surface [15, 

22]. 

The Freundlich isotherm model was originally developed to overcome some of the limitations 

of Langmuir model, by taking into account the surface heterogeneity and that there might exist 

intermolecular interactions between the adsorbate molecules [25]. It is of greater significance for 

chemisorption although some physical adsorption has also been explained using this equation. The 

constant ‘n’ in the Freundlich equation is called the Freundlich constant, which represents the quasi-

Gaussian energetic heterogeneity of the adsorption surface [15]. 

The Redlich-Peterson isotherm model is a three-parameter empirical model which 

incorporates both the Langmuir and the Freundlich isotherms. Due to the versatility of the model, it can 

be used to represent adsorption equilibrium over a wide range of concentration irrespective of whether 

the active sites are homogenous or heterogeneous in nature [13].       

The Sips isotherm model is also a three-parameter model combining Freundlich and Langmuir 

isotherms equations in explaining a heterogeneous adsorption system and also circumventing the 

limitation of the rising adsorbate concentration associated with Freundlich isotherm [13]. Sips isotherm 
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functions as Freundlich at a low adsorbate concentration and at a high adsorbate concentration, it 

functions as Langmuir, predicting the monolayer adsorption capacity [13, 26].  

Mestre et al. [1] investigated the adsorption of ibuprofen on two activated carbons prepared via 

chemical activation using K2CO3 (CAC) and physical activation with steam (CPAC). The linear 

Langmuir and Freundlich isotherms for the adsorption of ibuprofen onto CAC and CPAC, at different 

temperatures, were fitted to the experimental data. The choice of the best adsorption isotherm was based 

on the coefficient of determination (R2) of the linear plots. The authors reported that the experimental 

data fit better with the Langmuir model based on the coefficient of determination of the Langmuir plots 

(R2 ≥0.997). The Langmuir monolayer adsorption capacity (qm) ranged between 139 – 153 mg/g and 

378 – 417 mg/g for CAC and CPAC respectively over a temperature range of 25 to 40 °C. The Langmuir 

constant b, which defines the measure of the adsorption affinity or heterogeneity of the activated carbon 

surface was reported to be 0.262 – 0.356 dm3/mg and 0.104 – 0.123 dm3/mg for CAC and CPAC 

respectively. This showed that the CAC activated carbon had a higher adsorption affinity to ibuprofen 

as compared to the CPAC activated carbon. The authors further noted that although the Freundlich 

isotherm did not fit the experimental data as well as the Langmuir model, the Freundlich 1/n values, 

(which also represents adsorption affinity or surface heterogeneity) showed that the CAC activated 

carbon had higher adsorption affinity than the CPAC activated carbon. The 1/n values were obtained 

from the slope of the Freundlich linear plots.       

Table 2.1 Isotherms and their linear forms [13, 23, 24] 

Isotherm Equation Linear form 
Langmuir-1 

𝑞𝑞𝑒𝑒 =  𝑞𝑞𝑚𝑚𝐾𝐾𝑎𝑎𝐶𝐶𝑒𝑒
1+ 𝐾𝐾𝑎𝑎𝐶𝐶𝑒𝑒

  

𝐶𝐶𝑒𝑒
𝑞𝑞𝑒𝑒

=  1
𝑞𝑞𝑚𝑚
𝐶𝐶𝑒𝑒 + 1

𝐾𝐾𝑎𝑎𝑞𝑞𝑚𝑚
  

Langmuir-2 1
𝑞𝑞𝑒𝑒

=  � 1
𝐾𝐾𝑎𝑎𝑞𝑞𝑚𝑚

� 1
𝐶𝐶𝑒𝑒

+ 1
𝑞𝑞𝑚𝑚

  

Freundlich 𝑞𝑞𝑒𝑒 =  𝐾𝐾𝐹𝐹𝐶𝐶𝑒𝑒
1
𝑛𝑛  log(𝑞𝑞𝑒𝑒) = log(𝐾𝐾𝐹𝐹) + 1

𝑛𝑛
log(𝐶𝐶𝑒𝑒)  

Temkin 𝑞𝑞𝑒𝑒 =  
𝑅𝑅𝑅𝑅
𝐵𝐵𝑇𝑇

𝑙𝑙𝑙𝑙𝐴𝐴𝑇𝑇𝐶𝐶𝑒𝑒 𝑞𝑞𝑒𝑒 =
𝑅𝑅𝑅𝑅
𝐵𝐵𝑇𝑇

ln𝐴𝐴𝑇𝑇 + �
𝑅𝑅𝑅𝑅
𝐵𝐵𝑇𝑇
� ln𝐶𝐶𝑒𝑒 

Dubinin-Radushkevich 𝑞𝑞𝑒𝑒 = 𝑞𝑞𝑠𝑠𝑒𝑒𝑒𝑒𝑒𝑒(−𝑘𝑘𝑎𝑎𝑎𝑎ɛ2) ln 𝑞𝑞𝑒𝑒 = ln 𝑞𝑞𝑠𝑠 − 𝑘𝑘𝑎𝑎𝑎𝑎ɛ
2 

Redlich-Peterson 𝑞𝑞𝑒𝑒 = 𝐴𝐴𝐶𝐶𝑒𝑒
1+𝐵𝐵𝐶𝐶𝑒𝑒

𝑔𝑔  ln �𝐴𝐴 𝐶𝐶𝑒𝑒
𝑞𝑞𝑒𝑒
− 1� = 𝑔𝑔 ln(𝐶𝐶𝑒𝑒) + ln (𝐵𝐵)  

Toth 𝑞𝑞𝑒𝑒 =
𝐾𝐾𝑇𝑇𝐶𝐶𝑒𝑒

(𝑎𝑎𝑇𝑇 + 𝐶𝐶𝑒𝑒)1/𝑡𝑡 ln �
𝑞𝑞𝑒𝑒
𝐾𝐾𝑇𝑇
� = ln𝐶𝐶𝑒𝑒 −

1
𝑡𝑡

ln(𝑎𝑎𝑇𝑇 + 𝐶𝐶𝑒𝑒) 

Sips 𝑞𝑞𝑒𝑒 =
𝐾𝐾𝑠𝑠𝐶𝐶𝑒𝑒

𝛽𝛽𝑆𝑆

1 + 𝑎𝑎𝑆𝑆𝐶𝐶𝑒𝑒
𝛽𝛽𝑆𝑆

 𝛽𝛽𝑆𝑆 ln𝐶𝐶𝑒𝑒 =  − ln �
𝐾𝐾𝑆𝑆
𝑞𝑞𝑒𝑒
� + ln𝑎𝑎𝑆𝑆 
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Llado et al. [27] studied the role of activated carbon properties in atrazine and paracetamol 

adsorption equilibrium and kinetics. Three activated carbons were employed; two were commercial 

activated carbons (F-400 and NPK) and the third was a sludge derived activated carbon (SBC). The 

equilibrium adsorption studies were conducted at a temperature of 25 °C varying the concentration of 

the compounds between 1 – 150 mg/L. The experimental adsorption data were fitted into three isotherm 

models; Langmuir, Freundlich and Dubinin-Radushkevich (DR). The authors reported that Langmuir 

isotherm provided the best description of the atrazine and paracetamol adsorption onto F-400 and SBC 

activated carbon and Freundlich isotherm explains better the adsorption of these compounds onto NPK 

activated carbon. The DR isotherm gave a lower fitting in comparison to the other models for all the 

studied cases, which was an indication that the model did not offer a satisfactory description of the 

experimental behavior. For both atrazine and paracetamol adsorption, F400 activated carbon had the 

highest the Langmuir monolayer adsorption capacity (qm) of 212.26 mg/g and 261.04 mg/g 

respectively. Also, the Langmuir constant b, was reported to be the highest for F400 activated carbon, 

which is an indication that the F400 activated carbon has a greater affinity for the two compounds in 

comparison to the other two activated carbons. 

Yu et al. [28] studied the adsorption characteristics of naproxen, carbamazepine, and 

nonylphenol on two granular activated carbons. The activated carbons were derived from bituminous 

coal (F400) and coconut shell (CTIF). Three isotherm models (Langmuir, Freundlich and three-

parameter Langmuir-Freundlich (LF)) were used in evaluating the adsorption behaviors of the target 

compound onto the activated carbons. The selection of the best isotherm model was based on the 

examination of the minimum sum of squares residuals (SSE) for each isotherm model. The authors 

reported that the Freundlich isotherm demonstrated the best fit for the target compounds adsorption. 

The Freundlich sorption constant KF was estimated to range between 2.49 and 73.15 (ng/mg)(L/ng)1/n 

for the adsorption of the three target compounds on the activated carbons. Naproxen and 

Carbamazepine had the highest Freundlich sorption constants for the two activated carbons while 

Nonylphenol had the lowest Freundlich sorption constants. The Freundlich constant 1/n values for both 

Naproxen and Carbamazepine were also reported to be higher than those for Nonylphenol. This value 

represents the adsorption affinity of the target compounds to the activated carbons.  

Rakic et al. [9] conducted an experiment on the adsorption of four pharmaceutically active 

compounds; salicylic acid, acetylsalicylic acid, atenolol and diclofenac-Na using three commercial 

activated carbons. The adsorption isotherms employed in this study were Langmuir, Freundlich and 
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Sips isotherm models. The authors reported that for the majority of the investigated adsorption systems, 

the Sips isotherm model gave the best description of the adsorption behavior of the target compounds 

on to the activated carbons. The Freundlich isotherm model was also found to fit the experimental 

adsorption data for some of the investigated adsorption systems. The authors explained that both Sips 

and Freundlich isotherm models are used in interpreting the adsorption on energetically heterogeneous 

systems. The Sips isotherm is postulated on the assumptions of surface heterogeneity and definite 

number of active sites, where one molecule of adsorbate interacts with the active site on the adsorbent 

surface. The Freundlich isotherm is an experimental model which can be applied to non-ideal 

adsorption on heterogeneous surfaces as well as for multi-layer adsorption. The authors further clarified 

that since the experimental adsorption data generally fit to either Sips or Freundlich isotherm, it 

indicates the significant heterogeneity of the active sites on the activated carbons used in the study. 

2.4.2 Adsorption kinetics 

Modeling adsorption kinetics helps in determining the time necessary for reaching equilibrium 

and to elucidate the mechanism of the adsorption process [25]. Its knowledge is of great importance in 

designing appropriate adsorption technologies. Several models have been used to fit kinetic data. The 

kinetic data is gathered by measuring the change in concentration as a function of time for a given 

initial solute concentration and mass of adsorbent. Some of the models used for adsorption kinetics 

include pseudo-first-order, pseudo-second-order, Elovich and Intra-particle diffusion. Table 2.2 shows 

the kinetic models and their respective equations.  

Table 2.2 Kinetic models and their equations [29] 

Kinetic Model Equation 

Pseudo-first order log( 𝑞𝑞𝑒𝑒 − 𝑞𝑞𝑡𝑡) = 𝑙𝑙𝑙𝑙𝑙𝑙𝑞𝑞𝑒𝑒 −
𝑘𝑘1

2.303
 𝑥𝑥 𝑡𝑡 

Pseudo-second order 
𝑡𝑡
𝑞𝑞𝑡𝑡

=
1

𝑘𝑘2𝑞𝑞𝑒𝑒2
+

1
𝑞𝑞𝑒𝑒
𝑡𝑡 

Intra-particle diffusion 𝑞𝑞𝑡𝑡 = 𝑘𝑘𝑝𝑝𝑡𝑡1/2 + 𝐶𝐶 

Elovich 𝑞𝑞𝑡𝑡 =
1
𝛽𝛽

ln(𝛼𝛼𝛼𝛼) +  
1
𝛽𝛽

ln 𝑡𝑡 

qe - equilibrium adsorption capacity (mg/g); qt - amounts of the sorbate adsorbed (mg/g) at time t; 
k1 (min-1) is the pseudo-first order rate constant; k2 (g/mg) is the pseudo-second-rate constant 
C is the intercept; kp (mg/g min1/2) is the intra-particle diffusion rate constant. 
α (mg/g min) is the initial sorption rate; β (g/mg) is related to the extent of surface coverage and activation energy 
for chemisorption. The value of (1/β) is indicative of the available number of sites for adsorption while (1/β) ln(α 
β) is the adsorption quantity when ln t = 0. 
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Mestre et al. [1] studied the adsorption of ibuprofen using two activated carbons (CAC and 

CPAC). The pseudo- first order and pseudo- second order kinetic models were employed to fit the 

adsorption kinetics data. The initial concentration of the ibuprofen solution was varied between 20 and 

60 mg/dm3
 in order to test the effect of initial concentration on the equilibrium adsorption capacity (qe) 

of the activated carbons. The results of the study showed that the adsorption of ibuprofen by the tested 

activated carbons obeyed the pseudo-second order kinetic model (R2 ≥ 0.997). It was found that as the 

initial solution concentration increased from 20 to 60 mg/dm3, the equilibrium adsorption capacity (qe) 

increased from 29.4 to 85.5 mg/g for CAC and from 30.1 to 89.3 mg/g for CPAC. This showed that the 

initial concentration provided a powerful driving force to overcome the mass transfer resistance 

between the solution and the solid phases. The pseudo-second order rate constant (k2) values reported 

for CAC (0.14 – 0.96 g/mg/h) and CPAC (0.31 – 1.10 g/mg/h) decreased with an increase in the initial 

concentration of the ibuprofen solution. However, for the same initial concentration, the k2 value 

obtained for CPAC was higher than the CAC, which is an indication that a higher quantity of CPAC 

will be needed to adsorb a given amount of ibuprofen in comparison to CAC.   

Llado et al. [27] performed a series of kinetic studies to compare the rates of adsorption of 

atrazine and paracetamol on three activated carbons (F-400, NPK and SBC). The experimental kinetic 

data were fitted with three kinetic models; pseudo-second order, intra-particle diffusion and diffusion-

adsorption model. The authors reported that pseudo-second and diffusion-adsorption models had the 

best fittings for the experimental adsorption kinetics data. The SBC activated carbon had an adsorption 

capacity of 43.70 mg/g and 46.20 mg/g for both atrazine and paracetamol respectively. These values 

were lower in comparison to the other two tested activated carbons. However, the authors reported that 

the SBC activated carbon had the highest k2 values of 3.94 x 10-4 and 3.70 10-4 for both atrazine and 

paracetamol respectively, which is an indication of its adsorption rate. The authors noted that with its 

similar adsorption rate for both compounds, the SBC activated carbon could be an interesting economic 

alternative due to the lower time required for it to attain equilibrium adsorption. The results of the 

intraparticle model were used in explaining the stages of the adsorption of the tested compounds on the 

activated carbons. Three adsorption stages were identified for the adsorption of atrazine on F-400 and 

NPK, whereas only two were observed for SBC activated carbon. Similarly, SBC was identified to 

have three adsorption stages for the adsorption of paracetamol while the other two carbons had four 

adsorption stages. The higher number of adsorption stages identified in NPK activated carbon was 

explained to be an illustration of the different behavior of the adsorption process through mesopores 
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and micropores of the activated carbon. Generally, three adsorption stages are identified for activated 

carbon adsorption which includes; the external mass transfer which is the first stage, followed by the 

intraparticle diffusion as the second stage and finally the equilibrium stage.  

Calisto et al. [30] investigated the adsorption of three psychiatric pharmaceuticals 

(carbamazepine, paroxetine, and oxazepam) using a commercial activated carbon and a paper mill 

sludge-derived activated carbon. The pseudo-first and pseudo-second kinetic models were used in 

fitting the experimental adsorption data. The authors reported a correlation coefficient above 0.97 for 

both kinetic models, in which they inferred that both models satisfactorily fitted the experimental data. 

However, the pseudo-second order kinetic model presented the highest correlation coefficients for most 

of the adsorption test, hence the explanation of the adsorption kinetic behavior of the activated carbons 

was based on this model. The authors reported that for the three tested compounds, the equilibrium was 

quickly attained with maximum equilibrium times of 15 and 120 min for the waste-based and the 

commercial carbons, respectively. The adsorption capacity (qe) values of the commercial activated 

carbon for three tested compounds ranged between 203 to 558 μmol/g while the paper mill sludge 

derived activated carbon had adsorption capacity values of 60.6 – 72.8 μmol/g for the three tested 

compounds. The pseudo-second order rate constant (k2) for the commercial activated carbon (2.6 - 7.0 

x 10-4 g/μmol/min) were found to be lower than the ones obtained for sludge derived activated carbon 

(0.016 – 0.037 g/μmol/min) 

2.5 Activated Carbon as an Adsorbent 

Activated carbon as defined by International Union of Pure and Applied Chemistry (IUPAC), 

is a “porous carbon material which has been subjected to reaction with gases, sometimes with the 

addition of chemicals before, during or after carbonization in order to increase its adsorptive properties” 

[31]. Activated carbon can be produced from nearly all carbon-rich and inexpensive precursors with 

low inorganic content. Activated carbons can be divided into two classes: (1) Gaseous phase adsorbing 

carbons, which are used for purification applications in the vapor or gas phase such as solvent recovery, 

gas separation or cigarette filter tips; (2) Liquid-phase adsorbing carbons, which are used to decolorize 

or purify liquids, solutions and liquefiable materials such as waxes [32].  

The main difference between these two classes of activated carbon is based on their pore size 

distribution. The gaseous phase adsorbing carbons usually have the most pore volume in the micropore 

and macropore ranges, with little mesoporous volume. The liquid phase adsorbing carbons have 
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significant mesoporous volume permitting easy access of target adsorbates to the micropore structure 

resulting in rapid attainment of adsorption equilibrium for smaller adsorbates [32].      

Activated carbons are available in different physical forms including granular activated carbon 

(GAC), powdered activated carbon (PAC), and activated carbon fiber (ACF) [33]. Some adsorption 

problems are best handled by passing the liquid through a bed of granular carbon. Others are handled 

most effectively and economically by stirring the powdered activated carbon with the liquid to be 

treated and then removing the activated carbon by filtration or settling. 

Powdered activated carbons (PAC) are made in particulate form such as powders or fine 

granules of size less than 100 μm and average diameter between 15 and 25 μm. Therefore, they present 

a large external surface to volume ratio. Powdered activated carbons have a high rate of adsorption and 

are generally preferred for use in liquid phase adsorption. PAC offers the advantage of providing fresh 

activated carbon continuously since it is supplied as a new product and not recycled through treatment 

process. Also, since PAC is added to the water treatment plant as a feed chemical, it can be used 

seasonally when the risk of PPCPs presence in the effluent water is high [10] 

Granular activated carbon (GAC) can be prepared from hard materials such coconut shells 

and normally includes particles retained on 80-mesh sieve (0.177 mm). Consequently, it presents a 

smaller external surface. It is commonly used as column filler; suitable for adsorption of gases and 

vapors, because they diffuse rapidly [32, 33]. The United States Environmental Protection Agency 

identifies packed-bed granular activated carbon as “Best Available Technology” for treating numerous 

regulated organic pollutants [11]. GAC can be used as a replacement for anthracite media in 

conventional filters, thus providing both adsorption and filtration [34]. Granular activated carbons are 

also used in packed bed filters and they are found to be highly effective adsorbent. However, more 

hydrophilic contaminants can break through the GAC filter much more rapidly than strongly bound 

hydrophobic contaminants [10, 34]. Also, after a series of adsorption process, the active sites in the 

GAC are fully occupied, which will require replacement of the GAC or regeneration via thermal or 

biological regeneration process. Generally, the spent GAC is regenerated ex situ by heating or steaming 

and after several regenerations, the GAC is managed as a waste and is incinerated [10, 35].   

Activated carbon fiber can be prepared from homogenous polymeric raw materials and 

compared to both PAC and GAC, it shows a monodispersed pore size distribution. Its thin fiber shape 

enhances intra-particle adsorption and therefore improved contact efficiencies between the aqueous 

media and the adsorbent can be achieved [33].  
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2.6 Activated Carbon Production: Carbonization and Activation  

Activated carbons generally have some impurities and the quantity of non-carbon materials is 

dependent on the parent material and activation process. Carbon is the major element present in 

activated carbons and the principal impurities of an activated carbon are oxygen, hydrogen, nitrogen 

and ash. The ash is composed mainly of alkali and alkaline earth metals [15, 36]. The production of 

activated carbon involves two main steps; carbonization and activation. 

The carbonization process involves the thermal decomposition of the raw materials at a 

temperature below 800 ºC in an inert atmosphere. The thermal decomposition leads to release of volatile 

organic compounds in gaseous form and creation of pores in the resulting chars. As a result of 

deposition or decomposition of tar substances, pores become filled, or at least partially blocked, by the 

disorganized carbon. Such materials have low adsorption capacity [15, 37]. Francesca et al. [38] 

attributed the low surface area of olive pomace biochar to particle conglomeration and blocking of 

pores by decomposition and deposition of tars during pyrolysis process. 

The pore structure of the carbonized material can be further enhanced during the activation 

stage when the spaces between the aromatic sheets are cleared of various carbonaceous compounds and 

disorganized carbon. The activation process converts the carbonized char into a form that contains the 

largest possible number of randomly distributed pores and extremely high surface area [15]. It also 

serves to open up the connections of the pores to the surface. The objective during the activation is both 

to increase the number of pores and to increase the size of the existing pores, so that the resulting 

activated carbon has a high adsorption capacity [39]. The activation process can be classified into two, 

based on the procedure and types of activating agent used; physical and chemical activation.  

2.6.1 Physical activation 

Physical activation involves carbonization of the precursor in an inert atmosphere followed by 

partial gasification of the resulting char with steam, CO2 or a mixture of both at temperatures in the 

range 800 – 1000 °C to form a complex array of micropores and mesopores [40, 41]. It is a complex 

heterogeneous process encompassing the transport of the activating gas to the char’s surface, the 

diffusion of the activating gas into the pores of the char, sorption on the pore surface, reaction with 

carbon component, desorption of the reaction products and diffusion of these products to the 

atmosphere [42].  

Carbon dioxide (CO2) is commonly used as the activating gas because it is clean, easy to handle 

and it facilitates control of activation process due to the slow reaction rate at temperatures around 800 
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°C [43]. As an activating agent, the molecular size of CO2 is smaller than that of steam. This is an 

indication that the CO2 molecules can penetrate deeply into the microstructures of the precursor, 

resulting in homogenous oxidation and widening effects of the micropores [44]. Also, physical 

activation using CO2 results in homogenous porosity development in comparison to physical activation 

with steam [45]. However, further gasification of the carbonized precursor during activation with CO2 

results in decrease of the micropore volume [46].  

For steam activation, there is a continuous increase with burn-off, which indicates enlargement 

of micropores and the size shift towards mesopores. Also, the inhomogeneous gasification that occurs 

during physical activation with steam results in lower activated carbon yield and limited porosity [45]. 

The development of microporosity of activated carbon, however, is relatively similar for physical 

activation with steam and CO2 [46].  

2.6.2 Chemical activation 

In chemical activation process, the precursor is impregnated with a chemical activating agent 

prior to activation. The precursor can be impregnated with the chemical agent without first being 

carbonized into intermediate biochar. The activating agent can either be acidic or alkaline in nature. 

The most widely used activating agents include potassium hydroxide (KOH), phosphoric acid (H3PO4), 

and zinc chloride (ZnCl2) [47]. These activating agents are dehydrating agents, influencing the pyrolytic 

decomposition of the precursor and inhibit tar formation [46].   

The impregnated precursor is activated under an inert atmosphere at a lower temperature and 

shorter time than those required for physical activation [48]. The chemical activation mechanism 

involves the dehydration of the cellulosic components of the precursor during activation resulting in 

aromatization of the carbon skeleton and creation of the porous structure [46]. The activating agents 

incorporated into the interior of the precursor particles also reduces the evolution of volatiles and 

inhibits the shrinkage of the particles leading to high activated carbon yield [42]. This yield exceeds 

that of the physical activation by up to 30% mass [46]. Upon completion of the activation process, the 

resulting activated carbon is washed with acid/base solution and deionized water to remove the 

activating agent and its salts, which makes the pore structure available [47]. Table 2.3 shows the 

properties of activated carbons produced via different chemical activation conditions.   
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2.7 Properties of Activated Carbon 

2.7.1 Textural properties      

Textural characterization of activated carbon involves the determination of N2 and CO2 

adsorption isotherms and the use of mathematical models to quantify the pore size distribution (PSD), 

pore volume and surface area [49]. The pore size distribution of the activated carbon determines the 

fraction of the carbon structure that a molecule of a given size and shape can access, i.e., it determines 

the pore volume accessible to a molecule of a given size. The PSD and the pore volume are important 

properties considered in the manufacture of activated carbon for specific applications [50]. Pelekani 

and Snoeyinki [51] stated that a good understanding of the impact of pore size distribution on 

competitive adsorption is required as a basis for selecting the best activated carbon and applying it in 

an optimal way. Pore size distribution given by the IUPAC [31, 33, 52] is based on the width of the 

pores, which represents the distance between the walls of a slit shaped pore or the radius of a cylindrical 

pore. The pores are divided into three groups; micropore, mesopore and macropore (Table 2.4 and 

Figure 2.2).   

Activated carbon with high macropore volume permits adsorbate to diffuse more quickly into 

the mesopores and micropores. Therefore, such an activated carbon is primarily employed for liquid 

phase application. The mesopores, also regarded as the transitional pores, are those in which capillary 

condensation with the formation of a meniscus of the liquefied adsorbate can take place. The 

micropores generally constitute about 90% of the total surface area of the activated carbon [53, 54]. 

The micropore volume can be further divided into two categories namely; ultramicropore volume 

(width less than 0.7 nm) and supermicropore volume (width between 0.7 and 2nm) [49]. The physical 

adsorption mechanism in micropores is mainly by pore filling because the overlapping of pore wall 

potentials resulting in stronger binding of the adsorbate, or enhanced adsorption [50].  

