Lectures on

#### Modern Methods in Heterogeneous Catalysis Research

Fritz-Haber Institute of Max-Planck Society

## Combinatorial Methods in Catalyst Development By High-Throughput Experimentation

M. Baerns

ACA Institute for Applied Chemistry Berlin-Adlershof

## High-Throughput Experimentation in Synthesis and Testing of Catalytic Performance of Materials

#### Surface & bulk properties

- Structural properties
- Electronic properties
- Photonic properties

#### **Comprehensive knowledge**

Methodology

Instrumental techniques

Data evaluation

#### **Catalytic Materials**

- Selection of primary elements
- Preparation
- Testing

Optimized catalyst composition

## Science



## **Application**

## **Table of Content**

## **Methodologies**

- Experimental
  - Catalyst preparation & testing (sreening)
- Eperimental Design
  - Evolutionary Approach (Genetic algorithm) for designing generations of different catalyst compositions
  - Artificial Neural Networks (ANN) for correlating catalytic performance with catalyst properties

## **Case Studies**

- Oxidative dehydrogenation of alkanes
- Ammonia + methane to hydrocyanic acid

#### **Automated Preparation of Catalysts**

#### Automated liquid handler GILSON 215

- free positioning in x, y, z direction
- Positioning accuracy 0.1 mm
- liquid transfer volume 20 µl – 5 ml





### Preparation of Catalytic Materials in Parallel - Sophas-Kat by Zinsser -



Vortexed vials for catalyst preparation

### Comparison of Manual and Automatic Preparation of Catalysts of Different Composition



- Reaction: Oxidative Dehydrogenation of Propane
- Preparation: Impregnation

similar catalytic properties of manually and automatically prepared catalysts

## **Multi-Channel Reactor Modules**



#### Monolithic Reactor Module - One Catalyst in Each Channel



## Catalyst library in a monolithic reactor module

- Charging with catalyst precursors
- Charging with carrier material, preparation of catalysts by incipient wetness
- Covering of the channel walls by a washcoat and soaking by metal salts



## Parallel Screening of Catalysts in a Monolithic Reactor Module







## Reproducibility



## **64 Channel Parallel Reactor**

### 1 channel:





## **Present Reactor Set-up: 64 Channel Reactor**

Performance of 64 parallel reactor channels, each contains the same catalyst material for the oxidative dehydrogenation of propane to propylene



### Testing of catalytic Materials in Parallel - Alkanes to Oxygenates -



## Rapid Analytical Tools for Reactor Effluent Composition

## Fast Effluent Analysis as Applied for the Oxidative Dehydrogenation of Propane



## Fast Analysis by GC - TOF MS - coupling

- Disadvantages of classical analytic methods:
  - GC analysis is often not fast enough for HTS-applications
- new principle:
  - MS analysis is uncertain due to overlapping masses
  - Using a TOF (time of flight) MS as detector for a GC
  - ✤ Fast GC-separation by using short columns
  - very high scan rates (up to 500 scans/s) enable detection of narrow GC - peaks (< 0,5 s)</p>
  - Baseline separation of GC peaks is not always necessary due to the mass selective detection
  - ♥ Overlapping masses are reduced by the GC separation
  - ⇒ Complete analysis in short times

(Analysis of all products of the propane ODH reaction < 40 s)



## Variables and Objectives in the Selection of Catalytic Materials

### Variables

- •Qualitative and quantitative composition of the catalytic materials
- Method and conditions of materials preparation
- •Forming procedure of materials before catalytic testing
- •Testing conditions (temperature, space velocity, shape and size of material, ....)

## Objectives

- •Descriptive: Activity (degree of conversion), selectivity (S = f (X), yield, catalyst stability)
- Kinetics and transport processes
- Quantitative relationships: kinetic parameters and their dependence on "composition"



**Case Studies** 

## Illustrating

## Combinatorial Catalysis and a Supplementing Fundamental Approach

- Oxidative dehydrogenation of light alkanes
- Low-temperature total oxidation of low-concentration propane
- Water-gas-shift reaction
- Ammonia + methane to hydrocyanic acid
- Selective hydrogenation of hydrocarbons with multiple bonds



Illustration of Approach - Oxidative Dehydrogenation of Propane to Propene -





# Defining a Pool of Primary Potential Catalytic Elements/Compounds



# Primary reaction steps of the oxidative dehydrogenation of alkanes on metal oxides



Mixtures of Metal Oxides as Potential Catalysts for the Oxidative Dehydrogenation of Propane

