

Microcalorimetry beyond Adsorption: Basics and Applications in Heterogeneous Catalysis

S. Wrabetz

Fritz-Haber-Institute of the Max Planck Society Department of Inorganic Chemistry, 14195 Berlin, Germany, wrabetz@fhi-berlin.mpg.de

Nov 24, 2017

Lecture Series: Modern Methods in Heterogeneous Catalysis; 10:45 - 12:15

- 1. Introduction
- 2. Adsorptive microcalorimetric setup
- Tian-Calvet calorimeter
 Evolved adsorption heat
 Differential heats of adsorption
- 4. Volumetric-Barometric System calibration & measurement of adsorbed amount
- 5. Obtained physical quantities & evaluation criteria of the calorimetric results

6. Applications of microcalorimetry in heterogeneous catalysis

- H_2 and CO adsorption on 2%Pt / AI_2O_3 at 40°C
- NH_3 adsorption on pure-phase MoVTeNb oxide at 80°C
- CO_2 ads. on CeO_2 at 40°C
- O_2 adsorption on supported CeO₂ at 200°C
- Ethanol adsorption on VO_x/γ -Al₂ O_3 at 40°C
- Propane & ethane ads. on MoVTeNb oxide, V/SBA15, MoV oxide and P/oCNT at 40°C
- Propylene adsorption on MoO_x/SBA-15 at T_{reaction}=50°C
- 1-Hexyne ads. on CeO₂/TiO₂ at T_{reaction}=80°C
- CO on IrOx at $T_{reaction} = r.t.$
- CO on Ni/MgAI oxide at 30°C

- \blacktriangleright adsorption steps, surface reaction processes, and desorption steps
- 1st step in the catalytic cycle: activation of the reacting molecules by adsorption (strength of chemisorption bond can effect the activation energy)
- adsorption phenomena (bond strength between adsorbate and surface) play an important role in heterogeneous catalysis

For a detailed understanding of complex reaction networks we need:

- thermodynamic data of high accuracy
- information about the nature of the catalyst surface
- →quantitatively study the adsorption, activation, and reaction phenomena close to the reaction parameters
- \rightarrow simulate reactants-induced responses of the surface

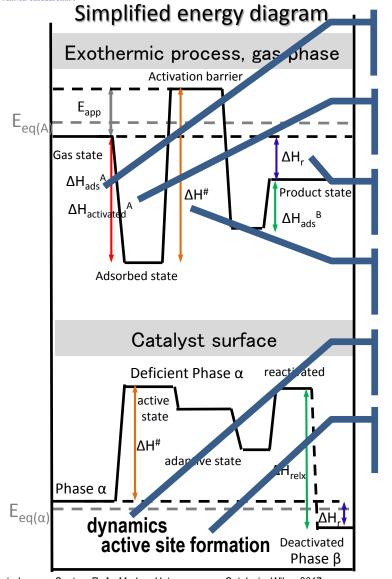
➢ since perhaps only a minor fraction of all surface atoms form active centers


Ads. Isothermal Microcalorimetry / Microcalorimetry beyond Ads. direct method to determine number, strength and energy distribution of the adsorption sites

key to the effective use of adsorptive microcalorimetry is the careful choice of probe molecules and adsorption temperature to study

surface sites

Focus


use of probe molecules such as **educt**, **intermediate**, **product** or molecules closely related to the reactants is an elegant method to study the surface sites relevant for catalytic reaction

 $T_{adsorption} < T_{reaction} \rightarrow study of the pure ads. process or the activation of the reactant$ $<math>T_{adsorption} = T_{reaction} \rightarrow study of the surface chemical events during the reaction$

Introduction

Adapted . van Santen, R. A., Modern Heterogeneous Catalysis, Wiley, 2017 using Schlögl, R., Introduction to Heterogeneous Catalysis, Lecture, FHI Berlin, 2017 CO_2 ads._{chemisorption} on CeO_2 for DEACON reaction ⁵

MoV oxide catalyst in oxidative dehydrogenation of alkanes

Ir-based catalysts for the oxygen evolution reaction at r.t.¹

Vanadium Oxide-based and Metal-free Catalysts in the ODH of Ethane and Propane²

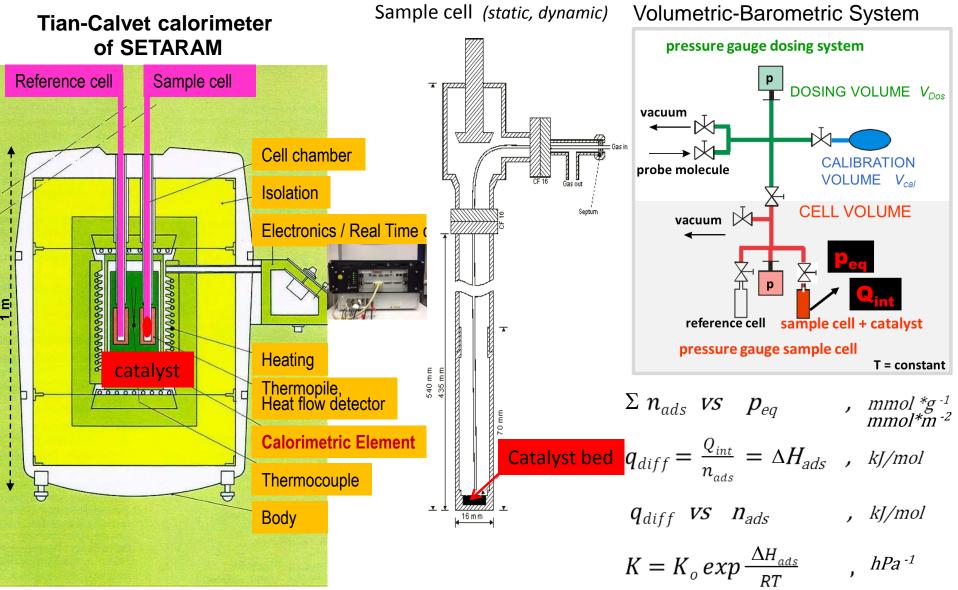
Ni based catalysts for the dry reforming of methane ³

Propylene Metathesis over MoOx/SBA-15⁴

- 1 V. Pfeifer, T. Jones, S. Wrabetz, C. Massué, J. Velesco-Velez, R. Arrigo, M. Scherzer, S. Piccinin, M. Haevecker, A. Knop-Gericke and R. Schlögl, Chem. Sci., 2016,7, 6791-6795.
- 2 P. Kube, B. Frank, S. Wrabetz, J. Kröhnert, M. Hävecker, J. Valasco-Vélez, J. Noack, R. Schlögl, A. Trunschke, ChemCatChem 9 (2017) 1-14.
- 3 K. Mette, St. Kühl, A. Tarasov, M. G. Willinger, J. Kröhnert, S. Wrabetz, A. Trunschke, M. Scherzer, F. Girgsdies, H. Düdder, K. Kähler, K. Friedel Ortega, M. Muhler, R. Schlögl, M. Behrens, T. Lunkenbein, ACS Catal., 2016, 6 (10), pp 7238–7248.
- 4 Amakawa, K., Wrabetz, S., Kröhnert, J., Tzolova-Müller, G., Schlögl, R., Trunschke, A.; J. Am. Chem. Soc., 134 (28) (2012) 11462-11473.
- 5 Farra, R., Wrabetz, S., Schuster, M. E., Stotz, E., Hamilton, N., Amrute, A. P., Pérez-Ramírez, J., López, N., Teschner, D., Phys. Chem. Chem. Phys., 15 (2013) 3454 3465.

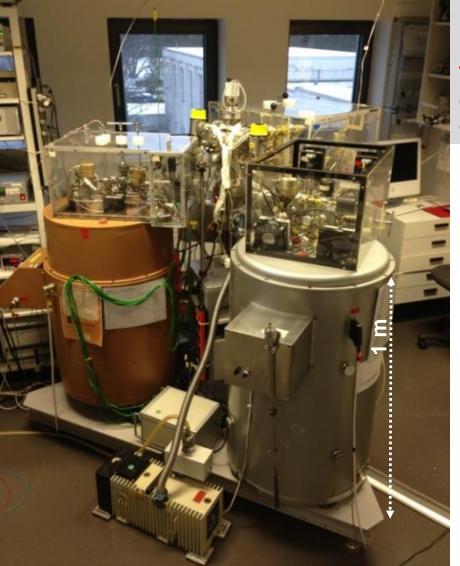
Sabine Wrabetz, Electronic Structure and Adsorption, Dept. of Inorganic Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany

1. Introduction


2. Adsorptive microcalorimetric setup

- Power balance of Tian-Calvet calorimeter & Evolved adsorption heat
 Differential heats of adsorption
- 4. Volumetric-Barometric System calibration & measurement of adsorbed amount
- 5. Obtained physical quantities & evaluation criteria of the calorimetric results
- 6. Applications of microcalorimetry in heterogeneous catalysis
 - H_2 and CO adsorption on 2%Pt / Al_2O_3 at 40°C
 - NH₃ adsorption on pure-phase MoVTeNb oxide at 80°C
 - CO_2 ads. on CeO_2 at 40°C
 - O_2 adsorption on supported CeO₂ at 200°C
 - Ethanol adsorption on VO_x/γ -Al₂ O_3 at 40°C
 - Propane ads. On MoVTeÑb oxide at 40°C
 - Propylene adsorption on MoO_x/SBA-15 at T_{reaction}=50°C
 - 1-Hexyne ads. on CeO_2/TiO_2 at Treaction=80°C

Adsorptive microcalorimetric setup


Sabine Wrabetz, Electronic Structure and Adsorption, Dept. of Inorganic Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany

Adsorptive microcalorimetric setup

Adsorptive Microcalorimetry

HT1000 (rt-1000°C), MS 70 (rt-100°C) BT 2.15 (200°C–77K)

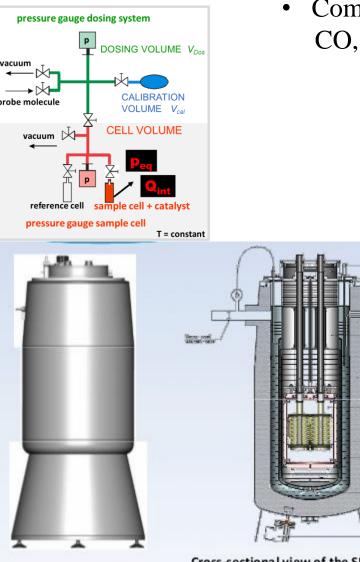
Tian-Calvet calorimeter of SETARAM

combined with a custom-designed high vacuum and gas dosing apparatus.

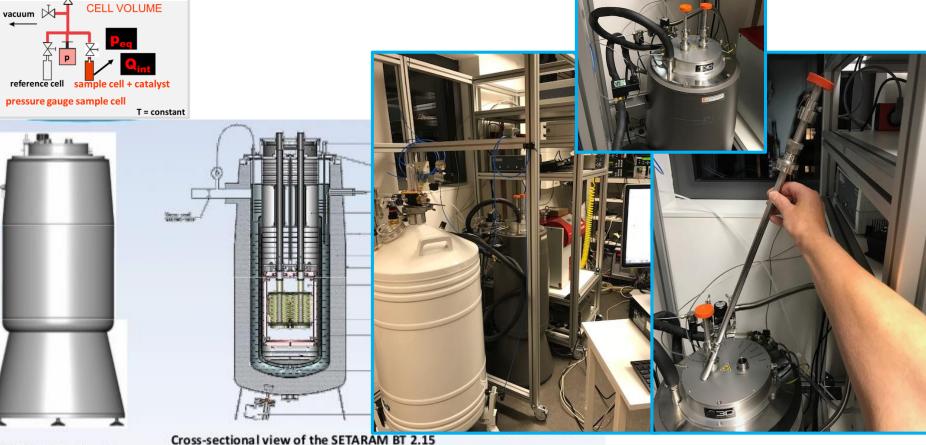
The history of modern calorimetry began at the University of Provence in Marseilles.

Prof. Albert Tian

Prof. Edouard Calvet (1895–1966)

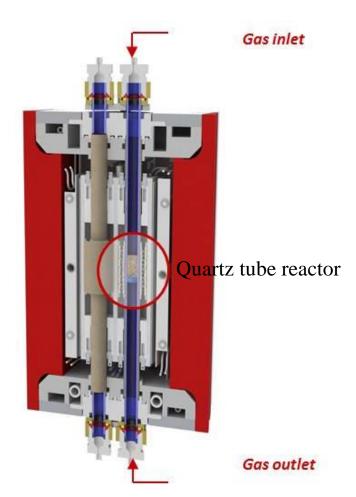

Tian described his compensation microcalorimeter for the first time in 1922, when he and his colleague COTTE used it to study the metabolism of insects. He brought further improvements to this thermocouple instrument in 1924 and 1926.

CALVET introduced the differential setup (1948) and a rational construction of the **two twinned calorimetric elements**, transforming Tian's apparatus into a true laboratory instrument that today is commercialized by Setaram.

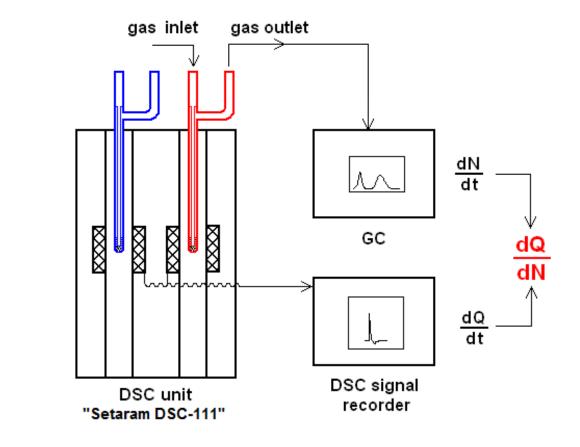


Low Temperature Calorimeter (from -196°C to 200°C) Setaram BT 2.15

Combination of LT-Calorimetry and LT-FTIR $CO, CO_2, CH_4 \dots$ ads. on e.g. Cu catalysts, Ni-catalysts, MgO

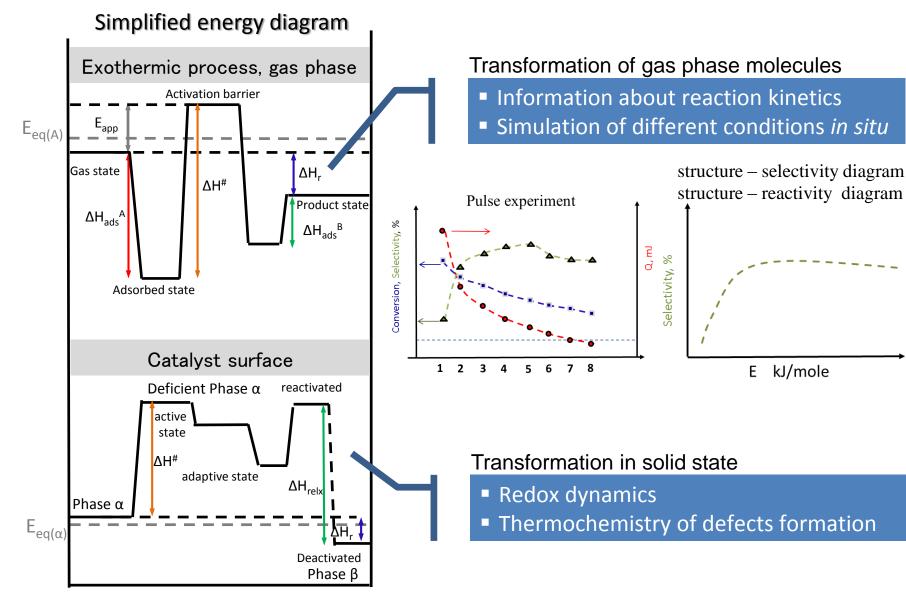

BT 2.15 Calorimeter

Sabine Wrabetz, Electronic Structure and Adsorption, Dept. of Inorganic Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany

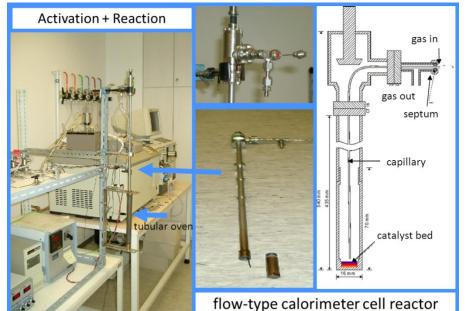


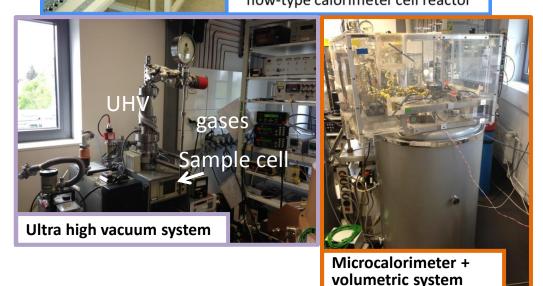
in-situ DSC setup (Differential scanning calorimetry) Setaram instrument SENSYS EVO.

Dr. Andrey Tarasov


- Direct measurement of reaction enthalpy
- Precise product analysis

- Calvet calorimetric element
- 3D sensor totally surrounds the catalyst





Experimental procedure

Activation:

UHV (10⁻⁸hPa), gases (H₂, O_{2}), rt - 600°C

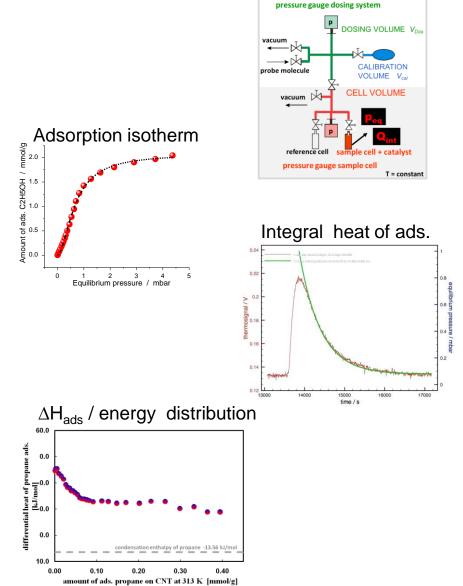
Reaction:

Calorimeter cell can used as a flow-type reactor.

Catalyst is used in the selected reaction until stady-state performance, rt - 600°C S. Wrabetz, F.C. Jentoft etal, J. Catal. 269 (2010) 351-358

Transfer

of the sample cell into the calorimeter and degassing/equilibration at $T_{ads.}$

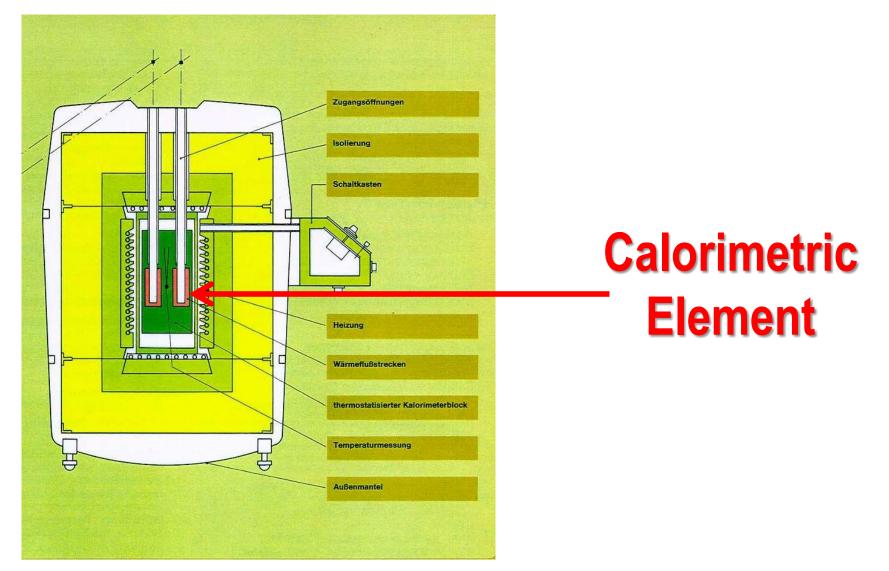

Adsorptive microcalorimetric experiment:

Stepwise adsorption, desorption and re-adsorption of the selected probe molecule at the selected temperature.

