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Abstract
Consolidated tables showing an extensive listing of the highest independently confirmed efficien-

cies for solar cells and modules are presented. Guidelines for inclusion of results into these tables

are outlined and new entries since July 2017 are reviewed, together with progress over the last

25 years. Appendices are included documenting area definitions and also listing recognised test

centres.
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1 | INTRODUCTION

Since January 1993, Progress in Photovoltaics has published 6

monthly listings of the highest confirmed efficiencies for a range of

photovoltaic cell and module technologies.1,2 By providing guidelines

for inclusion of results into these tables, this not only provides an

authoritative summary of the current state‐of‐the‐art but also

encourages researchers to seek independent confirmation of results

and to report results on a standardised basis. In version 33 of these

tables,2 results were updated to the new internationally accepted

reference spectrum (International Electrotechnical Commission IEC

60904‐3, Ed. 2, 2008).

The most important criterion for inclusion of results into the tables

is that they must have been independently measured by a recognised

test centre listed in Appendix A (note 2 recent additions). A distinction

is made between 3 different eligible definitions of cell area: total area,

aperture area, and designated illumination area, as defined in

Appendix B. “Active area” efficiencies are not included. There are also

certain minimum values of the area sought for the different device

types (above 0.05 cm2 for a concentrator cell, 1 cm2 for a 1‐sun cell,

and 800 cm2 for a module).

Results are reported for cells and modules made from different

semiconductors and for subcategories within each semiconductor
wileyonlinelibrary.com/jou
grouping (eg, crystalline, polycrystalline, and thin film). From version

36 onwards, spectral response information is included when available

in the form of a plot of the external quantum efficiency (EQE) versus

wavelength, either as absolute values or normalised to the peak

measured value. Current‐voltage (IV) curves have also been included

where possible from version 38 onwards. The present version also

includes a graphical summary of progress over the past 25 years during

which the tables have been published.

Highest confirmed “1‐sun” cell and module results are reported

in Tables 1–4. Any changes in the tables from those previously

published1 are set in bold type. In most cases, a literature reference

is provided that describes either the result reported or a similar

result (readers identifying improved references are welcome to sub-

mit to the lead author). Table 1 summarises the best‐reported mea-

surements for 1‐sun (nonconcentrator) single‐junction cells and

submodules. Table 2 was first introduced in version 49 of these

tables and summarises the growing number of cell and submodule

results involving high efficiency, 1‐sun multiple‐junction devices (pre-

viously reported in Table 1). Table 3 shows the best results for 1‐sun

modules. Table 4 contains what might be described as “notable

exceptions.” While not conforming to the requirements to be

recognised as a class record, the 1‐sun cells and modules in this

table have notable characteristics that will be of interest to sections
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http://orcid.org/0000-0002-8860-396X
http://orcid.org/0000-0002-8420-9260
http://orcid.org/0000-0001-9849-4755
mailto:m.green@unsw.edu.au
https://doi.org/10.1002/pip.2978
http://wileyonlinelibrary.com/journal/pip


TABLE 1 Confirmed single‐junction terrestrial cell and submodule efficiencies measured under the global AM1.5 spectrum (1000 W/m2) at 25°C
(IEC 60904‐3: 2008, ASTM G‐173‐03 global)

Classification Efficiency, % Area, cm2 Voc, V Jsc, mA/cm2 Fill Factor, % Test Centre (date) Description

Silicon

Si (crystalline cell) 26.7 ± 0.5 79.0 (da) 0.738 42.65a 84.9 AIST (3/17) Kaneka, n‐type rear IBC3

Si (multicrystalline cell) 22.3 ± 0.4b 3.923 (ap) 0.6742 41.08c 80.5 FhG‐ISE (8/17) FhG‐ISE, n‐type4

Si (thin transfer submodule) 21.2 ± 0.4 239.7 (ap) 0.687d 38.50d,e 80.3 NREL (4/14) Solexel (35 μm thick)5

Si (thin film minimodule) 10.5 ± 0.3 94.0 (ap) 0.492d 29.7d,f 72.1 FhG‐ISE (8/07) CSG solar (<2 μm on glass)6