#### 1. Evolution

Redox metal oxides of medium metal-oxygen binding energy in the range from –400 to –200 kJ/mol from various groups of the Periodic Table

| V B                            | VI B             | VII B            | VIII                           | II B | III A                          | IV A             |
|--------------------------------|------------------|------------------|--------------------------------|------|--------------------------------|------------------|
| V <sub>2</sub> O <sub>5</sub>  | MoO <sub>3</sub> | MnO <sub>2</sub> | Fe <sub>2</sub> O <sub>3</sub> | ZnO  | Ga <sub>2</sub> O <sub>3</sub> | GeO <sub>2</sub> |
| Nb <sub>2</sub> O <sub>5</sub> | WO <sub>3</sub>  |                  | Co <sub>3</sub> O <sub>4</sub> | CdO  | In <sub>2</sub> O <sub>3</sub> |                  |
|                                |                  |                  | NiO                            |      |                                |                  |

### 2. Evolution

Survivors from the first evolution plus

|   | basic metal oxide                               | MgO                            |
|---|-------------------------------------------------|--------------------------------|
|   | acidic metal oxide                              | $B_2O_3$                       |
| 1 | metal oxide on which O <sub>2</sub> dissociates | La <sub>2</sub> O <sub>3</sub> |

## **Combinatorial Process**

#### **Systematic combination**

• e.g. binary and ternary compositions

### **Stochastic combinations**

• multi-element/compound compositions

### **Optimization procedures in the combinatorial process**

- common optimization procedures (for local search problems only)
- evolutionary processes (e.g. rondom search, genetic algorithms)
- neural network

Applied CAtalysis

 factorial design (less suited for multi-element/compound (compositions)

## Methodical Basis of Evolutionary Strategies for the Development of Solid Catalysts



# Optimization processes in Nature and their Adaptation to the Development of Catalytic Materials

**Evolution** 

conditions

Optimization processes in the nature

Which are the mechanisms of these processes?



Change of genetic make-up by **Selection, Cross-over, Mutation** 

Aim: Optimization of properties of living

individuals to adapt to environmental

Can these processes analogously be applied to catalyst development?



**Populations** of catalysts with different composition, which are optimized with respect to their performance by genetic operators (cross-over, mutation) in analogy to the nature



## **Why Evolution in Catalyst Development?**

Combinatorial Explosion of the parameter space for complex systems (composition; mode of preparation, conditions of testing ...)

Strict combinatorial approach as well as factorial design of experiments lead to very high test effort:



#### **Requirement - intelligent search algorithm:**



autonomic (unsupervised)

universal (discrete as well as continuous values)



# How Evolutionary Principles can be applied to Catalyst Development?

## Design of an Evolutionary Algorithm

- Mode of encoding Catalyst composition
- Mode of Cross-over and Mutation
  - Mode of Selection and Reproduction

## Testing and phenomenological understanding

D. Wolf, O. Buyevskaya, M. Baerns, Appl. Catal. 200 (1-2) (2000) 63



# Evolution: Optimization by Natural Selection and Adaptation

#### **Favored selection and reproduction of green individuals** for adaptation to green environment





Applied CAtalysis

## **Evolution - Description of complex phenomenons based** on simple structural units



## Design of an Evolutionary Algorithm for Catalyst Development – Mode of Encoding



Applied CAtalysis

## Design of an Evolutionary Algorithm for Catalyst Development – Mode of Mutation



**Optimal size of mutation segments and number of mutation points?** 



## Design of an Evolutionary Algorithm for Catalyst Development – Mode of Cross-over



...

**Optimal size of crossover segments and number of crossover points ?** 





## Design of an Evolutionary Algorithm for Catalyst Development – Mode of Operation



## Best propene yields achieved in each generation in the order of decreasing catalyst quality (Case A):



# The 10 best performers with respect to propene yields in each generation


# Stoichiometric composition of the best catalytic materials in each generation

|                | V            | Mg   | В | Мо   | La   | Mn   | Fe   | Ga   |
|----------------|--------------|------|---|------|------|------|------|------|
| 1st generation | 0.24<br>0.44 |      |   | 0 11 | 0.33 | 0.26 | 0.15 | 0.28 |
|                | 0.42         | 0.40 |   | 0.11 |      |      | 0.04 | 0.14 |
| 2nd generation | 0.47         | 0 33 |   | 0.05 |      | 0.27 | 0.03 | 0.20 |
|                | 0.39         | 0.33 |   | 0.22 |      | 0.23 | 0.03 | 0.28 |
| 3rd generation | 0.22         | 0.47 |   | 0.11 |      |      |      | 0.20 |
|                | 0.30         | 0.03 |   | 0.15 |      |      | 0.08 | 0.07 |
| 4th generation | 0.27         | 0.37 |   | 0.12 |      |      | 0.13 | 0.11 |
|                | 0.29         | 0.39 |   | 0.09 |      |      |      | 0.20 |
| 5th generation | 0.32         | 0.18 |   | 0.04 |      | 0.09 | 0.00 | 0.33 |
|                | 0.10         | 0.11 |   | 0.17 |      |      | 0.09 | 0.47 |



