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Some aspects related to catalysts characteristic and behaviour will be treated as 
determination of metal surface area and dispersion, spillover effect and synterisation. A 
detailed description of the available techniques will follow, taking in consideration some 
aspects of the gas-solid interactions mechanisms (associative/dissociative adsorption, acid-
base interactions, etc.). Every technique taken in consideration will be treated starting from a 
general description of the related sample pre-treatment, due to the fundamental importance of 
this step prior to catalysts characterisation. The analytical theories will be described in 
relation to static and dynamic chemisorption, thermal programmed desorption and 
reduction/oxidation reactions. Part of the paper will be dedicated to the presentation of the 
experimental aspects of chemisorption, desorption and surface reaction techniques, and the 
relevant calculation models to evaluate metal surface area and dispersion, energy distribution 
of active sites, activation energy and heat of adsorption.  

The combination of the described techniques and the integration of the experimental 
results produce a detailed picture of the investigated catalyst, allowing a better 
comprehension of the reaction mechanisms in complicated processes and a detailed 
characterisation of catalyst activity and selectivity. Most of the experimental results shown in 
the present paper have been obtained in the application lab of CE Instruments (ThermoQuest 
S.p.A.), Milan – Italy. All the graphs related to static volumetric chemisorption have been 
obtained by the adsorption apparatus Sorptomatic 1990, while the graphs related to TPD, 
TPR/O and pulse chemisorption analyses with the dynamic apparatus TPDRO 1000. 
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1 – INTRODUCTION TO HETEROGENEOUS CATALYSTS 
 

A catalyst can be defined in many ways but generally it is a substance that, when added in 
the balance of a chemical reaction, accelerates the achievement of the chemical equilibrium 
between reactants and products without influencing the thermodynamic equilibrium of the 
process. Usually catalysts are not consumed during the reaction and they could be found 
unchanged after the reaction. In reality, catalysts are submitted to a slow transformation with 
the use, causing a general decrease of the activity and/or selectivity. The first main distinction 
between catalysts depends on the catalyst nature in relation to the reactants. A homogeneous 
catalyst is in the same physical state of the reactants (liquid, solid or gaseous) while 
heterogeneous ones are in a different state. In this work paper only the heterogeneous solids 
catalysts will be taken into consideration. Among solid catalysts, we can identify three main 
groups: metal supported, acid sites and/or basic sites. The metal supported catalysts are 
prepared by supporting a metal (usually a noble one) onto a porous material, such as a gamma 
alumina or silica, featuring a suitable pore size distribution and specific surface area. 
Examples of acid catalyst are, for instance, zeolites. It is very important to characterise these 
materials to classify carefully the catalysts in function of the chemical reaction, to improve 
reactivity, selectivity and/or the production technique in order to better understand the role of 
the catalyst in a chemical reaction. Furthermore, it is possible to analyse the reasons for a 
catalyst poisoning or deactivation after use. Catalysts can be characterised by different 
techniques giving a wide range of information:  
- Activity is defined as the speed at which a chemical reaction reaches the equilibrium. 

From the industrial point of view activity is also defined as the amount of reactant 
transformed into product per unit of time and unit of reactor volume 

- Selectivity is defined as the rate of reactant conversion into the desired products. 
Selectivity usually depends on reaction parameters as temperature, pressure, reactants 
composition and also on the catalyst nature 

Activity, selectivity and other parameters can be measured by performing the chemical 
reaction in a pilot reactor but a basic characterisation of the catalyst surface is necessary to 
correlate the catalyst nature to its performance. Considering as an example a metal supported 
catalyst, there are two main aspects that should be investigated: the porous nature of the 
support and the active sites nature/distribution. Considering as an example an homogeneous 
reaction profile in comparison with the same reaction performed by using a catalyst, in the 
second process the catalyst action is to decrease substantially the total time to reach the 
thermodynamic equilibrium, that is to speed up the conversion process. Therefore the main 
effect of a catalyst is to provide an alternative reaction path that permits to decrease the 
activation energies of the different reaction steps, reaching therefore the equilibrium in an 
easier and faster way. The two different reaction paths (without and with catalyst) are 
represented in figure 1. In figure 1, Enc is the activation energy that is necessary for the 
reaction without the use of catalyst, Eads is the adsorption energy of reactants on the catalyst 
surface, Ecat is the energy related to the activation of the chemical reaction between reactants 
on the catalyst surface, Edes is the desorption energy of the products of reaction. 
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Figure 1. Reaction profile for a chemical reaction with and without catalyst. 

 
In the above example the process of reactants adsorption is considered as an exothermic 

process, while the products desorption is considered as endothermic. Finally DH is the total 
heat of reaction that will be the same for the homogeneous and the catalytic process. Usually 
the activation energy of a catalytic reaction is lower than the one related to the homogeneous 
reaction. Sometimes by increasing the temperature of the process there is a limit where the 
homogeneous reaction becomes faster than the catalytic reaction. Therefore, the use of a 
catalyst also should be evaluated according to the energy profile of a certain chemical 
reaction. 

In a catalytic reaction further to the knowledge of the energy profile, it is of extreme 
importance the study of the reaction kinetic profile. This permits to identify which is the 
slower stage of the reaction. Usually in heterogeneous reactions, we can divide the catalytic 
process in five main steps: 
1- diffusion of reactants from the fluid into the catalyst support porous structure, reaching 

the internal surface 
2- Adsorption of reactants on the catalyst active sites 
3- Chemical reaction between the reactants 
4- Desorption of the reaction products from the active sites 
5- Diffusion of products through the catalyst support, reaching the external fluid 
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One or more of the above stages could be the rate-determining step, influencing the total 
speed of reaction. The speed related to the steps 1 and 5 is mainly due to the porous nature of 
the support and the reactants/products geometrical parameters. In fact, it is necessary that the 
limiting step of the reaction should not be a diffusion problem. The pore size of the catalyst 
support should be chosen in relation to the reactant molecule volume and geometry. Steps 2 
and 4 are related to the nature of the reactants/products and the active sites deposed on the 
catalyst surface. If the diffusion is not the limiting effect, the speed of reaction is directly 
function of the active surface area of the catalyst: the higher is the number of active sites 
available for the adsorption process of reactants the faster is the speed of reaction. A very 
high active surface can be achieved by using high surface area supports and optimising the 
deposition process of the metal. On the contrary, the specific surface area of a solid porous 
support is inversely proportional to the pore size of the support itself: at parity of pore specific 
volume, the smaller are the pores the higher is the specific surface. Therefore, the 
characterisation of the support in terms of pore size distribution and specific surface area is of 
fundamental importance in the choice of a suitable catalyst. While a very high surface is 
advisable, a correct pore dimension should fit with the reactants/products geometry. 
 
2 – ASPECTS RELATED TO CATALYSTS CHARACTERISATION 
 

As described above, the basic catalyst characterisation involves two main steps: the 
investigation on the porous nature of the catalyst support (physical properties) and on the 
properties of the active sites that are dispersed on the support surface (see table 1). 
 
 
Table 1 
General scheme of catalysts characterisation. 
 

Catalyst texture 
  

Physical properties Chemical properties 
Result Technique Result Technique 

Geometry and shape  Chemical composition Electron spectroscopy 
Atomic adsorption 

Total specific surface 
area 

Gas physisorption 
Mercury porosimetry 

Active site surface 
area 

Selective chemisorption 
(static or dynamic) 

True density X-ray analysis 
Neutron diffraction 

Degree of dispersion Selective chemisorption 
X-ray 
Electron microscopy 
Magnetisation analysis 

Bulk and apparent 
density 

Helium pycnometry 
Mercury porosimetry 
Liquid displacement 

Surface energy Thermal analysis tests 
Temperature-
programmed desorption 
and  reaction 
Calorimetry 

Pore specific volume 
Porosity 

Mercury porosimetry 
Gas adsorption 

Acid-base sites Selective chemisorption 
Temp. programmed 
desorption 
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Catalyst texture (continued) 
  

Physical properties Chemical properties 
Result Technique Result Technique 

Pore size and mean 
pore size 

Mercury porosimetry 
Gas adsorption 

Redox sites Spectroscopic methods 
Temp. programmed 
reduction 
Temp. programmed 
oxidation 

Particle size  Sieves 
Laser scattering 
Sedimentation 
Electrical sensing 
zone 
Etc. 

Catalytic properties 
Activity 
Selectivity 

Reactor tests and 
simulation 

Surface structure Optical microscopy 
Electron microscopy 
X-ray analyses 

  

Surface charge Z potential   

 
Therefore, the physical characterisation of the support and of the supported catalyst is 

related to the measurement of parameters as: 
- geometry of the catalyst (solid shape or powder) 
- specific surface area - square meters per mass 
- pore specific volume – volume per mass 
- pore size distribution – volume versus width 
- mean pore size 
- pore shape 
- real density - weight per volume 
- apparent density - weight per volume 
- bulk density - weight per volume 
- percent porosity 
- particle size distribution (in case of powders) – relative percentage versus diameter 
There are two main techniques available to determine the above parameters, mercury pressure 
porosimetry and gas physisorption. These two techniques should be chosen according to the 
pore size. In fact, pores are classified according to three main groups: 
Micropores: up to 2 nm 
Mesopores: between 2 and 50 nm 
Macropores: over 50 nm 
 
The gas physisorption technique permits to obtain parameters as: 
Specific surface area:   generally from 0.0005 m2/g, theoretically no upper limit 
Pore size distribution:  generally covering the range of micropore and mesopore 
Pore specific volume:  in the range of validity 
 
Mercury porosimetry completes the information above with regard to the pore size: 
Pore size distribution:  from 3.6 nm up to 600,000 nm 
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The detailed description of the above methods is not matter of the present paper. The 
characterisation of the active nature of a catalyst can be split into two main types: basic 
textures of active sites and reactivity tests. In table 2 a general overview of the methods 
involved in catalyst characterisation is represented. 
 
Table 2 
Adsorption/desorption techniques in catalysts characterisation. 
 

Analytical technique Information 
  
Static volumetric chemisorption Active sites surface area 

Degree of dispersion 
Distinction of weak/strong gas-solid interaction 
Acid/base surface properties 
Isosteric heat of adsorption 

Pulse chemisorption in flow Active sites surface area 
Degree of dispersion 
Determination of strong gas-solid interaction 
Acid/base surface properties 
Isostheric heat of adsorption 

Temperature programmed desorption Active sites surface area 
Degree of dispersion  
Activation energy as function of metal  saturation 
degree 
Surface reactions 
Kinetic and Thermodynamic parameters of surface 
reactions 

Temperature programmed reduction Reduction degree of active sites 
Activation energy related to reduction 

Temperature programmed desorption Oxidation degree of active sites 
Activation energy related to oxidation 

 
The analytical methods reported in table 2 are of particular interest not only in the 

research and in development of catalysts but also from the industrial point of view. The 
industry requirements regarding analytical methods are based on two levels: 
- research and development:  

- accuracy and precision 
-  flexibility 

- quality control 
- precision 
- reproducibility 
- speed of analysis (productivity) 
- ease of use 
- certification of the method and of the instrument 
For the above reasons not only the analytical instrumentation should be developed in a 

way to meet the industrial demand but also the analytical method should be relatively easy to 
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handle by different operators and be fast. The techniques described in this paper meet the 
above requirements, providing essential catalyst parameters with high precision at a limited 
cost. 
 
