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Abstract 

In recent years, photocatalytico oxidation processes with ultra violet 
(UV) radiation and semiconductor photocatalyst like titanium dioxide (TiO2) 
and zinc oxide (ZnO) have gained immense research interest as an effective 
wastewater purification method because of its efficacy in decomposing and 
mineralising the hazardous organic pollutants as well as the opportunity of 
utilizing the solar UV and visible spectrum. A comprehensive review of the 
UV assisted heterogeneous photocatalytic oxidation process is conducted 
with a border perspective into the photocatalytic reaction mechanism 
involved, different form of TiO2 and ZnO catalysts, effective application 
towards waste water treatment by immobilized on surface or as suspension. 
Photocatalytic decomposition with ZnO and TiO2 catalysts is mainly applied 
for treating organic contaminants dyes in wastewater because of their ability 
to attain fully mineralization of the organic contaminants under mild 
reaction conditions such as ambient pressure and temperature. One 
hundred and eighty seven published papers are reviewed and summarized 
here with the center of attention being on the photocatalytic oxidation of 
organic dyes present in waste water effluent. Most recently, photocatalytic 
degradation of oraganic molecules using TiO2 and ZnO have been studied 
extensively due to the degradation of persistent organic pollutants, PAH 
(Polycyclic Aromatic Hydrocarbons) dyes and other organic chemicals 
which are known to be endocrine disruptors. Treatment of wastewater in a 
titanium and zinc dioxide suspended reactor has been widely used due to its 
simplicity and enhanced photodegradation efficiency.  
Keywords : ZnO nanofiber, TiO2 nanoaprticles, photocatalysis, wastewater, 
oxidation. 
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1. Introduction  

The significance of the wastewater treatment, management 
and its disposal gradually increases in the modern times and it 
becomes a major concern for public health scientific interest. All 
existing protocols for treatment of wastewater are categorized as 
physical, chemical and biological processes1. The sequential and 
concurrent use of those processes combinedly tends to create a 
greater efficient method in removing the pollutant aspects in liquid 
residues. Restrictions in terms of execution, efficiency, and price 
are a factor, however, biological processes, as an example, have 
been extensively used and show potential towards dairy and 
agricultural wastewater treatment2. The chemical process deals 
with the photocatalysts like TiO2, ZnO etc. mediated degradation 
of the industrials waste waters3. These processes have limitations 
which can potentially affect degradation efficiency through control 
pH range, rapid organic-load variations, and also the effluent’s 
physicochemical behavior4.  

The use of a heterogeneous photocatalyst is a conventional 
method for water purification which includes reduction and 
oxidation reactions from adsorbed wastewater, oxygen molecules 
and hydroxyl anions, or other organic molecules5-8. Uses of 
semiconductors like TiO2, ZnO etc. in photocatalysis employ 
semiconductors in suspension9. However, this method could be a 
more expensive when it is scaled-up because particle-recovery of 
the photocatalyst particles is a difficult task and leads to an 
amplification in process costs. A feasible alternative is the 
preparation of photocatalyst layers in different substances or uses 
the catalytic support without hampering the photocatalyst activity. 
Many efforts have been made in which few studies have 
demonstrated continuous flow reactors with fixed-bed 
photocatalyst10. Integral to this study was an assessment of the 
efficiency of heterogeneous photocatalyst processes for dairy and 
agricultural wastewater treatment with immobilized TiO2 and ZnO 
to reduce organic pollutant load11. The immobilization was carried 
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out by the application of a coating containing the 
catalysts12/photocatalyst13 or by suing the porous carbon or silica 
as a supporter for the catalysts to prevent agglomeration of catalyst 
during catalytic/photocatalytic reactions in solution. Moreover, 
solar emission was used as UV source13-15.  

Recent review is focused on the most important photocatalysts 
titanium dioxide and zinc oxide and their photocatalytic activity 
towards wastewater treatment. Recently, Xiaobo and Samuel 
reviewed the broad applications of titanium dioxide as a 
photocatalysts16. These applications were comprised of 
photodecomposition of various industrial pollutants, killing tumor 
cell and killing bacteria in cancer treatments17. Semiconductor 
catalysts TiO2 and ZnO have been widely used to mineralize 
harmful organic pollutants in wastewater into less damaging 
inorganic nontoxic compounds like CO2, HCl and water18. Several 
studies have been carried out for decolorization of industrial 
wastewater by using photocatalysis and bacteria treatment19-21. The 
elimination of color from wastewaters is more necessary than the 
removal of other colorless organic compounds19. Because of 
aesthetic and environmental concerns the decolorization of effluent 
from textile dyeing and finishing industry has given most 
importance22,23.  

