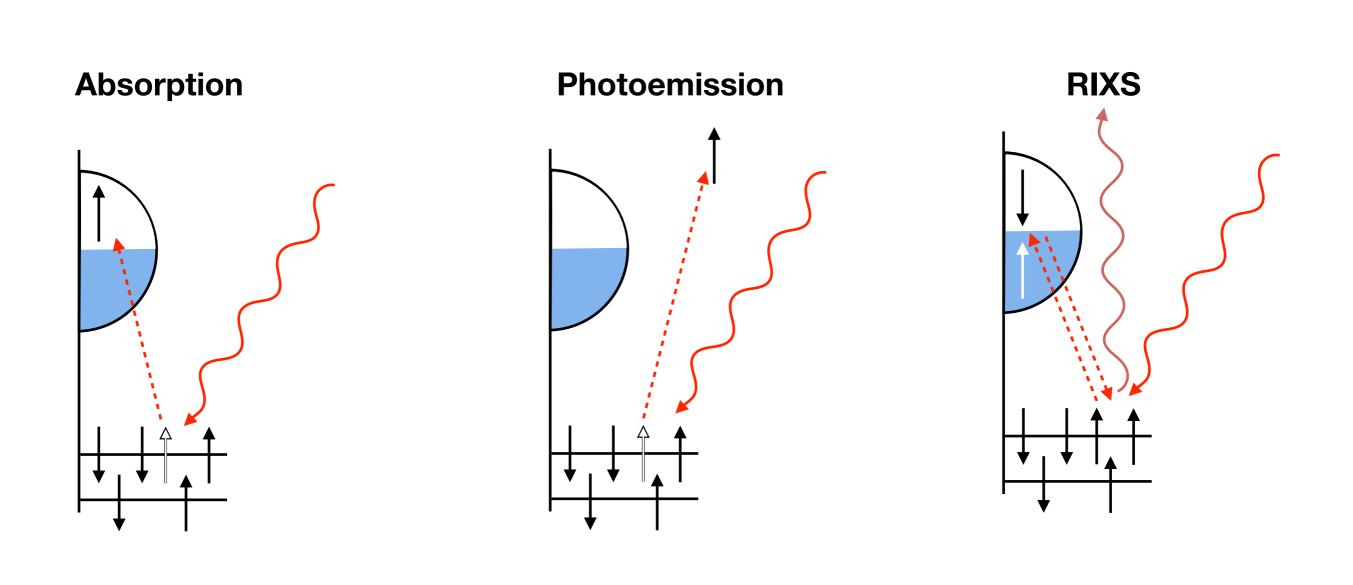
Simulating Spectra

Travis Jones 19 Jan 2018

Introduction

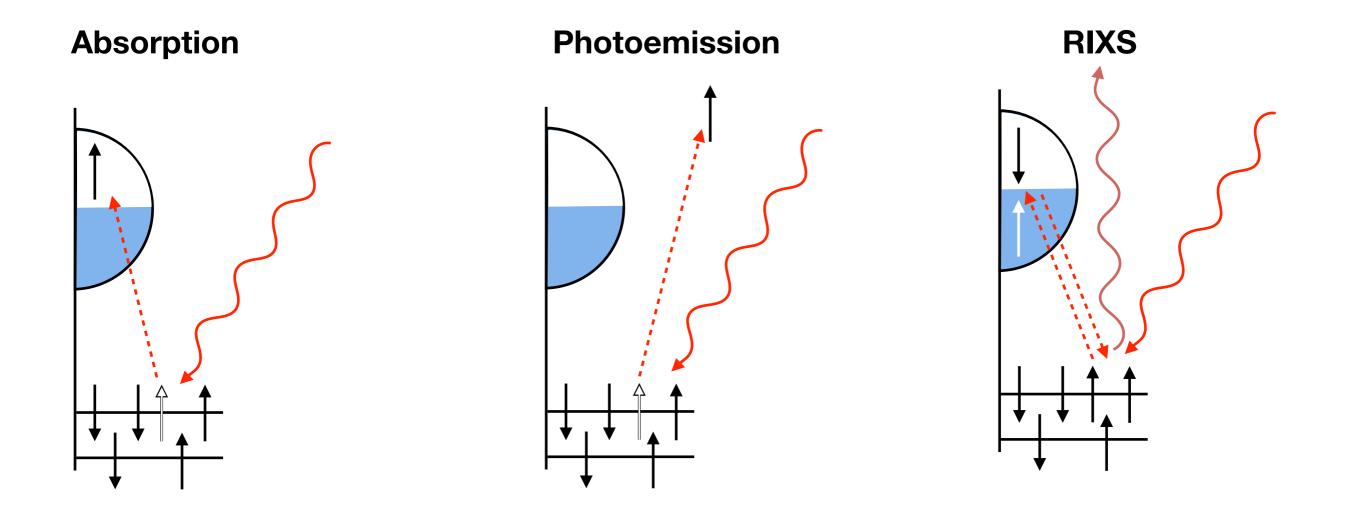
- Why should you care about calculating spectra?
- What kinds of spectra can you compute?
- What types of approaches are there?
- What are the pitfalls?

A few types of X-ray spectroscopy



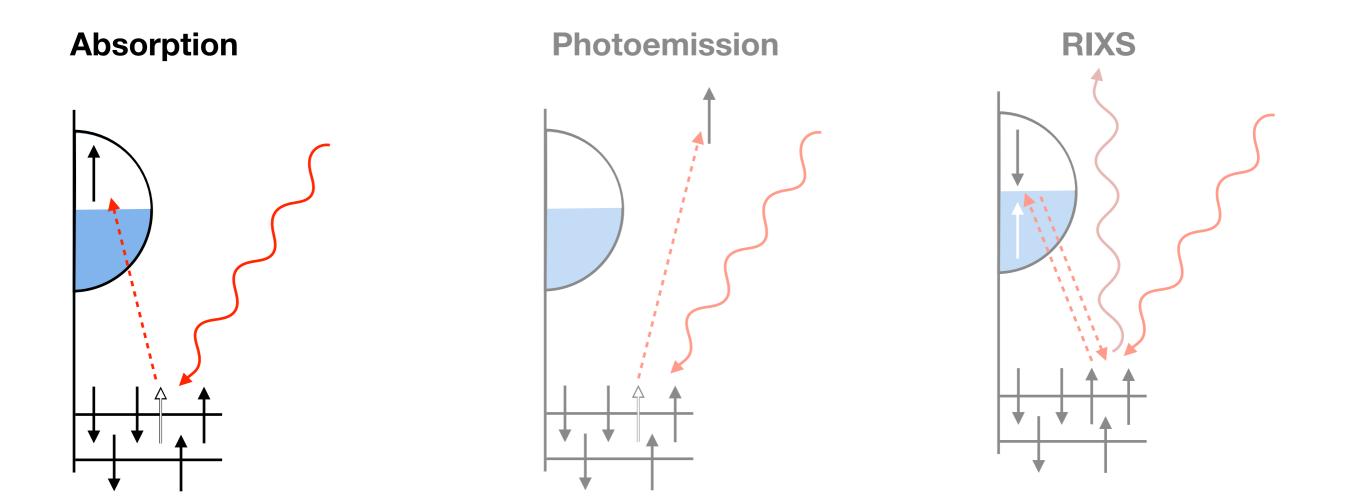
A few types of X-ray spectroscopy

• Give different but complementary information



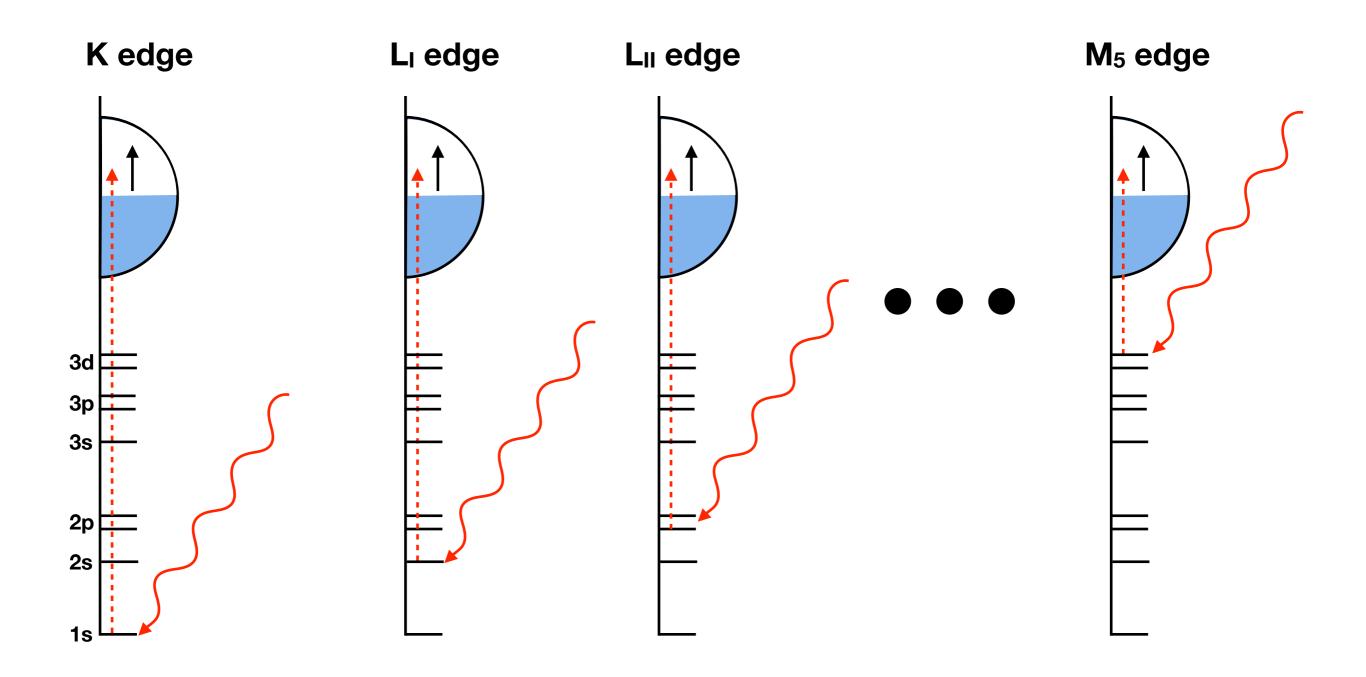
A few types of X-ray spectroscopy

• Give different but complementary information



Vocabulary

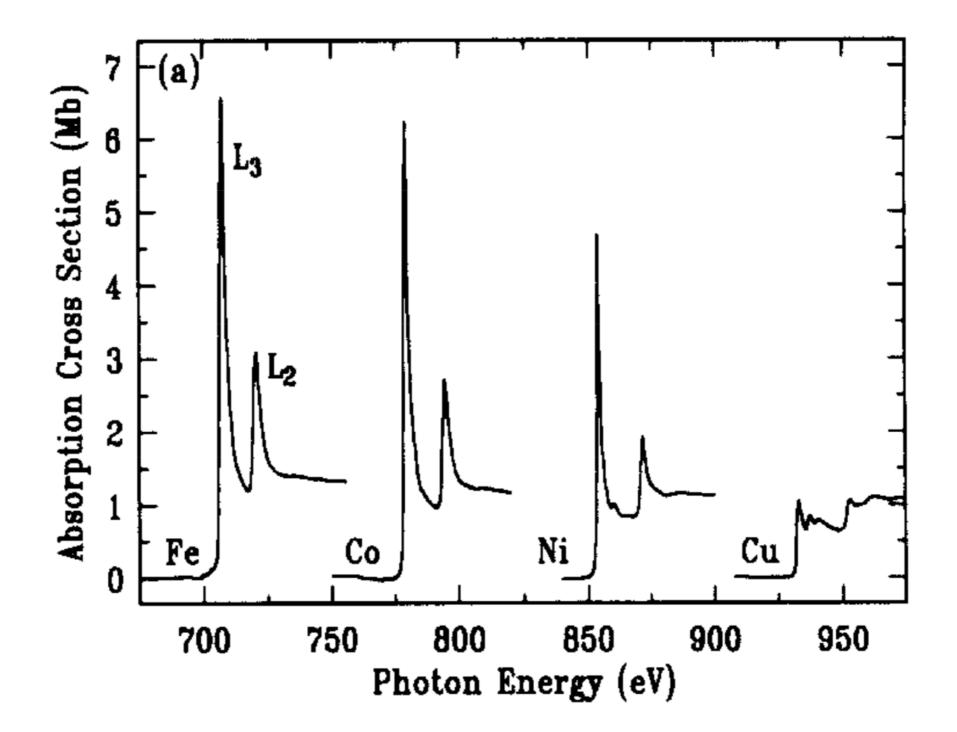
- Name identifies (*n*,*l*) quantum number of core electron involved
 - Letter give *n* starting with K
 - Number gives / starting with I



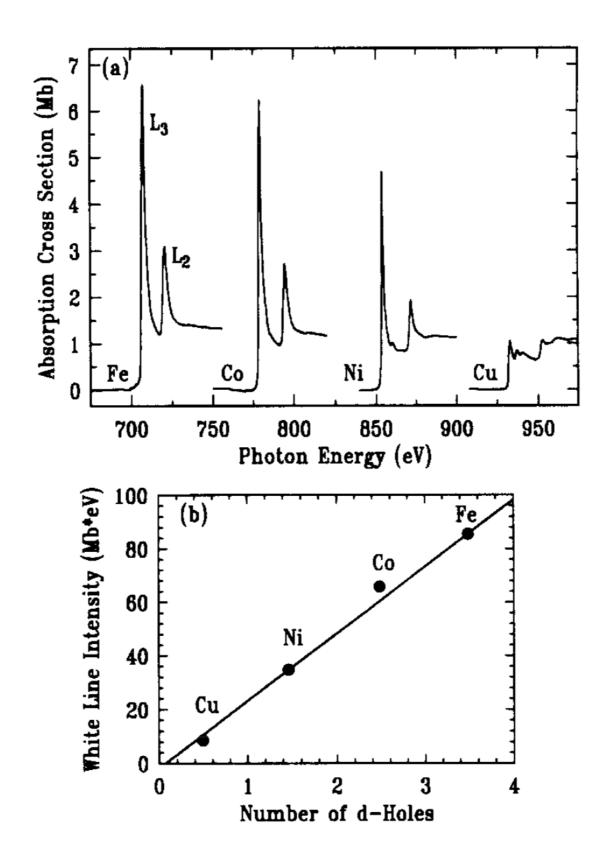
What do we need to understand to describe XAS using theory?