- The probe molecule must be introduced **stepwise** at **constant temperature**, the pressure is increased slowly
- For each adsorption step, the **adsorbed amount** must be determined (isotherm)
- For each adsorption step, the **evolved heat** must be determined (integral heat of adsorption)
- The differential heat (ΔH_{ads}) can then be determined by dividing the evolved heat through the number of molecules adsorbed in a particular step

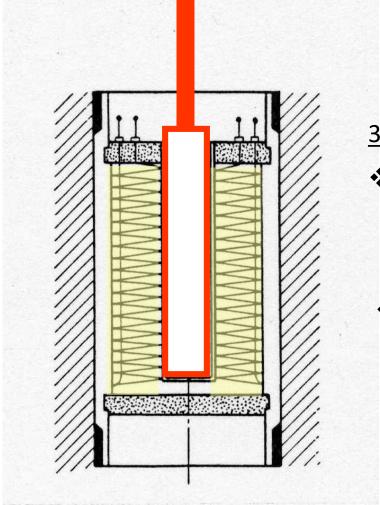
Sabine Wrabetz, Electronic Structure and Adsorption, Dept. of Inorganic Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany

	Physisorption	Chemisorption	
Type of interaction and heat of adsorption (negative enthalpy of adsorption)	van der Waals force $0 < \Delta_{p}H < 50 \text{ kJ/mol}$ Noble gases, CH_4 , N_2 Dipole-dipole interaction 20 - 25 kJ/mol H_2O , NH_3	chemical bonding, electron transfer $60 < \Delta_c H < 400 \text{ kJ/mol}$ CO on metals (Pt, Pd) Dissociative adsorption $(O_2, H_2 \text{ on Pt}, H_2 O \text{ on oxides})$	
Reversibility	reversible	reversible, irreversible or partially irreversible	
Speed	fast	can be slow (e.g. activated adsorption, dissociative adsorption)	
Coverage	non-specific and weak	specific (chemisorbed molecule blocks surface sites)	
	multilayers possible	monolayer only	



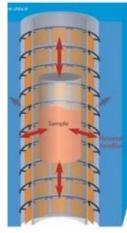
- 1. Introduction
- 2. Adsorptive microcalorimetric setup
- Tian-Calvet calorimeter
 Evolved adsorption heat
 Differential heats of adsorption
- 4. Volumetric-Barometric System calibration & measurement of adsorbed amount
- 5. Obtained physical quantities & evaluation criteria of the calorimetric results
- 6. Applications of microcalorimetry in heterogeneous catalysis
 - H_2 and CO adsorption on 2%Pt / Al_2O_3 at 40°C
 - NH₃ adsorption on pure-phase MoVTeNb oxide at 80°C
 - CO_2 ads. on CeO_2 at $40^{\circ}C$
 - O₂ adsorption on supported CeO₂ at 200°C
 - Ethanol adsorption on VO_x/γ -Al₂ O_3 at 40°C
 - Propane & ethane ads. on MoVTeNb oxide, V/SBA15, MoV oxide and P/oCNT at 40°C
 - Propylene adsorption on MoO_x/SBA-15 at T_{reaction}=50°C
 - 1-Hexyne ads. on CeO₂/TiO₂ at T_{reaction}=80°C
 - CO on IrOx at $T_{reaction} = r.t.$
 - CO on Ni/MgAI oxide at 30°C

The Calorimetric Element



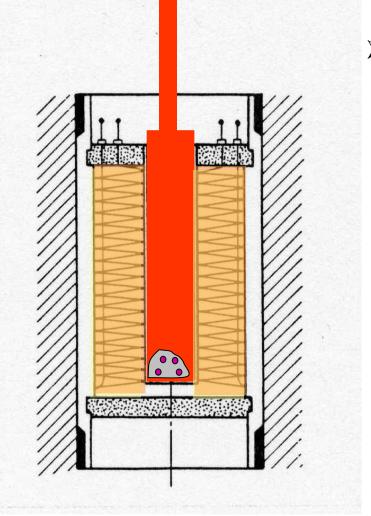
The Calorimetric Element

The sample cell is placed into a calorimeter element

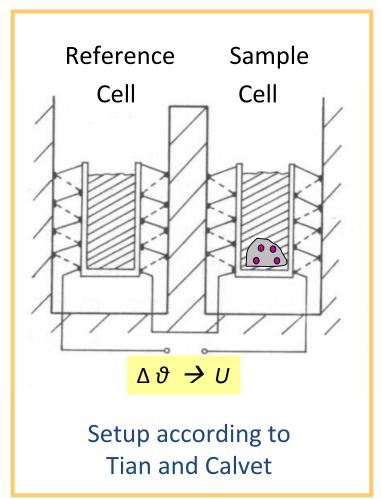

3D Calvet heat flow sensor

The cell is totally surrounded by a thermopile made of more than 400 conductive thermocouples in series

U


time 🔪

- Thermopile has 2 functions:
 - 1. heat transfer
 - 2. signal generation


- The heat produced by the adsorption/activation/reaction of a dosed probe molecule ••• on/with the catalyst surface is consumed by 2 processes
 - 1. Increase of the temperature of the sample cell
 - Once there is a temperature gradient between cell and surrounding block, heat flow through the thermopile

Reference cell

ti<u>me</u> 、

N. C. Cardona-Martinez and J.A. Dumesic, Advances in Catalysis 38 150-243.

The calorimetric block consists of a sample cell and a reference cell.

The reference cell compensate external temperature fluctuations and it provides a good stability of the baseline.

Measurement of the temperature difference $\Delta \vartheta$

The heat-flow detector gives an **electrical signal "U"** which is proportional to the heat transferred per time unit.

The power P [W] necessary to heat the cell by $d\theta$ is proportional to the heat capacity C [J/K] of the cell

The heat flow Φ [power] is proportional to the temperature gradient $\Delta \theta$ between cell and block and to the thermal conductivity G [W/K]

Total thermal power of calorimetric element

The electrical signal is proportional to the temperature difference; (proportionality factor g=f (number and type of the thermocouple))

The relation between power and electrical signal is then

G [W/K] is constant and if C [J/K] can be considered constant, then C/G is a constant with units of time

The Tian equation shows that the power is not proportional to the temperature difference, the power is delayed with respect to the signal **U** produced by the cell

Sabine Wrabetz, Electronic Structure and Adsorption, Dept. of Inorganic Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany

$$P = C \frac{d\theta}{dt}$$

 $\Phi = G \left(\theta_{cell} - \theta_{block} \right) = G \Delta \theta$

 $P_{total} = P + \Phi = C \frac{d\theta}{dt} + G \Delta \theta$

 $U = g \Delta \theta$

 $P_{total} = \frac{C}{g} \frac{dU}{dt} + \frac{G}{g} U$

 $\tau = \frac{C}{G}$

 $P_{total} = \frac{G}{G}$

- If heat is released in the cell for a limited period of time, e.g. through adsorption, then an electrical signal U with an exponential decrease is obtained.
- The integral under the curve is proportional to the evolved heat

$$Q_{\text{int}} = \frac{G}{g} \int U \, dt = \int A$$

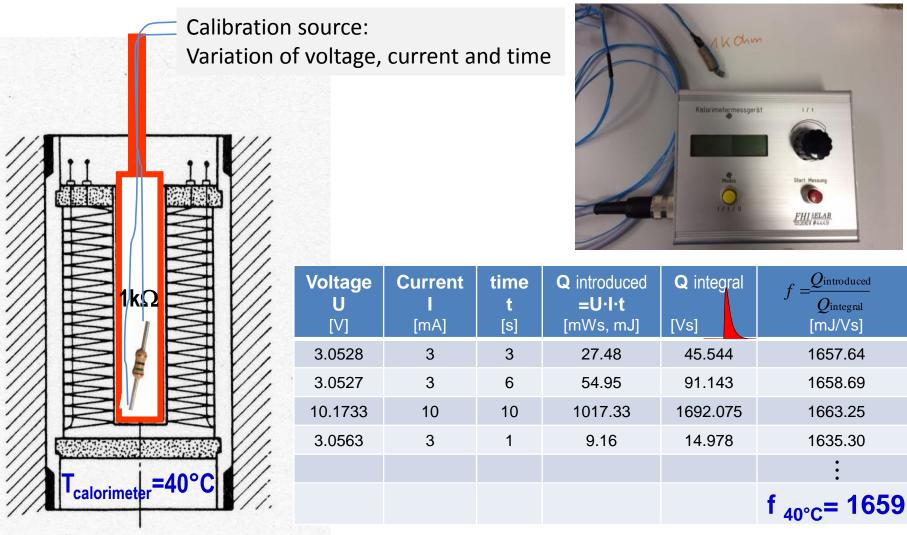
A: area under curve [Vs] f: calibration factor [J/(Vs)]

 $f = Q_{Ohm resistance} / A_{ohm resistance}$ [Ws/Vs]

 $Q_{Ohm resistance} = U*I*t$

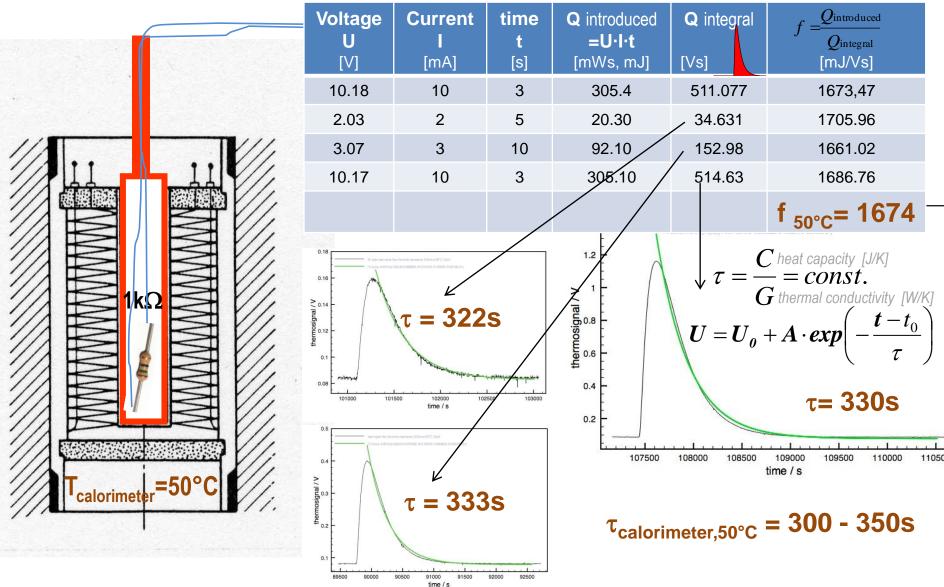
U

time

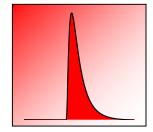

The heat signal of the calorimeter can be calibrated by:

- using an Ohm resistance which produces a certain amount of heat
- chemical reaction

Heat signal calibration at 40°C



Heat signal calibration, time constant τ at 50°C



Evolved Heat & Differential Heat of Adsorption

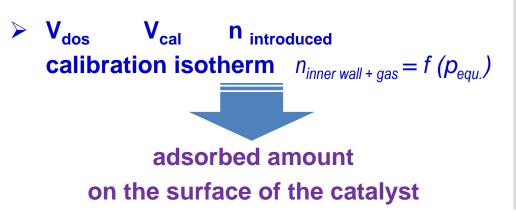
$$Q_{\text{int}} = \frac{G}{g} \int U \, dt = \int A$$

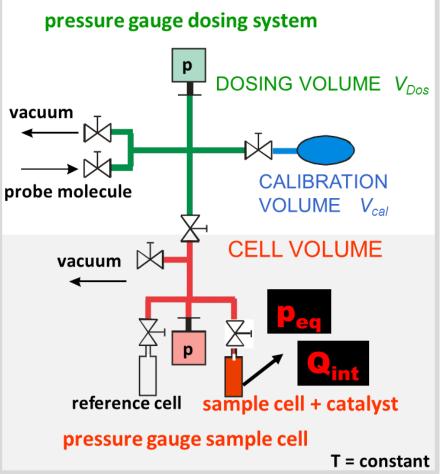
A: area under curve [Vs] f: calibration factor [J/(Vs)]

• Differential heats of adsorption as a function of coverage can be determined: $q_{diff} = 0$

$$q_{diff} = (\delta Q_{int} / \delta n)_{T,V,p(equ.)}$$

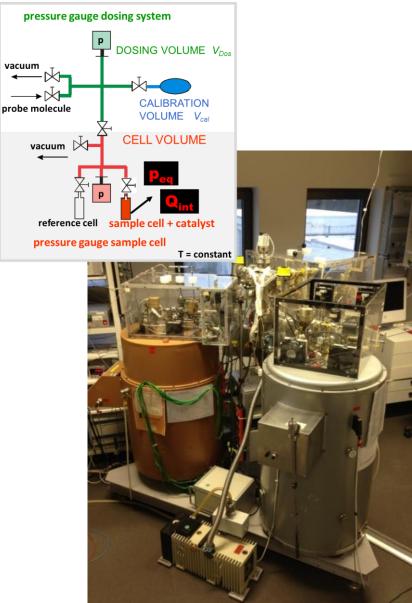
Calculation of the adsorbed amount


- 1. Introduction
- 2. Adsorptive microcalorimetric setup
- Power balance of Tian-Calvet calorimeter & Evolved adsorption heat
 Differential heats of adsorption
- 4. Volumetric-Barometric System calibration & measurement of adsorbed amount
- 5. Obtained physical quantities & evaluation criteria of the calorimetric results
- 6. Applications of microcalorimetry in heterogeneous catalysis
 - H_2 and CO adsorption on 2%Pt / AI_2O_3 at 40°C
 - NH₃ adsorption on pure-phase MoVTeNb oxide at 80°C
 - CO_2 ads. on CeO_2 at 40°C
 - O₂ adsorption on supported CeO₂ at 200°C
 - Ethanol adsorption on VO_x/γ -Al₂ O_3 at 40°C
 - Propane ads. On MoVTeÑb oxide at 40°C
 - Propylene adsorption on MoO_x/SBA-15 at T_{reaction}=50°C
 - 1-Hexyne ads. on CeO_2/TiO_2 at Treaction=80°C

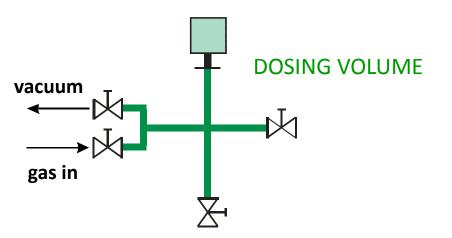


adsorption via stepwise dosing of probe molecule into the sample cell

- Q_{int} , p, T are measured
- $q_{diff} = \Delta H_{cond} \rightarrow saturation of the surface$
- The probe molecule is distributed into three partitions: gas phase, wall adsorption, sample adsorption

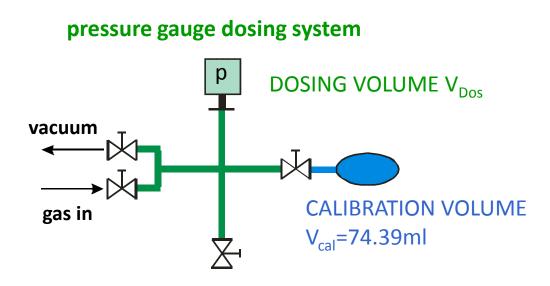

Volumetric-barometric system

Volumetric-Barometric System



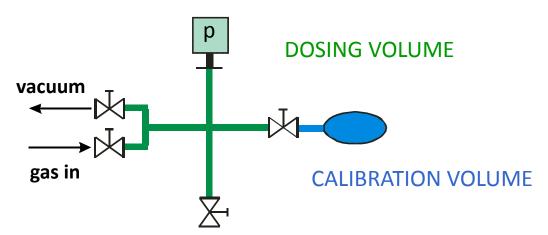
Sabine Wrabetz, Electronic Structure and Adsorption, Dept. of Inorganic Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany

pressure gauge dosing system


- p, T can be easily measured
- V needs to be determined

Volume Calibration

An unknown **volume** of any shape can then be determined through expansion from gas (an ideal gas that does not stick much to the walls) from one volume to the other and pressure measurement before and after the equilibration.



- ✤ fill V_{Cal} and V_{Dos}, same pressure
- close valve between V_{Cal} and V_{Dos}
- \clubsuit set pressure in V_{dos} to p_{Dos}
- ✤ open valve, equilibrate

pressure gauge dosing system

Initial situation:

$$nRT = p_{Cal}V_{Cal} + p_{Dos}V_{Dos}$$

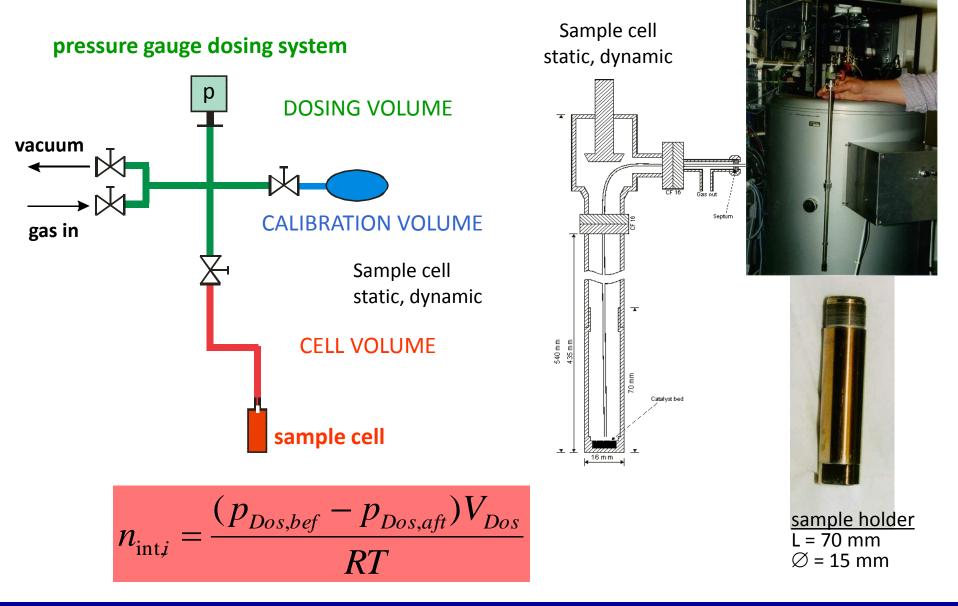
- After opening valve:
- n, T are constant

$$nRT = p_{fin} \left(V_{Cal} + V_{Dos} \right)$$

$$V_{Dos} = \frac{p_{Cal} - p_{fin}}{p_{fin} - p_{Dos}} V_{Cal}$$

Example Data

Propane at 40°C (*Project:* $V_x O_y$ /SBA15 for ODH of propane)

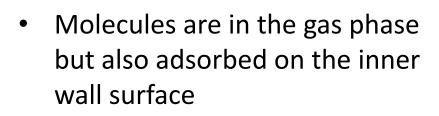

Nr	p _{Cal} [mbar]	p _{Dos} [mbar]	p _{fin} [mbar]	V(Dos) [ml]	
	before	before	after equilibration		n _ n
1	5,314	9,467	8,683	137	$V_{Dos} = \frac{p_{Cal} - p_{fin}}{p_{fin} - p_{Dos}} V_{Cal}$
2	8,683	7,648	7,843	137	T jin T Dos
3	7,638	6,341	6,585	137	
4	6,585	4,768	5,111	137	
5	5,111	4,712	4,787	137	
6	4,786	3,197	3,496	137	
7	3,469	2,701	2,846	136	

It is important that the entire system is at the same constant temperature!

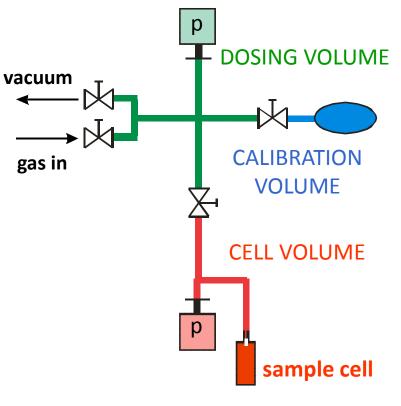
Determining the Dosed Amount n_{int, i}

Total number of molecules accumulated in cell

$$n_{SC,tot,i} = \sum_{i} n_{\text{int},i} = n_{SC,tot,i-1} + n_{\text{int},i}$$

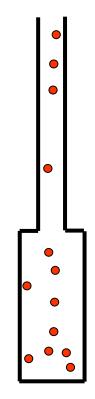

✤ i.e. the sum of

the number of molecules already in the cell the number of molecules introduced in the ith step



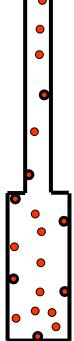
igodol

- Only the gas phase molecules contribute to the measured pressure
- The number of molecules adsorbed on the walls depends on the pressure
 - \rightarrow wall adsorption isotherm


pressure gauge sample cell

- Measure the pressure in the cell as a function of the total number of molecules introduced into the cell
- Without wall adsorption and without sample, the relation between pressure and number of molecules in the sample cell would be given by the ideal gas law

$$p_{SC,i} = \frac{n_{SC,tot,i}RT}{V_{SC}}$$



With wall adsorption and with or without a sample, the relation between number of molecules in the gas phase + on the walls and the pressure can be written as a polynomial expression

$$n_{SC,w+g,i} = a(p_{SC,i}) - b(p_{SC,i})^2 + c(p_{SC,i})^3 - d(p_{SC,i})^4 \dots$$

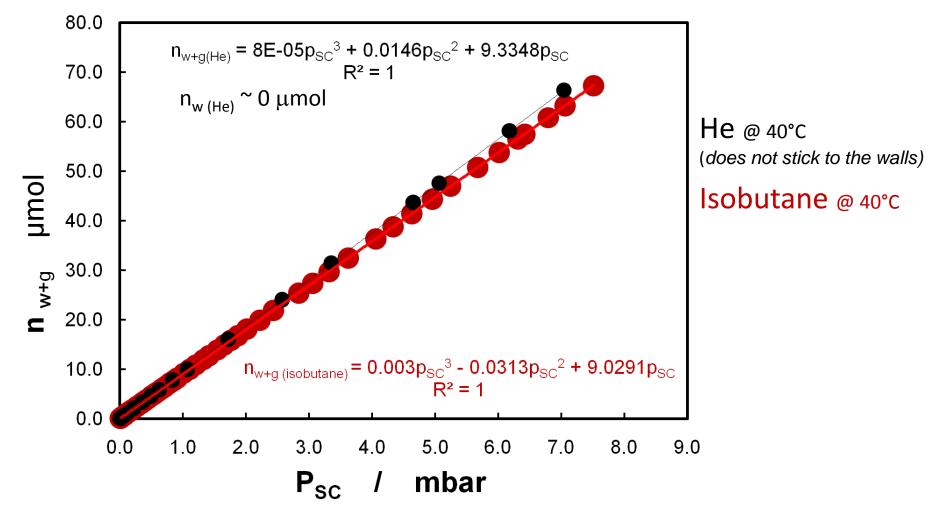
Without a sample, the coefficients can be determined

$$n_{SC,w+g,i} = n_{SC,tot,i}$$

Example Blank Measurement

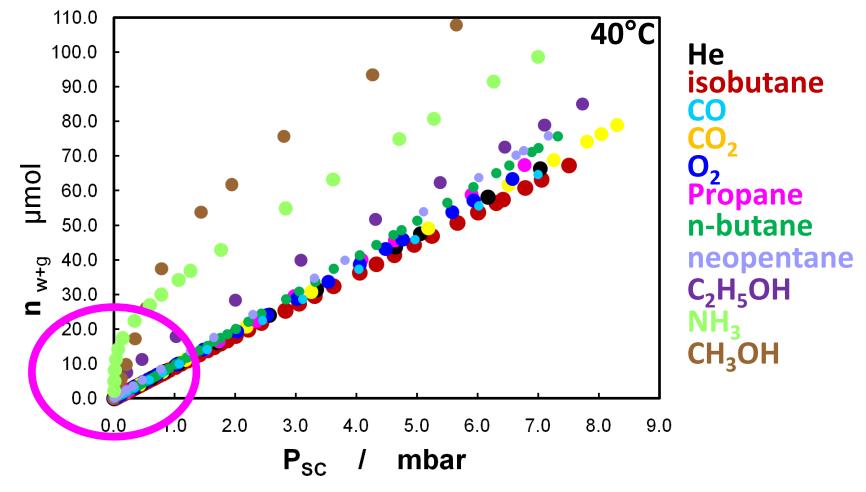
 $n_{\text{int}j} = \frac{(p_{Dos,bef} - p_{Dos,aft})V_{Dos}}{RT} \qquad n_{SC,tot,i} = \sum_{i} n_{\text{int}j} = n_{SC,tot,i-1} + n_{\text{int}j}$