#### Change in catalyst composition during 2<sup>nd</sup> evolution

Number of catalysts N containing the elements V, Mg, Mo, Ga, Fe, Mn,



as function of generation 1 to 5

#### **Result:**

#### GA focusses on Mg-V-Ga-Mo catalysts

J.N. Cawse, M. Baerns, M. Holena unpublished results

## High-Throughput Experimentation and

#### **Fundamental Knowledge**

# Selected catalytic materials from the evolutionary procedure and from supplementary experiments

Best performing  $\alpha\text{--}Al_2O_3\text{-}supported$  materials from the 3rd and 5th generations

 $\begin{array}{l} 3^{rd} \mbox{ generation } \left\{ \begin{array}{l} V_{0.22} Mg_{0.47} Ga_{0.20} Mo_{0.11} O_x \\ V_{0.30} Mg_{0.63} Ga_{0.07} O_x \end{array} \right. \\ 5^{th} \mbox{ generation } \left\{ \begin{array}{l} V_{0.32} Mg_{0.18} Ga_{0.33} Mo_{0.04} Mn_{0.09} O_x \\ V_{0.16} Mg_{0.11} Ga_{0.47} Mo_{0.17} Fe_{0.09} O_x \end{array} \right. \end{array} \right.$ 

Supplementary materials

a) V-Mg-Ga-O/ $\alpha$ -Al<sub>2</sub>O<sub>3</sub> b) V-Ga-O 36 combinations 11 comb

11 combinations V/Ga : 0.01 - 100

c) **V-Mg-O** 

4 catalysts of different phase compositions



## Relationship between catalytic performance and surface ratio of Mg/V

Reaction conditions:  $C_3H_8-O_2-N_2=40-20-40$ ; T=773K; X(O<sub>2</sub>) ≈100 %



EPR measurements show increasing concentration of octahedral isolated VO<sup>2+</sup> centres with increasing the Mg/V ratio (XPS). The more dispersed active vanadium species, the higher the selectivity that can be achieved.

#### EPR Spectra of VMgO catalysts



#### **UV/VIS-DRS** spectra of VMgO catalysts





#### Characterization of VO<sub>x</sub> (5.5 at. %) MCM-41

TPR

(5 % H<sub>2</sub>-Ar, 50 ml/min, 10 k/min)

peak at 800 K resulting from monomeric or low-oligomieric VO<sub>x</sub>



Mean vanadium valence state

4.7



VO<sup>2+</sup> sites coupled by weak dipolar interactions (83.2 % of ESR signal intensity, isotropic broad singlet

#### Catalytic performance of $VO_x/MCM-41$ and $VO_x/MCM-46$ in the oxidative dehydrogenation of propane

| $C_3H_8/O_2/N_2$                  | $\tau/s \cdot g_{cat} \cdot cm^{-3}$ | X(C <sub>3</sub> H <sub>8</sub> )/% | S(C <sub>3</sub> H <sub>6</sub> )/% | S(CO <sub>x</sub> )/% | Y(C <sub>3</sub> H <sub>6</sub> )/% |  |  |
|-----------------------------------|--------------------------------------|-------------------------------------|-------------------------------------|-----------------------|-------------------------------------|--|--|
| VO <sub>x</sub> (2.8 wt.%)/MCM-41 |                                      |                                     |                                     |                       |                                     |  |  |
| 30/25/45                          | 0.04                                 | 44.6                                | 32.7                                | 42.2                  | 14.6                                |  |  |
| 30/20/50                          | 0.04                                 | 34.2                                | 42.3                                | 41.4                  | 14.5                                |  |  |
| 40/20/40                          | 0.04                                 | 30.3                                | 49.1                                | 32.8                  | 14.9                                |  |  |
| VO <sub>x</sub> (2.8 wt.%)/MCM-48 |                                      |                                     |                                     |                       |                                     |  |  |
| 30/25/45                          | 0.08                                 | 46.6                                | 34.6                                | 37.3                  | 16.1                                |  |  |
| 30/20/50                          | 0.08                                 | 37.3                                | 45.8                                | 36.9                  | 17.1                                |  |  |
| 40/20/40                          | 0.08                                 | 32.8                                | 53.0                                | 28.8                  | 17.4                                |  |  |