XAS LIII,II

• Edge onset and hydrogen like atoms

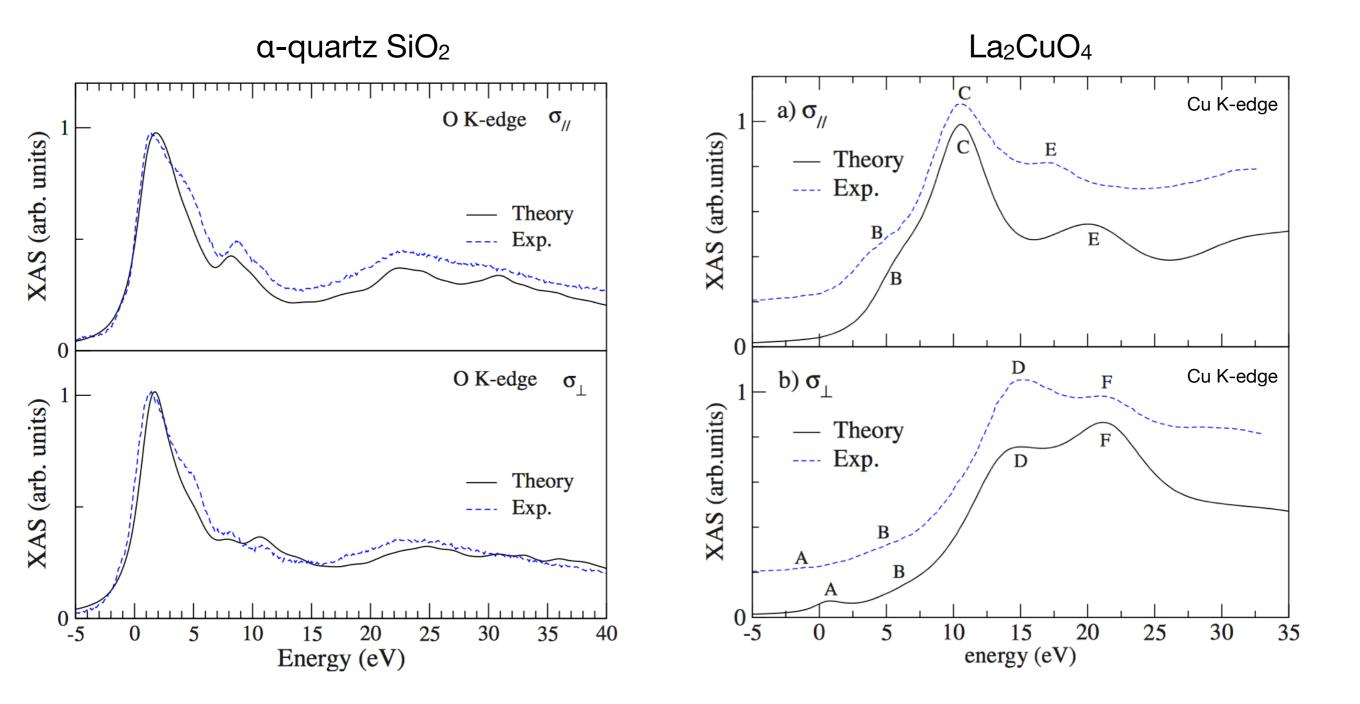


Useful sum-rules



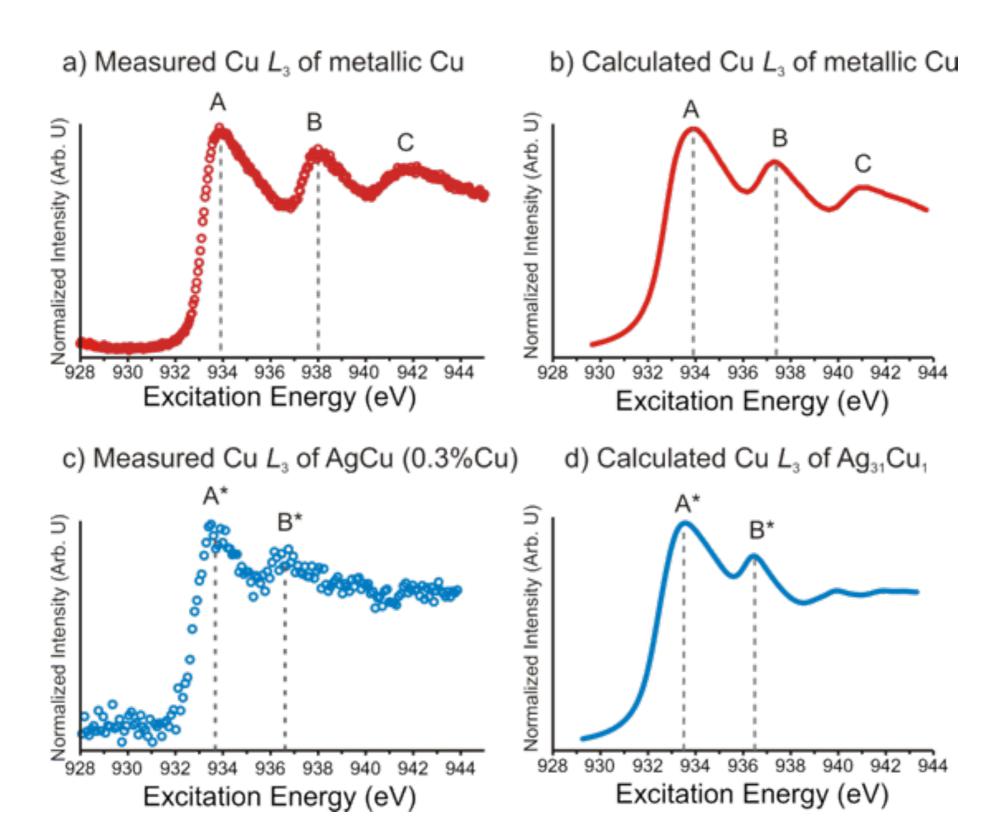
XAS K-edge

K-edge looks like the empty density of states on absorber



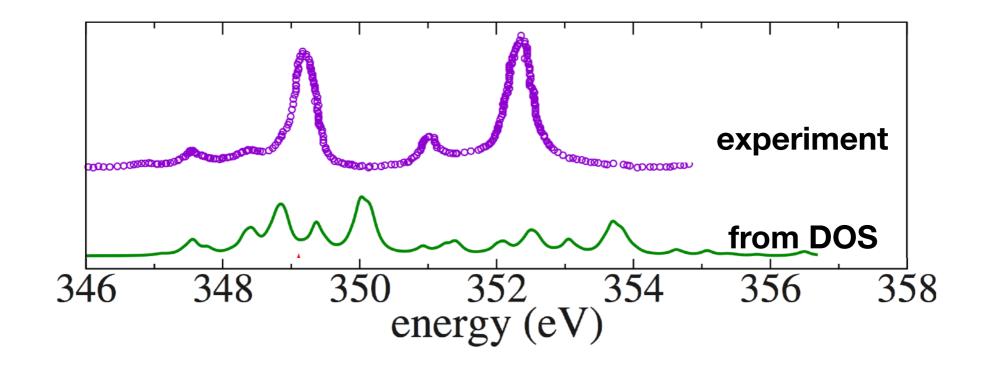
XAS LII,III-edge

• LII,III-edge looks like the empty density of states on absorber



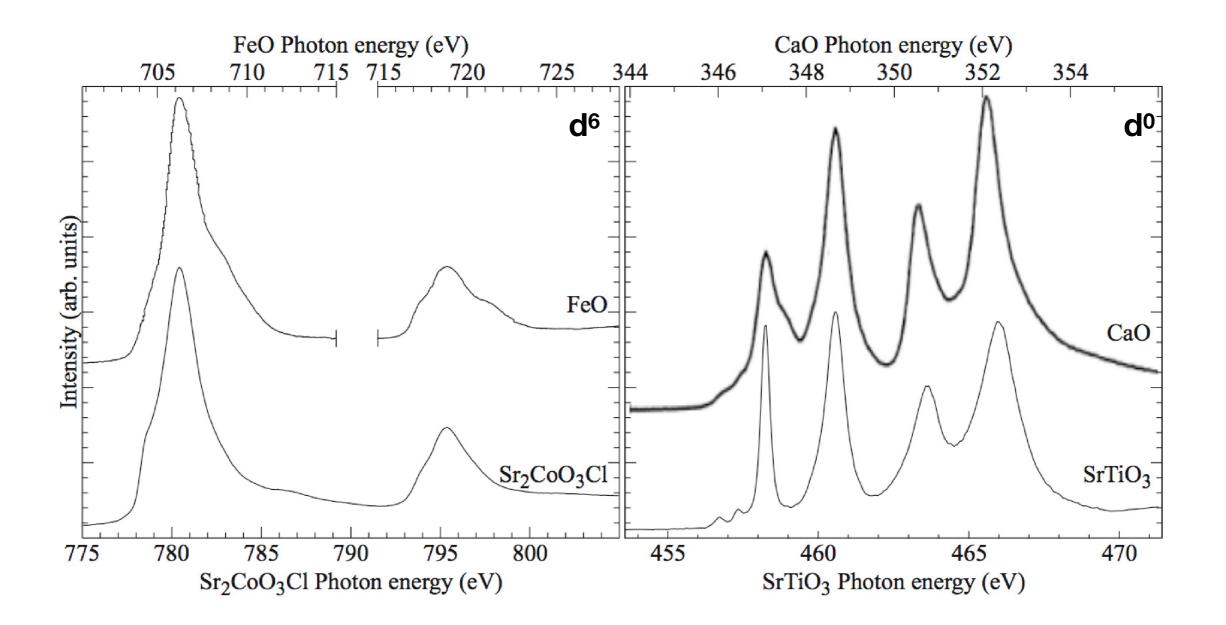
XAS LII,III-edge

- L_{II,III}-edge looks like the empty density of states on absorber
- Apparently depends on the material



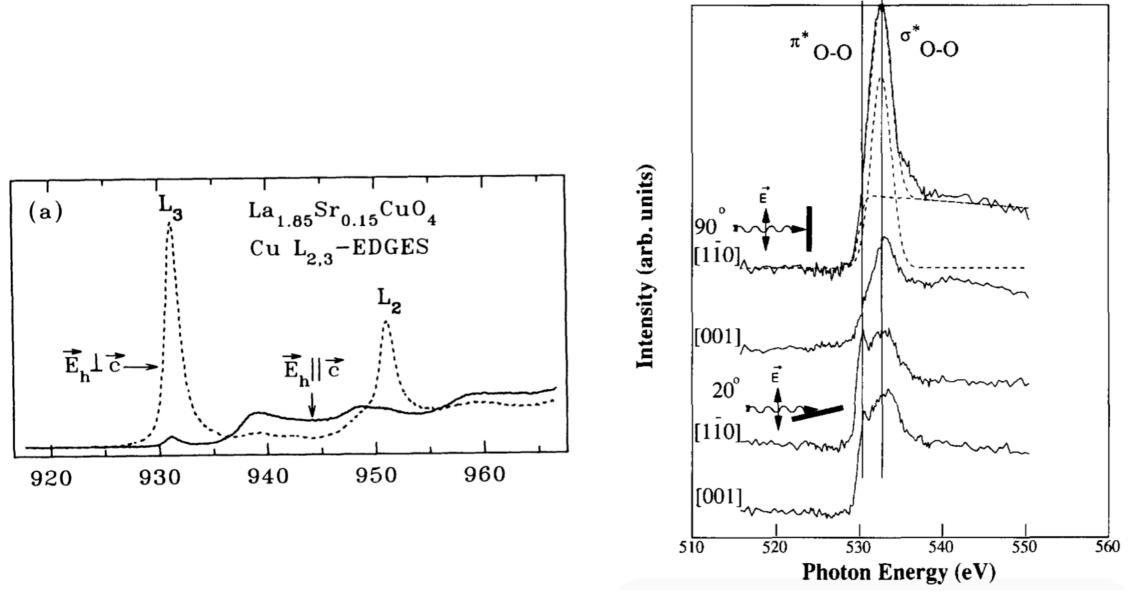
XAS LII,III

In some cases spectrum seems to reflect d electron count



Polarization dependence

• Changing E vector gives different spectra for single crystals



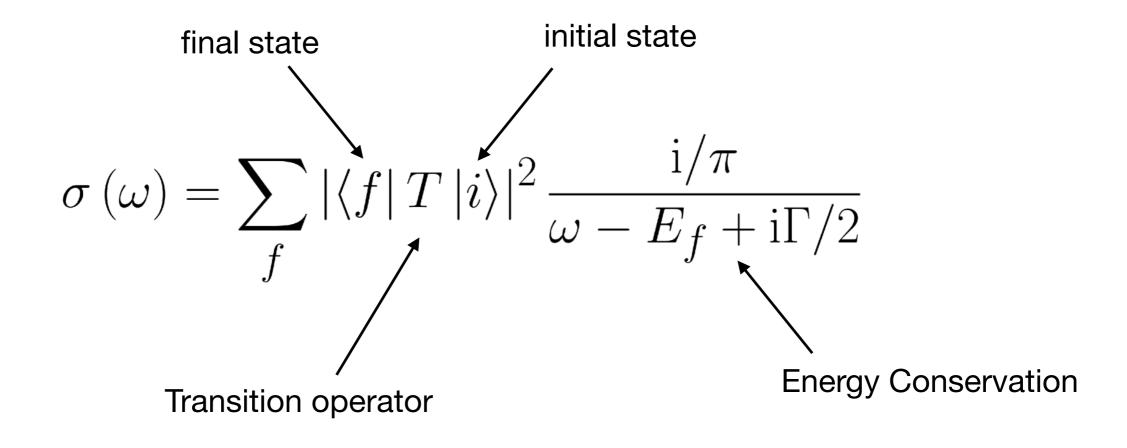
C. T. Chen et al PRL 68, 2543 (1992)

J. Pawel-Crew et al Surf. Sci. 339, 25 (1995)

How can we understand these spectra?

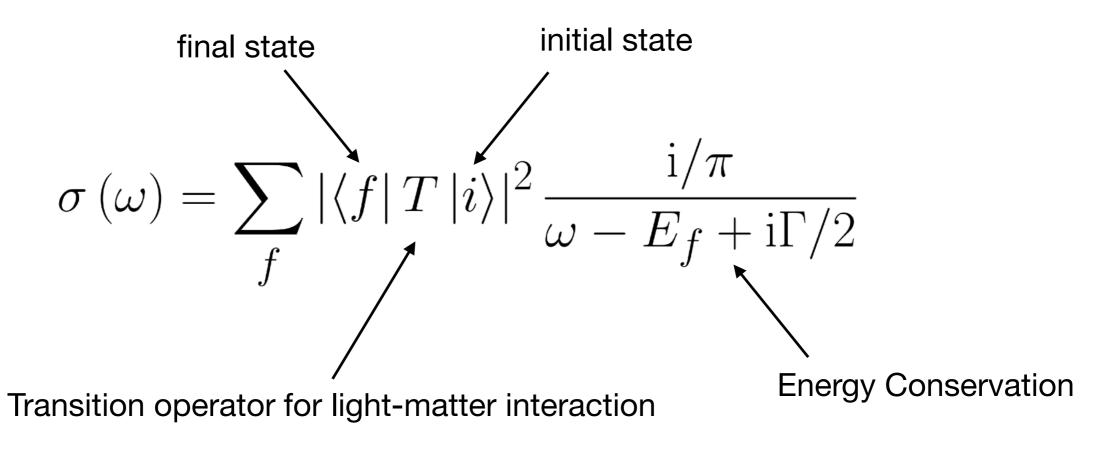
One electron Selection Rules

• Transition described by Fermi's golden rule



One electron Selection Rules

• Transition described by Fermi's golden rule



$$T = \vec{p} \cdot \hat{\epsilon} \, e^{\mathbf{i} \, \vec{k} \cdot \vec{r}}$$

• We can simplify the transition operator

$$T = \vec{p} \cdot \hat{\epsilon} \, e^{\mathrm{i} \, \vec{k} \cdot \vec{r}}$$

• We can simplify the transition operator

$$T = \vec{p} \cdot \hat{\epsilon} \, e^{\mathrm{i} \, \vec{k} \cdot \vec{r}}$$

• By expanding the plane wave as

$$e^{\mathrm{i}\,\vec{k}\cdot\vec{r}} = 1 + \mathrm{i}\,\left(\vec{k}\cdot\vec{r}\right) + \frac{1}{2!}\,\mathrm{i}\,\left(\vec{k}\cdot\vec{r}\right)^2\dots$$

• We can simplify the transition operator

$$T = \vec{p} \cdot \hat{\epsilon} \, e^{\mathrm{i} \, \vec{k} \cdot \vec{r}}$$

• By expanding the plane wave as

$$e^{\mathrm{i}\,\vec{k}\cdot\vec{r}} = 1 + \mathrm{i}\,\left(\vec{k}\cdot\vec{r}\right) + \frac{1}{2!}\,\mathrm{i}\,\left(\vec{k}\cdot\vec{r}\right)^2\dots$$

• How do we know which terms to keep?

• We can simplify the transition operator

$$T = \vec{p} \cdot \hat{\epsilon} \, e^{\mathrm{i} \, \vec{k} \cdot \vec{r}}$$

• By expanding the plane wave as

$$e^{\mathrm{i}\,\vec{k}\cdot\vec{r}} = 1 + \mathrm{i}\,\left(\vec{k}\cdot\vec{r}\right) + \frac{1}{2!}\,\mathrm{i}\,\left(\vec{k}\cdot\vec{r}\right)^2\dots$$

- How do we know which terms to keep?
 - Option 1: Dimensional analysis

• We can simplify the transition operator

$$T = \vec{p} \cdot \hat{\epsilon} \, e^{\mathrm{i} \, \vec{k} \cdot \vec{r}}$$

• By expanding the plane wave as

$$e^{\mathrm{i}\,\vec{k}\cdot\vec{r}} = 1 + \mathrm{i}\,\left(\vec{k}\cdot\vec{r}\right) + \frac{1}{2!}\,\mathrm{i}\,\left(\vec{k}\cdot\vec{r}\right)^2\dots$$

- How do we know which terms to keep?
 - Option 1: Dimensional analysis

• Option 2: Look at
$$\left(\vec{k} \cdot \vec{r}\right)$$

• Edge energy approximately energy of electron in *n* shell

$$E = \hbar \omega \approx \frac{Z}{n} \approx \frac{Z \alpha \hbar c}{R_n}$$

• Edge energy approximately energy of electron in *n* shell

$$E = \hbar \omega \approx \frac{Z}{n} \approx \frac{Z \alpha \hbar c}{R_n}$$

• Wavenumber is

$$\left|\vec{k}\right| = k = \frac{E}{\hbar c}$$

• Edge energy approximately energy of electron in *n* shell

$$E = \hbar \omega \approx \frac{Z}{n} \approx \frac{Z \alpha \hbar c}{R_n}$$

• Wavenumber is

$$\left|\vec{k}\right| = k = \frac{E}{\hbar c}$$

• Keep 1 term for Z << 137

$$\left|\vec{k}\cdot\vec{r}\right|\approx Z\alpha\approx\frac{Z}{137}$$

One electron Selection Rules

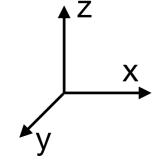
• Looks like the dipole approximation is pretty good

$$T=\vec{p}\cdot\hat{\epsilon}$$

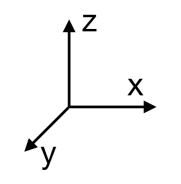
• What does it do in our Golden rule expression?

$$\sigma(\omega) = \sum_{f} |\langle f | \vec{p} \cdot \hat{\epsilon} | i \rangle|^2 \frac{\mathrm{i}/\pi}{\omega - E_f + \mathrm{i}\Gamma/2}$$

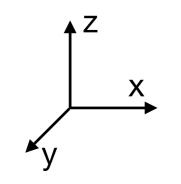
Dipole transitions $\sigma\left(\omega\right) = \sum_{f} |\langle f| T |i\rangle|^2 \frac{\mathrm{i}/\pi}{\omega - E_f + \mathrm{i}\Gamma/2}$ $\langle \bullet \circ | \circ \rangle =$ $\langle \bullet \circ | \bullet \circ | \bullet \rangle =$ $\langle \bullet \circ | \bullet \rangle =$



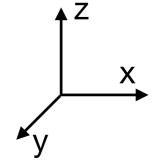
Dipole transitions $\sigma(\omega) = \sum_{f} |\langle f| T |i\rangle|^2 \frac{i/\pi}{\omega - E_f + i\Gamma/2}$ $\langle \bullet \circ | \frac{1}{2} | \bullet \rangle = 0$ $\langle \bullet \circ | \bullet \circ \rangle =$ $\langle \bullet \circ | \bullet \rangle =$



Dipole transitions $\sigma\left(\omega\right) = \sum_{f} |\langle f| T |i\rangle|^2 \frac{\mathrm{i}/\pi}{\omega - E_f + \mathrm{i}\Gamma/2}$ $\langle \bullet \circ | \circ \rangle = 0$ $\langle \bullet \circ | \bullet \circ | \bullet \rangle = 1$ $\langle \bullet \circ | \bullet \rangle =$



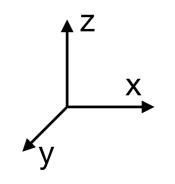
Dipole transitions $\sigma\left(\omega\right) = \sum_{f} |\langle f| T |i\rangle|^2 \frac{\mathrm{i}/\pi}{\omega - E_f + \mathrm{i}\Gamma/2}$ $\langle \bullet \circ | \frac{1}{2} | \bullet \rangle = 0$ $\langle \bullet \bigcirc | \bullet \bigcirc | \bullet \rangle = 1$ $\langle \bullet \circ | \bullet \rangle = 0$



Dipole transitions $\sigma\left(\omega\right) = \sum_{f} |\langle f| T |i\rangle|^2 \frac{\mathrm{i}/\pi}{\omega - E_f + \mathrm{i}\Gamma/2}$ $\langle \bigotimes | \bigotimes | \bullet \rangle =$ $\langle \bigotimes | \odot | \odot \rangle =$ $\langle \bigcirc | \bigcirc | \bigcirc \rangle =$ ×

Dipole transitions $\sigma\left(\omega\right) = \sum_{f} |\langle f| T |i\rangle|^2 \frac{\mathrm{i}/\pi}{\omega - E_f + \mathrm{i}\Gamma/2}$ $\langle \bigotimes | \bigotimes | \odot | \odot \rangle = 0$ $\langle \bigotimes | \odot | \odot \rangle = 0$ $\langle \bigotimes | \odot | \odot \rangle = 0$ ×

Dipole transitions $\sigma(\omega) = \sum_{f} |\langle f| T |i\rangle|^2 \frac{i/\pi}{\omega - E_f + i\Gamma/2}$ $\langle \bigcirc | \bigcirc | \bigcirc | \bigcirc \rangle = 0$ $\langle \bigcirc | \bigcirc | \bigcirc | \bigcirc \rangle = 0$ $\langle \bigcirc | \odot | \odot \rangle = 1/2$



Dipole transitions
$$\sigma(\omega) = \sum_{f} |\langle f | T | i \rangle|^{2} \frac{i/\pi}{\omega - E_{f} + i\Gamma/2}$$

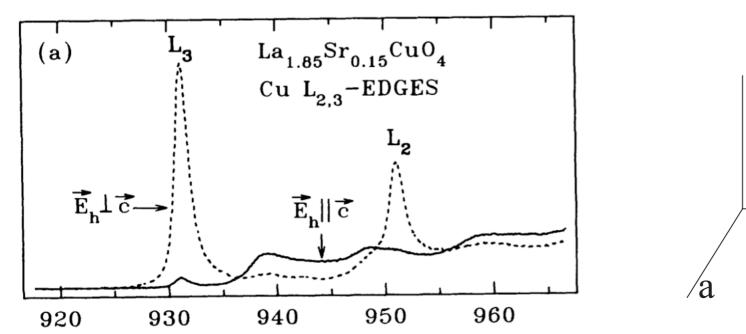
- Dipole transitions are between $\Delta I \pm 1$
- σ is a tensor that obeys the point group symmetry