III‐V cells

GaAs (thin film cell) 28.8 ± 0.9 0.9927 (ap) 1.122 29.68g 86.5 NREL (5/12) Alta Devices7

GaAs (multicrystalline) 18.4 ± 0.5 4.011 (t) 0.994 23.2 79.7 NREL (11/95) RTI, Ge substrate8

InP (crystalline cell) 24.2 ± 0.5b 1.008 (ap) 0.939 31.15a 82.6 NREL (3/13) NREL9

Thin film chalcogenide

CIGS (cell) 21.7 ± 0.5 1.044 (da) 0.718 40.70a 74.3 AIST (1/17) Solar Frontier10

CdTe (cell) 21.0 ± 0.4 1.0623 (ap) 0.8759 30.25e 79.4 Newport (8/14) First Solar, on glass11

CZTS (cell) 10.0 ± 0.2 1.113 (da) 0.7083 21.77a 65.1 NREL (3/17) UNSW12

Amorphous/microcrystalline

Si (amorphous cell) 10.2 ± 0.3h,b 1.001 (da) 0.896 16.36e 69.8 AIST (7/14) AIST13

Si (microcrystalline cell) 11.9 ± 0.3b 1.044 (da) 0.550 28.72a 75.0 AIST (2/17) AIST14

Perovskite

Perovskite (cell) 20.9 ± 0.7i,j 0.991 (da) 1.125 24.92c 74.5 Newport (7/17) KRICT15

Perovskite (minimodule) 16.0 ± 0.4i 16.29 (ap) 0.978d 21.44d,a 76.1 Newport (4/17) Microquanta, 6 serial cells16

Dye sensitised

Dye (cell) 11.9 ± 0.4k 1.005 (da) 0.744 22.47l 71.2 AIST (9/12) Sharp17

Dye (minimodule) 10.7 ± 0.4k 26.55 (da) 0.754d 20.19d,m 69.9 AIST (2/15) Sharp, 7 serial cells17

Dye (submodule) 8.8 ± 0.3k 398.8 (da) 0.697d 18.42d,n 68.7 AIST (9/12) Sharp, 26 serial cells18

Organic

Organic (cell) 11.2 ± 0.3o 0.992 (da) 0.780 19.30e 74.2 AIST (10/15) Toshiba19

Organic (minimodule) 9.7 ± 0.3o 26.14 (da) 0.806d 16.47d,m 73.2 AIST (2/15) Toshiba (8 series cells)20

Abbreviations: (ap), aperture area; (da), designated illumination area; (t), total area; a‐Si, amorphous silicon/hydrogen alloy; AIST, Japanese National Institute
of Advanced Industrial Science and Technology; CIGS, CuIn1‐yGaySe2; CZTS, Cu2ZnSnS4; CZTSS, Cu2ZnSnS4‐ySey; FhG‐ISE, Fraunhofer Institut für Solare
Energiesysteme; nc‐Si, nanocrystalline or microcrystalline silicon.
aSpectral response and current‐voltage curve reported in version 50 of these tables.
bNot measured at an external laboratory.
cSpectral response and current‐voltage curve reported in the present version of these tables.
dReported on a “per cell” basis.
eSpectral responses and current‐voltage curve reported in version 45 of these tables.
fRecalibrated from original measurement.
gSpectral response and current‐voltage curve reported in version 40 of these tables.
hStabilised by 1000 h exposure to 1‐sun light at 50°C.
iInitial performance (not stabilised). Reference 21 reviews the stability of similar devices.
jCertified parameters are average of forward and reverse sweeps performed at 150 mV/s. Efficiency hysteresis of ±0.26% of the certified value was
observed at this sweep rate.
kNot stabilised, initial efficiency. Reference 22 reviews the stability of similar devices.
lSpectral response and current‐voltage curve reported in version 41 of these tables.
mSpectral response and current‐voltage curve reported in version 46 of these tables.
nSpectral response and current‐voltage curve reported in version 43 of these tables.
oInitial performance (not stabilised).
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of the photovoltaic community, with entries based on their signifi-

cance and timeliness.