TiO2/ZnO photocatalysis, in the presence of UV irradiation 
can disintegrate the pollutant dyes into non-toxic simple 
compounds like CO2, HCl and water24. Nanosized TiO2 and ZnO 
photocatalysts in the form of nanorods, nanospheres, thin porous 
films, nanofibers and nanowires have been utilized in various 
applications, including photocatalysis because of their high 
activity, low cost and environmental safety25-27. Interestingly, very 
high surface to volume ratio of nanostructures make them efficient 
for photocatalysis and other application. In recent studies13,24, 
authors have reported that zinc oxide and titanium dioxide have 
excellent photocatalytic properties and both catalysts are 
designated to be capable substrates for photodegradation of dyes 
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water pollutants as they exhibit the acceptable activity in the range 
of ultraviolet radiation. 

Various studies have focused on treatment of industrial 
wastewater using different treatment methods; however, most of 
these treatments have intricacy in realistic uses5,9,26,28,29. In recent 
year, investigation on different systems have been carried out, such 
as,  advanced oxidation processes (AOP)30, ozonation31,32, 
sonolysis33, gamma–radiolysis34, electro-coagulation35,36, H2O2/ 
UV37, photocatalysis24, photo-Fenton38, biological and combined 
anaerobic–photocatalytic treatment21,29,39. The aim of the present 
investigate is to investigate photocatalytic oxidation process for the 
decomposition wastewater using TiO2 and ZnO as photocatalysts 
irradiated with artificial ultraviolet radiations.  

Photocatalytic oxidation processes30, which involve the 
generation of highly reactive hydroxyl radical (HO), have emerged 
as a promising water and wastewater treatment technology for the 
degradation or mineralization of a wide range of organic 
contaminants30,40,41. The photoactivated reactions are characterized 
by the free radical mechanism initiated by the interaction of 
photons of a proper energy level with the catalyst (TiO2, ZnO 
semiconductor catalysts)42,43. The efficiency of a photocatalytic 
system is also affected by the form of TiO2 and ZnO nanoparticle 
catalysts used as immobilized on surface or as colloidal 
suspension44-46. The photocatalysis reaction effective for the 
degradation of various organic impurities in waste water; however, 
its practical application as slurry type suspensions is limited due to 
the difficulty in separating the nanocatalysts particles after the 
photocatalytic reaction47-49.  

The present review aims to provide a comprehensive analysis 
on the mechanism of UV-TiO2 and ZnO photocatalytic oxidation 
process, photocatalyst material, irradiation sources, effect of pH, 
temperature, dye concentration, catalyst mass and type of catalysts 
on photocatalysis and the application towards wastewater treat-
ment.  
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2. Photocatalytic Oxidation Process 

In a typical photocatalytic system, photo reaction or photo-
induced molecular transformation occurs on the photocatalyst 
surface37. The basic mechanism of photocatalytic reaction is 
governed by the generation of electron–hole pair into the 
semiconductor and its transportation to destination (i.e., reaction 
with organic pollutants). Frank and Bard50 first examined the 
possibility of using a titanium dioxide-TiO2 catalyst for the 
decomposition of cyanide, Ollis and co-workers51 extensively 
studied the potential application of photocatalysis for organic 
degradation52. Semiconductor photocatalysts generally absorb 
different colour light depending on their bandgap energy and used 
as photocatalysts because of their interesting electronic 
configurations, light absorption ability, charge carrier transport 
property, and excited-state lifetimes25,53-55. The principal reaction 
mechanism of a semiconductor photocatalyst (Fig. 1) is described 
as follows. When a photocatalytic surface is exposed by a radiation 
of energy equal to or greater than the bandgap energy (bandgap 
 

 
Fig. 1. Schematic of the photocatalytic mechanism for TiO2/ZnO photocatalysts. 
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energies of common semiconductors are given in Table 1) of the 
semi-conductor photocatalyst material, it creates a positively 
charged hole in the valance band and negatively charged electron 
in the conduction band by exciting the electrons in the valance 
band to the conduction band55. 