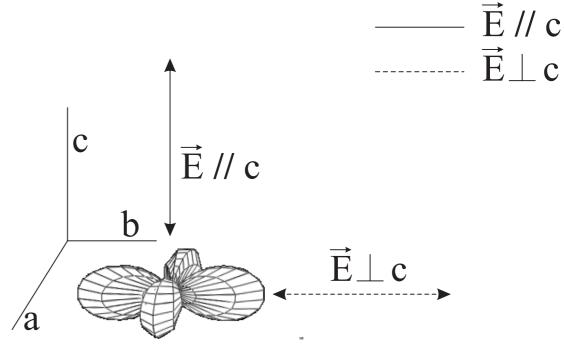
$$\begin{pmatrix} \sigma_{xx} & \sigma_{xy} & \sigma_{xz} \\ \sigma_{yx} & \sigma_{yy} & \sigma_{yz} \\ \sigma_{zx} & \sigma_{zy} & \sigma_{zz} \end{pmatrix}$$

• Powders are isotropic—trace of σ

Now we can understand angular dependence

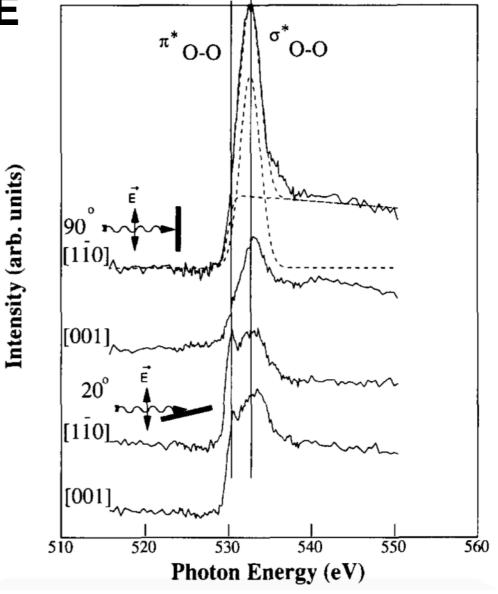
- Changing E vector probes different elements of σ
- Holes in the d_{x2-y2}





Now we can understand angular dependence

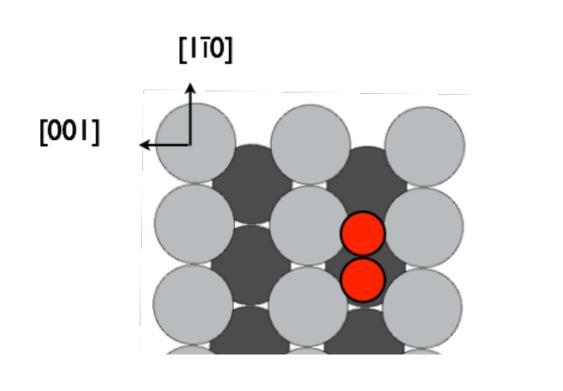
- Changing E vector probes different elements of σ
- Empty π^* along $[1\overline{1}0]$ with out-of-plane **E**
- Empty σ* along [110] with in plane E

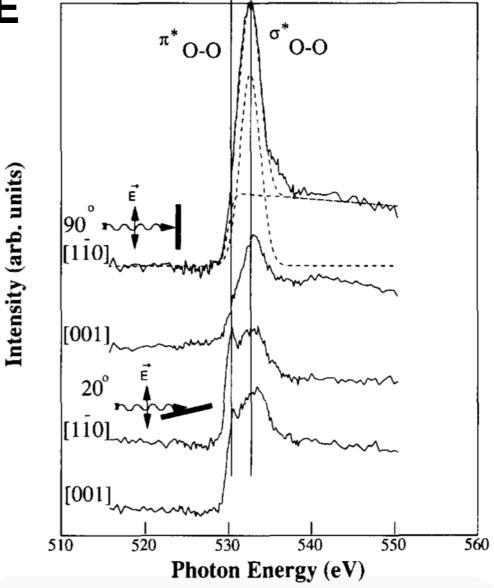


J. Pawel-Crew et al Surf. Sci. 339, 25 (1995)

Now we can understand angular dependence

- Changing E vector probes different elements of σ
- Empty π^* along $[1\overline{1}0]$ with out-of-plane **E**
- Empty σ* along [110] with in plane E





J. Pawel-Crew et al Surf. Sci. 339, 25 (1995)

How to compute

- Can we describe all behavior with one framework?
- In practice pick methodology depending on the type of material and the measurement
- Let's start with deep K edges for materials that are not strongly correlated because DFT is sufficient for them

Quick DFT

- Most electronic structure calculations done with Kohn-Sham DFT
- Works amazingly well but has serious limits
- Basic idea is to solve KS equation

$$\left(-\frac{\hbar^2}{2m}\nabla^2 + v_{ext}\left(\vec{r}\right) + v_H\left(\vec{r}\right) + v_{xc}\left(\vec{r}\right)\right)\phi\left(\vec{r}\right) = \epsilon_i\phi_i\left(\vec{r}\right)$$

- Formally scales as O(N³)
- Not totally correct because we don't know v_{xc}
- To solve we need some basis functions that we can pick

Choices to make

- We have already settled on DFT
- Now we need to think about the type of system
 - Solid?
 - Molecule?
 - Metal?
 - Insulator?
- The answers to these questions will impact the approach
- Say we have solid
 - For metals and insulators we could then use periodic boundary conditions
 - Planewaves are a good basis set for periodic boundary conditions

Planewave DFT

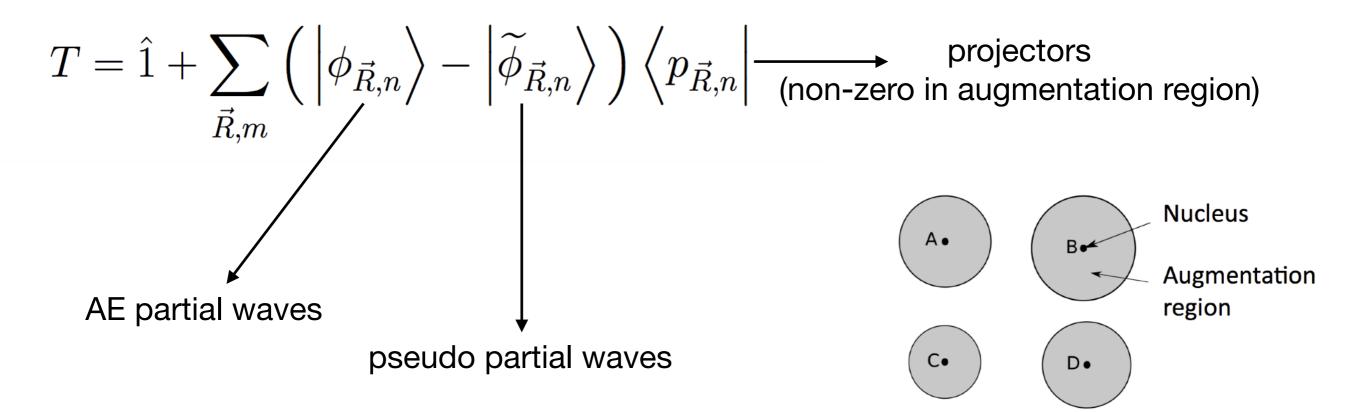
- Expand wave functions in a plane wave basis set
- Advantages
 - FFTs reduce scaling from O(N³) to O(N²)
 - Systematically improvable with a convergence parameter
- And drawbacks
 - Vacuum costs the same as atoms
 - Cannot handle rapid oscillations of wave functions—need pseudo potentials

PAW approach

- $|i\rangle$ and $|f\rangle$ are *all electron* states
- We want to use pseudo states

linear mapping between pseudo and all electron wave functions

 $\left|\Psi\right\rangle = T\left|\widetilde{\Psi}\right\rangle$



P. E. Blöchl, Phys. Rev. B 50, 17953 (1994)

Dipole and PAW

• Because the core hole is localized only terms on the absorbing atom survive

$$\sigma(\omega) = \sum_{f} \left| \left\langle \widetilde{\Psi}_{f} \left| \widetilde{\Phi}_{\vec{R}_{0}} \right\rangle \right|^{2} \frac{\mathrm{i}/\pi}{\omega - E_{f} + \mathrm{i}\,\Gamma/2}$$

Sum over projectors

$$\widetilde{\Phi}_{\vec{R}_{0}} = \sum_{n} \left| p_{\vec{R}_{0},n} \right\rangle \left\langle \widetilde{\phi}_{\vec{R}_{0},n} \right| D \left| \psi_{i} \right\rangle$$

- To compute the spectrum you need
 - Core wave function on absorber ψ_i
 - AE partial waves centered on absorber
 - PAW projectors

What does it all mean?

XAS is (in this case) measuring a lifetime broadened projected density of states in the presence of a core.

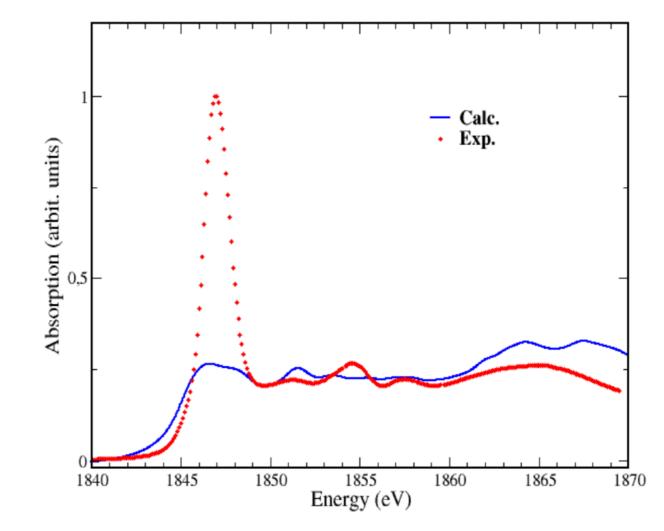
$$\sigma(\omega) = \sum_{f} \left| \left\langle \widetilde{\Psi}_{f} \left| \widetilde{\Phi}_{\vec{R}_{0}} \right\rangle \right|^{2} \frac{\mathrm{i}/\pi}{\omega - E_{f} + \mathrm{i}\,\Gamma/2}$$

$$\widetilde{\Phi}_{\vec{R}_0} = \sum_{n} \left| p_{\vec{R}_0, n} \right\rangle \left\langle \widetilde{\phi}_{\vec{R}_0, n} \right| D \left| \psi_i \right\rangle$$

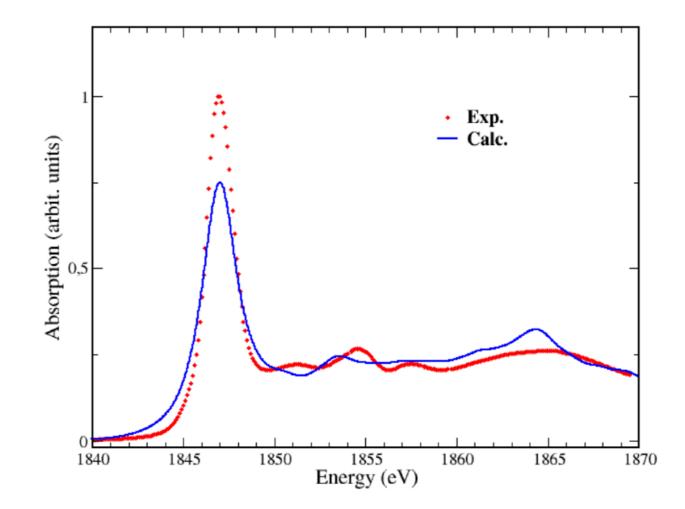
Oh the core hole

- There is a core hole in the final state
- But we are using an independent particle approach
- Turns out you don't always need a core-hole
- Some common approaches are
 - Full core hole
 - Half core hole aka Slater's transition potential approximation
 - No core hole

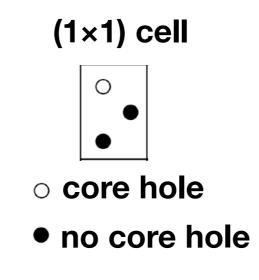
• Ignoring the core hole is not a good idea



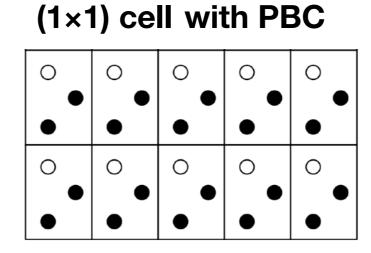
• Adding a core hole does better but there are still problems



• Can we do better?



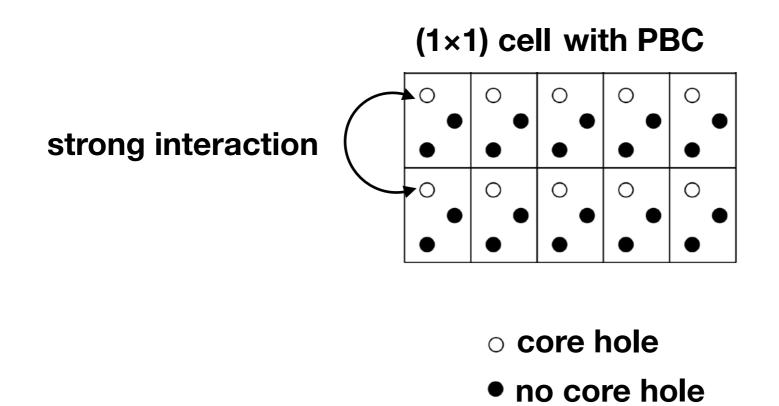
• The core hole sees is periodic image



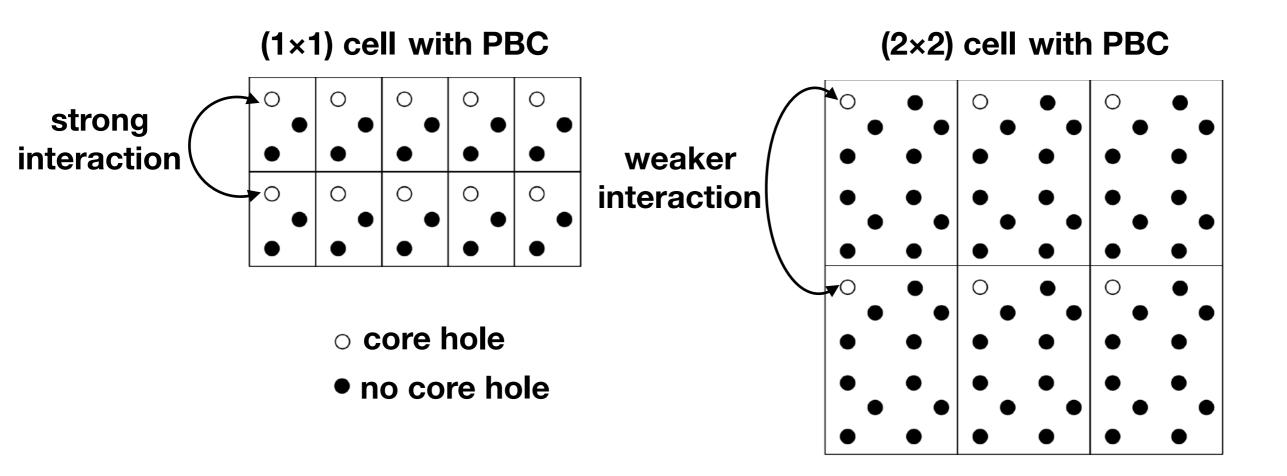
 \circ core hole

• no core hole

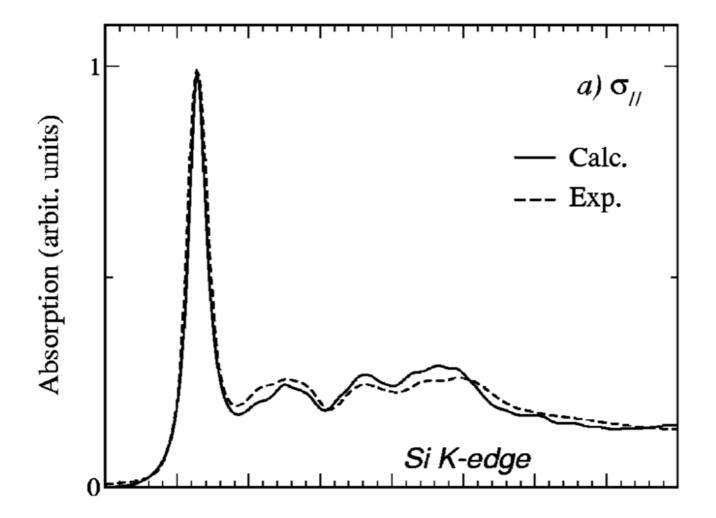
• The core hole sees is periodic image



- The core hole sees is periodic image
- Double unit cell size to reduces spurious interaction

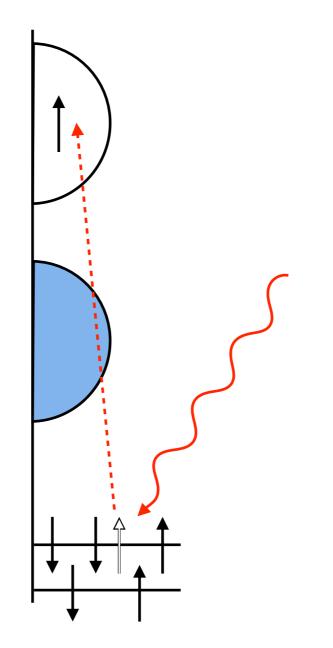


• With a (2x2x2) cell the calculation is converged



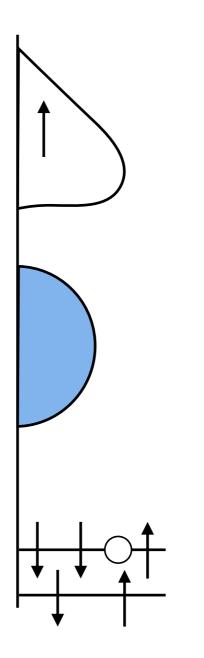
What happened?

Core-valence interaction pulls states down



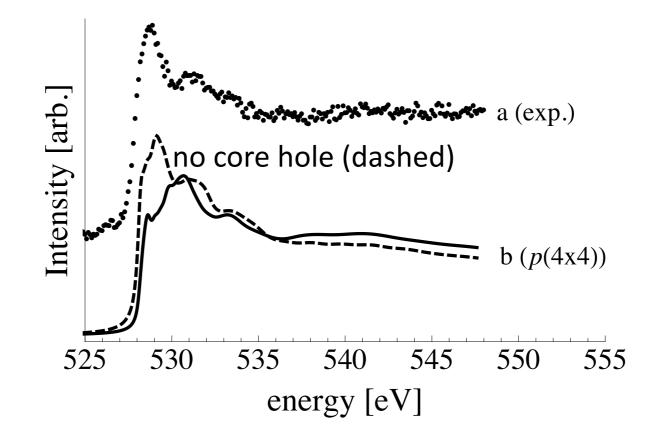
What happened?