2.1 - Selective chemisorption techniques 

The chemisorption techniques are very well established analytical methods to evaluate 
the free metal specific surface area and metal dispersion degree. These methods consist in 
performing a real chemical reaction between a reactive gas and the catalyst that has been 
previously prepared in a suitable way. Different types of chemisorption techniques can be 
used, the main ones are gas chemisorption on metals which are in zero oxidation degree, 
hydrogen/oxygen titration and acid/base reaction. The pre-treatment procedures must be 
chosen therefore according to the catalyst nature and to the technique that will be applied. In 
all the above cases, a common procedure to be performed before the real pre-treatment is to 
clean the catalyst surface. The cleaning generally consists in degassing the sample at a 
suitable temperature to remove water or other vapours eventually adsorbed on the surface, 
even if the catalyst has already been calcinated. The degassing can be done under vacuum or 
under a flow of inert gas. If the catalyst comes from a reactor it is necessary to remove 
eventual reaction residual that can block the catalytic surface (i.e. carbon derived by cracking) 
by a forced oxidation using air or oxygen. After the preliminary cleaning, the pre-treatment 
procedure should be differentiated according to the required analysis. In the first case the 
sample preparation has the task to oxidise or reduce the metal deposed on the support surface 
to zero oxidation state. This procedure activates the catalyst to the chemisorption 
measurement with a suitable reactive gas.  A common sequence is oxidation – reduction – 
removal of hydrogen chemisorbed by flowing an inert gas. At this point the sample is 
activated to chemisorb a reactive gas. The second type of pre-treatment should produce an 
oxidised or reduced status of the metal. Therefore, it will be possible to perform a chemical 
reaction between hydrogen injected into the sample holder and the oxygen bounded to the 
metal active sites (or viceversa). In the last case, acid/base reaction, the catalyst surface 
should be only free from pollutant vapours and the gas used for the analysis must have acid 
(i.e. carbon dioxide) or base (i.e. dry ammonia) properties to react selectively with the base or 
acid sites of the sample. It is of extreme importance that the sample after the pre-treatment 
should not have any contact with the environment otherwise the reliability of the 
measurement could be seriously compromised.  
 
2.2 - Active surface area and metal dispersion 

It is commonly used and convenient to define in a catalyst the surface area of the free 
active sites. Considering as example a metal supported catalyst, we can define as total surface 
area the surface of the support that can have contact with the external fluid mass. When an 
active phase (i.e. noble metal) is deposed on the support, only part of the available support 
surface can be covered. The chemisorption techniques permit to evaluate selectively the 
surface area of the active phase that is usually smaller than the total catalyst surface area. 

 Furthermore, only a small part of the active phase is physically free to react with the 
measuring gas due to the formation of metal aggregates. The metal atoms that are contained 
inside the aggregate cannot have contact with external fluids therefore they have no influence 
on the chemical reaction. In case of metal supported catalysts the total amount of metal fixed 
on the support can be conveniently determined by techniques as atomic adsorption giving as 
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result the total metal percentage present in the sample. The chemisorption techniques evaluate 
the free metal surface in square meter per gram by counting the number of surface metal 
atoms available on the metal aggregates. Finally, the degree of dispersion is defined as the 
ratio between the free metal atoms and the total number of metal atoms that are fixed on the 
support surface (in other words, the fraction of metal exposed to an external fluid phase). 
 
2.3 - Acid-base sites 

The catalyst surface may contain acid and base sites that can interact together. On given 
surfaces the acid or base behaviour may prevail even if both sites are always present. In a 
catalyst characterisation, it is very useful to define the nature (Lewis or Brönsted, see par. 4.3) 
of these sites, their density, location, distribution and strength. Generally, an acid site is 
defined as a site that can react with a base and, on the contrary, a base site can react with an 
acid. The above information (acid-base sites density) can be obtained by performing a 
chemisorption measurement using an acid (such as CO2, SO2) or base gas (such as dry 
ammonia) while their strength could be measured by temperature programmed techniques 
(desorption). 
 
2.4 - Spillover effect 

Spillover is a phenomenon that involves the migration of an active chemisorbed species, 
formed on a first active phase (metal) onto a second phase that usually could not react if 
present alone in the same conditions. The phenomenon of spillover is not desired in the 
determination of adsorption stoichiometry because it always involves an increase of the 
amount of adsorbed gas. In case spillover takes place the free metal surface area and 
dispersion are always overestimated therefore spillover is not desired in catalyst 
characterisation but well accepted in a catalytic reaction because the number of active sites 
greatly increases. In the following picture are reported three cases in which the spillover 
effects can take place [1]. 
 

 
Figure 2. Different mechanisms of spillover. 
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a- the first active phase is directly supported on the second phase, the acceptor 
b- the first active phase is supported on an activated support, mixed with a non-activated 

support 
c- the first active phase is fixed on a support that is activated by another active phase 
 

The physical conditions (temperature and pressure) causing the spillover effect are 
depending on the catalyst (metal and support) and on the reactants. General conditions in 
which spillover might be avoided are: 
Temperature:  between 5 and 40 °C 
Pressure:  between 0 and 100 torr 
Higher temperature and pressure values during the experiment could promote the spillover 
effect therefore influencing negatively the estimation of parameters as metal surface area and 
dispersion. 
 
2.5 - Synterization 

Synterization of a metal catalyst is a process that consists of a migration of the supported 
metal atoms to form larger metal aggregates. Synterisation is a direct consequence of 
temperature, time and ageing. During the catalyst activation (pre-treatment) prior to the 
analysis, there are several phases in which the catalyst should be heated at very high 
temperatures (i.e. to remove,  hydrogen after the reduction process). The catalyst nature and 
history should be very well known in order not to overtake the maximum conditions of 
temperature and time used for the catalyst preparation (i.e. calcination). In fact, the metal is 
finely dispersed on the support in order to maximise the metal surface area in relation to the 
minimum amount of noble metal. By heating the catalyst during the pre-treatment procedures, 
the mobility of the metal particles is increased. If the temperature overtakes certain limits, 
depending on the catalyst nature, the metal particles migrate to form larger aggregates 
decreasing therefore the metal dispersion. This effect reduces directly the number of active 
sites exposed to the fluid reactants, dramatically reducing the catalytic activity.  Synterisation 
is a non-reversible phenomenon and the original metal surface area and dispersion cannot be 
restored. 
 
2.6 - Poisoning 

A poison, when referred to catalysts, is an impurity that is present in the fluid phase and 
that reacts selectively with some active sites, stopping their activity. Usually the poisoning 
effect should be always avoided but sometimes could be useful to stop the formation of 
undesired secondary products. Poisoning could occur by chemical reaction (chemical 
poisoning) or fouling (physical poisoning). An example of chemical poisoning is the reaction 
between sulphur and some noble metals. The chemical poisoning is non-reversible if the 
product of reaction is stable while sometimes it is possible to remove the poison by a suitable 
chemical reaction. For instance, in case of some sulphur compounds, it is possible to remove 
the poison by hydrogenation to produce H2S. The physical poisoning takes place when an 
external substance blocks directly the access of the fluid to the active surface. This effect 
could be caused by encrusting of powders, carbon coke or pitches on the catalyst surface or 
inside the pores (fouling). In case the physical poisoning is due to carbon coke formation, an 
oxidation process can remove the poison. 
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3 – EVALUATION OF CATALYST SURFACE PROPERTIES BY CHEMISORPTION 
 

As described above, the main purpose of the chemisorption methods is to evaluate the 
number of active sites that can be reached or that can interact with a fluid phase. These 
techniques are based on a chemical reaction between a suitable reactive gas and the surface 
reactive site. There are different methods to perform the above operation, the static 
volumetric, the static gravimetric or the flow methods. In the volumetric method, the sample 
is kept under high vacuum before the analysis. The analytical instrument then introduces 
known doses of reactive gas into the sample holder, measuring afterwards the equilibrium 
pressure that will be established between the sample and the gaseous phase. The static 
volumetric method requires the calibration of the system dead volume, being an absolute 
method (all the parameters related to the analysis are absolute values: temperature, pressure 
and dead volumes). The dead volume calibration is usually defined as “blank measurement” 
and it consists in performing a run in the same analytical conditions but using an inert gas 
instead of a reactive one. The pressure range should be chosen in order to complete the 
adsorption isotherm covering a monolayer of reacted molecules over the sample. The pressure 
range therefore depends on the catalyst/adsorbate nature and the analysis temperature. Most 
of catalytic systems analysed around room temperature show the monolayer covering below 
100 torr equilibrium pressure. 

 The advantage of the static method is that the system catalyst/adsorbate reaches the real 
equilibrium conditions. Furthermore, it is possible to distinguish in a quantitative way the 
amount of gas strongly bounded to the active sites and weakly bounded to the support. On the 
contrary, the static volumetric method requires high vacuum system, long lasting 
measurements, and generally higher instrumentation costs. The gravimetric technique is in 
principle the same as the volumetric one; the difference is that the amount of gas adsorbed is 
measured by the weight change of the sample during the adsorption process. This technique is 
very precise but also very expensive due to the high cost of the necessary microbalance. Flow 
methods are carried out at atmospheric pressure. An inert carrier gas is passing through the 
sample in a suitable sample holder. A suitable injection system, typically a loop valve, can 
pulse in the gas stream before the sample, the reactive gas. The detector in this case can be a 
thermal conductivity detector, a microbalance or a mass spectrometer. Using the thermal 
conductivity detector the amount of gas adsorbed is calculated by integrating the peaks 
generated by the detector signal in function of time. This method requires the calibration by 
injecting the gas by a calibrated loop and measuring afterward the generated peak area. The 
advantages of this analytical method are based to fast analysis, relative low cost of the 
apparatus, relatively low risk of leaks.  The flow method can be used mainly for systems 
catalyst/adsorbate that show fast equilibrium time. Furthermore, this method can only 
evaluate the strong interactions between the gas and the active sites, while the weak 
interactions cannot be measured as the gas is instantaneously removed by the carrier flow. 
 
3.1 - Choice of reactive gas 

The reactive gas used for chemisorption textures should be chosen mainly according to 
the active phase of the catalyst.  The knowledge of the stoichiometric relation between the gas 
and the metal, therefore the mechanism of chemisorption, is of extreme importance to 
determine correctly the number of free active sites. In fact the evaluation of the number of 
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free active sites by chemisorption and thermal programmed techniques is based on the 
accurate measurement of the gas amount that is adsorbed or desorbed during the analytical 
cycle. The purpose of the chemisorption methods is to evaluate the amount of gas used to 
cover a monolayer over the free active phase. The monolayer might be expressed in moles or 
volumes (NTP) of gas referred to sample mass or to the amount of metal present in the 
catalyst. 

The correct choice of the adsorptive therefore should take into consideration the following 
factors: 
- reaction with the metal 
- short equilibrium time 
- minimum effect of adsorption on the support (spillover) 
- minimum effect of gas–gas interaction (multi-layer formation) 
- minimum effect of gas dissolution in the metal (i.e. hydrogen and palladium) 
- the stoichiometry must be known 
- gas purity (minimum of 99.99 %) 
In table 3, we report a general classification of some metals and gases in function of the 
adsorption type [2]. 
 
Table 3 
Classification of metals according to adsorption type 
 
Metals Dissociative form Associative form 

           
Gases H2 O2 N2 NO CO H2 O2 N2 NO CO

Hg, Ta, Zr, Nb, W, Ti, V, Mn, 
Cr, Mo 

+ + + + + - - - - - 

Fe, Re 
 

+ + + + + - - - + + 

Ni, Co, Tc 
 

+ + - + + - - - + + 

Os, Ir, Ru, Pt, Rh, Pd 
 

+ + - + - - - - + + 

 
(+) = Possible form 
(-) = Impossible form 
 

Hydrogen is the most commonly used gas for chemisorption measurements. It can be 
used with ruthenium (very slow equilibrium time), rhodium and iridium. Anyway, it is 
frequently used to analyse also the noble metals of the Group VIII. Hydrogen cannot be used 
to characterise silver and it forms with palladium a solution that is function of the temperature 
and pressure (absorption) [3]. Generally, hydrogen is adsorbed in a dissociative form 
(stoichiometric factor 0.5), but many other mechanism of interaction with active surfaces are 
known (mobile, subsurface, hydride, adsorbed in the bulk, partially reversible, strong residual 
and spilled over. Oxygen can be used with metals showing easy oxidation properties. The 
disadvantage of using this gas is that oxygen might change the surface-active structure by 
corrosive chemisorption. Furthermore, it can penetrate beneath the surface forming an oxide 
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layer. Such effects are undesired for surface area characterisation and they could be 
minimised by using low temperatures (sub-ambient). Oxygen is the only convenient gas to 
characterise silver catalysts. Carbon monoxide is a very reactive gas and, in principle, it might 
be used with most of metals. The problem related to this gas is the proper evaluation of the 
stoichiometric factor of the chemical reaction. Furthermore, smaller particles of metal can 
dissociate in presence of this gas to form carbonyl complexes. Although the reacted gas can 
be removed by evacuation in flow or in vacuum, the metal particles form again, but it is not 
certain if the structure will be the same. Carbon monoxide can also form volatile carbonyls, 
especially with iron and nickel. Nitrogen oxide is a very reactive oxidant and can be 
conveniently used to characterise cobalt and silver catalyst. The main issue in the use of NO 
is relative to its toxicity. 
 