Photocatalysts (TiO2/ZnO) + hν→ e- + h+ (1) 
h+ + H2O→ H+ + OH• (2) 
h+ + OH-→ OH•   (3) 
e- + O2→O2

-  (4) 
2e- + O2 + 2H+→H2O2 (5) 
e- + H2O2→ OH• + OH- (6) 

Organic+•OH十O2→CO2+H2O+other degradation productions (7) 

The conduction band electron reduces oxygen (into O2
-) 

adsorbed to photocatalyst surface (TiO2/ZnO) whereas the 
positively charged hole oxidizes either organic pollutants directly 
or indirectly by water to produce hydroxiyl free radicals (HO·). 
The photocatalytic reaction mechanism shown above (Figure 1) 
can be described by Eq. (1)-(7) as shown below25,56-58; In the  
photocatalysis of the organic pollutants, the oxidation of pollutants 
and the reduction process of oxygen  do not occurs concurrently, 
there is an accumulation of  electrons in the conduction band of the 
photocatalyst, thus helping  a recombination of negatively charged 
electron and positive hole. Therefore, efficient utilization of 
electrons is necessary to encourage photocatalytic oxidation 
process. Semiconductors can also be used as photocatalysts for 
environmental remediation. Here, the photon-induced electron-
hole pairs helps in redox reactions at the semiconductors catalyst 
surface and produces hydroxyl free-radicals (OH•) and superoxide 
ions (O2

-). These generated species act as powerful oxidizer to 
disintegrate harmful organic pollutants in wastewater and convert 
them into CO2 and H2O. The most significant and fundamental 
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components for a proficient photocatalytic system are the 
photocatalyst, the light source the reactor configuration25. 

Table 1.  Bandgap energies for some common semiconductor 
materials at 0 K54,59. 

Semiconductors Bandgap energy (eV) 

Diamond 5.4 

Cu2O 2.172 

ZnS 3.60 

TiO2 3.030 

SnO2 3.54 

ZnO 3.36 

CdSe 1.7 

WO3 2.76 

Si 1.170 

Fe2O3 2.3 

PbS 0.286 

PbSe 0.165 

ZrO2 3.87 

Ge 0.744 

CdS 2.42 

 
The photocatalytic oxidation reaction depends on generation 

and recombination of electrons and holes in the semiconductor 
photocatalyst. Adsorbed oxygen on photocatalyst surface acts as an 
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electron captor, which can control the recombination of photo 
induced electron-hole recombination. The nanosized catalysts have 
larger photocatalytic efficiency as compared to than normal 
photocatalyst materials60,61. The reasons behind this are:  

(i) Quantum Size Effect : One of the most direct effects 
happens when the particle size becomes less than a certain critical 
limit (i.e., size reduces to the nanometer range), this give rises to 
quantum size effects due to the confinement of the electronic 
movement. This leads to the valence band and conduction band of 
the semiconductor change into discrete energy levels, depending 
on the size of the material structure, which means that the electric 
potential of valence band changes more positive; otherwise the 
conduction band electric potential changes more negative. Then 
the oxidation-reduction potential of the electrons and holes is 
increased, and therefore the oxidation activity of nanosized TiO2 
and ZnO photocatalyst is enhanced62,63. 

(ii) Higher Specific Surface Area: If there are more number 
of atoms resides on the surface, it enhances the adsorption capacity 
of the photocatalysts towards organic pollutants. The activity of 
photocatalysis is associated with the time exhausted by electrons 
and holes to get to the surface of the particles. When the particles 
are nano sized their diameter becomes very miniature, so it is then 
very straightforward for the charge carriers moving from the inside 
to the surface, and starting red-ox reaction. Higher the surface to 
volume ratio, smaller the particle diameter and the smaller time 
may be used up by charge carriers diffusing to the surface from 
inside. This can provide lesser probability of electron and hole 
recombination. Therefore, the superior photocatalytic activity can 
be achieved. Consequently, the nano-titanium and zinc oxides have 
greater photocatalytic efficiency than the common (bulk) titanium 
or zinc oxides64-66. 
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3. TiO2 and ZnO as Efficient Photocatalyst for Wastewater  