 
Figure 2.2: Schematic diagram of pore structure of activated carbon [55] 
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Table 2.3: Influence of process parameters on activated carbon properties produced via 
chemical activation 

s/n Precursor Activating 
agent 

Impregna
-tion ratio 

Activation 
Temp (oC) 

Activation 
Time 

(Hour) 

V 
Mesopore 
(cm3/g) 

V 
Micropore 
(cm3/g) 

VTotal 
(cm2/g) 

BET 
Surface 

Area 
(m2/g) 

Ref. 

1 Birch Biomass H3PO4 1.5 600 1 0.321 0.297 0.618 761 [56] 

2 
Macadamia 

Nut Endocarp 
Biochar 

ZnCl2 3:1 
Microwave 
Power of 

720W 
0.33 0.023 0.277 0.3 598 [57] 

3 Macadamia 
Nutshell 

KOH  500 1  0.529  1169 [58] ZnCl2 1:1 800 1  0.723  1718 

4 Cocoa shells ZnCl2 1:2 500 0.67   0.37 642 

[59] 
H3PO4 1:1 500 0.67   0.68 1077 

5 Siriguela seed 
ZnCl2 1:2 500 0.67   0.48 956 
H3PO4 1:1 500 0.67   0.95 1549 

6 
Safflower Seed 

Press Cake 
Biochar 

ZnCl2 4:1 900 1 0.109 0.284 0.393 801.5 [48] 

7 Loblolly Pine 
Biochar NaOH 40ml:3g 800 2 0.783 0.289  1250 [60] 

8 Spruce Biochar KOH 1.23:1 680   0.35 0.41 837 [47] 

9 Euphorbia 
rigida       H2SO4  850 0.5  0.273 0.301 741.2 [29] 

10 Orange Peel 
Biochar K2CO3  

Microwave 
Power of 

600W 
0.1 0.368 0.247 0.615 1104.45 [61] 

11 Cassava Peel KOH 5:2 750  1  0.513 0.691 1605 [62] 

12 Date stones 
FeCl3 1.5:1 700 1.25 0.105 0.468  780.06 

[63] 
ZnCl2 2:1 500 1.25 0.129 0.512  1045.61 

13 Cork powder 
waste K2CO3 1:1 700 1 0.03 0.39 0.42 891 [1] 

14 Sucrose 
Hydrochar 

KOH 4:1 800 1 0.06 1.08 1.14 2431 
[64] K2CO3 4:1 800 1 0.01 0.62 0.63 1375 

15 Coconut shell 
biochar NaOH 3:1 700 1.5 0.355 1.143 1.498 2825 [65] 

16 Chinese fir 
hydrochar ZnCl2 6:1 700 1 0.566 0.376 0.953 1423 [66] 

 

Table 2.4: IUPAC classification of pore sizes 
Macropore Pores with width exceeding 50 nm or 0.05 μm (500 Å) 

Mesopore Pores with width between 2 nm (20 Å) and 50 nm (500 Å) 

Micropore Pores with width not exceeding 2 nm (20 Å) 
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For liquid phase adsorption applications, the assessment of the micropore size distribution 

(MPSD) of the activated carbon allows for a deeper understanding of the diffusion and adsorption 

mechanism particularly when the adsorption of molecules of small dimensions is envisaged [49]. The 

micropore size distribution is obtained from CO2 adsorption isotherm data instead of the N2 adsorption 

isotherm data due to the diffusion limitations of N2 in carbons with narrow micropores [49, 67]. The 

MPSD clearly quantifies the amount of micropores with different pore widths. For example, Figure 2.1 

shows the MPSD of three activated carbons reported by Pinto et al. [68]. It is evident from the figure 

that carbon A (between 0.5 to 1.4 nm) and B have a monomodal distributions (between 0.5 to 0.8 nm), 

centered at 0.72 nm and 0.62 nm respectively. This indicates that a higher portion of the micropore 

volume for both activated carbons are ultramicropores and will give a good adsorption result for target 

molecules having a molecular size within that width range. Carbon C presents a bimodal distribution 

with micropore width between 0.4 and 0.9 nm, and micropore width above 1.2 nm [49]. According to 

Mestre et al. [64], the broadening of the micropore size distribution, changing from a monomodal to 

bimodal distribution is because of the activation temperature in regardless of the chemical activating 

agents used.    

 
Figure 2.3: Micropore size distributions of activated carbons [49, 68] 
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The micropore size distribution plays an important role in obtaining deeper insight into the 

physical adsorption mechanism of pharmaceutically active compounds by activated carbons. For 

example, the three activated carbons in Figure 2.3 had micropore volumes between 0.27 and 0.32 cm3/g 

and were used in adsorbing ibruprofen with a dimension of 0.72 nm. The authors reported that the 

uptake trend of the target molecule was dependent on the MPSD of the activated carbons mainly 

occurring in pores with widths between 0.72 and 1.40 nm. This implies that the activated carbons 

having a higher percentage of micropores between these widths presented a higher value of Langmuir 

constant (KL), a measure of the adsorption affinity [69]. Mestre et al. [64] also reported that the high 

removal efficiencies of iopamidol molecules by a sucrose-derived activated carbons were due to their 

micropore size distributions. The large amount of wider micropores allowed the adsorption of the 

iopamidol species.  

Surface area is a very important parameter because the sorption and ion exchange characteristics 

of the activated carbon are directly related to its surface area [70]. Based on the size and accessibility 

of pores, the exposed surface area is measured in two distinct forms; internal and external surface area. 

The external surface area considers all the prominences, wider cracks and pores (mesopores and 

macropores), while the internal surface area only takes the walls of cracks and cavities which are deeper 

and less accessible (micropores) [15]. Since the mesopores and macropores contribute very little to the 

total porous structure of the activated carbon, especially in terms of the adsorption capacity (they act 

as means of access for the adsorbate to the micropores), therefore the internal surface area is 

prominently reported.    

2.7.2 Polarity 

Adsorbent polarity is expressed as the sum of oxygen and nitrogen (O + N) contents because 

oxygen- and nitrogen-containing surface functional groups can serve as hydrogen-bond donor and/or 

acceptor sites that facilitate water adsorption [71]. It is expressed in mmol/g. The polarity of activated 

carbon is categorized into two; hydrophobicity and hydrophilicity. Hydrophobic activated carbon is 

characterized by low oxygen and nitrogen contents. This activated carbon is not effectively wetted by 

water. Mestre et al. [72] stated that activated carbon surface is constituted of graphitic layers that are 

highly hydrophobic; however, the edges of the basal planes generally contain higher amounts of 

heteroatoms that favor electrostatic interactions. The amount of the heteroatoms defines the 

hydrophilicity of activated carbon surface.  



27 
 

Hydrophilic activated carbon preferentially adsorbed water molecules at the entrance of the 

pores, hence competing with target molecules for the adsorption active sites. Mestre et al. [72] reported 

that water adsorption can lead to pore blocking due to formation of water clusters thereby limiting the 

adsorption of caffeine.  

According to Li et al. [71], to ensure that activated carbons are sufficiently hydrophobic to 

effectively remove organic contaminants from aqueous solution, the O + N content of the adsorbent 

should be less than 2 – 3 mmol/g. Therefore, polarity can serve as a useful activated carbon selection 

criterion. Quinlivan et al. [73] stated that hydrophobic adsorbents are more effective for the removal of 

relatively hydrophobic and hydrophilic pollutants from natural water.  

2.7.3 Surface chemistry 

At the edges of the condensed, polyaromatic sheets that constitute the building blocks of 

activated carbons, heteroatoms (i.e., atoms other than carbon) are incorporated. These heteroatoms can 

also be incorporated within the carbon layers forming heterocyclic ring systems. Because these edges 

constitute the main adsorbing surface, the presence of these heteroatoms greatly dictates the surface 

characteristics of the activated carbon [15, 71].  

The heteroatoms found in the activated carbon surfaces include primarily oxygen and hydrogen 

with minute amounts of sulfur, nitrogen and halogens. These heteroatoms are derived from the parent 

raw materials and become an integral part of the chemical structure because of carbonization and 

activation processes [15]. Common surface functional groups formed by the heteroatoms with the 

carbon layers or edges include carbon-oxygen, carbon-hydrogen, carbon-nitrogen, carbon-sulfur and 

carbon-halogen surface compounds. The carbon-oxygen surface groups are the most important and 

very common surface functional groups in activated carbon and they may be easily introduced by 

various post-activation treatment methods [74, 75]. Some examples of the oxygen surface 

functionalities include the following; carboxylic, lactone, phenol, carbonyl, pyrone, chromene, quinone 

and ether groups [76]. The oxygen surface functional groups can be categorized into three groups 

namely; acidic, basic and neutral. Figure 2.4 shows the acidic and basic surface functional groups on 

an activated carbon basal plane. 

The acidic surface oxygen groups are formed when activated carbon is subjected to oxidation 

by gases and/or aqueous oxidants. During low temperature oxidation, gaseous oxidants such as oxygen, 

air, carbon dioxide and steam are used to produce strong acidic groups (e.g carboxylic) while high 

temperature oxidations leads to creation of weak acidic groups (e.g phenolic). The liquid phase 
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oxidations introduce the oxygen functionalities into the carbon surface at lower temperatures compared 

to the gaseous oxidation [76]. Common liquid oxidants used includes nitric acid, nitric acid and sulfuric 

acid mixtures in aqueous solution, hydrogen peroxide, potassium permanganate, ammonium 

persulphate and other nitrogen containing substances [15, 71, 77].  

Shafeeyan et al [76] reported that there are demonstrated differences between the gaseous and 

liquid phase oxidation of activated carbon. The gaseous phase oxidation increases mainly the 

concentration of hydroxyl and carbonyl surface groups while the liquid phase oxidation results in 

incorporation of higher amounts of carboxylic and phenolic hydroxyl groups onto the carbon surface. 

Also, the liquid phase oxidation is carried out at a lower temperature as compared to the gaseous phase 

oxidation. Bansal and Goyal [15] stated that the acidic surface oxygen groups are thermally less stable 

and decompose on heat treatment at a temperature range of 350 to 750 °C evolving CO2. The acidic 

surface oxygen groups make the activated carbon surface hydrophilic and polar in character.  

The basic surface oxygen groups are obtained by removal of oxygen groups in the activated 

carbon surface by heat treatment in vacuum or in inert atmosphere [15, 71]. The basic nature of 

activated carbons arises primarily from delocalized π-electrons of graphene layers. These π-electrons 

could act as Lewis bases. It is also noteworthy that certain oxygen functional groups contribute to the 

basicity of the activated carbon surface and this includes chromene, ketone and pyrone [76]. The basic 

surface oxygen group makes the surface of the activated carbon hydrophobic and less polar in nature. 

This is a desirable trait when the adsorption of organic contaminants from aqueous solution is the 

primary objective. The heat treatment of activated carbon in inert atmosphere in order to remove the 

surface oxygen groups results in the activated carbon having highly reactive sites such as free-radical 

edge sites. As a result, when the activated carbon is re-exposed to the atmosphere, it will chemisorb 

oxygen from the atmosphere and consequently leading to loss of basic and hydrophobic properties [71]. 

The neutral surface oxygen groups are formed by the irreversible chemisorption of oxygen at 

the ethylene type unsaturated sites present on the carbon surface. The neutral surface groups are more 

stable than the acidic surface groups and has the tendency to decompose upon heat treatment within a 

temperature range of 500 to 600 °C, releasing CO2 [15]  
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Fig 2.4: Acidic and basic surface functional groups on activated carbon basal plane [76] 

 

2.8 Effect of Process Parameters on the Properties of Activated Carbons 

Depending on the nature of the precursor and by adjustment of the process parameters, different 

pore sizes can be obtained. The specific surface areas and porosities of AC are greatly affected by the 

precursors of carbonaceous materials and methods of preparation. The adsorption capacity and the 

adsorption rate of an AC are directly associated with the specific surface areas and the pore size 

distribution of the AC. In general, the larger the specific surface area, the greater the adsorption 

capacity. However, for the adsorption of larger molecules, the adsorption capacity and the adsorption 

rate are largely dependent on the mesoporous (and macroporous) volumes [78]. 

2.8.1 Activating agents 

Nowicki et al. [79] studied the physical activation of cherry stone-derived biochars produced at 

pyrolysis temperature of 500 °C and 800 °C. The physical activation of the biochars were carried out 

at a temperature of 800 °C under a stream of CO2. The authors reported a surface area of 367 m2/g and 

361 m2/g for the activated carbons produced from 500 °C-biochar and 800 °C-biochar respectively. The 

authors asserted that the physical activation of the biochars does not permit a substantial development 

of the porous structure of the activated carbons.  

Similarly, Sun and Jang [80] investigated the physical activation of rubber-seed shell using 

steam. The precursor was pyrolyzed to produce biochar at a temperature range of 450 – 650 °C prior to 

activation. The activation was carried out in a flow of vapor steam at a temperature range of 800 – 900 
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°C. The authors reported an increase in the creation of mesopores and decrease in the micropores as the 

activation temperature increased. At high temperature, the micropores were enlarged and the walls 

between the pores collapsed and formed mesopores. 

For chemical activation, activating agents can be alkaline or acidic in nature. For the physical 

activation, the activating agents are steam or CO2. The effect of the activating agent on the properties 

of the activated carbon are evident on its surface area, porosity and surface chemistry. Bazan-Wozniak 

et al. [81] investigated the effect of physical and chemical activating agents on the surface area, porosity 

and surface functional groups of activated carbon produced from pistachio nutshells and its biochar. 

The biochars were produced at a temperature of 500 and 700 ºC. The physical activating agent used 

was CO2 with a flow rate of 0.250 L/min and the chemical activating agents used were H3PO4 and 

K2CO3. The authors reported the highest surface area of 1204 m2/g for activated carbons obtained from 

the physical activation of pistachio nutshell-biochar at an activation temperature of 900 ºC. The 

activated carbons obtained from the direct impregnation of the precursor with K2CO3 was also reported 

to have a high surface area of 1093 m2/g.    

Among the chemical activating agents, ZnCl2 and H3PO4 are commonly used for activation 

purpose for lignocellulosic materials, whereas compounds such as potassium hydroxide (KOH) are 

used for the activation of coal precursors or chars. When compared to zinc chloride, phosphoric acid is 

preferred because of the environmental disadvantages associated with zinc chloride which includes 

problems of corrosion, inefficient chemical recovery and the carbons obtained using zinc chloride 

cannot be used in pharmaceutical and food industries as they may contaminate the product [82, 83]. It 

also gives higher yield of activated carbon and has non-toxic properties [84].  However, the use of 

ZnCl2 have been reported to produce higher surface area and more microporous structure [85] while 

H3PO4 is effective in producing the mesopores, and resulting in higher pore volumes and diameter.  

The use of KOH as activating agents has been found to be effective in production of activated 

carbon with large microporosity and narrow pore size distribution but its yield is lower than carbon 

activated with zinc chloride or phosphoric acid, and at high temperature, i.e. ± 650 0C, the carbon 

content is lower than the fixed carbon in the initial precursor. The presence of metallic potassium will 

intercalate to the carbon matrix [82, 86, 87]. 
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2.8.2 Effect of impregnation ratio 

Impregnation ratio represents the mass ratio of the activating agent to precursor or vice versa. 

The impregnation ratio ensures that the chemical is able to penetrate totally into the precursor and react 

with the components (i.e cellulose, hemicellulose and lignin for lignocellulosic precursor). The effect 

of the impregnation ratio on the porosity of the resulting product is evident from the fact that the volume 

of salt (obtained from the activation agent) in the carbonized material is equal to the volume of pores, 

after the salt has been extracted.  

Patnuko and Pavasant [88] investigated the effect of impregnation ratio on the production of 

activated carbon from Eucalyptus camaldulensis Dehn bark using phosphoric acid. It was reported that 

activated carbons with better adsorption capacity were obtained with impregnation ratio of 1:1 while a 

reduction in the adsorption capacity of the carbon at higher impregnation ratio was observed. Also, a 

higher BET surface area of 1239 m2/g was obtained at the impregnation ratio of 1:1. In a similar 

research, Kalderis et al. [89] investigated the production of activated carbon from bagasse and rice husk 

using zinc chloride, sodium hydroxide and phosphoric acid with impregnation ratio 0.25:1, 0.5:1, 0.75:1 

and 1:1 (i.e. ratio of activating agent to precursor). BET surface areas obtained with ZnCl2 as activating 

agent and impregnation ratio of 1:1 for rice husk and 0.75:1 for bagasse were reported to be 750 m2/g 

and 674 m2/g respectively.   

2.8.3 Effect of carbonization temperature 

Juejun et al. [90] conducted a physical activation of coconut shell-derived biochars (produced 

at a carbonization temperature range of 250 – 750 °C) using CO2 at a temperature of 850 °C for 60 and 

120 min. The authors reported that the porosity of the activated carbon decreased with increase in the 

carbonization temperature. The char produced at the lowest carbonization temperature of 250 °C and 

activated at 850 °C for 120 min gave the highest BET surface area and pore volume of 1056 m2/g and 

0.533 cm3/g respectively. A comparison of the work done by Nowicki et al. [79] on physical activation 

of cherry stone-derived activated carbon showed that pyrolysis of the cherry stones at temperature of 

500 °C and 800 °C respectively before activation using CO2 produced activated carbons with surface 

areas of 367 and 361 m2/g respectively. Meanwhile, the chemical activation of the cherry stone-derived 

biochars (pyrolysis temperature of 500 °C and 800 °C) using KOH as chemical agents produced 

activated carbons with surface areas of 1324 m2/g and 1173 m2/g respectively. In both activation cases, 

the biochars produced at pyrolysis temperature of 800 °C resulted in activated carbons with low surface 

area. 
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Furthermore, Bazan-Wozniak et al. [81] reported a surface area of 1204 m2/g for activated 

carbon produced from physical activation of biochar obtained at a carbonization temperature of 700 

°C. The activated carbon from biochar obtained at a carbonization temperature of 500 °C under similar 

activating condition was reported to have a surface area of 277 m2/g. The authors attributed the 

significant difference in the surface areas of the activated carbon to the carbonization temperature used. 

When the biochars were chemically activated, the biochar obtained at a carbonization temperature of 

700 °C gave an activated carbon with a surface area of 530 m2/g, which is not significantly different 

when compared to the activated carbon from biochar obtained at a carbonization temperature of 500 

°C (513 m2/g). The authors explained that the negligible difference in the chemically obtained activated 

carbons may due to the fact that carbon structure of the biochars is ordered enough so that the activating 

agent used (K2CO3) or the impregnation ratio used (2:1) were insufficient for effective development of 

the porous structure.  
 

2.9 Modification of Activated Carbon Surfaces   

Apart from the textural characteristics of activated carbon, it is well known that the applicability 

of activated carbon is determined by its surface chemistry. The surface chemistry of the activated 

carbon plays an important role in determining how efficient the activated carbon can be in the 

adsorption of a specific compound. Since the surface chemistry influences certain features of activated 

carbon such as wettability, hydrophobicity-hydrophilicity, adsorptive, catalytic, acid/base and redox 

properties, the modification of its surface can therefore enable the control of these features [9].  

For example, chemical species removal by activated carbon adsorption is due predominantly to 

the surface complex formation between the species and the surface functional groups. This is especially 

significant in the case of removing inorganics and metals from aqueous solutions where activated 

carbons are generally less effective as compared to removing organic compounds [91, 92]. This is 

because metals often exist in solution either as ions or as hydrous ionic complexes [91]. Also, it is a 

known fact that surface oxygen functional groups decrease the adsorption of organic compounds in 

aqueous solution, while their absence favors adsorption, independently of the compounds polarity. This 

implies that while the acidic functional groups on the activated carbon surface augment their metal 

adsorptive capacities, the presence of these functional groups do not favor adsorption of organic 

compounds like phenolic compounds [91]. 

Surface modification of the activated carbon simply talks about the treatment processes carried 

out to modify the chemical characteristics of the activated carbon surface in order to enhance or improve 
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its adsorption capacity for a specific compound. For example, CO2 adsorption capacity of activated 

carbon can be increased by the introduction of basic nitrogen functionalities into the carbon surface. 

This is based on the premise that, due to the acidic role of CO2 (weak Lewis acid), the introduction of 

Lewis bases onto the activated carbon surfaces will favor the CO2 capture performance [76]. Also, 

acidic treatment of activated carbon has been reported to enhance its uptake of metal contaminants from 

aqueous solution [91]. 

The modification can be carried out by formation of different types of surface functional groups. 

For instance, surface oxygen functional groups are formed by oxidation of the carbon surface with 

oxidizing gases or solutions; carbon-hydrogen surface groups by treatment with hydrogen gas at 

elevated temperatures; carbon-nitrogen surface groups by treatment with ammonia. In addition, 

degassing and impregnation of the surfaces of the activated carbons are other methods by which the 

carbon surfaces can be modified [15]. 

2.9.1 Effect of surface modification on pore volume  

Stravropoulos et al. [74] reported the modification of a commercial activated carbon using four 

methods, namely thermal partial oxidation by oxygen, liquid phase oxidation by nitric acid solution, 

thermal treatment of urea pre-impregnated samples and thermal treatment under a urea saturated helium 

flow. The authors reported the initial surface area, total pore volume and micropore volume of the 

activated carbon to be 1003 m2/g, 0.374 cm3/g and 0.338 cm3/g respectively. After the modification, it 

was found that there was a smaller change in the pore structures of the activated carbon modified via 

thermal partial oxidation by oxygen as compared to the other methods. For the urea modified activated 

carbon, the nitrogen enrichment led to increase in the microporous volume of the activated carbon.      

The significant reduction in the pore structure development was observed during liquid phase 

nitric acid treatment. The surface area, total pore volume and micropore volume of the modified 

activated carbon reached values as low as 260 m2/g, 0.116 cm3/g and 0.104 cm3/g respectively. 

According to El-Hendawy [75], the loss of the surface area and the reduction in the pore volume can 

be attributed to the incorporation of oxygen functionalities in pore walls and the erosive effect of nitric 

acid on the carbon structure. The incorporated oxygen functional groups will increase the weight of the 

modified activated carbon and the extent of oxygen-carbon formation will naturally affect the 

accessibility of the adsorbate to the modified activated carbon.  

El-Hendawy [75] also reported a similar finding for the modification of a corncob-based 

activated carbon using nitric acid. The author concluded that liquid phase oxidation leads to fixation of 
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large amounts of oxygen functionalities on the carbon surface, with simultaneous partial destruction or 

degradation of the porous structure of the activated carbon. Meanwhile Jaramillo et al. [93] estimated 

the percentage of microporosity loss of a cherry stone-derived activated carbon modified by nitric acid 

solution to be 43.3% and 6.7% for activated carbon modified by ozone gas. The microporosity loss is 

explained to be the widening and transformation of the micropores into large size mesopores. Hence, 

there was a significant mesoporosity development but no significant difference in the macroporosity of 

the activated carbon. Therefore, the inference concerning the effect of the oxidizing agents during 

surface modification of activated carbon on its porous structure is that it leads to widening of narrower 

pores, causing microporosity loss and mesoporosity development [93]   

2.9.2 Effect of surface modification on surface chemistry 

The surface modification of activated carbon results in the activated carbon surface becoming 

either more acidic or more basic in nature. The incorporation of oxygen functionalities will render the 

activated carbon more acidic and hydrophilic, decrease the pH of their point of zero charge and increase 

the surface charge density [94]. The removal of the oxygen functionalities from the activated carbon 

through heat treatment will result in the activated carbon surface becoming more basic and hydrophobic 

in nature [71]. The surface oxygen functionalities generally decompose upon heating by releasing CO 

and CO2 at different temperatures.  

Figueiredo et al. [95] investigated the modification of a NORIT activated carbon using gas 

phase oxidation (O2 and N2O) and liquid phase oxidation (hydrogen peroxide and nitric acid solution). 

The authors reported that there was an increase in the oxygen functional groups of the modified 

activated carbon. Specifically, the authors noted that the gas phase oxidation led to an increase in the 

concentration of hydroxyl and carbonyl surface groups while the liquid phase oxidation increased the 

concentration of the carboxylic acids.  

Jaramillo et al. [93] asserted that the main factor in surface chemistry change during surface 

modification is the oxidizing agents and not whether the process was carried out in the dry phase or 

liquid phase. In their own investigation on the modification of cherry stone-derived activated carbon 

with nitric acid (HNO3), hydrogen peroxide (H2O2), ozone (O3) and oxygen (O2), Jaramillo et al. [93] 

reported that O3 and HNO3 treatments were the most effective in forming acidic oxygen surface groups. 

For the O2 modified activated carbon, the presence of phenolic and carbonylic groups were detected; 

carboxylic acid groups and lactone groups were found in HNO3 modified activated carbon while O3 

modified activated carbon showed increase in the carboxylic, lactone and anhydride groups [93, 96]. 
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2.10 Textural and Surface Chemistry Characterization of Activated Carbon  

Since the adsorption application of activated carbon is greatly influenced by its surface 

chemistry and porous structure, a considerable amount of effort has been directed towards identifying 

and quantifying the surface functional groups that exists on carbon surfaces. The various qualitative 

and quantitative techniques employed by researchers in characterizing the textural properties and 

surface chemistry of activated carbon are summarized in Table 2.5 [95].  

Some of the techniques are complimentary in their functions. For example, while the Fourier 

transform infrared spectroscopy and X-ray photoelectron spectroscopy (XPS) are used in the 

identification of functional groups on the activated carbon surface, the Boehm titration is used in 

quantifying these surface functional groups. Similarly, the scanning electron microscopy can be used 

to visually assess the porous structure of the activated carbon and the gas adsorption technique is used 

in quantifying the pore size distribution, pore volume and surface area of the activate carbon.   