To encourage discrimination, Table 4 is limited to nominally 12

entries with the present authors having voted for their preferences

for inclusion. Readers who have suggestions of results for inclusion

into this table are welcome to contact any of the authors with full
details. Suggestions conforming to the guidelines will be included on

the voting list for a future issue.

Table 5 shows the best results for concentrator cells and

concentrator modules (a smaller number of notable exceptions

for concentrator cells and modules additionally is included in

Table 5).



TABLE 2 Confirmed multiple‐junction terrestrial cell and submodule efficiencies measured under the global AM1.5 spectrum (1000 W/m2) at
25°C (IEC 60904‐3: 2008, ASTM G‐173‐03 global)

Classification
Efficiency,
%

Area,
cm2 Voc, V

Jsc,
mA/cm2

Fill
Factor, %

Test Centre
(date) Description

III‐V multijunctions

5 junction cell (bonded) 38.8 ± 1.2 1.021 (ap) 4.767 9.564 85.2 NREL (7/13) Spectrolab, 2‐terminal23

(2.17/1.68/1.40/1.06/0.73 eV)

InGaP/GaAs/InGaAs 37.9 ± 1.2 1.047 (ap) 3.065 14.27a 86.7 AIST (2/13) Sharp, 2‐term24

GaInP/GaAs (monolithic) 32.8 ± 1.4 1.000 (ap) 2.568 14.56b 87.7 NREL (9/17) LG Electronics, 2‐term

Multijunctions with c‐Si

GaInP/GaAs/Si (mech. Stack) 35.9 ± 0.5c 1.002 (da) 2.52/0.681 13.6/11.0 87.5/78.5 NREL (2/17) NREL/CSEM/EPFL, 4‐term25

GaInP/GaAs/Si (wafer bonded) 33.3 ± 1.2c 3.984 (ap) 3.127 12.7b 83.8 FhG‐ISE (8/17) Fraunhofer ISE, 2‐term26

GaInP/GaAs/Si (monolithic) 19.7 ± 0.7c 3.943 (ap) 2.323 10.0e 84.3 FhG‐ISE (8/16) Fraunhofer ISE

GaInP/Si (mech. stack) 32.8 ± 0.5c 1.003 (da) 1.09/0.683 28.9/11.1d 85.0/79.2 NREL (12/16) NREL/CSEM/EPFL, 4‐term25

Perovskite/Si (monolithic) 23.6 ± 0.6f 0.990 (ap) 1.651 18.09e 79.0 NREL (8/16) Stanford/ASU27

GaInP/GaInAs/Ge; Si (spectral
split minimodule)

34.5 ± 2.0 27.83 (ap) 2.66/0.65 13.1/9.3 85.6/79.0 NREL (4/16) UNSW/Azur/Trina, 4‐term28

a‐Si/nc‐Si multijunctions

a‐Si/nc‐Si/nc‐Si (thin‐film) 14.0 ± 0.4g,c 1.045 (da) 1.922 9.94e 73.4 AIST (5/16) AIST29

a‐Si/nc‐Si (thin‐film cell) 12.7 ± 0.4%g,c 1.000(da) 1.342 13.45h 70.2 AIST (10/14) AIST13,14

Abbreviations: (ap), aperture area; a‐Si, amorphous silicon/hydrogen alloy; (da), designated illumination area; (t), total area; AIST, Japanese National Institute
of Advanced Industrial Science and Technology; FhG‐ISE, Fraunhofer Institut für Solare Energiesysteme; nc‐Si, nanocrystalline or microcrystalline silicon.
aSpectral response and current‐voltage curve reported in version 42 of these tables.
bSpectral response and current‐voltage curve reported in the present version of these tables.
cNot measured at an external laboratory.
dSpectral response and current‐voltage curve reported in version 50 of these tables.
eSpectral response and current‐voltage curve reported in version 49 of these tables.
fNot stabilised, initial efficiency. Reference 21 reviews the stability of similar devices.
gStabilised by 1000 h exposure to 1‐sun light at 50°C.
hSpectral responses and current‐voltage curve reported in version 45 of these tables.