#### **Evolutionary Development of Catalyst Performance**





#### Conclusions

- High-throughput synthesis & testing of catalytic materials is a means of accelerating the search for new catalytic materials or further optimizing already existing catalyst compositions
- A scientific input in the initial development process and a concomitant fundamental approach is required
- Pitfalls in high-throughput testing exist
  - standard versus optimized reaction conditions
  - hot spots & run-away for exothermic reactions
  - inter- and intra-particle heat- and mass-transport limitation





### High-Throughput Experimentation at High Temperatures Search and Discovery of New Catalytic Materials for the Synthesis of Hydrocyanic Acid

#### M. Baerns, S. Moehmel,

ACA - Institute for Applied Chemistry Berlin-Adlershof, D-12489 Berlin, Germany

#### R. Weber, D. Wolf, U. Dingerdissen

DEGUSSA, PH Catalysis, Industriepark Hoechst, D-65926 Frankfurt, Germany

High temperature reactions (>800°C) with a possible implementation for high-throughput experimentation

Oxidative coupling of methane:

$$2CH_4 + \frac{1}{2}O_2 \rightarrow C_2H_6 + H_2O$$

up to 880°C; supported metals and metal oxides; no large-scale application

Production of synthesis gas:

 $CH_4 + H_2O \rightarrow CO + 3H_2$ 

>900°C; supported Ni-catalyst; fixed bed

Synthesis of hydrocyanic acid:

 $NH_3 + CH_4 \rightarrow HCN + 3H_2$ 

1000-1300°C; Pt-catalyst; tube bundle

 $NH_3 + CH_4 + 1\frac{1}{2}O_2 \rightarrow HCN + 3H_2O_2$ 

1000-1100°C; Pt/Rh-gauze; tube reactor



## Challenges for high temperature - high-throughput experimentation

- Heating provision for high temperatures (>800°C)
  - comparable temperatures within the different reaction channels
     -avoidance of mutual influences of adjacent channels (exothermic reactions)
- Inert, gas proof and thermally stable reactor materials
   low rate of reactions with the reactor material
- Prevention of product condensation
  - if necessary heating of the tubes, capillaries, valves etc.
- Fast on-line analysis
  - depending on the number of channels analytical speed of 1 3min per reactor

#### State of the art

- No multi-channel reactors for temperatures >800°C known
- High-throughput experimentation for temperatures <800°C:
  - Monolithic reactors

high-throughput applications up to 600°C; heating time for module and cross

communication between channels due to thermal conductivity

- Tube reactors

high-throughput applications usually between 400 to 600°C; shortcoming: non-homogeneous temperature distribution



Equipment for a high-temperature reaction of industrial importance - Conversion of ammonia and methane to hydrocyanic acid -





#### Solutions in equipment development - the heating system

- Small concentrically heating chamber only 20 mm wide and 30 mm high
- Separately controlled heating resistor on the inner and outer side
- The reactor channels are arranged vertically through the chamber





#### Solutions in equipment development - the reactor

#### tube

- Using alumina as reactor material
- A small alumina tube is fitted into a bigger one
- The catalytic material is placed on an inert "sieve" lying on the step between the

tubes





#### Validation of equipment for a high-temperature reaction Comparison of the flow rates in the 48 different channels



#### Validation of equipment for a high-temperature reaction Temperature distribution in the 48 parallel channels



#### Validation of equipment for a high-temperature reaction Time dependence of the response signal of the IR-spectrometer



#### **Range of experimental conditions**

- 48 fixed bed reactors
   catalyst-mass between 0.5 and 0.01g
- Temperatures up to 1150°C standard deviation less than 10°C between different channels
- Fast on-line analysis

one analysis - including swiching and rinsing time - within 2 min

Flow rates usually at 10 ml/min

standard deviation <0.1ml/min between different channels



#### **Potential catalytic compounds**

#### Support Materials

thermally stable compounds with predominantly basic character (oxides, nitrides, carbides, borides)

#### Active Components

metals especially of the 7th but also of the other subgroups of the periodic table (noble metals, heavy metals)

#### Metal Coverage

mixtures of up to 6 elements in one catalytic material; (1 to 10 hypoth. monolayers)



#### Reproducibility of the catalytic results Identical catalyst compositions - twice synthesized and tested



Applied CAtalysis

## Development of the mean and best yields in subsequent catalyst generations



#### Improvement in catalytic performance - Correlation between N<sub>2</sub> and HCN yield



Applied CAtalysis

#### Conclusions

- Successful development of a new multi-channel reactor for high temperature reactions up to 1150°C
- The validation of the equipment shows good reproducibility of obtained catalytic results
- New promising catalyst compositions were detected for the reaction of methane and ammonia to hydrocyanic acid

A combinatorial approach using the high-temperature 48channel reactor as well as parallel catalyst synthesis and evolutionary optimisation strategy is an effective way to search for better catalytic materials.



