Lectures on

Modern Methods in Heterogeneous Catalysis Research

Fritz-Haber Institute of Max-Planck Society

Combinatorial Methods in Catalyst Development By High-Throughput Experimentation

M. Baerns

ACA Institute for Applied Chemistry Berlin-Adlershof

High-Throughput Experimentation in Synthesis and Testing of Catalytic Performance of Materials

Surface & bulk properties

- Structural properties
- Electronic properties
- Photonic properties

Comprehensive knowledge

Methodology Instrumental techniques

Data evaluation

Catalytic Materials

- Selection of primary elements
- Preparation
- Testing

Optimized catalyst composition

Science Application

Table of Content

Methodologies

- **Experimental**
	- **- Catalyst preparation & testing (sreening)**
- **Eperimental Design**
	- **- Evolutionary Approach (Genetic algorithm) for designing generations of different catalyst compositions**
	- **- Artificial Neural Networks (ANN) for correlating catalytic performance with catalyst properties**

Case Studies

- **- Oxidative dehydrogenation of alkanes**
- **- Ammonia + methane to hydrocyanic acid**

Automated Preparation of Catalysts

Automated liquid handler GILSON 215

- free positioning in x, y, z direction
- Positioning accuracy 0.1 mm
- liquid transfer volume $20 \mu l - 5$ ml

Preparation of Catalytic Materials in Parallel - Sophas-Kat by Zinsser -

Vortexed vials for catalyst preparation

Comparison of Manual and Automatic Preparation of Catalysts of Different Composition

- Reaction: Oxidative Dehydrogenation of Propane
- Preparation: Impregnation

similar catalytic properties of manually and automatically prepared catalysts

Multi-Channel Reactor Modules

Monolithic Reactor Module - One Catalyst in Each Channel

Catalyst library in a monolithic reactor module

- Charging with catalyst precursors
- Charging with carrier material, preparation of catalysts by incipient wetness
- Covering of the channel walls by a washcoat and soaking by metal salts

Parallel Screening of Catalysts in a Monolithic Reactor Module

Reproducibility

Oxidation of Methane at 340 °C

All catalysts are identical $(0,5\% \text{ Pt/Al}_2\text{O}_3)$

Standard deviation of conversion degrees

different channels: 17 %

different measurements in the same channel: 2 %

64 Channel Parallel Reactor

1 channel:

Present Reactor Set-up: 64 Channel Reactor

Performance of 64 parallel reactor channels, each contains the same catalyst material for the oxidative dehydrogenation of propane to propylene

Testing of catalytic Materials in Parallel - Alkanes to Oxygenates -

Rapid Analytical Tools for Reactor Effluent Composition

Fast Effluent Analysis as Applied for the Oxidative Dehydrogenation of Propane

Fast Analysis by GC - TOF MS - coupling

- Disadvantages of classical analytic methods:
	- GC analysis is often not fast enough for HTS-applications
- new principle:
	- MS analysis is uncertain due to overlapping masses
	- Using a TOF (time of flight) MS as detector for a GC
	- $\%$ Fast GC-separation by using short columns
	- $\%$ very high scan rates (up to 500 scans/s) enable detection of narrow GC - peaks $(0.5 s)$
	- $\%$ Baseline separation of GC peaks is not always necessary due to the mass selective detection
	- $\%$ Overlapping masses are reduced by the GC separation
	- ð **Complete analysis in short times**

(Analysis of all products of the propane ODH reaction < 40 s)

Variables and Objectives in the Selection of Catalytic **Materials**

Variables

- •Qualitative and quantitative composition of the catalytic materials
- •Method and conditions of materials preparation
- •Forming procedure of materials before catalytic testing
- •Testing conditions (temperature, space velocity, shape and size of material,)

Objectives

- •Descriptive: Activity (degree of conversion), selectivity (S = f (X) , yield, catalyst stability) !
- Kinetics and transport processes
- Quantitative relationships: kinetic parameters and their dependence on "composition"

Case Studies

Illustrating

Combinatorial Catalysis **and a Supplementing Fundamental Approach**

- **Oxidative dehydrogenation of light alkanes**
- **Low-temperature total oxidation of low-concentration propane**
- **Water-gas-shift reaction**
- **Ammonia + methane to hydrocyanic acid**
- **Selective hydrogenation of hydrocarbons with multiple bonds**

Illustration of Approach - Oxidative Dehydrogenation of Propane to Propene -

Defining a Pool of Primary Potential Catalytic Elements/Compounds

Primary reaction steps of the oxidative dehydrogenation of alkanes on metal oxides