Nr	p _{Dos,bef} /mbar	p _{Dos,aft} /mbar	p _{sc,i} /mbar	n _{int,i} /µmol	n _{sCtot,i} /µmol
1	9,682	9,674	0,007	0,04	0,04
2	9,653	9,641	0,026	0,06	0,10
3	9,607	9,591	0,054	0,08	0,18
4	9,562	9,544	0,081	0,09	0,27
5	9,499	9,481	0,117	0,09	0,36
6	9,442	9,428	0,147	0,07	0,43
7	9,392	9,371	0,181	0,11	0,54
9	9,230	9,195	0,283	0,18	0,72
10	9,128	9,091	0,344	0,19	0,91
11	9,024	8,988	0,403	0,19	1,10
13	8,814	8,758	0,537	0,29	1,39
14	8,644	8,582	0,640	0,32	1,71
15	8,466	8,386	0,755	0,42	2,13
16	8,209	8,122	0,909	0,45	2,58
17	7,783	7,612	1,208	0,90	3,48
19	6,672	6,487	1,870	0,97	3,45
20	5 <i>,</i> 893	5,526	2,436	1,93	5,38
21	4,477	4,041	3,314	2,30	7,68
22	9,146	8,409	4,056	3,88	11,56


Isobutane at 40°C

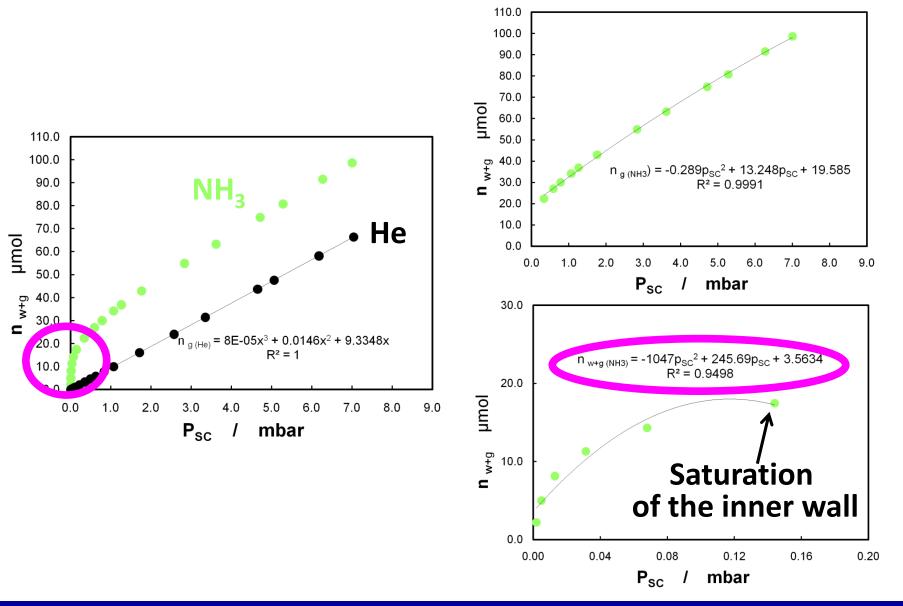
without catalyst

(Project: isomerisation of n-butane to isobutane over sulf. ZrO₂)

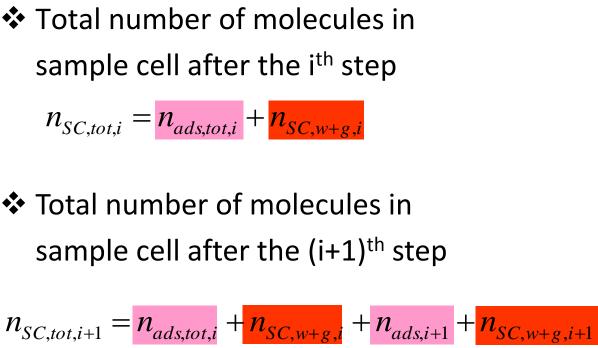


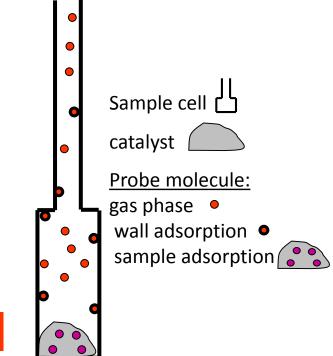
• The adsorption of isobutane on the walls is insignificant

Correction for Wall Adsorption

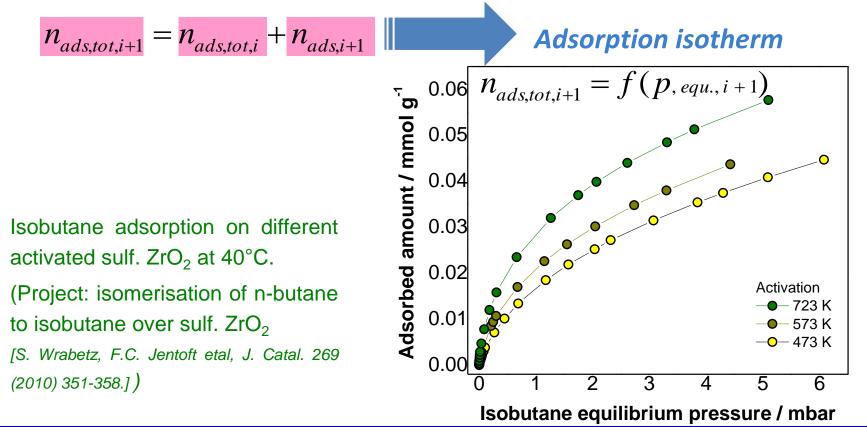


The adsorption of e.g. C₂H₅OH NH₃ CH₃OH on the walls is significant


Correction for Wall Adsorption



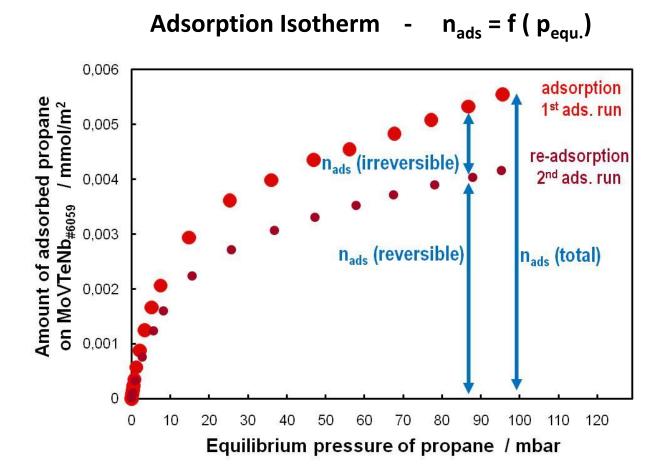
The difference in number of molecules between ith and (i+1)th step is the number of molecules introduced in the (i+1)th step



The number of molecules adsorbed in the (i+1)th step is then

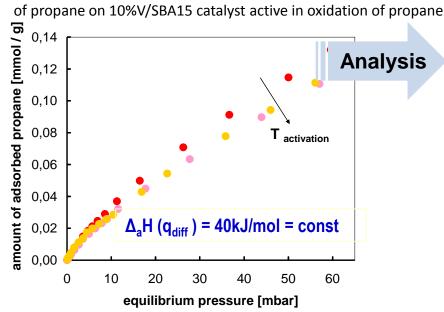
 $n_{ads,i+1} = n_{int,i+1} + n_{SC,w+g,i} - n_{SC,w+g,i+1}$

The total number of molecules adsorbed after (i+1) steps is


- 1. Introduction
- 2. Adsorptive microcalorimetric setup
- Power balance of Tian-Calvet calorimeter & Evolved adsorption heat
 Differential heats of adsorption
- 4. Volumetric-Barometric System calibration & measurement of adsorbed amount
- 5. Obtained physical quantities & evaluation criteria of the calorimetric results
- 6. Applications of microcalorimetry in heterogeneous catalysis
 - H_2 and CO adsorption on 2%Pt / AI_2O_3 at 40°C
 - NH₃ adsorption on pure-phase MoVTeNb oxide at 80°C
 - CO_2 ads. on CeO_2 at 40°C
 - O₂ adsorption on supported CeO₂ at 200°C
 - Ethanol adsorption on VO_x/γ -Al₂ O_3 at 40°C
 - Propane ads. On MoVTeÑb oxide at 40°C
 - Propylene adsorption on MoO_x/SBA-15 at T_{reaction}=50°C
 - 1-Hexyne ads. on CeO_2/TiO_2 at Treaction=80°C

Obtained physical quantities &

evaluation criteria of the calorimetric result



 n_{ads} (total) : overall adsorbed amount under an equilibrium pressure of 95 mbar n_{ads} (irrev.) : chemisorbed amount

Adsorption Isotherm

Freundlich isotherm:

The enthalpy of adsorption $\Delta_a H$ per site $N_{ads} = \frac{A p^{\overline{n}}}{1 + A p^{\overline{n}}}$ decreases exponential with coverage Θ

Tempkin isotherm: The enthalpy of adsorption Δ_{a} H per site decreases linear with coverage O

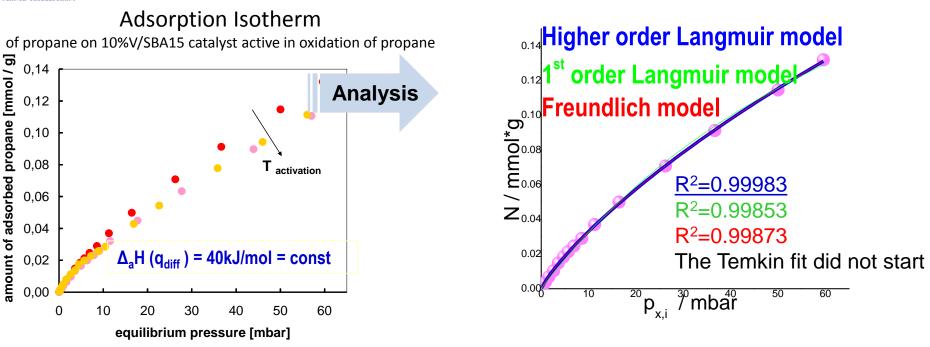
$$\theta = \frac{RT}{q_{\text{ads}}^{(\theta=0)} - q_{\text{ads}}^{(\theta=1)}} \ln \left(\frac{1 + \frac{p}{p^*} \exp \frac{q_{\text{ads}}^{(\theta=0)}}{RT}}{1 + \frac{p}{p^*} \exp \frac{q_{\text{ads}}^{(\theta=1)}}{RT}} \right)$$

Langmuir model: The enthalpy of adsorption $\Delta_{a}H$ per site is constant with coverage Θ

Langmuir model for dissociative adsorption $\theta_{H} = \frac{n_{ads}}{n_{m}} = \frac{\sqrt{p_{H_{2}}K_{ads}}}{1 + \sqrt{p_{H_{2}}K_{ads}}}$ e.g., dissociative ads. of H_{2} on Pt supported on $Al_{2}O_{3}$ at 40°C

Higher order Langmuir model

 $N_{ads} = \frac{N_{mono} (Kp)^{\frac{1}{n}}}{1 + (Kp)^{\frac{1}{n}}}$ e.g., activated ads. of n-butane (educt) on sulf. ZrO₂ at 40°C < T_{reaction} = 60°C IS. Wrabetz et.al., Catal. 2010, 269, 351-358.]

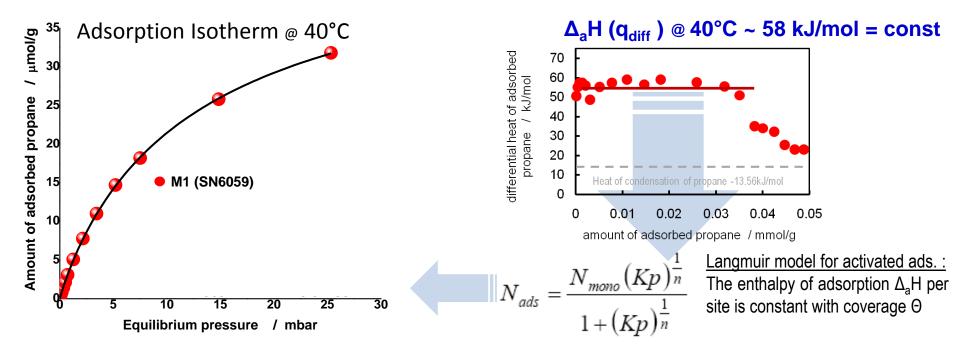

> Langmuir model $\theta = \frac{Kp}{1+Kp}$

e.g., propane adsorption (313 K) on the oxygen surface groups of CNT and B₂O₃-CNT catalysts used in ODH of propane [B. Frank, S. Wrabetz et.al., ChemPhysChem 2011, 12, 2709 – 2713]

CO Adsorption on supported Gold nanoparticle catalysts [Ch. J. Pursell et.al., J. Phys. Chem.C, 2012, 116(20),11117]

Specific surface area = N_{mono} * Avogadro constant * $S_{1:1, assumed}$ * cross-section area $_{39Å2 for propane}$ [A. L. McClellan et.al., J. of Colloid and Interface Science, 23 (1967) 577]

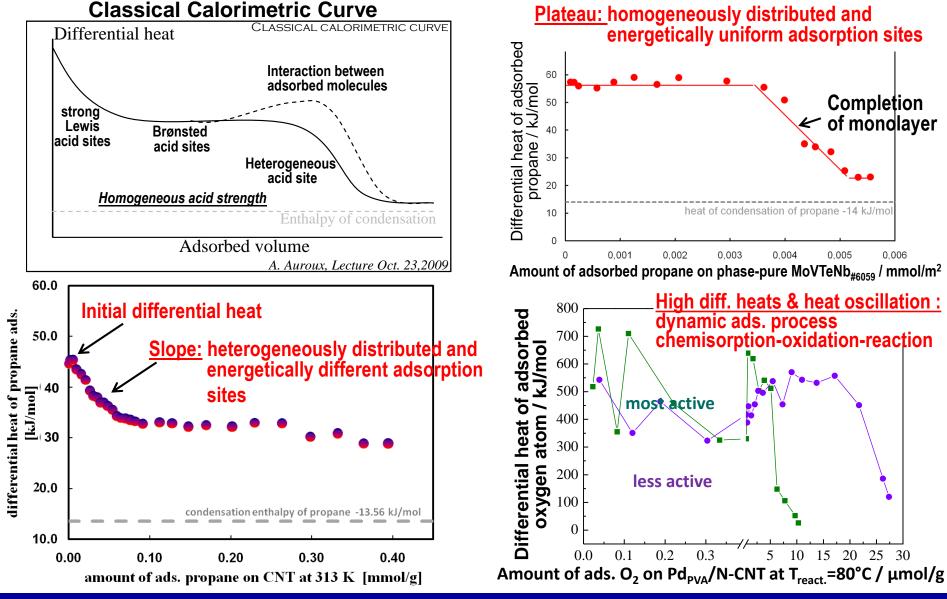
$\left(\frac{1}{n}\right)^{\frac{1}{n}}$
$\frac{1}{n}$


n = 1 non-activated ads. n > 1 activated ads.

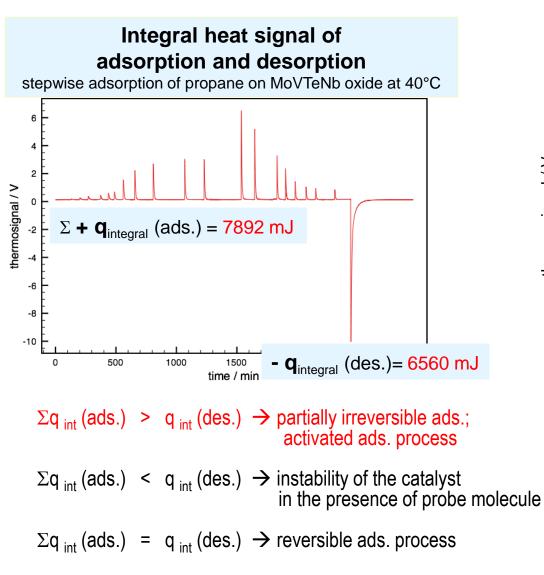
10%V/SBA15 dehydration temperature	N _{mono} µmol *g ⁻¹	n	R ²	S _{propane} m ^{2*g-1}	BET S _{N2} m ² *g ⁻¹
373 K	0.9 (2)	1.20 (2)	0.99983	226 (10)	329 (4)
573 K	1.3 (4)	1.22 (2)	0.99982	304 (10)	
673 K	1.2 (3)	1.22 (2)	0.99905	290 (10)	

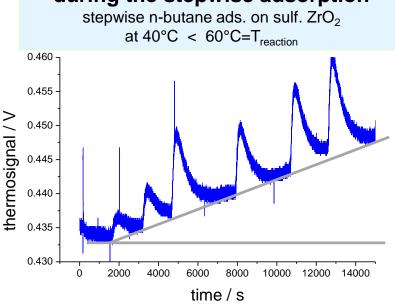
Propane adsorption on **pure-phase M1** catalyst (MoVTeNb oxide #6059) active in selective oxidation of propane

Specific surface area = N_{mono} * Avogadro constant * $S_{1:1, assumed}$ * cross-section area $_{39Å2 for propane}$ [A. L. McClellan et.al., J. of Colloid and Interface Science, 23 (1967) 577]


Catalyst (ID)	N _{monolayer} μmol *g ⁻¹	R ²	${f S_{propane}}\ m^{2*}g^{-1}\ {f A_{propane}}^{-39}\ {f A}^{2}$	BET $m^{2*}g^{-1}$ A _{N2} =16.2 Å ²	N _{ads} - coverage with certain equilibrium pressure
M1 (5630)	34.9 (2)	0.99951	8.2 (1)	6.6	N _{ads} - coverage with certain equilibrium pressure N _{mono} - monolayer coverage p - equilibrium pressure
M1 (6059)	48.5 (8)	0.99991	11.3 (1)	8.8	n - adsorption order K/A - adsorption equilibrium constant R ² - correlation coefficient; goodness of fit
M1 (5737)	42.3 (8)	0.99986	9.9 (1)	13.4	S - stoichiometry

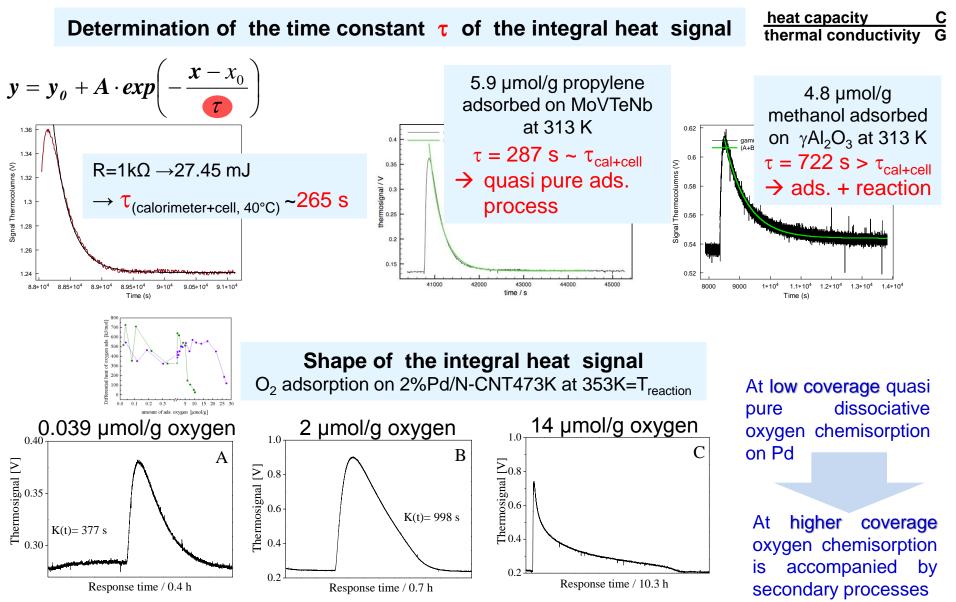
Obtained physical quantities &





Evaluation criteria of the calorimetric result

Background of the thermo signal during the stepwise adsorption

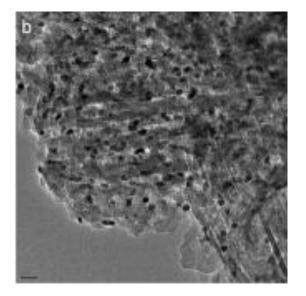


Heat signal deviates from the base-line

- → Adsorption process is accompanied by secondary processes
 - e.g. during n-butane ads. a partial isomerization of n-butane to isobutane in the calorimeter cell was observed

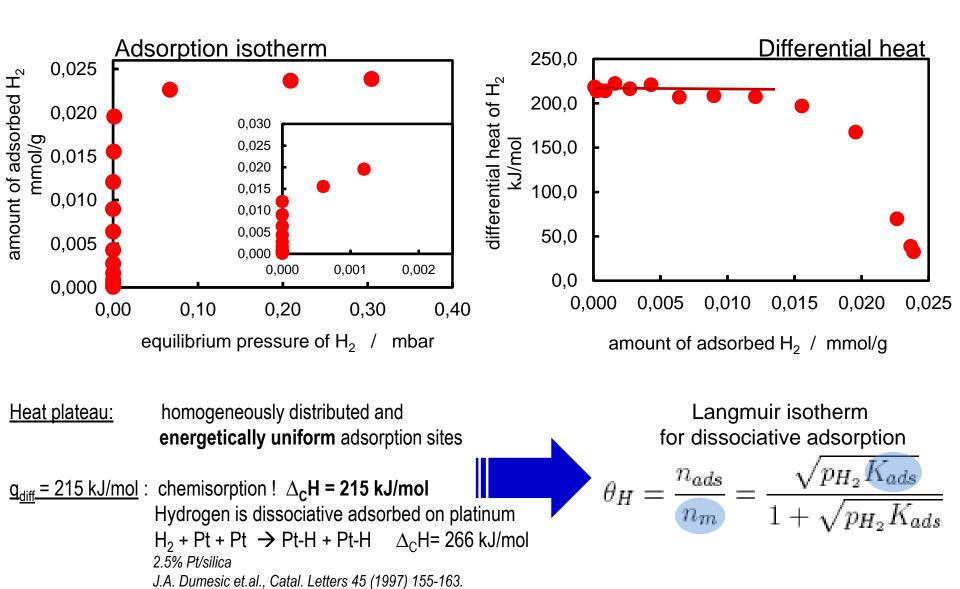
Specific surface area of Pt:	H_2 and CO ads. on 2%Pt/Al ₂ O ₃ at 40°C				
Titration of acid or basic surface sites:	 NH₃ ads. on pure-phase MoVTeNb oxide at 80°C NH₃ ads. on H-ZSM5 at 80°C; Validation of the TP-surface chemical probe reaction of n-propylamin CO₂ ads. on CeO₂ at 40°C 				
Investigation of the oxidation process:	- O ₂ ads. on supported CeO ₂ at 200°C				
Study of catalytic relevant sites via cal	orimetry close to the reaction conditions: - Ethanol ads. on VO _x /γ-AI ₂ O ₃ at 40°C - Propane ads. on MoVTeNb oxide at 40°C - Propane and EB adsorption on the oCNT				
Study of catalytic relevant sites via calorimetry under reaction conditions: - Propylene chemisorption on MoO _x /SBA-15 at T _{reaction} =50°C - O ₂ ads. on Ag for ethylene epoxidation at T _{reaction} =230 °C - 1-Hexyne chemisorption on CeO ₂ /TiO ₂ at T _{reaction} =80°C - CO chemisorption on Ir based catalysts for OER at r.t.					
for dry	es of catalyst surface: emisorption cycles (30°C) on Ni/MgAI oxide catalyst reforming of methane (DRM) he and ethane ads./des. cycles on MoV oxide at 40°C				
- ethane	n of the transition state (activation barrier): & ethylene and propane & propylene ads. on the um oxide-based and Metal-free catalysts for ODH				