2.10.1 Scanning electron microscopy  

Scanning electron microscope (SEM) is the type of characterization technique that gives a 

comprehensive microstructural examination of the high surface area ordered carbon materials. While 

the SEM is used in examining the pore structure and morphology of carbon surfaces, the images are 

limited to the surface structures and it cannot detect pore size distribution. It produces images of a 

sample by scanning it with a focused beam of electrons. The electrons interact with atoms in the sample, 

producing various signals that contain information about the sample's surface topography and 

composition. The micrograph images are rapidly and easily obtained. Data are collected over a selected 

area of the surface of the sample, and a 2-dimensional image is generated that displays spatial variations 

in these properties. Areas ranging from approximately 1 cm to 5 microns in width can be imaged in a 

scanning mode using conventional SEM techniques (magnification ranging from 20X to approximately 

30,000X, spatial resolution of 50 to 100 nm).  

The SEM is also capable of performing analyses of selected point locations on the sample; this 

approach is especially useful in qualitatively or semi-quantitatively determining chemical compositions 

(using Energy Dispersive X-ray Spectroscopy), crystalline structure, and crystal orientations (using 

Electron Backscatter Diffraction). 

The limitation with this technique is that microstructural examination of most biological 

samples requires them to be dehydrated before being placed in the equipment. This can distort cellular 
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features or create artifacts. Samples need to be coated in a conductive material before viewed in the 

SEM. The thickness of the material can obscure important cellular details.  

2.10.2 Gas adsorption 

Textural characteristics of activated carbon are determined from N2 and CO2 adsorption 

isotherms. The characterization of these properties is based on the physical adsorption of the probe 

molecules (N2 and CO2) into the pores of the activated carbon at a defined temperature and relative 

pressure. Prior to the gas adsorption measurement, the carbon is outgassed/degassed at a temperature 

range between 200 and 350 °C under vacuum [29, 75]. The activated carbon is subjected to adsorption 

of N2 at a temperature of 77 K using an adsorption instrument. The surface area of the activated carbon 

is commonly estimated by the BET (Brunauer-Emmett-Teller) method. The BET model assumes a 

multilayer adsorption in a porous media in which first layer of adsorbed molecules acts as a base for 

the adsorption of the second layer of molecules, which in turn acts as a base for the third layer, and so 

on, so that the concept of localization is maintained in all layers [15]. However, this assumption is not 

totally fulfilled for activated carbon. This is due to the fact that the adsorption in micropores takes place 

through volume filling of micropores at very low relative vapor pressures. Moreover, the formation of 

adsorption layers does not exceed some finite value n due to inadequate space available in the 

micropores [15]. 

The pore size distribution is commonly determined by the BJH (Barret-Joymer-Hanlenda) and 

DFT (Density Functional Theory) models [25, 97]. The t-plot method is often used in estimating the 

micropore volume [81] while the total pore volume is estimated from the volume of N2 held at a relative 

pressure range between 0.95 – 0.99 [60, 75]. The micropore size distribution is assessed from CO2 

adsorption isotherms at 273.15 K and estimated using the Dubinin-Radushkevich (DR) and Dubinin-

Radushkevich-Stoeckli (DRS) equation [25, 49]. The Dubinin-Radushkevich (DR) isotherm is an 

empirical model applied to express the adsorption mechanism of subcritical vapors onto micropore 

solids following a pore filling mechanism with a Gaussian energy distribution [13].    

Iodine number is also used to measuring the internal surface area of activated carbon. The iodine 

number refers to milligrams of elemental iodine adsorbed per gram of dry carbon when it is in 

equilibrium with a 0.010 M solution of I2 [98]. 1 mg of iodine adsorbed is considered to represent 1 m2 

internal surface. It also measures the volume present in pores from 10 to 28 Å in diameter. Carbons 

with a high percentage of pore sizes in this range would be suitable for adsorbing low-molecular-weight 

substances [99]. For an activated carbon to be used for adsorption of low molecular weight compounds, 
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it must have a minimum iodine number of 500 mg/g [77]. Adsorption of methylene blue from aqueous 

solution is also used in characterizing the mesopore capacity (pore diameters greater than 13 Å) and 

serves as a model compound for adsorption of medium size organic compounds from aqueous solutions 

[77].  

Table 2.5 Techniques available for activated carbon characterization [100] 

s/n Test Method Characterization 
1 Boehm titration Surface oxygen functionality 
2 Computer simulation pKa of functional groups 
3 Electron energy-loss spectroscopy Bonding states and band gaps 

4 Electron spin resonance or electron 
paramagnetic resonance Free spins and dangling bonds 

5 Electrophoresis Separation - analysis 

6 Flow adsorption Average polarity 
7 Fourier transform infrared spectroscopy  Surface group functionality 

8 Gas adsorption Surface areas and energetics, pore-size 
distributions 

9 Immersion calorimetry Surface areas and energetics 
10 Inverse gas chromatography Average acidity 
11 Magneto-resistance Electronic properties 
12 Nuclear magnetic resonance Molecular structure, atom groups 
13 Potentiometric titration pKa (acid strength) of functional groups 
14 Scanning electron microscopy (SEM) Surface characterizations 
15 Scanning tunneling microscopy Atomic scale structure 

16 Small angle X-ray scattering Total surface area including closed porosity, 
pore sizes 

17 Temperature programmed desorption Surface functionalities mainly for oxygen 
18 Transmission electron microscopy Fringe imaging, diffraction, light and dark field 
19 X-ray absorption fine structure Atomic distances and coordination chemistry 

20 X-ray diffraction (wide-angle X-ray diffraction) Crystallite sizes, carbon-carbon distribution 
functions 

21 X-ray photoelectron spectroscopy (XPS) Identification of surface functional groups 

22 Gravimetric Adsorption Energy Distribution  Pore size, total pore volume and surface area of 
extruded wood carbon.  

23 Elemental analysis Carbon, hydrogen, nitrogen, sulfur and oxygen 
content 

 
In general, the iodine numbers are similar in magnitude to the BET surface areas and are a 

measure of the carbon activity in the high capacity range. The iodine number is a rough measure of the 

quality of the activated carbon and is useful in determining the extent to which a spent activated carbon 
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has been reactivated. However, it is not a good index for activated carbon performance in a low-capacity 

applications such as adsorption of pharmaceutical compounds in water [98]. 

The mercury intrusion porosimetry is another technique used in characterizing the pore structure 

of activated carbon. The probe molecule (mercury) does not wet most substances and will not 

spontaneously penetrate pores by capillary action, it must be forced into the pores by the application of 

external pressure. The required equilibrated pressure is inversely proportional to the size of the pores, 

only slight pressure being required to intrude mercury into large macropores, whereas much greater 

pressures are required to force mercury into small pores. The technique involves the intrusion of a non-

wetting liquid (often mercury) at high pressure into a material through the use of a porosimeter. The 

pore size can be determined based on the external pressure needed to force the liquid into a pore against 

the opposing force of the liquid's surface tension. From the pressure versus intrusion data, the 

instrument generates volume and size distributions using the Washburn equation. Clearly, the more 

accurate the pressure measurements, the more accurate the resulting pore size data. 

The major limitation with this technique is that it measures the largest entrance towards a pore 

but not the actual inner size of a pore. It cannot also be used to analyze closed pores since the mercury 

has no way of entering that pore.  

2.10.3 X-ray photoelectron spectroscopy (XPS) 

XPS is a non-destructive ultrahigh vacuum surface-sensitive quantitative in which the electron 

binding energies of atoms presented in the surface are used to provide an estimate of the chemical 

composition of the few uppermost layers of the material [76, 95]. Essentially, the technique is based on 

photoelectric effect that uses soft x-rays (with a photon energy of 200- 2000 eV) to investigate the 

elemental composition at the parts per thousand range, empirical formula, and electronic state of the 

elements that exist within a material. The spectroscopic method has been used extensively to study the 

surface oxygen functional groups.  

The analysis is based on the changes of the intensities of 1s peaks of carbons, oxygen or other 

heteroatoms such as nitrogen. Those peaks are at specific irradiation energies related to the binding 

energies of core electrons ejected from atoms located on the external surfaces. The identification of 

functional groups is based on the deconvolution of their peaks. The amount of species detected using 

the XPS method is usually given as the atomic ratio evaluated from the peak area ratios. 

For example, substantial changes in the surface chemistry of activated carbon due to oxidation 

can be identified through examination of the C1s core region [101]. The reconstruction of the C1s 
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region is generally difficult, not only as a result of the peak broadness, but also because it is necessary 

make an assumption regarding its nature after oxidation, namely if the surface graphite-like structure 

remains unchanged or not. This will affect the curve fitting procedure as an asymmetric peak shape is 

needed for graphite-like structure and a Gaussian peak is required for an aliphatic structure [95].  

A further insight into the surface functional groups can be achieved by quantifying the binding 

energies of nitrogen (N1s), oxygen (O1s) and carbon (C1s) photoelectrons on the carbon surface and 

also performing a reconstruction of their respective peaks [76, 102]. For example, the deconvolution of 

the C1s spectra can reveal the presence of four peaks: graphitized carbon (C-C or C-H), Hydroxyl or 

ether (C-O), Carbonyl (C=O) and Carboxyl or ester (O-C=O). Likewise, the deconvolution of the O1s 

spectra can show five groups: carbonyl oxygen in quinones, carbonyl oxygen atoms in esters, 

anhydrides and oxygen atoms in hydroxyl groups, non-carbonyl (ether-type) oxygen atoms in esters 

and anhydrides; oxygen atoms in carboxyl groups [103]. The binding energies for C1s and O1s 

deconvolved peaks reported by different researchers are summarized in the Table 2.3.    

2.10.4 Chemical titration 

Chemical titration used for characterizing surface chemistry of carbon surface as proposed by 

Boehm is used in determining the acidic and basic functional groups of the carbon surface. The basic 

principle of Boehm titration is that different basic/acidic functionalities can be distinguished by their 

neutralization behaviors [76]. The amounts of acidic sites or oxygen functional groups are quantified 

based on the assumption that NaOH neutralizes carboxylic, phenolic and lactone groups; Na2CO3 

neutralize carboxylic and lactone groups and NaHCO3 neutralizes only carboxylic groups. The 

carboxylic group is estimated by the amount of NaHCO3 consumed; the phenolic group is determined 

by difference between NaOH and Na2CO3 consumption; and the lactone group is determined by the 

difference between Na2CO3 and NaHCO3 consumption [56, 76]. The number of the basic sites is 

estimated by the amount of hydrochloric acid consumed by the carbon. The difference between the HCl 

consumption by the blank and samples is considered as the surface basicity of the activated carbon 

[104]. 

The major drawback in this method is that it is not practicable when using small amount of 

samples. Also, this method can only quantify about half of the total oxygen functional groups on the 

activated carbon surface [76]. The units used for the measurement include meq/g, μeq/g and mmol/g. 

Table 2.6 shows the surface functional groups quantified by the Boehm’s method.  
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2.10.5 Temperature programmed desorption (TPD) 

Surface oxygen groups on carbon surfaces decompose upon heating by releasing CO at lower 

temperature and CO2 at higher temperature and in some cases H2O and H2, at different temperatures. 

Therefore, the relative stability of the surface functional groups is often used as a measurement of the 

concentration of these functional groups on the carbon surface. The technique used for this process is 

called temperature programmed desorption (TPD) [95, 103]. 

Due to the influence of carbon textural properties, heating rate and geometry of the experimental 

system used on the peak temperatures, there seems to exist confusion in the assignment of the TPD to 

specific surface groups. However, the general established trends are: CO2 evolution at low temperatures 

(200-500 °C) has been attributed to carboxylic acids; CO2 evolution at higher temperatures is an 

indication of the existence of lactones and carboxylic anhydrides; CO peak has been attributed to 

phenolic, anhydrite, ethers (at 350- 450 °C) and quinones, carbonyls (at 450 - 700 °C) [74, 95].    

2.10.6 Fourier transform infrared spectroscopy (FTIR) 

The FTIR spectroscopy is a qualitative method employed in the identification of the functional 

groups present on activated carbon surface [76, 94]. The FTIR spectrum is a plot of the measured 

infrared intensity (transmittance unit) versus wavenumber of light (inverse of wavelength) [76].  

The peaks obtained in the FTIR spectra represents the functional groups present on the activated carbon 

[76]. The interpretation of the spectra is complicated by the fact that each functional group originates 

several bands at different wavenumbers, therefore each band may include contributions from various 

groups [95]. The infrared region in which the spectra information is collected, is always stated, usually 

between 4000 – 400 cm-1 wavenumber range [105]. The use of FTIR spectroscopy is a complimentary 

technique to augment other quantitative techniques used in quantifying the surface functional groups 

on activated carbon surfaces.  
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Table 2.6: Total surface acidity and basicity of activated carbons (meq/g)  
s/n  Sample Carboxyl Lactone Hydroxyl Carbonyl Total 

Surface 
Acidity  

Total 
Surface 
Basicity  

Ref. 

1 

Cherry stone AC 0.016 0.006 0.074 0.042 0.138 0.385 

[93] 
HNO3 Modified 
Cherry stone AC 

0.639 0.072 0.086 0.069 0.662 0.175 

O3 modified Cherry 
stone AC 

0.487 0.014 0.098 0.063 0.662 0.302 

2 Birch derived AC 0.744 0.126 0.480 2.234 3.584 0.083 [56] 

3 Granulated AC 0.027 0.026 0.018  0.071 - [78] 

4 Coconut shell 
derived AC 

0.37 0 - - 0.75 0.73 [65] 

5 Modified Furfural 
derived AC 

0.148 0.02 1.63 2.53 5.66 - [106] 

6 Urea Modified 
Commercial AC  

0.29 0.15 0.34 1.15 1.93 0 [74] 

7 Macademia nut 
endocarp derived 

AC 

0.66 0.16 0.26 - 1.07 0.38 [57] 

8 

Commercial 
Granulated AC 

0.387 0.089 0.404 - 0.88 1.79 
[9, 

107] Commercial 
Powdered AC 

0.56 0195 0.865 - 1.62 1.49 

9 

Activated Carbon 
cloth 

0.04 0.12 0.02 0.66 0.84 0.43 

[107] NaOCl modified AC 
cloth 

0.56 0.42 0.19 0.51 1.68 0.28 

10 

Coal-based AC 0.85 0.55 0.20 - 1.60 0.05 

[108] NH3 Modified CAC 0.48 0.30 0.15 - 0.78 0.30 
Microwave 

modified CAC 
0.25 0.13 0.02 - 0.40 0.50 

11 
Cotton based AC 2.579 0.3805 0.7245 - 4.176 1.043 

[109] NH3 Modified 
Cotton based AC 

3.136 0.7048 0.4913 - 4.850 4.798 

12 

Commercial 
Granulated AC 

0.15 0.05 0.95 - 1.15 2.60 

[110] HNO3 Modified 
Granulated AC 

1.07 1.50 1.24 - 3.81 1.40 

13 

Commercial 
Anthracite AC 

0.027 0.086 0.146 - 0.259 0.742 

[111] 10% NH3 Modified 
Anthracite AC 

0.015 0.023 0.08 - 0.118 0.886 

10% HCl Modified 
Anthracite AC 

0.115 0.142 0.467 - 0.724 0.315 
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2.10.7 X-ray diffraction 

This is a rapid analytical technique that uses the diffraction of X-rays for structural 

characterization of a powder or a crystalline material. When an incident beam of monochromatic X-

rays interacts with a target material, a scattering of those X-rays from atoms within the target material 

occurs. In materials with regular structure (i.e. crystalline), the scattered X-rays undergo constructive 

and destructive interference. This is the process of diffraction. The diffraction of X-rays by crystals is 

described by Bragg’s Law, nλ = 2d sin (θ). The directions of possible diffractions depend on the size 

and shape of the unit cell of the material. The intensities of the diffracted waves depend on the kind 

and arrangement of atoms in the crystal structure. However, most materials are not single crystals, but 

are composed of many tiny crystallites in all possible orientations called a polycrystalline aggregate or 

powder. When a powder with randomly oriented crystallites is placed in an X-ray beam, the beam will 

see all possible interatomic planes. If the experimental angle is systematically changed, all possible 

diffraction peaks from the powder will be detected. 

Summary  

This chapter reviews literatures relating to the presence of pharmaceuticals and personal care 

products in waste and drinking water, conventional water treatment technologies and the use of 

adsorption process in the removal of these compounds in water. The adsorption of PPCPs using 

activated carbon was reviewed and adsorption parameters used in explaining the adsorption behaviors 

of the activated carbons were also discussed. The production, properties and characterization of 

activated carbons for adsorption of pharmaceuticals and personal care products in aqueous solution 

were also discussed.   

The process parameters of great influence in the production of activated carbon are; precursor, 

activating agents, activation temperature and impregnation ratio. The variation of these process 

parameters influences the properties of the activated carbon and its application. The availability and 

cost of purchasing the raw materials determines to a large extent the type of raw materials to be used 

for activated carbon. Biomass feedstocks have become a viable source of raw material for activated 

carbon in recent time. The activating agents used for activated carbon production are either physical or 

chemical agents. The physical agents include CO2 and steam. The chemical agents can either be alkaline 

or acidic in nature. 
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The major properties of activated carbon needed in its adsorption application are its 

morphology, surface chemistry, polarity, surface area and porosity. The porosity is classified into 

micropore, mesopore and macropore in increasing order of size. The surface chemistry defines the type 

of surface functional groups present on the activated carbon surface. These surface functional groups 

can be modified by oxidizing agents to suit specific purpose.  

The adsorption application of activated carbon especially in the removal of pharmaceutical and 

personal care products (PPCPs) has gained significant interest in recent time due to the adverse effect 

these compounds may have on human health and the environment. For effective adsorption, the pores 

size of the activated carbon must be at least 1.7 to 2 times larger than the size of target molecule. The 

other significant factors that impacts the adsorption application of the activated carbon includes; initial 

pH of the solution, temperature, adsorbent dosage and contact time. The understanding of the intrinsic 

properties of the target contaminants and the activated carbon will greatly enhance the effective 

adsorption/removal of these compounds especially during waste water and drinking water treatment.        
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Chapter 3 

Pyrolysis of dedicated bioenergy crops grown on reclaimed mine land in West 
Virginia 

Abstract 

Dedicated energy crops are auspicious cellulosic sources for sustainable bioenergy production. 
Pyrolysis, a thermochemical conversion process, of these biomass feedstock produces bio-oil and 
biochar to be used as a soil amendment and adsorbent for waste water treatment. In this study, pyrolysis 
of two Miscanthus (Miscanthus x giganteus) sterile varieties (Private and Public varieties) and 
Switchgrass (Panicum virgatum L.) sterile varieties (Bomaster and Kanlow varieties), grown on 
reclaimed coal-mining land in West Virginia followed by characterization of their pyrolysis products 
were carried out. The oven-dried samples were pyrolyzed in a fixed-bed batch reactor under an inert 
condition and at a temperature of 500 ºC to produce biochar and bio-oil. The product yields, energy 
and carbon conversion yields, elemental composition, volatile, ash and energy contents of the pyrolysis 
products were carried out and reported. Statistical analysis of the pyrolysis data showed that there was 
no significant difference in the biochar yield (about 30.00% yield) obtained from the two varieties of 
Switchgrass and Miscanthus. The bio-oil yields were in the range of 45.00 to 51.00% with the 
Miscanthus (private variety) having the highest bio-oil yield of 50.61%. The carbon content of the 
biomass, biochar and bio-oil were found to be 46.80 – 48.02%, 77.72 – 80.23% and 54.68 – 59.68%, 
respectively. Average heating values were found to be 19.49 MJ/kg, 29.01 MJ/kg and 24.98 MJ/kg for 
the biomass, biochar and bio-oil, respectively. CO and CO2 were found to be the major components of 
the non-condensable gas and the high concentration of CO2 as a non-combustible gas makes the non-
condensable gas samples unfit as a fluidizing medium. 
  
Keywords: Pyrolysis, Switchgrass, Miscanthus, Bio-oil, Biochar, Non-condensable gas 
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3.1 Introduction 

In recent years, there has been a continuous increase in energy demand due to rising population 

and enhanced energy consumption in various sectors [1]. According to EIA [2], the total primary energy 

consumption for all sectors has been projected to increase from 97.1 quadrillion Btu in 2013 to 105.7 

quadrillion Btu in 2040, majority of which is supplied from fossil resources leading to increased 

greenhouse gas emission. According to an estimate, consumption of gasoline and diesel in the United 

States resulted in 1522 million metric tons of CO2 greenhouse gas emissions, which was equivalent to 

83% of total CO2 emissions by the U.S. transportation sector and 28% of total U.S. energy-related CO2 

emissions [3]. Due to these adverse environmental impacts coupled with the non-renewable and finite 

nature of fossil fuels, it becomes imperative to develop sustainable and environmental friendly energy 

sources which will reduce world’s dependency on fossil fuels [4-6] and CO2 emission. These energy 

sources are termed renewable energy sources (e.g. biomass, wind, solar and geothermal) because they 

are continuously replenished, if managed sustainably. About 9% of the energy consumed (total of 97 

quadrillion Btu energy) in United States was obtained from renewable resources in 2011 [7].  

In the spectrum of renewable energy sources, biomass is the only renewable carbon source, 

which can be converted into liquid transportation fuel, a possible substitute to crude oils [8, 9]. Perlack 

and Stokes [10] state that the United States has potential to produce over 1 billion dry tons of biomass 

annually for bioenergy applications, which can be converted into 90 billion gallons of liquid fuels, 

enough to displace about 30% of the nation’s current annual petroleum consumption.  

The thermochemical conversion of lignocellulosic biomass has received immense interest as a 

method for production of liquid fuels as compared to its biochemical counterpart. This is because 

thermochemical conversion processes can accommodate more diverse feedstock at a time than the 

biochemical conversion processes. It is also evident that the development of a cost effective 

biochemical conversion processes of biomass into ethanol is yet to achieve commercialization. Part of 

the problem is attributed to the large variability in biomass composition, which may require different 

enzymes or chemical processes for hydrolysis of the biomass polysaccharides into fermentable sugars, 

and then the development and use of recombinant organisms that can ferment the C5 and C6 sugars 

produced [11, 12]. Pyrolysis is defined as the thermochemical conversion process usually conducted at 

a temperature of 400 to 600 ºC in the absence of oxygen to produce a bio-oil (usually contains acids, 

alcohols, aldehydes, ketones, esters, heterocyclic derivatives and phenolic compounds) along with 

some solids (char), and some gases (methane, carbon monoxide, carbon dioxide) [13, 14]. The 
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proportions of the products are largely dependent on factors such as operating temperature, pressure, 

oxygen content and feedstock characteristics 

Important factors considered in the choice of feedstock for bio-oil production includes the crop 

production yield, energy conversion efficiency, availability of the feedstock and properties of the 

pyrolysis products. This relationship has been reported in several publications. However, more interest 

has been on the use of dedicated energy crops for biomass pyrolysis in comparison to other feedstock 

type. C4 perennial grasses such as Miscanthus (Miscanthus x giganteus) and Switchgrass (Panicum 

virgatum L.) have been extensively studied due to their excellent conservation attributes, efficient water 

and nitrogen use, high biomass yields with limited inputs, high adaptability to marginal land and they 

do not require annual reseeding [15, 16].  

However, with the current volatile crude oil and natural gas markets, which are driven by 

discoveries of new resources, coupled with the poor physico-chemical properties of bio-oil which 

adversely impact its use as a substitute for fossil fuel, there is a need to provide an alternate use of these 

available biomass feedstock by transforming them into biochar intermediate through pyrolysis, which 

may be latter used to produce activated carbon. Conversion of bioenergy crops to activated carbons 

will serve dual benefits. First, it can be used to produce commercial adsorbent, which will provide an 

economic benefit to the growers and second, it will sequester biomass carbon in to a stable form.   

Therefore, the objective of this research is to evaluate the influence of two dedicated energy 

crops and their varieties on production and properties of resulting pyrolysis products. This article 

documents characteristics of pyrolysis products obtained from the pyrolysis of two varieties of energy 

crops (Switchgrass and Miscanthus) grown on reclaimed mining land in the State of West Virginia. 
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3.2 Materials and Methods 

3.2.1 Sample preparation 

Samples used in this experiment were two sterile varieties (public and private clonal varieties) 

of Miscanthus x giganteus and two varieties (Kanlow and Bomaster) of Switchgrass (Panicum virgatum 

L.). Details of growth sites and establishment of all the Switchgrass and Miscanthus varieties used in 

the pyrolysis experiments have been documented by Skousen et al. [17]. To be specific, the test samples 

were harvested from Alton site, a reclaimed mine land in Upshur County, West Virginia. This site was 

mined for the Upper, Middle, and Lower Kittanning coal seams. The 30-ha area selected for 

Switchgrass and Miscanthus plantings was reclaimed in 1985 with less than 15 cm depth of soil 

replaced over mixed overburden. Grass and legume species were planted and the soils were fertilized 

and limed according to regulations at the time. This site supported a 100% ground cover of herbaceous 

plants during the ensuing 25 years [17].  

The biomass samples were chopped into small sizes using a kitchen meat cutting knife and then 

oven dried at 103 ºC for 24 hours prior to the pyrolysis experiment.    