AC^A

Mixtures of Metal Oxides as Potential Catalysts for the Oxidative Dehydrogenation of Propane

1. Evolution

Redox metal oxides of medium metal-oxygen binding energy in the range from –400 to –200 kJ/mol from various groups of the Periodic Table

2. Evolution

Survivors from the first evolution plus

Combinatorial Process

Systematic combination

e. g. binary and ternary compositions

Stochastic combinations

• multi-element/compound compositions

Optimization procedures in the combinatorial process

- common optimization procedures (for local search problems only)
- evolutionary processes (e. g. rondom search, genetic algorithms)
- neural network
- *AC^A* **A**pplied **CA**talysis • factorial design (less suited for multi-element/compound compositions)

Methodical Basis of Evolutionary Strategies for the Development of Solid Catalysts

Optimization processes in Nature and their Adaptation to the Development of Catalytic Materials

Evolution

conditions

Optimization processes in the nature

Which are the mechanisms of these processes?

Change of genetic make-up by **Selection, Cross-over, Mutation**

Aim: Optimization of properties of living

individuals to adapt to environmental

Can these processes analogously be applied to catalyst development?

Populations of catalysts with different composition, which are optimized with respect to their performance by genetic operators (cross-over, mutation) in analogy to the nature

Why Evolution in Catalyst Development?

Combinatorial Explosion of the parameter space for complex systems (composition; mode of preparation, conditions of testing …)

Strict combinatorial approach as well as factorial design of experiments lead to very high test effort:

Requirement - intelligent search algorithm:

autonomic (unsupervised)

universal (discrete as well as continuous values)

How Evolutionary Principles can be applied to Catalyst Development?

Design of an Evolutionary Algorithm

- Mode of encoding Catalyst composition
- Mode of Cross-over and Mutation
	- Mode of Selection and Reproduction

Testing and phenomenological understanding

D. Wolf, O. Buyevskaya, M. Baerns, Appl. Catal. 200 (1-2) (2000) 63

Evolution: Optimization by Natural Selection and Adaptation

Favored selection and reproduction of green individuals for adaptation to green environment

Applied CAtalysis

Evolution - Description of complex phenomenons based on simple structural units

Design of an Evolutionary Algorithm for Catalyst Development - Mode of Encoding

Design of an Evolutionary Algorithm for Catalyst Development – Mode of Mutation

Optimal size of mutation segments and number of mutation points?

Design of an Evolutionary Algorithm for Catalyst Development - Mode of Cross-over

 \sim 0.0 \pm

Optimal size of crossover segments and number of crossover points?

Design of an Evolutionary Algorithm for Catalyst Development – Mode of Operation

Applied **CA**talysis

Best propene yields achieved in each generation in the order of decreasing catalyst quality (Case A):

The 10 best performers with respect to propene yields in each generation

Stoichiometric composition of the best catalytic materials in each generation

Change in catalyst composition during 2nd evolution

Number of catalysts N containing the elements V, Mg, Mo, Ga, Fe, Mn,

as function of generation 1 to 5

Result:

GA focusses on Mg-V-Ga-Mo catalysts

J.N. Cawse, M. Baerns, M. Holena unpublished results

High-Throughput Experimentation and

Fundamental Knowledge

Selected catalytic materials from the evolutionary procedure and from supplementary experiments

Best performing α –Al₂O₃-supported materials from the 3rd and 5th generations

 $\mathsf{V}_{0.22}\mathsf{Mg}_{0.47}\mathsf{Ga}_{0.20}\mathsf{Mo}_{0.11}\mathsf{O}_\mathsf{x}$ $\mathsf{V}_{0.30}\mathsf{Mg}_{0.63}\mathsf{Ga}_{0.07}\mathsf{O}_\mathsf{x}$ $\mathsf{V}_{0.32}\mathsf{Mg}_{0.18}\mathsf{Ga}_{0.33}\mathsf{Mo}_{0.04}\mathsf{Mn}_{0.09}\mathsf{O}_\mathsf{x}$ $\rm V_{0.16}Mg_{0.11}Ga_{0.47}Mo_{0.17}Fe_{0.09}O_{x}$ 3rd generation 5th generation