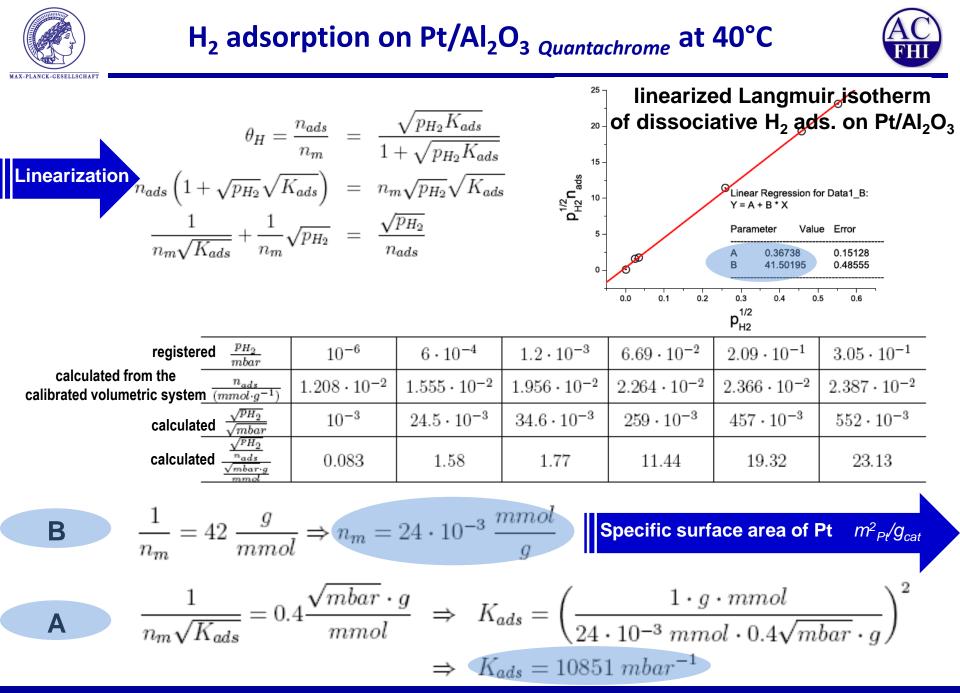
Applications of microcalorimetry in heterogeneous catalysis

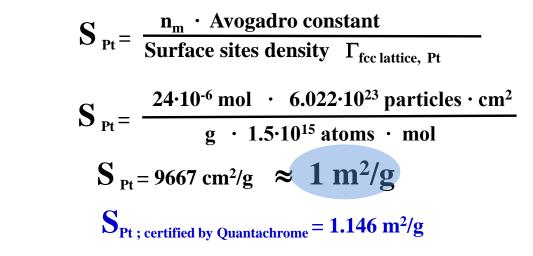

VALIDATION

H_2 chemisorption on 2 wt.% $Pt_{H_2-673K-2h}/Al_2O_3$ at 40°C

Reference Material from

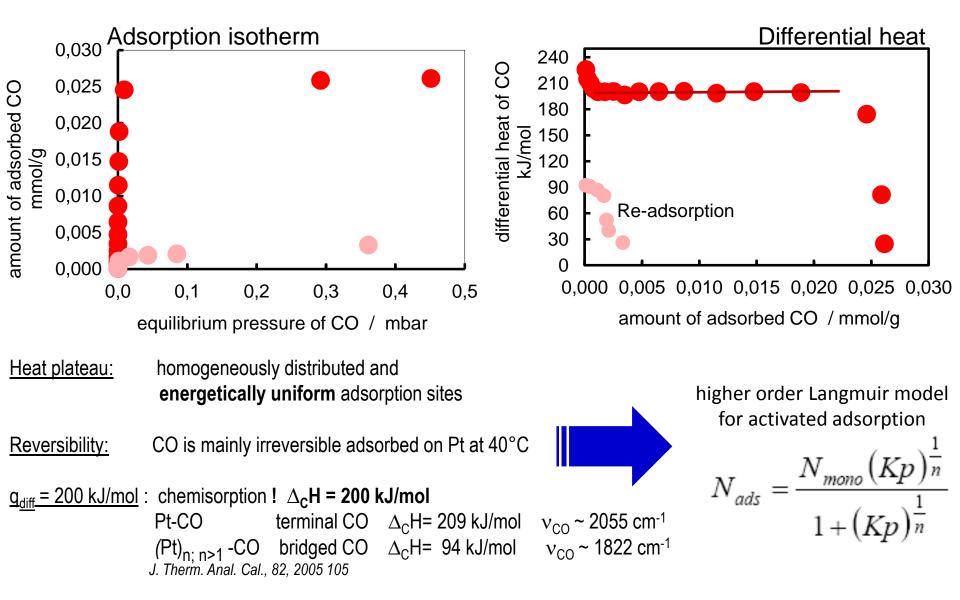


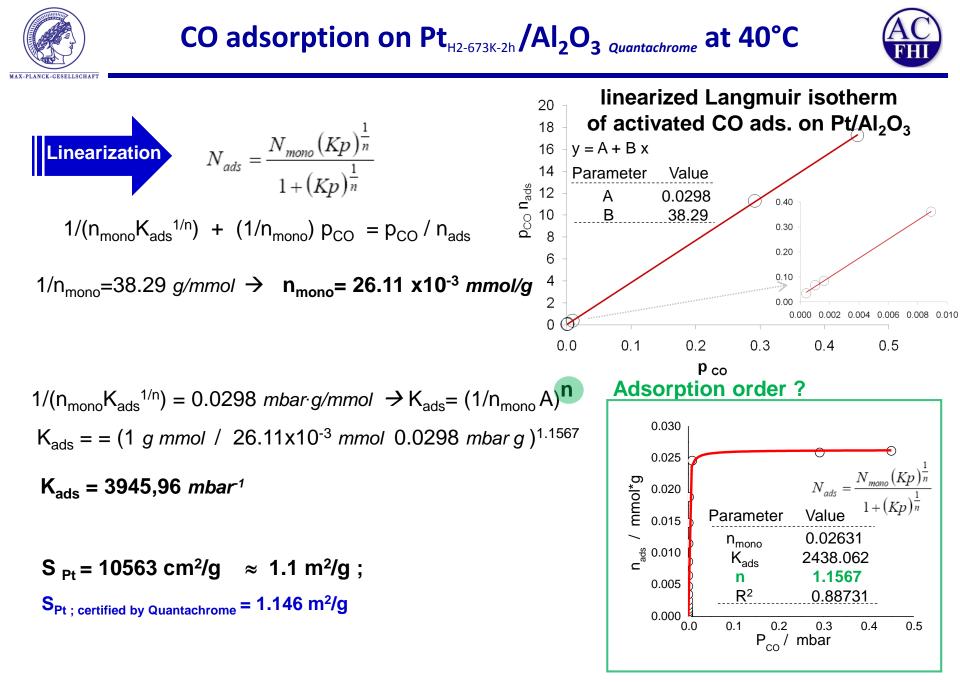

Active Metal Surface Area = $1.146 \text{ m}^2 \text{ g}^{-1}$



Specific surface area of Pt m_{Pt}^2/g_{cat}

<u>Final Results</u>


Kinetic parameters determined for the H₂ ads. on Pt/Al₂O₃



CO adsorption on $Pt_{H2-673K-2h}/Al_2O_3$ Quantachrome at 40°C

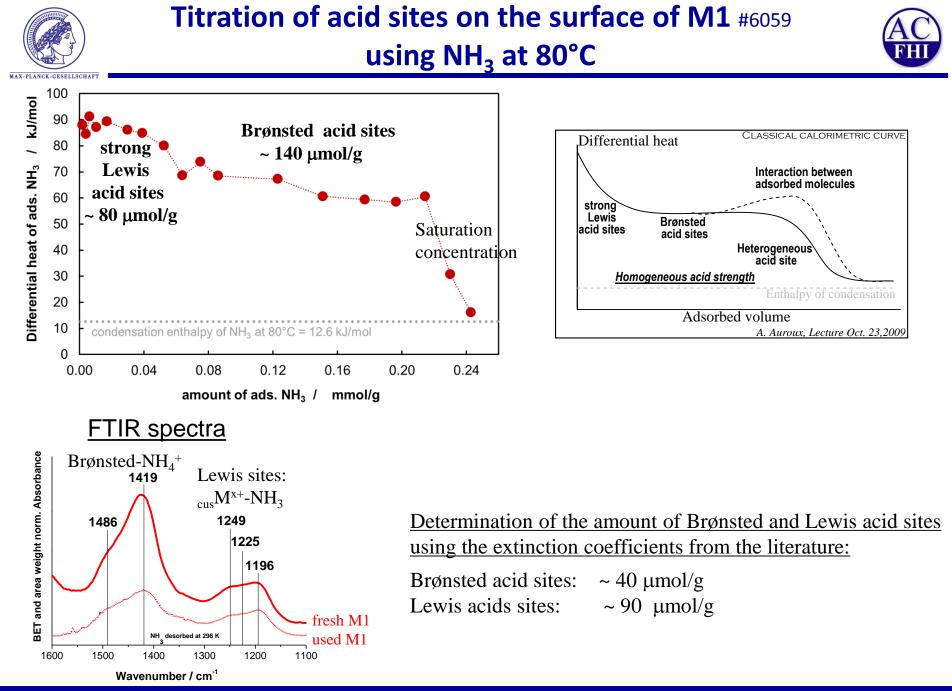
Comparison

Kinetic parameters determined for the CO ads. on Pt/Al₂O₃

 $n_{mono} = 26 * 10^{-6} mol \cdot g^{-1} K_{ads} = 3946 mbar^{-1}$ $\Delta H_{ads.} = 200 \pm 4 \text{ kJ} \cdot \text{mol}^{-1}$ $S_{Pt} \approx 1.1 \quad m^2 \cdot g^{-1}$

Kinetic parameters determined for the H_2 ads. on Pt/Al₂O₃

 $n_{mono} = 24 * 10^{-3} mmol \cdot g^{-1}$ $K_{ads} = 10851 mbar^{-1}$ $\begin{array}{rcl} \Delta H_{ads.} &=& 215 \pm 4 & kJ \cdot mol^{-1} \\ S_{Pt} &\approx& 1.0 & m^2 \cdot g^{-1} \end{array}$


Validation

of the SETARAM calorimeter combined with a custom-designed high vacuum and gas dosing apparatus.

J. Therm. Anal. Cal., 82 (2005)105 : Pt-CO $\Delta_{C}H = 209 \text{ kJ/mol}$ $S_{Pt; certified by Quantachrome} = 1.146 \text{ m}^2/\text{g}$ $\Delta_{C}H = 200 \pm 4 \text{ kJ/mol} \text{ (Dept. AC FHI)}$ $S_{Pt} = 1 \pm 0.1 \text{ m}^2/\text{g}$

Applications of microcalorimetry in heterogeneous catalysis

Titration of acid sites on the surface of MoVTeNb oxide catalyst #6059 using NH₃ at 80°C

Sabine Wrabetz, Electronic Structure and Adsorption, Dept. of Inorganic Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany

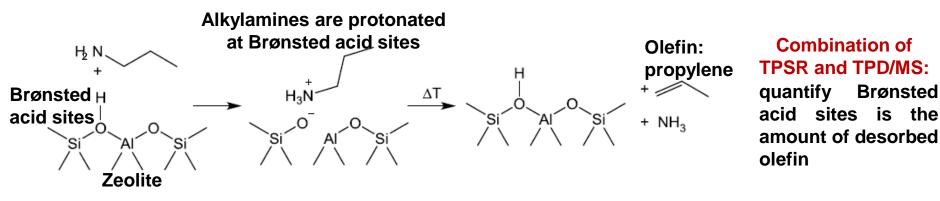
Applications of microcalorimetry in heterogeneous catalysis

Quantification of Brønsted Acid Sites on Catalyst Surfaces via

Temperature Programmed Surface Reaction of n-Propylamine

VALIDATION via Calorimetry NH₃ ads. on H-ZSM5 zeolite at 80°C

NEW METODE of Quantification of Brønsted acid sites on catalyst surfaces by temperature programmed surface reaction of n-Propylamin. VALIDATION via Calorimetry & FTIR

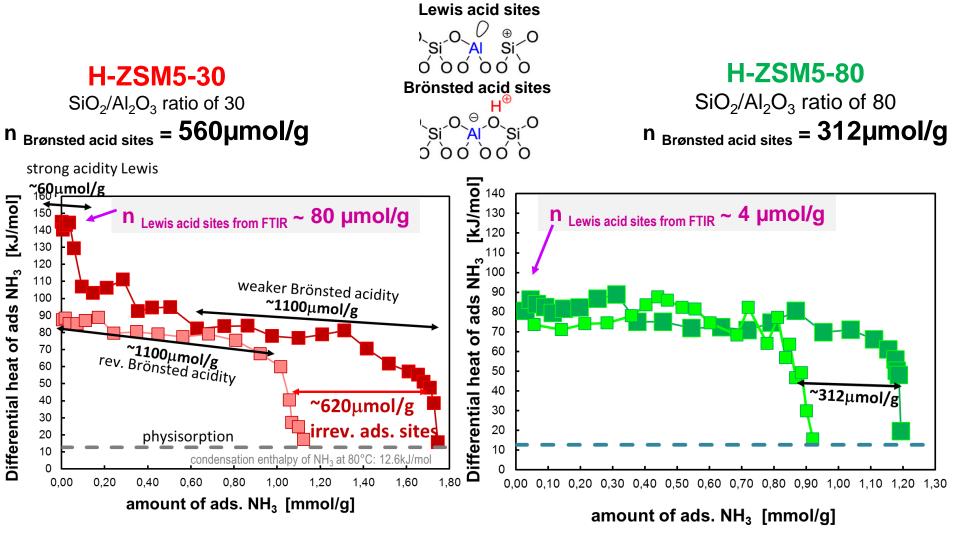

Brønsted

Motivation:

Development of a standard characterization method for the quantification of acid sites on surfaces.

Gorte et al. developed a method that uses alkylamines as reactive probe molecules for TPSR experiments on zeolites.

It was investigated if the needed information can be readily obtained by a commercial TPD machine.



Samples: - H-ZSM5-30 (H-ZSM5 zeolite with a SiO_2/Al_2O_3 ratio of 30) - H-ZSM5-80 (H-ZSM5 zeolite with a SiO₂/Al₂O₃ ratio of 80)

[1] R. J. Gorte, Catal. Today 1996, 28, 405–414.

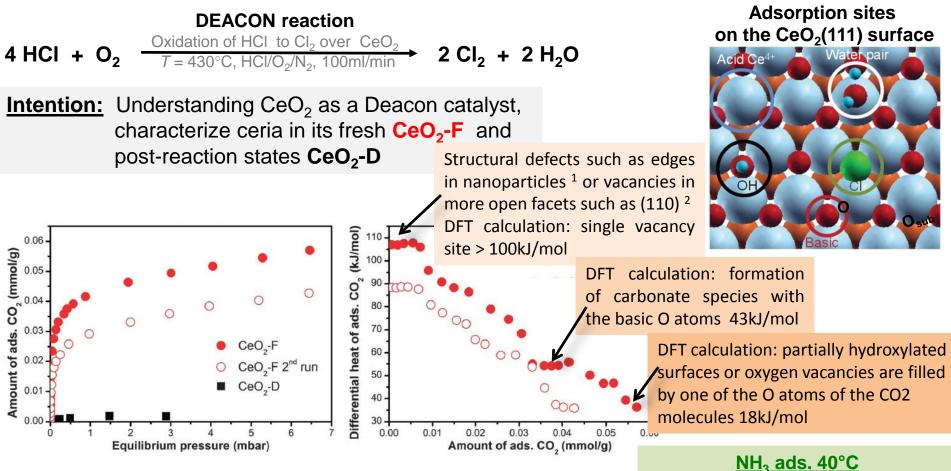
 $n_{relevant Brønsted acid sites} = n_{irrev. ads sites} - n_{Lewis acid sites}$

Stoichiometric and measured acidities for H-ZSM5 zeolites TPSR/TPD & microcalorimetry & FTIR

	Quantification of Brønsted Acid Sites					
Sample	Stoichiometric acidity ^[5] µmol/g	FTIR ^[6] µmol/g	Microcalorimetry ^[7] µmol/g	Alkylamine TPD µmol/g		
H-ZSM5-30	525	437	560	557		
H-ZSM5-80	204	269	312	297		

The comparison shows that the obtained results from the TPSR are consistent with the microcalorimetry and IR measurements.

- [5] A. S. Al-Dughaither, H. de Lasa, Ind. Eng. Chem. Res. 2014, 53, 15303–15316.
- [6] O. Bortnovsky, Z. Melichar, Z. Sobalík, B. Wichterlová, Micropor. Mesopor. Mat. 2001, 42, 97–102.
- [7] S. Wrabetz, X. Yang, G. Tzolova-Müller, R. Schlögl, F. C. Jentoft, J. Catal. 2010, 269, 351–358.; Klaus Dieter Friedel Ortega, Dissertation, "6.3.4. Investigation of gasphase acidity by NH3 microcalorimetry and NH3-TPD, S. Wrabetz, page102.



Titration of basic sites on the surface of ceria using CO₂ at 40°C

Titration of basic sites on the surface of supported ceria using acidic CO₂ at 40°C³

The basic character of the ceria surface has been eliminated upon reaction, indicating that most of the basic lattice O sites are exchanged by chlorine and that the OH groups formed are rather acidic.

(1) G. N. Vayssilov, M. Mihaylov, P. S. Petkov, K. I. Hadjiivanov and K. M. Neyman, J. Phys. Chem. C, 2011, 115, 23435–23454.

(2) M. Nolan, S. C. Parker and G. W. Watson, Phys. Chem. Chem. Phys., 2006, 8, 216–218.

(3) Farra, R., Wrabetz, S., Schuster, M. E., Stotz, E., Hamilton, N., Amrute, A. P., Pérez-Ramírez, J., López, N., Teschner, D., Phys. Chem. Chem. Phys., 15 (2013) 3454 - 3465.

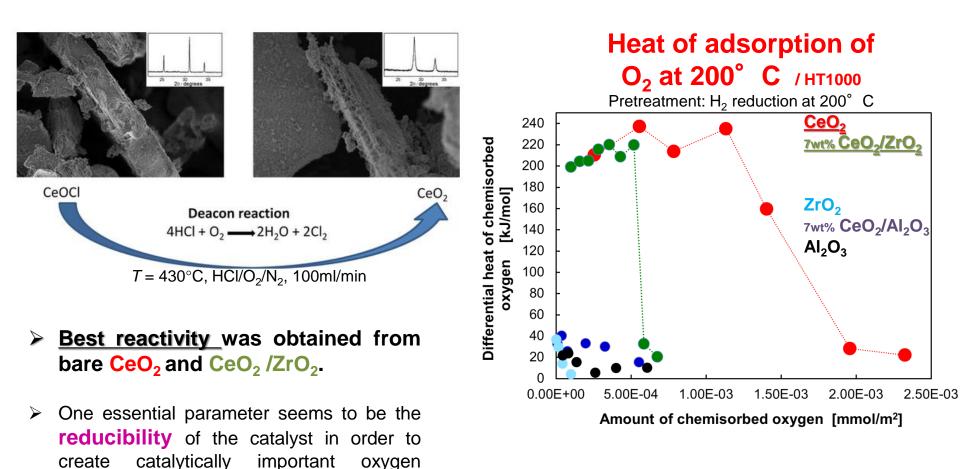
Sabine Wrabetz, Electronic Structure and Adsorption, Dept. of Inorganic Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany

<u>NH₃ ads. 40°C</u>

fresh: 30 kJ/mol 75µmol/g acid sites used: 50 kJ/mol 75µmol/g acid sites

> increased acidity of the chlorinated surface

Investigation of the oxidation process: Oxidation of HCl to Cl₂ over bare and supported CeO₂



create

vacancies.

Oxidation of HCl to Cl₂ over bare and supported CeO₂ **DEACON** reaction

Reactivity seems to be linked with \geq the reducibility of the surface.

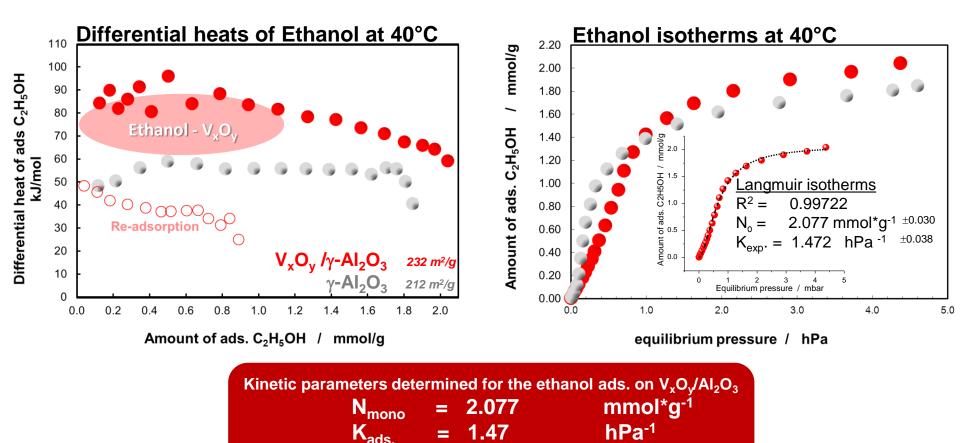
Farra, R., Wrabetz, S., Schuster, M. E., Stotz, E., Hamilton, N., Amrute, A. P., Pérez-Ramírez, J., López, N., Teschner, D., Phys. Chem. Chem. Phys., 15 (2013) 3454 - 3465 . M. Mosera C. Mondellia T. Schmidtb F. Girgsdiesc M.E. Schusterc R. Farra, L. Szentmiklósi, D. Teschner, J. Pérez-Ramírez, Applied Catalysis B: Environmental 132–133 (2013) 123–131.

oxygen

Applications of microcalorimetry in heterogeneous catalysis

Study of catalytic relevant sites via calorimetry close to the reaction conditions:

Oxidation of alcohol over vanadium supported Al₂O₃



 $C_2H_5OH + \frac{1}{2}O_2 \longrightarrow C_2H_4O + H_2O \quad \Delta_RH = -178,5 \text{ kJ/mol}$

Catalyst: $V_x O_y / \gamma - Al_2 O_3$ $T_{reaction} = 140 - 200 \ ^\circ C$

Intention: Determination of kinetic data: N_{ads} , K_{ads} and $_{\Delta}H_{ads}$ of Ethanol on V_xO_y/Al_2O_3

90 ±10

=

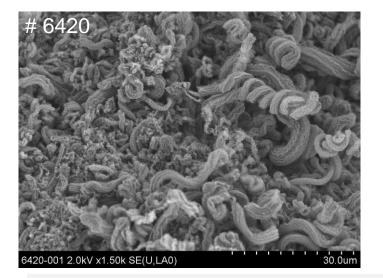
kJ*mol⁻¹

A. Dinse, S. Khennache, B. Frank, C. Hess, R. Herbert, S. Wrabetz, R. Schlögl and R. Schomäcker, J.of Mol. Catal. A: Chem. 307 (2009) 43-50.