3.2.2 Pyrolysis experiment 

The pyrolysis experiments were performed in a fixed-bed batch reactor having a diameter of 22.86 

cm and a height of 25.40 cm. The experimental setup is showed in Figure 3.1. For a typical experiment, 

pre-weighed amount of the oven-dried sample, approximately 400 g, was placed inside the airtight 

reactor. The sample filled reactor was placed in a furnace (Model: BF51728C, Thermo scientific, NC) 

and nitrogen gas was passed through the reactor to flush out any trapped air in the reactor for about 10 

minutes before heating up the furnace. The furnace was heated from room temperature to a temperature 

of 500 ºC under a nitrogen gas flow of 2L/min. The temperature was kept constant at 500 ºC for 30 

minutes. A K-type thermocouple placed inside a thermal well located above 6.35 cm from the bottom 

of the reactor was used to measure biomass temperature. The temperature data was logged into the 

computer via a data acquisition instrument (Model: OM-DAQPRO-5300). The nitrogen flow kept the 

pyrolysis reaction under inert condition and swept the pyrolysis vapors generated in the reactor into a 

series of ice-bath condensers. The bio-oil produced during the pyrolysis were collected from the 

condensers and a sample of the incondensable gas products given off during the pyrolysis were 

collected with an airtight syringe (Model: 1000 series, Hamilton, NV) at reactor temperatures of 200, 

300, 400 and 500 ºC for gas composition analysis. After the experiment, the reactor was allowed to 

cool down to room temperature while constantly purging nitrogen gas and thereafter the mass of the 
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reactor containing the biochar was measured and subtracted from the mass of empty reactor to obtain 

the mass of the biochar produced. In addition, the mass of the condenser and bio-oil produced were 

measured and subtracted from the mass of empty condensers to determine the mass of the bio-oil 

produced.    

 
Figure 3.1: Experimental setup for biomass pyrolysis [18] 

3.2.3 Analytical measurements 

Ultimate analyses (carbon, hydrogen, nitrogen and sulfur contents) of the biomass, bio-oil and 

bio-char samples were determined using a CHNS analyzer (Series II CHNS/O Analyzer 2400, 

PerkinElmer, Waltham, MA). The calorific values of the biomass, bio-oil and bio-char samples were 

estimated using the unified correlation for computation of higher heating value from elemental analysis 

of fuels provided by Channiwala and Parikh [19]. The validity of the correlation has been established 

for fuels having wide range of elemental composition, i.e. C: 0.00 – 92.25%, H: 0.43 – 25.1%, O: 0.00 

– 50.00%, N: 0.00 – 5.60%, S: 0.00 – 94.08% and ash: 0.00 – 71.4%. However, beyond the specified 

ranges of C, H, O, N, S and ash, the predictive accuracy of the correlation does not hold true. Proximate 

analyses (fixed carbon, moisture, volatile matter and ash content) was carried out on the biomass and 

bio-char samples using a proximate analyzer (LECO 701, LECO Corporation, St. Joseph, MI) 

following the ASTM D3174 standard [20]. The pH value of the bio-oil was measured using an Accumet 

pH meter (Model: AB 15, Fisher Scientific, Pittsburgh, PA) and the viscosity of the bio-oil was also 

measured using a viscometer (Model: DV2T, Brookfield Middleboro, MA). The composition of the 
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gas samples was analyzed using a gas chromatograph (Model: Clarus GC 580, PerkinElmer Waltham, 

MA). 

The mineral composition, Acid Detergent Fiber (ADF), Neutral Detergent Fiber, Acid 

Detergent Lignin (ADL) and lignin were measured at the University of Georgia Agricultural and 

Environmental Services Laboratories, Athens, GA. Data on fiber analysis (obtained using the NIR 

method) and ash content of the varieties which were employed to determine the cellulose and 

hemicellulose contents according to the following equations:    

% Hemicellulose = % NDF - % ADF       

% Cellulose = % ADF – (% Lignin + % Ash)     

3.2.4 Bio-oil and biochar production efficiencies  

The biochar and bio-oil production efficiencies were defined as percent yields of bio-oil and 

biochars, percent feedstock carbon and energy captured by biochars and bio-oils, which are also 

referred as carbon yields and energy yields, respectively. 

Bio-oil and bio-char yield were estimated using the following expression;  

Y Bio-oil/Biochar = Mass of bio−oil/biochar
Mass of oven dried biomass 

 𝑋𝑋 100 

The energy yield (ƞ Energy) and carbon yield (Cyield) of the biochar was calculated using the following 

expressions: 

Ƞ Energy = YBiochar HHVBiochar
HHVFeedstock

 

where Ƞ Energy = energy yield; YBiochar = yield of bio-char; HHVBiochar = calorific value of bio-char 

(MJ/kg); HHVFeedstock = calorific value of the biomass feedstock (MJ/kg). 

CYield = YBiochar 
𝐶𝐶Biochar
𝐶𝐶𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹

 

where CYield = carbon yield; C = carbon content of biochar or biomass feedstock.  
 

3.2.5 Experimental design and statistical analysis  

A completely randomized design was employed for the experiment. Two varieties of 

Miscanthus and Switchgrass were used for the pyrolysis experiment. The pyrolysis was carried out in 

triplicate for each of the variety. The properties characterization of the pyrolysis products was also 

carried out in triplicate. Microsoft Excel 2010 was used in summarizing and generating graphs. The t-

test procedure in SAS statistical software (University Edition) was used in performing a t test (at 95% 
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confidence interval) to determine the effect of biomass types and their varieties on the yield and 

properties of the pyrolysis products. The results are presented in means and standard deviation.  

3.3 Results and Discussion 

3.3.1 Proximate and ultimate analyses 

Table 3.1 shows the characterization of the Miscanthus and Switchgrass varieties. Both energy 

crops had similar ash and fixed carbon contents. The ash contents were not significantly different 

irrespective of the varieties. The ash contents of the Miscanthus varieties (1.37 – 1.83 % d.b) were 

lower than the Miscanthus varieties (2.16 – 3.71%) reported by Brosse et al. [21]. The ash content of 

the Switchgrass varieties (1.2–2.02%) were also relatively lower in comparison to the values reported 

by Fasina [22] for Switchgrass (2.96% d.b) and Hu et al. [23] for Alamo whole Switchgrass plant 

(3.8%) and Kanlow whole Switchgrass plant (4.0%). Hu et al. [23] further reported the ash contents of 

the leaves portion of both Alamo and Kanlow Switchgrass to be 4.6% while the internodes and nodes 

portion of the two Switchgrass varieties were between 2.1 to 2.5%. The method of harvesting the 

Switchgrass were not mentioned but the type of soil used (coarse sandy loam -fine, kaolinitic, thermic 

typic kanhapludults) was stated. The high ash content of the leaves portion may be due to accumulation 

of minerals absorbed from the soil by the plants ultimately resulting in the high ash content of the whole 

plant. The low ash content reported for the samples in this present research could be due to the 

harvesting technique employed.  

The samples were hand clipped and transferred directly into bag removing any possibility of 

picking dirt or soil with the samples. The low ash content values obtained for the samples are an 

indication of a low deposit of bulk inorganic material after combustion. The alkali metals contained in 

the ash have been shown to be catalysts for changing the depolymerization mechanisms during 

pyrolysis leading to changes in the composition of pyrolysis products, hence the need to quantify the 

ash content of the biomass [24].  

The fixed carbon, which represents the solid combustible residue that remains after the volatile 

matter has been expelled during a heating/combustion process, was found to be in the range of 16 - 

17%. This result was similar to previous published works [16, 25-27]. Kanlow Switchgrass had 

significantly higher volatile matter content (80.59%) than the Bomaster Switchgrass (79.56%) and there 

was no significant difference (p<0.05) in the volatile content of the Miscanthus varieties. While the 

volatile content of the Miscanthus varieties were not statistically different, less than 1% difference in 

volatile matter may cause a significant difference in pyrolysis product yields. Volatile matter content 
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is known to greatly influence bio-oil and biochar yields [28]. The volatile content represents the 

components of a material, except for moisture, which are liberated at a high temperature in the absence 

of air.  

The statistical analysis showed that there was significant difference (p<0.05) in the sulfur 

content of the varieties with Bomaster Switchgrass having the highest sulfur content of 0.56% while 

the hydrogen, nitrogen and oxygen contents were not significantly different for all the varieties. The 

carbon content of both Switchgrass and Miscanthus varieties ranges between 46 – 48% while hydrogen 

was approximately 6%. The nitrogen and sulfur contents were less than 1%. A high concentration of 

nitrogen and sulphur can result in emissions of NOx and SO2, hence a low percentage is desirable in a 

biomass feedstock [21]. The remaining percentage represents the oxygen content. The elemental 

compositions for the Switchgrass and Miscanthus varieties were found to be higher than those reported 

by Imam and Capareda [29] and Bok et al. [27] except the oxygen content. Higher heating values 

obtained were between 19 and 20 MJ/kg. The results compare favorably with other published works 

on heating values of biomass feedstock [30-32]. The higher heating value is the total energy content 

released when the fuel is burnt in air, including the latent heat contained in the water vapor and therefore 

represents the maximum amount of energy potentially recoverable from a given biomass source [31]. 

The heating value is tightly connected with the biomass elemental composition and it is also influenced 

by the variation in the cell wall composition and ash content. The proportion of lignin can be used as 

an indicator of the heating value due its relatively lower oxygen concentration than holocellulose [21]  

Table 3.1: Characterization of two varieties of Miscanthus and Switchgrass feedstock 

Property 
Miscanthus Switchgrass 

Public Private Bomaster Kanlow 
Ash (%) 1.37 ± 0.99a 1.83 ± 0.40 a 2.02 ± 0.26 a 1.21 ± 0.78 a 
Fixed carbon (%) 18.06 ± 0.05a 18.10 ± 0.04 a 18.22 ± 0.20 a 17.03 ± 0.25 a 

Volatiles (%) 80.57 ± 0.94 a,b 80.06 ± 0.37 a,b 79.76 ± 0.08 b 80.59 ± 0.60 a 

Carbon (%) 47.00 ± 0.06 a 46.80 ± 0.11 a 48.02 ± 2.31 a 47.03 ± 0.17 a 

Hydrogen (%) 6.44 ± 0.04 a 6.45 ± 0.00 a 6.71 ± 0.34 a 6.45 ± 0.03 a 
Nitrogen (%) 0.44 ± 0.07 a 0.47 ± 0.05 a 0.52 ± 0.12 a 0.53 ± 0.04 a 
Sulfur (%) 0.50 ± 0.01 b 0.54 ± 0.01 a,b 0.56 ± 0.01 a,b 0.54 ± 0.03 b 
Oxygen (%) 45.63 ± 0.09a  45.74 ± 0.12 a 44.19 ± 2.77 a 45.46 ± 0.16 a 
HHV (MJ/kg) 19.29 ± 0.04 a 19.22 ± 0.05 a 20.11 ± 1.50 a 19.34 ± 0.11 a 
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3.3.2 Mineral composition 

The mineral compositions of Miscanthus and Switchgrass varieties are presented in Table 3.2. 

The phosphorus, potassium and calcium contents of the four varieties are similar. However, the 

magnesium content of the Switchgrass varieties was higher than that of Miscanthus varieties because 

the soils where the Switchgrass varieties were grown had higher magnesium content than the soils 

where Miscanthus varieties were grown [17]. It is expected that mineral composition of bioenergy crops 

is directly related to the mineral contents of soils in which they are grown. Meanwhile, Private 

Miscanthus had the highest manganese and sodium concentrations and Public Miscanthus had the 

highest iron concentration. Jin et al. [26] reported the mineral compositions of the bark, sapwood and 

heartwood for two woody biomasses (red oak and yellow poplar). The zinc and sodium concentrations 

reported for these two woody biomasses were lower in comparison to the Switchgrass and Miscanthus 

varieties in this study. However, the manganese and aluminum concentrations reported for the barks of 

both red oak and yellow poplar were higher than the ones for the varieties in this study. This variation 

in the mineral compositions of woody biomass and dedicated energy crops is an important factor, which 

influences the final pyrolysis products. Raveendran et al. [33] and Czernik et al. [34] showed that the 

main plant components which affect pyrolysis degradation are sodium, potassium, magnesium and 

silicates.  

The percentage of potassium content in the biomass varieties is slightly below average (0.36 – 

0.43%) and it is higher in comparison to phosphorus, calcium and magnesium. Potassium is a strong 

catalyst for biochar gasification and since CO2 and H2O are primary pyrolysis products, they react with 

biochar in the presence of potassium to form CO and H2, thereby decreasing biochar yield [33]. 

Patwardhan et al. [35] and Nowakowski and Jones [36] showed that potassium majorly has a direct 

effect on the thermochemical breakdown of cellulose and this impact can lower the yields of 

levoglucosan and increase lower molecular weight deoxygenated compounds during the pyrolysis of 

cellulose. A higher production of acetic and propanoic acid alongside cyclopentene derivatives and 

non-methoxylated phenols such as phenol, cresols, and dimethylphenol occurs during cellulose 

depolymerization catalyzed by potassium. It can reduce ash melting point leading to slag and 

agglomeration during thermal process thereby lowering combustion efficiency [37, 38]. Bradbury et al. 

[39] also stated that the yield of organic matter to gas and char is dependent on the inorganic 

constituents. The inorganic constituents promote secondary reactions which causes break down of 

higher molecular compounds to smaller ones. Furthermore, Fahmi et al. [24] reported an inverse 
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relationship between biomass mineral contents and lignin content. The study showed that char yield 

from pyrolysis increased with increase in inorganic constituents; hence, a reduction in lignin content 

will result in low char yield. 
 

Table 3.2: Mineral composition in percent (%) and parts per million (ppm) of Miscanthus  
and Switchgrass varieties (as received) 

Minerals 
Miscanthus Switchgrass 

Public Private Bomaster Kanlow 

Phosphorus (%) 0.03 0.03 0.03 0.02 

Potassium (%) 0.41 0.43 0.41 0.36 

Calcium (%) 0.25 0.30 0.30 0.26 

Magnesium (%) 0.03 0.04 0.09 0.09 

Manganese (ppm) 74.26 130.19 103.05 62.44 

Iron (ppm) 130.79 33.77 37.42 26.38 

Aluminum (ppm) 22.84 17.45 15.49 <12.46 

Copper (ppm) <5.00 <5.00 5.73 <5.00 

Zinc (ppm) 24.27 21.00 33.31 25.53 

Sodium (ppm) 351.20 396.50 352.12 351.95 

 
3.3.3 Chemical composition 

Chemical makeup (cellulose, hemicellulose, lignin, and extractive contents) of biomass governs 

the amount of biochar and bio-oil produced from its pyrolysis [40] and kinetics of pyrolysis process 

[41]. In addition, the chemical makeup of biomass also dictates chemical makeup of bio-oils. Bio-oils 

are composed of differently sized molecules derived primarily from the depolymerization and 

fragmentation reactions of cellulose, hemicellulose and lignin [42]. Figure 2 shows the chemical 

composition (cellulose, hemicellulose and lignin contents) of the two varieties of both Miscanthus and 

Switchgrass. The cellulose, hemicellulose, and lignin contents were similar for all the varieties.  

Cellulose content was between 34.44 - 36.94%, hemicellulose content was between 28.84–

31.56% and lignin content was between 8.84 – 10.31%. The cellulose and hemicellulose reported for 

Switchgrass varieties are higher in comparison to the one reported by Imam and Capareda [29]. This 

implies that a higher yield of bio-oil or non-condensable gas should be expected for the Switchgrass 

varieties and this was confirmed in the subsequent section. While higher proportion of the cellulose 

and hemicellulose are converted to bio-oil and biochar, a higher percentage of the lignin content are 
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converted to biochar. This has been confirmed in other literatures on pyrolysis [33, 43]. Also, since the 

type of herbaceous crop (Switchgrass or Miscanthus) and their varieties type did not differ significantly 

in their chemical compositions, there is a tendency that they would produce biochar and bio-oil with 

similar chemical makeup.     

 
Figure 3.2: Percent cellulose, hemicellulose and lignin contents of Miscanthus and Switchgrass varieties 

3.3.4 Pyrolysis product yields  

Figure 3.3 shows the percent yield of pyrolysis products (biochar, bio-oil and non-condensable 

gas, NCG) for the two varieties of Miscanthus and Switchgrass. The biochar yield was about 30% on 

an average for all the varieties. Statistically, there was no significant difference in the biochar yield 

which implies that the biomass varieties did not influence the biochar yield. The result also confirmed 

the implication made for the chemical compositions of the varieties that similar chemical composition 

would result in similar biochar yield.   
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Figure 3.3: Percent yield (on dry biomass basis) of pyrolysis products of Miscanthus and Switchgrass 

varieties 

 
The biochar yields observed in the present study were relatively higher than the biochar yield 

reported by Boateng et al [12] for Switchgrass pyrolyzed at a temperature of 480 ºC using fluidized-

bed (silica sand bed) fast pyrolysis. The difference in biochar yields observed in the current study and 

in Boateng et al. may be due to the following factors: (1) Particle size (Boateng and his coworkers used 

Switchgrass sample of particle size < 2 mm while large chopped pieces of samples were  used in the 

current study); (2) Sample type (Cave-in-rock Switchgrass were used by Boateng et al. whereas the 

present study used Bomaster and Kanlow Switchgrass); (3) Pyrolyzer type (fast fluidized bed pyrolysis 

was used by Boateng et al. whereas the present study used moderate pyrolysis fixed-bed pyrolysis) 

[44]. The effect of temperature and residence time have also been reported by other authors to influence 

the biochar yield [29, 45-47]. At a higher temperature of about 500 ºC, the biochar yield is lower in 

comparison with lower temperature. This is due to the fact that the hemicellulose and cellulose 

decomposes at a temperature of 225 to 375 ºC. Therefore, pyrolysis within that temperature range will 

result in higher biochar yield with lignin been the major component of the biochar composition. This 

is because its higher lignin decomposition occurs at higher temperature. Among feedstock properties, 

high fixed carbon content biomass produces high biochar yields. The Switchgrass varieties used in the 
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present study had fixed carbon content of 17.63% whereas it was 13.98% for the Cave-in-Rock variety 

used by Boateng et al. [12].  

The bio-oil yields were in the range of 45 to 51% for the two varieties of Miscanthus and 

Switchgrass crops. The Switchgrass bio-oil yields were higher than the Switchgrass bio-oil yield 

reported by Imam and Capareda [29]. They reported a bio-oil yield of 22– 37% for a Switchgrass 

ground through a 2mm screen and pyrolyzed at a temperature range of 400- 600 ºC. This confirmed the 

implication made that a lower hollocellulose content would lead to low bio-oil yield. However, Boateng 

et al. [12] reported bio-oil yields of about 60.7% from Cave-in-Rock Switchgrass, which had higher 

volatile matter 83.41% than that in the two varieties used in the present study (80.18%). The highest 

bio-oil yields (48.9% and 50.01%) reported by Bok et al. [27] for Miscanthus pyrolyzed in a rectangular 

and cylindrical reactor at a temperature range of 400 to 550 0C are similar to the yields obtained for 

Miscanthus in this present study. High volatile matter content is responsible for high bio-oil and gas 

yields.  

3.3.5 Biochar characterization  

Table 3 shows the selected properties of the biochars obtained from the pyrolysis of Miscanthus 

and Switchgrass varieties. on an average, the biochar produced from Miscanthus varieties contained 

7.87% ash whereas biochars made from Switchgrass varieties had 6.60% ash content.  

Table 3.3: Characterization of biochars from Miscanthus and Switchgrass pyrolysis 

Property 
          Miscanthus               Switchgrass 

Public Private Bomaster Kanlow 

Ash (%) 8.72 ± 1.21 7.02 ± 0.46 7.00 ± 0.55 6.19 ± 0.54 

Fixed carbon (%) 74.59 ± 2.77 77.11 ± 0.33 77.50 ± 0.77 76.78 ± 0.10 

Volatile (%)  16.69 ± 1.62 15.62 ± 0.42 15.36 ± 1.00 16.82 ± 0.64 

HHV (MJ/kg) 

Atomic H/C 

Atomic O/C  

28.59 ± 0.31 

0.45  

0.17  

28.63 ± 0.36 

0.41  

0.17  

29.34 ± 0.72 

0.40  

0.15  

29.46 ± 0.55 

0.41  

0.15  
 

The fixed carbon content was between 72 – 75% for biochars produced from Miscanthus 

varieties and it was between 74 – 76% for biochars produced from Switchgrass. On an average, all the 

biochars contained 15 – 16% volatile matter. In comparison with the parent materials, there was a 

significant increase in the ash and fixed carbon contents while the volatile content drastically reduced. 
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The energy content represented by the HHV for the biochars were also found to be between 28 – 30 

MJ/kg. This is comparable to the heating value for coal [48-50].   

The elemental compositions for the biochars are presented Figure 4. The carbon content for 

Miscanthus biochars ranged from 77 - 79% while Switchgrass biochars had a carbon content of 

approximately 80%. This high carbon in biochar can be permanently sequestered in the soil. Carbon in 

biochar is highly stable in soil environments and may be sequestered for a long period of time to 

mitigate greenhouse gases. Also, biochar is able to lift soil and crop productivity. This is proven from 

studies of Amazonian soils that appear to have been amended with biochar, with significant 

improvements in soil quality and positive effects on crop yields [51-53].  

 

 
Figure 3.4: Elemental composition of Miscanthus and Switchgrass biochars 

 

Comparing this result with the elemental composition of the parent materials, the carbon content 

significantly increased while there was a reduction in the other elements (i.e hydrogen, nitrogen, sulfur 

and oxygen). Losses in hydrogen and oxygen are explained by breaking of weaker bonds within 

biochar’s structure and the biochar becoming highly carbonaceous [29]. The biochar produced from 

Switchgrass appears to be of better quality than that produced from <2 mm particles of switchgrass 

from a fluidized bed pyrolysis by Boateng et al. [54] due to considerably low ash content, high fixed 

carbon and carbon content, and low volatile matter content. Boateng et al. reported ash content of 
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28.67%, fixed carbon content of 43.65%, total carbon content of 63.09%, and volatile matter content 

of 29.48 %.  

The carbon concentration of the biochars produced are clearly depicted in the Van Krevelen 

diagram (Figure 3.5). The biomass feedstock and the bio-oil can be seen to have a high ratio of hydrogen 

and oxygen to carbon. This is traceable to the presence of volatile matter and moisture. However, the 

biochars have a relatively low H/C and O/C ratio which depicts a high concentration of carbon which 

makes it a good candidate for carbon sequestration and activated carbon production. An important 

factor to note is the influence of temperature on the atomic ratio of C-H-O. Increase in the pyrolysis 

temperature leads to expulsion of the volatile matter, hence reducing the hydrogen and oxygen content 

of the biochar. This is confirmed with the result obtained by Sadaka et al. [55]. The report showed a 

decrease in the H/C and O/C ratio for carbonized switchgrass as temperature increased from 350 0C to 

400 0C and it was comparable to the composition of lignite coal. Meanwhile, the biochars obtained for 

the Miscanthus and Switchgrass varieties pyrolyzed at 500 0C in our present study showed a much 

lower atomic ratio of hydrogen and oxygen to carbon. 
 

 
Figure 3.5: Van Krevelen diagram showing the cross-plot of H/C and O/C atomic ratios for biomass, 

bio-oil and biochar 
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3.3.6 Bio-oil characterization  

The properties (pH, viscosity, higher heating value, density, and elemental composition) of the 

bio-oil obtained from the pyrolysis of the Miscanthus and Switchgrass varieties are presented in Table 

4. The pH values of the bio-oils were in the range of 2.55 and 2.76. The low pH values of the bio-oils 

indicate that they are acidic in nature which can lead to equipment damage due to corrosion. Therefore, 

a need to upgrade the bio-oil before it can be used in fuel engines is highly imperative.  A similar result 

was reported for bio-oil from poplar (2.8), birch (2.5) and pine (2.4) [56], Miscanthus sinensis (2.1 – 

2.9) [27] and forest residues (2.2 – 2.6) [25]. The low pH value of bio-oil is as a result of the presence 

of substantial amount of organic acids, especially acetic and formic acid. At an elevated temperature 

and high moisture content, the corrosiveness of bio-oil has been found to be severe, corroding carbon 

steel and aluminum [57-59] 
 

Table 3.4: Characterization of bio-oil obtained from Miscanthus and Switchgrass varieties 
pyrolysis 

Property 
Miscanthus Switchgrass 

Public Private Bomaster Kanlow 

pH 2.76 ± 0.08 2.55 ± 0.09 2.57 ± 0.07 2.59 ± 0.14 

Viscosity (cP) 45.17 ± 3.01 16.17 ± 1.61 23.67 ± 1.17 16.33 ± 1.26 

Density (kg/m3) 1033.89 ± 28.12 988.76 ± 16.87 1027.06 ± 28.56 1023.47 ± 18.21 

HHV (MJ/kg) 25.38 ± 1.76 23.42 ± 4.39 26.62 ± 1.32 24.50 ± 2.28 

Carbon (%) 58.21 ± 0.37 54.68 ± 4.64 59.68 ± 1.41 58.15 ± 2.84 

Hydrogen (%) 7.10 ± 1.30 6.82 ± 1.79 7.53 ± 0.58 6.42 ± 1.29 

Nitrogen (%) 1.96 ± 0.55 1.86 ± 0.44 2.13 ± 0.29 2.12 ± 0.55 

Sulfur (%) 0.55 ± 0.09 0.53 ± 0.13 0.61 ± 0.04 0.54 ± 0.10 

Oxygen (%) 32.19 ± 1.97 36.11 ± 6.44 30.06 ± 1.78 32.77 ± 2.89 

Atomic H/C 1.45 1.47 1.50 1.32 

Atomic O/C 0.42 0.50 0.38 0.43 

 
The heating values were in the range of 23.42 – 26.62 MJ/kg. The heating values for the bio-oil 

were relatively higher than the heating value obtained for the parent materials (19.0 - 20.0 MJ/kg). This 

can be also confirmed by the Van Krevelen diagram (Figure 3.5) showing a reduction in the H/C and 

O/C ratio for bio-oil in comparison to the biomass. Bio-oil obtained from Bomaster Switchgrass had 

the highest heating value of 26.62 MJ/kg and this corroborate with its other elemental compositions 
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(carbon, 59.68% and hydrogen, 7.53% in which it has the highest values while it has the lowest oxygen 

content of 30.06%). The reduction in the oxygen content of the bio-oil compared to the parent feedstock 

is important because the high oxygen content adversely affect the quality of the bio-oil hence making 

it un-attractive for use as a liquid fuel [60]. The heating values (19.0 – 21.9 MJ/kg) reported by Ingram 

et al. [61] for bio-oils obtained from pine and oak woods, pine and oak barks are lower in comparison 

to the ones obtained for both the Miscanthus and Switchgrass varieties. Also, the carbon and hydrogen 

contents for the pine and oak samples were found to be lower while the oxygen contents were higher 

than the ones obtained for the samples in this experiment. The carbon contents of the bio-oils are higher 

while there was a decline in the oxygen contents in comparison to the parent materials. The difference 

can be attributed to the fact that a percentage of the oxygen content is given off with the incondensable 

gas [16]. He et al. [47] also reported a lower value (16.6 – 19.6 MJ/kg) for Switchgrass bio-oil and Bok 

et al. [27] reported a lower value (16.0 - 18.2 MJ/kg) for Miscanthus bio-oil. The heating values of bio-

oils produced from apricot pulp (24.44 and 26.82 MJ/kg) and peach pulps (22.27 and 25.76 MJ/kg) 

under static and nitrogen atmospheres respectively reported by Ozbay et al. [62] were similar to the 

heating values for the samples in this present study. The H/C and O/C ratios were also similar. This 

clarifies the effect of C-H-O composition on the quality of the bio-oil. 