Supplementary materials

a) <mark>v-Mg-Ga-O</mark>/α–Al₂O₃ ^{b)} v-Ga-O c) 36 combinations

11 combinations V/Ga : 0.01 - 100

V-Mg-O 4 catalysts of different phase compositions

Relationship between catalytic performance and surface ratio of Mg/V

Reaction conditions: C_3H_8 -O₂-N₂=40-20-40; T=773K; X(O₂) ≈100 %

EPR measurements show increasing concentration of octahedral isolated VO2+ centres with increasing the Mg/V ratio (XPS). The more dispersed active vanadium species, the higher the selectivity that can be achieved. *AC^A*

EPR Spectra of VMgO catalysts

UV/VIS-DRS spectra of VMgO catalysts

Characterization of VO^x (5.5 at. %) MCM-41

TPR

(5 % H₂-Ar, 50 ml/min, 10 k/min)

peak at 800 K resulting from monomeric or low-oligomieric VO_x

Mean vanadium valence state

4.7

ESR

VO2+ sites coupled by weak dipolar interactions (83.2 % of ESR signal intensity, isotropic broad singlet

Applied CA **A**pplied **CA**talysis

Catalytic performance of VO_x/MCM-41 and VO_x/MCM-46 in the oxidative dehydrogenation of propane

Evolutionary Development of Catalyst Performance

Conclusions

- High-throughput synthesis & testing of catalytic materials is a means of accelerating the search for new catalytic materials or further optimizing already existing catalyst compositions
- A scientific input in the initial development process and a concomitant fundamental approach is required
- Pitfalls in high-throughput testing exist
	- standard versus optimized reaction conditions
	- hot spots & run-away for exothermic reactions
	- inter- and intra-particle heat- and mass-transport limitation

High-Throughput Experimentation at High Temperatures Search and Discovery of New Catalytic Materials for the Synthesis of Hydrocyanic Acid

M. Baerns, S. Moehmel,

ACA - Institute for Applied Chemistry Berlin-Adlershof, D-12489 Berlin, Germany

R. Weber, D. Wolf, U. Dingerdissen

DEGUSSA, PH Catalysis, Industriepark Hoechst, D-65926 Frankfurt, Germany

High temperature reactions (>800°C) with a possible implementation for high-throughput experimentation

Oxidative coupling of methane:

$$
2CH_4 + \frac{1}{2}O_2 \to C_2H_6 + H_2O
$$

up to 880°C; supported metals and metal oxides; no large-scale application

Production of synthesis gas: $CH_4 + H_2O \rightarrow CO + 3H_2$

>900°C; supported Ni-catalyst; fixed bed

Synthesis of hydrocyanic acid: $NH_3 + CH_4 \rightarrow HCN + 3H_2$

1000-1300°C; Pt-catalyst; tube bundle

 NH_3 +CH₄ + 1½O₂ \rightarrow HCN + 3H₂O

1000-1100°C; Pt/Rh-gauze; tube reactor

Challenges for high temperature - high-throughput experimentation

- Heating provision for high temperatures (>800°C) •
	- comparable temperatures within the different reaction channels -avoidance of mutual influences of adjacent channels (exothermic reactions)
- - Inert, gas proof and thermally stable reactor materials - low rate of reactions with the reactor material
- Prevention of product condensation
	- if necessary heating of the tubes, capillaries, valves etc.
- Fast on-line analysis •
	- depending on the number of channels analytical speed of 1 3min per reactor

State of the art

- No multi-channel reactors for temperatures >800°C known
- High-throughput experimentation for temperatures <800°C:
	- Monolithic reactors

high-throughput applications up to 600°C; heating time for module and cross

communication between channels due to thermal conductivity

- Tube reactors

high-throughput applications usually between 400 to 600°C; shortcoming: non-homogeneous temperature distribution

Equipment for a high-temperature reaction of industrial importance - Conversion of ammonia and methane to hydrocyanic acid -

Solutions in equipment development - the heating system

- Small concentrically heating chamber only 20 mm wide and 30 mm high
- Separately controlled heating resistor on the inner and outer side
- The reactor channels are arranged vertically through the chamber

Solutions in equipment development - the reactor

tube

- Using alumina as reactor material
- A small alumina tube is fitted into a bigger one
- The catalytic material is placed on an inert "sieve" lying on the step between the tubes

Validation of equipment for a high-temperature reaction Comparison of the flow rates in the 48 different channels

Validation of equipment for a high-temperature reaction Temperature distribution in the 48 parallel channels

Validation of equipment for a high-temperature reaction Time dependence of the response signal of the IR-spectrometer