TABLE 3 Confirmed terrestrial module efficiencies measured under the global AM1.5 spectrum (1000 W/m2) at a cell temperature of 25°C (IEC
60904–3: 2008, ASTM G‐173‐03 global)

Classification Effic. (%) Area (cm2) Voc (V) Isc (A) FF (%) Test Centre (date) Description

Si (crystalline) 24.4 ± 0.5 13177 (da) 79.5 5.04a 80.1 AIST (9/16) Kaneka (108 cells)3

Si (multicrystalline) 19.9 ± 0.4 15143 (ap) 78.87 4.795a 79.5 FhG‐ISE (10/16) Trina solar (120 cells)30

GaAs (thin film) 25.1 ± 0.8 866.45 (ap) 11.08 2.303b 85.3 FhG‐ISE (11/17) Alta Devices31

CIGS (Cd free) 19.2 ± 0.5 841 (da) 48.0 0.456c 73.7 AIST (1/17) Solar frontier (70 cells)32

CdTe (thin‐film) 18.6 ± 0.5 7038.8 (ap) 110.6 1.533d 74.2 NREL (4/15) First solar, monolithic33

CIGS (large) 15.7 ± 0.5 9703 (ap) 28.24 7.254e 72.5 NREL (11/10) Miasole34

a‐Si/nc‐Si (tandem) 12.3 ± 0.3f 14322 (t) 280.1 0.902g 69.9 ESTI (9/14) TEL solar, Trubbach Labs35

Organic 8.7 ± 0.3h 802 (da) 17.47 0.569i 70.4 AIST (5/14) Toshiba20

Multijunction

InGaP/GaAs/InGaAs 31.2 ± 1.2 968 (da) 23.95 1.506 83.6 AIST (2/16) Sharp (32 cells)36

CIGSS = CuInGaSSe; a‐Si = amorphous silicon/hydrogen alloy; a‐SiGe = amorphous silicon/germanium/hydrogen alloy; nc‐Si = nanocrystalline or microcrys-
talline silicon; Effic. = efficiency; (t) = total area; (ap) = aperture area; (da) = designated illumination area; FF = fill factor
aSpectral response and current voltage curve reported in version 49 of these tables.
bpectral response and current‐voltage curve reported in the present version of these tables.
cSpectral response and current‐voltage curve reported in version 50 of these tables.
dSpectral response and/or current‐voltage curve reported in version 47 of these tables.
eSpectral response reported in version 37 of these tables.
fStabilised at the manufacturer to the 2% level following IEC procedure of repeated measurements.
gSpectral response and/or current‐voltage curve reported in version 46 of these tables.
hInitial performance (not stabilised).
iSpectral response and current‐voltage curve reported in version 45 of these tables.
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TABLE 4 “Notable exceptions”: “Top 10” confirmed cell and module results not class records measured under the global AM1.5 spectrum
(1000 Wm−2) at 25°C (IEC 60904‐3: 2008, ASTM G‐173‐03 global)

Classification Efficiency, % Area, cm2 Voc, V Jsc, mA/cm2 Fill Factor, % Test Centre (date) Description

Cells (silicon)

Si (crystalline) 25.0 ± 0.5 4.00 (da) 0.706 42.7a 82.8 Sandia (3/99)b UNSW p‐type PERC
top/rear contacts37

Si (crystalline) 25.8 ± 0.5c 4.008 (da) 0.7241 42.87d 83.1 FhG‐ISE (7/17) FhG‐ISE, n‐type top/rear
contacts38

Si (large) 26.6 ± 0.5 179.74 (da) 0.7403 42.5e 84.7 FhG‐ISE (11/16) Kaneka, n‐type rear IBC3

Si (multicrystalline) 22.0 ± 0.4 245.83 (t) 0.6717 40.55d 80.9 FhG‐ISE (9/17) Jinko solar, large p‐type39

GaInP 21.4 ± 0.3 0.2504 (ap) 1.4932 16.31f 87.7 NREL (9/16) LG electronics, high
bandgap40

GaInAsP/GaInAs 32.6 ± 1.4c 0.248 (ap) 2.024 19.51d 82.5 NREL (10/17) NREL, monolithic tandem