Core-valence interaction pulls states down



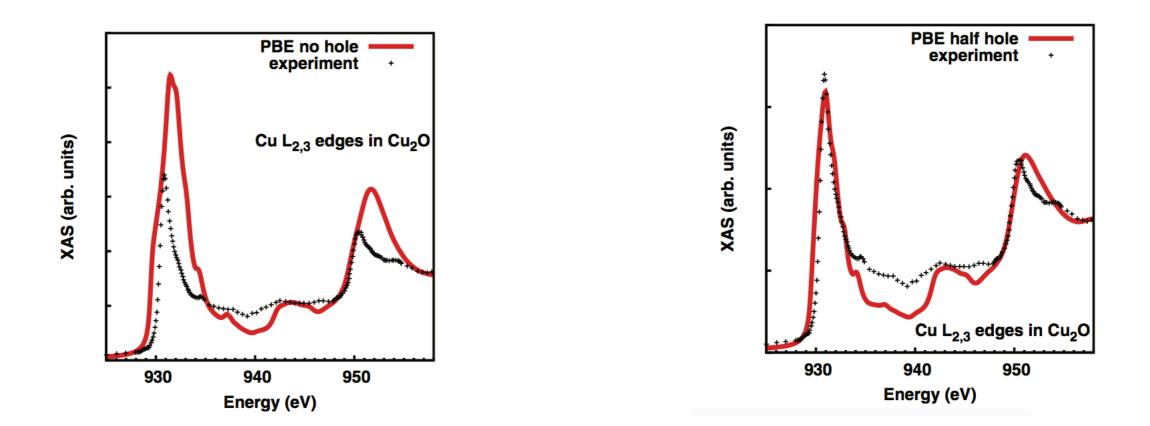
Sometimes no hole

• The core valence interaction can appear to be completely screened



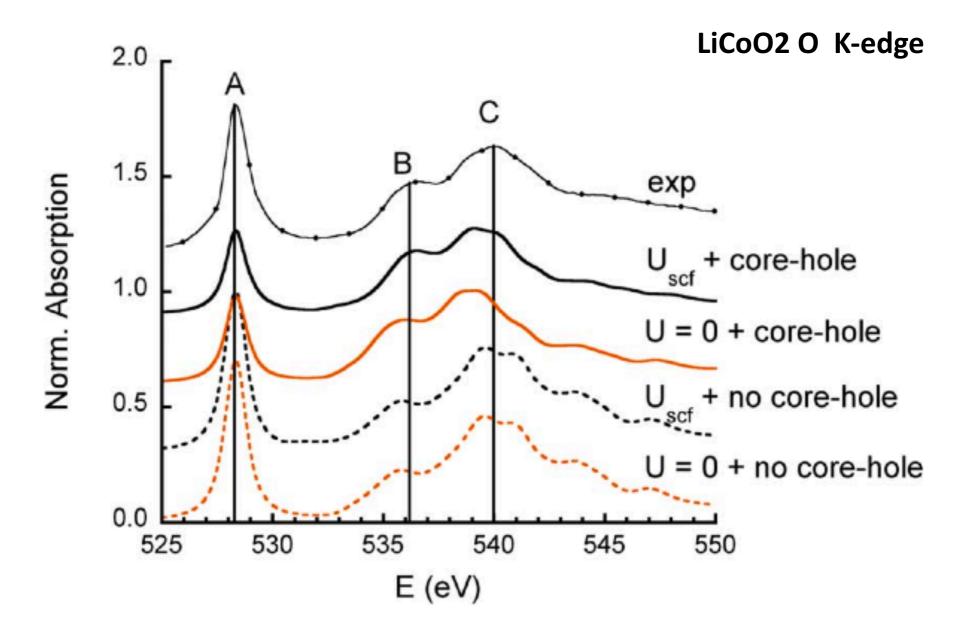
Sometimes half a hole

• The core valence interaction can appear to be partially screened



Sometimes it does not matter

• Or the core hole potential may not do much



Juhin et al. PRB 81, 115115 (2010)

The good and bad about core holes

- The core hole problem comes from describing two particle system with independent particle approximation (IPA)
 - Good news is IPA works well for K edges
 - Bad news is we don't know how much core hole potential to include a priori
- If we want a better answer we need to turn to a two-particle theory
 - Good news is we have one in the Bethe-Salpeter equation (BSE)
 - Bad news is its computationally expensive

• Hamiltonian similar to before

$$H_{\rm BSE} = H_e - H_b - V_D + V_X$$

• Single particle electron and hole Hamiltonians

$$H_e - H_b$$

Screened Coulomb interaction

$$V_D$$

• Non-local exchange

$$V_X$$

• Hamiltonian similar to before

$H_{\rm BSE} = H_e - H_b - V_D + V_X$

• Single particle electron and hole Hamiltonians

$$H_e - H_b$$

Screened Coulomb interaction

• Non-local exchange

$$V_X$$

• Hamiltonian similar to before

$$H_{\rm BSE} = H_e - H_b - V_D + V_X$$

Single particle electron and hole Hamiltonians

Screened Coulomb interaction

 V_D

 $V_{\mathbf{V}}$

• Non-local exchange

• Hamiltonian similar to before

$$H_{\rm BSE} = H_e - H_b - V_D + V_X$$

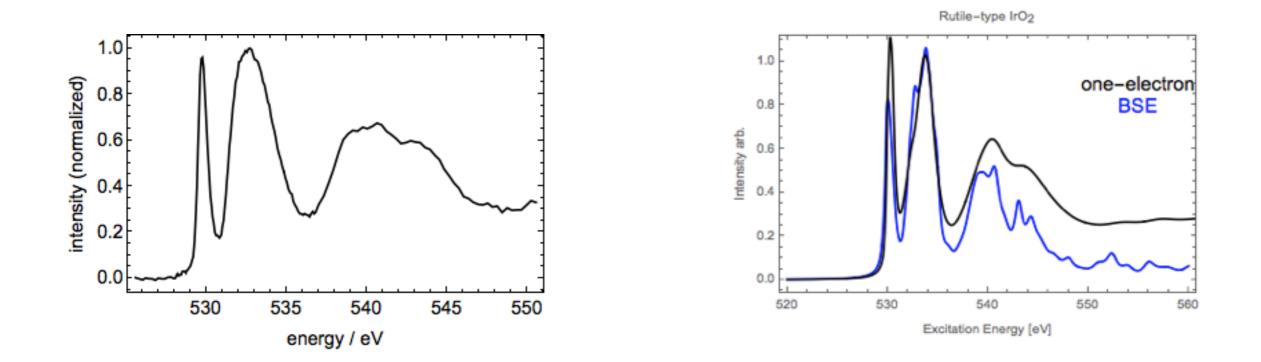
Single particle electron and hole Hamiltonians

$$H_e - H_b$$

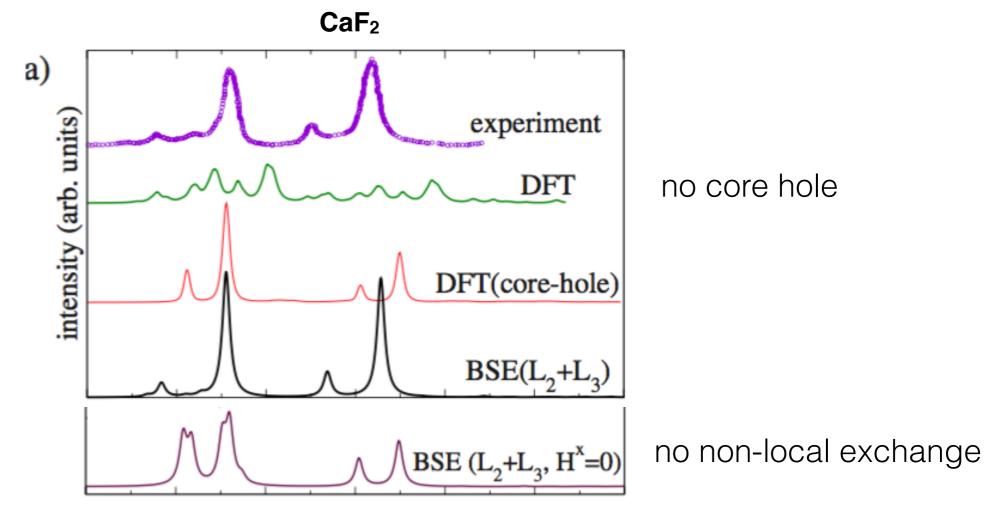
Screened Coulomb interaction

$$V_X$$

- BSE and IPA are formally similar
- One difference is screened Coulomb interaction

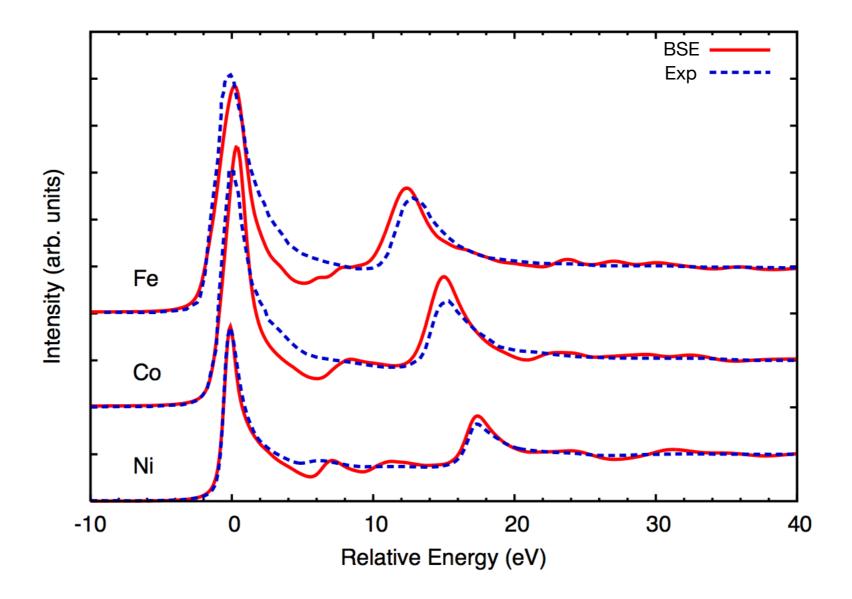


- A bigger difference is the non-local exchange
- It mixes L_{II} and L_{III} edges

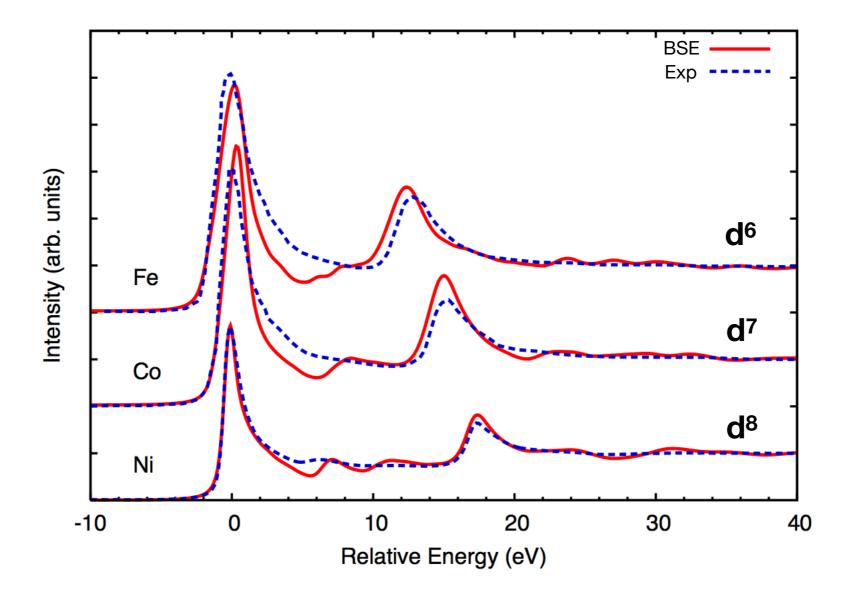


PHYSICAL REVIEW B 82, 205104 (2010)

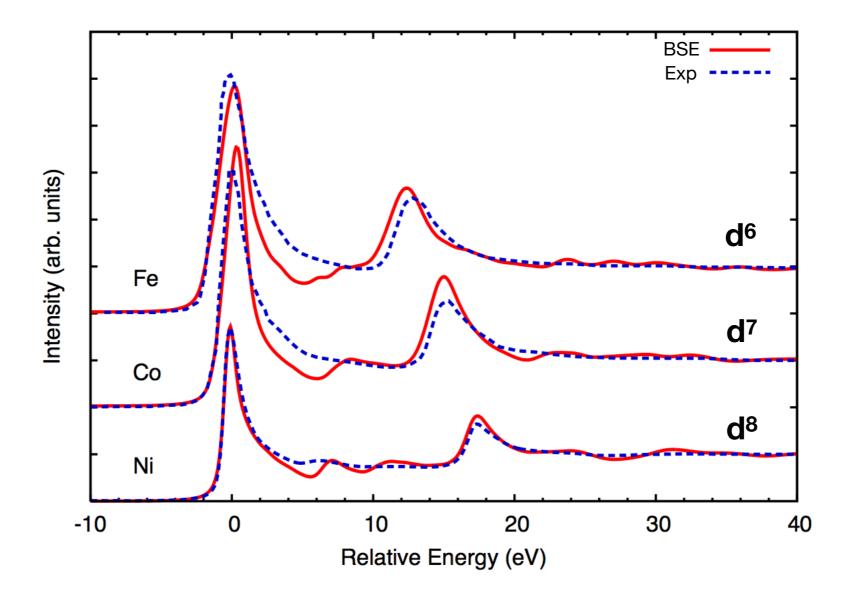
• BSE can capture non-statistical L_{III}/L_{II} branching



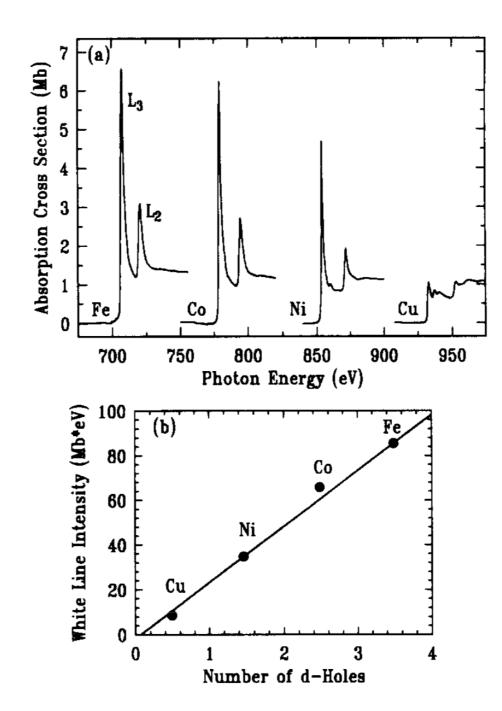
BSE can capture non-statistical L_{III}/L_{II} branching



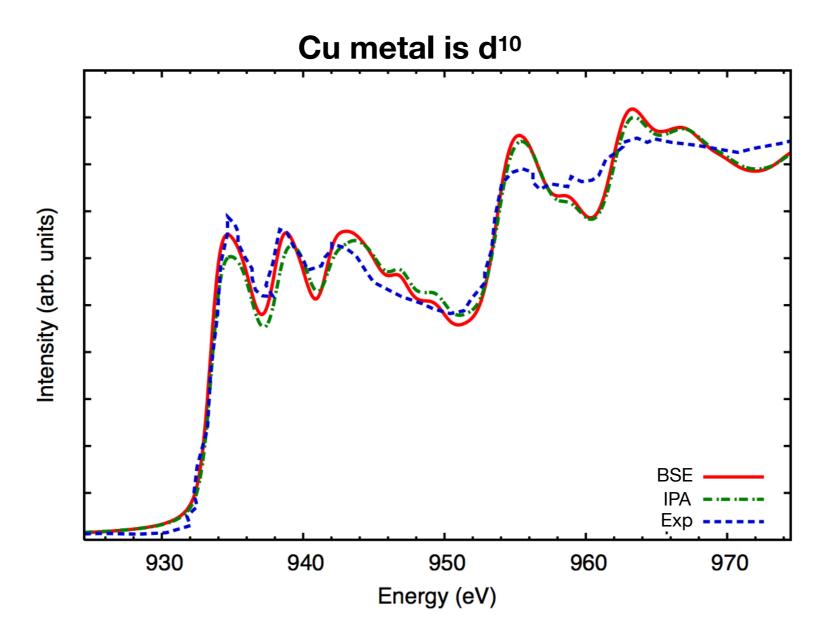
• Non-local exchange means L_{III} alone does not give d hole count



• Non-local exchange means L_{III} alone does not give d hole count

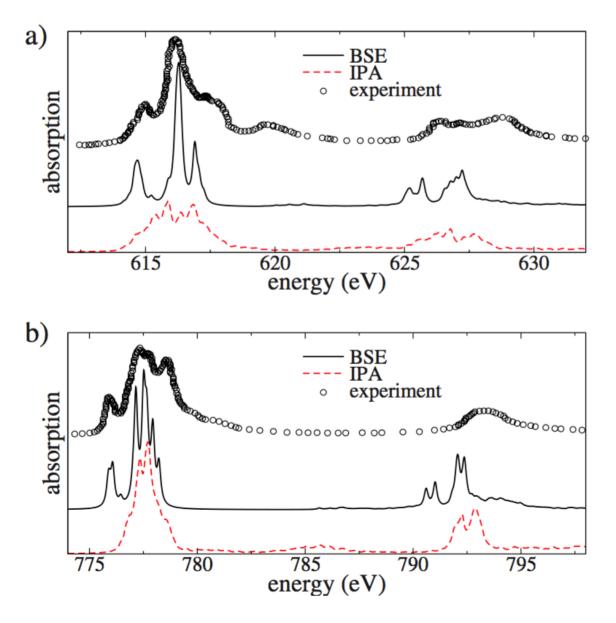


• But when there is no white-line IPA can work



When does BSE fail?