3.1. TiO2 as a Photocatalyst 

Being a member of metal-oxide semiconductor photocatalysts 
family, there is a general agreement among researchers that TiO2 is 
more superior because of its high phocatalytic activity, large 
chemical stability and robustness against photocorrosion, low 
price, and nontoxicity67. Particularly, titanium dioxide is largely 
used for many applications such as air and water purification, as an 
agent for antifogging and self-cleaning surface, whereas, zinc 
oxide has not been used like TiO2 for such applications13,68. Wu  
has studied that TiO2 has greater photocatalytic activity than ZnO 
and SnO2

69. For the decomposition of phenol as target organic 
species, Okomoto studied that TiO2 has greater photocatalytic 
activity as compared to cadmium sulfide (CdS)70. Sakthivel proved 
that under similar study conditions, TiO2 is a superior 
photocatalyst than WO3, α-Fe2O3, SnO2 and ZrO2

71. On the other 
hand, Augugliaro established that, TiO2 has better photochemical 
stability than ZnO in aqueous solution; however, zinc-oxide is 
photochemically more active (although its surface to volume ratio 
was less)72. Significant amount of work has been carried out for 
investigating the photocatalytic activity of titanium dioxide based 
on its phase composition, size and crystal structure73-75. Three 
different phases of TiO2 exist: anatase, rutile and brookite76. There 
are still very few reports on brookite while anatase and rutile 
phases of nanostructured TiO2 are the most studied phases77-79. The 
position of oxygen ions on the exposed anatase TiO2 particle 
surface possesses a triangular arrangement which allows  
significant absorption of organic molecules80. Whereas, the 
orientation of titanium ions in the anatase TiO2 creates an 
advantageous reaction condition with the absorbed organic 
pollutants81. Interestingly, these favorable structural arrangements 
of oxygen and titanium ions are not present in the rutile phase of 
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TiO2. Due to this reasons anatase phase of titania shows   higher 
photocatalytic activity than rutile82. Although, anatase phase is 
reported to be the most photochemically active form of 
titaniumdioxide, but several researchers believed that a pure 
anatase phase has less photocatalytic performance83. The rutile 
phase present in the anatase TiO2 introduces some percentage of 
mesoporosity and a wider pore size distribution which probably be 
accountable for the enhanced photocatalytic activity for this 
phase84. These reports have been suggested that anatase-rutile 
mixtures/composites would be the best combination to 
synergistically enhance photocatalytic efficiency85-87.  

Various strategies have been taken to prepare commercial 
samples of TiO2 by varying purity, particle size, and crystal 
structure and phase composition to enhance photocatalytic 
efficiency with Degussa P25 grade (generally, it is a  mixture of 
30% rutile and 70% anatase TiO2 powder samples)88,89. There is a 
general believe that commercial grade Degussa P-25 TiO2 sample 
shows significant photocatalytic degradation efficiency towards 
organic dye degradation as compared to other commercial 
forms89,90. The effect of particle size on the photocatalysis can be 
explained in terms of available surface area of TiO2 for the 
reaction. Usually, for the smaller particle size, surface area would 
be larger and surface to volume ration increases which intern 
increases expected photocatalytic activity. This larger available 
surface area thus increases the number of active photocatalytic 
sites per unit area, as well as enhances the adsorbability of the 
organic pollutants on the TiO2 photocatalyst surface91. However, 
several shortcomings of the conventional TiO2 powder catalysts, 
such as difficulty in separation after synthesis and stirring 
throughout reaction, make powder TiO2 less photocatalytic 
efficient and prevent form being used in the practical 
applications92. Hence, several studies have been focused on the 
synthesis and modification of TiO2 nanostructured by making 
composite photocatalysts with ceramics like SiO2, ZrO2, Al2O3 and 
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TiO2 coated polymer nanostructures to eliminate the previous 
difficulties93-95. Tryba et al.  has also been reported that TiO2-
mounted activated carbon could increase the photocatalytic 
degradation of organic dyes96. Interestingly, different form of 
carbons like porous carbon, carbonnanotube (CNT)97, 
carbonnanofiber (CNF)98, graphene99, exfoliated graphite100 and 
graphene oxide101 have been reinforced with TiO2 to make 
TiO2/carbon composites for superior photocatalytic activity.  