Range of experimental conditions

- 48 fixed bed reactors catalyst-mass between 0.5 and 0.01g
- Temperatures up to 1150°C standard deviation less than 10°C between different channels
- Fast on-line analysis

one analysis - including swiching and rinsing time - within 2 min

Flow rates usually at 10 ml/min

standard deviation <0.1ml/min between different channels

•

Potential catalytic compounds

• Support Materials

thermally stable compounds with predominantly basic character (oxides, nitrides, carbides, borides)

Active Components •

metals especially of the 7th but also of the other subgroups of the periodic table (noble metals, heavy metals)

· Metal Coverage

mixtures of up to 6 elements in one catalytic material; (1 to 10 hypoth. monolayers)

Reproducibility of the catalytic results Identical catalyst compositions - twice synthesized and tested

Development of the mean and best yields in subsequent catalyst generations

Improvement in catalytic performance - Correlation between N² and HCN yield

Conclusions

- Successful development of a new multi-channel reactor for high temperature reactions up to 1150°C •
- The validation of the equipment shows good reproducibility of obtained catalytic results •
- New promising catalyst compositions were detected for the reaction of methane and ammonia to hydrocyanic acid •

A combinatorial approach using the high-temperature 48 channel reactor as well as parallel catalyst synthesis and evolutionary optimisation strategy is an effective way to search for better catalytic materials.

Artificial Neural Networks (ANN) - Data approximation and knowledge extraction -

- *Inspiration* biological neurons and neural systems
	- *signal (+information) processing: distributed*, not sequential
- *Architecture* neurons, connections, layers (perceptron)
	- *input | hidden | output* neurons **~** signal processing
- **Computed function**: input space \rightarrow output space

Why ANNs in Combinatorial Catalysis ?

- Mathematical description of the parameter space
- Establishing *complicated relationships* between
	- composition, chemical + physical properties, test conditions *and*
	- performance (yield, conversion, selectivity, deactivation, …)
- *Extraction of knowledge* available from test data
- Use of knowledge as driving force in the search for good catalysts

ANNs for Test-Data Analysis

Example of a Multilayer Perceptron

yield of propene

Validation of the ANN Experimental and predicted data

AC^A **A**pplied **CA**talysis

Knowledge extraction from data

- **Prediction of catalytic performance for a given catalyst composition (interpolation)**
- **Prediction of optimal catalyst composition for maximum catalyst performance**
- **Logical rules about dependences**

Visualization of Knowledge from ANN

Experimental Validation of Predicted Optimal Catalyst Composition

- Predicted and experimental results -

Extraction of Rules from ANNs

Rules for catalyst compositions showing propene yields > 8 % Experimental validation of rules 1 and

Rule 1 Ga: 24 - 33 % Mg: 31 - 39 % Mo: $0 - 7 \%$

Rule 2 Ga: 38 % Mg: 29 - 36 % Mo: 0 - 9 %

Applied **CA**talysis

A*C* **Good agreement between prediction and experimental results**
Combination of GA and ANN

Examplary visualization of convergence of a virtual GA run

Application of ANN and GA for Predicting Catalyst Performance

Application of ANN for Predicting Catalyst Performance

sample size

Maximal catalyst performance as a function of size of a generation of randomly-composed samples

Conclusions

- The GA approach is suited for improving and discovery of catalytic compositions
- For large data pools an ANN can be used as a tool for
	- \triangleright knowledge extraction
	- \triangleright setting up of relationships between catalytic performance and materials properties
	- \triangleright predicting optimal catalyst compositions
	- \triangleright testing of different optimization strategies as a basis for further experiments on the basis of pre-existing knowledge
- *AC^A* **A**pplied **CA**talysis • Combination of GA and ANN for setting up "virtual" **experiments**

Future Application of Neural Networks

Selection of Descriptors of Catalytic Materials

Synthesis parameters

- preparation method
- support material
- percentage of catalytic material
- mass of catalyst (scale-up)
- calcination temperature and time

Physico-chemical properties

- acidity and basicity; electronegativity
- redox properties
- adsorption capacity for reactants
- crystallinity/amorphicity; crystal size; phase composition
- electronic and ionic conductivity
- BET surface area
- melting temperature, heat capacity, enthalpy of formation

Chemical composition

Reaction conditions

- •
- •

Provision of kinetic data in high-throughput catalytic testing of solid materials

Standard conditions

First approximation for identifying a number of suitable materials which catalyze the chemical reaction towards the desired products

Full Kinetics

Change of reaction conditions in catalytic testing over the whole range of potential catalyst operation