# Artificial Neural Networks (ANN) - Data approximation and knowledge extraction -

- Inspiration biological neurons and neural systems
  - signal (+information) processing: distributed, not sequential
- Architecture neurons, connections, layers (perceptron)
  - input | hidden | output neurons ~ signal processing
- **Computed function**: input space  $\rightarrow$  output space



### Why ANNs in Combinatorial Catalysis ?

- Mathematical description of the parameter space
- Establishing complicated relationships between
  - composition, chemical + physical properties, test conditions and
  - performance (yield, conversion, selectivity, deactivation, ...)
- Extraction of knowledge available from test data
- Use of knowledge as driving force in the search for good catalysts



#### **ANNs for Test-Data Analysis**



#### **Example of a Multilayer Perceptron**

#### yield of propene





#### Validation of the ANN Experimental and predicted data



Applied CAtalysis

#### **Knowledge extraction from data**

- Prediction of catalytic performance for a given catalyst composition (interpolation)
- Prediction of optimal catalyst composition for maximum catalyst performance
- Logical rules about dependences



#### Visualization of Knowledge from ANN





#### Experimental Validation of Predicted Optimal Catalyst Composition

#### - Predicted and experimental results -



Applied CAtalysis

## **Extraction of Rules from ANNs**

# Rules for catalyst compositions showing propene yields> 8 %Dute 1Experimental validation of rules 1 and

**Rule 1** Ga: 24 - 33 % Mg: 31 - 39 % Mo: 0 - 7 %

**Rule 2** Ga: 38 % Mg: 29 - 36 % Mo: 0 - 9 %

| composition [mol %] |    |    | %] | propene yield [%] |              |  |
|---------------------|----|----|----|-------------------|--------------|--|
| Ga                  | Mg | Мо | V  | predicted         | experimental |  |
| 32                  | 32 | 7  | 29 | 8.1               | 8.2          |  |
| 27                  | 36 | 6  | 31 | 8.1               | 8.4          |  |
| 32                  | 33 | 5  | 30 | 8.3               | 8.0          |  |
| 38                  | 31 | 8  | 23 | 8.3               | 7.9          |  |
| 38                  | 31 | 9  | 22 | 8.4               | 8.3          |  |
| 38                  | 32 | 9  | 21 | 8.4               | 8.2          |  |

#### Good agreement between prediction and experimental results
# **Combination of GA and ANN**

Examplary visualization of convergence of a virtual GA run



#### **Application of ANN and GA for Predicting Catalyst Performance**



being prepared by an evolutionary approach (GA)

#### **Application of ANN for Predicting Catalyst Performance**



sample size

Maximal catalyst performance as a function of size of a generation of randomly-composed samples

## Conclusions

- The GA approach is suited for improving and discovery of catalytic compositions
- For large data pools an ANN can be used as a tool for
  - knowledge extraction

Applied CAtalysis

- setting up of relationships between catalytic performance and materials properties
- predicting optimal catalyst compositions
- testing of different optimization strategies as a basis for further experiments on the basis of pre-existing knowledge
- Combination of GA and ANN for setting up "virtual" experiments

## **Future Application of Neural Networks**



# **Selection of Descriptors of Catalytic Materials**

#### **Synthesis parameters**

- preparation method
- support material
- percentage of catalytic material
- mass of catalyst (scale-up)
- calcination temperature and time

#### **Physico-chemical properties**

- acidity and basicity; electronegativity
- redox properties
- adsorption capacity for reactants
- crystallinity/amorphicity; crystal size; phase composition
- · electronic and ionic conductivity
- BET surface area
- melting temperature, heat capacity, enthalpy of formation

#### **Chemical composition**

#### **Reaction conditions**

- •
- •

Provision of kinetic data in high-throughput catalytic testing of solid materials

**Standard conditions** 

First approximation for identifying a number of suitable materials which catalyze the chemical reaction towards the desired products

## **Full Kinetics**

Change of reaction conditions in catalytic testing over the whole range of potential catalyst operation