Switchgrass pyrolysis produces bio-oils comprised of hydroxyacetaldehyde (17.4 wt.%), 

levoglucosan (2.4 wt.%), acetic acid (3.5 wt.%), and acetol (2.7 wt.%). In addition, traces of glyoxal, 

formaldehyde, and cellobiosan are also detected. [12, 29]. Out of above chemical species, levoglucosan 

is the product of cellulose pyrolysis, acetic acid is the product of decarboxylation of lignin and 

hemicelluloses, and phenolic compounds are product of lignin pyrolysis [42]. 

In summary, neither herbaceous grass type (Miscanthus or Switchgrass) nor their respective varieties 

had significant effect on properties of bio-oil produced.    
 

3.3.7 Non-condensable gas characterization  

The gaseous products given during the pyrolysis of the biomass samples were collected at 

temperatures of 200 ºC, 300 ºC, 400 ºC and 500 ºC. The gas samples of Kanlow and Bomaster 

Switchgrass were the only ones reported in this paper. Figure 3.6 shows the composition of the non-

condensable gas given during the pyrolysis of Kanlow Switchgrass. Carbon dioxide (CO2), oxygen 

(O2), nitrogen (N2) and carbon monoxide (CO) are the predominant components of the gas samples. 

Nitrogen has the highest percentage due to the fact that it was the gas used in keeping the pyrolysis 
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reaction in inert condition. In the other components of the non-condensable gas samples such as CO2, 

CH4, and CO, carbon is seen to be a major part of the compounds.  

In terms of the temperature, carbon dioxide and carbon monoxide reached their peaks at a 

temperature of 400 ºC while nitrogen had the lowest yield at that same temperature. While there are no 

tangible variations in the percent yield of other components of the non-condensable gas, the change in 

the percent yield of CO and CO2 with increase in the temperature can be explained to be the result of 

the oxidation of the carbonized biochars at higher temperatures of the pyrolysis [63, 64]. Imam and 

Capareda [29] reported a similar increase in the percent yield of CO and CO2 with increase in pyrolysis 

temperature.  

 
Figure 3.6: Percent yield of gas given off during pyrolysis of Kanlow Switchgrass  

 

The percent yield of non-condensable gas during the pyrolysis of Bomaster Switchgrass is 

shown in Figure 3.7. Hydrogen had a peak yield of about 20% at a temperature of 400 ºC. The trends 

for carbon dioxide and carbon monoxide were different from the ones obtained for Kanlow 

Switchgrass. The carbon dioxide had a double peak at 300 ºC and 500 ºC while carbon monoxide 

reached its peak at a temperature of 500 ºC. Nitrogen had the highest percent yield. Oxygen had the 

highest percent yield at 200 ºC temperature. This is an indication of moisture removal, which is the 

initial stage of pyrolysis.  
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CO2 is a non-combustible component of the non-condensable gas. A high percentage of CO2 in 

the non-condensable gas makes it a lower quality fuel gas. The CO:CO2 ratio of the non-condensable 

gas is used as an indicator to determine if the gas has a good combustible gas quality to be used as an 

fluidizing medium for an endothermic pyrolysis reaction [12, 52]. A high CO:CO2 ratio indicates that 

the non-condensable gas can be used as a fluidizing medium. The CO : CO2 ratios of the non-

condensable gas samples for switchgrass were less than 1. This indicate that the gas samples cannot be 

used as a fluidizing medium. Boateng et al. [12] estimated the CO:CO2 ratio for the non-condensable 

gas produced during a bench-scale fluidized bed pyrolysis of switchgrass to be 2:1, making it suitable 

as fluidizing medium. The authors further stated that the use of nitrogen as fluidizing gas is convenient, 

but only in pilot or demonstration experiments. In an industrial production, the use of nitrogen gas as 

fluidizing medium would likely incur extra cost and thereby increase the cost of bio-oil production. 

The use of exhaust gas for fluidization has thus far been an industrial practice. 
 

    
Figure 3.7: Percent yield of gas given off during pyrolysis of Bomaster Switchgrass  

 

3.3.8 Carbon and energy yield  

Percentage amounts of biomass energy and carbon captured in the biochars produced for each 

variety were calculated as a measure of efficiency of pyrolysis process excluding externally supplied 

heat (Figure 3.8). On an average, the biochars captured about 50% of the feedstock carbon and about 

40- 50% of the feedstock energy. The remaining energy and carbon is distributed between the bio-oil 



70 
 

and non-condensable gas. Jin et al. [26] reported that pyrolysis of mixed hardwood chips retained 78 

% of the feedstock energy and 89 % of the feedstock carbon in its biochars and bio-oils. The importance 

of the carbon yield of the biochar is defined in its use for carbon sequestration and gasification. From 

this present study, it can be implied that about 50% of the feedstock carbon can be permanently 

sequestered in soil. Also, the carbon retained in the biochar can be used in the production of syngas 

during gasification. However, there will be a need to determine its reactivity in air and in CO2 in order 

to establish its potential as a combustion fuel or gasification feedstock [54]. Furthermore, based on the 

morphological and surface characteristics of biochar (not characterized in this present study), it has 

been explored as a feasible adsorbent for nutrients recovery from liquid runoff from field fertilization 

or effluents from anaerobic digestion. Upon adsorption of the nutrients, it can be reapplied to crop fields 

for slow release of the nutrients [65, 66]. Therefore, this research concludes that neither herbaceous 

crop type nor their individual varieties has any influence on carbon and energy yields from biochars. 

 
Figure 3.8: Carbon and energy yields of Miscanthus and Switchgrass biochars 

 

3.4. Conclusion  

The characterization of the pyrolysis products of Miscanthus and Switchgrass cultivars showed 

a good potential for bio-oil and bio-char production. The cultivars of Switchgrass and Miscanthus in 

this study showed no significant difference in pyrolysis product yields (biochars and bio-oils) and their 
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properties. Therefore, pyrolysis of these two dedicated energy crops may be carried out in a single 

reactor simultaneously. Overall, the biochar yield was about 30% and bio-oil yields ranged from 45 to 

51%. On an average, the pyrolysis process converted between 40 to 50% of total feedstock energy in 

to biochar products and about 50 % of feedstock carbon are stored in the biochars. The properties of 

the biochars such as the fixed carbon, porosity and the elemental composition showed that both energy 

crops can be employed as a raw material for the production of activated carbon.  

3.5 Implications  

Skousen et al. [17] reported the establishment and dry matter (DM) yield of biomass crops on 

several mined sites in West Virginia. According to the report, the Alton site (0.4 ha planted out of 160 

ha) has three species, namely; Switchgrass (Kanlow and Bomaster), Miscanthus (Public and Private), 

and Giant cane planted. At this site, dry matter yield after the fourth growing season averaged 5,200 kg 

ha-1 for Switchgrass (Kanlow and Bomaster varieties) and 9,000 kg ha-1 for Miscanthus (Public and 

Private varieties). In addition, Cave-In-Rock Switchgrass was planted on 8 ha at MeadWestvaco 

(MWV), WV and at The Wilds, OH. After the first growing season, Switchgrass production was 752 

kg ha-1 at MWV and 1,045 kg ha-1 at The Wilds site. 

While intention of growing these bioenergy crops with significant capital investment was to 

supply them to a bioethanol plant to be opened in near future, currently, there is no outlet for the 

harvested bioenergy crops. Conversion of bioenergy crops to activated carbons will serve dual benefits. 

First, it will provide an economic benefit to the growers and second, it will sequester biomass carbon 

in to a stable form. For example, untreated charcoal derived activated carbons are sold for about $42 

per kg (average cost from Fisher Scientific). Our preliminary data shows that Switchgrass pyrolysis 

produces 30% biochar and activation of biochar yields about 62% activated carbon [67]. On an average, 

the Alton site in WV produces on an average 7100 kg per ha per year biomass (Switchgrass and 

Miscanthus combined), which has potential to produce 1320 kg per ha per year of activated carbon. 

Using $42 per kg cost of activated carbon, the 1320 kg of activated carbon may be valued at $55,465 

per ha per year. 
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Chapter 4 

Effect of pyrolysis temperature on the thermal stability and physicochemical characteristics of 
biochars produced from herbaceous biomass 

 

Abstract  
 
Biochar’s use as soil amendment is considered beneficial for soil quality improvement with an added 
benefit of carbon sequestration. To ensure the use of biochar for these purposes, there is a need to 
understand its thermal stability and resistance against abiotic and biotic degradation. This is predicated 
on the feedstock type and pyrolysis conditions used in producing the biochar. The objective of this 
study was to characterize the thermal stability and physicochemical properties of biochars produced 
from two herbaceous biomass feedstocks at pyrolysis temperatures of 500, 700 and 900 °C. The thermal 
stability of the biochars was estimated by thermally degrading them in air at 950 °C. Physicochemical 
properties of the biochars were also quantified. The thermal stability of the biochars were found to 
increase with the pyrolysis temperature. The pH values increased with the pyrolysis temperature from 
slightly alkaline to highly alkaline. The electrical conductivities of the biochars were between 1.21 and 
4.07 mS/cm. The BET surface area of the Kanlow Switchgrass biochars increased from 0.91 to 519.49 
m2/g with an increase in pyrolysis temperature from 500 to 900 ºC. Similarly, the BET surface area of 
Public Miscanthus biochars increased from 0.25 to 783.74 m2/g with increase in pyrolysis temperature 
from 500 to 900 ºC. The result of the Raman analysis showed that the pyrolysis temperature did not 
significantly caused a conversion of disordered sp2 carbon to ordered sp2 carbon crystallites. The XPS 
analysis showed a reduction in the atomic percentage of the oxygen functional groups as the pyrolysis 
temperature increased, making the biochars more hydrophobic.    
 

Keywords: Biochar, pH, soil amendment, thermal stability 
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4.1 Introduction  
 

Pyrolysis, among other thermochemical conversion processes, is characterized by its products, 

which include bio-oil as the liquid product, biochar as the solid residue and the non-condensable gas 

products [1]. The distribution of the pyrolysis products has been found to depend on the pyrolysis 

conditions (temperature, residence time and heating rate) and the biomass characteristics (physical, 

elemental and proximate composition) [2]. For example, low pyrolysis temperatures and longer 

residence times had been shown to result in high biochar yield [3-6]. This is because the cellulose 

decomposes at a temperature of 240 to 350 °C, hemicellulose decomposes at a temperature of 200-260 

°C whereas lignin decomposes at 280 – 550 °C. Therefore, at low temperatures (below 400 °C), 

significant amount of lignin remains uncarbonized, thereby, resulting in high biochar yields. 
 

Biochar is a carbonaceous material possessing a range of chemical structures and heterogeneous 

elemental composition [7]. Due to its intrinsic properties, it has found wide range of applications 

especially in agronomy and environmental management. Biochar’s use for agronomic purposes is due 

to its soil amendment benefits which include, enhancing soil fertility, improving soil pH, electrical 

conductivity, and soil physical structure; increasing soil microbial biomass and nutrient availability [8]. 

Atkinson et al. [9] stated that the porous structure and surface area of biochar provide refuge for 

beneficial soil micro-organisms and influenced the binding of important nutrient cations and anions. 

This binding can enhance the availability of macro-nutrients.  

The application of biochar to soils has been found to have varying effects. Biochar with alkaline 

pH have been reported to significantly influence the aboveground productivity on soils. This effect is 

more prominent in case of acidic soils than that of alkaline soils [10]. Increasing the pH of acidic soils 

has been shown to increase microbial activity, increase soil organic matter mineralization and increase 

nutrient availability to plants. This may in some circumstances, however, cause a priming effect 

resulting in the increased emission of CO2 from soils and may also have only a short-term effect on 

microbial activities [11]. The priming effect of biochar addition to soil have been reported to increase 

the phytoavailability of essential nutrients for plant growth [12]. Atkinson et al. [9] reported that an 

increase in soil pH due to biochar addition can reduce the availability of toxic forms of Al, Cu and Mn 

while it increased the availability of essential nutrients such as Na, K, Ca, Mg, and Mo, thereby 

enhancing plant growth.  

The significance of biochar application for soil amendment is closely knitted to its relatively 

high recalcitrance or resistance to abiotic and biotic degradation [14]. The abiotic degradation of 
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biochar (e.g. chemisorption of oxygen by the biochar, photo-oxidation and solubilization) is a strong 

exothermic reaction and under environmental conditions, this process is extremely slow [15] while the 

biotic degradation of biochar is attributed to the microbial degradation of labile C fraction. The biochar 

carbon is made up of recalcitrant aromatic ring carbon structures and the labile aliphatic carbon 

structures [16]. The labile carbon fractions are easily degradable (weeks to years) and provide an 

important source of energy for soil microorganisms. The recalcitrant carbon fraction is highly resistant 

to decomposition, largely unavailable to microorganisms and takes centuries to thousands of years to 

decompose [17]. A reduction in the labile carbon fraction of the biochar leading to high recalcitrant 

biochar with stable carbon has been identified to be very resistant to microbial degradation [17].  

Zimmerman [18] studied the abiotic and biotic degradation of biochars derived from woody and 

herbaceous biomass feedstocks. The author reported that biochars produced at lower pyrolysis 

temperature were more labile than the biochars produced at higher temperatures. The pattern of the 

decreasing lability with increasing pyrolysis temperature held for all the woody biomass derived 

biochars and abiotic incubations as well. However, the abiotic and microbial incubations of herbaceous 

biomass derived biochars were found to release the most CO2 in 1 year.  

The thermal stability of biochar can be quantified by its release of CO2 [7] and therefore, a 

highly recalcitrant biochar is identified as one with slow CO2 release rate. Harvey et al. [14] developed 

an energy-based approach for quantitatively evaluating the thermal stability/recalcitrance of biochar. 

The premise of this energy-based approach was that the amount of energy required to oxidize/volatilize 

a given quantity of biochar will depend on the bonding environment of carbon atoms in the biochar. 

This simply implies that thermal stability is a function of bond energy. Hence, biochar having a larger 

proportion of C−C single bonded structures would have a lower thermal stability than those dominated 

by C=C, conjugated and aromatic structures. Therefore, the recalcitrance index (R50) uses the energy 

required for thermal oxidation of the biochar (normalized to the energy required for oxidation of 

graphite) as a measure of recalcitrance/thermal stability. 

While several published works have investigated the effect of pyrolysis temperature on the 

thermal stability and soil amendment characteristics of biochars, the biomass feedstocks are generally 

grown on arable lands. However, there is sparsity of research that have investigated the use of marginal 

land grown biomass for production of biochar targeted towards soil amelioration. Therefore, the 

objective of this study is to investigate the effect of pyrolysis temperature on the thermal stability and 
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physicochemical characteristics of biochars produced from herbaceous biomass harvested on reclaimed 

mine land. 

4.2 Materials and Methods 

4.2.1 Sample preparation and biochar production 

Two types of herbaceous biomass used to produce biochars in this study were Miscanthus 

(Miscanthus x giganteus) and Switchgrass (Panicum virgatum L). The biomass samples were obtained 

from the Alton site, a reclaimed mine land in Upshur County, West Virginia. The samples were air 

dried for 3 days before they were oven dried at a temperature of 103 °C for 24 hours. The oven dried 

samples were subsequently ground to less than 1 mm particle size using a Retsch Grindomix (Model: 

GM 200). 

The biochar production was carried out in a proximate analyzer (Model: LECO 701, LECO 

Corporation, St. Joseph, MI). The analyzer has a carousel consisting of 19 spaces for crucibles. The 

empty crucibles were weighed and thereafter filled with biomass samples. The sample filled crucibles 

were also weighed again and cover with the crucibles’ caps.  

A pyrolysis method was created to heat biomass sample from room temperature up to the target 

temperature of 500, 700 and 900 °C at a heating rate of 10 °C/min under a continuous flow of nitrogen 

to keep the whole process inert. The temperature was kept constant at the target temperatures for 30 

minutes before the biochar sample were cooled down and collected in a zip lock bag for further 

characterization. 

4.2.2 Thermogravimetric analysis of biomass and biochar  

Thermogravimetric analysis of the biomass samples was carried out using a thermogravimetric 

analyzer (TGA) (Model: Q50, TA Instruments, Schaumburg, IL, USA). About 8 – 12 mg of the samples 

were loaded into a platinum sample holder and heated from 30 °C to 700 °C in the combustion chamber 

at three heating rates of 5, 15 and 25 °C/min under nitrogen flow of 30 cm3/min.  

The thermal degradation of the biochar samples was carried out in a thermogravimetric analyzer 

(Model: Q50, TA Instruments, Schaumburg, IL, USA). About 8 – 12 mg of the samples were loaded 

into a platinum sample holder and heated from 30 °C to 950 °C in the combustion chamber at a heating 

rate of 10 °C/min under air flow of 20 cm3/min. The thermograms were adjusted for moisture and ash 

content. The recalcitrance index (R50) is described in the equation below; 

R50 = T50 x / T50 graphite     (1) 
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Where T50 biochar and T50 graphite represents the temperatures at which 50% oxidation/volatilization of the 

biochar and graphite mass, respectively [14, 19]. The T50 graphite value of 886 °C used in this experiment 

was obtained from Harvey et al. [14]. 

4.2.3 Microstructural and physicochemical characterization of biochar 

Solid morphology characterization of the biochars were performed at the West Virginia 

University Shared Research Facilities using a scanning electron microscope (Model: Hitachi-S4700, 

Hitachi High Technologies America, Schaumburg, IL). The Raman spectra of the biochars showing the 

crystalline and amorphous nature of the biochars was carried out using a Raman microscope (Model: 

Renishaw InVia) at a 50x optical magnification. The laser beam was operated on a 1% laser power 

input. The surface chemical state characterization of the biochars was carried out using X-ray 

photoelectron spectroscopy (Model: PHI 5000 VersaProbe XPS/UPS, ULVAC-PHI Inc., Kanagawa, 

Japan) in a spectral range of 0 to 1400 eV binding energy and energy resolution of 0.50 eV. For the 

XPS analysis, each sample was mounted on a steel specimen disk using an Ultra High Vacuum 

approved spectral grade double-sided carbon tape and loaded into the introduction chamber. 

Afterwards, the sample was transferred to the analysis chamber where the photoelectron spectra were 

acquired. 

The surface area and pore size distribution of the biochars were determined by nitrogen 

adsorption at 77 K using Micromeritics Accelerated Surface Area and Porosimetry System (Model: 

ASAP 2020, Norcross, GA, USA). Prior to the analysis, the samples were degassed at a temperature of 

105 °C for 24 hours and cooled down to 30 °C. The surface area was determined with the Brunauer-

Emmett-Teller (BET) model. The pore size distributions of the biochars were calculated from the 

nitrogen adsorption isotherms using the Non-Local Density Function Theory (Carbon-N2, NLDFT, 

Standard Slit) model provided in the free version of SAIEUS software. 

Ultimate analyses (carbon, hydrogen, nitrogen and sulfur fractions) of the biochars were 

determined based on the ASTM D3176-15 standard [20] using an elemental analyzer (Series II 

CHNS/O Analyzer 2400, PerkinElmer, Waltham, MA). Fixed carbon, volatile matter and ash content 

of the biochar samples were quantified using a proximate analyzer (LECO 701, LECO Corporation, St. 

Joseph, MI) following the ASTM D3174 standard [21].  

Data from the ultimate and proximate analyses of the biochars were used in estimating their 

calorific values based on the unified correlation for computation of higher heating value from the 

elemental analysis of fuels provided by Channiwala and Parikh [22]. The validity of the correlation has 
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been established for fuels having wide range of elemental compositions, i.e. C: 0.00 – 92.25%, H: 0.43 

– 25.1%, O: 0.00 – 50.00%, N: 0.00 – 5.60%, S: 0.00 – 94.08% and Ash: 0.00 – 71.4%. However, 

beyond the specified ranges of C, H, O, N, S and Ash, the predictive accuracy of the correlation does 

not hold true. 

For the pH reading, a suspension of biochar was prepared with deionized water in a 1:20 mixing 

ratio (w/v), agitated for 30 mins and allowed to stand for about 10 mins before testing with a standard 

pH probe [19, 23]. The pH reading was carried via a Mettler Toledo pH meter (Model: Seven Compact 

pH/ion meter S220). Each sample was measured in triplicate. The electrical conductivity of the biochar 

samples was determined using the same biochar solution with a Mettler Toledo Conductivity Meter 

(Model: Seven Compact S230). 

 

4.3 Results and Discussion 

4.3.1 Thermogravimetric analysis of biomass 

The pyrolysis characteristics of Kanlow Switchgrass and Public Miscanthus biomass at heating 

rate of 5 °C/min are shown in the Figure 4.1. Public Miscanthus can be seen to have an initial faster 

rate of mass loss in comparison to Kanlow Switchgrass. Significant thermal decomposition of both 

biomass samples started at about 240 °C and continued until the temperature reached 400 °C, where the 

mass loss dropped to 25%. For the remainder of the thermal decomposition process, Kanlow 

Switchgrass can be seen to be more thermally decomposed.  

The residual mass after the thermal decomposition of both biomass samples were 18.1% and 

19.9% for Kanlow Switchgrass and Public Miscanthus, respectively. The residual mass represents the 

biochar yield of the two biomass samples. Theoretically, the biochar yield should equal the sum of 

fixed carbon and ash content of the biomass [24]. The estimated biochar yield reported in Table 4.1 

compare favorably with the residual mass obtained from the TG graph. However, the experimental 

biochar yields reported for both samples in chapter 3 were higher than the estimated yield and the ones 

from the TG analysis. The difference in this result may be attributed to the pyrolysis temperature (500 

°C) being lower than the temperature used for the proximate analysis and thermogravimetric analysis. 
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Figure 4.1: TGA- percent mass loss of Kanlow Switchgrass and Public Miscanthus at heating rate of 5 

⁰c/min 
 

Table 4.1: Chemical composition of Kanlow Switchgrass and Public Miscanthus 
Property  Kanlow Switchgrass Public Miscanthus 

Cellulose (%) 36.27 36.94 
Hemicellulose (%) 31.56 28.91 
Lignin (%) 9.27 10.31 
Others 19.84 20.14 
Ash (%) 1.37 1.21 
Fixed Carbon (%) 18.06 17.03 
Estimated Biochar 
Yield (%) 

19.43 18.24 

 

Figure 4.2 shows the DTG curves for Kanlow Switchgrass and Public Miscanthus at a heating 

rate of 5 ⁰C/min under an inert atmosphere. Both biomass samples showed peak temperatures of 336 

°C and 327 °C for Kanlow Switchgrass and Public Miscanthus respectively. These peak temperatures 

correspond to the temperatures at which the peak cellulose decomposition occurs [25]. The flat right 

tails of the DTG curves represent the decomposition of the lignin content, which is known to occur 

over a wide range of temperatures. The thermal decomposition of lignin leads to significant char 

formation and liberation of large fractions of volatiles, which constitute tar [26]. According to Mohan 

[27], lignin pyrolysis produces more char than cellulose or hemicellulose.  
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The hemicellulose decomposition is generally represented by the shoulder peak to the left of 

the DTG curve. This is visible in the DTG curve for Kanlow Switchgrass. This difference can be 

attributed to the higher hemicellulose content of the Kanlow Switchgrass in comparison to that of Public 

Miscanthus. It is also worth noting that in a demineralized sample (ash free), the anhydrosugars 

produced during hemicellulose decomposition, transform into vapor phase with little or no char 

formation due to the non-catalytic effect of mineral matter. However, in the presence of ash, these 

anhydrosugars rapidly decompose to form a substantial part of the biochar [26]. The chemical 

composition of the biomass samples in this study showed that both biomass samples have ash content 

of about 1.2 – 1.3%. This implies that the hemicellulose decomposition will also contribute to the char 

formation.  

 

 
Figure 4.2: DTG curve for Kanlow Switchgrass and Public Miscanthus at heating rate of 5 ⁰C/min 

4.3.2 Thermal decomposition kinetics 

The differential isoconversional method of Friedman was used in the thermal decomposition 

kinetics of the biomass samples. A detailed description of the equations showing the rate of conversion 

and fractional conversion are provided in the works of Lee & Fasina [28] and Kim & Agblevor [29]. 