- Formally defined for one-hole and one-electron excitation
- If many particles are present it might not work—especially when correlated

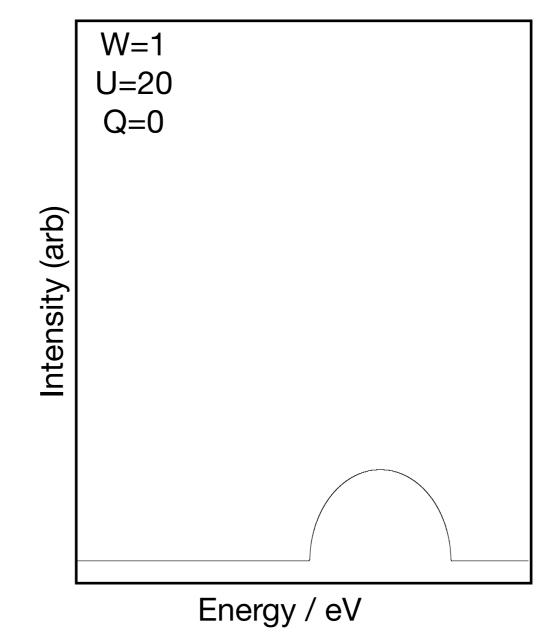


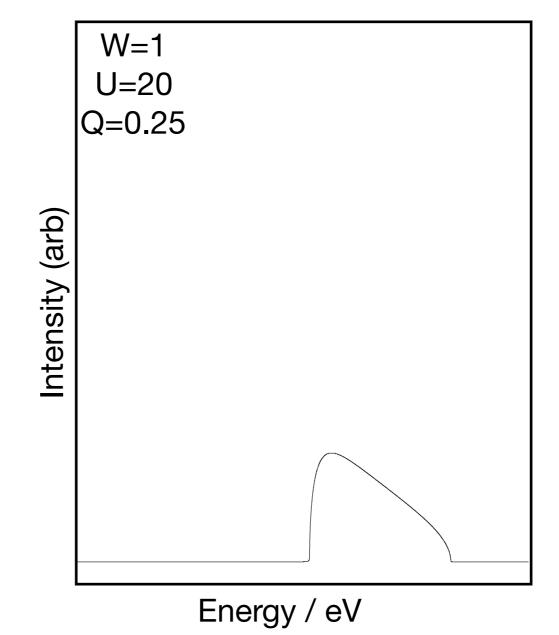
PHYSICAL REVIEW B 82, 205104 (2010)

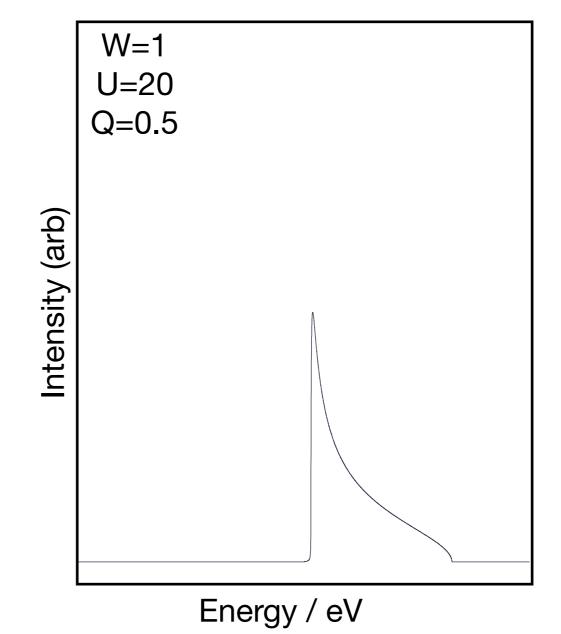
Many-body problem

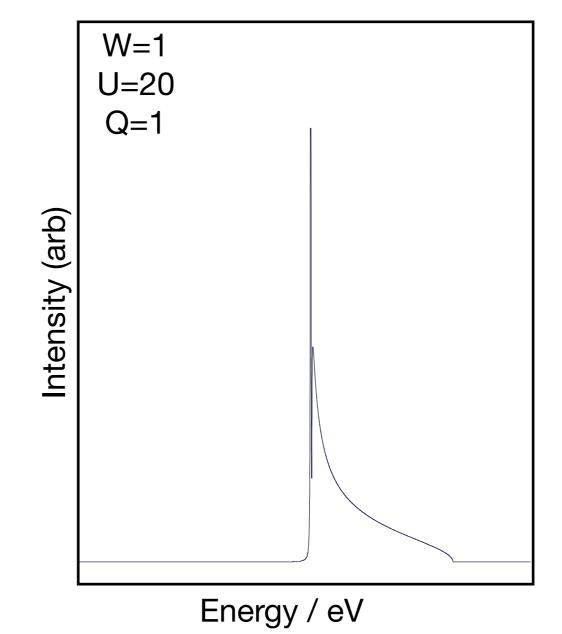
Core-hole potential

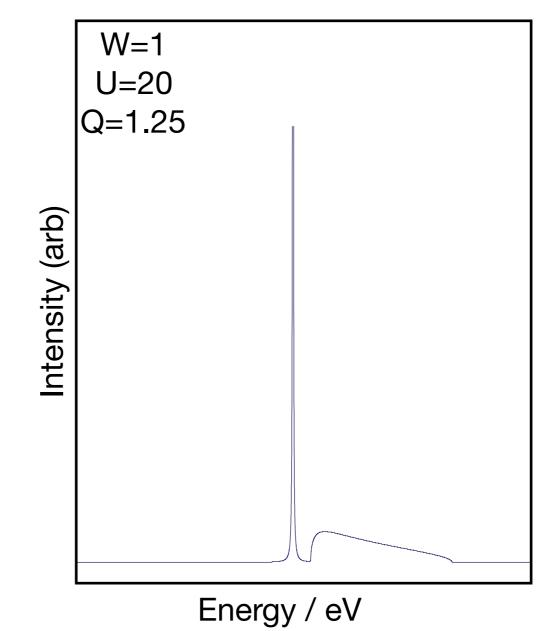
• What if we have a strong core hole potential (Q)?

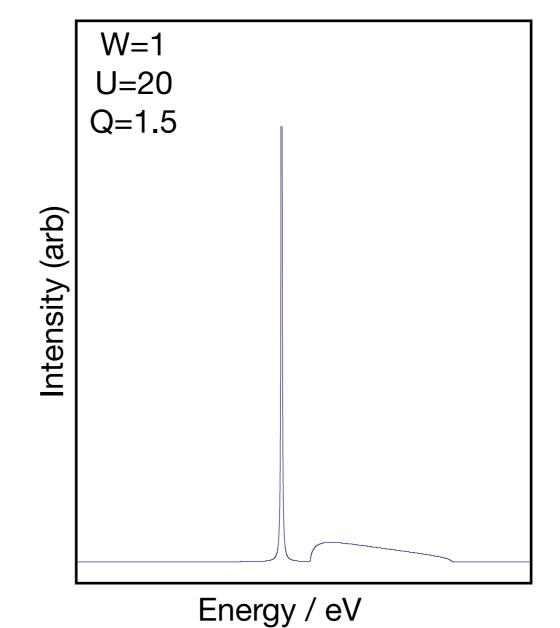


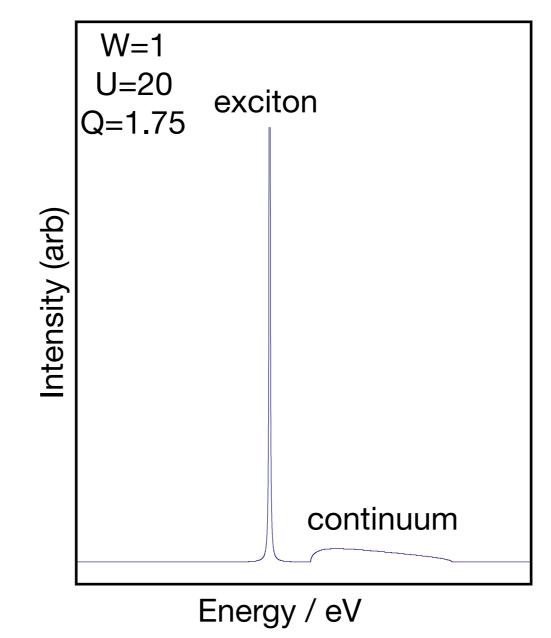






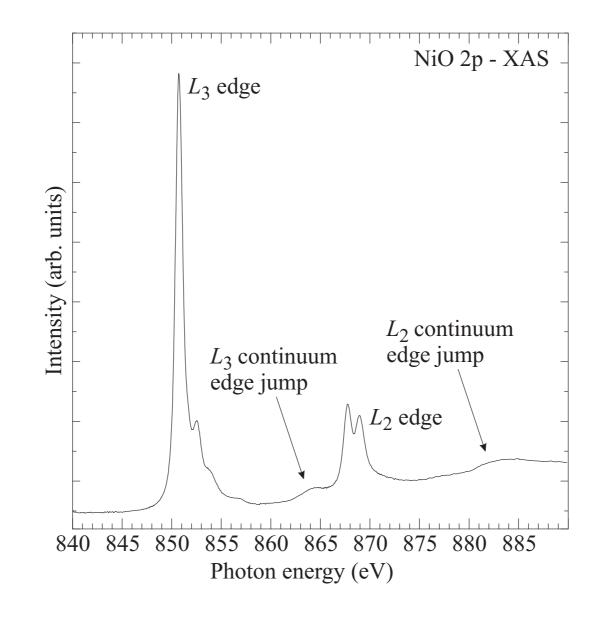






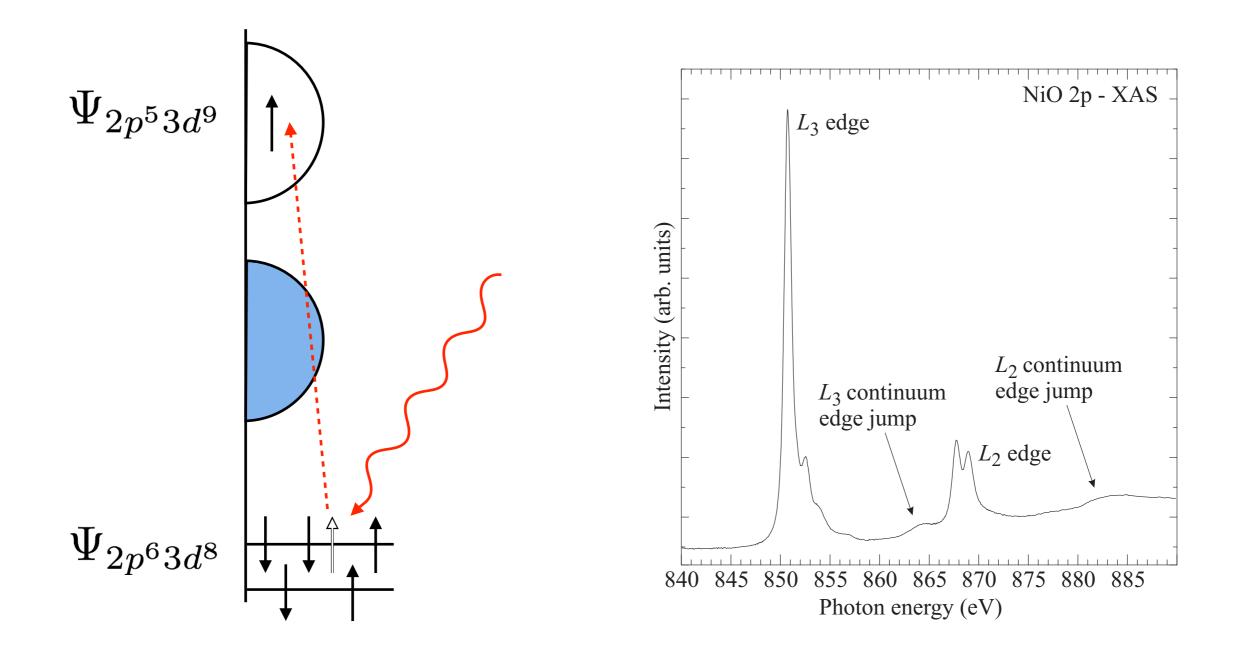
Strong core-valence interaction

- We no longer see a PDOS—exciton instead
- We can use a different approach to capture the physics



Configuration interaction

Now we need to capture correlations



Configuration interaction

• Expand ground state wave function as

$$\psi_0 = \sum_i c_i \left| d^{n+i} \underline{L}^i \right\rangle$$

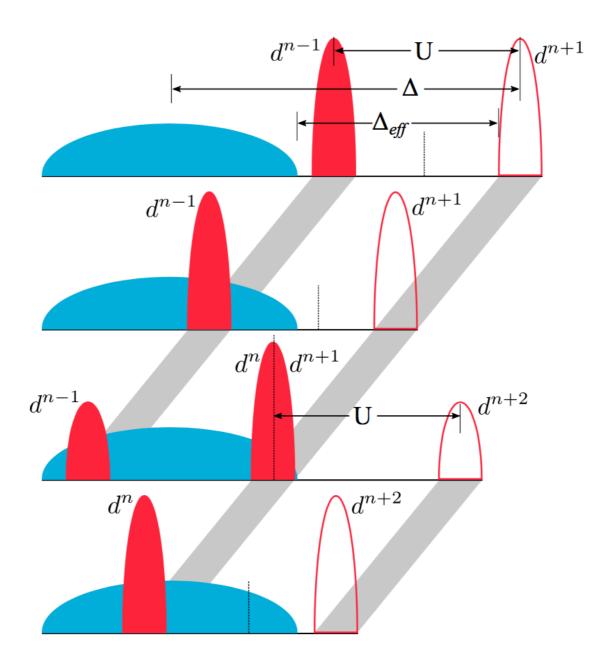
• Define energies for charge fluctuations

$$U \equiv \left[E\left(d^{n+1}\right) + E\left(d^{n-1}\right) \right] - 2E\left(d^{n}\right)$$
$$\Delta \equiv E\left(d^{n+1}\underline{L}^{1}\right) - E\left(d^{n}\right)$$

• Now we need a basis

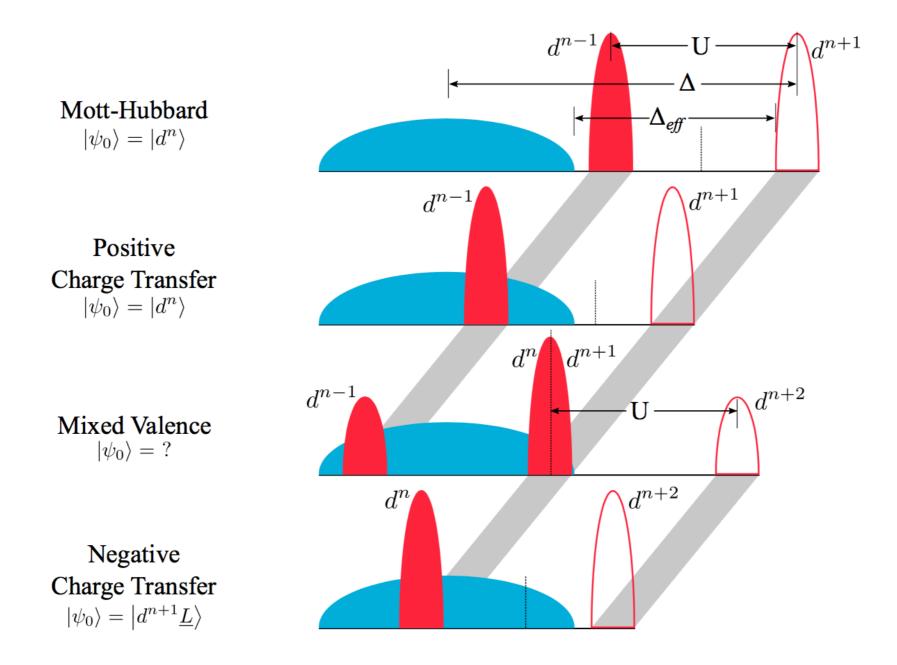
Parameters

• If view the parameters U and Δ graphically...



Parameters

- If view the parameters U and Δ graphically...
- They tell us something about the electronic structure



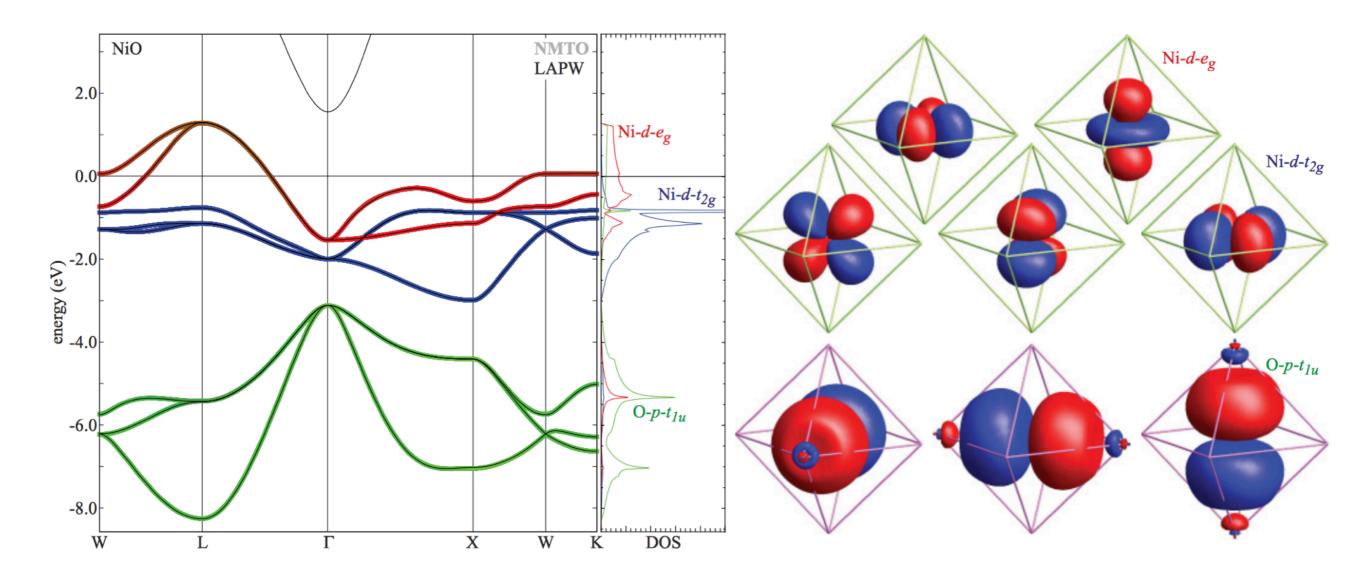
Parameter sensitivity

• XAS is not sensitive to U and Δ because excited electron screens

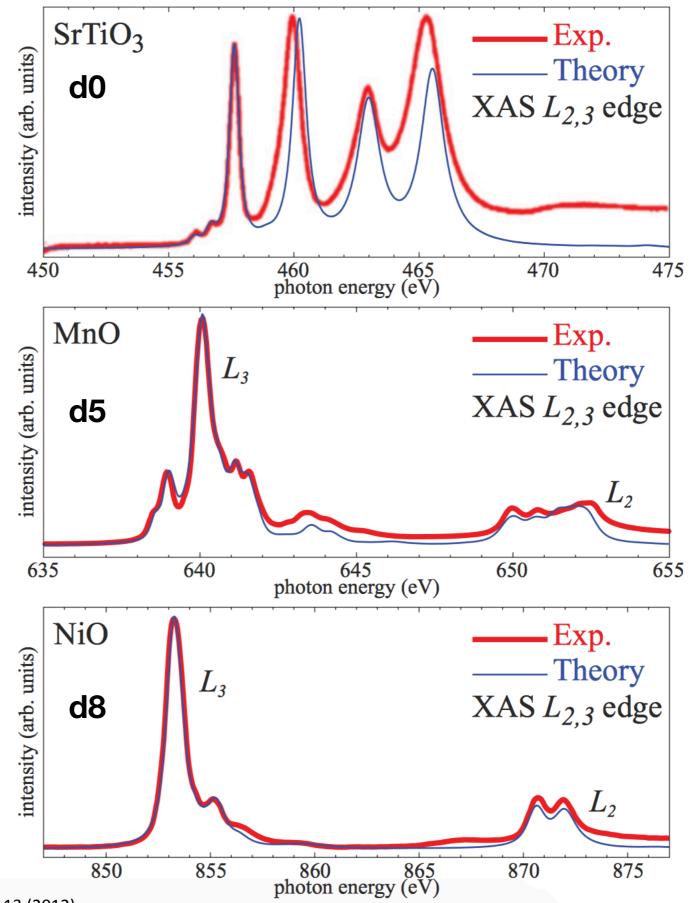
Q is the core hole potential

Local many-body problem

- Start with the LDA (or better) potential
- Create a set of Wannier functions
- Build local Hamiltonian on this basis and potential and include all local many body interactions



Spectra dominated by multiplets



M.W. Haverkort, M. Zwierzycki, O.K. Andersen, PRB 85, 165113 (2012).