Cells (chalcogenide)

CIGS (thin‐film) 22.6 ± 0.5 0.4092 (da) 0.7411 37.76f 80.6 FhG‐ISE (2/16) ZSW on glass41

CIGSS (cd free) 22.0 ± 0.5 0.512 (da) 0.7170 39.45f 77.9 FhG‐ISE (2/16) Solar frontier on glass10

CdTe (thin‐film) 22.1 ± 0.5 0.4798 (da) 0.8872 31.69g 78.5 Newport (11/15) First solar on glass42

CZTSS (thin‐film) 12.6 ± 0.3 0.4209 (ap) 0.5134 35.21h 69.8 Newport (7/13) IBM solution grown43

CZTS (thin‐film) 11.0 ± 0.2 0.2339(da) 0.7306 21.74e 69.3 NREL (3/17) UNSW on glass12

Cells (other)

Perovskite (thin‐film) 22.7 ± 0.8i 0.0935 (ap) 1.144 24.92d 79.6 Newport (7/17) KRICT15

Organic (thin‐film) 12.1 ± 0.3k 0.0407 (ap) 0.8150 20.27e 73.5 Newport (2/17) Phillips 66

Abbreviations: (ap), aperture area; (da), designated illumination area; (t), total area; AIST, Japanese National Institute of Advanced Industrial Science and
Technology; CIGSS = CuInGaSSe; CZTS = Cu2ZnSnS4; CZTSS = Cu2ZnSnS4‐ySey; FhG‐ISE, Fraunhofer‐Institut für Solare Energiesysteme; NREL, National
Renewable Energy Laboratory.
aSpectral response reported in version 36 of these tables.
bRecalibrated from original measurement.
cNot measured at an external laboratory.
dSpectral response and current‐voltage curves reported in the present version of these tables.
eSpectral response and current‐voltage curves reported in version 50 of these tables.
fSpectral response and current‐voltage curves reported in version 49 of these tables.
gSpectral response and/or current‐voltage curves reported in version 46 of these tables.
hSpectral response and current‐voltage curves reported in version 44 of these tables.
iStability not investigated. Reference 21 documents stability of similar devices. Certified parameters are average of forward and reverse sweeps performed
at 150 mV/s. Efficiency hysteresis of ±0.51% of the certified value was observed at this sweep rate.
jSpectral response and current‐voltage curves reported in version 48 of these tables.
kStability not investigated.
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2 | NEW RESULTS

Ten new results are reported in the present version of these tables.

The first new result in Table 1 is a new efficiency record for a

multicrystalline silicon (mc‐Si) cell. An efficiency of 22.3% is reported

for a 4‐cm2 cell using an n‐type mc‐Si wafer as substrate, fabricated

by Fraunhofer Institute for Solar Energy Systems (FhG‐ISE), and

measured at the same institution.4

A second new result in Table 1 documents achievement of the

landmark efficiency of 20% for a 1‐cm2 lead halide perovskite solar

cell. An efficiency of 20.9% was measured for a 1.0‐cm2 perovskite cell

fabricated by the Korean Research Institute of Chemical Technology15

and measured at the Newport PV Laboratory. These perovskite results

represent initial efficiencies, with the long‐term stability of these

devices not investigated.
Two new results are reported in Table 2 for 1‐sun, multijunction

devices. An efficiency of 32.8% was measured for a 1‐cm2 GaInP/

GaAs monolithic 2‐junction, 2‐terminal device fabricated by LG Elec-

tronics and measured at the US National Renewable Energy Labora-

tory (NREL). Efficiency for a 2‐terminal, triple‐junction GaInP/GaInAs

cell wafer‐bonded to a Si cell was increased to 33.3% for a cell fabri-

cated and measured at FhG‐ISE.

One new module result is reported in Table 3. An efficiency of

25.1% is reported for a 866‐cm2 GaAs module fabricated by Alta

Devices and measured at FhG‐ISE.