 
Fig. 2 : Degradation of RhB dye contaminated water with TiO2/porous carbon 
films. The porous structure results in improved catalytic support for the 
photocatalyst as discussed in [13] :Fe-SEM micrographs of the TiO2/polymer  
and TiO2/carbon porous films: (a) Porous polyacrylonitrile (PAN) polymer and 
TiO2 composite film, (b)Higher magnification images of ‘a’ showing the 
presence of TiO2 nanoparticles on the polymer films, (c) Porous carbon and 
TiO2 composite films after pyrolyzation of TiO2/polymer film, and  (d) Higher 
magnification images showing ‘bead’ like titanium dioxide particles on the 
porous carbon film. 

Even though, in photocatalysis anatase phase of titania has 
more efficiency than rutile but, this phase is thermodynamically 
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metastable102 and it may undergoes irreversibly transformation 
from anatase to rutile phase at relatively high temperatures ~ 
800oC and above103. Moreover, studies have shown that rutile 
pahse of TiO2 exhibit superior photocatalytic activity compared to 
pure anatase TiO2 for the photodecomposition of p-coumaric 
acid104, photo-oxidation of H2O with Fe3+,105 and 
photodecomposition of H2S106.  Besides that, rutile TiO2 has  better 
light scattering properties, chemical inertness and cost efficient 
which makes it a potentially candidate for several applications like 
dye sensitized solar cells, solar photocatalytic, electrochemical and 
catalysis107-110.  

In a recent study13, authors have developed an in-situ synthesis 
method for pure rutile TiO2 nanoparticles impregnated 
macroporous carbon film and found efficient for the photocatalysis 
of Rhodamine B dye. This may be advantageous for the 
applications of TiO2 when there is a requiring of pure rutile phase 
and the working temperature is higher.   

3.2. ZnO as a Photocatalyst 

Till to date, many types of semiconducting systems have been 
studied for photocatalysis including TiO2, ZnO, ZrO2, CdS, WO3, 
and so on111-116. Most of them have band gap in the UV 
(ultraviolet) region, i.e., equal to or greater than 3.36 eV (λ = 388 
nm)59. Thus, these catalysts promote photocatalytic reactions under 
the illumination of UV radiation117. Surface area, surface defects 
and bangap of the metal oxide nanostructured catalysts play a 
significant role in the photocatalysis118. 1D- nanostructures like 
nanowires, nanorods, nanospheres and nanofibers are potential 
candidates for application to photocatalysis because they have 
offered a very high surface to volume ratio than nano-
particles62,119,120.  

Zinc oxide is an excellent wide band gap, natural n-type 
semiconducting material with binding energy (60 MeV), abundant 
in nature, nontoxic nature and environmental friendly 
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photocatalyst121. It can absorb wider range of spectrum of radiation 
which also makes it more applicable for dye sensitized solar cells 
and solar photovoltaic applications122-124.  

The nanosized ZnO oxides are most efficient functional 
materials for photocatalytic applications which are available at low 
cost, exhibit mild reaction conditions and high photochemical 
reactivity, while affording the use of sunlight125. Amongst all metal 
oxide semiconductors, zinc oxide, most functional material find 
application for many fields including biosensors, light-emitting 
diodes, field-emission, and gas sensing126.  

The photocatalytic efficiency of ZnO nanomaterials is 
believed to be much better than normal photocatalysts127.  It is 
extensively used to treat wastewater, such as printing and dyeing 
wastes, dairy and food wastewater, drugs and pesticides 
wastewater, textile wastewater, papermaking wastewater, and so 
on128-132. 

There is growing interest for the photocatalytic degradation of 
different organic pollutants present in wastewaters comes from 
industrial and agricultural waste5,24,31,92,133. The photocatalytic 
reactions happens in such treatment somehow identical to 
heterogeneous catalysis which includes the simultaneous 
adsorption of oxygen and  organic reactant species present on the 
waste, followed by the oxidation on the ZnO photocatalyst 
surfaces6,10. Zinc oxide is a photoactive semiconducting material 
oxide and able to activate itself by taking energy for the 
photocatalytic reaction from photons. Therefore ZnO photocatalyst 
must have to simultaneously adsorb reasonable amount of O2 and 
reducing species (i.e., the organic pollutant molecules). A good 
photocatalyst like zinc oxide is considered to provide adsorption 
sites for the organic pollutants, which means that an open porous 
structure with high specific surface area is needed134. Since the 
thermal energy is expensive, a very important issue of a good 
photocatalysis is that the involving reactions have to occur at 
ambient temperature.  