3.2 - Metal surface area calculation 

The calculation of the metal specific surface area is based on the simple following 
relation: 
 
MSS = (Vm Na) / (Sf Sd)                                                      (1) 
 
MSS = metal surface area (square meters per gram of sample) 
Vm = gas adsorbed at monolayer (moles per gram of sample) 
Na = Avogadro number (molecule per mole of gas) 
Sf = Stoichiometric factor of the reaction (number of molecule of adsorbate per surface metal 
atom) 
Sd = Metal surface density (number of metal atoms per square meter) 
 

The stoichiometric factor Sf of a chemical reaction is therefore of fundamental 
importance in the calculation of the correct specific surface area. Sf should be investigated 
also by other analytical methods (i.e. for CO with infrared spectroscopy). The most common 
gases used in chemisorption techniques are hydrogen, carbon monoxide, oxygen and di-
nitrogen oxide. In the following table, we report some examples of possible reactions between 
the above gases and a generic metal M [4]. 
 
Table 4 
Stoichiometric factors for different types of reaction. 
 

Method Reaction (M = accessible metal atom) Stoichiometry 
   

Hydrogen (or oxygen) 
chemisorption 

M + ½ H2 = M-H 0.5 

Carbon monoxide 
chemisorption 

M + CO = M-CO 
2 M + CO = M-CO-M 

1 
0.5 

Hydrogen/oxygen titration 
 

M-O + 3/2 H2 = M-H + H2O 1.5 

Oxygen/hydrogen titration 
 

M-H + ¾ O2 = M-O + ½ H2O 0.75 

Nitrous oxide reaction 2 M + N2O = M-O-M + N2 0.5 
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For carbon monoxide, two adsorption stoichiometries are commonly found (linearly and 

bridged bonded) and infrared measurements of adsorbed carbon monoxide can be used to 
distinguish between the two possibilities. With platinum, it is chiefly the linear species that is 
formed. Various proportions of the bridged species have also been noted. However, the 
carbon monoxide to accessible metal atom ratio (CO/M) is generally similar to the H/M ratio. 
With palladium, larger fractions of the bridged species are usually observed. In the following 
table, we report some examples of stoichiometric factors and metal atomic densities per unit 
of polycrystalline surface [5]. The values of stoichiometric factors are expressed in moles of 
adsorbing gas per metal surface atom. 
 
Table 5 
Parameters related to some metals and stoichiometric factors with different gases. 
 

Metal (M) H2/M CO/M O2/M Atomic 
weight 

Sd x 1020 
(atoms/m2) 

Note 

       
Pt 0.5 1  

1.15 
0.5 195.09 0.125 Spillover 

T > 200 C 
Pd 0.5  0.6 - 106.4 0.127 Absorption with 

H2 
Ir 

D > 1.5 
nm 

D < 1.5 
nm 

 
0.5 
1 

 
1 
1 

0.5 192.22 0.130  

Rh 
D > 2 nm 
D < 2 nm 

 
0.5 

0.5 - 1 

 
1 
2 

0.5 102.905 0.133  

Ru 
D > 2 nm 
D < 2 nm 

0.5 
 

 
1 

> 1 

 
0.5 

> 0.5 

101.07 0.163 Spillover with H2 
T > 25 C 

P > 100 torr 
Os 0.5 - - 190.2 0.159  
Ni 0.5 - - 58.71 0.154 Carbonyl 

formation 
Co 0.5 - - 55.993 0.151  
Fe 0.5 0.5 - 55.847 0.163  
Ag - - 0.4 107.868 0.115 At 420 K 
Au - - 0.25 

0.5 
196.9665 0.115 At 470 K 

At 570 K 
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3.3 - Metal dispersion calculation 
The metal dispersion is another important parameter related to the nature or the status of 

a catalyst. The metal dispersion is a non-dimensional number representing the fraction of free 
metal atoms over the total number of metal atoms in the catalyst. The calculation of metal 
dispersion does not require the knowledge of the metal surface density. 
 
MD = (Vm Aw 104) / (W% Sf)                                                  (2) 
 
MD = metal dispersion percentage 
Vm = monolayer volume (moles of gas per gram of sample) 
Aw = metal atomic weight (gram of metal per mole) 
W% = metal percentage in the sample 
Sf = stoichiometric factor (molecule of gas per metal atom) 
 
3.4 - Average size of catalytic aggregate calculation 

A further piece of information that can be calculated by chemisorption techniques is the 
average diameter of the metal aggregates. 
 
Da = (104 F) / (MSS Dm)                                                      (3)   
 
Da = average diameter of metal aggregate (angstrom) 
MSS = metal surface area (square meters per gram of metal) 
Dm = metal density (gram per metal volume unit) 
 F = shape factor 
 

The shape factor depends on the geometric shape of the metal aggregate. It is a delicate 
parameter because requires that we consider the metal aggregate as having a regular shape. 
The shape factor is defined according to the supposed geometry and it is equal to the ratio 
between the surface of a solid and its volume. For a generic solid with a non-regular 
geometry: 
 
S / V = F / d           (4) 
 
where S is the external surface, V is the solid volume, F is the shape factor and d is the 
average diameter. The equation for the average diameter is calculated using for S the metal 
specific surface area measured by the chemisorption technique and for V the metal density. 
The shape factor for regular solids is: 
 
- for a cube with all the sides exposed or for a sphere F = 6 
- for a cube with one side non-exposed F = 5 (i.e. a metal aggregate deposed on the catalyst 

support). 
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4 - GAS SOLID INTERACTION: MECHANISM OF CHEMISORPTION 
 

All heterogeneously catalysed processes must be preceded by gas adsorption on the 
surface of the solid catalyst before the reaction. There are two fundamental kinds of 
mechanistic situations that can arise in the surface-catalysed transformation (see figure 3) [6]. 
For a generic reaction as: 
 

G1 + G2                     P 
 

it is possible to have different mechanisms: according to Langmuir-Hinshelwood type 
mechanism,  both species  (G1 and G2) are attached to the surface, and an atomic 
reorganisation takes place on the surface converting the gaseous reactants in the product (P); 
according to the Eley-Rideal mechanism, only one of the reactants (G1) is bound to the 
surface of the catalyst and it is converted to a product only when the second reactant (G2) has 
an interaction with G1. 
 
A) Langmuir-Hinshelwood 
 
   A         G1                                       G2                               Product desorption 
                        chemis.                                 chemis.       
                                  reorganisation 
         
       
 
     

           Catalytic surface 
 

 
B) Eley-Rideal 
                                                                                  Product desorption 
                           G2   
                                              
                                               G1   
  
                
 
               Catalytic surface 
 
Figure 3. Different mechanisms of chemisorption. 
 

In effect, the distinction between the two methods is not always easy. Although this is 
only a simplification of the catalytic processes, confirming that it is very important to know 
the definition and the role of the surface gas adsorption. The amount of gas uptake by a solid 
at a fixed pressure and temperature, is proportional to its surface area  and not to its total 
volume as the chemisorption is not a bulk phenomenon but a surface phenomenon. It is also 
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helpful to distinguish physical adsorption from chemical adsorption. The fundamental 
difference between the two kinds of adsorption, is that the physical adsorption involves a 
molecular interaction force including permanent dipole, induced dipole and quadrupole 
attraction (forces of Van der Waals). In chemical adsorption (chemisorption), the forces 
involved are very strong, with consequential formation and/or rupture of chemical bonds. 
Physical adsorption is characterised by small enthalpy changes, typically in the range -10 to -
40 kJmol-1 with heat of adsorption of 10-40 kJmol-1, whereas chemisorption heat is rarely less 
than 80 kJmol-1 and often exceeds 400 kJmol-1. Another difference between these two 
extreme types of adsorption concern the temperatures at which adsorption takes place and its 
specificity. The physical adsorption occurs, in general, only at low temperature, whereas 
chemisorption has no restrictions. Finally: chemisorption is a chemical reaction upon the 
surface of the solid and it is therefore specific. This mechanism is extensively studied because 
it is strictly related to the catalytic process. 
 
4.1 - Energy of adsorption 

In general, the interaction of a molecule of reactant with a surface involves a sequence of 
three reactions: (A) adsorption, (B) surface reaction and (C) desorption: 
 
 A Rg                 Rad 
 
 B Rad                 Iad                     Pad 
 
 C Pad                Pg 
 

Every reaction above described may consist in various reaction steps: adsorption  (A) may 
involve the formation of a weakly adsorbed initial state. Subsequently surface diffusion or 
reorganisation takes place leading to an adsorption state with a chemical bond. Desorption 
can occur in the reverse sequence. In a catalysed reaction  the study of the reaction kinetic 
permits to identify the rate-limiting steps: in this case the other reaction steps are assumed to 
be in equilibrium. It is important to estimate the binding strength of the species that are 
adsorbed upon the surface [7] . As reported in Figure 1, it is possible to have quite different 
values of the activation energy barriers (Eads, Ecat, Edes) or of the energy minima (adsorbed 
Reactants and Products). These energies depend on the catalyst and its crystallographic phase 
that is exposed. 

The degree of efficiency gained in the following catalytic path is controlled by the 
energetic steps of intermediates, by the activation energy required to convert the reactants into 
a surface intermediate, by the activation energy needed to yield adsorbed products and finally 
by the activation energy for products desorption  (see figure 1). 
 
4.2 Associative and dissociative chemisorption 

The measurement of the metallic surface area in a multi-component system as a bimetallic 
supported catalyst or an alloy is feasible by selective chemisorption on the metallic phase. 
The chemisorption stoichiometry is defined with reference to the adsorbate related to the 
metallic element [8]. Therefore, the chemisorption process is very different if the adsorbed 
gas molecule is dissociated or not. The two kinds of chemisorption involve different energetic 
behaviours and different theoretical models define them: associative and dissociative 
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adsorption. In the first case, the gas is adsorbed without fragmentation; in the second case, the 
gas molecule is adsorbed after its decomposition in one or more fragments. Hydrogen, for 
example, is always adsorbed in its dissociated form. 
H2               2H, whereas N2 is adsorbed in the two forms (see table 3). 
 
The gas-metal interaction (see par. 4) involves 3 or 4 steps: 
1) Adsorption of molecular gas system 
2) Dissociation of gas molecule (if the process is dissociative) 
3) Migration of atoms on the surface and into the bulk 
4) Formation of gas-metal bond 
In general, in case of associative mechanism, the chemisorption process follows the first 
order; in the other case it is of the second order. As already reported (Table 3, par. 3.1), the 
adsorption mechanism depends upon the energetic of the process and it is different for each 
pair of metal-gas. The knowledge of the chemisorption mechanism permits to calculate the 
activation energies. Thermal programmed desorption is commonly used to estimate activation 
energy: 
 
Qad  = -∆H = Ed - Ea                                                       (5) 

 
where Qad is the heat of adsorption; Ed and Ea are the energy of the desorption and adsorption 
process respectively.  In the case of dissociative chemisorption, the activation energy Ea for 
the adsorption on metal is zero. Therefore, the heat of adsorption is equal to the activation 
energy for the desorption process. The binding energies, BE, for the bond M-H are obtained 
from the equation: 
 
EM-H = ½ ( Ediss,H2   -  Ea )                                                       (6)   

 
where Ediss,H2 is the dissociation energy of H2. 

If the catalyst system is not able to provide enough energy for the gas dissociation, the 
adsorption process can be activated by a temperature increase. The adsorption of H2 on pure 
cobalt on Al2O3 is a typical system able to adsorb dissociated H2 only at high temperature 
(100°C) , while if a second metal is present (i.e. Ru, Pt) [8]. 
 