Four new cell results are reported as notable exceptions in

Table 4. An efficiency of 25.8% has been confirmed for a 4‐cm2

n‐type crystalline silicon cell with contacts on both top and rear

surfaces, fabricated and measured at FhG‐ISE,38 a record for a cell

with this traditional type of contacting. An efficiency of 22.0% has



TABLE 5 Terrestrial concentrator cell and module efficiencies measured under the ASTM G‐173‐03 direct beam AM1.5 spectrum at a cell tem-
perature of 25°C

Classification Effic., % Area, cm2 Intensitya, suns Test Centre (date) Description

Single cells

GaAs 29.3 ± 0.7b 0.09359 (da) 49.9 NREL (10/16) LG Electronics

Si 27.6 ± 1.2c 1.00 (da) 92 FhG‐ISE (11/04) Amonix back‐contact44

CIGS (thin film) 23.3 ± 1.2d,e 0.09902 (ap) 15 NREL (3/14) NREL45

Multijunction cells

GaInP/GaAs; GaInAsP/GaInAs 46.0 ± 2.2f 0.0520 (da) 508 AIST (10/14) Soitec/CEA/FhG‐ISE 4j bonded46

GaInP/GaAs/GaInAs/GaInAs 45.7 ± 2.3d,g 0.09709 (da) 234 NREL (9/14) NREL, 4j monolithic47

InGaP/GaAs/InGaAs 44.4 ± 2.6h 0.1652 (da) 302 FhG‐ISE (4/13) Sharp, 3j inverted metamorphic48

GaInAsP/GaInAs 35.5 ± 1.2i,d 0.10031 (da) 38 NREL (10/17) NREL 2‐junction (2j)

Minimodule

GaInP/GaAs; GaInAsP/GaInAs 43.4 ± 2.4d,j 18.2 (ap) 340k FhG‐ISE (7/15) Fraunhofer ISE 4j (lens/cell)49

Submodule

GaInP/GaInAs/Ge; Si 40.6 ± 2.0j 287 (ap) 365 NREL (4/16) UNSW 4j split spectrum50

Modules

Si 20.5 ± 0.8d 1875 (ap) 79 Sandia (4/89)l Sandia/UNSW/ENTECH (12 cells)51

Three junction (3j) 35.9 ± 1.8m 1092 (ap) N/A NREL (8/13) Amonix52

Four junction (4j) 38.9 ± 2.5n 812.3 (ap) 333 FhG‐ISE (4/15) Soitec53

“Notable exceptions”

Si (large area) 21.7 ± 0.7 20.0 (da) 11 Sandia (9/90)k UNSW laser grooved54

Luminescent minimodule 7.1 ± 0.2 25(ap) 2.5k ESTI (9/08) ECN Petten, GaAs cells55

Abbreviations: (ap), aperture area; (da), designated illumination area; CIGS, CuInGaSe2; Effic., efficiency; FhG‐ISE, Fraunhofer‐Institut für Solare
Energiesysteme; NREL, National Renewable Energy Laboratory.
aOne sun corresponds to direct irradiance of 1000 Wm−2.
bSpectral response and current‐voltage curve reported in version 50 of these tables.
cMeasured under a low aerosol optical depth spectrum similar to ASTM G‐173‐03 direct.56

dNot measured at an external laboratory.
eSpectral response and current‐voltage curve reported in version 44 of these tables.
fSpectral response and current‐voltage curve reported in version 45 of these tables.
gSpectral response and current‐voltage curve reported in version 46 of these tables.
hSpectral response and current‐voltage curve reported in version 42 of these tables.
iSpectral response and current‐voltage curve reported in the present version of these tables.
jDetermined at IEC 62670‐1 CSTC reference conditions.
kGeometric concentration.
lRecalibrated from original measurement.
mReferenced to 1000 W/m2 direct irradiance and 25°C cell temperature using the prevailing solar spectrum and an in‐house procedure for temperature
translation.
nMeasured under IEC 62670‐1 reference conditions following the current IEC power rating draft 62670‐3.
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also been confirmed for a large area 246‐cm2 p‐type

multicrystalline cell fabricated by Jinko Solar using Passivated

Emitter and Rear Cell technology,39 with the cell also measured

at FhG‐ISE.