49 

Recently, it is proven that semiconducting photocatalyst 
mediated photocatalytic oxidative degradation of organic 
compounds is a doing well135. This has been demonstrated as an 
alternative to conventional wastewater treatments for the removal 
of organic pollutants from various industrial wastes136. The uses of 
ZnO nanostructures as a potential photocatalyst material to 
decompose the environmental pollutants have also been rigorously 
studied137,138. Interestingly, to achieve better photocatalytic 
efficiency in many realistic applications, it is expected that ZnO 
photocatalyst should absorb not only ultraviolet radiation but also 
visible light139. To absorb visible spectrum of solar radiation, band 
gap energy of ZnO photocatalysts must have to be decreased or 
divided into different sub-bandgaps, which can only be obtained 
either by incorporating transition metal ions or by doping nitrogen, 
sulphur atoms140. The electronic and photocatalytic properties of 
zinc oxide solely depended on its surface morphology, size, crystal 
structure, aspect ratio, density of crystal and crystallographic 
orientation141,142. ZnO has known as an effective photocatalyst for 
water detoxification, organic pollutant decomposition and other 
photolysis because it produces hydrogen peroxide (H2O2) more 
proficiently143. Also, it has high mineralization and reaction rates, 
and also provides more of active sites with high specific surface 
photoactivity144. So far, many attempts have been taken to create 
different morphology of nanosized ZnO photocatalysts in which 
hydrothermal synthesis145, sol-gel technique146, plasma-enhanced 
chemical vapor deposition (PECVD)147, Rf-magnetron 
sputtering148, electrospinning24,149 and so on150-152. Recently, we 
have reported24 a novel synthesis protocol for the fabrication of 
mesoporous ZnO nanofibers by employing electrospinnig 
technique. In that paper, we have demonstrated an ultraviolet 
radiation assisted photodecomposition of PAHs dyes-naphthalene 
and anthracene by using free standing mesoporous ZnO nanofibers 
mats.  
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Fig. 3 :  Photocatalytic degradation of polycyclic aromatic hydrocarbon dyes- 
naphthalene and anthracene in wastewater water with electrospun mesoporous 
ZnO nanofiber mats as discussed in [24]: Fe-SEM micrographs of the 
electrospun ZnO nanofibers: (a) free-standing fiber mats, (b) partially aligned 
nanofibers, (c) Higher magnification of ‘b’ and (d) a single mesoporous 
nanofiber. 

4. Effect of Light Source on Photocatalytic Degradation  

The percentage degradation of dyes in waste water improved 
with increasing exposed light intensity153. Under the elevated 
intensity of light irradiation, the enhancement was significantly 
higher since the electron–hole formation is predominant at high 
irradiation intensity and, therefore, electron–hole recombination 
probability is insignificant154. However, when irradiated light 
intensity becomes very poor, separation of electron–hole pair 
competes with recombination which consecutively decreases the 
formation of free radicals, thus, causing less result on the 
percentage degradation of the waste water155-157. 
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The greater part of photocatalytic degradation studies have 
been carried out between the wavelengths 320-380 nm59 which is 
related to the bandgap energy of the TiO2 and ZnO 
photocatalyst158. Thus, the light source which produces the 
required radiation field can be performed by solar irradiation or by 
artificial lamps. In a typical photocatalytic reactor, radiation 
(wavelength ranging between 320-380 nm) is provided by 
fluorescent low-pressure and medium mercury lamps emitting low 
and high intensity UV light, respectively in the short, medium and 
long UV spectrum59. The higher possibility of trapping of electron-
hole pairs with shorter wavelength excitation and direct photolysis 
were considered to be likely the reasons for a good photocatalytic 
system159. Only ~5% of the incident solar radiation is used by TiO2 

and ZnO assisted photocatalytic decomposition of dyes59,160. This 
drastically confines their practical application. Therefore, 
modification of TiO2 and ZnO photocatalysts to improve light 
absorption capacity and photocatalytic activity under visible light 
irradiation is the topic of recent research161-163. 