4.3 – Acid-base interaction 

The investigation of the surface acidity is helpful to explain the behaviour of some kind 
of catalyst. The acid surfaces are known to be able to generate, for example, carbon ions that 
are useful intermediates in catalytic reforming, cracking and isomerisation. In general, the 
evaluation of the acidity, or more specifically of the surface acidity, needs the determination 
of the nature, the strength and the number of acid sites. There are many techniques able to 
determine some aspects of acidity, to characterise the acid properties of solid surfaces used as 
catalysts in industrial processes or to find some potential solid candidates for new 
developments. The characterisation of acid sites can be performed by the chemisorption of a 
basic gas which, adsorbed by an acid site, is transformed into its conjugated acid form. The 
Brönsted definition is used to describe an acid or a base: an acid is an electron-pair acceptor 
and is able to transfer a proton from the solid to the adsorbed molecule. While according to 
Lewis definition, the acid site is an electron pair acceptor from the adsorbed molecule and a 
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co-ordinated bond with the surface is formed [9]. The surface acid nature depends on the co-
ordination of a metal cation with oxygen in the support structure. For example, alumina and 
alumina-silicates show tetrahedral co-ordinations between the Al-Si cations and oxygen, and 
negative charges are created. For cations with charges lower than 4 a Brönsted acid site is 
generated. To create a Lewis type acid site it is necessary to have the formation of co-
ordinated unsaturated sites.  Generally, the acid properties of a give solid are due to the 
presence of a wide distribution of acid site type. Sometimes both Brönsted and Lewis sites are 
simultaneously present on the surface. The investigation on the acid surface properties is 
therefore of great importance to foresee the catalytic activity and selectivity. In any case it is 
very important, in the catalyst characterisation, to carry out each determination in analytical 
conditions closer as possible to the operative conditions of the catalytic reaction. Common 
methods for surface acidity measurement include: aqueous methods (titration or ion 
exchange); indicators methods without solvent, with spectroscopic instruments; calorimetric 
methods by determination of the heat of adsorption, temperature programmed methods (in 
particular the temperature programmed desorption, TPD) where a sample previously saturated 
with a reactive gas, as ammonia or an acid molecule in a static or dynamic system, is 
submitted to a linear ramp of temperature in a flow of inert gas. Finally, other spectroscopic 
methods are: ultraviolet spectroscopy (UV), nuclear magnetic resonance (NMR), electron 
spin resonance (ESR) and x-ray photoelectron spectroscopy (XPS). 
 
5 – CHEMISORPTION TECHNIQUES 
 

As mentioned above, the methods to perform chemisorption analyses are mainly two: the 
static and the dynamic adsorption. In the case of static adsorption, the sample is generally pre-
treated in high vacuum, and, after the catalyst activation, known doses of reactive gas are 
injected in the sample holder. Modern analytical instruments detect the amount of gas 
adsorbed for each introduction by determining accurately the time necessary to establish the 
correct equilibrium between the gaseous phase and the adsorbed one. Once equilibrium has 
been reached, the equilibrium pressure is measured systematically, until the complete 
chemisorption isotherm is collected and a monolayer of gas molecule is covering the active 
surface. The dynamic method consists in flowing continuously (constant flow)  an inert gas 
through the sample, then known doses of reactive gas are injected by a loop system into the 
gas stream. When the reactive gas pulses reach the catalytic surface, the gas molecules react 
with the sample being adsorbed. In the case of dynamic adsorption, it is not possible to state 
the correct equilibrium time for the chemical reaction. Therefore, the only parameter that can 
be adapted to allow sufficient contact time between the gas and the solid is the flow rate. 
Using the dynamic method the lower is the flow rate longer is the contact time between the 
gas pulse and the sample.  Operative conditions during the chemisorption analysis are of 
extreme importance. Temperature of analysis, equilibrium time and pressure for static 
techniques, flow rates for dynamic techniques should be carefully chosen to avoid phenomena 
as spillover or solutions between the adsorbate and the solid (i.e. absorption of hydrogen in 
palladium). The static technique allows to perform an analytical procedure called “back 
sorption”. During a first analytical cycle the reactive gas can interact with the catalytic 
surface producing gas-solid interactions showing different bounding energies. This leads to 
different species of gas adsorbed: strong and weak chemisorption. While the gas that is 
strongly bounded to the surface can be removed only by increasing the temperature and 
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applying vacuum or a flow of inert gas (thermal desorption), the gas molecules weakly 
bounded can be removed at the same analytical temperature only applying vacuum or inert 
flow. Therefore the back sorption procedure consists in measuring a first gas adsorption 
isotherm (strong + weak adsorption) followed by a sample degassing at the same temperature, 
moving only the weakly adsorbed molecules. Finally, a second run is performed with the 
same reactive gas now, measuring only the amount of gas adsorbed by the weak interactions. 
The two collected adsorption isotherms can be now subtracted one from the other providing a 
third curve related only to the strong interactions. In figure 4 the isotherm labelled as “A” 
represents the first run of hydrogen chemisorption on 6.3% platinum supported on silica, “B” 
is the second adsorption analysis and “C” is the curve resulting from the subtraction of the 
two analyses. Separate calculation of the gas uptake permits the distinction of the hydrogen 
molecules adsorbed with different energies. The calculation of metal specific surface area and 
dispersion should be carried out on isotherm “C”. 
 

 
 

Figure 4: Chemisorption of hydrogen on 6.3% platinum on silica catalyst at 25 C performed 
by the Sorptomatic 1990 (CE Instruments). 

 
The dynamic method cannot provide the above information as during the adsorption 

process the inert gas flow continuously moves the molecules weakly adsorbed. On the 
contrary, a complete static analysis takes many hours (typically 6 to 12 hours for the first run 
and additional 6 –8 hours for the second run) and it is operatively more complicated while the 
dynamic method is extremely fast and easy to be performed. 
 
5.1 - Sample preparation and catalyst activation 

Sample preparation is a fundamental step before any type of chemisorption measurement. 
This phase has the purpose of activating the catalyst to the chemical reaction that will take 
place. Therefore, the sample pre-treatment should be carefully studied to obtain later on the 
most accurate experimental data. A typical procedure for chemisorption measurements 
consists in the following steps: 
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1. Accurate cleaning of the catalyst surface before the pre-treatment procedure. 
The surface cleaning consists in removing water vapour or other pollutants adsorbed on 

the catalyst. This step should be chosen according to the catalyst nature and catalyst life 
cycle. For instance, the cleaning conditions should be determined in function of the treatments 
performed on the catalyst. In case of a new catalyst the promoters of metal deposition should 
be removed to avoid any kind of interaction with the reactive gas used for the measurement. If 
the catalyst has been used, it is important to clean the surface, if possible, from pollutants or 
poisons eventually blocking the active sites. The cleaning phase can be performed under high 
vacuum degree or flowing an inert gas through the sample at the highest temperature not 
modifying the catalyst structure (i.e. synterisation). The cleaning time has also a great 
importance because, even if the selected temperature for a short time is not affecting any 
sample modification, may be that if the catalyst is kept at this temperature for long periods the 
metal atoms can migrate, increasing the aggregate size. 
2. Choice of proper pre-treatment procedure. 

This is a very delicate step; the nature of the catalyst should be carefully investigated by a 
bibliographic search, if available, to chose the best preparation procedure. Sample pre-
treatment usually consists in several steps that must be repeated carefully for successive 
analyses to assure the best reproducibility in the analytical results. For instance, it is sufficient 
a small difference in temperature rates, vacuum degree or final temperatures to obtain 
complete different results on the same catalyst. Pre-treatment is used to activate the catalyst 
surface to the chemical reaction with the measuring gas, therefore it is difficult to generalise a 
procedure for it but most of catalytic systems are well studied and a bibliographic search is 
always advisable.  As the most common gas used for chemisorption analyses are hydrogen, 
oxygen, carbon monoxide or di-nitrogen oxide, a generic pre-treatment procedure can be 
performed according to the following steps: 
a. Sample oxidation, by flowing air or, better, pure oxygen over the sample. This step oxides 

all the metal atoms on the surface, eventually removing also carbon residual. 
b. Sample reduction, by flowing pure hydrogen over the catalyst. Hydrogen will react with 

the metal oxide forming hydrides and water. 
c. Hydrogen removal. This step can be carried out in high vacuum or in flow of inert gas 

obtaining a surface metal in zero valence state, ready to react with the measuring gas in 
the analytical cycle. Usually it is better to run first the oxidation and later the reduction 
because for most metal systems the hydride can be dissociated more easily during the 
final degassing procedure. Metal oxides are generally very stable. Of course, in the case of 
oxygen/hydrogen titration analyses, the final step will leave a layer of oxygen or hydrogen 
bounded to the surface active sites, in order to perform the chemical reaction between the 
two gases during the analysis (one adsorbed and one in the gaseous phase). 

Temperature is one of the main parameters to be carefully chosen. In fact, during the sample 
reduction by flowing hydrogen, water vapour is produced by the chemical reaction. The 
formed water is in part carried away by the gas stream but in part can be adsorbed by the 
porous structure of the support during step b. here above. When performing the hydrogen 
removal (step c.) sample temperature should usually be a little lower then the previous step. In 
fact, during the sample reduction, the stream of hydrogen while reducing the metal also 
removes the formed water on the metal surface and from the porous support, but this happens 
at the reduction temperature. If in the next phase the temperature is slightly higher, the water 
adsorbed by the support begins to desorb slowly. When reaching the catalytic aggregates, 
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which are now activated, water reacts again with the supported metal and a non-controlled 
oxidation takes place. The bad consequence is the non-reproducibility of the adsorbate uptake 
measurement. It is sufficient to keep the temperature of the last step few degree lower than the 
reduction step just to be sure that the overshooting or the temperature oscillation of the oven 
stay below the selected temperature for reduction. 
 
5.2 – Static adsorption 

To perform static adsorption the analytical instrument must be equipped as follow: 
- high vacuum pumping system, able to generate a vacuum degree over the sample of at 

least 10-4 torr 
- Stainless steel plumbing with high vacuum fittings to ensure a correct tightening. Leaks 

are the most common problems related to static adsorption. In fact, the experiment is 
usually carried out below atmospheric pressure and a leak of air coming inside the system 
will affect the results. Equilibrium pressure will be higher than the real ones and the 
catalyst may be oxided by the oxygen contained in the air. 

- Well calibrated injection system. The injection system could be a fixed calibrated volume, 
where only the adsorbate loading pressure can be varied, or a moving calibrated piston, 
where also the volume injection can be changed. The advantage of using this last system 
is that after the gas injection in the sample holder the piston will fill completely the 
calibrated volume. In this way the calibrated volume for injection will not increase the 
dead space over the sample. On the contrary, when using a fixed injection volume, during 
the equilibrium pressure measurement the calibrated loading volume is added to the 
system dead space, decreasing the precision in pressure measurement. 

- Detection method. Usually two main methods are used to detect the amount of gas 
adsorbed during the analysis: the volumetric system and the gravimetric one. Anyway the 
equilibrium pressure is measured by a suitable pressure transducer chosen according to 
the pressure range that is established during the experiment. Typical pressure range for 
chemisorption measurement is up to 100 torr (most of catalytic systems show the 
monolayer formation below this pressure). In a volumetric apparatus the raw experimental 
data are the equilibrium pressures and the amount of gas adsorbed for each step. The gas 
uptake is calculated directly from the equilibrium pressures values but a proper dead 
volume calibration have to be performed before or after the measurement by a “blank run” 
(that is an analysis by using an inert gas not reacting with the sample). In case of 
gravimetric systems the dead volume calibration is not necessary because a suitable 
microbalance directly detects the weight changes of the sample when adsorbing the 
measuring gas. Static volumetric instruments are very commonly used because they 
provide a reasonable compromise between degree of precision, ease of use and price, 
while the gravimetric systems are very precise but also very expensive due to the high 
cost of the microbalance. 