Summary of CI approach

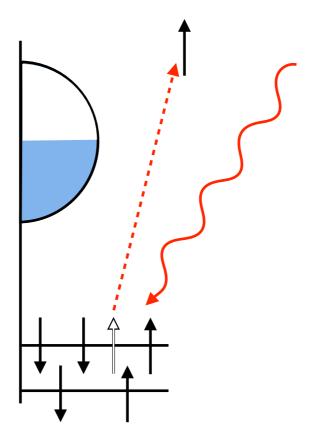
- The bad
 - Based on parameters (U and Δ) that are not easy to compute a priori
 - Computationally expensive for large basis
- The good
 - XAS rather insensitive to U and Δ
 - If you can find the values of U and Δ you will know a great deal about the system
 - Small basis often fine for excitons

Summary of XAS

- Polarization dependence comes from dipole selection rule
- LII,III needed in sum rule mixing due to non-local exchange
- Dichotomy of results on different materials/energy scales
 - PDOS when correlations and core hole potential are weak
 - Multiplets when correlations and core hole potential are strong

XPS

- Typically used for chemical shift, stoichiometry, etc...
- To get the zero of XAS you need to know the core level binding energy

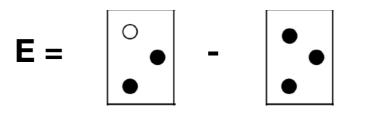


Core level binding energy

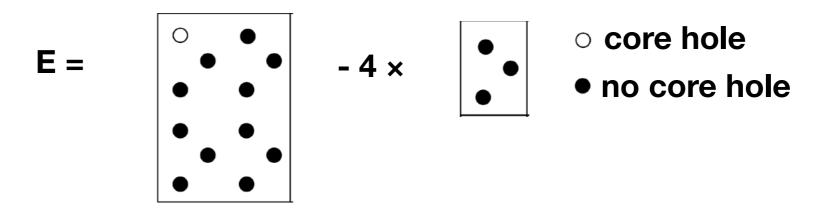
- Computing a core level binding energy is straightforward with DFT
- You only get relative binding energy
- You can compute the initial state contribution separately from the final state contributions
 - Initial state shift is just the energy of the KS level relative to some reference
 - Final state shift involves relaxations

Final state shift

• Energy difference between final and initial state



- \circ core hole
- no core hole
- Perform SCF calculation with core hole to get energy of final state
- With PBC will require supercell

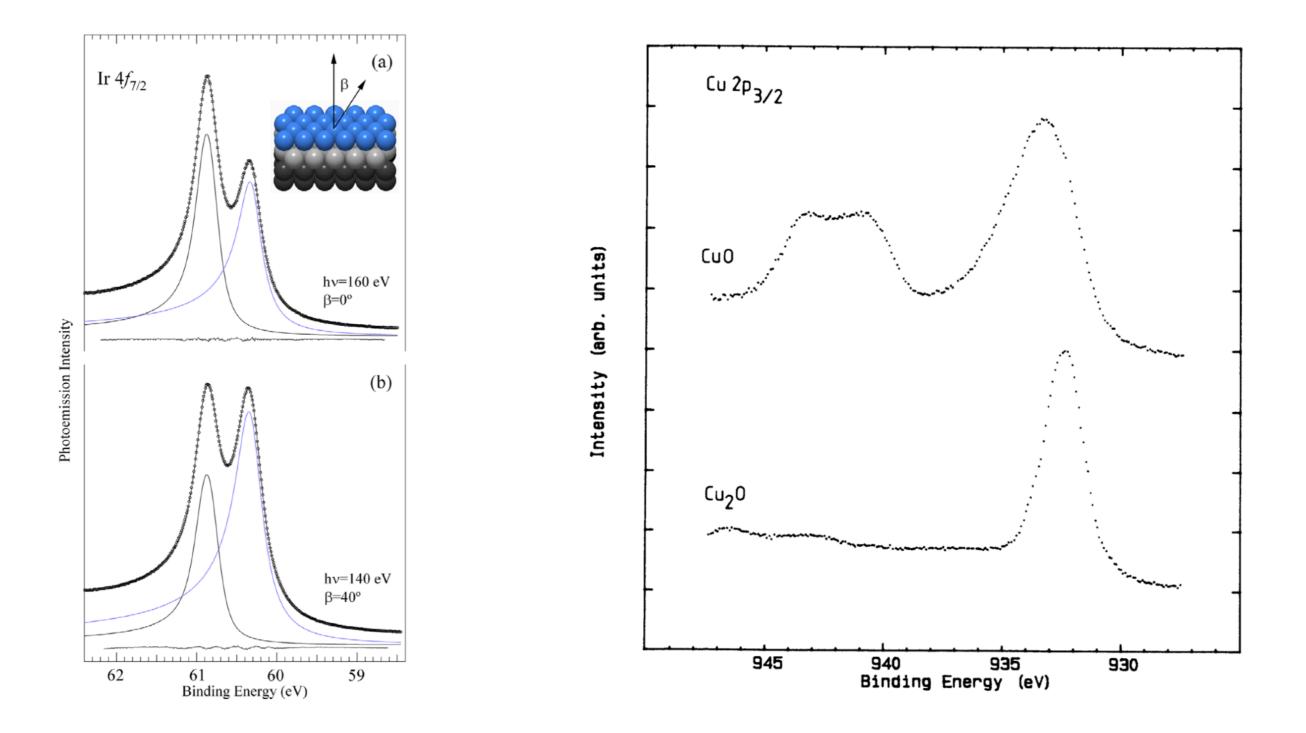


Can also use Slater's transition state approximation

XPS

- But the spectra are not delta functions
- Final states are always screened
- How they are screened matters
- Multiple peaks/shape give insight into contributions to ground state

XPS

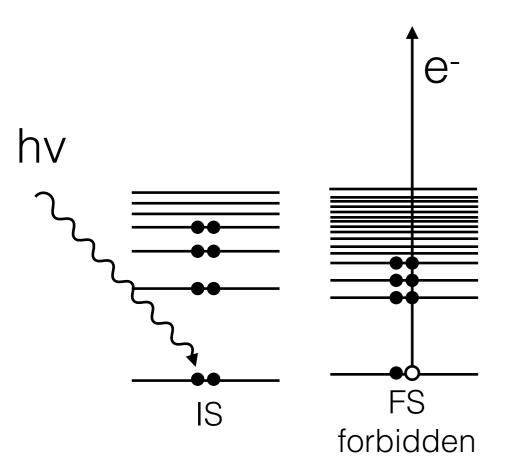


J. Ghijsen, et al. Phys. Rev. B 38, 11322

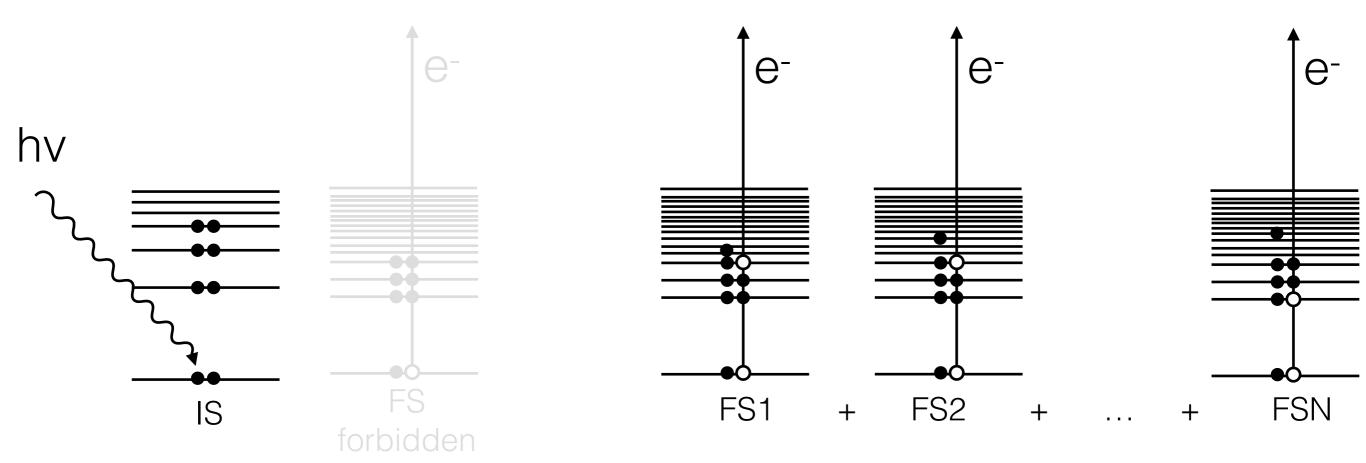
Line shapes for metals

- X-ray edge of a metal is complicated because 10²³ conduction electrons respond to creation core hole
- Original work on absorption
 - Exciton theory predicts adsorption edges have power law divergence near threshold (Mahan 1967)
 - Orthogonality catastrophe requires electron-hole excitations for non-zero absorption (Anderson 1967)
 - Asymptotically exact solution available near threshold (Nozieres and deDomincis 1969)
- Same many body physics present in XPS (Doniach and Sunjic 1970)

• Orthogonality catastrophe makes main line asymmetric

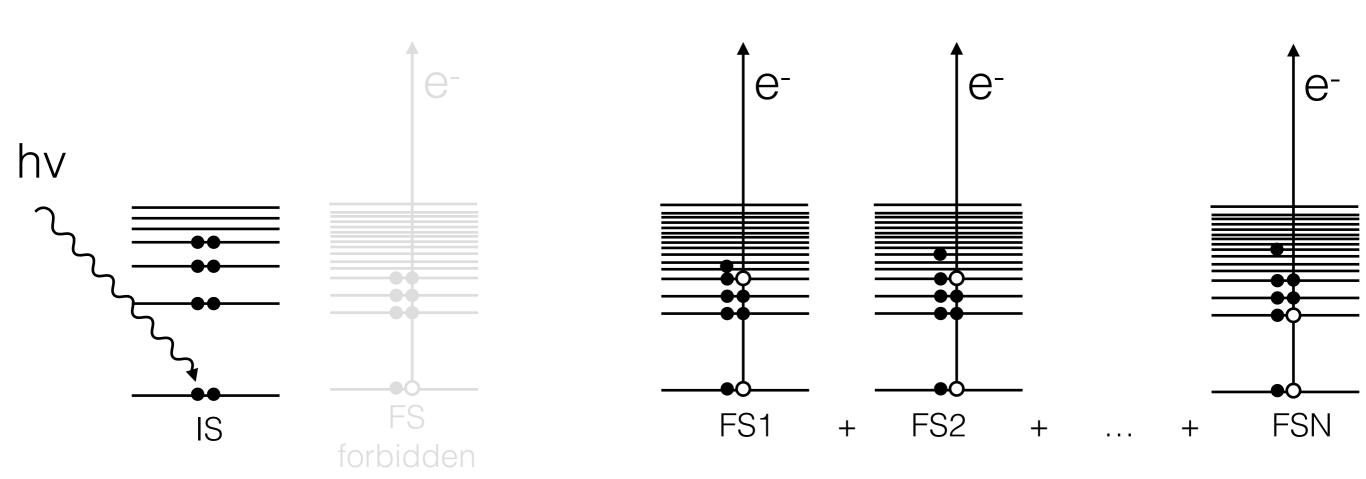


• Orthogonality catastrophe makes main line asymmetric

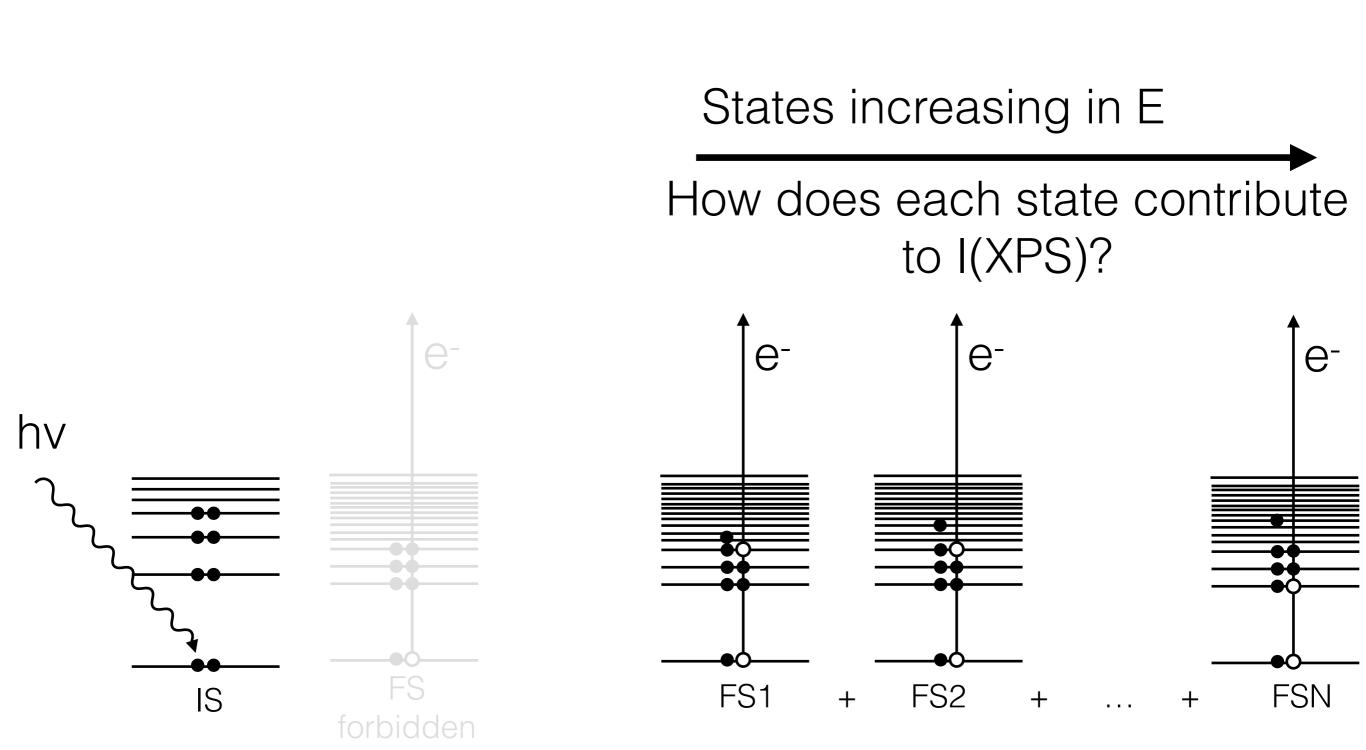


• Orthogonality catastrophe makes main line asymmetric

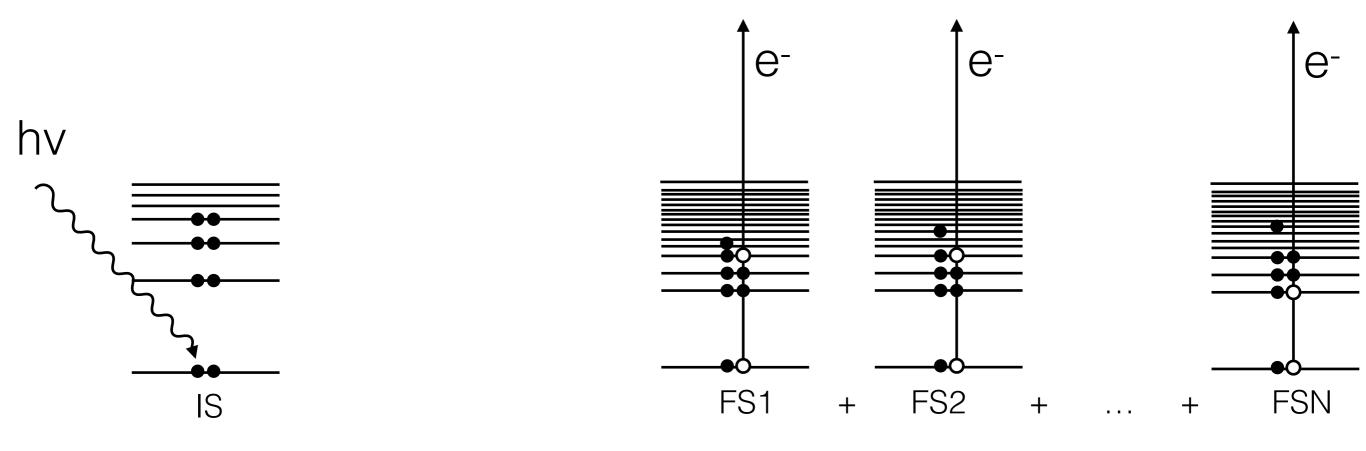
States increasing in E



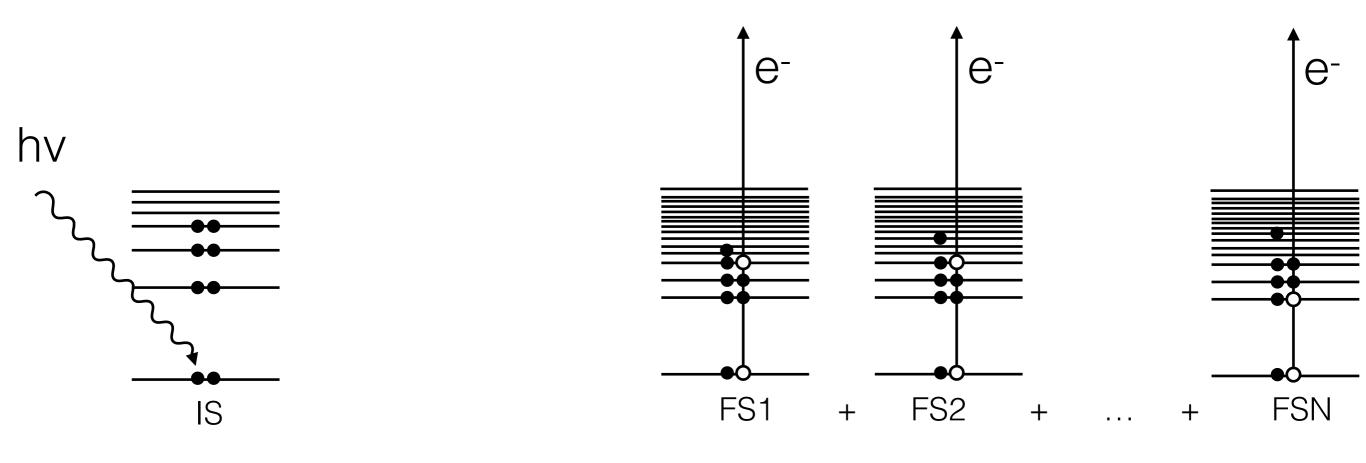
• Orthogonality catastrophe makes main line asymmetric