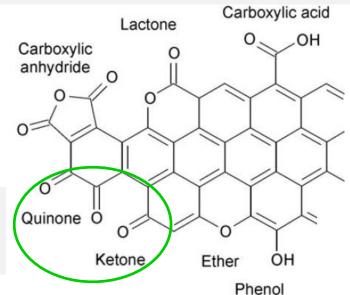
Sabine Wrabetz, Electronic Structure and Adsorption, Dept. of Inorganic Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany

 $\Delta H_{ads.}$

Applications of microcalorimetry in heterogeneous catalysis


Study of catalytic relevant sites via calorimetry close to the reaction conditions:

New insights on active sites of oxygen functionalized carbon nanotube (oCNT) for oxidative dehydrogenation (ODH)



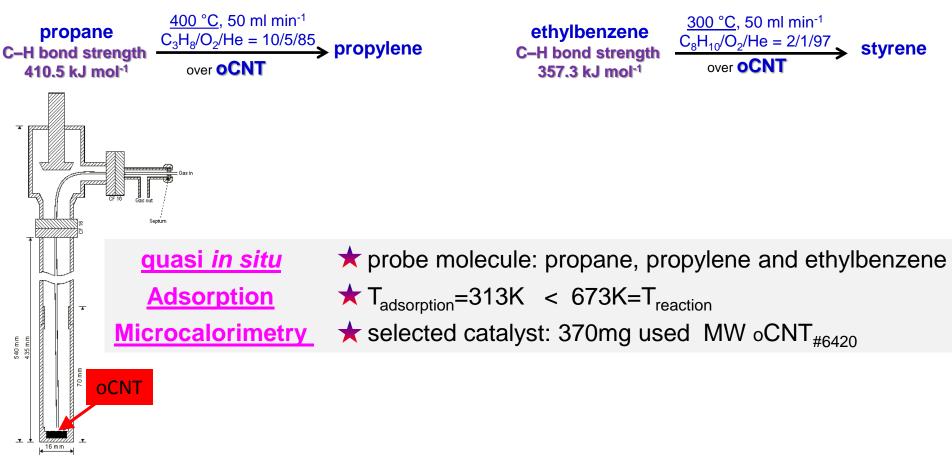
Carbon based materials are active catalysts for the oxidative dehydrogenation (ODH) reaction ^[1]

Quinone groups are believed to be the active sites. These **nucleophilic oxygen** species can selectively abstract hydrogen atoms ^[2-5]

The well defined active surface oxygen sites will be created by oxygen functionalization of the CNTs with HNO₃.

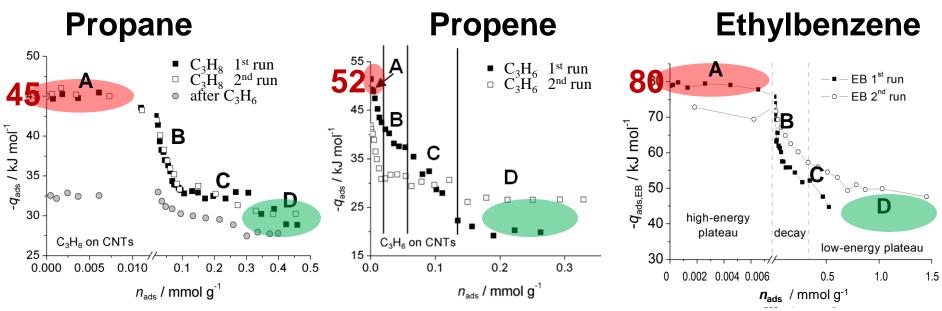
Intention:

To establish a mechanistic model for carbon catalyzed ODH.


Ads. properties are important input for kinetic modeling. The research project was performed in a multidisciplinary approach (quasi *in situ* adsorption microcalorimetry, *in situ* XPS, kinetics, DFT).

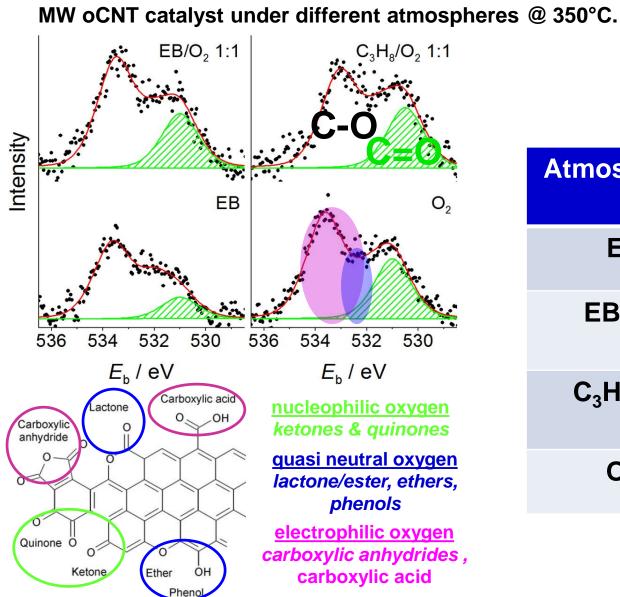
We choose the ODH of propane and ethylbenzene (EB) as the model reactions.

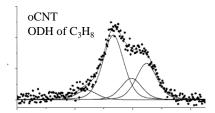
Model reaction



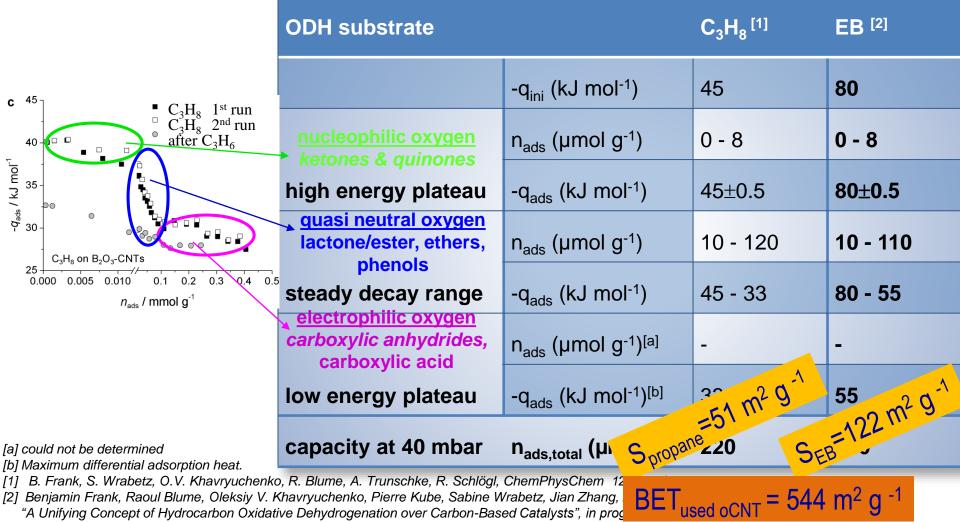
B. Frank, S. Wrabetz, O.V. Khavryuchenko, R. Blume, A. Trunschke, R. Schlögl, ChemPhysChem 12 (2011) 2709.

Differential heats of propane, propene and EB adsorption at 40°C^[1]

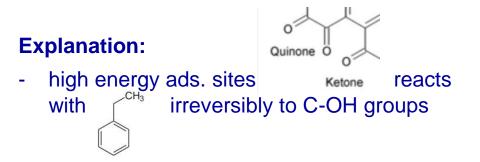

- > ~8 μ mol/g active sites equilibrated in EB and propane ODH reaction
- 3-5% of the surface is covered by high-energy adsorption sites which can be correlated to 4-5% of surface oxygen determined by XPS^[2]
- EB reacts stronger (80 kJ/mol) than propane (45 kJ/mol).
- Graphite (free of oxygen) shows a constant low level of diff. heats for propane (32kJ/mol) and propylene (40kJ/mol); reversible


[1] B. Frank, S. Wrabetz, O.V. Khavryuchenko, R. Blume, A. Trunschke, R. Schlögl, ChemPhysChem 12 (2011) 2709.
 [2] B. Frank, J. Zhang, R. Blume, R. Schlögl, D. S. Su, Angew. Chem. 2009, 121, 7046–7051; Angew. Chem. Int. Ed. 2009, 48, 6913–6917.

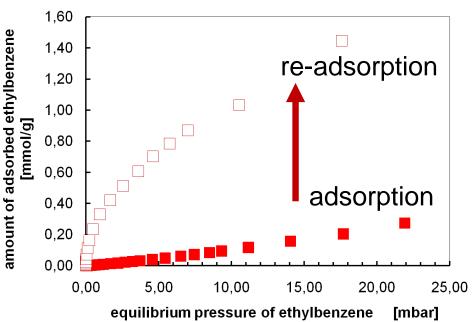
O1s ranges of XP spectra



Atmosphere	I _{C=0} / I _{C-0}	
EB	0.168	
EB/O ₂	0.283	
C₃H ₈ /O₂	0.313	
0 ₂	0.315	

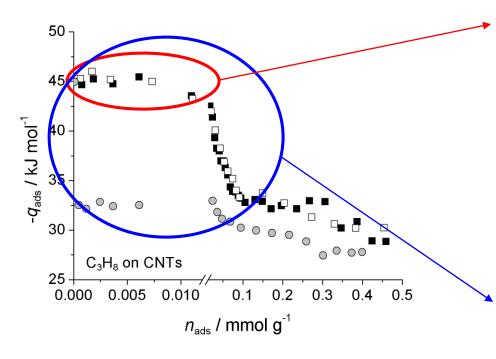

Site classification & quantification from microcalorimetric analyses, XPS, and TPD_{not shown} of active surfaces of oCNT catalysts in ODH of propane and EB^[1,2]

[2] Benjamin Frank, Raoul Blume, Oleksiy V. Khavryuchenko, Pierre Kube, Sabine Wrabetz, Jian Zhang, BE "A Unifying Concept of Hydrocarbon Oxidative Dehydrogenation over Carbon-Based Catalysts", in prod



- → formation of H₂O during initial reaction → blocked active sites → turns the surface more hydrophilic → hindering the ads. of non-polar EB molecule
- → reversible 2nd ads. run of EB without reaction (consumed C=O groups) and hence no formation of H₂O
- → more weak ads. sites available for EB

Ethylbenzene on used oCNT

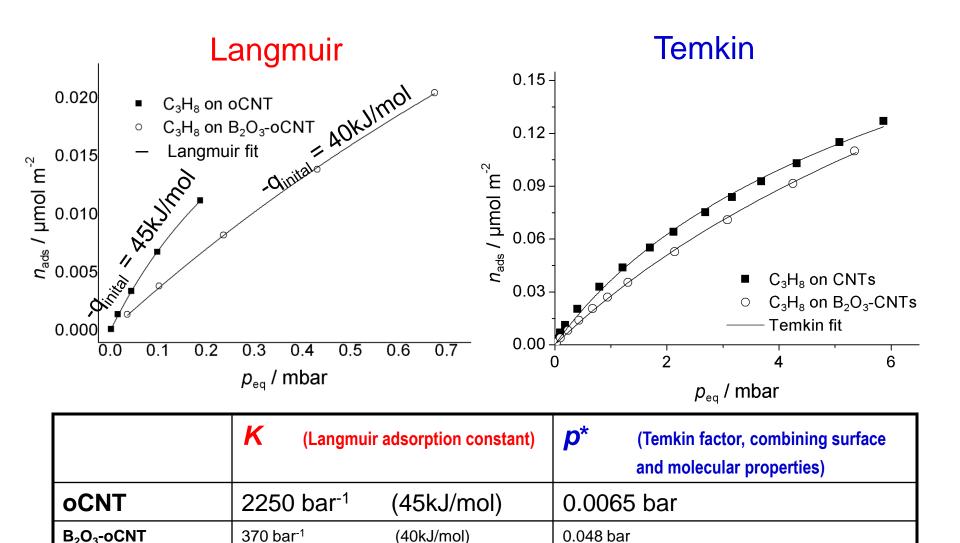


>2nd run of EB ads. reveals a drastic increase of the total adsorption capacity

- Note: Adsorption Isotherms only for oxygenated sites which are relevant for catalysis
 - Adsorption isotherms of propylene and EB have not been evaluated because of irreversible processes and surface reactions.

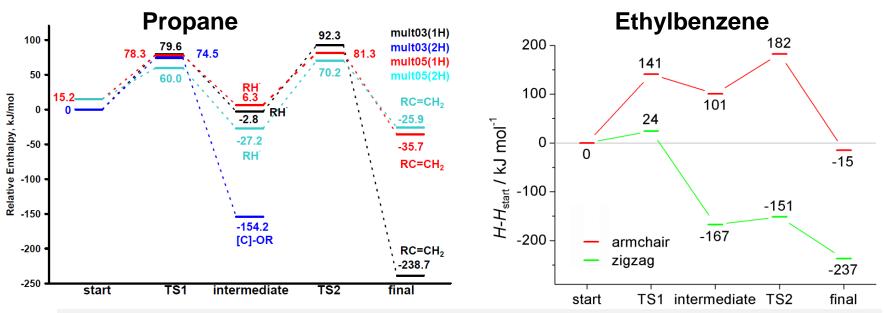
Energetically uniform sites → Langmuir model

 $\theta = \frac{K p}{1 + K p}$ K: Langmuir adsorption constant


$$\theta = \frac{RT}{q_{ads}^{(\theta=0)} - q_{ads}^{(\theta=1)}} \ln \left(\frac{1 + \frac{p}{p^*} \exp \frac{q_{ads}^{(\theta=0)}}{RT}}{1 + \frac{p}{p^*} \exp \frac{q_{ads}^{(\theta=1)}}{RT}} \right)$$

p*: is a constant combining surface and molecular propertiesEnergetically non-uniform sites

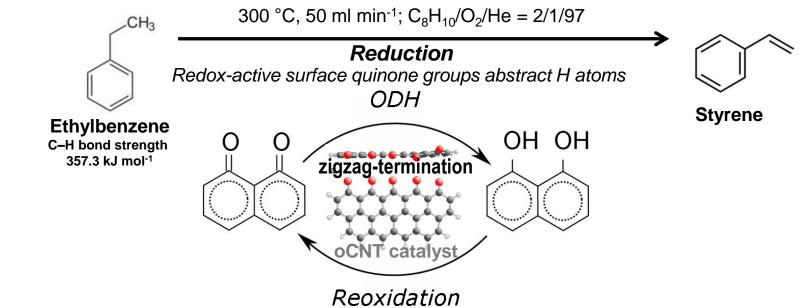
(decay of q_{ads} with increasing coverage) \rightarrow Temkin model



Energy Diagram for ODH of propane and EB (1st H-abstraction) over zigzag-termination of the carbon cluster

- the barrier for activation of propane is higher than for EB
- the zigzag-termination is much more active than the armchair geometry

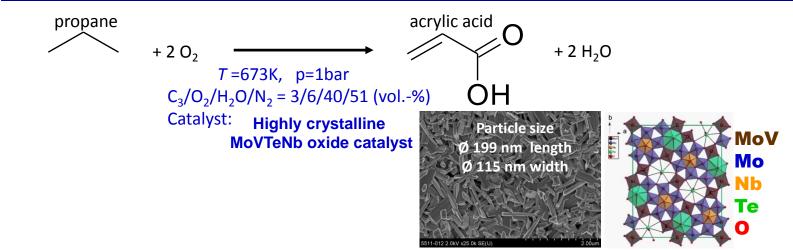
[1] O. V. Khavryuchenko, B. Frank, A. Trunschke, K. Hermann, R. Schlögl, J. Phys. Chem. C 117 (12) (2013) 225



Conclusion

- Classification and quantification of the of the carbon surface under reaction conditions.
 - EB: lower activation barriers and stronger irreversible adsorption well correlate with the lower stability of the benzylic C-H bond over the aliphatic C-H bond in propane

<u>two-site redox kinetics:</u>


The redox cycle of surface C=O and C-OH groups is the key process, which includes only a small fraction of surface O species (2.4 m² g⁻¹, 8 μmol/g, 3-5% _{Calo/XPS}) and favorably occurs at the zigzag-termination of sp2 carbon planes. Applications of microcalorimetry in heterogeneous catalysis

Study of catalytic relevant sites via calorimetry close to the reaction conditions:

Selective oxidation of propane to acrylic acid over MoVTeNb oxide catalyst

Selective oxidation of propane to acrylic acid over M1

Intention: study of the post-reaction state of the surface "used catalyst" in comparison with the prepared state of the surface "fresh catalyst" in order to describe a structure-selectivity relationship

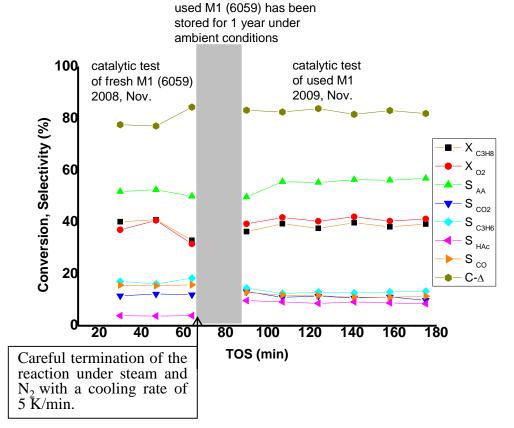
Adsorption

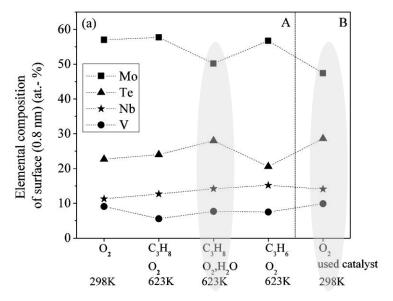
★ propane as probe molecule

Microcalorimetry :

- ★ T_{adsorption}=313K < 673 K=T_{reaction}
- selected catalysts: different selective catalysts

pure-phase MoVTeNb	S _{aa} = 53%
modified MoVTeNb by an oxidizing agent	S _{aa} = 37%
MoV oxide	S _{aa} = 1.8 %

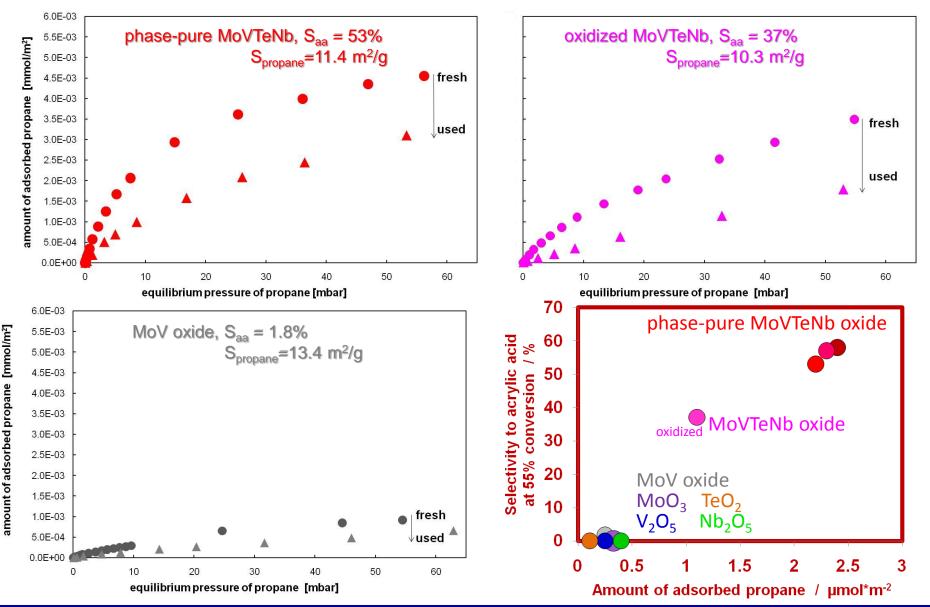

Botella, P., et al., The preparation, characterization, and catalytic behavior of MoVTeNbO catalysts prepared by hydrothermal synthesis. Journal of Catalysis, 2002. 209(2): p. 445-455.
 Ueda, W., et al., Structural organization of catalytic functions in Mo-based oxides for propane selective oxidation. Catalysis Today, 2004. 96(4): p. 235-240.