- Suitable manifold dead spaces. The system dead volume in theory should be as small as 
possible but in reality it should be carefully evaluated, especially for static volumetric 
systems. The volumes of adsorbed gas are calculated by the pressure difference between 
the experiment (with a reactive gas) and the blank (dead volume calibration with an inert 
gas): the smaller is the dead volume, higher is the difference in pressure and more precise 
is the adsorbed volume calculation. On the contrary, by decreasing the system dead space 
the gas dose to be injected should be decreased accordingly to avoid the risk of injecting 
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too much gas that might overtake the necessary amount to form a monolayer or, in the 
best case, to produce an isotherm with few experimental data points. In fact, when the 
injection volume is too small it is very difficult to calibrate it with the required precision. 

- Manifold and sample temperature. The manifold, injection system and pressure 
transducers temperature should be fixed at a value slightly higher than room temperature 
(i.e. 35 – 40 °C) for better thermal conditioning (it is very difficult to keep temperature 
constant about room temperature). On the other hand the temperature should not be too 
high because this might badly affect the transducers linearity. Sample temperature should 
be as stable as possible (maximum oscillation +/- 0.1 °C) and should be chosen according 
to the type of experiment that is required. Typical chemisorption isotherms are performed 
about room temperature (20 – 25 °C) but for some systems might be necessary higher or 
lower ones (i.e. analysing palladium with hydrogen, higher temperature shifts to higher 
pressure the gas dissolution in the metal or measuring ruthenium with hydrogen higher 
temperature shortens the equilibrium time). 

 
5.2.1 – Experimental aspects 
A typical scheme of a volumetric apparatus for chemisorption is reported in figure 5. 

Figure 5. Typical diagram of a static volumetric apparatus for gas adsorption. 
 

A minimum of two gas inlets is required, one for the inert gas used in the calibration of 
the dead volume and one for the reactive gas. The reference volume for gas injection might be 
a fixed volume type or a moving piston. In the second case it is possible to change the 
injection volume in addition to the loading pressure according to the sample adsorption rate 
and the required number of experimental points. One or two separate transducers might 
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perform the measure of the loading pressure and the equilibrium one. In case that only one 
transducer is used, the pressure transducer volume must be added as dead volume in the 
reference volume. 
 
5.3 - Dynamic adsorption  

In chemisorption measurements performed by static volumetric systems, the sample is 
submitted during the analysis in a vacuum system. In effect, this method has the advantage of 
separating the contribution of physical and chemical adsorbed gas (weak and strong 
bounding). On the other side, the analysis conditions are very different from the working 
conditions of the catalyst during the reaction in the reactor (high temperature and pressure, 
very long analysis time).  When the catalyst characterisation have to be performed in 
analytical conditions which are very similar to the catalytic process, the flow chemisorption 
method (dynamic adsorption) might be very useful. In flow technique the sample is placed in 
a tubular reactor and it is analysed in operative conditions closely as possible to real work 
conditions, as already cited. There are several advantages using the dynamic method: 
1)  analysis is very fast 
2)  during the analysis there is no physical adsorption therefore the second adsorption run is 

not necessary, obtaining immediately the data related the strongly chemisorbed gas 
3)  this technique allows an easier characterisation of samples with a small dispersion or a 

very low percentage of active phase 
4)  manual operations are very easy 
The sample preparation is similar to the ones already described for static adsorption (see par. 
5.1) the catalyst must be cleaned and pre-treated opportunely in order to perform a correct 
quantification of the active sites.  
 
5.3.1 – Experimental aspects 

The chemisorption analysis by flow system is named Pulse Chemisorption. The typical 
apparatus to perform pulse chemisorption analyses is very similar to the one used for 
TPD/TPR analyses. In figure 6 is represented the schematic diagram of a typical apparatus 
performing most of the dynamic analytical techniques. The gas to be adsorbed is introduced 
as a pulse, by an opportune system as a multi-port loop valve, into the stream of the inert gas 
used as carrier.  The injection system is placed before the sample reactor. The choice of the 
probe gas and of the carrier gas must assure the best answer of the detector if a TCD is used. 
In this case the two gases should have different thermal conductivity to have the best 
sensitivity of the filament. It is important also to use the carrier and reactive gases with the 
highest purity; both gases should flow through a water trap or a suitable filter to completely 
retain eventual vapours. The detector calibration should be performed before starting the 
pulse chemisorption analysis by using the same analytical conditions as temperature, types of 
gas and flow rate, in order to estimate the answer of the detector when the calibration pulse is 
introduced. The peak obtained in the chromatogram without adsorption must be then 
integrated therefore the relation between the peak area and quantity of gas injected can be 
easily calculated.  
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Figure 6. Diagram of a multipurpose apparatus for pulse chemisorption, TPD, TPR and TPO. 
 

After the quantitative calibration, it is possible to start the analysis by introducing a 
number N of pulses of gas that now will be adsorbed by the activated catalyst. The amount of 
gas adsorbed for each pulse is given by the difference between the area of the peak given for 
the reference pulse and the area under the peak acquired during the adsorption process (see 
figure 7). In general, the injection loop volume should be chosen to provide an analysis with 
several experimental points to define better the saturation curve. The total amount of gas 
adsorbed Vt during the analysis is given by: 
 
Vt  = ∑N

i=1 Vai                                                                    (7) 
 

where N is the number of pulses necessary to saturate the active sites  
and Vai is the volume of gas adsorbed from the pulse i given by the difference: Vref - Vpi  
where Vpi is the volume of gas non adsorbed from the pulse i. 
Once the reactive gas saturates the sample, the peaks areas acquired by the TCD (b, figure 7) 
are equal to the reference calibration peak (a, figure 7) and the analysis is over. In general, as 
for static adsorption analyses, the dynamic chemisorption is performed at constant 
temperature conditions (isotherms). The choice of the temperature depends on many factors 
as type of sample and gas, type of information required, but it is very common to perform 
chemisorption at room temperature. Also the pre-treatments of the sample are effected in 
order to obtain a clean surface able to chemisorb the probe gas as described in 5.1. 
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Figure 7. Pulse chemisorption analysis performed by the TPDRO 1100 (CE Instruments). 
 
5.4 – Calculation of monolayer volume of chemisorbed gas 

The experimental data collected by a static chemisorption apparatus are the equilibrium 
pressures and the adsorbed volumes. Using these two sets of values it is possible to draw the 
chemisorption isotherm (adsorbed amount versus pressure). The mathematical interpretation 
of these curves leads to the calculation of the gas uptake covering the monolayer. In case of 
static adsorption, the isotherm resulting from the subtraction between the first and second run 
(only strongly chemisorbed gas) must be considered as the first run is also comprehensive of 
weak and reversible effects that depend mainly from the system pressure. In the following 
paragraph two most commonly used models will be described, the Langmuir model and the 
extrapolation to zero pressure, taking into consideration that other models can be applied as 
the Freundlich and Temkin ones [11]. The main difference among these models is related to 
the heat of adsorption. Whereas according to Langmuir the heat of adsorption is constant in 
relation to the covering degree θ, according to the others the heat of adsorption changes in 
function of the surface saturation degree. In the following table are reported the three models 
equations. 
 
Table 6: Isotherms of adsorption 
 

Model Heat of adsorption (q) Mathematical equation 
   
Associative 
 Langmuir 

q = q0 = const. V/Vm = bP/(1+bP) 

Dissociative Langmuir q = q0 = const. V/Vm = (bP)1/2/((1+(bP)1/2) 
Freundlich q = -q0 ln(θ) V/Vm = (bP)RT/Q0 

Temkin q = q0 (1 -α θ) V/Vm = RTln(A0P) / q0θ 
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Where q0 is the heat of adsorption for θ close to zero. 
In case of pulse chemisorption technique, the best way to evaluate the monolayer volume is to 
take into account the total volume of gas adsorbed during the experiment. In fact, in this case 
it is not necessary any volume correction as the carrier flow during the run removes 
continuously the physisorbed or weak chemisorbed probe gas. 
 
5.4.1 – Langmuir isotherm 

The Langmuir model [12] is commonly used to process chemisorption isotherms because 
it is relatively simple and it can be used in developing several kinetic equations. It is based on 
two fundamental assumptions: 
- The adsorption energy is the same for every active site and there are no interactions 

between adsorbed molecules 
- Adsorption is localised 
From these assumptions derives that every active site has the same probability to interact with 
an adsorbing gas molecule, independently from the fact to be surrounded by other occupied 
sites. Furthermore the maximum uptake that can be adsorbed corresponds to a monolayer of 
molecules (or, better, of gas atoms). The Langmuir model can be conveniently used to 
describe the associative or dissociative adsorption. 
Associative adsorption 

By indicating as A the adsorbate gas molecule and S the free active site, the associative 
adsorption follows the following mechanism: S + A = SA. By indicating as θ the covering 
degree: 

 
θ = (occupied sites / total available sites) 

 
therefore the speed of adsorption during the process is proportional to (1-  θ) (free sites) and 
to the gas pressure P. 
The speed of adsorption,  Uads = [adsorbed moles / time], is calculated as follow: 
 
Uads = Kd Pa (1-  θ)                                                         (8) 
 
While the speed of desorption is:  
 
Udes = Ki θ                                                                 (9)    

 
All the experimental points in a chemisorption isotherm are at the equilibrium, therefore for 
every point the two speeds are equal, Uads = Udes, that is: 
 
Kd Pa (1 - θ) = Ki θ                                                       (10) 

 
 θ = (Kd Pa) / (Ki + Kd Pa) = K Pa / (1 + K Pa)                               (11) 
 
where K = Kd / Ki is the adsorption equilibrium constant that depends on the absolute 
temperature according to the Van’t Hoff equation: 
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K = a e-dH / R T                                                              (12) 
where -dH is the heat of adsorption. According to the Langmuir model assumptions, the heat 
of adsorption is independent from the covering degree, but this is true only if the active 
surface is energetically homogeneous and if there are no interactions between adsorbed 
molecules. On the other hand, by considering this assumption as true the mistake appears to 
be minimal. 
Dissociative adsorption 

When the adsorbent molecule covers two or more active sites, it is possible to derive the 
dissociative Langmuir model in the following way: 
 
θ = (K Pa)1/n / (1 + (K Pa)1/n)                                                (13) 
 
where “n” corresponds to the stoichiometry of the reaction  Sn + nA = n(S A). 
Defining the covering degree as 
 
θ = (Vads / Vm)                                                           (14) 

 
where Vads = adsorbed gas volume for each experimental point and Vm = monolayer uptake, 
we obtain: 
 
(Vads / Vm) = (K P)1 / n / (1 + (K P)1 / n)                                        (15)   
 
and after several passages: 
 
P 1 / n / Vads = (1 / (Vm K)1 / n) (P1 / n / Vm)                                     (16) 
 
This is the equation of a straight line whose slope is the inverse of the monolayer uptake and 
from the intercept, it is possible to calculate the parameter K, better known as “B” parameter 
of the Langmuir model. The “n” parameter should be optimised according to the correlation 
coefficient calculated by the least squared method. In case of associative adsorption n = 1. 
 
5.4.2 – Extrapolation to zero pressure 

In chemisorption isotherms the value of adsorbed volume of gas is not constant and, even 
after the monolayer has been formed, the volume of gas continuously increases due to weak 
adsorption effects that are mainly pressure dependent. Usually to obtain a real horizontal 
plateau after the monolayer covering it is necessary to perform the back sorption procedure 
and the consequent isotherm subtraction. Some models (i.e. Freundlich) can be applied also to 
the first run only but an empirical method is available giving consistency in the monolayer 
volume calculation in comparison to the Langmuir model when applied to the subtracted 
isotherm. The method of back extrapolation [13] consists in identifying a linear part in the 
isotherm, even if the slope is still higher than zero, and, by applying a linearisation method, it 
is possible to extrapolate from these data a straight line. The intercept value of the resulting 
line is the monolayer uptake as the theory behind this method supposes that by extrapolating 
the linear part of the isotherm to a zero pressure, the reversible effects of adsorption can be 
excluded (see figure 8). An interesting comparison is reported in table 7, where the system 
palladium supported on carbon has been characterised by oxygen chemisorption. 
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Table 7 
Results by different calculation methods of Pd 5% supported on carbon (Sorptomatic 1990). 
 
