Auger Electron Spectroscopy

(AES)

K SHIVARAJ KUMAR
CH17D410




Auger Electron Spectroscopy

Introduction
Principles
Instrumentation
Qualitative analysis
Quantitative analysis
Depth profiling

Examples




The Auger Effect is named after its discoverer,
Pierre Auger in 1920.

The idea of using electron-stimulated Auger signals
for surface analysis was first suggested in 1953 by J.
J. Lander.

The technique became practical for surface analysis _
after Larry Harris in 1967 demonstrated the use of ~ P1erre Auger
differentiation to enhance the Auger signals.

Today Auger electron spectroscopy is a powerful surface analytical
tool to probe surfaces, thin films, and interfaces.

This utility arises from the combination of surface specificity (0.5
to 10 nm), good spatial surface resolution (as good as 10 nm),
periodic table coverage (except hydrogen and helium), and
reasonable sensitivity (100 ppm for most elements).
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Auger Process
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electron, the Auger electron, out of the atom.

@Iectron Is called the Auger process.
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The Auger process starts with the removal of an inner shell atomic electron to form
a vacancy. Several processes are capable of producing the vacancy, but
bombardment with an electron beam is the most common. The inner shell vacancy
Is filled by a second electron from an outer shell. The energy released kicks a third

The process of an excited ion decaying into a doubly charged ion by ejection of an

/




Nomenclature for Auger Transitions
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The three symbols in the transition label correspond to the
three energy levels involved in the transition.




Examples of Auger Processes
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AES Characteristics

Range of elements: All except H and He

Destructive: No, except to electron beam sensitive materials and during depth
profiling

Elemental analysis: Yes, semi-quantitative without standards; quantitative with
standards

Absolute sensitivity: 100 ppm for most elements

Chemical states: Yes, in many materials.

Depth probed: 0.5- 10 nm (typically 0.5- 3.0 nm).

Depth profiling: Yes, in concert with ion beam sputtering
Lateral resolution: 30 nm for AES; even less for SAM imaging
Imaging/mapping: Yes, Scanning Auger Microscopy (SAM)
Sample requirements: Vacuum (UHV) compatible materials
Main use: Elemental composition of inorganic materials
Instrument cost: US$ 300,000 — 1,000,000 (2 Cr -6 Cr)




Auger Electron Spectrum

The Auger peaks are obscure even using an expanded vertical scale.
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Signal Intensity N(E)
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Plotting d[E x N(E)[/dE, of 3,

the above function provides
for clear display of the
features in an Auger electron
spectrum. This d[E x
N(E)]J/dE format is the most
common mode for presenting
Auger data.
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Plotting the spectrum as
the differential of the
electron signal, dN(E)/dE,
clarifies some of the
spectral details.
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/Kinetic Energies

Qualitative analysis
depends on the
identification of the

elements  responsible
for the peaks iIn the
spectrum.  The right

figure shows the most
useful Auger peaks in
the KLL, LMM, and
MNN parts of the
spectrum as well as
higher transitions for
elements above cesium.
The red dots indicate
the strongest and most
characteristic peaks.
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Estimation of Kinetic Energy

For an Auger transition ABC, the kinetic energy of the Auger
electron is equal to E,-Eg-E., where E,, Eg, and E. are the
binding energies of electrons in the three levels.
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Auger Peaks
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Chemical Information

The energy and shape of an
Auger peak contains
Information about the
chemical environment.

Different electron energies.
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The relative
Intensities of the
Auger electrons
also depend on
the primary
excitation
energy.(3 KV
and 10 KV
primary beam)

The relative
Intensities can
be used for
quantitative
analysis
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Surface Sensitivity of Auger Electron Spectroscopy

Electrons emitted from the solid must be transported to the surface in order
to escape and be analyzed. If electrons undergo inelastic scattering (i.e.
collision processes with energy loss), the Kinetic energies of the electrons
will be less than that of the expected Auger electrons. Such electrons will
become the background in the low kinetic energy side of the Auger peaks.
Some electrons may nearly loss all the kinetic energies and cannot leave the
sample surface. Only the Auger electrons originating from the top surface
can escape the sample surface without energy loss.
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The term “inelastic mean
free path” is usually used
to describe the surface
sensitivity of Auger
electrons
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Surface Sensitivity of AES
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AES spectra of Ni surface: (a) after Ar sputter-cleaning; (b) after exposure
to air for 1 min. showing adsorbed carbon and oxygen.
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An Ar* ion beam at kinetic energy 0.5-5 keV is used to bombard
the sample surface to remove surface materials for: (1) surface
cleaning, (2) depth profiling




Qualitative Analysis

Procedures for Elemental Identification

1.

Concentrating on the major peaks and comparing the peak positions
with Auger electron energy chart or table.

Referring to the
standard spectra of the
elements and making
positive identification
of major constituents.

Labeling all peaks
related to the identified
major constituents.

Repeat 1-3 for other
unlabelled peaks.

Auger spectrum of a unknown sample
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NI, Fe and Cr are

preliminarily
Identified
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Quantitative Analysis

Peak-to-peak height

Commonly use peak to peak height
A n of differentiated Auger peak. For
S - -
I high resolution, use peak area of
the original Auger peak, but this
needs background subtraction.
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Empirical Approach

The atomic concentration of an element on a sample with N
elements can be determined as:

« _ N 1.Is,
YN YIS
i=1toN i=1toN

Percentage atomic concentration = X,x100%




The empirical method does not include the matrix effects of
the sample, which includes the inelastic mean free path (A),
the backscattering factor (r), and chemical effects on peak
shape and surface roughness.
expected using the empirical method.
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General, an error of 15% is

Example
Peak-to-peak height: S;
Cr peak at 529eV: 4.7 0.32
Fe peak at 703eV: 10.1 0.20
Ni peak at 848eV: 1.5 0.27

4.7/0.32

4.7/0.32+10.1/0.20+1.5/0.27

Similarly: %Fe =71%;% Ni = 8%

1 %cr = x100% = 21%
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Depth Profiling

To analyze samples in depth, Auger instruments incorporate ion beam
sputtering to remove materials from the sample surface sequentially.
One cycle of a typical depth profile consists of sputtering a small
Increment into the sample, stopping, measuring relevant portions of the
Auger spectrum, and performing elemental quantification.

N
Ar* —
N Sputtered o
::::: materials >
o
VA g

Sputtering time

Auger signal can be Auger peak area or peak-to-peak height.
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Auger Depth Profiling

Electron Beam Electron Beam Electron Beam

Ion Beam Ion Beam
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lon sputtering removes the materials systematically

Auger analysis is performed on the newly exposed crater bottom
and independent of the sputtering process




Auger signal

Calibration of Depth Scale
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Sputtering rate determined from the time required to sputter
through a layer of the same material of known thickness.

After the sputtering analysis, the crater depth is measured using
depth profilometry. A constant sputtering rate is assumed.




g Semiconductor / Metallization Interface

AES PROFILE
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For each element, an Auger peak is selected at each depth.

Pt: MNN at 1697 eV Ti: LMM at 418 eV
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atomic concentration ——s—

AES PROFILE
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Depth Profile of a Ta/Si Multilayer Sample A
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Improve depth resolution:

«  Sample rotation during Ar* sputtering
« Low Ar* energy (less than 1 keV)
« Low incident angle




Depth Profiling of TIN/TI/TiN on SiO,

Two TiN(250A)/Ti(375A)/TiN(600A) on SiO, samples are analyzed by
Auger depth profiling to determine the film composition and thickness.
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