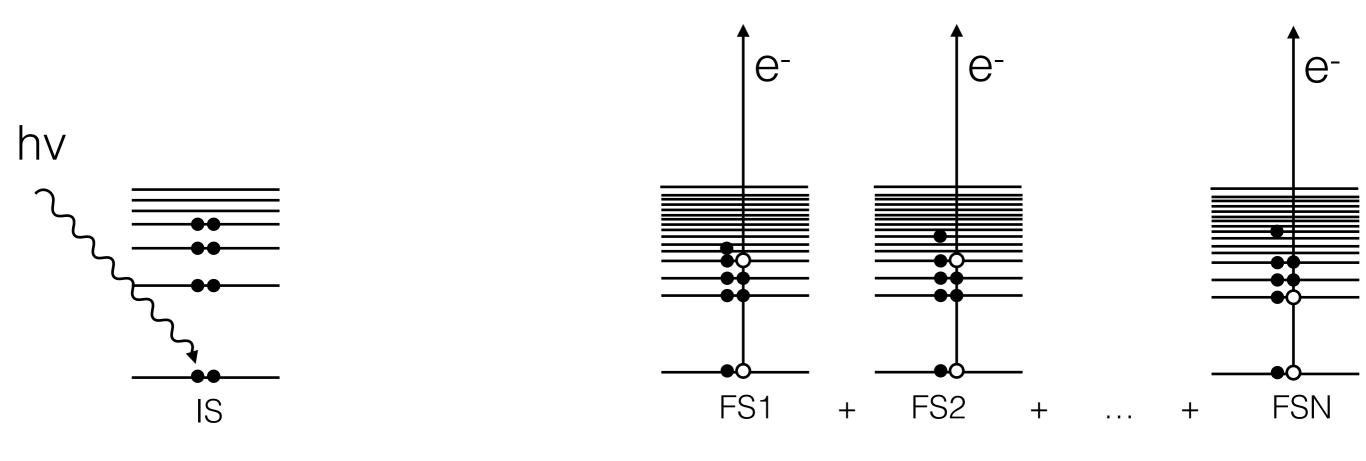
- Orthogonality catastrophe makes main line asymmetric
- Probability for an excitation from i to j is M^2/ϵ_{ij}^2



- Orthogonality catastrophe makes main line asymmetric
- Probability for an excitation from i to j is M^2/ϵ_{ij}^2
- Total probability density function is $P(E) \propto \int_{-\infty}^{\infty} \exp(-iEt) \exp\left(\sum_{ij} \frac{M^2 \exp(i\epsilon_{ij}t) 1}{\epsilon_{ij}^2}\right) dt$



- Orthogonality catastrophe makes main line asymmetric
- Probability for an excitation from i to j is M^2/ϵ_{ij}^2
- Total probability density function is $P(E) \propto \int_{-\infty}^{\infty} \exp(-iEt) \exp\left(\sum_{ij} \frac{M^2 \exp(i\epsilon_{ij}t) 1}{\epsilon_{ij}^2}\right) dt$
- Convolve with Lorentzian and Gaussian to get line shape



dt

 ϵ_{ij}^2

- Orthogonality catastrophe makes main line asymmetric \bullet
- Probability for an excitation from i to j is M^2/ϵ_{ij}^2 •
- $M^2 \exp (i \epsilon_{ij} t)$ • Total probability density function is P(E) & $\int_{-\infty}^{\infty} \exp(-iEt) \exp($
- Convolve with Lorentzian and Gaussian to get line shape
- Make it solvable by assuming
 - matrix elements small and equal
 - DOS continuous \Rightarrow replace sum with integral over joint DOS
 - DOS constant \Rightarrow JDOS is linear •

• Assumptions restrict validity to neighborhood near Ef!

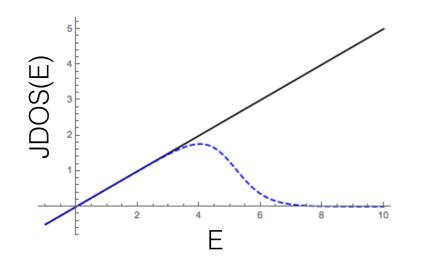
• I(E) integrals do not coverage because JDOS is linear

$$I (E) \sim \int_{-\infty}^{\infty} e^{-iEt} e^{-\lambda |t|} e^{-\frac{\sigma^2 t^2}{2}}$$
$$exp \left(\int_{0}^{\infty} JDOS (E) \frac{e^{iE't-1}}{(E')^2} dE' \right) dt$$

• I(E) integrals do not coverage because JDOS is linear

$$I (E) \sim \int_{-\infty}^{\infty} e^{-iEt} e^{-\lambda + t} e^{-\frac{\sigma^{2}t^{2}}{2}}$$
$$exp \left(\int_{0}^{\infty} JDOS (E) \frac{e^{iE't-1}}{(E')^{2}} dE' \right) dt$$

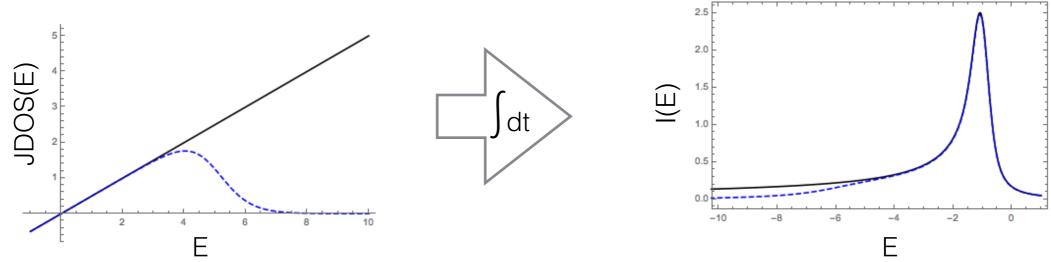
JDOS must tend to zero as E goes to infinity



• I(E) integrals do not coverage because JDOS is linear

$$\begin{split} \mathbf{I} &(\mathbf{E}) \sim \int_{-\infty}^{\infty} \mathbf{e}^{-\mathbf{i} \mathbf{E} \mathbf{t}} \mathbf{e}^{-\lambda + \mathbf{t} + \mathbf{t}} \mathbf{e}^{-\frac{\sigma^2 \mathbf{t}^2}{2}} \\ &\mathbf{exp} \left(\int_{0}^{\infty} \mathbf{JDOS} (\mathbf{E}) \frac{\mathbf{e}^{\mathbf{i} \mathbf{E}' \mathbf{t} - 1}}{(\mathbf{E}')^2} \, \mathrm{d}\mathbf{E}' \right) \, \mathrm{d}\mathbf{t} \end{split}$$

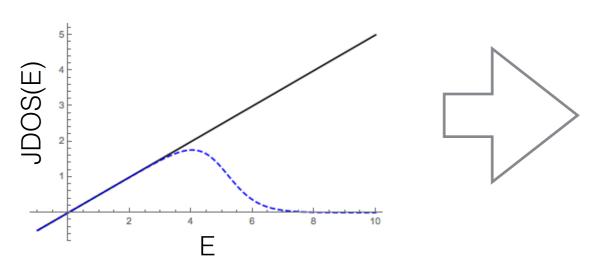
• JDOS must tend to zero as E goes to infinity

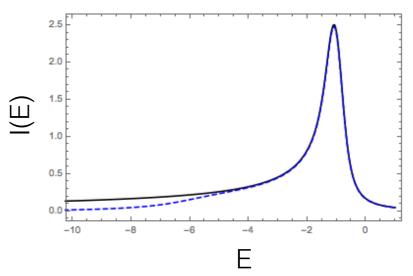


• I(E) integrals do not coverage because JDOS is linear

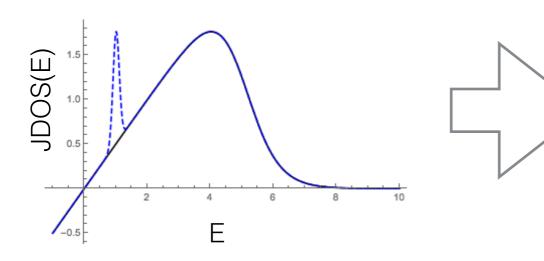
$$I (E) \sim \int_{-\infty}^{\infty} e^{-iEt} e^{-\lambda + t} e^{-\frac{\sigma^{2}t^{2}}{2}}$$
$$exp \left(\int_{0}^{\infty} JDOS (E) \frac{e^{iE't-1}}{(E')^{2}} dE' \right) dt$$

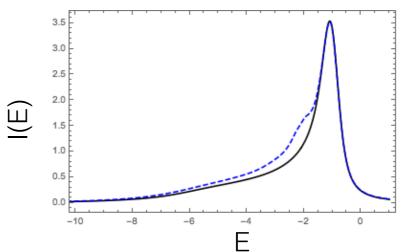
• JDOS must tend to zero as E goes to infinity





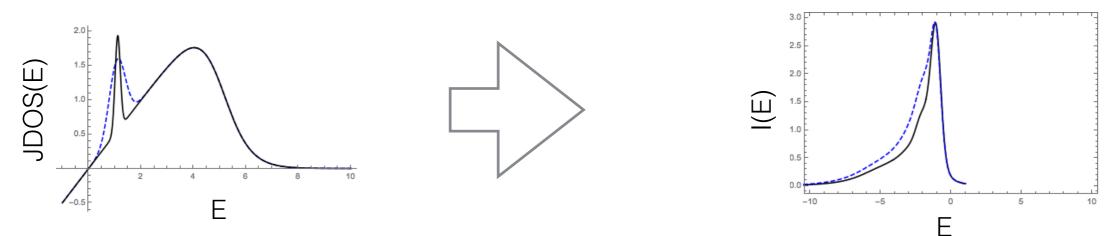
• Features in DOS near Ef will appear in spectra



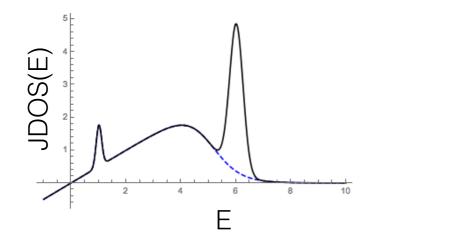


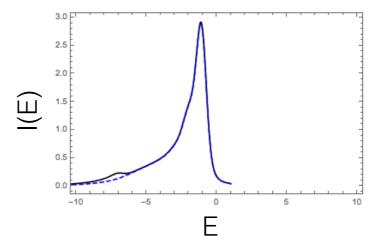
JDOS Features

• Size and shape of of JDOS features influence peak shape

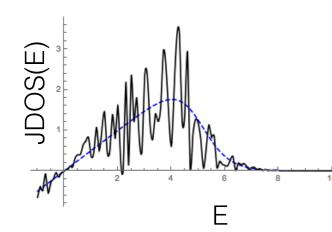


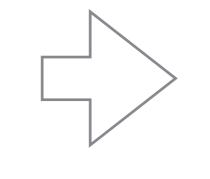
• High energy features have weaker influence

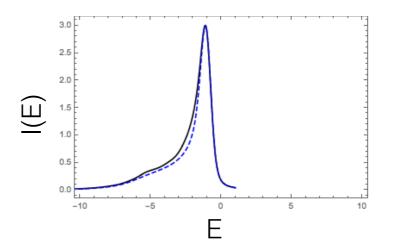




• JDOS features can appear averaged

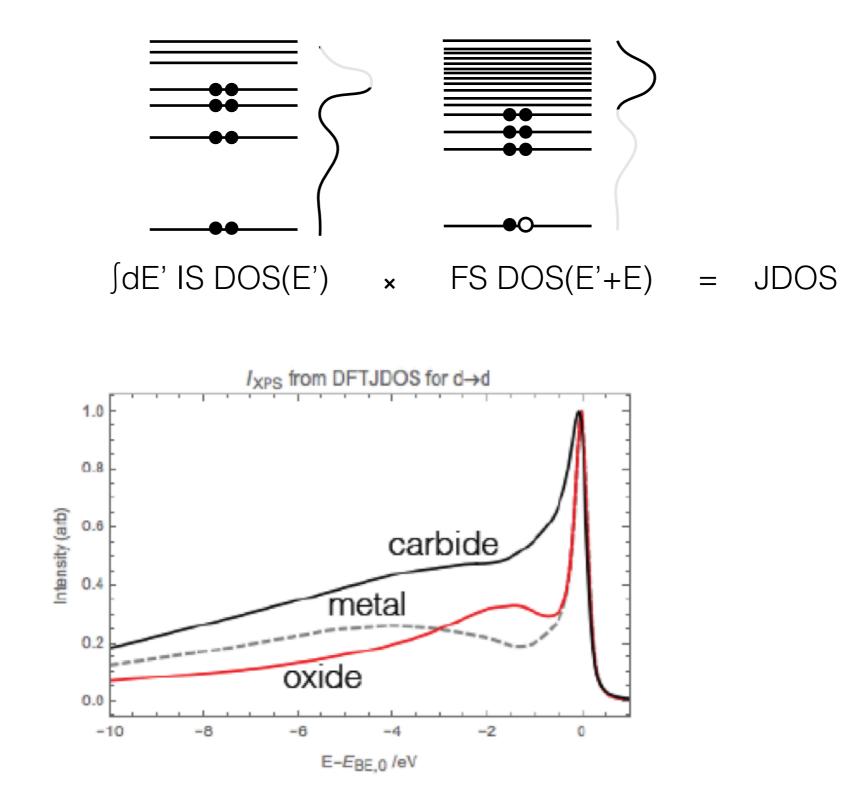






JDOS from DFT

- Can just use JDOS from DFT calculations (still ignoring matrix elements)
- Use occupied IS DOS and unoccupied FS DOS to generate JDOS



Non-metallic?

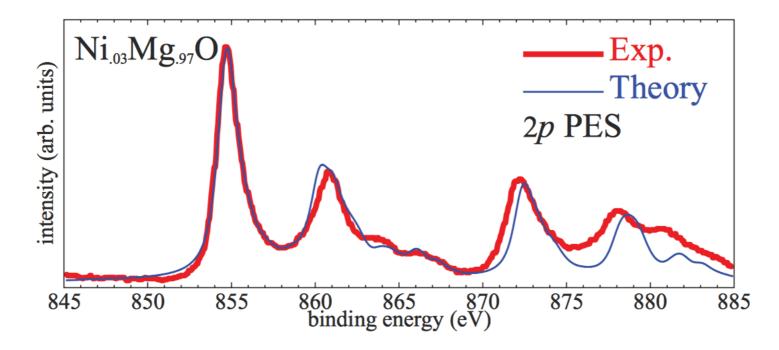
- Primary screening is charge transfer from ligands
- Return to CI picture

$$\psi_0 = \sum_i c_i \left| d^{n+i} \underline{L}^i \right\rangle$$

$$U \equiv \left[E\left(d^{n+1}\right) + E\left(d^{n-1}\right) \right] - 2E\left(d^{n}\right)$$
$$\Delta \equiv E\left(d^{n+1}\underline{L}^{1}\right) - E\left(d^{n}\right)$$

Local many-body problem

- Use Wannier functions from LDA to build local Hamiltonian and potential
- Include all local many body interactions

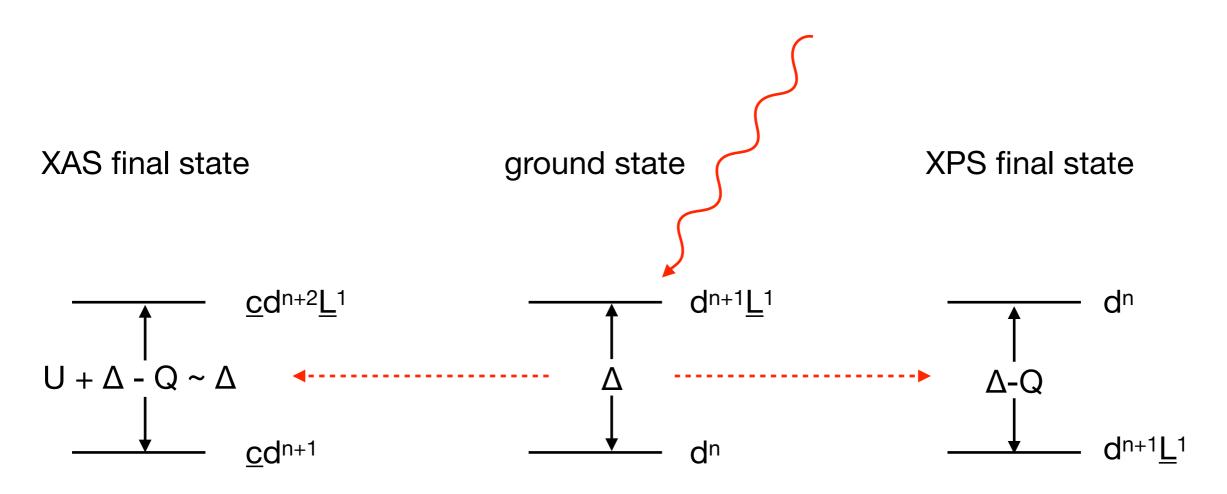


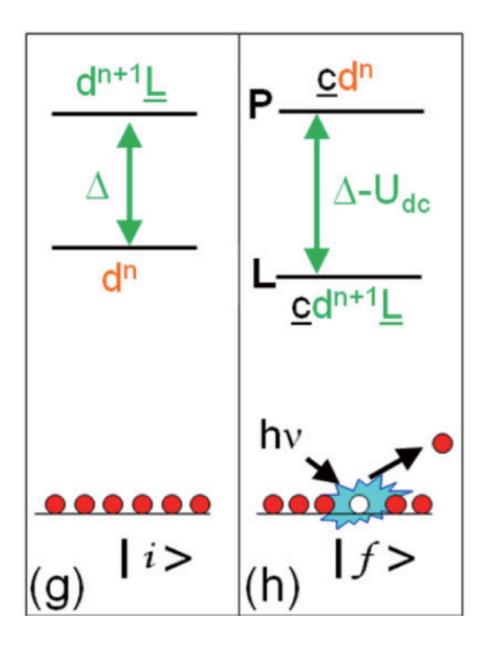
M.W. Haverkort, M. Zwierzycki, O.K. Andersen, PRB 85, 165113 (2012).