Palladium 5% on activated carbon Vm (Ncc/g 

support) 
Surface area 
(m2/g metal) 

Metal dispersion 
(%) 

Back extrap. (1) 2.089 249.52 56.51 First run 
isotherm Langmuir (2) 2.877 343.76 77.85 

Back extrap. (3) 1.855 221.67 50.20 Isotherm after 
subtraction Langmuir (4) 2.228 266.17 60.28 

 
The results calculated by the Langmuir model on the first run isotherm (2) are not reliable as 
the first run is taking into account also reversible adsorption. The Langmuir model is here not 
applicable. However, a comparison between the other results leads to very similar values. In 
fact, the results at point (1) and (3) are quite close each other as the back extrapolation theory 
supposes that at zero pressure the weak effects can have no influence. Therefore the results 
obtained by the application of this model to both isotherms (first run and subtracted one) 
should give similar values. The values obtained by the Langmuir model to the corrected 
isotherm show consistency with previous results. 
 

 
Figure 8. Extrapolation to zero pressure to a corrected isotherm (Sorptomatic 1990) 
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6 – THERMAL DESORPTION TECHNIQUE 
 

The mechanism of catalytic processes is directly correlated to the surface behaviour of 
the solid catalyst. The characterisation of catalytic system requires the detailed description of 
the preparation method, the specification of the catalyst physical properties and the detailed 
information about its structural and chemical characteristics. A complete description of a 
catalyst should be comprehensive of information about the rate of chemical change, about the 
product composition and about the catalyst modification in time, due to poisoning, inhibition, 
sintering and chemical reactions. The thermal analysis methods are very helpful to know all 
of these  catalytic properties. The thermal analysis methods may be used with different 
objectives: the reaction or desorption profile may be used qualitatively to fingerprint a given 
system and then it is possible to make a quantitative considerations about the nature of 
chemical processes, the amount of gas involved in the chemical reaction and finally to 
calculate the number of the active sites, the reducibility degree of the sample related to the 
catalytic activity. All the methods relating some characteristic properties of a catalyst to its 
temperature during a programmable heating ramp are named commonly in the field of the 
thermal analysis. 

As the thermal change at a given temperature depends on many factors as the nature of 
the system, the type of gas used, the flow rate, pressure and several kinetics factors, therefore 
all the experimental aspects should be taken in consideration. The thermal analyses are often 
used to investigate surface modifications and bulk reactivity by varying the surface 
composition, the catalyst preparation method, the pre-treatment for catalyst activation and the 
analytical conditions. The fundamental differences between temperature programmed 
desorption and temperature programmed reaction (reduction, TPR, and oxidation, TPO), is 
that the first analysis involves a surface process, while the TPR/O involve a bulk reaction.  
 
6.1 – Theory of thermal desorption 

During the Temperature Programmed Desorption analysis (TPD), the sample, 
opportunely pre-treated,  is submitted at an increasing temperature with constant rate and it is 
swept by an inert gas as helium, argon or nitrogen. The sample surface desorbs the gas that 
has been previously chemisorbed and a suitable detector monitors the process. Most 
commonly used detectors are thermal conductivity (as described in 6.2) or a mass 
spectrometer. In the TPD studies the solid system is previously equilibrated until saturation 
with a probe gas in isothermal conditions and at a given partial pressure (in general 
atmospheric pressure if the dynamic method is used). The Langmuir adsorption model may be 
used as well for the TPD spectra interpretation as it describes both gas adsorption and 
desorption in the two cases of associative and dissociative adsorption (see 4.2) [14]. The 
enthalpy of adsorption is considered as independent from the fraction of occupied active sites 
and the number of the available sites is fixed. Furthermore, both quantities are supposed to be 
independent from the temperature. The two types of possible mechanism (associative and 
dissociative), as already mentioned are the following: 
 
1)   S  +  A              S-A              non dissociative 
 
2) 2S  +  A2                     2S-A                 dissociative 
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According to the above hypotheses, in case of non dissociative adsorption it is possible to 
derive the number of occupied sites No at a given time t by: 
 
dNo / dt  = pka (Ntot - No )  -  kdN                                                (17) 

 
where: 
kaand kd are respectively the kinetic constant of adsorption and desorption process. 
p is the partial pressure of reactive gas and 
Ntot is the total number of active sites. 
 
In general, the constant ka and kd are depending on the Arrhenius equation: 
 
ki = Ai exp (-Ei/RT)        i= a, d                                             (18)                      
 
where Ei is the activation energy  of the process. Moreover, as already described in equation 
(5), ∆Ha = Ea - Ed. In case of dissociative adsorption, the process is of the second order and the 
adsorbate molecule dissociates in two or more parts. Accordingly, in the equation (17), the 
terms (Ntot - N0) and N are at the second power (Ntot - N0)2, N2.  The TPD analysis profile, in 
both cases, the process rate is given by the difference between the rate of desorption rd and the 
rate of adsorption ra. When ra ≅ rd the regime is in dynamic equilibrium, while when  
rd >> ra the TPD profile depends by the heating rate β (expressed in K/s). The correlation 
between the energy of desorption and the factor β is given by: 
 
ln (Tm

2 / β )  =  Ed/RTm  +  ln (Ed / kd R)                                         (19) 
 

as shown by Anderson et Al. [14]. Equation (19) shows that the activation energy Ed for the 
desorption process is an experimental quantity, easy to be obtained from the temperature 
programmed desorption data. The activation energy for desorption can be estimated from the 
temperature of the maximum desorption rate, Tm, from the heating rate parameter β and from 
kinetic constant of the desorption reaction kd. 
 
6.2 - Experimental aspects 

Suitable characterisation techniques permit to determine the characteristic of the catalyst 
as the surface area, the metal dispersion, the type of the deactivation or the structural 
modifications during and after catalysed reactions. Therefore, catalyst characterisation is 
essential for evaluating and improving the preparation methods or the reaction parameters. 
The techniques available for this purpose are often not very helpful to characterise catalysts 
under working conditions. In general, the analytical methods based on  a flow system, as 
thermal programmed desorption, reaction/oxidation, reaction and pulse chemisorption, are the 
best methods to characterise the adsorption and reaction energetic, the bulk or surface active 
phase and the site distribution of the supported catalyst. In fact, it is possible to approach the 
analytical conditions used in these methods to the real reaction conditions. The flow-based 
techniques  (TPD, TPR/O and pulse) use essentially the same equipment. A typical flow 
system diagram is represented schematically in figure 6.  The TPD/R/O analyses are carried 
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out by flowing a suitable reactive gas or gas mixture through the catalyst placed in a tubular 
sample holder (flow-through or flow-over types). In case of TPD analysis, the sample is 
previously saturated with the chosen adsorbate by flowing the reactive gas or executing a 
pulse chemisorption analysis. Gas mixture is typically used to perform TPR and TPO 
analyses, as a small percentage of hydrogen or oxygen (about 5%) diluted in argon or 
nitrogen for TPR and helium for TPO. In fact, when the detector is a thermal conductivity 
one, the thermal conductivities of the carrier gas and the detected gas must be different. If the 
detector is a quadrupole mass spectrometer, the desorbing gases should present typical and 
unique mass fragments, to be distinguished from the carrier mass fragments. In temperature 
programmed techniques the temperature increase must be linear, therefore the oven must be 
able to perform a wide range of temperature rates (typically from 1 to 20 K/min) in a wide 
temperature range (from ambient up to 11373 K). Moreover, the best furnace type is the anti-
magnetic one, that is the heating coils should not generate any magnetic field on the sample 
holder to avoid signal oscillation when using carriers with a polar moment (i.e. nitrogen). The 
real sample temperature must be monitored continuously by a suitable sensor placed inside 
the catalyst bed to detect possible endo or exothermic reactions. The temperature sensor 
should be opportunely protected by an inert material sheath (i.e. quartz made) to avoid 
chemical reactions of the sensor itself (typically a thermocouple) with the reactive gases. It is 
important, from the experimental point of view, to use gases of the highest available purity 
and also to remove traces of water impurity by using  an opportune cold trap (liquid nitrogen) 
or molecular sieve trap. The gas flow must be very stable to optimise the detection sensibility 
(an electronic mass flow controller is the best system for this purpose). The choice of the 
carrier gas depends on the reactive gas that have to be detected: in table 8 are reported some 
typical gas coupling when using a thermal conductivity detector. 
 
Table 8 
Detection of some gases in relation to different carriers by TCD. 
 
Gas Main use Thermal 

conductivity (*)
Detectable reactive gases 

    
He Carrier 3363 O2, CH4, CO, CO2, SO2, H2S,NH3, NO, N2O
Ar Carrier 406 H2
N2 Carrier 580 H2
H2 React./Carrier 4130 CO, CO2
O2 React. 583 -
CH4 React. 720 -
CO React. 540 -
CO2 React./Carrier 343 H2
SO2 React. 195 -
H2S React. 327 -
NH3 React. 514 -
NO React. 555 -
N2O React. 374 -

 
(*) Determined at 273 K, values .107 (cal / cm.s.K). 
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In a TCD detector, two sets of filaments are mounted in a Wheatstone bridge circuit, one set 
is immersed in the pure carrier gas stream (reference) while the other in the stream exiting 
from the reactor (measure). The filaments are made of suitable metals (i.e. tungsten or gold) 
having high temperature coefficient of electrical resistance: 
 
R(T) = R0 (1+aT) 
 
where T is the filament temperature, R0 is the metal electrical resistivity at 293 K and “a” is 
the resistance temperature coefficient K-1. When the bridge circuit is power supplied, the 
filaments temperature changes according to the thermal conductivity of the gas, the flow rate 
and the environment temperature. It is necessary to have only one variable in the system, that 
is the change of the gas thermal conductivity between the reference branch and the measure 
one, therefore all other parameters must be absolutely constant: the flow rate, the environment 
temperature and the current supply. If the reference and measure filaments are immersed in 
the same gas type (no gases are adsorbed or desorbed by the sample) the bridge is in 
equilibrium (same resistance). When the sample, due to temperature increase, begins to 
adsorb or desorb other species, the bridge is unbalanced, and the detector generates a positive 
or negative current. Usually the sensitivity by using tungsten filaments is higher, while gold 
filaments are advisable when the reactive gas is corrosive. The thermal conductivity of the gas 
flowing over the TCD determines the filaments temperature and consequently also their 
resistance. It is possible to correlate the measured potential (V) to the change in the gas 
composition d[C] by V = s d[C], where “s” is the detector sensitivity factor. The thermal 
conductivity detector is extremely sensitive and it is able to reveal gas quantities in the order 
of 1 µl. The TCD sensitivity is more efficient when the flow is low (20-50 Ncc/min) and 
constant. 
  