CATALYTIC TEST (fresh/used catalyst)

propane oxidation data obtained from fresh and used MoVTeNb catalyst

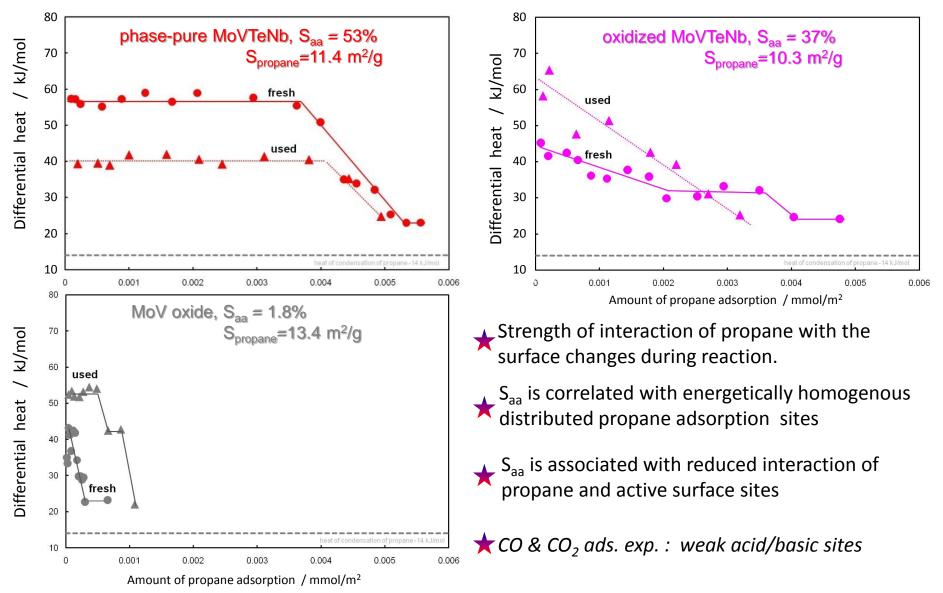
SURFACE STUDY (fresh/used catalyst)

in situ XPS: surface element composition during and after PO over MoVTeNb catalyst


Surface composition of the used M1 is similar to the composition measured in the *in situ* experiment in the presence of steam. [A.Celaya Sanfiz et.al., J. Phys. Chem. C, 2010, 114, pp 1912]

ex situ surface analysis of the used catalyst can be done

Propane adsorption isotherms of different selective catalysts



Sabine Wrabetz, Electronic Structure and Adsorption, Dept. of Inorganic Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany

Differential heats of adsorbed propane of different selective catalysts

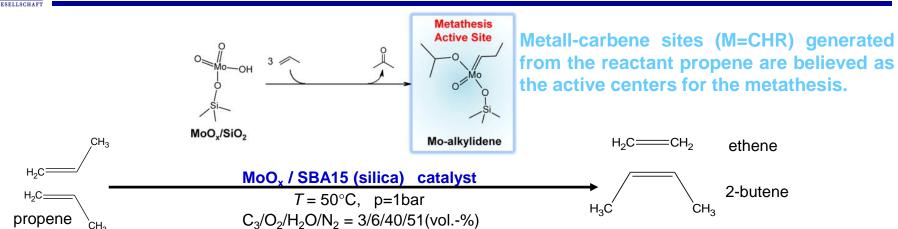
the prepared state of the surface is different from the post-reaction state of the surface -> dynamic surface during reaction

remarkable selective (S_{aa} = 53%) MoVTeNb oxide surface is characterized by high density of energetically uniform propane adsorption sites with weak acid-base character

The weaker interaction of propane with the post-reaction state of the surface is apparently favorable for the catalytic performance; perhaps because of facile product desorption.

M. Hävecker, S. Wrabetz , A. Trunschke, R. Schlögl et.al. ; Journal of Catalysis, 258(1) (2012) 48 -60.

Applications of microcalorimetry in heterogeneous catalysis


Study of catalytic relevant sites via calorimetry under reaction conditions:

Active Site Quantification on Propylene Metathesis over MoOx/SBA-15

Active Site Quantification

on Propylene Metathesis over MoOx/SBA-15

Intention: Studying of the catalytically active surface sites - quantification

Adsorption Microcalorimetry :

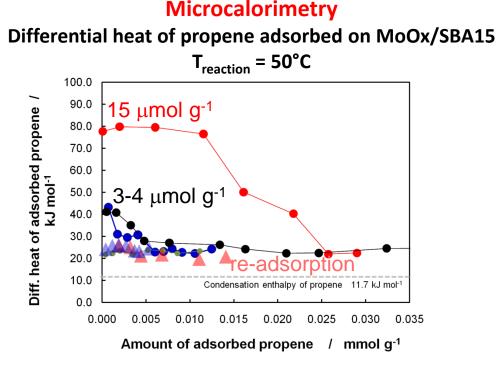
 \star

- propylene as probe molecule
 - $T_{adsorption} = 50^{\circ}C = T_{reaction}$
- selected catalysts: different activity

K. Amakawa, S. Wrabetz, R. Schlögl et.al. ; J. Am. Chem. Soc., 134 (28) (2012) 11462-11473.

Active Site Quantification

on Propylene Metathesis over MoOx/SBA-15

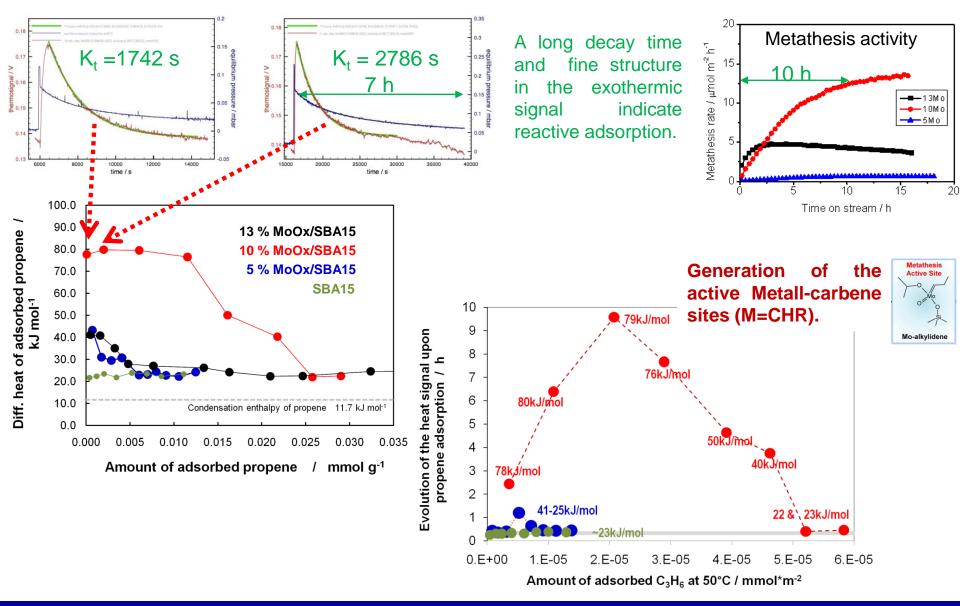


Propene Metathesis Activity T = 50 °Cc 20 13 % MoOx/SBA15 Metathesis rate / μ mol m⁻² h⁻¹ 10 % MoOx/SBA15 5 % MoOx/SBA15 15 **SBA15** $5 \mu mol_{Mo=CHR} g^{-1}$ 10 $3.0 \ \mu mol_{Mo=CHR} \ g^{-1}$ 5 $3.7 \mu mol_{Mo=CHR} g^{-1}$ () 10 15 20 0 5 Time on stream / h

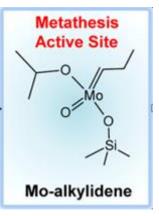
Activity strongly depends on the Mo loading

Post-reaction carbene titration

Active site counting was performed after metathesis using post-reaction ethene- d_4 (CD₂=CD₂) metathesis to titrate the formed metal-carbene (Mo=CH-CH₂) sites. Mo=CH-CH₃ + CD₂=CD₂ \rightarrow Mo=CD₂ + CD₂=CH₂-CH₃


Correlation between amount & strength of C₃H₆ adsorption sites and catalytic activity.

Active Site Quantification

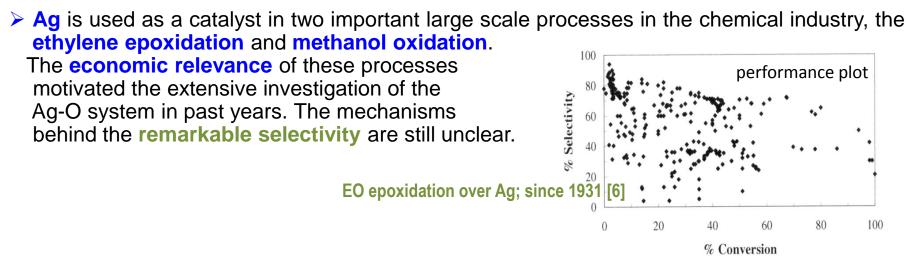

on Propylene Metathesis over MoOx/SBA-15

- > The active catalyst is characterized by:
 - higher amount of ads. sites for propylene
 - strong and irreversible adsorption of propylene on MoOx sites
 - energetically homogenously distributed active sites
- Catalytic activity is directly correlated with the strength of the propylene interaction with the active surface site.

 \succ ca. 1% of Mo atoms formed active sites

Amakawa, K., Wrabetz, S., Kröhnert, J., Tzolova-Müller, G., Schlögl, R., Trunschke, A.; J. Am. Chem. Soc., 134 (28) (2012) 11462-11473.

Applications of microcalorimetry in heterogeneous catalysis


Study of catalytic relevant sites via calorimetry under reaction conditions:

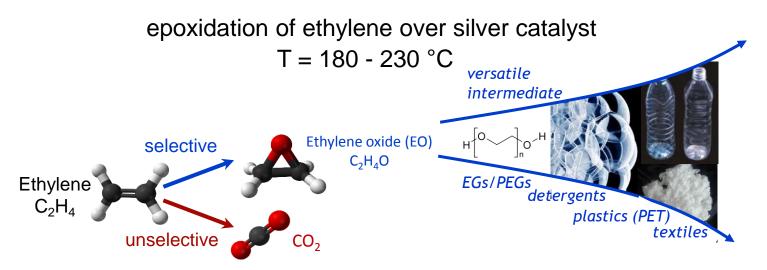
Silver as a catalyst for the ethylene epoxidation - Ag-O system in catalysis -

- The current understanding of oxidation reactions on Ag catalysts rely on the knowledge about the oxygen species formed on silver [1].
- Final goal is to safely translate the electronic signatures obtained by X-ray spectroscopies into structural information, which can be used to construct reaction mechanisms [4,5].

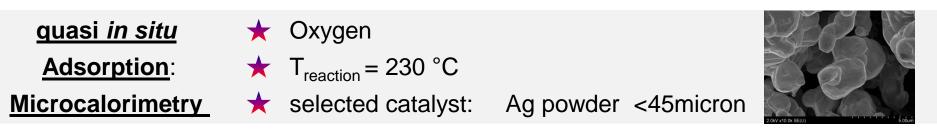
^[1] C. Hess, R. Schlögl, A. T. Bell, A. Trunschke, A. Knop-Gericke, Nanostructured Catalysts: Selective Oxidations, Royal Society Of Chemistry, 2011.

^[2] T. C. R. Rocha, A. Knop-Gericke, R. Schlögl, The Journal of Physical Chemistry C 2012, 116, 11408–11409.

^[3] R. Reichelt, S. Gunther, J. Wintterlin, Journal of Physical Chemistry C 2011, 115, 17417–17428.


^[4] T. C. R. Rocha, A. Oestereich, D. V Demidov, M. Hävecker, S. Zafeiratos, G. Weinberg, V. I. Bukhtiyarov, A. Knop-Gericke, R. Schlögl, Phys. Chem. Phys. 2012, 14, 4554–64.

^[5] V. I. Bukhtiyarov, M. Hävecker, V. V. Kaichev, A. Knop-Gericke, R. W. Mayer, R. Schlögl, Phys. Rev. B 2003, 67, 235422.

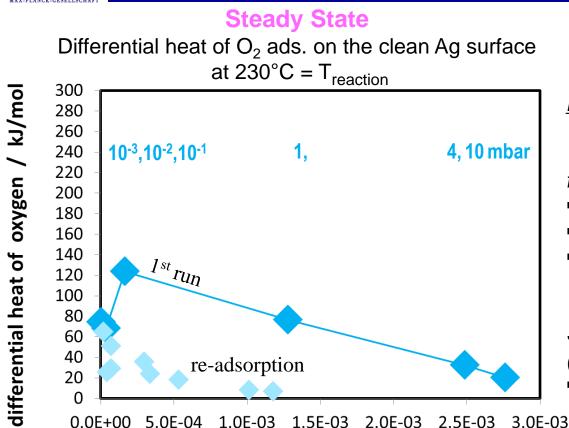

^[6] B. K. Hodnet, Heterogeneous Catalytic Oxidation, John Wiley & Sons, New York, 2000.

Intention: to construct reaction mechanisms. The energetic data provided by calorimetry is essential to any reaction mechanism. It will provide additional information to interpret the spectroscopic measurements and it will also be used as reality check for the predictions of the computational calculations.

Initial State Cleaning of the silver surface observed by calorimetry Differential heat of O₂ ads. at 150°C 300 differential heat of oxygen / kJ/mo DFT 10⁻³,10⁻²,10⁻¹ mbar 280 \triangleright O₂ adsorbs more strongly on Ag modified by O_{sub} 260 240 and defect sites: $E_{ads.} = 180 - 240 \text{ kJ/mol}$ 220 2nd/run 200 Surface reconstructions: E_{ads.} = 120 – 160 kJ/mol 180 160 140 | SL 120 100 80 60 10⁻³, 10⁻², 10⁻¹ mbar 40 20 References: 0 0.0E+00 2.0E-04 4.0E-04 1.0E-03 6.0E-04 8.0E-04

amount of adsorbed oxygen / mmol/g

Note: mild pre-treatment (150° C, 0.1 mbar, 2h) is enough to clean the samples also observed by NAP-XPS q_{diff} is due to the exothermic reaction of oxygen atoms with the carbon contaminants (CH_x/CO_3) .

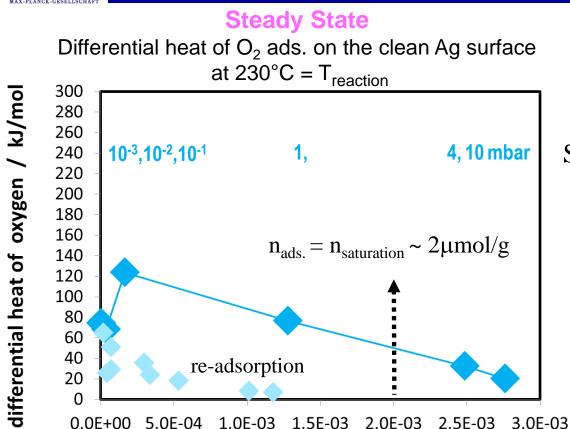

- 200 to 400 kJ/mol: combustion of impurities ^[4]
- 50 to 420 kJ/mol : combustion of contaminants ^[5]
- 171 kJ/mol at 170° C: combustion of impurities [6]

- Auroux, A. & Gravelle, P.C., 1981. Comparative study of the bond energy of oxygen at the surface of supported silver catalysts and of the activity of these catalysts for ethylene 41 epoxidation. Thermochimica Acta, 47, pp.333-341.
- Anderson, K.L., Plischke, J.K. & Vannice, M., 1991. Heats of Adsorption of Oxygen, Ethylene, and Butadiene on Al₂0₃- Supported Silver. J. of Catalysis, 160, pp.148–160. [5]
- Anderson, K.L., Plischke, J.K. & Vannice, M., 1991. Heats of Adsorption of Oxygen, Ethylene, and Butadiene on Al203- Supported Silver. Journal of Catalysis, 160, pp.148–160.1 [6]

4, 10 mbar

References: [12] *H* is the standard enthalpy of formation for model adsorbates at 298.15 K • $O_{ads.}$: H = -63.0 kJ/mol• $O_{2 ads.}$: $H = -44.5 \, kJ/mol$ ■ O_{ads.} / O_{surface} : H = -103.0 kJ/mol [13] Standard enthalpies of formation at 298 K (ΔH°_{f}) of O adatoms on Pt(111): ■ 109 – 99 k.l/mol

Note: The enthalpy is insignificantly affected by the temperature (DFT)


C. Stegelmann, N.C. Schiødt, C.T. Campbell, and P. Stoltze, J. Of Catal. 221 (2004) 630-649. [12] Eric M. Karp, Charles T. Campbell, Felix Studt, Frank Abild-Pedersen and Jens K. Nørskov; SLAC-PUB-15339. [13]

amount of adsorbed oxygen / mmol/g

4, 10 mbar

at $230^{\circ}C = T_{reaction}$

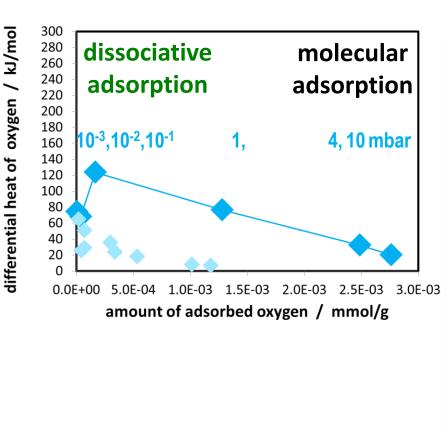
at $T_{reaction} = 230^{\circ}C$ $n_{ads.}$ · Avogadro constant $S_{Ag} = \frac{-aus.}{Surface sites density \Gamma_{fcc lattice, Ag}}$ $2 \cdot 10^{-6} \text{ mol} \cdot 6.022 \cdot 10^{23} \text{ particles} \cdot \text{cm}^2$

g $\cdot 1.4 \cdot 10^{15}$ atoms \cdot mol

Specific surface area of Ag for O_2

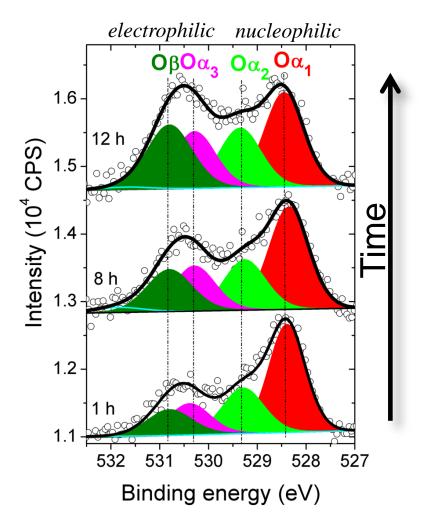
 $S_{Ag-O} = 0.86 \text{ m}^2/\text{g}$ BET $_{N2.77K} = 0.72 \text{ m}^2/\text{g}$ $\Delta S = 0.14 \text{ m}^2/\text{g}$

The excess can be due to dissolving of oxygen into the Ag subsurface.


amount of adsorbed oxygen / mmol/g

Experiment

Theory


DFT calculations						
system	Eads per 1/2 O ₂ [kJ/mol]	Eads per O ₂ [kJ/mol]				
reconstructions O _{ads} stronger on Ag(110)	60-80	120-160				
unreconstructed O _{ads} on hollow sites of Ag(111)	40-60	80-120				
on subsurface O	110-120	220-240				
surface defects	90-120	180-240				
subsurface	<10	10				
grain boundaries	10-20	20-40				
O2 clean surface	5-10	10-20				
O2 on sub O	10-20	20-40				
O2 on defects	20-30	40-60				

O1s XPS spectra for Ag powders

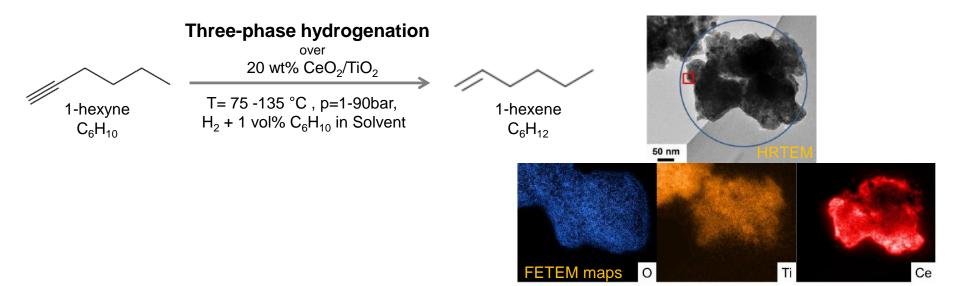
measured in situ under 0.5 mbar O_2 at 180 °C

The **distribution of O species** on the Ag surface dynamically **changes with time** as the catalyst surface equilibrates with the gas phase at mbar pressure and temperatures typical of alkene (180-230 °C). → Dynamics at 180 °C

Ag-O dynamics depend on time / temperature and pressure

Summary

			–		
° C	p₀₂ mbar	n _{ads.} μmol ₀₂ /g _{Ag}	q _{diff} kJ/mol	Ag-O dynamics	DFT Agsub C(6x2)
T _{cleaning} 150	< 10 ⁻¹	0.5	>120 - 260	 dissociative adsorption cleaning the surface from CH_x/CO₃ initial formation of the surface	Ag(110)reconstruction
T _{reaction} 230	10 ⁻¹ - 1	1.5	>50 - 120	 extensive structural changes * oxygen begins to dissolve to subsurface ** oxide-like structures = 60 -80 kJ/mol^[8] chemisorbed oxygen modified by a subsurface oxygen *** 	 → → > >
T _{reaction} 230	>1 - 10	1	< 50	 molecular oxygen adsorbed on surface - vacancies **** formation of electrophilic oxygen ***** O₂ on subsurface oxygen 	 → →


- * Ag atoms moving from defects and edges to form the reconstructions. Island formation at low coverages.
- ** Formation of oxide like reconstruction and/or surface oxide layer.
- *** Depends on time/temperature because its formation is limited by oxygen diffusion to subsurface.
- **** Proposed by theory and calorimetry. In this case the time/temperature dependence is related to the defect formation.
- ***** The active site for epoxidation! Two interpretations are believed: O₂ stabilized on defects on O covered surface (DFT) or surface oxygen modified by sub-surface species (XPS)

Applications of microcalorimetry in heterogeneous catalysis

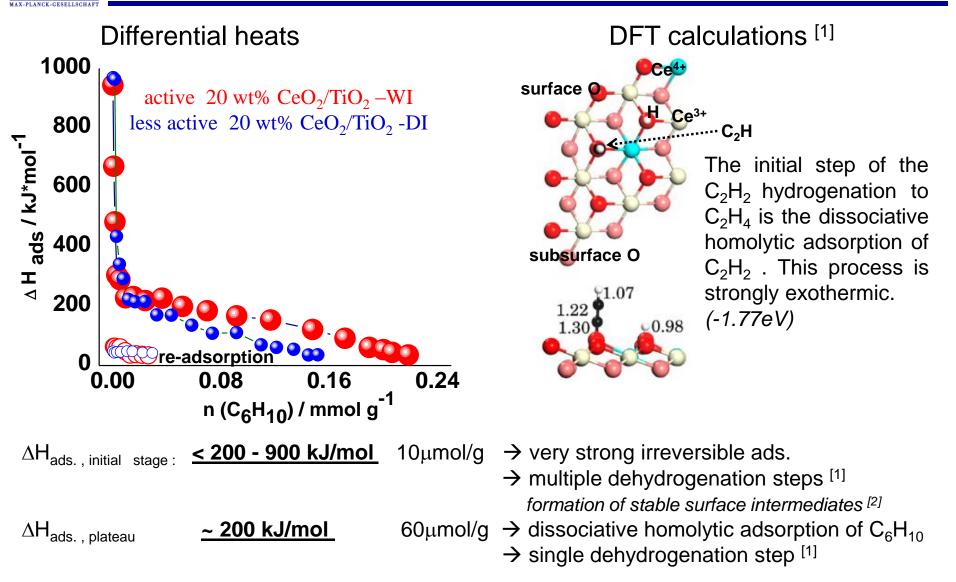
Study of catalytic relevant sites via calorimetry under reaction conditions:

1-hexyne adsorption at T_{react.} on supported ceria , being unexpectedly active in the hydrogenation of 1-hexyne

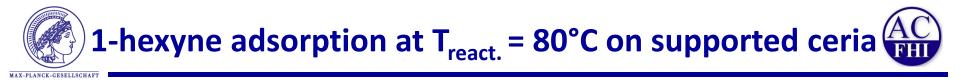
1-hexyne adsorption at T_{react.} = 80°C on supported ceria

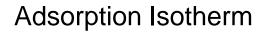
Intention: Does calorimetry offers the possibility to distinguish between catalysts of similar characteristic properties_{IR, XRD,TEM,XPS,BET}), but different catalytic activity?