A third new result in Table 4 is 32.6% efficiency for a small area

(0.25 cm2) GaInAsP/GaInAs monolithic, 2‐junction, 2‐terminal, 1‐sun

cell fabricated by and measured at NREL.57 An efficiency of 22.7%

has also been measured for a small area (0.09 cm2) lead halide

perovskite cell fabricated by Korean Research Institute of Chemical

Technology and measured at Newport.15 For the previous 2 cells, cell

area is too small for classification as an outright record. Solar cell

efficiency targets in governmental research programs generally have
been specified in terms of a cell area of 1 cm2 or larger.58-60

Additionally, the certificate for the perovskite cell advises that the

results “apply at the time of the test and do not imply future

performance.”

The final new result in Table 5 is improvement in the efficiency

of a small area, 2‐junction, 2‐terminal tandem GaInAsP/GaInAs

concentrator cell to 35.5% under 38‐suns concentration (direct

irradiance of 38 kW/m2). The cell was fabricated by and measured

at NREL.

The EQE spectra for the new silicon cell results reported in

the present issue of these tables are shown in Figure 1A, with

Figure 1B showing the current density‐voltage (JV) curves for the



(A)

(B)

FIGURE 1 A, Normalised external quantum efficiency (EQE) for the
new silicon cell results reported in this issue (some results
normalised). B, Corresponding current density‐voltage curves for the
same devices. FhG‐ISE, Fraunhofer Institute for Solar Energy Systems
[Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 2 A, External quantum efficiency (EQE) for the new
2‐junction multijunction cell results reported in this issue (some
results normalised). B, Corresponding current density‐voltage curves.
NREL, National Renewable Energy Laboratory [Colour figure can be
viewed at wileyonlinelibrary.com]
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same devices. Figure 2A shows the EQE for the new 2‐junction

multijunction cell results with Figure 2B showing their current JV

curves. Figure 3A,B shows the corresponding EQE and JV curves

for the new perovskite and GaAs cell results.
3 | PROGRESS OVER THE LAST 25 YEARS

Figure 4 reports 25 years of progress in confirmed cell and module

efficiencies since the first version of these tables was published in 1993.

Figure 4A shows progress with 1‐sun cells of ≥1‐cm2 area. Recent prog-

ress with perovskite and CdTe cells has been most notable, with good

progress also with CIGS and both crystalline and mc‐Si. Figure 4B shows

similar progress with photovoltaic modules with CdTe, CIGS, and the

mainstream mc‐Si being the recent standouts. Figure 4C shows the

results for concentrator cells and modules. Impressive progress has been

made with monolithic III‐V MJ cells where efficiency has been improved

from 31.8% to 46.0% over the 25‐year period (efficiency in this case is

boosted relative to results in Figure 4A,B since based on only the direct

normal component of the solar spectrum, with the diffuse component

neglected in the efficiency calculation).

DISCLAIMER

While the information provided in the tables is provided in good faith,

the authors, editors, and publishers cannot accept direct responsibility

for any errors or omissions.
FIGURE 3 A, External quantum efficiency (EQE) for the new
perovskite and GaAs cell results reported in this issue (all results
normalised). B, Corresponding current density‐voltage curves. KRICT,
Korean Research Institute of Chemical Technology [Colour figure can
be viewed at wileyonlinelibrary.com]
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(A) (B)

(C)

FIGURE 4 Twenty‐five years of progress: A, highest confirmed efficiencies for ≥1‐cm2 area cells fabricated using the different technologies shown
(*the results for the OPV, dye‐sensitised and perovskite cells are unstabilised results as are those for a‐Si multijunction cells prior to 2005). B,
highest confirmed module results for modules sizes ≥800‐cm2. C, highest confirmed concentrator cell and module results [Colour figure can be
viewed at wileyonlinelibrary.com]
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APPENDIX A

LIST OF DESIGNATED TEST CENTRES

A list of designated test centres follows. Results from additional ISO/

IEC17025 certified centres participating in international round robins

involving cells of a similar type to those being reported will also be

considered on a case‐by‐case basis.

European Solar Test Installation (ESTI),

CEC Joint Research Centre,

Via E. Fermi 2749, 21020 Ispra (Varese), Italy.