The rate of conversion described by the Arrhenius equation is given as; 

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

0 100 200 300 400 500 600 700

dx
/d

t (
m

in
-1

)

Temperature (°C)

Kanlow Switchgrass

Public Miscanthus



84 
 

𝛽𝛽 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝐴𝐴 exp(−𝐸𝐸
𝑅𝑅𝑅𝑅

)𝑓𝑓(𝑋𝑋)                                            1 

Where A is pre-exponential factor; E is activation energy; R is universal gas constant and T is 

absolute temperature in K. The natural logarithm of Eq. (1) was taken based on the isoconversional 

method of Friedman [30] resulting in Eq. (2); 

ln �𝛽𝛽 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
� = ln(𝐴𝐴) + ln 𝑓𝑓(𝑋𝑋) −  𝐸𝐸

𝑅𝑅𝑅𝑅
                                          2 

 

The activation energy E, was determined by the linear relationship between ln[β(dX/dt)] and 

1/T. The slope of this relationship yields –E/R, from which the activation energy corresponding to each 

conversion was estimated.  

Figure 4.3 shows the activation energies as a function of the fractional conversion from 0.1 to 

0.6 for Kanlow Switchgrass and Public Miscanthus biomass. The activation energy for Public 

Miscanthus biomass can be seen to increase from 157 to 984 kJ/mol while for Kanlow Switchgrass, the 

activation energy can be seen to decrease from 341 to 270 kJ/mol. The overall activation energy values 

for Public Miscanthus decomposition can be attributed to its high lignin and extractives contents in 

comparison to Kanlow Switchgrass. The activation energy represents the energy the biomass molecules 

have to acquire in order to undergo the chemical reaction occurring during the pyrolysis process [26] 

and this is attainable with an increase in temperature. Therefore, it can be inferred that the activation 

energies reported for both biomass samples are the activation energies required for the thermochemical 

decomposition of the biomass constituents (cellulose, hemicellulose, lignin and extractives), which 

ultimately results in the pyrolysis products namely bio-oil, biochar and non-condensable gases. 
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Figure 4.3: Plot of activation energy versus fractional conversion ratio 

 
4.3.3 Thermal stability of biochars 

Harvey et al. [14] classified the thermal stability of biochars using the Recalcitrance Index (R50) into 

three groups as Class A (R50 > 0.70), Class B (0.50 ≤ R50 < 0.70) and Class C (R50 < 0.50). Biochars in 

Class A are expected to exhibit minimal susceptibility to biodegradation while biochars in Class B are 

expected to exhibit some susceptibility to biodegradation. Biochars categorized into Class C are as 

susceptible to biodegradation as raw biomass. Figure 4.4 shows the thermal degradation of biochars 

mass on moisture- and ash-free basis in presence of air. From the Figure 4.4, the recalcitrance indices 

(R50) were calculate for various biochars, which are presented in the Table 4.1. The recalcitrance indices 

for all the biochars tested ranged between 0.49 to 0.60. Based on Harvey et al. [14]’s classification, all 

the biochars produced at pyrolysis temperature of 500 °C and 700 °C were classified into Class C (R50 

value < 0.50), which essentially means that these biochars are expected to degrade similar to raw 

biomass. On other hand, the biochars produced at pyrolysis temperature of 900 °C had R50 values > 

0.50, which placed them in Class B. This implies that all biochars produced at 900 °C are expected to 

stay in soils for longer periods than biochars produced at low temperatures. 
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Figure 4.4: Moisture and ash content corrected thermogram for biochars 

 

Zhao et al. [23] reported a similar finding for biochars produced from pig manure and wheat 

straw at pyrolysis temperature ranging from 200 °C to 650 °C. The authors found that the recalcitrance 

indices of the biochars (measured as R50) increased with increase in the pyrolysis temperature. The 

increase in biochar thermal stability with increasing temperature is an expression of the increase in the 

degree of the biochar aromaticity (i.e aromatic carbon). Santin et al. [31] described the degree of biochar 

aromaticity as an increase in aromatic carbon of the biochar in comparison to other forms of carbon 

such as alkyl carbon, O-alkyl carbon and carbonyl carbon. Therefore, the energy required to degrade 

the biochar increases with an increase in its aromatic carbon. It is noteworthy that while the highest 

recalcitrance index of biochar can be achieved at higher pyrolysis temperature, there is a trade off with 

the amount of functional groups in the carbon structure, hence limiting the chemical properties of the 

biochar as soil amendment [32].  

4.3.4 Electrical conductivity and pH  

The electrical conductivity (EC) of the biochar defines the measure of the amount of salts in the 

biochar, i.e. it is an indication of the biochar’s salinity [33]. The electrical conductivity of the biochars 

were between 1.21 and 4.07 mS/cm, which fall within the range of values (0.15 – 8.2 mS/cm) that have 

been reported for biochars in literatures [34-36]. The EC increased sharply with the pyrolysis 
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temperature from 500 to 700 °C and then reduced for biochars produced at pyrolysis temperature of 

900 °C. A similar trend of increased biochar EC with pyrolysis temperature was reported by Al-Wabel 

et al. [37] for conocarpus waste derived biochar. High salinity in soil has a negative impact on plant 

growth due to low osmotic potential of the soil, water stress, salt stress and nutrient imbalances [37]. 

Therefore, increased EC of the biochars with pyrolysis temperature can result in excessive increase in 

the soil salinity, which will ultimately result in the adverse effects of high salinity on plant growth 

The pH values of the biochars ranged between 8.96 and 10.61. The pH values of biochars ranged 

from slightly alkaline to highly alkaline. The PM 700 and KS 900 biochars had the highest pH values 

of 10.61 and 10.21 respectively. Yuan et al. [38] reported similar pH values (9.39 – 11.32) for biochars 

produced at pyrolysis temperature of 500 and 700 °C for agricultural residues including canola straw, 

corn straw soybean straw and peanut straws. This high alkalinity suggests that the alkaline components 

of these biochars will be easier to release than other biochars [38]. The alkalinity of biochars produced 

at higher pyrolysis temperature has been reported to be due to the separation of the alkali salts from 

organic materials [33, 38]. Yuan et al. [38] stated that at high pyrolysis temperature, the carbonate 

content of the biochar contributes to the alkalinity of the biochar while the organic anions decreases.  

Table 4.2: Physicochemical properties of biochars 
Parameter KS 500 KS 700 KS 900 PM 500 PM 700 PM 900 

Electrical conductivity 
(mS/cm) 1.29 ± 0.01 3.01 ± 0.02 2.68 ± 0.00 1.24 ± 0.03 4.07 ± 0.04 3.11 ± 0.06 

pH 9.89 ± 0.02 9.62 ± 0.04 10.29 ± 0.01 9.57 ± 0.02 10.61 ± 0.03 8.96 ± 0.11 

SBET (m2/g) 0.91 27.60 519.49 0.25 239.24 783.74 

SMicro 6.57 35.36 416.42 - 203.09 557.21 

Volatile matter 16.82 ± 0.64 10.38 ± 0.39 8.19 ± 0.23 16.69 ± 1.62 11.44 ± 0.27 9.28 ± 0.52 

Fixed carbon 76.78 ± 0.10 73.27 ± 0.49 74.06 ± 0.55 74.59 ± 2.77 78.62 ± 0.19 79.87 ± 0.29 

Ash content 6.19 ± 0.54 16.35 ± 0.10 17.75 ± 0.73 8.72 ± 1.21 9.94 ± 0.09 10.85 ± 0.24 

Carbon 80.23 ± 1.13 82.94 ± 0.80 82.75 ± 0.58 77.72 ± 1.50  79.30 ± 0.22 79.24 ± 0.43 

Hydrogen 2.77 ± 0.07 2.35 ± 0.04  1.99 ± 0.03 2.94 ± 0.26 2.64 ± 0.05 2.01 ± 0.01 

Nitrogen 0.64 ±0.02 0.92 ± 0.01 1.20 ± 0.33 1.08 ± 0.17 1.45 ± 0.22 1.55 ± 0.35 

Sulfur 0.11 ± 0.03 0.18 ± 0.06 0.21 ± 0.02 0.38 ± 0.10 0.10 ± 0.02 0.08 ± 0.01 

Oxygen 16.24 ± 1.17 13.61 ± 0.90 13.85 ± 0.20 17.89 ± 0.98 16.51 ± 0.74 17.12 ± 0.25 

Atomic H/C 0.41 0.34 0.29 0.45 0.40 0.30 

Atomic O/C 0.15 0.12 0.13 0.17 0.16 0.16 

Calorific value (MJ/kg) 29.46 ± 0.55  27.40 ± 0.11 27.33 ± 0.23 28.59 ± 0.31 29.51 ± 0.03  29.60 ± 0.02 

Thermal Stability R50 0.49 0.49 0.57 0.49 0.49 0.60 
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4.3.5 Proximate composition 

The volatile contents of the biochars decreased with increase in the pyrolysis temperature (Table 

4.2). The volatile matter content defines the burning characteristics of a material such that high volatile 

content is an indication that the material can be easily ignited and vice versa [39]. For long term use of 

biochar for soil amendment, it is required that the biochar have a low volatile matter content.  

The low volatile content of the biochars signifies a safe use of the material. This is because biochar 

with high volatile content can lead to a fire hazard. Blackwell et al [40] explained that biochar dust 

particles can form explosive mixtures with air in confined spaces, and there is a danger of spontaneous 

heating and ignition when biochar is tightly packed. However, biochar produced at about 600 °C or 

higher often have low volatility levels, which may reduce the risk of spontaneous combustion during 

storage and handling. Also, the low volatile content is a representation of the biochars’ low content of 

labile or volatile compounds. This is an indicator that the biochar has less labile/easily degradable 

carbon. This was confirmed by the fixed carbon content. Spokas [7] indicated that biochars with volatile 

matter higher than 80% can be decomposed at much higher rates rendering them unfit for long term 

carbon sequestration. Enders et al [41] proposed a stability classification based on the combination of 

the volatile content, H/C and O/C ratio of biochar as follows; a volatile matter below 80% and an O/C 

ratio above 0.2 or H/C above 0.4 may indicate moderate sequestration ability; and a volatile matter 

below 80% and an O/C ratio below 0.2 or H/C below 0.4 may indicate high C sequestration potential. 

Based on this classification, the biochars produced in this study can be classified to have moderate to 

high carbon sequestration potential.  

The fixed carbon, which is inversely proportional to the volatile content were in the range of 

73.27 to 79.87% (Table 4.2). The inverse relationship between the volatile matter content and fixed 

carbon is because of release of volatile content of the biomass during pyrolysis leading to increase in 

the fixed carbon content of the biochar. The fixed carbon of the biochars increased with an increase in 

the pyrolysis temperature, which is an indication of increased carbonization and fixation of the biomass 

carbon into a slower cycling form that has the potential to exist for hundreds to thousands of years [7].   

The calorific values of the biochars ranged between 27.33 and 29.60 MJ/kg (Table 4.2). The calorific 

values of Public Miscanthus biochars increased with an increase in temperature while the calorific 

values of Kanlow Switchgrass biochars decreased with the pyrolysis temperature. The decrease in the 

calorific values of the Kanlow Switchgrass is attributable to the reduction in its fixed carbon which was 

accompanied by a significant increase in the ash content of the biochars. In a similar manner, the 
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increase in the calorific values of the Public Miscanthus biochars is attributed to the increase in the 

fixed carbon. Although, there was an increase in the ash contents of the Public Miscanthus biochars, 

the proportion was not as high as the ones for Kanlow Switchgrass biochars.   

4.3.6 Elemental composition  

The result for the elemental analysis of the biochars are presented in Table 4.2. The elemental 

carbon contents of the biochars increased with an increase in the pyrolysis temperature, which is a 

representation of high carbonization at high temperature. This was accompanied with a decrease in the 

elemental H, N & S while the sulfur is negligible. The atomic ratios of the elements were calculated to 

estimate the aromaticity (H/C) and polarity (O/C) of the biochars. The result showed that the H/C and 

O/C ratio decreased with an increase in the pyrolysis temperature. This indicates that the aromaticity 

of the biochars increased with temperature and the biochars also became more hydrophobic due to the 

loss of oxygen. Uchimiya et al. [42] stated that this observed trend can be attributed to the removal of 

polar surface functional groups and the formation of aromatic structures by a higher degree of 

carbonization. The loss of the oxygen with temperature is also an indication of the loss of acidic 

functional groups of the biochars, hence making the biochar more basic. This is consistent with the pH 

values of the biochars. A similar finding was reported by Ahmad et al. [43] for biochars produced from 

soybean stover and peanut shell at temperature of 300 and 700 ºC. Chen et al. [44] also reported a 

similar trend for pine needles biochars produced at an incremental pyrolysis temperature of 100 to 700 

ºC. 

4.3.7 Surface morphology  

The morphology of the biochars are shown with the SEM micrographs in Figure 4.5. The 

micrographs show visible porous structures of the biochars. The removal of the volatile content of the 

biomass during the pyrolysis process led to the development of the pores in the biochars. All the 

biochars can be seen to possess pores with varying size and shape. These pores serve as the main 

conduit/channel that connect to the smaller pores on the inner surface of the biochars [45]. The biochars 

can be seen to still retain the plant structure despite the charring temperature. This shows that the 

pyrolysis temperature did not lead to total collapse or destruction of the cell walls of the biochars. Also, 

there are whitish deposits on the surfaces of the biochars. These deposits are the inorganic materials 

such as potassium that were volatilized during the pyrolysis process.    

 

 



90 
 

 

 

 

 

 

 

 
      

   

                   

 

 

 

 

      

 
 

Figure 4.5: SEM of (A) PM 500, (B) PM 700, (C) PM 900, (D) KS 500, (E) KS 700, (F) KS900 

4.3.8 Surface area and pore size distribution  

The BET surface areas of the biochars are presented in Table 4.2, ranging from 0.25 to 783.74 

m2/g. The surface areas of the biochars increased significantly with an increase in the pyrolysis 

temperature. Chen et al. [44] explained that the increase in the surface of the biochars with an increase 

in the pyrolysis temperature can be attributed to the removal of phenolic –OH linked to the aromatic 

cores, aromatic CO–, and the complete destruction of aliphatic alkyl and ester C=O groups shielding 

the aromatic core. Wang et al. [32] investigated the effect of pyrolysis temperature and residence time 

on the BET surface areas of biochars produced from bamboo wood, elm wood, rice straw, wheat straw, 

maize straw, rice husk and coconut shell. The authors reported that an increase in the pyrolysis 

temperature from 500 to 700 ºC led to a significant increase in the BET surface areas of the biochars.   

The pore size distribution of the biochars are shown in Figure 4.6. Biochars produced at 

pyrolysis temperature of 500 ºC can be seen to have a monomodal distribution between pore width of 

4 and 10 Å (equivalent of 0.4 to 1.0 nm). The biochars produced at pyrolysis temperatures of 700 and 

900 ºC also had monomodal pore size distributions between 4 and 20 Å (0.4 and 2.0 nm). However, 

PM 900 biochar has a bimodal distribution which extended to about 40 Å (0.4 nm). The broadening of 
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the pore size distribution of PM 900 biochar leading to a change from a monomodal to bimodal 

distribution can be attributed to the effect of the increased carbonization that occurred at this high 

pyrolysis temperature [46].  

    
Figure 4.6: Pore size distribution of biochars 

Based on IUPAC classification of pore sizes [36], pores are classified into macropore (> 50 

nm), mesopore (2.0 - 50 nm) and micropore (< 2.0 nm). Based on this classification, the pores of the 

biochars can be classified to be microporous with PM 900 biochar having some of its pores in the 

mesporous range. The micropores can be further subdivided into narrow micropores or ultramicropores 

(<0.7 nm) and supermicropores (0.7 to 2.0 nm) [36]. The centers of the monomodal distributions for 

all the biochars were between 0.5 and 0.6 nm, which implies that a higher portion of the micropore 

volume for the biochars are ultramicropores. 

Verheijen et al. [47] stated that the pore size distribution of biochar is a critical factor that affects 

the belowground ecosystem. The incorporation of biochars with a well-developed porosity can help to 

capture certain toxic compounds such as pesticides, herbicides, and PAHs which can leach into the 

environment, thereby increasing the risk of subsurface pollution [1].  
 

4.3.9 Microstructural analysis   

The microstructure of the biochars was characterized via Raman analysis, particularly the 

distribution and state of sp2 carbon bonded carbons, which are infused in a disordered and amorphous 

matrix of both sp3 and sp2 carbon [23]. Figure 4.7 shows the Raman spectra for the biochars. All the 
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spectra exhibited the two typical overlapping bands, corresponding to the D-band and G-band. The D-

band is labeled as the amorphous/disordered graphite while the G-band is regarded as the presence of 

graphitic crystallites. The D-band and G-band positions for all the biochars alongside the intensity ratio 

(ID/IG) are presented in Table 4.3.  

  
Figure 4.7: Raman spectra of Kanlow Switchgrass and Public Miscanthus biochars 

Table 4.3: Raman Spectra D and G band positions and the corresponding intensity ratios   
Sample D Peak (cm-1) G Peak (cm-1) ID/IG 

KS500 1393.85 1595.99 0.61 

PM500 1390.58 1595.43 0.61 

KS700 1361.04 1589.41 0.87 

PM700 1361.37 1593.73 0.78 

KS900 1358.52 1596.00 0.87 

PM900 1354.38 1593.67 0.88 

 
The D-band positions for all the biochars were in the range of 1354 and 1394 cm-1 while the G-bands 

positions were in the range of 1589 and 1596 cm-1. There was a noticeable decrease in the D-band 

positions of the biochars as the pyrolysis temperature increased. However, there was no difference in 

the G-band positions. The intensity ratios (ID/IG) is a parameter used in estimating the extent of carbon-

containing defects in the biochars and used a measure of the average crystallite thickness (La) [48]. The 

intensity ratio has been shown to be inversely proportional to the crystalline thickness of graphitic 

materials. For the biochars in this study, the intensity ratios were found to increase with an increase in 
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the pyrolysis temperature (Figure 4.8), which is due to depolymerization that occurred during the 

pyrolysis process. The consequence of depolymerization is the formation of isolated sp2 carbon atoms 

[48]. The increase in the intensity ratio implies that biochars have fewer aromatic rings structures and 

more carbon-containing defects that lead to formation of oxygen functional groups on the biochars’ 

surfaces [49]. Also, as the intensity ratio increases, the crystallite thickness reduces, which means there 

was no conversion of disordered sp2 carbon to ordered sp2 carbon crystallites [48]. Yamauchi and 

Kurimoto [50] reported an increase in the intensity ratio of Japanese cedar derived biochars as the 

pyrolysis temperature increase from 500 to 800 ºC, which showed that the crystallite thickness of the 

biochars decreased within that temperature range.   

 

 
 

Figure 4.8: Effect of pyrolysis temperature on intensity ratio of biochars 

4.3.9 XPS analysis of biochars 

The effect of pyrolysis temperature on the surface chemistry of the biochars was evaluated by carrying 

out XPS analysis on the biochars. Figure 4.9 shows the C1s deconvolved peaks for both Kanlow 

Switchgrass and Public Miscanthus biochars. The C1s deconvolved peaks were assigned to the 

following known chemical shifts: Peak 1 (284.0 – 284.9 eV) - graphitic carbon, C–C/C–H; Peak 2 

(285.3 – 286.3 eV) - carbon in phenolic, alcohol, ether or C=N groups and Peak 3 (286.5 – 289.3 eV) 

- carbon in carbonyl, quinine, carboxyl or ester groups [45, 51].  
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Figure 4.9: XPS C1s deconvolved spectra of Kanlow Switchgrass and Public Miscanthus biochars 
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Similarly, the O1s deconvolved peaks were assigned to the following known chemical shifts; Peak I 

(530.4 – 531.9 eV) – carbonyl oxygen of quinines, Peak II (532.1 – 532.9 eV)- carbonyl oxygen atoms 

in esters, anhydrides and oxygen atoms in hydroxyl groups (C-OH & C=O) and Peak III (533.1 – 533.8 

eV) – non-carbonyl oxygen atoms in esters and anhydrides [52]. The relative content of the 

deconvolved C1s and O1s functional groups with the atomic concentrations are presented in Table 4.4. 

The relative amount of the graphitic carbon decreased while relative amount of carbon in carbonyl, 

quinine, carboxyl or ester groups increased with an increase in the pyrolysis temperature. The relative 

content of carbon in phenolic, alcohol, ether or C=N groups shown in both KS500 and PM500 biochars 

were absent in the biochars produced at temperature of 700 and 900 ºC. The deconvolved O1s peaks 

also showed an increase in the carbonyl oxygen of quinines and a decrease in non-carbonyl oxygen 

atoms in esters and anhydrides as the pyrolysis temperature increased.  

The atomic concentration of C1s increased with an increase in the pyrolysis temperature from 500 to 

700 ºC but there was no difference when the temperature increased to 900 ºC.  Also, as the pyrolysis 

temperature increased, there was a decrease in the atomic concentration of the O1s. A comparison of 

the XPS detected carbon to the carbon reported in the elemental analysis (Table 4.2) showed that the 

atomic percentage of the surface carbon were higher than the elemental carbon. Atta-Obeng et al. [51] 

reported a similar disparity between atomic percentage of surface carbons and the elemental carbons 

for lignin-derived chars produced at varying hydrothermal carbonization temperature. In the same 

respect, the atomic percentage of the surface oxygen were lower than the elemental oxygen.   

Table 4.4: XPS C1s and O1s surface functional groups of biochars      

Biochar C1s (% wt.) O1s (% wt.) Atomic conc. (%) 

Peak 1 Peak 2 Peak 3 Peak I Peak II Peak III C1s O1s Si2p P2p 

KS500 78.60 18.33 3.07 46.38 - 53.62 86.78 13.22 - - 

PM500 92.83 7.17 - 12.49 - 87.51 85.25 13.18 0.88 - 

KS700 62.29 - 37.71 72.80 24.67 2.53 87.65 11.62 0.73 - 

PM700 58.00 - 42.00 71.19 20.90 7.92 86.95 11.61 - - 

KS900 57.46 - 42.54 100 - - 87.52 8.89 1.46 1.05 

PM900 62.28 - 37.71 100 - - 85.50 11.57 - 1.57 
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4.4 Conclusion 

Results from this study showed that the pyrolysis temperature plays a significant role in determining 

the thermal stability and physicochemical properties of the biochars. The increase in the pyrolysis 

temperature led to an increase in the fixed and elemental carbon of the biochars, which is an indication 

of the higher degree of carbonization. The pH of the biochars showed that they are alkaline in nature, 

hence making them suitable for amendment of acidic soil. The increased surface area and pore size 

distribution of the biochars with an increase in pyrolysis temperature showed that the biochars would 

enhance soil microbial activities and water holding capacity. The electrical conductivities of the 

biochars showed that the addition of the biochars to soil would not lead to increase in the soil salinity. 

The thermal stability of the biochars increased with an increase in the pyrolysis temperature, which 

signifies that the biochars can serve as a viable tool for carbon sequestration purpose.  
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Chapter 5 

Effect of Activating Agent Type and Impregnation Route on Properties of Activated Carbon 
Synthesized from Herbaceous Biomass     

 

Abstract 

The objective of this study is to investigate the effect of activating agent type and impregnation route 

(1. Biomass + activation agent -> activated carbon and 2. Biomass-> Biochar + activation agent -> 

activated carbon) on the properties of activated carbons produced from herbaceous biomass. The 

precursors were Kanlow Switchgrass and Public Miscanthus biomass and their biochars produced at 

pyrolysis temperature of 500 ºC. The precursors were impregnated with either phosphoric acid or 

potassium hydroxide. The impregnated precursors were activated at a temperature 900 ºC for 30 mins 

in inert condition. The pore characteristics, surface functionalities, and microstructure of the activated 

carbons were characterized. the activated carbons were used in adsorbing two pharmaceutical active 

compounds; acetaminophen and caffeine. The biomass-derived activated carbons had the highest BET 

surface areas ranging between 999 and 1597 m2/g. The adsorption isotherms of the KOH/biomass-

derived and KOH/biochar-derived activated carbons showed that they are microporous in nature. The 

surface morphology of the biochar-derived carbons showed pores with varying sizes and that the 

activated carbons retained the original cell wall structure of the parent materials. The surface 

morphology of KOH/biomass-derived activated carbons showed that the cell wall structures of the 

parent materials were not retained. The Raman analysis showed that the KOH/biomass-derived and 

KOH/biochar-derived activated carbons had more disordered sp2 carbon atoms in comparison to the 

H3PO4 samples. The XPS analysis showed that the KOH/biomass-derived activated carbons have C1s 

in the hydroxyl groups and also have higher percentage of O1s in the hydroxyl and carbonyl groups. 

The biomass-derived activated carbons had the highest adsorption capacities of 93.73 – 167.17 mg/g 

and 85.41 – 152.89 mg/g for both caffeine and acetaminophen respectively.  

 
Keyword: Activated Carbon, Surface chemistry, Adsorption, Surface Area, Impregnation 
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5.1. Introduction  

Activated carbons are highly used in advanced water treatment processes and it is highly 

recommended   by the United States Environmental Protection Agency to remove pharmaceuticals and 

personal care products from water [1]. The activated carbons have well-developed porous structure and 

surface chemical functionalities for enhanced interaction with polar and non-polar adsorbates [1, 2]. 

Activated carbon can be produced from nearly all carbon-rich and inexpensive precursors with low 

inorganic content [1]. The production of activated carbon involves two main steps; carbonization and 

activation. The carbonization process involves the thermal decomposition of the precursor at a 

temperature below 800 ⁰C in an inert atmosphere. The thermal decomposition leads to release of volatile 

content in gaseous form and creation of pores in the resulting chars. Because of deposition of tar 

substances, pores become filled, or at least partially blocked, by the disorganized carbon. Such 

materials have been reported to have low surface area [1, 3]. Shaaban et al. [4] reported the low surface 

areas of 1.93 m2/g, 2.01 m2/g and 5.493 m2/g for biochars produced at pyrolysis temperatures of 300, 

500 and 700 ⁰C, respectively from rubber wood sawdust. Similarly, Zhao et al. [5] reported surface area 

in the range of 2.39 – 108.59 m2/g and pore volume range of 2.56 – 58.54 cm3/g for biochars produced 

at pyrolysis temperature of 300 to 600 °C derived from apple tree branches. The low surface area is 

mainly due to particle conglomeration and blocking of pores by tars [6].  