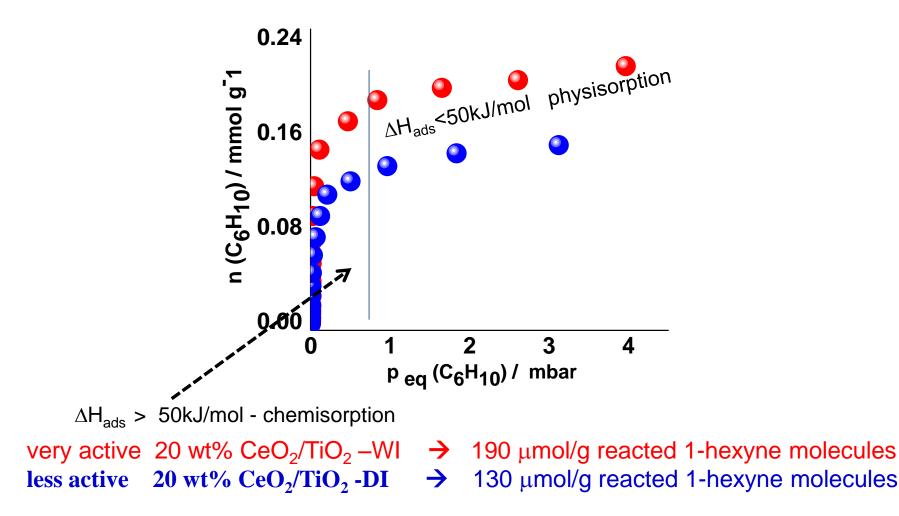
Adsorption Microcalorimetry :



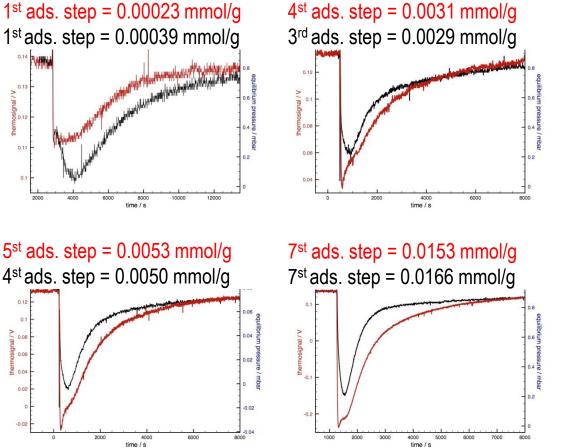
1-hexyne as probe molecule

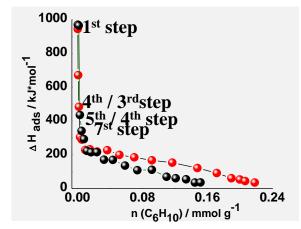

 $T_{adsorption} = 80^{\circ}C \leftarrow as the Arrhenius plot of 1-hexyne hydrogenation$ is smooth in the whole 75 - 135 °C range


selected catalysts: different active catalysts


Vilé, G., Wrabetz, S., Floryan, L., Schuster, M. E., Girgsdies, F., Teschner, D., et al., ChemCatChem, 6(7) (2014) 1928-1934. Sabine Wrabetz, Electronic Structure and Adsorption, Dept. of Inorganic Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany **1-hexyne adsorption at T_{react.} = 80°C on supported ceria**

[1] J. Carrasco, G. Vilé, D. Fernández-Torre, R. Pérez, J. Pérez-Ramírez, M. V. Ganduglia-Pirovano, J. Phys. Chem. C 2014, 118, 5352. [2] Claire L. Pettiette-Hall, Donald P. Land, Robert T. McIver, Jr.,* and John C. Hemminger, J. Am. Chem. SOC. 1991, 113, 2755-2756.

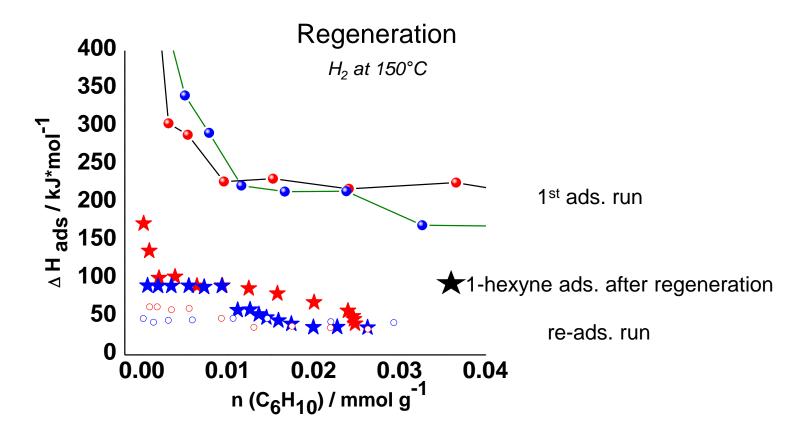




1-hexyne adsorption at T_{react.} = 80°C on supported ceria

Corresponding integral heats

The temporal evolution of the thermo signal during 1-hexyne ads.


The **adsorption signature** is composed of two main contributions:

- physisorption / fast-signal
- reaction / delayed signal

The **most active sample** has such sites that will hold 1-hexyne very weakly until the molecule chemisorb stronger. *dynamic*

In the **less active sample** the physisorbed molecule undergoes much faster side reactions or strong chemisorption.

The regeneration of the catalyst surface using H_2 (at 150°C) has been somewhat more successful for the more active catalyst.

Summary

Yes, calorimetry is a useful tool to distinguish between catalysts of similar characteristic properties.

Key-note:

under reaction conditions a significant portion of the surface sites is covered by dehydrogenated species and is not available for hydrogenation. Nevertheless, the remaining <u>small number of surface sites is active and selective</u> in alkyne hydrogenation.

The ads. of 1-hexyne at $T_{react.}$ is composed of 2 main processes:

- 1) unspecific adsorption (physisorption <50kJ/mol)
- 2) time-consuming secondary process is due to single or multiple dehydrogenation steps and potentially oligomerization. ^[10] (>50 900 kJ/mol)

The most active catalyst is characterize by:

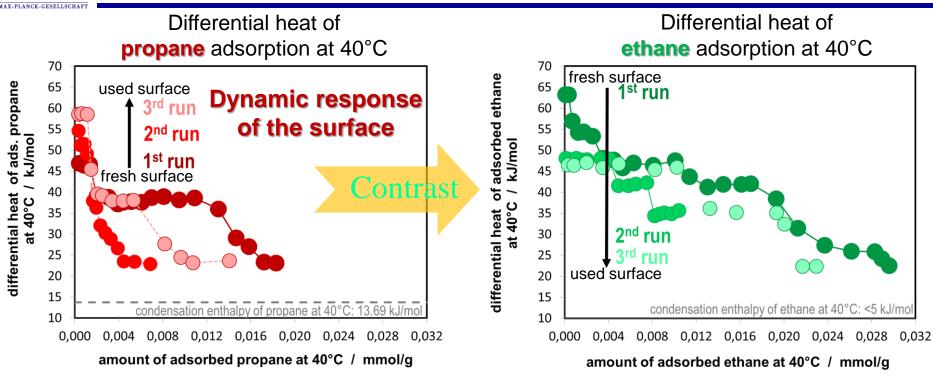
- higher amount of adsorption places for 1-hexyne 190 μ mol/g
- slightly easier regeneration of the surface after 1-hexyne contact at T_{react.}
- pronounced trapped and phys. state of the adsorbates to find the most suitable place for reaction → <u>dynamic surface is apparently favorable</u> for the catalytic performance

Vilé, G., Wrabetz, S., Floryan, L., Schuster, M. E., Girgsdies, F., Teschner, D., et al., ChemCatChem, 6(7) (2014) 1928-1934. Sabine Wrabetz, Electronic Structure and Adsorption, Dept. of Inorganic Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany



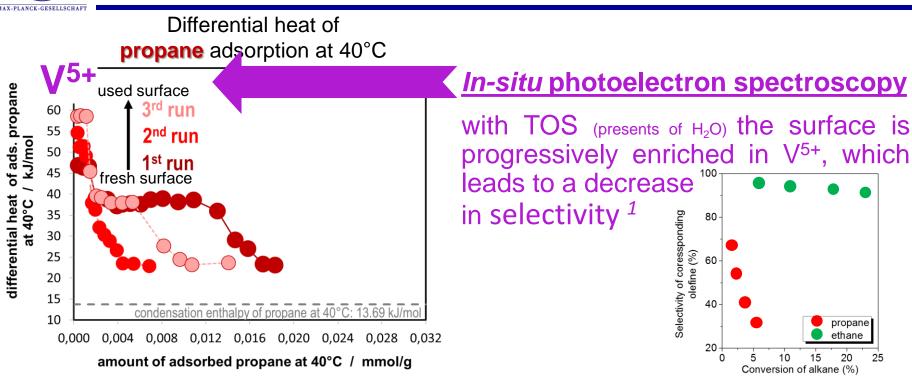
Reactants induced responses of catalyst surface:

Propane and ethane ads./des. cycles (40°C) on MoV oxide model catalyst for oxidative dehydrogenation of alkanes.



- specific ads. phenomena of PROPANE and ETHANE at 40°C
- reactants induced response of the MoV oxide surface via ads./des. cycles.

PROPANE and ETHANE adsorption on MoV oxide at 40°C


 $S_{\text{specific for propane}} \sim 3.6 \text{ m}^2/\text{g}$ $BET = 25.52 \text{ m}^2/\text{g}$

S specific for ethane ~ 2.9 m²/g BET = $25.52 m^2/g$

 $S_{MoV oxide} = n_{ads.} \cdot Avogadro const. \cdot S_{1:1} \cdot cross-section area 39Å2 for propane 22Å2 for ethane$

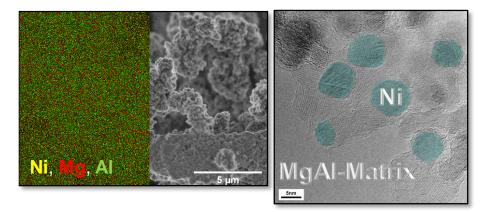
✓ segregation of V^{5+} occurs already at r.t.

- ✓ alkanes are already activated at r.t.
 - ✓ dynamic nature of the surface

 very strong interaction of propane with used surface explains the decrease in selectivity caused by V-segregation

Reactants induced dynamic responses of catalyst surface:

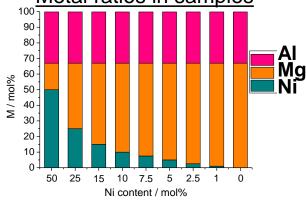
CO chemisorption cycles (30°C) on Ni/MgAl oxide catalyst for dry reforming of methane (DRM)


2nd Ni based catalysts for the dry reforming of methane

<u>Task:</u> study the influence of structural and compositional properties of nickel catalysts on the catalytic performance during DRM

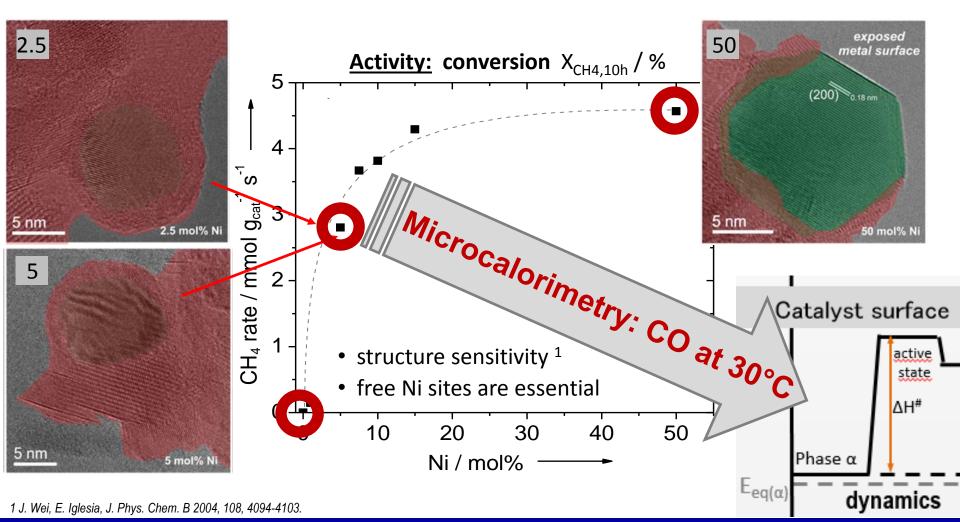
<u>Dry reforming (DRM)</u>: $CO_2 + CH_4 \xrightarrow[900]{\text{Ni}} 2 CO + 2 H_2 \qquad \Delta H^0 = 247 \text{ kJ/mol}$

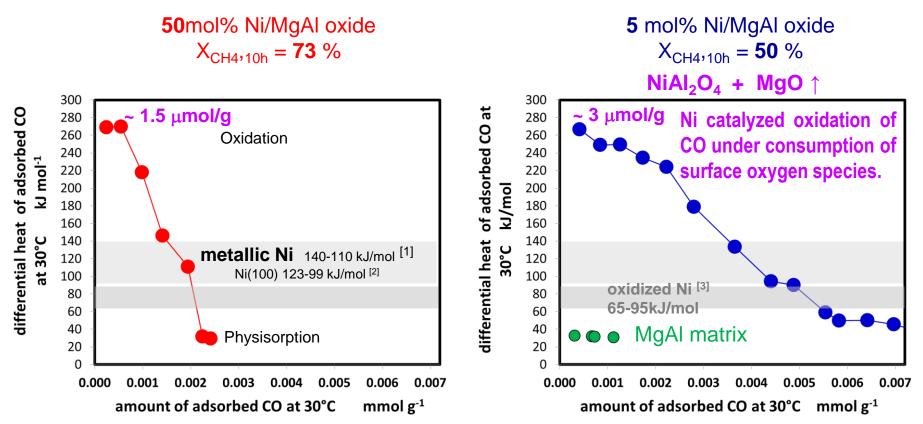
Catalyst preparation pathway:


- synthesized by constant pH coprecipitation with Ni contents between 0 and 55 wt.-%.
- decomposition to mixed oxides by calcination at 600°C

Obtained Ni/MgAI oxide catalyst

- reduction at 1000°C
- $d_{P, Ni} = 7 9$ nm in all samples
- $d_{P, Ni} = 7 20$ nm only in the 50wt% sample

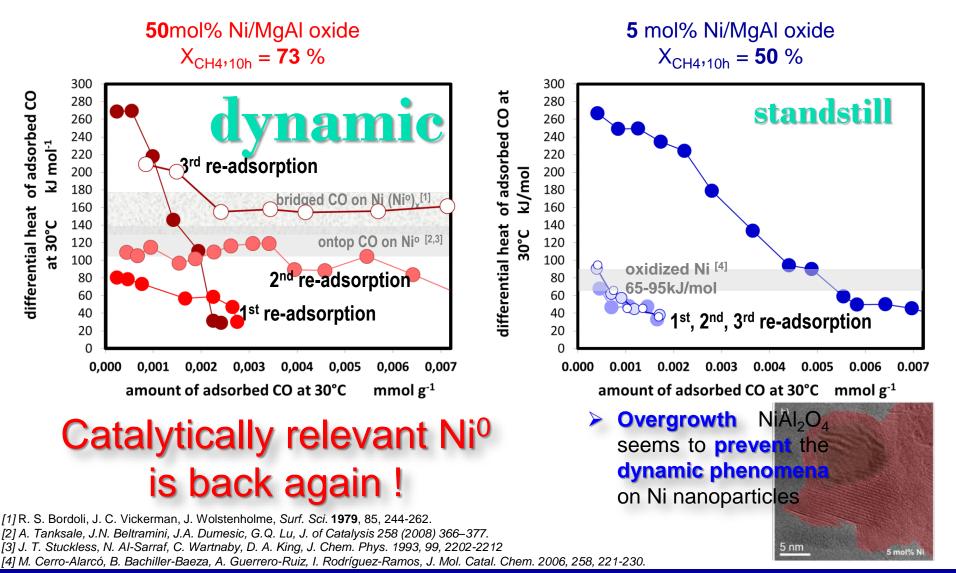

K. Mette, St. Kühl, A. Tarasov, M. G. Willinger, J. Kröhnert, S. Wrabetz, A. Trunschke, M. Scherzer, F. Girgsdies, H. Düdder, K. Kähler, K. Friedel Ortega, M. Muhler, R. Schlögl, M. Behrens, T. Lunkenbein, ACS Catal., 2016, 6 (10), pp 7238–7248. Metal ratios in samples



- HR-TEM images of 2.5, 5 and 50 mol% Ni/MgAl oxide
- EDX, NEXAFS & FTIR/CO/77K: overgrowth might be interpreted as a NiAl₂O₄ spinel

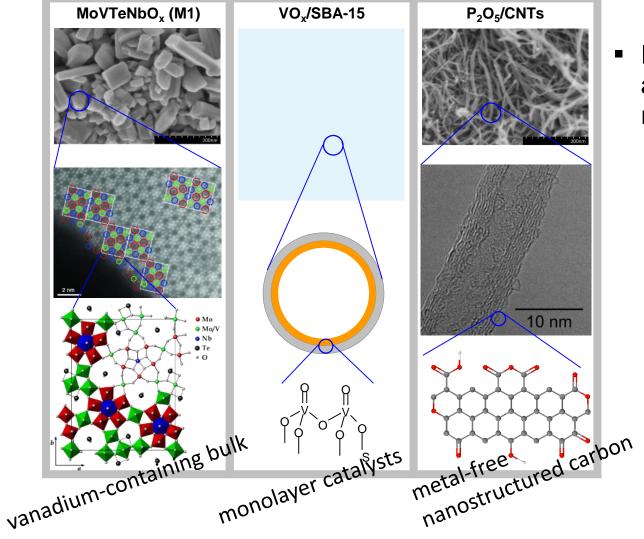
> The differential heat profiles are dominated by the presence of nickel

[1] A. Tanksale, J.N. Beltramini, J.A. Dumesic, G.Q. Lu, Journal of Catalysis 258 (2008) 366–377.


[2] J. T. Stuckless, N. Al-Sarraf, C. Wartnaby, D. A. King, J. Chem. Phys. 1993, 99, 2202-2212.

[3] M. Cerro-Alarcó, B. Bachiller-Baeza, A. Guerrero-Ruiz, I. Rodríguez-Ramos, J. Mol. Catal. Chem. 2006, 258, 221-230.

Reactants induced dynamic responses of the catalyst surface was simulated via <u>ads./des. cycles of CO</u> at 30°C using microcalorimetry


Estimation of the enthalpy of formation of the transition state (activation barrier):

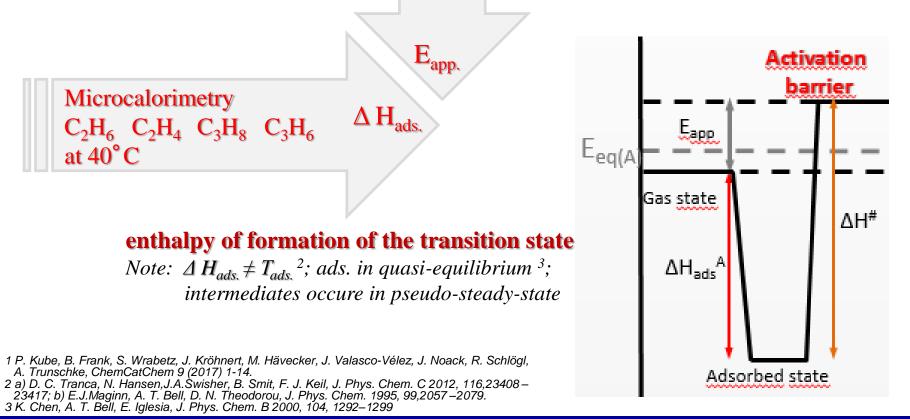
ethane & ethylene and propane & propylene ads. on the Vanadium oxide-based and Metal-free catalysts for ODH

Catalysts

 Identification of differences and similarities in the reaction network.

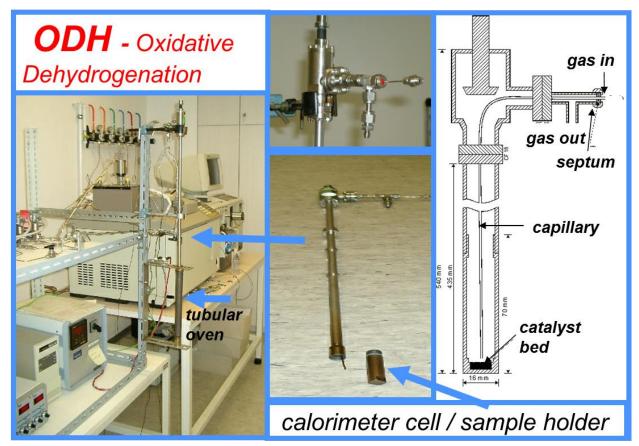
> <u>structurally similar</u> <u>functional groups:</u> V-OH / C-OH V=O / C=O V-O-V / C-O-C

[1] P. Kube, B. Frank, S. Wrabetz, J. Kröhnert, M. Hävecker, J. Valasco-Vélez, J. Noack, R. Schlögl, A. Trunschke, ChemCatChem 9 (2017) 1-14.