6.2.1 – Sample preparation 

All samples are pre-treated before the analysis by using various procedures in order to 
obtain a clean surface and to eliminate undesired contaminants. A typical scheme is first to 
heat the sample at high temperature in flow of inert gas to effect a complete elimination of 
physisorbed water and/or other pollutants. After the preliminary cleaning, the sample can be 
saturated with a suitable gas probe (i.e. hydrogen, oxygen, NO, CO, NH3) at a given 
temperature. Once the saturation is over, the gas in excess is removed by flowing an inert gas 
at the same temperature of the saturation. In this way the reactive gas weakly chemisorbed 
and present in the piping can be removed. It is also possible to cool the sample at a room 
temperature while keeping the flow of the same probe gas. The inert gas used as carrier for 
the TPD analysis can be introduced once the room temperature has been reached. Sometimes, 
some substances as carbonaceous residues of calcination or residues of precursors used to 
prepare the catalyst are present in the catalyst. These “pollutants” can react with the gas 
probe. In this case, the pre-treatment procedure can be more complex and comprehensive of 
more steps as pre-oxidation in oxygen, followed by cleaning with an inert gas, reduction with 
hydrogen and finally another purge of he system. At this point it is possible to saturate the 
catalyst whit the probe gas. The purpose of the above complex procedure is to assure that the 
analysis profile takes into consideration only the probe gas desorption that was adsorbed on 
the investigated active phase. 
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6.2.2 – Analytical method 

TPD analyses can be performed by the apparatus described in 5.3.1. As already 
anticipated, the sample submitted to a linear temperature rate, releases the adsorbed gas in the 
carrier stream. The thermal conductivity detector will measure the current generated by the 
bridge unbalance. The data acquired are reported in a TPD profile relating the amount of gas 
desorbed versus the sample temperature and time (the rate is linear). To assure a precise 
quantitative calculation of the desorbed gas it is necessary to remove from the stream possible 
vapours that are produced during the analysis. For this reason is rather common the utilisation 
of cold trap or a molecular sieve trap placed before the detector. Sometimes a mass detector 
might be very useful to verify which types of gases are desorbing together with the probe gas 
(detection of surface reactions). The experimental conditions should be prepared in a 
standardised manner to obtain reproducible results. Same factors to be considered include the 
nature of the gas, the analysis pressure and the flow rate in order to avoid possible phenomena 
of re-adsorption, that should be avoided because otherwise the resulting peaks will be too 
large. Best condition for TPD analyses is a low temperature rate to separate the peaks related 
to different active sites. In the case of ammonia desorption from molecular sieves, the rate of 
10 K/min assures that there in not significant re-adsorption, while the data obtained a 2K/min 
show undesired peaks enlargement, giving evidence of free ammonia re-adsorption. 
 
 6.3 – Calculation of total desorbed volume 

The limitation of the thermal conductivity detector used in dynamic techniques is related 
to its inability to identify the species desorbed. That is the reason why a mass spectrometer is 
largely used after the TCD detector. In fact it is not possible (or, anyway, very difficult) to 
effect a correct quantitative calculation of desorbed gas only using quadrupole system, 
therefore the combination of the two detection systems is very appreciated. In the dynamic 
techniques, the amount of desorbed gas (generally expressed in µmol) is directly proportional 
to the peak area. Modern acquisition software can easily perform the integration of the 
resulting spectra if a proper system calibration has been previously carried out. It is also very 
useful to apply de-convolution models to TPD spectra to identify the contribution of different 
energetic sites that are dispersed on the catalyst surface. The calibration of an apparatus fitted 
with a TCD detector consists in a “blank”, which is an analysis without sample using the 
same analytical conditions as flow rate and gas type. Known gas doses are injected by a 
syringe or by a calibrated loop in the carrier flow stream and the obtained peak is integrated. 
The resulting area is correlated to the injected gas dose by a linear relationship. Of course, the 
response of the TCD detector must be linear in a wide range of injected volumes; otherwise, a 
non-linear correlation must be performed collecting additional data points in the blank. In 
case of TPR and TPO analyses, another calibration procedure is commonly used. In this case, 
the reference peak is obtainable effecting a real analysis on cupric oxide (TPR) or metallic 
cupric (TPO) previously weighed. The redox stoichiometry of the reaction between hydrogen 
or oxygen with the above materials is well know therefore it is possible to correlate directly 
the sample weight used in the calibration with the amount of reacted gas. 
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6.4 – Energy distribution of active sites and isosteric heat of adsorption 
The temperature at which species are desorbed from the catalyst surface reflects the 

strength of the surface bond. The higher is the temperature the stronger is the bond. 
Temperature programmed desorption data permit to estimate the heat of adsorption of a given 
species or the formed surface by using the equation (5). When different species are adsorbed 
Na it is interesting to evaluate the energy distribution of the active sites on the surface of the 
sample. For a desorption process that occurs with a kinetic order x, the relation between the 
activation desorption energy  Ed and the number of adsorbed species Na is given by: 
 
-dNa / dt  =  kNa

x exp (-Ed / RT)                                                (20) 
 

During the TPD analysis the temperature is increased linearly by:  
 
Tt = T0 + βt                                                                 (21)     

 
Where  β = dT/dt and T0 is the initial temperature. Thus: 
 
(-dNa/dT) β = k Na

x exp (-Ed /RT)                                           (22) 
 
Reporting 1/T versus ln(dxNa/dt) β it is possible to estimate the strength of the binding energy 
put in evidence by the peak presence. The de-convolution and the integration of the peaks in a 
TPD spectra permits to evaluate the energy distribution of the active sites as each peak is 
produced by different types of desorbing sites. Note that, in the equation (22), the desorption 
energy is supposed to be independent from coverage degree. If TM is maximum temperature 
of a given TPD spectrum, we are able to set: 
 
d/dT [ Na

x (k/β) exp (-Ed/RT)]TM = 0                                            (23) 
 

βEd = RTM
2 k exp(-Ed/RTM)                                                 (24)             

 
For a first order desorption (x=1) TM is independent from the initial coverage degree, while in 
the second order desorption (x=2), the maximum of the peak shifts to lower temperatures as 
the coverage increases. This demonstrates that TPD data are very helpful and valuable source 
of information on mechanistic features of catalysed reaction. Another important application of 
TPD analyses is related to the thermal desorption of ammonia to characterise the acid nature 
of some supports or catalysts as zeolites, alumina and molecular sieve [16]. The isosteric heat 
of adsorption can be easily calculated by performing various analyses at different saturation 
temperatures in order to obtain different degrees of coverage. The analytical temperatures 
should be chosen in a range that will not modify the surface structure. After several 
measurements the average adsorption enthalpies can be calculated with respect to the isosteric 
heat of adsorption Qst. Qst should be evaluated at the same surface covering degree θ for the 
different isotherms. The Clausius-Clapeyron equation permits to calculate the heats of 
adsorption from the isotherm data. This equation puts in relation the vapour pressure of a 
condensed compound with the temperature. Considering the gas as ideal and that the liquid 
molar volume is negligible with respect to the gas molar volume, the Clausius-Clapeyron 
equation can be written in the following way: 
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dlnp / dT = ∆Hev / RT2         (25) 
 
where ∆Hev is the evaporation enthalpy. The relation (25) is applicable to the 
adsorption/desorption processes of gases and vapours on solid surfaces: 
 
(δp / δT)θ = Qst / RT2         (26) 
 
where Qst is the isosteric heat of adsorption. For every covering degree, equation (26) must 
be evaluated. The equilibrium pressure, during the adsorption process, is function of θ 
according the resulting adsorption isotherm. To evaluate the relation between the pressure and 
the temperature the adsorption conditions must be related to a constant saturation degree θ. 
These conditions are named isosteric. The isosteric heat of adsorption coincides with the 
average adsorption enthalpy (∆H), unless the negative sign according to the heat convention. 
∆H is calculated for a close system at constant pressure and temperature, whereas the unique 
form of labour is the one of the volume. For a given saturation degree θ, by integrating the 
equation (26), it is possible to obtain: 
 
lnp = (Qst/R)(1/T) + cost         (27) 
 
To apply the equation (27), it is necessary to collect various adsorption isotherms at different 
temperatures. For a give saturation degree and for each isotherm, we obtain a pair of values of 
pressure and temperature. The linear regression of lnp versus 1/T permits to calculate the 
values of Qst/R from the slope of the straight line that is obtained. By drawing more lines of 
this type for different saturation degrees, it is possible to study the dependence of Qst form θ. 
This relation is very helpful to investigate the catalyst surface homogeneity.  
 
6.5 – Analytical examples 

In figure 9 is reported the TPD profile obtained on a commercial supported catalyst (5% 
Ru/Al2O3, Engelhard) saturated at 100 °C in a flow of pure hydrogen.  
  
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 9. TPD profile of hydrogen adsorbed at 100 °C on 5% Ru on Al2O3 (TPDRO 1100). 
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After saturation at 100 °C, the sample was cooled down to room temperature in flow of 
N2 to clean the reactor and the piping from the hydrogen in excess. Then a thermal ramp of 10 
°C /min was started in flow of nitrogen. The two resulting peaks can be correlated to two 
different types of active sites. In figure 10 is reported the desorption profile of mordenite 
saturated with ammonia. The carrier gas in this case is helium at 30cc/min, with a temperature 
rate of 10 °C/min.  
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
Figure 10. TPD profile of ammonia adsorbed on mordenite (TPDRO 1100). 
 
 
7 – TEMPERATURE PROGRAMMED REDUCTION AND OXIDATION 
 

The objectives of this technique are essentially the following: 
1. To find the most efficient reduction conditions 
3. To identify the supported precursor phases and their interactions with the support 
4. To characterise complex systems, as bimetallic or doped catalyst, to determine the role of 

the second component and to establish alloy formation or promotion effects 
There are several interesting studies about this technique: Robertson et Al. [17] first reported 
TPR profile of nickel and nickel-copper catalysts and since then many catalysts have been 
investigated. In the TPR technique an oxided catalyst precursor is submitted to a programmed 
temperature rise, while a reducing gas mixture is flowed over it (usually, hydrogen diluted in 
some inert gas as nitrogen or argon). In the TPO technique, the catalyst is in the reduced form 
and it is submitted to a programmed temperature increase, but in this case, an oxidising 
mixture of gas (oxygen in helium) is flowed over the sample. The reduction or oxidation rates 
are continuously measured by monitoring the change in composition of the reactive mixture 
of after the reactor.  The decrease in H2 or O2 concentration in the effluent gas with respect to 
the initial percentage monitors the reaction progress. An interesting application of this 
technique is that the TPR/O analysis may be used to obtain evidence for the interaction 
between the atoms of two metallic components, in the case of bimetallic system or alloy as 
already cited. In general, TPR/TPO studies are carried out under low partial pressure of the 
reactive gas. In this way it is possible to observe the intermediate reactions, depending from 
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analytical conditions as temperature rate, flow rate and concentration of reactive gas. The 
TPR/TPO methods are used for quantitative and quantitative analysis. In effect, the spectra 
produced are characteristic of a given solid. TPO is less commonly used then TPR, but the 
quantitative considerations for this type of analysis are more correct, in particular if the two 
analyses are performed in succession (hydrogen/oxygen titration). When used in combination, 
the two techniques can provide useful information in the study of the reactivity and redox 
behaviour of catalysts. 
 
7.1 – Reduction and oxidation reactions 

The reaction between a metal oxide MxOy and hydrogen, reducing the system to produce 
the pure metal M is represented by the equation: 
 
MxOy (solid)  +  H2                      M(solid)  +  H2O  
 
In the thermodynamic point of view, the reduction of a solid oxide is feasible if the standard 
free energy change ∆G0 is negative. If ∆G0 is positive, the second term of the equation (28) 
must be sufficiently negative to make also negative ∆G: 
 
∆G  =  ∆G°  +  RT log (PH2O / PH2)                                            (28) 

 
The reduction process is a bulk phenomenon and the degree of reduction (α as a function 

of time or temperature and hydrogen pressure) is interpreted in terms of mechanism by which 
the reduction occurs. Two different models can interpret the reduction processes: the 
nucleation model and the contracting sphere model. In the first case, according to nucleation 
mechanism, the reduction begins after some time and at a given temperature bringing to the 
formation of a solid product nucleus. During the nucleation, oxygen ions are removed from 
the lattice with progressive formation of solid metal and hydrogen and oxygen molecules 
diffuse at the interface oxide/metal/atmosphere. If the nucleation process is very fast, the real 
formation of separated and independent nuclei cannot be distinguished and the second 
mechanism takes place (contracting sphere model). The result during the reduction process, in 
this case, is a total coverage of the solid oxide particle with a tin layer of metallic product as 
an eggshell. In effect, the distinction between the two models is not only theory, but it has a 
consequence in the rate of reduction that is very different. In figure 11 is reported a graphic 
comparison between the different dependence of the degree of the reduction from the time 
[18]. The A diagram is relative to metal oxide reduction by a nucleation mechanism, while the 
diagram B reports the case of contracting sphere model. 
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Figure 11. Dependence of reduction degree from time. 
 