Contact: Dr Ewan Dunlop

Telephone: +39 332–789090

Facsimile: +39 332‐789‐268

Email: esti.services@jrc.ec.europa.eu

(cells and modules)

Fraunhofer‐Institut für Solare Energiesysteme ISE,

Heidenhofstraße 2, D‐79110 Freiburg, Germany.

Contact (CalLab PV Cells): Dr Jochen Hohl‐Ebinger

Phone: +49 (0) 761 4588‐5359

Facsimile: +49 (0) 761 4588‐9359

Email: jochen.hohl‐ebinger@ise.fraunhofer.de
Contact (CalLab PV Modules): Frank Neuberger,

Phone: +49 (0) 761 4588‐5280

Facsimile: +49 (0) 761 4588‐9280

Email: frank.neuberger@ise.fraunhofer.de

(terrestrial, space, and concentrator cells and modules)

Institut für Solarenergieforschung GmbH (ISFH),

Calibration and Test Center (CalTeC), Solar Cells Laboratory

Am Ohrberg 1, D‐31860 Emmerthal, Germany.

Contact: Dr Karsten Bothe

Phone: +49 (0) 5151 999 425

Facsimile: +49 (0) 5151 999 400

Mobile: +49 (0) 176 151 999 02

Email: k.bothe@isfh.de

(terrestrial cells)

Japan Electrical Safety & Environment Technology Laboratories

(JET),

1‐12‐28 Motomiya Tsurumi‐ku, Yokohama‐shi, Kanagawa,

230‐004 Japan.

Contact: Hiromi Tobita

Phone: +81‐45‐570‐2073

Email: tobita@jet.or.jp

(terrestrial cells and modules)

National Institute of Advanced Industrial Science and Technology

(AIST),

Central 2, Umezono 1‐1‐1, Tsukuba, Ibaraki, 305‐8568 Japan.

Contact: Dr Yoshihiro Hishikawa

Telephone: +81 29‐861‐5780

Facsimile: +81 29‐861‐5829

Email: y‐hishikawa@aist.go.jp

(terrestrial and concentrator cells and modules)

National Renewable Energy Laboratory (NREL),

15013 Denver West Parkway, Golden, CO 80401, USA.

Contact: Dean Levi

Telephone: +1 303‐384‐6632

Facsimile: +1 303‐384‐6604

Email: dean.levi@nrel.gov

(terrestrial, space, and concentrator cells and modules)

Newport PV Lab,

31950 Frontage Road, Bozeman, MT 59715, USA.

Contact: Geoffrey Wicks

Lab: +1 406‐556‐2469Office: +1 406‐556‐2489

Email: geoffrey.wicks@newport.com

(terrestrial cells)
APPENDIX B

AREA DEFINITIONS

The area of the cell or module is a key parameter in determining

efficiency. The areas used in the tables conform to 1 of the 3 following

classifications illustrated in Figure 5:
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FIGURE 5 Area classifications: total area (shown grey), aperture area, and designated illumination area (the latter 2 areas are the areas not covered
by the mask; masking is not required if the test centre is satisfied that there is no response from the areas shown masked)
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1. Total area: The total projected area of the cell or module. This is

the preferred area for reporting of results. For the case of a cell

attached to glass, the total area would be the area of the glass

sheet. For a module, it would include the area of frames.
2. Aperture area: The portion of the total cell or module area that

includes all essential components, including active material,

busbars, fingers, and interconnects. In principle, during testing,

illumination is restricted to this portion such as by masking. Such

restriction is not essential if the test centre is satisfied that there

is no response from light incident outside the assigned aperture

area.
3. Designated illumination area: A portion of the cell or module area

from which some cell or module contacting components are

excluded. In principle, during testing, illumination is restricted to

this portion such as by masking. Such restriction is not essential

if the test centre is satisfied that there is no response from light

incident outside the assigned designated illumination area. For

concentrator cells, cell busbars would lie outside of the area

designed for illumination and this area classification would be the

most appropriate. For a cell on insulating substrates, cell contacts

may lie outside the designated illumination area. For modules, cell

string interconnects may lie outside the masked area.