Bulk MoVTeNb oxide, 6V/SBA-15 and P/oCNT have been compared in the ODH of C₂H₆ and C₃H₈ under identical conditions.¹

Similarities and Differences in the reaction network

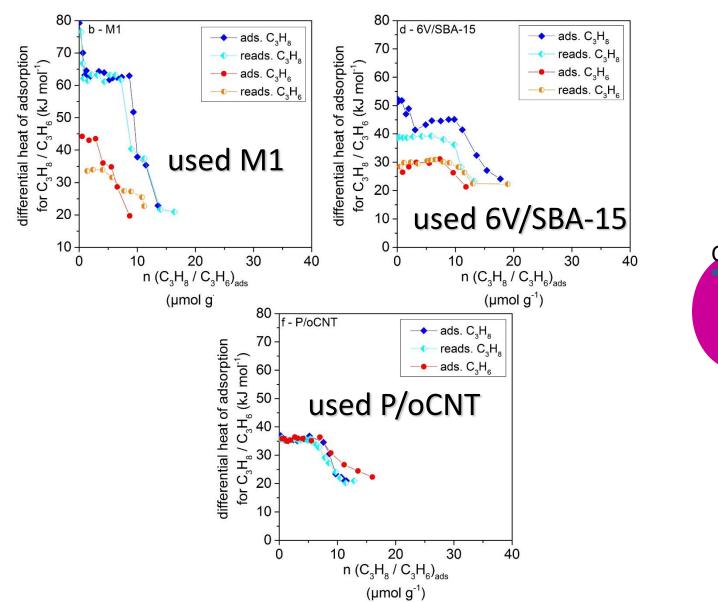

Strong temperature dependence \rightarrow different transition states

- Feed of 10% hydrocarbon (C_3H_8 or C_2H_6) and 5% oxygen in helium with a total flow rate of 20 mLmin⁻¹.
- $T_{reaction} = 400^{\circ}C$ for 6V/SBA-15, 360°C for P/oCNT and 350°C for M1
- The reaction was performed at a steady state for 20 h, subsequently, the cell was cooled down to RT in pure helium.

B. Frank, S. Wrabetz, O.V. Khavryuchenko, R. Blume, A. Trunschke, R. Schlögl, ChemPhysChem 12 (2011) 2709

Adsorption Experiments C₃H₈ & C₃H₆ Adsorption at 40°C

 $C_{3}H_{8}^{*}$ or $C_{3}H_{7}^{\circ}$

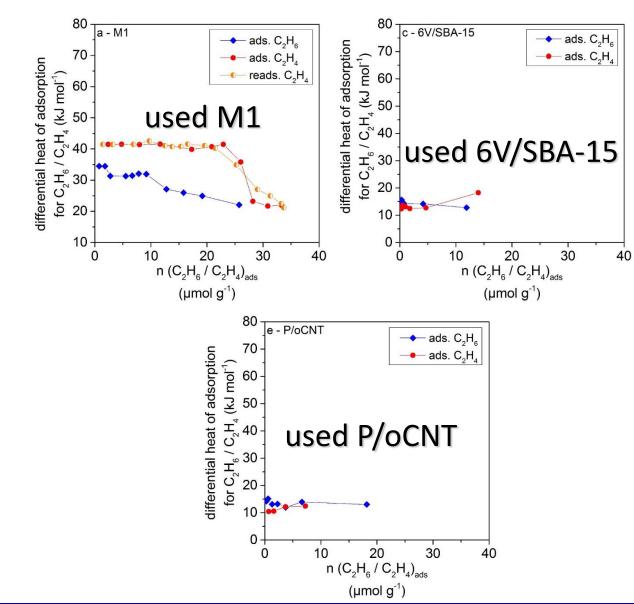

?

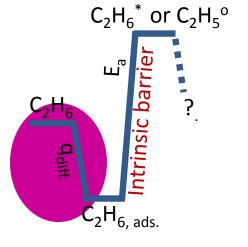
ntrinsic barrie

 $\int_{3}H_{8, \text{ ads.}}$

щ

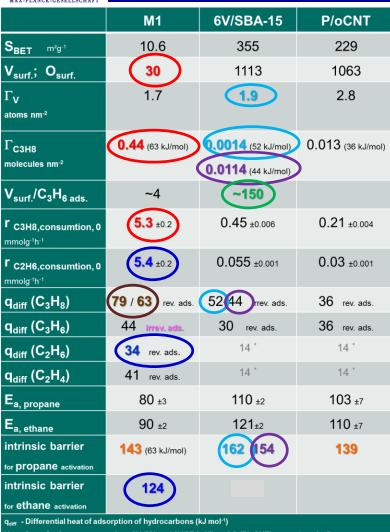
qdift





Adsorption Experiments

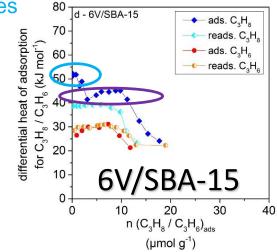
C₂H₆ & C₂H₄ Adsorption at 40°C



Data Discussion

V_{surf.}, O_{surf.}: Surface concentration of V (M1 and 6V/SBA-15) and O (P/oCNT) atoms (µmol g⁻¹)

- Γ_{C3H8} Density of adsorbed propane (molecules nm⁻²)
- $\Gamma_{\rm V}$ Surface density of V or O (atoms nm⁻²)
- E_a: propane/ethane consumption,0 (kJ/mol); initial rate
- * Differential heat near the condensation enthalpy of reaction molecules at 40°C
- intrinsic barrier= E_a+q_{diff} (kJ mol⁻¹)


6V/SBA-15:

- $-\Gamma_{C3H8} = 0.0014 \text{ molecules nm}^{-2}$
- intrinsic barrier for C_3H_8 activation = 162 kJ/mol
- DFT calculations by Rozanska² = 160 kJ/mol

due to monomeric species

 \rightarrow ~0.1% of all V atoms.

~ 1%

- intrinsic barrier for C_3H_8 activation = 154 kJ/mol
- DFT calculations by Rozanska² = 148 kJ/mol due to silica-supported vanadium oxide dimers \rightarrow ~ 0.6% of all V atoms
- Hävecker, M.; Wrabetz, S.; Kröhnert, J.; Csepei, L.-I.; Naumann d'Alnoncourt, R.; Kolen'ko. Y. V.; Girasdies, F.; Schlöal. R.; Trunschke, A. Journal of Catalysis 2012, 285, 48.
- X. Rozanska, R. Fortrie, J. Sauer, J. Am. Chem. Soc. 2014, 136, 7751 –776. P. Concepcijn, P. Botella, J. M. L. Nieto, Appl. Catal. A 2004, 278, 45–56; f) R. Coast, M. Pikus, P. N. Henriksen, G. A. 3 Nitowski, J. Phys. Chem. 1996, 100, 15011–15014.

Sabine Wrabetz, Electronic Structure and Adsorption, Dept. of Inorganic Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany

2

- Microcalorimetry and DFT : quantification of propane adsorption sites in vanadium oxide monolayer catalysts
 - resolves different degrees of V_xO_y oligomerization

$V_x O_y$	$\frac{Microcalorimetry}{Intrinsic barrier for}$ $C_{3}H_{8} activation$	Density functional theorie DFT ¹ Energy barriers	<u>Microcalorimetry</u> % of the total amount of V _{surf.}	
	kJ/mol	kJ/mol		
Monomer (a)	162	160	0.1	0/
Dimer (b)	154	148	0.6	70
trimer		143		
tetramer	143	139		

ODH of propane over M1 phase: tetramers of vanadium oxide species have been postulated to be the required ensemble size ²

- Structure Activity Relationship Higher activity correlates with:
 - higher density of C₃H₈ adsorption sites
 - lower intrinsic barrier for C₃H₆ formation

[1] X. Rozanska, R. Fortrie, J. Sauer, J. Am. Chem. Soc. 2014, 136, 7751 –776. [2] R. Schlögl, Top. Catal. 2011, 54, 627–638.

Article pubs.acs.org/JACS

Microcalorimetry and DFT : - quantification of propane adsorption sites in vanadium oxide monolayer catalysts

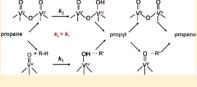
- resolves different degrees of V_xO_v oligomerization

V _x O _y	$\frac{Microcalorimetry}{Intrinsic barrier for}$ $C_{3}H_{8} \text{ activation}$ $\frac{kJ}{mol}$	Density functional theorie DFT ¹ Energy barriers kJ/mol	Arrice 2 Journal OF THE AMERICAN CHEMICAL SOCIETY Size-Dependent Catalytic Activity of Supported Vanadium Oxide Species: Oxidative Dehydrogenation of Propane Xavier Rozanska, Remy Fortrie, and Joachim Sauer* Institut für Chemie, Humboldt Universität zu Berlin, Unter den Linden 6, D-10099 Berlin, Germany
Monomer (a)	162	160	Supporting Information
Dimer (b)	154	148	ABSTRACT: Possible reaction pathways for the oxidative dehydrogenation of propane by vanadium oxide catalysts supported on silica are examined by density functional theory.
trimer		143	Monomeric and dimeric vanadium oxide species are both considered and modeled by vanadyl-substituted silsesquioxanes. The reaction proceeds in two subsequent steps. In a first step,
tetramer	143	139	hydrogen abstraction from propane by a vanadyl ($O=V$) group yields a propyl radical bound to a HOV ^{IV} surface site. Propene is formed by a second hydrogen abstraction, either at the same

vanadia site or at a different one. VV/VV redox cycles are preferred over VV/VIII cycles. Under the assumption of fast reoxidation, microkinetic simulations show that the first step is ratedetermining and yields Arrhenius barriers that are lower for dimers (114 kJ/mol at 750 K) than for monomers (124 kJ/mol). The rate constants predicted for a mixture of monomers and dimers are 14% larger (750 K) than for monomers only, although the increase remains within experimental uncertainty limits. Direct calculations of energy barriers also yield lower values for dimeric species than for monomeric ones. Reactivity descriptors indicate that this trend will continue also for larger oligomers. The size distribution of oligomeric species is predicted to be rather statistical. This, together with the small increase in the rate constants, explains that turnover frequencies observed for submonolayer coverages of vanadia on silica do not vary with the loading within the experimental uncertainty limits.

1. INTRODUCTION

Supported transition metal oxides are an important class of


 $\mathbf{\Omega}$

Here, we use density functional theory (DFT) to provide information that cannot be easily obtained from experiments.

> monomeric over oligomeric to polymeric transition metal oxide clusters anchored on the surface of the supporting oxide, to nanocrystallites of the active component with the structure

[1] X. Rozanska, R. Fortrie, J. Sauer, J. Am. Chem. Soc. 2014, 136, 7751 –776.

R. Schlögl, Top. Catal. 2011, 54, 627–638. [2]

shown that V-O-V bonds, which would be absent in monomeric species, cannot be identified in IR or Raman spectra because of overlap with bands of the supporting oxide.7 UV-vis absorption spectra are also not size-discriminating, although there is no doubt that the O 2p-V 3d charge transfer transitions will shift to lower energies with increasing particle size.^{8,12} Here, we use density functional theory (DFT) to provide

but proving this appears difficult.^{10,11} For example, it has been

information that cannot be easily obtained from experiments. We construct models for monomeric, dimeric, and polymeric supported species, and we examine them in comparison to surfaces of the bulk crystal. We study the reaction mechanisms

Applications of microcalorimetry in heterogeneous catalysis

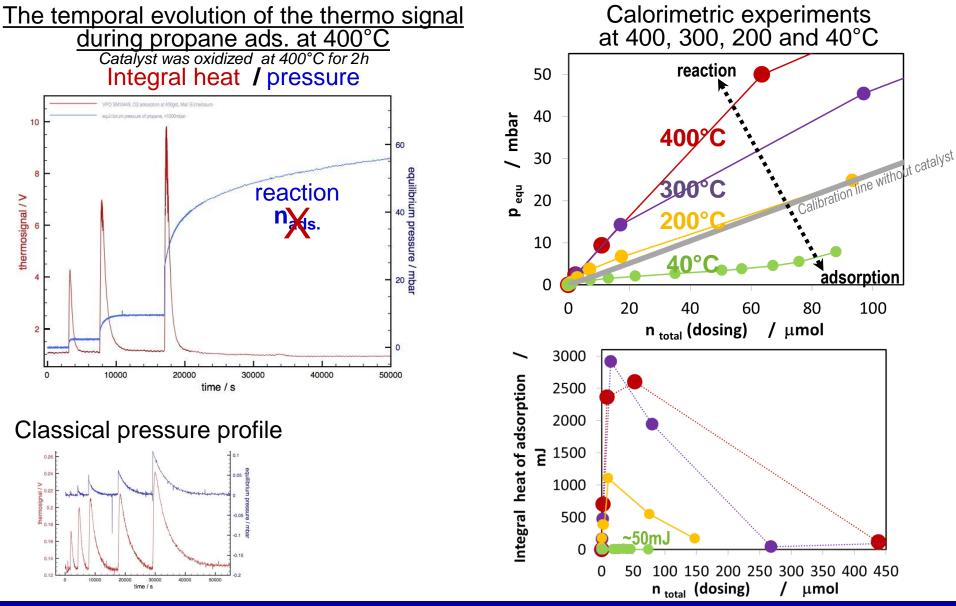
Limitations of method:

Propane ads. on vanadium-phosphorus-oxide / VPO at $T_{reaction} = 100 - 400$ °C

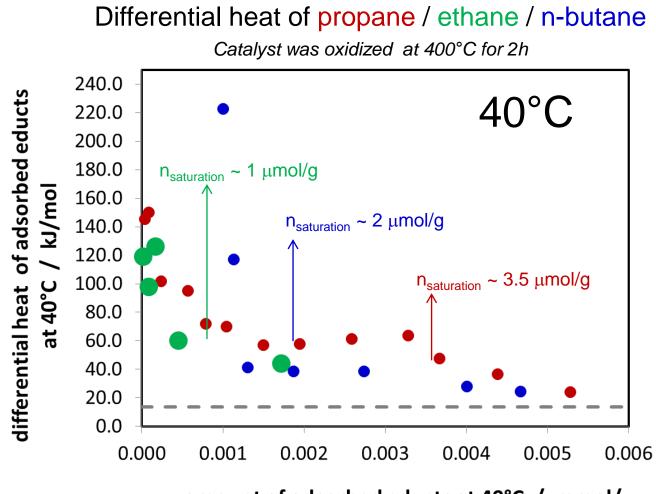
Natural gas as raw material+ O2VPOMethaneOCMEthaneOCMPropaneOxidative DehydrogenationButaneSelective Catalytic Oxidation

Olefines, Oxygenates

Ethane, Ethylene Ethylene,Acetic acid Propylene,Acrylic acid Butylenes, Butadiene, Maleic anhydride


Intention: Determination of kinetic data: N_o , K and ΔH_{ads} of alkanes on VPO at $T_{reaction}$

<u>Adsorption</u> <u>Microcalorimetry</u> : ★ propane, ethane and n-butane as probe molecule
 ★ T_{adsorption} = 400, 300, 200,100 and 40°C
 ★ selected catalyst: VPO #10449

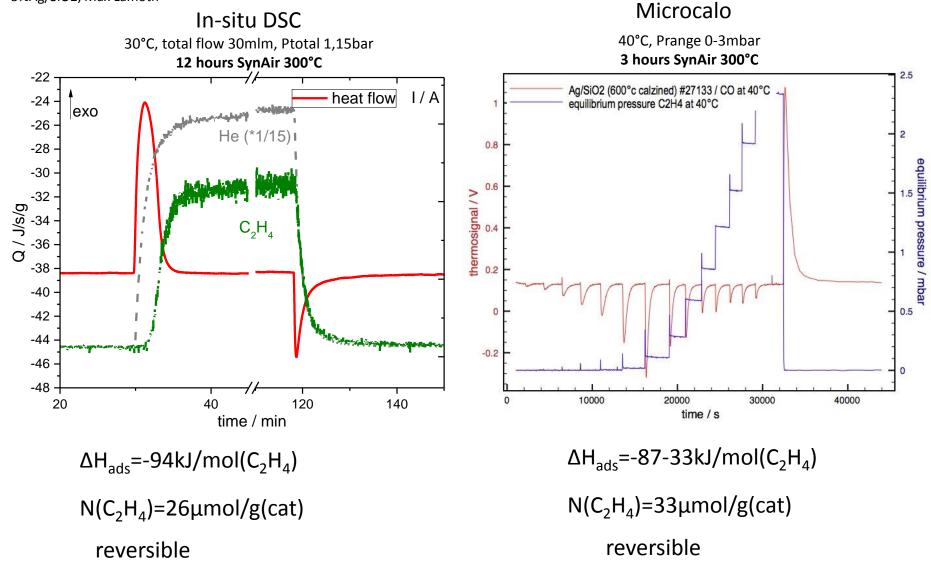

vanadium-phosphorus-oxide - VPO

amount of adsorbed educts at 40°C / mmol/g

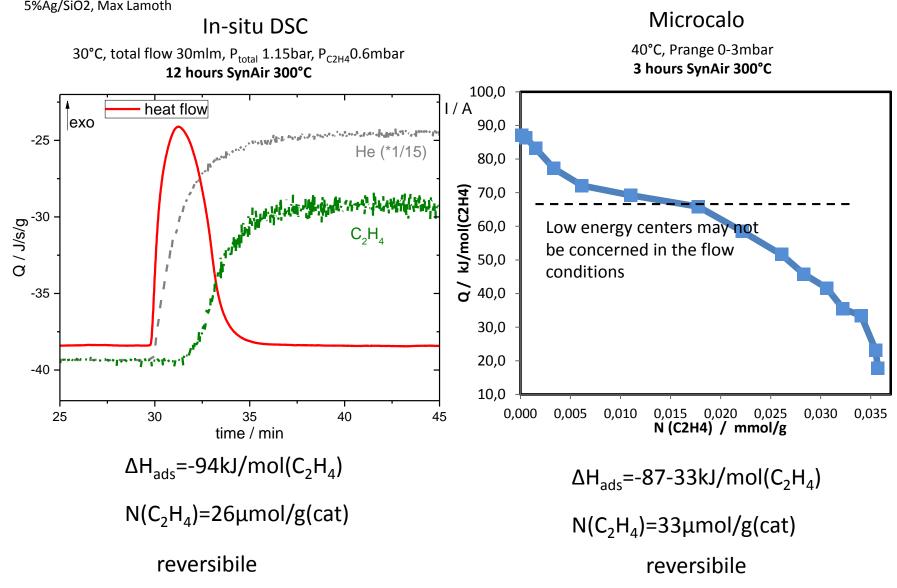
Applications of microcalorimetry in heterogeneous catalysis

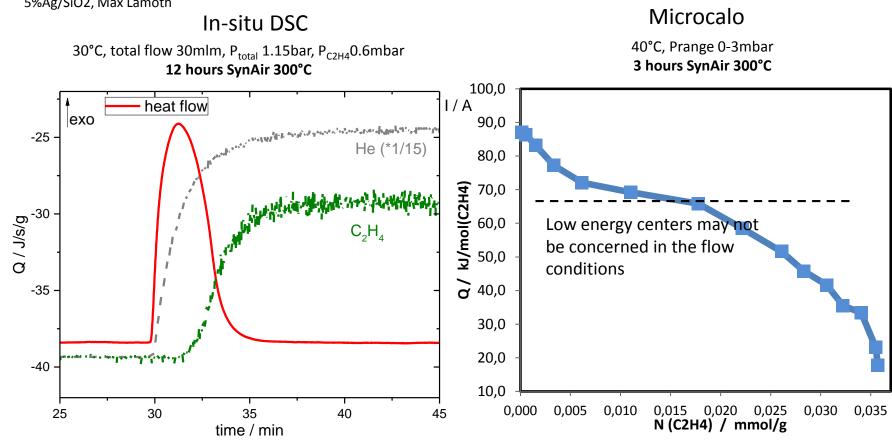
Validation

in situ DSC and Microcalorimetry


C₂H₄ adsorption at 40°C on Ag catalyst ethylene epoxidation

Case study: Validation, C₂H₄ adsorption on Ag catalyst


5%Ag/SiO2, Max Lamoth



5%Ag/SiO2, Max Lamoth

Desorption and readsorption are occurring simultaneously with diffusion

In UHV systems diffusion takes part in a very limited extent, while readsorption can be avoided using sufficiently high pumping speed

The adsorbate-adsorbent energy of interaction (derived from the heat measurements) is a basic data for any modelling and understanding.

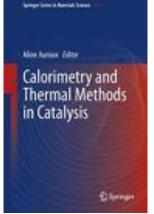
- Calorimetric data are basic: they are a prerequisite for any understanding of adsorption
- To be fully meaningful and independent from the calorimetric procedure, these data should be expressed in terms of energy or enthalpy of adsorption or inmersion, not in "heats"
- ▹ For this purpose, the total calorimetric set-up and procedure must be carefully studied
- Calorimetry is sensitive and quantitative, but not specific, therefore well complemented by spectroscopic thechniques

Determination of kinetic data: N_{ads} , K_{ads} , ΔH_{ads} , SSA_{m2/g}

Microcalorimetry alone or combined with to other techniques is a very powerful/sensitive tool to probe catalytically active surfaces <u>quantitatively</u>.

Quantitative data *(reversibility, heat of adsorption, number of adsorption sites, equilibrium constant)* provide a basis for <u>theoretical modeling</u> and can contribute to a better understanding of the <u>complex microkinetics</u>.

Microcalorimetry can applied under or close to reaction conditions !


→ investigation of the <u>catalytic relevant surface sites</u>

Calorimetry and Thermal Methods in Catalysis - Aline Auroux Springer –Verlag Berlin Heidelberg 2013

 A. Auroux "Thermal Methods: Calorimetry, Differential Thermal Analysis, and Thermogravimetry" in "Catalyst characterization: physical techniques for solid materials", Eds. B. Imelik, J.C. Vedrine, Plenum Pr., New York 1994

- E. Calvet, H. Prat, H.A. Skinner "Recent progress in microcalorimetry", Pergamon Pr., Oxford1963
- B. E. Handy, S.B. Sharma, B.E. Spiewak and J.A. Dumesic, "A Tian-Calvet heat-flux microcalorimeter for measurement of differential heats of adsorption", Meas. Sci. Technol. 4 (1993) 1350-1356.
- N. C. Cardona-Martinez and J.A. Dumesic, "Application of Adsorption Microcalorimetry to the Study of heterogeneous Catalysis", Advances in Catalysis 38 150-243.
- Z. Knor, "Static Volumetric Methods for Determination of Adsorbed Amount of Gases on Clean Solid Surface", Catalysis Reviews 1 (1) (1968) 257-313.
- S. Černý and V. Ponec, "Determination of Heat of Adsorption on Clean Solid Surfaces", Catalysis Reviews 2 (1) (1969) 249-322.

Thank you for your attention

http://www.fhi-berlin.mpg.de Dept. of Inorganic Chemistry, Director: Prof. R. Schlög