Activation of chars is performed to remove tar substances from the pore spaces and to create 

microporosity in the carbon structure [1]. The activation process may be performed via physical 

activation without using any activation agent or via chemical activation with impregnation of activation 

agents. In the physical activation, the tar substances are cleaned with the help of high-temperature 

steam, CO2 or a mixture of both at temperatures in the range of 800 to 1000 °C [7, 8]. Physical activation 

has been reported to be carried out on chars produced from rice husk, corn cob, oak, corn stover, rice 

straw, pecan shells, peanut hulls and almond shells at the activation temperature range of 600 to 900 

°C [9]. In chemical activation process, the chemical activating agents are used, which are mainly alkali 

(KOH, K2CO3, NaOH, and Na2CO3), alkaline earth metal salts (AlCl3, FeCl3, and ZnCl2) and acid 

(H3PO4, and H2SO4) [10].  

The commonly used alkali activating agent is KOH. This activating agent has been reported to 

produce highly microporous activated carbons and enhance the formation of -OH functional groups on 

the carbon surface [11]. The effectiveness of KOH activation relative to other activation methods can 

be attributed to the ability of K to easily form intercalation compounds with carbon. In addition, the 
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K2O formed during the process of KOH activation is reduced to K by carbon, resulting in carbon 

gasification with a subsequent emission of CO2 leading to the formation of pores [12]. However, while 

KOH is easily impregnated into the precursor, it does not completely vaporize as the activation 

temperature is generally lower than its boiling point (1327 ºC). Thus, a considerable amount of the 

KOH will be released into the aqueous environment when the activated carbon is washed [11]. 

Meanwhile for alkaline earth metal salts, ZnCl2 is the commonly activating agent. ZnCl 2 is a 

dehydrating agent, which eliminates hydrogen and oxygen atoms of the precursor as water rather than 

as oxygenated organic compounds, thus leading to the charring and aromatization along with creation 

of pores [12]. For the acidic activating agent, H3PO4 is commonly employed for chemical activation. 

This activating agent is also known to have a dehydrating effect thereby inhibiting the formation of tars 

and acting as a catalyst promoting bond cleavage reactions as well as facilitating crosslinking, 

condensation and formation of layer of linkage such as polyphosphosate esters, which can protect the 

internal pore structure of the activated carbon [13].     

In carrying out the impregnation, the activating agents can be directly impregnated into the 

biomass precursor and a one-step high temperature pyrolysis is performed to produced activated 

carbons. Whereas, in most cases, the biochars are impregnated with certain activating agents and post 

heat-treatment is performed. Activation of biochars is mostly performed to enhance surface area and 

formation of a high degree of mesopores and micropores [11]. Azargohar and Dalai [14] used potassium 

hydroxide (KOH) on whitewood derived char with an impregnation ratio of 1.23 (KOH/biochar) and 

an activation temperature of 680 ⁰C. As result of activation, the specific surface area of biochar 

increased from 10 m2/g to 783 m2/g for the resulting activated carbon. The potassium intercalated to 

the carbon matrix, which played a significant role in creation and increment of the activated carbon 

porosity. Similarly, Park et al. [15] used sodium hydroxide (NaOH) on loblolly pine char at an 

activation temperature of 800 °C. The surface area of the biochars produced between 300 to 700 °C 

were between 1.41 to 321 m2/g, which increased to 57 – 1250 m2/g after activation.   

In certain reports, the biomass was directly impregnated with the activation agents and 

activation/carbonization was performed in the temperature ranges of 500 to 800 ºC. The common 

feature of these activating agents used directly in impregnating the biomass precursor is that they are 

dehydrating and deoxygenating agents, which influences the carbonization process and inhibit the 

formation of tars. Therefore, use of these chemical agents directly in biomass preserves pores already 

existing in the biomass structure by cleaning-up the oxygenated tarry- substances. Kumar and Jena [10] 
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impregnated fox nutshell with zinc chloride at various impregnation ratios ranging from 1 – 2.5 (by wt) 

followed by carbonization/activation in the temperature range of 500 – 700 °C. The authors reported 

that the highest specific surface area obtained was 2869 m2/g with the micropore surface area and 

volume of 2124 m2/g and 1.68 cm3/g, respectively under impregnation ratio of 2:1 and activation 

temperature of 600 °C. Umran et al. [16] also investigated the impregnation of Holm Oak biomass with 

H3PO4, ZnCl2 and KOH. The impregnated biomass was carbonized at temperature range of 550 to 750 

ºC for 1 hour. The authors reported that the ZnCl2 derived activated carbon had the highest surface area 

of 1305 m2/g at a temperature of 750 ºC. However, the KOH derived activated carbon was found to 

have the highest percentage of its total pore volume as micropore and H3PO4 derived activated carbon 

had the highest percentage of its total pore volume as mesopore.    

While there are literatures that have investigated the use of various chemical activating agents 

in impregnating either the biomass precursor or the biochar precursor, there is a sparsity of work 

distinguishing which pathway is better. Therefore, the objective of this study is to investigate the effects 

of activating agents and impregnation routes on the characteristics of activated carbons synthesized 

from herbaceous biomass. The two impregnation routes used in this study are; 1. Biomass + activating 

agent = activated carbon; 2. Biochar + activating agent = activated carbon.  

5.2. Materials and Methods 
5.2.1 Sample preparation and activation  

Kanlow Switchgrass and Public Miscanthus samples were harvested from a reclaimed mine 

land in West Virginia. Details of growth sites and establishment of the Switchgrass and Miscanthus 

varieties used in the study have been documented by Skousen et al. [17]. To be specific, the test samples 

were harvested from Alton site, a reclaimed mine land in Upshur County, West Virginia. This site was 

mined for the Upper, Middle, and Lower Kittanning coal seams. The 30-ha area selected for 

Switchgrass and Miscanthus plantings was reclaimed in 1985 with less than 15 cm depth of soil 

replaced over mixed overburden. Grass and legume species were planted and the soils were fertilized 

and limed according to regulations at the time. This site supported a 100% ground cover of herbaceous 

plants during the ensuing 25 years [17].  

The biomass samples were chopped into small sizes using a kitchen meat-cutting knife and oven 

dried at 103 ºC for 24 hours. The oven dried samples were subsequently ground to less than 1 mm 

particle size using a Retsch Grindomix (Model: GM 200). Additionally, the biochar samples were 
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prepared from the oven-dried biomass via pyrolysis. The detailed description of the pyrolysis process 

is provided in Chapter 3 [18].  

The biomass and biochar samples were impregnated with either phosphoric acid (H3PO4) or 

potassium hydroxide (KOH). About 50 g of the samples were soaked in 200 ml solution of phosphoric 

acid (85% wt.) and continuously stirred inside a pressure reactor (Model: 4500, Parr Instrument 

Company, Moline, IL, USA) at a temperature of 85 °C for 24 hours. Subsequently, the biomass and 

biochar samples were impregnated with KOH (100% wt.) at an impregnation ratio of 1:1 (weight basis).  

After the impregnation procedure was over, the impregnated samples were oven-dried at a temperature 

of 103 °C for 24 hours. The oven dried impregnated samples were thereafter activated using a 

thermogravimetric analyzer at a temperature of 900 °C for 1 hour under nitrogen flow to keep the 

process inert. In addition, activated carbon from both biomass feedstocks were prepared at a 

temperature of 900 °C without impregnation.   

The activated carbons obtained from H3PO4 impregnation were washed with boiling deionized 

water in a lab-line multiunit extraction equipment to remove every trace of the activating agent until 

the pH of the activated carbons became neutral. In addition, the activated carbons obtained from KOH 

impregnation were washed with dilute hydrochloric acid (HCl) and deionized distilled water to remove 

every trace of the activating agent. The washed activated carbons were thereafter oven-dried at a 

temperature of 103 °C for 24 hours. The labels and description for the activated carbon samples are 

presented in Table 5.1 

Table 5.1: Labels and description for activated carbons 

s/n Label Description 

1 KOH-KSBM Activated carbon from KOH impregnated Kanlow Switchgrass Biomass 

2 KOH-KSBC Activated carbon from KOH impregnated Kanlow Switchgrass Biochar 

3 KOH-PMBM Activated carbon from KOH impregnated Public Miscanthus Biomass 

4 KOH-PMBC Activated carbon from KOH impregnated Public Miscanthus Biochar 

5 H3PO4-KSBM Activated carbon from H3PO4 impregnated Kanlow Switchgrass Biomass 

6 H3PO4-KSBC Activated carbon from H3PO4 impregnated Kanlow Switchgrass Biochar 

7 H3PO4-PMBM Activated carbon from H3PO4 impregnated Public Miscanthus Biomass 

8 H3PO4-PMBC Activated carbon from H3PO4 impregnated Public Miscanthus Biochar 

9 KS900 Kanlow Switchgrass Biochar at 900 °C 

10 PM900 Public Miscanthus Biochar at 900 °C 



106 
 

5.2.2 Characterization of activated carbons   

Solid morphology characterization of the activated carbons was performed at the West Virginia 

University Shared Research Facilities using a scanning electron microscope (Model: Hitachi-S4700, 

Hitachi High Technologies America, Schaumburg, IL). The micrographs were collected using the 

software available with the instrument. The sample was placed on a sample holder and then transferred 

into the sample chamber in the equipment. The instrument software is used in viewing and collecting 

the microstructure of the biochar sample at different magnification ranging from 30 to 500,000. 

The surface chemical state characterization of the samples was carried out using X-ray 

photoelectron spectroscopy, XPS (Model: PHI 5000 VersaProbe XPS/UPS, ULVAC-PHI Inc., 

Kanagawa, Japan) in a spectral range of 0 to 1400 eV binding energy and energy resolution of 0.50 eV. 

For the XPS analysis, each sample was mounted on a steel specimen disk using an Ultra High Vacuum 

approved spectral grade double-sided carbon tape and loaded into the introduction chamber. 

Afterwards, the sample was transferred to the analysis chamber where the photoelectron spectra were 

acquired. 

The pore characteristics of the activated carbon samples were determined by nitrogen 

adsorption at 77 K using Accelerated Surface Area and Porosimetry System (Model: ASAP 2020, 

Norcross, GA, USA). Prior to the analysis, the samples were degassed at a temperature of 105 °C for 

24 hours and cooled down to 30 °C. The N2 adsorption isotherms were obtained over a relative pressure, 

P/P0, ranging from 0.01 to 0.99. The surface area, total pore volume, micropore volume and average 

pore diameter were determined by the application of the Brunauer-Emmett-Teller (BET) model and t-

plot models. The pore size distributions were calculated from the nitrogen adsorption isotherms with 

the free version of the SAIEUS program using the Non-Local Density Function Theory (NLDFT) 

model [19, 20]. 

5.2.3 Adsorption of pharmaceutically active compounds 

The adsorbates used were Acetaminophen purchased from Acros Organics, Morris, NJ and Caffeine 

purchased from Fischer Science Education, Nazareth, PA. Table 5.2 shows the physico-chemical 

characteristics of the two compounds.  
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Table 5.2: Physico-chemical characteristics of acetaminophen and caffeine 
Properties Acetaminophen [18-20] Caffeine [19, 21] 

Molecular structure 

  
Chemical formula  C8H9NO2 C8H10N4O2 
Molecular weight (g/mol) 151.16 194.2 

Molecular size (nm) 1.19(L) x 0.75(W) x 0.46(T) 0.98 x 0.87 

Water solubility (g/l)  14 21.6 

Use/category  Analgesic, antipyretic, anti-
inflammatory drug Stimulant 

 
5.2.4 Determination of adsorbate concentrations in solution 

Standard solutions were prepared by dissolving 10 mg of each adsorbate in 50 ml distilled deionized 

water to give a concentration of 200 ppm. From this solution, varying volumes were taken and adjusted 

with the distilled deionized water to give the desired concentration.  

The selection of the appropriate wavelength for the adsorbate was carried out by scanning the standard 

solution in UV spectrophotometer (Model: Varian Cary 50) between 200 nm and 400 nm on the 

spectrum mode, using deionized water as a blank. The absorbance recorded for the solution at a specific 

wavelength, is proportional to its concentration, which is based on Beer-Lambert principle. The 

maximum wavelength (λmax) at which the solutions showed the peak absorbance were selected. The 

λmax at 242 nm wavelength was identified as the specific absorbance wavelength for acetaminophen 

while for caffeine, it was λmax at 274 nm wavelength.   

After identifying the specific absorbance wavelength, a calibration plot was prepared for the two 

adsorbates. A ten-point calibration curve was obtained in the concentration range of 0.10 – 50 ppm for 

both adsorbates. The plot of the concentration versus the absorbance (Figure 5.1) gave a straight-line 

curve and the linear regression equations for both samples had correlation coefficients of 0.98 and 0.99 

for acetaminophen and caffeine respectively.  
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Figure 5.1: Calibration curves for Acetaminophen and Caffeine solutions 

 

5.2.5 Determination of adsorption kinetics 

To study the adsorption kinetics, 10 mg of the activated carbon was added to 40 ml of acetaminophen 

and caffeine solutions in glass vials (initial concentration of 40 ppm). The mixtures were agitated in a 

multipoint agitation plate at a temperature of 25 °C. The time recording started when the agitation began 

and several samples were collected between 15 min and 9 hours. The collected samples were filtered 

through a filter paper (Fisher Scientific, Qualitative P4) to separate activated carbon and absorbate 

solution. After that, the filtered absorbate solution was analyzed in the UV-Vis spectrophotometer for 

concertation determination. From the initial concentration and concentration values at time ‘t’, the 

amount of acetaminophen or caffeine uptake by activated carbons was calculated according to the 

following equation; 

𝑞𝑞𝑡𝑡 = 𝐶𝐶𝑜𝑜−𝐶𝐶𝑡𝑡
𝑊𝑊

𝑉𝑉       1 

Where qt is the amount (mg/g) of acetaminophen or caffeine adsorbed at time t, Co is the initial 

concentration (ppm), Ct is the concentration at time t (ppm), V is the volume (ml) of the adsorbate 

solution and W is the weight (mg) of the activated carbon used.   

Additionally, the qt data for various durations (t) were fitted into the pseudo-second order kinetic 

model [22] expressed as; 
𝑡𝑡
𝑞𝑞𝑡𝑡

= 1
𝑘𝑘2𝑞𝑞𝑒𝑒2

+ 1
𝑞𝑞𝑒𝑒
𝑡𝑡      2 
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Where qe is the maximum adsorption capacity for the pseudo-second order adsorption, k2 is the 

equilibrium rate constant for the pseudo-second order adsorption. Values of k2 and qe were estimated 

from the intercept and slope, respectively, of the plot of t/qt versus t. The product k2qe
2

, (designated as 

h in this study) represents the initial adsorption rate. The half-life time, t1/2, defines the time required 

for the adsorbent to uptake half of the adsorbate amount that will be retained at equilibrium [22]. It is 

used as a measure of rate of adsorption and is determined from the equation below; 

𝑡𝑡1/2 = 1
𝑘𝑘2𝑞𝑞𝑒𝑒

       3 

 
5.2.6 Determination of adsorption equilibrium 

For the equilibrium adsorption study, 10 mg of the activated carbon was mixed with 40 ml solution of 

the adsorbates (initial concentration of 10 – 40 ppm) and agitated for 5 hours. After the agitation, the 

concentration of the adsorbate in the solution at equilibrium was determined. The agitation time of 5 

hours was selected for the equilibrium assays based on the results of the adsorption kinetics; between 

5 hours and 9 hours, there was no difference in the uptake of the adsorbates. All the experiments were 

carried out in triplicate without pH adjustment. 

The initial and final concentrations of adsorbate were used to calculate qe (t=5 hours) using equation 1. 

After that, the qe and equilibrium concertation (Ce) data were fitted with Langmuir and Freundlich 

models. The Langmuir isotherm model may be written as equation 4 [22] in its linear form; 

         𝐶𝐶𝑒𝑒
𝑞𝑞𝑒𝑒

=  𝐶𝐶𝑒𝑒
𝑞𝑞𝑚𝑚

 + 1
𝑏𝑏 𝑞𝑞𝑚𝑚

        4 

where qe = equilibrium quantity adsorbed; Ce = equilibrium concentration of adsorbate; qm = maximum 

adsorption capacity; b = Langmuir constant. qm and b can be determined from the linear plot of Ce/qe 

versus qe. The Langmuir isotherm model is based on the assumptions that; (i) during an entire 

adsorption process, only monolayer adsorption occurs; (ii) the adsorbed entities are attached to the 

surface at definite localized sites with no adsorbate-adsorbate interactions; (iii) the heat of adsorption 

is independent of surface coverage, that is, the adsorbent has an energetically homogenous surface [1, 

23]. 

In addition, Freundlich isotherm model was fitted with the qe and equilibrium concentration (Ce) data 

as given by equation 5 [22] in its linear form.  

      𝑙𝑙𝑙𝑙𝑞𝑞𝑒𝑒 = 𝑙𝑙𝑙𝑙𝐾𝐾𝑓𝑓 + 1
𝑛𝑛
𝑙𝑙𝑙𝑙𝐶𝐶𝑒𝑒      5 

Where Kf and n are indicators of adsorption capacity and adsorption intensity or surface heterogeneity, 

respectively. The values of n and Kf can be obtained from the slope and intercept of the linear plot of 
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lnqe versus lnCe. The Freundlich isotherm assumes that the ratio of the adsorbate adsorbed onto an 

adsorbent is not constant at different solution concentrations [24]. According to Freundlich equation, 

the amount adsorbed increases infinitely with increasing concentration. This equation is therefore 

satisfactory for low concentration [25]. The isotherm does not have much limitation i.e., it can deal 

with both homogenous and heterogeneous surfaces, and both physical and chemical adsorption [26].  

5.3. Results and Discussion  

5.3.1 Surface morphology  

The morphological analysis performed by SEM (Figure 5.2) shows the porous structure of the 

activated carbons. The SEM images of the biochar-derived activated carbons (Figure 5.2A - D) show 

that these activated carbons have visible pores of varying sizes and still retained the cell wall structures 

of the parent materials. The open pore structure makes it easy for adsorbate to access maximum surface 

area of the activated carbon through enhanced diffusion [27]. 

Figure 5.2 (E – H) shows the SEM images of the biomass-derived activated carbons. H3PO4-

KSBM and H3PO4-PMBM activated carbons (Figure 5.1F & H) had similar pore structure and cell wall 

structure retention like the biochar-derived activated carbons. The activating agent is known to act as a 

catalyst promoting bond cleavage reactions as well as facilitating crosslinking, condensation and 

formation of layer of linkage such as polyphosphosate esters, which can protect the internal pore 

structure of the activated carbon [13].  

However, KOH-KSBM and KOH-PMBM activated carbons (Figure 5.4E & G) did not show 

any distinctive pore structure, which is an indication that the original cell wall structures of the parent 

materials were not retained after impregnation and activation. The non-distinctive porous structures 

exhibited by the KOH-activated carbons can be attributed to the destruction of the lignin components 

of the biomass precursors during the impregnation process [38]. The lignin, which consists of many 

ester and ether bonds in crosslinked structure helps to sustain the morphology of the biomass and upon 

impregnation with KOH, the lignin component was severely destroyed by KOH. Also, during the 

activation process, KOH decompose to form metallic K, which reacts with carbon and accelerates the 

gasification of the impregnated biomass, thus destroying cell wall structure. Oh et al. [38] reported a 

similar finding for the activated carbon obtained from the impregnation of Rice straw with KOH prior 

to activation. This effect was not evident in the biochar-derived activated carbons because the lignin 

content had been thermally decomposed during the biochar production.  
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Figure 5.2: SEM Images of (A) KOH-KSBC, (B) H3PO4-KSBC, (C) KOH-PMBC, (D) H3PO4-PMBC 

(E) KOH-PMBM, (F) H3PO4-PMBM, (G) KOH-KSBM, (H) H3PO4-KSBM 

 
5.3.2 Specific surface area and pore size distribution  

Figure 5.3(A & B) shows the N2 adsorption-desorption isotherms for the biochars and biochar-

derived activated carbons while Figure 5.3(C & D) shows the N2 adsorption-desorption isotherms for 

the biomass-derived activated carbons. Based on the IUPAC classification of adsorption isotherms [28], 

the adsorption isotherms for the biochars (KS900 and PM900) and the KOH/biochar-derived activated 

carbons (KOH-KSBC and KOH-PMBC) can be classified as type I isotherm, which is a typical 

representation of microporous materials. The KOH/biomass-derived activated carbons (KOH-KSBM 

and KOH-PMBM) also had similar adsorption isotherms. These adsorption isotherms showed that the 

porous structures of the KOH activated carbons are mainly microporous in nature. Hui and Zaini [11] 

stated that KOH activated carbons possess extensive microporosity, sometimes the percentage can be 

as high as 96%.  

Meanwhile, the adsorption isotherms for H3PO4/biochar-derived activated carbons (H3PO4-

KSBC and H3PO4-PMBC) and H3PO4/biomass-derived activated carbons (H3PO4-KSBM and H3PO4-

PMBM) can be classified as type IV isotherm. This isotherm type is characterized by its hysteresis 

loop, which is associated with capillary condensation taking place in the mesopores [28]. The initial 

part of the isotherm (prior to the hysteresis loop) also known as the inflection point of the knee of the 
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isotherm is attributed to monolayer-multilayer adsorption, which is similar to the middle section of type 

II isotherm and it indicate the stage at which monolayer coverage is complete and multilayer adsorption 

begins [28, 29]. This is an   

The adsorption hysteresis exhibited by the activated carbons has also been identified to have a 

wide variety of shapes, therefore, IUPAC classified this adsorption hysteresis into four classes (H1 – 

H4) [28, 30]. Based on this classification, the adsorption hysteresis exhibited by the activated carbons 

can be classified as H4, which is associated with narrow slit-shaped pores.  

    

   
Figure 5.3: N2 adsorption/desorption isotherm curves at 77k for activated carbons 
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Table 5.3 shows the BET surface, pore volume and average pore diameters of the activated 

carbons and biochars. The BET surface areas ranged between 161 and 1597 m2/g. There was an increase 

in the BET surface areas of the biochar-derived activated carbons from both activating agents (H3PO4 

and KOH) in comparison to the BET surfaces of the biochars, which is an indication that the 

impregnation and activation led to the increased surface area. However, there was a drastic reduction 

in the BET surface area of H3PO4-PMBC activated carbon. This reduction can be attributed to a high 

degree of burn off from the activated carbon during the activation process. 

The BET surface areas of the biomass-derived activated carbons were higher than the BET 

surface areas of the biochar-derived activated carbons. This implies that biomass impregnation and 

activation was a better route for creating activated carbons with high surface areas. This effect can be 

attributed to chemical reaction between the chemical components of the biomass and the activating 

agents during the subsequent carbonization.  

The acidic impregnation may lead to the hydrolysis of cellulose and hemicellulose content of 

the biomass precursor while the alkaline activating agent results in the removal of lignin and partial 

hemicellulose [39]. The phosphoric acid impregnation promotes the pyrolytic decomposition of the 

precursor and the formation of cross-linked structure [40, 41]. The pyrolytic decomposition is promoted 

by the catalytic effect of phosphoric acid on the bond cleavage reactions. The cross-linking is due to 

interactions between the acid and the organic material in the precursor leading to formation of 

phosphate linkages between the fragments in the biopolymer [40]. According to Mestre et al. [42], the 

KOH reaction mechanism involves the formation of K2CO3, H2O, CO2, CO and H2 at a relatively low 

temperature (~ 400 ⁰C) and some of these compounds are commonly used as physical activating agents. 

The K2CO3 decomposes at temperatures between 700 and 800 ⁰C, resulting in the formation of metallic 

K, which remains intercalated in the carbon structure. The metallic K is removed during the washing 

of the activated carbon, hence unblocking the pore network.  

The micropore surface areas (Smicro) of the activated carbons ranged from 139.39 to 747.19 

m2/g. The micropore surface area describes the proportion of the total surface of the activated carbon 

that are microporous. The micropore surface areas of the KOH samples (KOH-KSBC, KOH-PMBC, 

(KOH-KSBM and KOH-PMBM) were higher than their counterparts (H3PO4-KSBC, H3PO4-PMBC, 

H3PO4-KSBM and H3PO4-PMBM). This corroborate the isotherm types used in describing the 

adsorption isotherms of the activated carbon, where the KOH samples are classified as microporous 

materials having adsorption isotherm type I while H3PO4 samples have adsorption isotherm type IV. 
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Table 5.3: Surface area and pore characteristics of activated carbons 
Sample SBET (m2/g) Smicro (m2/g) Vtotal (cm3/g) Vmicro (cm3/g) Vmeso (cm3/g) dp (nm) 
KOH-KSBC 599.19 504.80 0.28 0.22 0.06 1.86 

KOH-PMBC 957.51 747.19 0.45 0.33 0.12 1.88 

H3PO4- KSBC 697.96 273.20 0.55 0.12 0.43 3.13 

H3PO4- PMBC 161.97 139.39 0.08 0.06 0.02 2.01 

KOH-KSBM 1271.66 647.66 0.63 0.28 0.35 1.97 

KOH-PMBM 1596.52 534.29 0.89 0.23 0.66 2.23 

H3PO4-KSBM 1372.93 137.05 1.45 0.10 1.35 3.42 

H3PO4-PMBM 999.06 284.51 1.04 0.12 0.92 4.15 

KS900 519.49 416.42 0.25 0.18 0.07 1.92 

PM900 783.74 557.21 0.41 0.24 0.17 2.07 

*dp: Average pore diameter (4V/A by BET); V: Pore volume; S: Surface area 
 

Figure 5.4 further shows the distribution of the surface areas within the microporous and 

mesoporous ranges. From the Figure 5.4A, KOH-KSBC and KOH-PMBC showed the highest 

micropore surface areas, followed by the biochars (KS900 and PM900). This indicates that a higher 

proportion of their surface areas are in the microporous range. The biochar-derived activated carbons 

(except H3PO4-KSBC) and the biochars showed a monomodal distribution with pore width range of 4 

to 20 Å (equivalent of 0.4 – 2.0 nm) with the maximum surface area associated with 6 Å pores (0.6 

nm). H3PO4-KSBC showed a bimodal distribution with its second peak having a pore width range from 

20 to 40 Å (equivalent of 2.0 – 4.0 nm). This second peak indicates the proportion of the total surface 

area of the activated carbon that are in the mesoporous range.  