5. Effect of pH on Photocatalytic Degradation:  

The pH value of the aqueous solution is a key parameter for 
photocatalytic degradation of wastewater and dyes because it 
affects the adsorption of pollutants that happens at the surface of 
photocatalysts164,165. The wastewater produces from textile, dairy 
and pharmaceutical industries generally have a wide range of pH 
values. In addition, the generation of hydroxyl radicals which is 
necessary for the photocatalytic reaction also depends on pH of the 
solution166. Therefore, pH plays a significant role for both cases, in 
the chemical nature of wastes and generation of hydroxyl 
radicals1,167. Hence, many attempts have been taken to investigate 
the effect of pH in the degradation of wastewater in the ultraviolet 
and solar irradiations168-170. Photocatalytic decomposition of dyes 
in waste water have been  studied at pH values ranging from 3 
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(acidic) to 13 (alkaline) for all the three (anionic, cationic and 
neutral) dyes in wastewater1. 

It was observed that, at optimal concentration of dyes in both 
acidic and alkaline pH tends to lower the degradation efficiency of 
some azo dye wastes171,172. It was studied that in presence of H2O2 
some nonbiodegradable cationic dyes (Malachite green, 
Rhodamine B, and Methylene blue) degrades least effectively at 
both acidic and alkaline pH, but highly effective at neutral pH 
value of the solution173. The inhibitory effect found to be more 
prominent in the high alkaline range (i.e., pH 11–13)171. At high 
pH values the hydroxyl radicals are so quickly discarded that they 
do not have proper time to react with dyes in waste water. The pH 
influences the surface properties of TiO2 and ZnO photocatalysts, 
dissociation of organic pollutants (or dyes in waste water) and 
formation of hydroxyl radicals25.  

The greater photodegradation efficiency at neutral pH can be 
explained by the point of zero charge (pzc) of the photocatalysts169. 
The pzc value was found at pH 6.25170 and 8.9174 for the TiO2 and 
ZnO respectively. The photocatalysts surfaces become negatively 
charged under alkaline conditions (pH > pzc), whereas it is 
positively charged in acid media (pH< pzc). While TiO2 and ZnO 
exhibit an amphoteric nature with a zero charge in the pH range 
around their pzc value, the adsorption of dye pollutants is 
extremely good at that pH value, and consequently, higher 
photodegradation activity was predictable at a neutral pH value169. 
Therefore, the result indicates that pH value has a significant effect 
on the adsorption properties at the photocatalyst surface and hence 
photodegradation rates are quite insignificant with extreme pH 
values175.  

The interpretation of effects of pH values on the activity of the 
photodegradation process is a very complicated task, because there 
are three possible reaction mechanisms behind the organic 
pollutant/dye degradation process, namely, oxidation and reduction 
by the positive hole and negatively charged electron, respectively 
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in the semiconductor photocatalysts and hydroxyl radical attack. 
The importance of each parameter strongly depends on the pH 
value and nature of the substrate. In the case of organic dyes and 
pollutants, it can be assumed that the main reaction is governed by 
the hydroxyl radical attack, which can be advantageous by the high 
hydroxyl radicals’ concentration at around neutral pH values of the 
solution169. Additionally, another justification for the pH effects 
can be connected with ionic specification of the organic dyes 
because the protonation or deprotonation of the dyes can 
drastically alter its adsorption characteristics and oxidation-
reduction activity1,171. 

6. Effect of Temperature, Dye Concentration, Catalyst 
Loading and Type of Catalysts on Photocatalysis:  

In a typical photocatalytic decomposition of wastewater dyes, 
the following operating parameters have also involved in the 
process.  

6.1. Temperature : Abass et al studied19 that decolorization 
of real textile industrial wastewater with time increases with 
increasing temperature for all types of catalysts. Their results 
confirm that higher temperature is significantly helpful to 
decompose the pollutants in wastewater. This is probably due to 
the fact that the activation energy gets increased with increasing 
operating temperature169. 