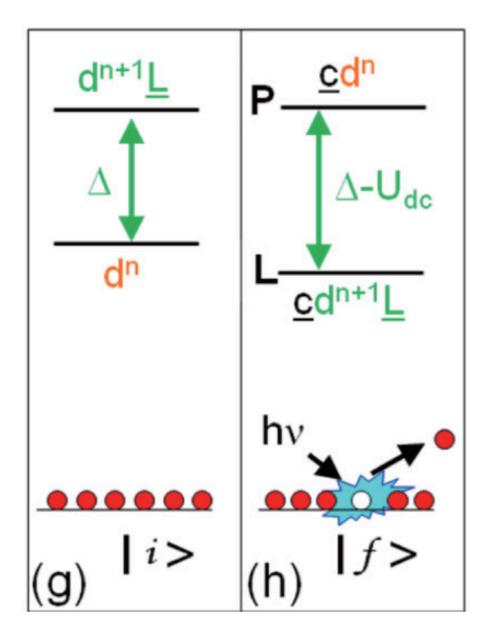
• Nice results ... but sensitive to U and Δ

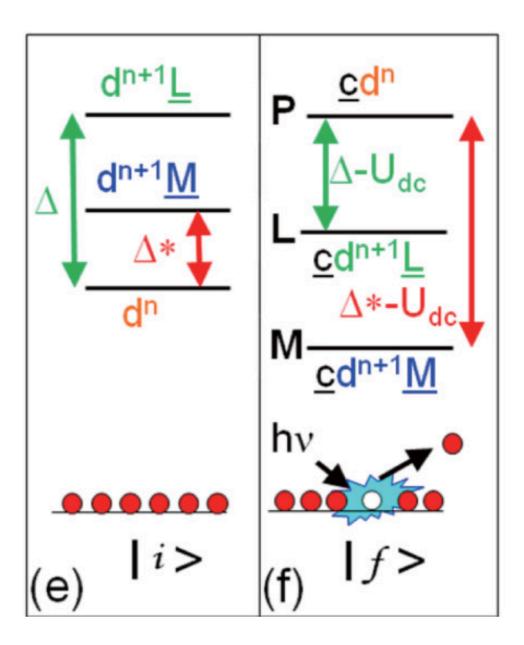
U and Δ

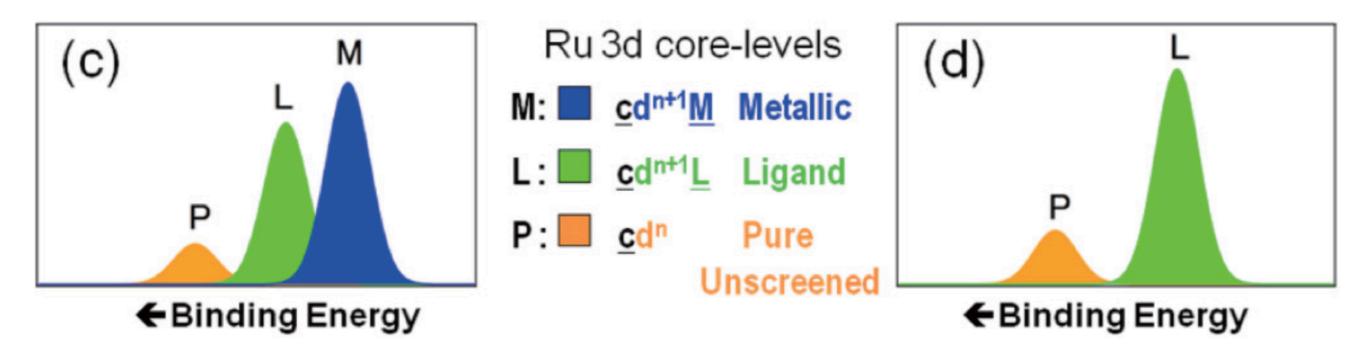
- XAS is not sensitive to U and Δ because it is charge neutral
- XPS is very sensitive to U and Δ because valence electrons screen

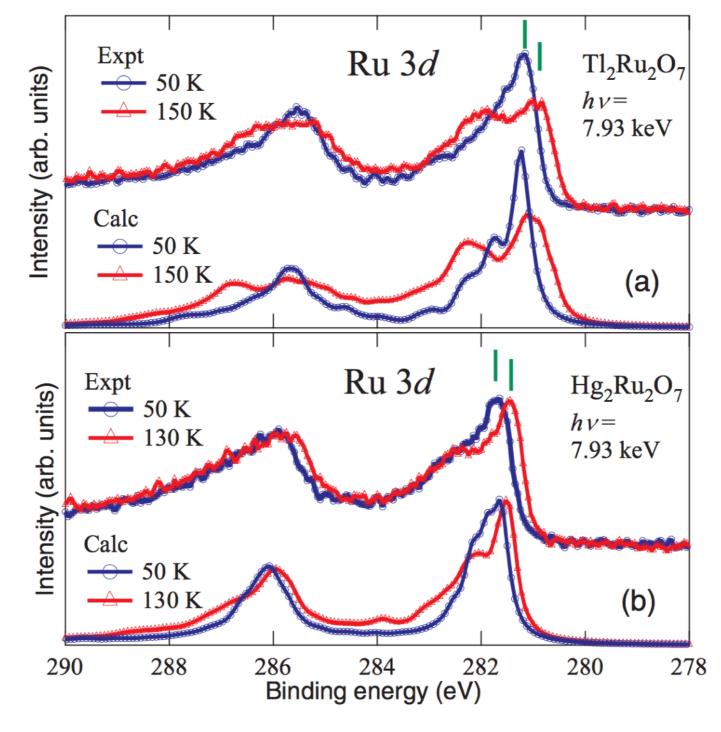








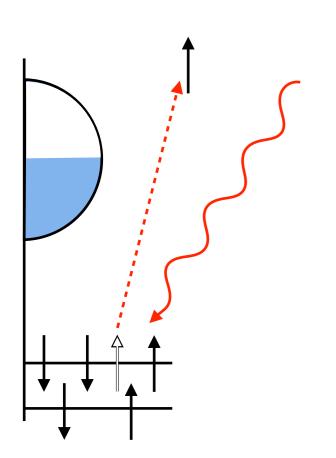




PHYSICAL REVIEW B 87, 045108 (2013)

XPS summary

- Core level binding energies straight from DFT
- IPA gives a delta function
- Many body physics gives useful line shapes
 - Metallic systems can be tackled with DFT
 - Metallic and non-metallic line shapes can be computed with CI-approach



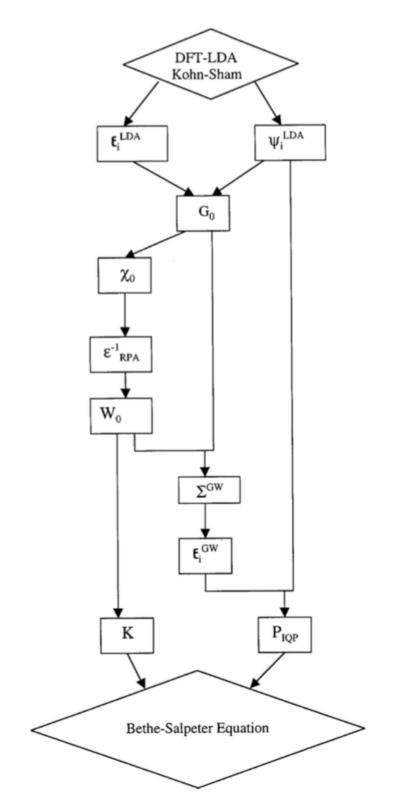
Bringing it all together

- Absorption and emission give complimentary information
 - Screening in XPS due to ligands and/or condition band
 - Screening in XAS from excited electron
 - In insulator XAS edge will not align with XPS BE!
- For non-correlated materials there are lots of options
 - XAS-BSE and IPE (for K edges) ... in principle CI and DMFT
 - XPS—JDOS and CI and DMFT
 - Core level shift—Slater transition state, ΔSCF, initial state
- For correlated materials (DFT might even fail you so be careful) the options are limited
 - XAS—BSE for one-electron one-hole excitations otherwise CI and DMFT
 - XPS-CI and DMFT

Questions

BSE NEXAFS

- Treat core-hole correctly
- Get excitonic effects
- L2,3 branching
- Still only with 10% of peak positions and 20% peak strength
- Using NLPP possible errors with non-locality
- Use DFT wave functions -> missing -1/r tail in LDA may be problematic for clusters/surfaces
- Static electron-hole screening -> fine when exciton binding energy not too large otherwise might need Strinati equation
- RPA electron-hole screening -> kernel W evaluated with RPA can overestimate exciton binding energy



Rev. Mod. Phys., Vol. 74, No. 2, April 2002

one-electron approach

$$h' = \frac{p^2}{2m} + V'_C + \Sigma'$$
$$\equiv h + [V'_C - V_C] + [\Sigma' - \Sigma].$$

one-electron approach

$$h' = \frac{p^2}{2m} + V'_C + \Sigma'$$
$$\equiv h + [V'_C - V_C] + [\Sigma' - \Sigma].$$

non-interacting response

one-electron approach

$$h' = \frac{p^2}{2m} + V'_C + \Sigma'$$

= $\begin{pmatrix} h \end{pmatrix} + \begin{bmatrix} V'_C - V_C \end{bmatrix} + \begin{bmatrix} \Sigma' - \Sigma \end{bmatrix}$.
non-interacting response

screened core hole

one-electron approach

 $h' = \frac{p^2}{2m} + V'_C + \Sigma'$ = $(h) + [V'_C - V_C] + [\Sigma' - \Sigma]$ non-interacting response screened core hole dynamically screened exchange

• Same quasi-particle hamiltonian

one-electron approach

 $h' = \frac{p^2}{2m} + V'_C + \Sigma'$ = $h + [V'_C - V_C] + [\Sigma' - \Sigma].$ non-interacting response screened core hole dynamically screened exchange BSE

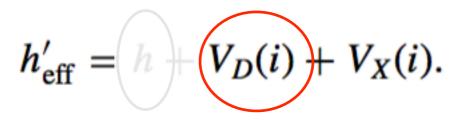
$$h'_{\text{eff}} = h + V_D(i) + V_X(i).$$

non-interacting response

one-electron approach

 $h' = \frac{p^2}{2m} + V'_C + \Sigma'$ = $h + [V'_C - V_C] + [\Sigma' - \Sigma].$ non-interacting response screened core hole dynamically screened exchange

BSE



non-interacting response direct screened core hole

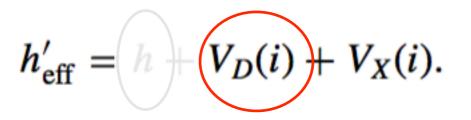
one-electron approach

$$h' = \frac{p^2}{2m} + V'_C + \Sigma'$$

= $h + [V'_C - V_C] + [\Sigma' - \Sigma].$
$$V'_C(\vec{r}) - V_C(\vec{r}) \equiv V_i(\vec{r}) + \Delta V_{scf}(\vec{r}).$$

bare potential
induced potential

BSE



non-interacting response direct screened core hole

- Why does IPA work?
- Direct screened core hole analogous to BSE

Т

one-electron approach

$$h' = \frac{p^2}{2m} + V'_C + \Sigma'$$

$$\equiv h + [V'_C - V_C] + [\Sigma' - \Sigma].$$

$$V'_C(\vec{r}) - V_C(\vec{r}) \equiv (V_i(\vec{r})) + \Delta V_{scf}(\vec{r}).$$
bare potential
induced potential
induced potential
$$\Delta V_{scf}(\vec{r}) \approx V_{ind}(\vec{r}).$$

$$h'_{eff} = h + (V_D(i)) + V_X(i).$$

$$V_D(\vec{r}) = \int d^3r' W(\vec{r}, \vec{r}'; \omega = 0)$$

$$\times \frac{1}{N} \sum_{i, \vec{R}} |\chi^*_{i, \vec{R}}(\vec{r}')|^2 \exp[-i(\vec{k} - \vec{q}) \cdot \vec{R}]$$

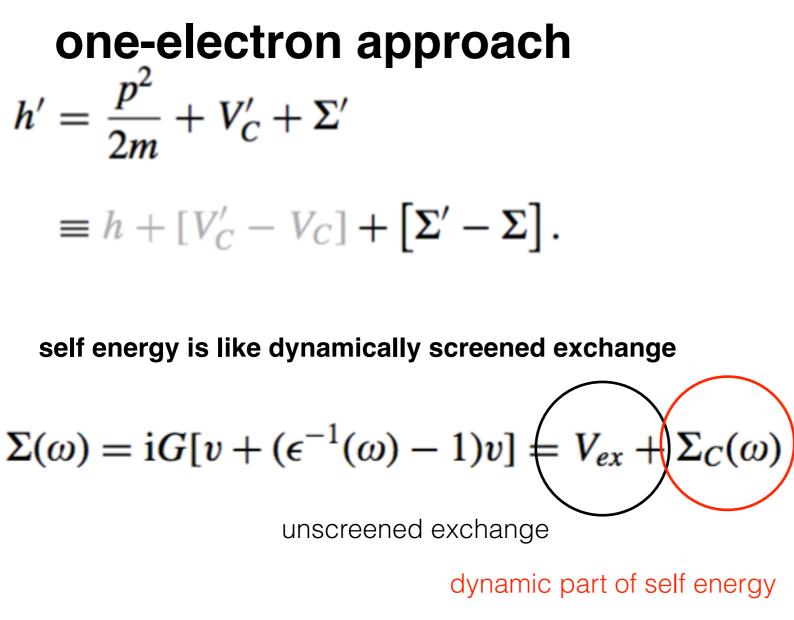
$$\equiv (V_i(\vec{r}) + (V_{ind}(\vec{r})),$$
bare potential
induced potential
$$\Delta V_{scf}(\vec{r}) \approx V_{ind}(\vec{r}).$$

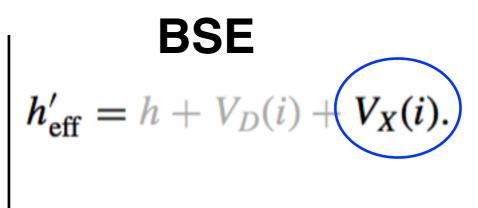
one-electron approach

 $h' = \frac{p^2}{2m} + V'_C + \Sigma'$ = $h + (V'_C - V_C) + [\Sigma' - \Sigma].$ non-interacting response screened core hole dynamically screened exchange

BSE

non-interacting response direct screened core hole unscreened direct exchange





• Exchange differs a bit

one-electron approach

 $h' = \frac{p^2}{2m} + V'_C + \Sigma'$

$$\equiv h + [V'_C - V_C] + [\Sigma' - \Sigma].$$

self energy is like dynamically screened exchange

$$\Sigma(\omega) = \mathrm{i}G[v + (\epsilon^{-1}(\omega) - 1)v] = V_{ex} + \Sigma_C(\omega)$$

unscreened Fock exchange

dynamic part of self energy

$$\Sigma' - \Sigma = V_X(i) + \Delta V_{ex} + \Delta \Sigma_C,$$

change in valence relaxation for exchange change in dynamic self energy

BSE
$$h'_{eff} = h + V_D(i) + V_X(i).$$

BSE exchange is non-local unscreened for
BSE hamiltonian
$$V_X = (\hat{a}_c^{\dagger}(\mathbf{r}, \sigma))\hat{a}_b(\mathbf{r}', \sigma') \frac{1}{|\mathbf{r} - \mathbf{r}'|} (\hat{a}_c(\mathbf{r}', \sigma))\hat{a}_b^{\dagger}(\mathbf{r}, \sigma')$$

creation annihilation of e/h pairs

one-electron approach

 $h' = \frac{p^2}{2m} + V'_C + \Sigma'$ $\equiv h + [V'_C - V_C] + [\Sigma' - \Sigma].$

$$h'_{\rm eff} = h + V_D(i) + V_X(i).$$

$$h = h$$

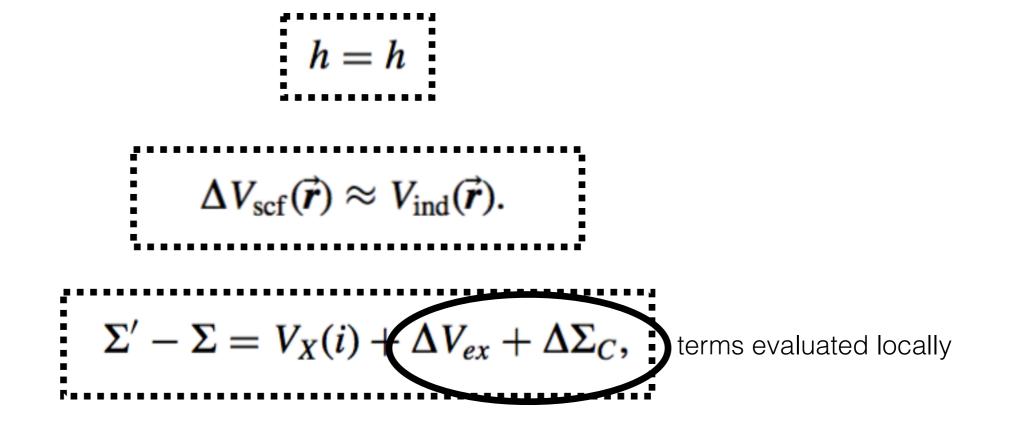
$$\Delta V_{\rm scf}(\vec{r}) \approx V_{\rm ind}(\vec{r}).$$

$$\Sigma' - \Sigma = V_X(i) + \Delta V_{ex} + \Delta \Sigma_C,$$

one-electron approach

 $h' = \frac{p^2}{2m} + V'_C + \Sigma'$ $\equiv h + [V'_C - V_C] + [\Sigma' - \Sigma].$

$$h'_{\rm eff} = h + V_D(i) + V_X(i).$$

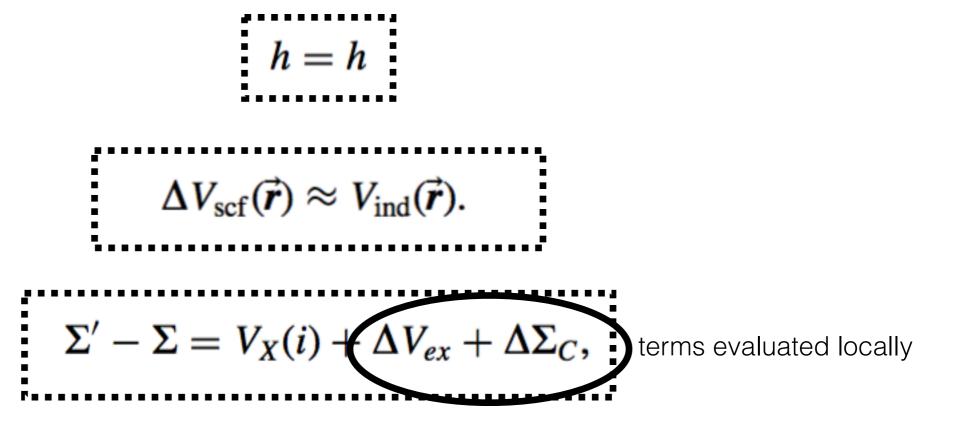


one-electron approach

 $h' = \frac{p^2}{2m} + V'_C + \Sigma'$ $\equiv h + [V'_C - V_C] + [\Sigma' - \Sigma].$

BSE

$$h'_{\rm eff} = h + V_D(i) + V_X(i).$$



For (deep) K edge there is no spin orbit and $\langle r | \psi_i \rangle$ is localized so this does not matter