In the first case, it is possible to identify a maximum rate; this profile is typical of auto-
catalysed reactions. In the second case, the rate of reaction decreases continuously until the 
reaction process is completed as there is a continuous decreasing of the metal /oxide interface. 
It is common, in catalysis, to have a supported system that may exhibit a different reductive 
behaviour in comparison to unsupported metal oxides due to possible interactions between the 
metal and the support. The metal/support interactions may modify the reaction mechanism, 
promoting the atom diffusion on the surface of supported metal oxides or inhibiting the 
reduction process. This last is the case of cobalt supported on alumina, where cobalt 
aluminate, that is a system very difficult to be reduced, is formed. Similar possibility occurs 
in the case of bimetallic systems, where the second metallic compound (the doping species) 
may have a promoting effect by increasing the number of nucleation sites or providing a 
higher concentration of dissociated hydrogen that is transferred trough the support by the 
spillover effect. In the case of the TPO analysis, the reaction involved is an oxidation of a pre-
reduced system: 

 
xM  +  y/2 O2                   MxOy     

 
In the above reaction, water is not produced and the oxidation degree can be interpreted 

according to the same model of TPR. TPO analyses are often performed in combination with 
TPR. In this way, it is possible to obtain additional information about the metallic compounds 
in the catalyst active phase and it is possible to separate the contribution of different metallic 
species in multi-metallic systems. The combination of the two reactions is a real titration of 
the hydrogen/oxygen consumption, permitting the calculation of the metal phase percentage 
in the catalyst (of course if the stoichiometric factor of the reaction is known). Another 
advantage of combining the two analyses is that the TPO permits to remove undesired 
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contaminants then to concentrate the attention on the characterisation of the catalyst active 
phase. 

 
7.2 – Experimental aspects 

The experimental apparatus for TPR/TPO analyses is usually the same as the one used for 
TPD measurement (see 5.3.1). The fundamental difference is the type of carrier gas flowing 
trough the sample (see par. 6.2) and the pre-treatment procedure. Moreover, it is important to 
underline again that the TPR/TPO are analyses investigate the bulk system while TPD gives 
information about the surface behaviour of the catalyst. 
 
7.2.1 – Sample preparation  

The procedure to collect the TPR/TPO/TPD data is also comprehensive of the sample 
pre-treatment. Several types of procedure can be chosen in relation to the sample nature and 
type of information required. In fact, the diversification of the pre-treatment permits to obtain 
a wider range of parameters on a given catalyst. Generally, before starting a TPR analysis, the 
sample should be in its oxide form. The pre-treatment, in this case, consists in oxidising the 
catalyst in flow of pure oxygen or air, then flowing an inert gas to purge the product formed 
as water or carbon residues. Both pre-treatments must be effected at a given temperature to 
assure that the two processes are feasible. In case of TPO analysis, the sample must be 
preventively reduced to obtain the active metal in zero valence form. The standard pre-
treatment is a reducing procedure effected at a given temperature  (isothermal or increased by 
a constant rate). The pre-treatment procedure permits also to remove undesired compounds as 
residual solvent traces or products resulting from the precursor decomposition. Alternatively, 
it is possible to remove only the physisorbed water to obtain information on the efficiency of 
the activation procedure or on the poisoning phenomena of exhaust catalysts. The calcination 
operation is effected at high or medium temperature in flow of air to decompose the precursor 
compound. The precursor presence in fact can negatively influence the reducibility of the 
catalyst. In the case of cobalt supported on alumina, for example, if the calcination 
temperature necessary to decompose the precursor (generally cobalt nitrate) is too high cobalt 
aluminate is formed. The consequence is a decrease of the metal active surface. By changing 
the pre-treatment methods before the TPR or TPO analyses, it is possible to investigate other 
catalyst behaviours that are related to the temperature. For example, modifications of 
analytical profiles due to temperature variations in the pre-treatment permit to estimate effects 
as synterisation or other metal/support interactions. In the example of cobalt/alumina catalyst, 
this type of studies permitted to state the best pre-treatment procedure to avoid the formation 
of cobalt aluminate. The best reducibility of this supported metal is achieved by pre-treating 
the catalyst at temperatures below 375°C and by performing the calcination process in flow of 
pure hydrogen.  
 
7.2.2 – Analytical method 

During the TPR/TPO analyses, several products as water, CO or CO2 are formed. It is 
important to remove all undesired gas molecules that can interfere in the signal output. A 
correct pre-treatment and the use suitable traps to stop secondary products are therefore 
necessary. The choice of the analytical parameters, in particular temperature and flow rates, is 
fundamental to obtain significant reaction profiles. The problem related to the difficulty in 
comparing different analyses has received little attention in literature because the conditions 
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of sample preparation, pre-treatment and acquisition of experimental data are often omitted. 
Delanay G. [19], for example, reported the demonstration that the experimental conditions 
affect the temperature at which the reduction occurs. In any case, all the experimental 
parameters as hydrogen or oxygen concentration in the gas mixture, temperature increasing 
rate, total flow rate,  sample weight and contact time can make influence on the analytical 
profiles. These parameters have effect also on the detector sensitivity (i.e. the flow rate).  
Monti et Al. [20] proposed a method to standardise the TPR/TPO data defining a number k, 
given by: 
 
k  =  S0 / (V* C0)                                                           (29) 

 
where S0 is the hypothetical amount of initial reducible species in the sample expressed in 
µmol, V*C0 is the molar flow rate (µmol/s) of the reactive gas. This number should be in the 
range 55-150 s to have accurate and reliable results from the TPR/TPO analysis and above all 
to have comparable data. A typical example is the TPR analysis of cupric oxide: changing the 
temperature and the flow rates of the analysis, two reaction profiles will result: the resolution 
of the analysis is changed and it is possible or to distinguish the two phases of the reduction 
process identified by two peaks (CuII         CuI     Cu 0 ) or to obtain only one peak 
comprehensive of the total hydrogen consumption that is involved in the two processes. In the 
second case, the advantage is to calculate more easily the total quantity of reacted gas. In 
general, when in the sample there is only one component is useful to perform the analysis 
with a low temperature rate to observe the mechanism of the reaction process. In the case of 
multi-metallic catalyst higher temperature rate permits to separate the different contribution of 
the reactive components [21].  
 
7.3 – Quantitative calculation of reduced/oxided sites 

When a reduction process is considered (similarly in the oxidation process), it is possible 
to express the rate of the reaction by the equation:  
 
r = -d [ MxOy ] / dt = -d [ H2] / dt = k [ MxOy]p [ H2 ]q                                  (30)   
 
where k is a constant given by the Arrhenius equation k = A e-E/RT  and dT = β dt, T is the 
temperature (K) and t is the time (min). 
As temperature is increased linearly, for both TPR and TPO, it is possible to correlate the 
concentration variation of the reactive gas by: 

 
d [ H2] /dt = - β d [ H2] / dT                                                   (31) 

 
The possibility to correlate the parameters determining the reaction process (H2 

concentration, temperature rate and time) and the kinetic-thermodynamic parameters confirms 
that the TPR/TPO data are very useful characterisation techniques. Experimental TPR/TPO 
data offer important information about the change rate of some parameters in function of the 
temperature. The system can be described as a rector by correlating reduction/oxidation 
profiles to kinetic/thermodynamic parameters. The consumption rate of the reactive gas r, is 
correlated to the flow rate φ, to the reactor element dx and the fraction of conversion df by the 
following expression: 



 42

r = φ df/dx                                                                  (32)   
 
7.4 – Evaluation of average metal oxidation degree 

Temperature programmed reaction permits to estimate exactly the amount of reactive gas 
consumed during the reaction. This quantity is correlated to the oxided form of the sample, 
but it is necessary to follow several conditions: 
1. An opportune pre-treatment of the sample must be carefully chosen to avoid secondary 

and undesired reactions. 
2. The detection system must be correctly calibrated with standard samples or blank analysis 

to estimate exactly the amount of gas involved in the reaction. 
3. Analytical parameters used during the measurement must guarantee that the reaction is 

thermodynamically feasible. 
If all the above conditions are respected, the average metal oxidation degree can be measured 
if the metal percentage and the reaction stoichiometry are known. The degree of sample 
oxidation is given by the ratio: 
 
α = nH / ( nm SF )                                                          (33) 
 
where nH is the number of detected hydrogen atoms that are proportional to the peak area, Nm 
is the total number of metal atoms contained in the sample, Sf is the stoichiometric factor 
depending by the initial oxidation state and by the final product. 
 
7.5 – Analytical examples 

In figure 12 is reported the overlay of TPR analyses carried out on four catalysts 
containing the 5%(wt) of cobalt supported on alumina. They have been prepared by wetness 
impregnation ad then doped with different percentage of iridium [22]. The pre-treatment 
procedure is the same for all the samples: the catalysts, pre-calcinated in air at 350°C, have 
successively been cleaned in N2 flow at 150°C and finally cooled at room temperature. The 
TPR was carried out with a temperature rate of 10°C/min and a flow rate of 30 cc/min of a 
mixture of 5%H2/N2. There are two evidences in the TPR profiles: the H2consumption 
increases when the percentage of doping metal (Ir) is increased while and the maximum 
temperature, related to the maximum consumption of gas, decreases accordingly. This 
example is a clear demonstration that the TPR analysis offers information about the 
reducibility of metallic samples and that it is possible to estimate quantitatively the effect due 
to the presence of a second metallic species. Multi-metallic systems are known for the 
difficulty in their characterisation. 
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Figure 12. TPR profiles on 5% cobalt on alumina with different doping percentage of iridium. 
Gas used 5% hydrogen in nitrogen, flow 30 cc/min, rate 10 C/min (TPDRO 1100). 
 

In figure 13 is reported a typical reduction profile of pure cupric oxide. Cupric oxide can 
be conveniently used to calibrate the detector signal. Sharp reduction peaks permits a better 
integration and a correct calculation of the reacted hydrogen. This result can be achieved by 
using a relatively high temperature rate (15 °C/min) and a small amount of sample (20-30 
mg).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure  13:. TPR profile on CUO using 5% hydrogen in nitrogen (TPDRO 1100). 

TPR CuO 
5% H2 in N2, Flow=30 cc/min, Rate=15°C/min.

0,00E+00

2,00E+06

4,00E+06

6,00E+06

8,00E+06

1,00E+07

1,20E+07

0 100 200 300 400 500 600 700 800 900

Temperature  (°C)

M
ic

ro
vo

lt/
g



 44

8 – CONCLUSIONS 
 

The analytical methods described in detail in this paper can be considered as the basic 
texture methods for supported catalysts. The complete investigation on such complex 
structures and on the role of a given catalyst in an industrial process should take into 
consideration also tests on the reactivity.  

The choice of the most suitable method should takes into consideration the main task of 
the method itself. Static volumetric chemisorption provides the most reliable data from the 
scientific point of view. In fact, this is the only technique assuring the correct equilibrium 
time between the gaseous and adsorbed phases, that is the basic hypothesis to apply most of 
the thermodynamic equations we described in this paper. On the contrary, the main 
disadvantage related to static chemisorption consists in the long analysis time that is required. 
Furthermore, the handling of a static apparatus requires a certain basic knowledge about 
vacuum systems and their use (long degassing times, risk of leaks, etc.).  

Dynamic methods are very fast and relatively easy to handle, even by inexperienced 
users. The analytical results, especially for pulse chemisorption, can be compared to the static 
methods ones only taking into consideration the basic differences between the two systems. In 
fact, in pulse chemisorption, the weak chemisorbed species are removed as they forms and it 
is not possible to state that there is a real equilibrium between the probe gas phases (gaseous 
and bounded).  

Temperature programmed methods provide very useful results on kinetic and 
thermodynamic aspects that are related to solid/gaseous interactions. In this case, the method 
of adsorption used to saturate the catalyst before the analysis (i.e. TPD) might have an 
influence on the results. 

Anyway, an extremely important aspect, common to all the above techniques, is the 
sample preparation to the analysis. Very often, the pre-treatment procedures are not 
sufficiently described in scientific publications, making sometimes impossible to reproduce 
experimental data. It is also important to underline that the analytical reproducibility should 
be always verified. Analytical reproducibility is influenced not only by the experimental 
parameters but mainly by the pre-treatment procedures. For this reason, fully automatic 
equipment performing the catalyst preparation before the analysis is highly recommended, 
especially when these type of measurements are performed in industrial quality control 
laboratories. 
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