6.2. Dye Concentration : The lowering in dye (pollutant in 
waste water) concentration reduces the time of decomposition of 
the wastewater. This performance could be described as: when the 
concentration of real industrial wastewater is very less than of the 
original concentration then the catalysts active sites probably be 
completely exposed by dye ions176. The further increase in dye 
concentration may also be responsible for screening the exposed 
light so the light intensity will be reduced177.  
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6.3. Photocatalyst Loading : The effect of photocatalytic 
degradation of wastewater dyes with different catalyst loading has 
been extensively explored18,171,178,179. Konstantinou and his co-
workers have shown that, for azo dye degradation by TiO2 assisted 
photocatalysis, the initial degradation rates of azo dyes in aqueous 
solution were directly proportional to TiO2 catalyst 
concentration171. Interestingly, studies for UV assisted 
photocatalytic decomposition of industrial wastewater using 
different photocatalyst (anatase or rutile or zinc oxide) loading   
shows that for an optimum photocatalysts mass, which was 
required for utmost decolorization efficiency does not dependent 
on exposure time, type of  irradiation source and characteristics of 
pollutant180. Further studies have also revealed that the 
decolorization efficiency increases with increase in catalysts 
loading and it get saturated at a certain value of loading and then it 
starts decreasing with further increasing the mass19,181. The 
increasing photocatalytic activity with increase in photocatalysts’s 
masses  happens may be due to increasing accessibility of 
photocatalyst sites and the diminish of catalytic activity after the 
saturation region is correlated to rising of light scattering by the 
much excess of photocatalyst particles181,182. 

6.4. Type of Catalysts : Considering the impact of different 
prospective photocatalyst on their thermal and chemical activity, 
stability under different working environment, accessibility and 
ease of handiness in many physical forms, cost effectiveness, 
toxicity, and environmental friendly the common widely used 
photocatalyst is TiO2

31. Amongst the three crystal structures, only 
rutile and anatase are established enough and can be used as a 
potential photocatalyst183. Pillai and his co-worker has reported 
that photocatalytic properties of different phases of  TiO2 materials 
might be dissimilar significantly and rutile phases exhibiting the 
lowest photoactivity184,185. Anatase phase of TiO2 is superior 
photocatalyst than rutile while brookite phase has not studied 
much186. In the case of Degussa P-25, a mixture of anatase and 
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rutile TiO2 which prevents the recombination rate of 
photogenerated electrons and holes and for this reason shows more 
activity than anatase187. 

Further, Hussein and  Abass19 studied the decomposition of 
real industrial wastewater on rutile, anatase, and zinc oxide at a 
constant temperature and time and has proven that the efficiency of 
these catalysts fell in the sequences as shown below: 

ZnO > Degusa P-25 >TiO2 (Anatase) > TiO2 (Rutile) 
Interestingly, the quantity of ZnO photocatalyst required to 

achieve the optimal photocatalytic activity is nearly double than 
that for TiO2 (anatase or rutile)19,182. 

7. Conclusions 

Reviewing the recent representative publications, the function 
of various operating parameters on the photocatalytic 
decomposition of various ognaic dyes in wastewater explored in 
this review. TiO2 and ZnO have been recommended to be efficient 
photocatalysts for the degradation and mineralisation of various 
toxic organic pollutants such as azo dyes in wastewater water. The 
investigations also suggest that the coexistence of photocatalyst 
and lights exposure is necessary for photocatalytic degradation of 
dyes. Various operating parameters such as nature light source, pH 
of the reaction medium, temperature, dye concentration, catalyst 
loading and type of catalysts have a considerable effect on 
degradation efficiency of dyes in wastewater. Optimization of the 
photodecomposition parameters is essential from the viewpoint of 
efficient design and the application of photocatalytic oxidation 
processes to guarantee sustainable wastewater purification process.  

Although the UV energy gives improved efficiency in 
degradation of dyes, solar irradiation could appear as a substitute 
cost effective light source because of its abundance. Thin-film 
coating of photocatalyst may resolve the problems of leaching and 
separation. Make the naofibers of catalysts may further enhance 
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the photocatalytic activity due to its high surface to volume ration 
which will facilitate the better adsorption of dyes. Metal and non-
metal doped nanostructured TiO2 and ZnO have been reported to 
result in improved degradation rates due to their modified band gap 
energy for using visible and solar radiation. So, we need to focus 
for developing more reliable photocatalysts which can absorb 
visible and solar radiation or by both. In addition, further work is 
essential on the designing and understanding the working 
parameters for oxidation of pollutant dyes in wastewater.  
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