In Figure 5.4B, the biomass-derived activated carbons showed bimodal surface area 

distributions, in which the larger peaks were in the micropore range and the smaller peaks were in the 

mesopore range. In comparison to the biochar-derived activated carbons, the biomass-derived activated 

carbons showed broad microporous distributions whereas the biochar-derived activated carbons 

showed narrow microporous distributions. Also, the biochar-derived activated carbons did not show 

visible mesoporous distribution, whereas the biomass-derived activated carbons showed visible broad 

mesoporous distributions.   
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Figure 5.4: Surface area distribution of (A) biochar-derived and (B) biomass-derived activated carbons 
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The total pore volume for all the activated carbons ranged between 0.08 and 1.45 cm3/g (Table 

5.3). The total pore volumes of the biomass-derived activated carbons were higher than the total pore 

volumes of biochar-derived activated carbons and the biochars. In terms of the activating agents, the 

total pore volumes of the KOH activated carbons did not seems to improve significantly like the H3PO4 

activated carbons, in comparison to the total pore volumes of the biochars.  

The total pore volume is divided into two, namely the micropore and the mesopore. As 

described earlier in Figure 5.3, the activated carbons with adsorption hysteresis have some proportion 

of their total pore volumes to be in the mesoporous range. Mesopore, (also regarded as transport pore) 

is very important property of the activated carbon. It influences the adsorption kinetics in any liquid 

adsorption. From Table 5.3, the biomass-derived activated carbons were seen to have the highest 

mesoporous volume ranging between 0.35 and 1.35 cm3/g. Mestre et al. [31] reported that activated 

carbon possessing negligible mesopores presents the slowest adsorption kinetics while the fastest 

adsorption rate occurred with the carbon having the most developed mesopore network.     

The average pore diameters of the activated carbons were between 1.86 and 4.15 nm 

respectively (Table 5.3). The average pore diameters of the biomass-derived activated carbons were 

higher than the average pore diameters of the biochar-derived activated carbons and the biochars. The 

difference can be explained to be that the biochar precursors had an ordered porous structure, such that 

the effect of the activating agents on improving the porous structure of the resulting activated was 

minimal [43]. Katesa et al. [44] stated that biochar prepared at high carbonization temperature possesses 

a more densely packed structure, from which it is difficult to enlarge the small pores to larger pores.     

The pore size distributions of the biochar-derived activated carbons are shown in Figure 5.5(A-

D). The biochar-derived activated carbons can be seen to have a monomodal distributions having single 

peaks between pore width range of 2 and 4 nm. However, H3PO4-KSBC showed multiple peaks that 

cut across the microporous and mesoporous range. This mesopore can be attributed to the removal of 

tars and expansion of the micropore during the activation of the biochar precursor. The pore size 

distributions of biomass-derived activated carbons (H3PO4-PMBM and H3PO4-KSBM) are shown in 

Figure 5.5 (E & F). The two biomass-derived activated carbons showed a multimodal distribution 

ranging between the microporous and mesoporous range. However, its KOH counterparts (Appendix 

1), only had a monomodal distribution in the microporous range.  

 

 



117 
 

   

    

     
Figure 5.5: Pore size distributions of biochar-derived activated carbons 
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5.3.3 Raman analysis of activated carbons 

The Raman spectra of the biochars, biochar-derived and biomass-derived activated carbons are 

shown in Figure 5.6. The Raman spectra for all the samples exhibited the two-signature overlapping G 

(graphitic) and D (disordeered) bands, which is an indication of their heterogenous carbon 

microstructure, i.e., the disordered sp2
 hybridized carbon atoms and structural integrity of sp2 

hybridized carbon atoms respectively [32, 35]. The D-band is attributed to in-plane vibration of sp2 

bonded carbon within structural defects while the G-band arises from the in-plane vibration of the sp2 

bonded crystalline carbon [33]. The D-band positions for all the samples were in the range of 1346 and 

1386 cm-1
 while the G-band positions were ranged from 1588 to 1598 cm-1 (Table 5.4).  These values 

are similar to the typical band positions reported in literatures for disordered carbon materials such as 

biochars and activated carbons [33, 34].  

The ratio of disordered or strongly distorted structure of turbostratic carbon to ordered graphite 

crystals in the biochars and the activated carbons can be estimated by the intensity ratio of D band to 

G band (ID/IG) [33]. The ID/IG for all the samples are presented in Table 5.4 alongside the G and D band 

positions. The ID/IG ratios for all the samples were between 0.73 and 1.51. Lower ID/IG ratio is an 

indication of more aromatic ring structures and less carbon-containing defects that leads to the 

formation of oxygen-containing functional groups on the surface of the carbon materials [35]. The ID/IG 

ratio for the KOH/biomass-derived activated carbons and KOH/biochar-derived activated carbons were 

higher than their H3PO4 counterparts. This is an indication that the use of KOH as activating agent 

produced more disordered sp2 carbon atoms. The resulting activated carbons possess fewer aromatic 

ring structures and more carbon-containing defects that results in the formation of oxygen functional 

groups on the surface of the activated carbons.   
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Figure 5.6: Raman spectra of biochar-derived activated carbons (A & B); biomass-derived activated 

carbons (C & D) 
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Table 5.4: Raman D and G band positions, and the intensity ratios for activated carbons  
Sample D Peak (cm-1) G Peak (cm-1) ID/IG 

KOH-KSBC 1365.34 1592.73 0.88 

KOH-PMBC 1353.99 1597.55 1.51 

H3PO4- KSBC 1386.16 1598.76 0.73 

H3PO4- PMBC 1359.73 1593.49 0.89 

KOH-KSBM 1381.33 1594.48 1.06 

KOH-PMBM 1349.04 1592.71 1.10 

H3PO4- KSBM 1352.08 1588.97 0.78 

H3PO4- PMBM 1347.61 1594.75 0.98 

KS900 1359.10 1595.64 0.86 

PM900 1354.38 1593.67 0.88 
 
5.3.4 XPS analysis of activated carbons 

Knowledge of surface chemistry of carbon material is of fundamental importance as its 

behaviors in various applications (such as adsorption and electrochemical applications) are greatly 

influenced by the presence of chemical species on its surface. The X-ray photoelectron spectroscopy 

was used in analyzing the surface functional groups of the activated carbons. Figure 5.7 shows the C1s 

and O1s spectra for KS900, H3PO4-KSBC and H3PO4-KSBM. The deconvolved C1s and O1s peaks 

for the other activated carbons are provided in the Appendix 2. Relatively weak peaks of other minor 

elements such as aluminum, phosphorus and silicon were also detected from the wide scan spectra of 

the surfaces of the activated carbons (not shown in figures). These minor elements may have been 

transferred from the parent raw material during pyrolysis and activation process. They generally 

influence the chemisorption properties of the activated carbon. 

The C1s deconvolved peaks were assigned to the following known chemical shifts; graphitic 

carbon C-C (BE: 284.0 – 284.9 eV), carbon in phenolic, alcohol, ether or C=N groups (BE: 285.3 – 

286.3 eV), carbon in carbonyl or quinine groups (BE: 286.5 – 289.3 eV) and carbon in carboxyl or ester 

groups (BE: 289.5 – 290.7 eV) [13, 34].  The deconvolved sharp peaks showing the graphitic carbons 

for the biomass-derived activated carbons are similar to the graphitic carbon peaks of the biochar-

derived activated carbons.  
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Figure 5.7: C1s and O1s Spectra of: KS900, H3PO4-KSBC and H3PO4-KSBM  
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Table 5.5 summarizes the results of the C1s and O1s peaks and the atomic concentration of the 

detected surface functional groups. The relative amount of the graphitic carbon (C-C) of the biochars 

were 57.46% and 62.28% for KS900 and PM900 respectively. The relative amounts of the graphitic 

carbons for the biochar-derived activated carbons were higher than the biochars. The ratio of the 

graphitic carbons to the other carbons for all the biochars and the biochar-derived activated carbons 

was more than half. The high percentage of the graphitic carbon provides information about the high 

recalcitrance nature of the activated carbons [36].  

The relative amounts of the graphitic carbons for the biomass-derived activated carbons were 

between 37.61 and 43.14%. These were lower than the values for the biochars and the biochar-derived 

activated carbons. The higher relative amount of graphitic carbons for the biochar-derived activated 

carbons might be attributed to the initial heat treatment of the biochar precursors during pyrolysis and 

further carbonization during the activation process. The relative amount of carbon in phenolic, alcohol, 

ether or C=N groups for the biomass-derived activated were between 33.31 and 41.15%. The 

KOH/biomass-derived activated carbon (KOH-KSBM and KOH-PMBM) showed a higher amount of 

carbon in phenolic, alcohol, ether or C=N groups in comparison to the H3PO4/biomass-derived 

activated carbons. This chemical shift was identified in one of the biochar derived activated carbons 

(KOH-KSBC). Hui and Zaini [11] stated that the use of KOH as activating leads to formation of these 

functional groups on activated carbon surfaces. The relative amount of carbon in carbonyl or quinine 

groups for the biomass-derived activated carbons ranged between 33.31 and 41.15%.   

Similarly, the O1s deconvolved peaks were assigned to the following known chemical shifts; 

carboxyl (COO-) in carboxylate and oxygen double bond to carbon in esters and carboxylic acids (O=C-

O) (BE: 530.4 – 531.9 eV), carbonyl oxygen atoms in esters, anhydrides and oxygen atoms in hydroxyl 

groups (C-OH & C=O) (BE: 532.1 – 532.9 eV) and oxygen single bond in esters and carboxylic acids 

(O-C=O) (BE:533.1 eV) [32, 37]. While there was no difference in the relative amount of carbonyl 

oxygen for both KS900 and KOH-KSBC, the H3PO4-KSBC and the other activated carbons showed an 

increase in their carbonyl oxygen. For the KOH/biomass-derived activated carbons, KOH-PMBM had 

100% of its O1s assigned to the carbonyl oxygen atoms while KOH-KSBM had a small percentage 

(6.77%) deconvolved into oxygen atoms double bond to carbon in esters and carboxylic acids while 

the remaining percentage was assigned to carbonyl oxygen group. 
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Table 5.5: Carbon and oxygen surface functional groups of activated carbons 

Activated 

Carbon  

C1s (% wt.) O1s (% wt.) Atomic conc. (%) 

C-C C-OH C=O O-C=O 
COO- & 

O=C-O 

C-OH & 

C=O 
O-C=O C1s O1s Si2p P2p 

KS900 57.46 - 42.54 - 56.97 43.03 - 87.52 8.89 1.46 1.05 

PM900 62.28 - 37.71 - 55.36 44.64 - 85.50 11.57 - 1.57 

KOH-KSBC 69.61 - 30.39 - 56.97 43.03 - 66.13 23.34 3.06 - 

KOH-PMBC 65.94 - 34.06 - - 71.75 28.25 77.90 16.71 5.39 - 

H3PO4-KSBC 66.92 16.36 - 16.72 42.64 57.36 - 74.14 18.75 1.26 4.03 

H3PO4-PMBC 58.83 - 41.17 - 10.56 89.44 - 56.14 35.01 - 8.84 

KOH-KSBM 37.61 21.24 41.15  6.77 93.23 - 69.62 28.36 2.03 - 

KOH-PMBM 39.64 22.44 37.92  - 100 - 82.08 13.74 4.18 - 

H3PO4-KSBM 43.14 23.55 33.31  31.97 - 68.03 79.68 15.03 0.61 3.36 

H3PO4-PMBM 40.81 25.36 33.83  21.75 - 78.25 80.30 14.61 0.74 3.57 
 

5.3.5 Adsorption Kinetics 

The kinetics shows the rate of solute adsorption by measuring the concentration change as a 

function of time, keeping constant the initial concentration and mass of adsorbent. Adsorption kinetics 

helps in determining the time necessary for reaching equilibrium and to elucidate the mechanism of the 

adsorption process [31]. Its knowledge is of great importance in designing appropriate adsorption 

technologies [45]. 

The kinetic model parameters estimated for the adsorption of caffeine and acetaminophen using 

the activated carbons are presented in Table 5.6 and 5.7 respectively. The pseudo-second order 

adsorption kinetic model was used in fitting the experimental adsorption data of the activated carbons. 

The pseudo-second order kinetic model gave predicted equilibrium uptake values (qe calc) that were 

close to the experimental equilibrium uptake (qe exp). The biomass-derived activated carbons showed a 

higher adsorption capacity for both adsorbates in comparison to the biochars and the biochar-derived 

activated carbons. Among the biomass-derived activated carbons, the KOH samples had the higher 

adsorption capacities in comparison to the H3PO4 samples. This high adsorption capacity can be 

attributed to the high surface areas and the surface chemistry of the biomass-derived activated carbons. 

These activated carbons had the highest percentage of carbonyl and hydroxyl groups, which enhance 

their wettability and enhance their adsorption kinetics. The KOH/biomass-derived activated carbons 
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also had more disordered carbon structure (as explained in the Raman analysis), which plays a 

significant role in their adsorption capacity. For example, KOH-PMBM had the highest BET surface 

area of 1596.52 m2/g, 100% of surface oxygen functional groups in the carbonyl and hydroxyl groups 

and ID/IG ratio of 1.10. From the adsorption results, this activated carbon had the highest adsorption 

capacity of 167.17 mg/g and 152.89 mg/g for caffeine and acetaminophen respectively.    

  Table 5.6: Kinetic model parameters for the adsorption of caffeine on activated carbons 

Activated carbon qe, exp 

(mg/g) 
qe, calc 

(mg/g) 
k  

(g/mg/min) 
t1/2 

(min) h (mg/g/min) R2 

KS900 52.69 54.35 0.41 x 10-3 44.39 1.22 0.99 

PM900 39.45 42.37 0.77 x10-3 30.79 1.38 0.99 

H3PO4-KSBC 21.33 21.65 7.78 x 10-3 5.94 3.65 0.83 

KOH- KSBC 13.25 13.66 0.72 x 10-3 101.30 0.14 0.87 

H3PO4-PMBC 3.89 5.37 2.28 x 10-3 81.79 8.03 0.75 

KOH- PMBC 152.80 151.52 10.89 x 10-3 0.61 250 0.99 

H3PO4-KSBM 93.73 107.53 0.96 x 10-3 9.68 11.11 0.93 

KOH- KSBM 147.93 149.25 1.43 x 10-3 4.70 31.75 0.99 

H3PO4-PMBM 120.74 129.87 0.46 x 10-3 16.83 7.72 0.99 

KOH- PMBM 167.17 166.67 5.37 x 10-3 1.12 149.25 1.00 

 
Table 5.7: Kinetic model parameters for the adsorption of acetaminophen on activated carbons 

Activated carbon qe, exp 

(mg/g) 
qe, calc 

(mg/g) k (g/mg/min) t1/2 

(min) h (mg/g/min) R2 

KS900 32.32 35.97 0.64 x 10-3 43.68 0.82 0.99 

PM900 10.17 11.15 0.65 x10-3 138.67 0.08 0.87 

H3PO4-KSBC 43.37 43.10 0.49 x 10-3 47 0.92 0.94 

KOH- KSBC 5.90 7.39 1.99 x 10-3 68.01 0.11 0.90 

H3PO4-PMBC 12.04 13.41 2.37 x 10-3 31.48 0.43 0.96 

KOH- PMBC 140.98 142.86 1.55 x 10-3 4.53 31.55 0.99 

H3PO4-KSBM 85.41 86.21 1.29 x 10-3 8.99 9.59 0.96 

KOH- KSBM 124.21 125.0 1.10 x 10-3 7.29 17.15 0.99 

H3PO4-PMBM 90.80 90.09 0.58 x 10-3 19.28 4.67 0.96 

KOH- PMBM 152.89 153.85 3.88 x 10-3 1.68 91.74 1.00 
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The half-life time (t1/2) recorded for the biomass-derived activated carbons in adsorbing both 

caffeine and acetaminophen were less than 20 mins, which implies that these activated carbons will 

adsorb half of the target contaminants within this period. Meanwhile the biochar-derived activated 

carbons and the non-activated biochars had showed half-life time that is about two to folds higher than 

the ones recorded for the biomass-derived activated carbons. This behavior can be attributed to the 

higher total pore volume of the biomass-derived activated carbons compared to the biochars and 

biochar-derived activated carbons. The biomass-derived activated carbon had total pore volume in 

range of 0.63 – 1.45 cm3/g while the biochar-derived activated carbons had total pore volume in the 

range of 0.25 – 0.55 cm3/g. Also, it is noteworthy, that the biomass-derived activated carbons had a 

higher mesopore volume (0.35 – 1.35 cm3/g) in comparison to the biochar-derived activated carbons 

(0.12 – 0.43 cm3/g) and the non-activated biochars (0.07 – 0.17 cm3/g). The mesopore acts as a means 

of access for the adsorbate to the micropores. This therefore, enhance the rate of adsorption of the 

biomass-derived activated carbons       

5.3.6 Adsorption Isotherms 

The Langmuir (theoretical) and Freundlich (empirical) isotherm equations were used in fitting 

the experimental data. The Langmuir and Freundlich parameters alongside the coefficient of 

determination (R2) of the linear plots are presented in Table 5.8 and 5.9. From the Tables, a comparison 

of the R2 values for the two models showed that Langmuir isotherm model provides the best fit for the 

adsorption of caffeine and acetaminophen unto the activated carbons. The Langmuir isotherm model 

assumes the surface of the activated carbon is energetically homogenous and that a monolayer surface 

coverage is formed with no interactions between the molecules adsorbed [31]. The Langmuir constant 

(qm) which describes the maximum monolayer adsorption capacity of the adsorbates on to the activated 

carbons ranged between 12.60 – 196.08 mg/g and 13.99 – 188.68 mg/g for caffeine and acetaminophen 

respectively. A comparison of the activated carbons’ qm values showed that the biomass-derived 

activated carbons had the highest maximum adsorption capacities for the adsorbates as compared to the 

biochar-derived activated carbons and the biochars (KS900 and PM900).  
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Table 5.8: Langmuir and Freundlich isotherm parameters for the adsorption of caffeine 

Activated 
Carbon 

Langmuir Equation Freundlich Equation 

qm (mg/g) b (l/mg) R2 1/n KF R2 

KS900 38.02 6.42 0.99 0.06 31.28 0.55 

PM900 38.46 3.56 0.99 0.12 26.78 0.34 

H3PO4-KSBC 20.16 0.53 0.89 0.26 8.10 0.28 

KOH- KSBC 11.11 1.26 0.89 0.11 8.18 0.13 

H3PO4-PMBC 12.60 0.10 0.83 0.44 2.16 0.66 

KOH- PMBC 196.08 0.63 0.93 0.53 72.20 0.75 

H3PO4-KSBM 102.04 0.63 0.99 0.22 49.77 0.83 

KOH- KSBM 172.41 0.06 0.98 0.67 13.79 0.99 

H3PO4-PMBM 101.01 0.41 0.95 0.22 45.48 0.85 

KOH- PMBM 100 0.67 0.78 1.83 181.02 0.95 
qm – maximum monolayer adsorption capacity; b - Langmuir constant 
n – Freundlich exponent; KF – Freundlich constant; R2

 – linear regression coefficient of determination 
Ce – solution concentration at equilibrium (mg/l); qe - uptake at equilibrium (mg/g) 

 
Table 5.9: Langmuir and Freundlich isotherm parameters for adsorption of acetaminophen 

Activated 
Carbon 

Langmuir Equation Freundlich Equation 

qm (mg/g) b (l/mg) R2 1/n KF R2 

KS900 84.75 0.69 0.95 0.20 45.51 0.24 

PM900 44.44 0.24 0.73 0.27 16.38 0.64 

H3PO4-KSBC 49.02 1.71 0.99 0.15 14.19 0.90 

KOH- KSBC 19.38 0.56 0.92 0.01 21.18 0.01 

H3PO4-PMBC 13.99 0.50 0.95 0.19 6.99 0.59 

KOH- PMBC 76.34 0.58 0.98 0.30 31.08 0.71 

H3PO4-KSBM 129.87 0.37 0.99 0.37 40.36 0.94 

KOH- KSBM 188.68 0.52 0.91 0.54 62.52 0.77 

H3PO4-PMBM 156.25 0.25 0.95 0.44 38.04 0.96 

KOH- PMBM 90.91 0.63 0.99 0.33 34.52 0.95 
qm – maximum monolayer adsorption capacity; b - Langmuir constant 
n – Freundlich exponent; KF – Freundlich constant; R2

 – linear regression coefficient of determination 
Ce – solution concentration at equilibrium (mg/l); qe - uptake at equilibrium (mg/g) 
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The dimensionless constant separation factor RL, as defined by Weber and Chakkravorti [37] 

describes the favorable or irreversible adsorption nature of the adsorbates unto the activated carbon [38, 

39]. The factor is described in the equation below ;  

𝑅𝑅𝐿𝐿 =  
1

1 + 𝑏𝑏.𝐶𝐶𝑜𝑜
 

Where Co (ppm) is the initial concentration of the adsorbate and b is the Langmuir constant. The RL 

value classifies adsorption as irreversible (RL= 0), favorable (0 < RL< 1), linear (RL= 1) and unfavorable 

(RL >1). Figure 5.8 shows the separation factors for both acetaminophen and caffeine adsorbed by the 

H3PO4 activated carbons. From the plots, it can be observed that the factor reduces with increase in the 

initial concentration of the adsorbates. All the RL values obtained in this study were 0 < RL < 1, which 

implies that nature of the adsorption was favorable. Also, according to Sharma and Forster [40], the 

low RL value shows that the interaction between the adsorbate molecules and the activated carbons are 

relatively strong.  

  
Figure 5.8: Plot of separation factor (RL) against initial concentration of adsorbates 
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5.4 Conclusion  

In this study, activated carbons produced from herbaceous biomass and biochar using phosphoric acid 

and potassium hydroxide as the activating agents were characterized for their microstructure, surface 

functionalities, pore characteristics and adsorption properties. The activated carbons were used in 

adsorbing pharmaceutical active compounds namely caffeine and acetaminophen.  

The result of the study showed that the KOH samples (both biochar- and biomass-derived activated 

carbons) had the highest micropore surface areas, which is an important factor for activated carbon 

adsorption application. The biomass derived activated carbons gave the best activated carbon properties 

in terms of the surface area and the surface chemistry. The surface areas of the biomass derived 

activated carbons were higher than the biochar-derived activated carbons. The pore size distributions 

showed that the biomass-derived activated carbons had mesopores and micropores while the biochar-

derived activated carbons and the non-activated biochars were purely microporous. Also, the biomass-

derived activated carbons gave good adsorption characteristics for both caffeine and acetaminophen.  

This shows that the intermediate production of biochar as a precursor before impregnation and 

activation may not be necessary. Also, from the result of this study, it can be inferred that the biomass 

derived activated carbon will be a novel low-cost adsorbent for the removal of emerging contaminants 

in waste and drinking water treatment.  
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Chapter 6 

Path Forward 
6.1 Conclusions 

The results reported in this dissertation showed the irrespective of the biomass varieties, the 

characteristics of pyrolysis products obtained from herbaceous biomass harvested from reclaimed mine 

land are similar to pyrolysis products obtained from biomass feedstocks harvested on arable land. Also, 

it can be concluded that pyrolysis temperature significantly affects the thermal stability and physico-

chemical properties of biochars obtained from herbaceous biomass. Furthermore, it can be concluded 

that the use of biomass impregnation with KOH as an activating agent will lead to activated carbons 

with desirable properties that can be employed for adsorption of pharmaceutically active compounds 

such as acetaminophen and caffeine.  

The results of this dissertation can be used in selecting the appropriate biochars for soil 

amendment based on the background information of the soil properties. Also, the results can be used 

as a preliminary data for techno-economic analysis of biochar and activated carbon productions using 

the herbaceous biomass reported in this dissertation.   

Based on the results reported in this dissertation, the potential future research that would be 

carried out include carrying multicomponent adsorption studies on the use of the activated carbons in 

adsorbing pharmaceutical pollution from hospital and city discharge. Also, the activated carbons will 

be used in the adsorption of antibiotic contaminants from livestock housing wastewater. Furthermore, 

research will be conducted on the adsorption thermodynamics of the activated carbon in order to further 

elucidate its adsorption mechanism. 
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Appendices 
Appendix 1  

  
Pore size distribution of biomass-derived activated carbon 

  
Pore size distribution of biochars 
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Appendix 2 

  

  

   

XPS C1s and O1s deconvolution of PM900, H3PO4-PMBC and KOH-PMBC 
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XPS C1s and O1s deconvolution of H3PO4-PMBM, KOH-PMBM, and KOH-KSBC  
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XPS C1s and O1s deconvolution of KOH-KSBM 
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