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What is Chemometrics? 

Chemometrics is the science of extracting information from chemical systems by 
data-driven means. It is a highly interfacial discipline, using methods frequently 
employed in core data-analytic disciplines such as  
 
multivariate statistics,  applied mathematics, and computer science,  
 
in order to address problems in  
 
chemistry, biochemistry, medicine, biology and chemical engineering.  
 
In this way, it mirrors several other interfacial ‘-metrics’ such as psychometrics and 
econometrics. 

http://en.wikipedia.org/wiki/Multivariate_statistics
http://en.wikipedia.org/wiki/Multivariate_statistics
http://en.wikipedia.org/wiki/Multivariate_statistics
http://en.wikipedia.org/wiki/Applied_mathematics
http://en.wikipedia.org/wiki/Computer_science
http://en.wikipedia.org/wiki/Chemistry
http://en.wikipedia.org/wiki/Chemistry
http://en.wikipedia.org/wiki/Biochemistry
http://en.wikipedia.org/wiki/Medicine
http://en.wikipedia.org/wiki/Biology
http://en.wikipedia.org/wiki/Chemical_engineering
http://en.wikipedia.org/wiki/Psychometrics
http://en.wikipedia.org/wiki/Econometrics
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Reading Material 

1) Wikipedia 

Factor Analysis in Chemistry, 3rd 
Edition 
Edmund R. Malinowski  
ISBN: 978-0-471-13479-4 
432 pages 
March 2002 

Practical Data Analysis in 
Chemistry 
ByMarcel Maeder 
Yorck-Michael Neuhold 
Published: July 2007 
Imprint: Elsevier 
ISBN: 978-0-444-53054-7 

Numerical Recipes 3rd 
Edition: The Art of 
Scientific Computing 
Hardcover – September 
10, 2007  
ISBN-13: 978-0521880688 

http://eu.wiley.com/WileyCDA/Section/id-302479.html?query=Edmund+R.+Malinowski
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Framework 

Reactor / Instrumentation 
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Framework 

Chemistry  

Data 

Plausible mechanism? 

Typical Arrhenius representation 
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Framework 

Plausible kinetic model is probably wrong… 
 
…after discussion with your gr. leader…new plausible model… 
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 Framework 

Chemometric will support you for: 

• How to design/select the reactor/instrumentation? 
 
• How to do the experimental design? 
 
• How to “find” the correct kinetic model? 
 
• What to “fit” and how ? 
 
• How to determine the rate constant? 
 
• How to “fit” if “C” can not be isolated and unknown?  
 
• What about baseline drift, shift, noise level? 
 
• Finally, are my fitted parameters “correct” to which extends? 
 
• And we have to be quick to do all the above tasks 
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1) Experimental setup 

Parameters 

 Custom designed and versatile 
 Adapt lot of probes? 
 Time dependent acquisition 
 In-situ 
 Well controlled  
 Use of (SOPs, standard operation protocols) 
 Fully automatized 
 Fast data acquisition 
 Acquire as much data as possible (then only 

average) 
 
 

Reactor and control 

Instrumentation 

 Adapt an orthogonal instrumental methodology 
 
 
 
 
 
 
 
 
 
 
 Prefer multivariate signal to univariate signal 
 Prefer integrated signals (spectroscopy) to differential 

signals (calorimetry) 
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1) Design of Experiments (DoE) 
 
Experimental purpose 

 Comparing alternative 
 Egg from different supplier gives the 

same cake? 
 Significant inputs (Factors) 

 Sort the relevance of factors: is the 
amount of sugar more important than 
the amount of flower for the cake 
taste? 

 Optimal process output (Response) 
 What are the “best parameters” to 

have the tastiest cake. 
 Reducing variability (sensitivity analysis) 

 Which parameters can change slightly 
without changing the cake taste? 

 Target an output 
 Which parameters for, best taste, best 

color, best consistency? 
 Balancing tradeoffs 

 How to define optimum parameters to 
have the best taste at the best price 

 
 

Why a DoE? 

 Used to reduce the design costs 
 Speeds up the process design 
 Reduce late engineering design 
 Reduce raw and product material 
 Reduce experimental complexity 
 Reduce data analysis complexity 
 Improve the overall robustness of data 

analysis 
 Improve the certainty on the fitted parameters 

 
 

Nice DoE tutorial and “package “ : 
I advise the R package RcmdrPlugin.DoE  
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http://www1.beuth-hochschule.de/FB_II/reports/welcome.htm  

Tutorial for designing experiments using the R package RcmdrPlugin.DoE  
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http://www1.beuth-hochschule.de/FB_II/reports/welcome.htm  

Effects plots with model uncertainty 



1) Design of Experiments (DoE) 
 

http://www1.beuth-hochschule.de/FB_II/reports/welcome.htm  

Interaction plots 



1) Design of Experiments (DoE) 
 

http://www1.beuth-hochschule.de/FB_II/reports/welcome.htm  

 Comparing alternative 
 Egg from different supplier gives the 

same cake? 
 Significant inputs (Factors) 

 Sort the relevance of factors: is the 
amount of sugar more important than 
the amount of flower for the cake 
taste? 

 Optimal process output (Response) 
 What are the “best parameters” to 

have the tastiest cake. 
 Reducing variability (sensitivity analysis) 

 Which parameters can change slightly 
without changing the cake taste? 

 Target an output 
 Which parameters for, best taste, best 

color, best consistency? 
 Balancing tradeoffs 

 How to define optimum parameters to 
have the best taste at the best price 
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3a) Soft modelling versus hard modelling 
 

× 

Reaction Spectra Kinetic model 

PCA, EFA, 

MCR-ALS 

Species Spectra 

+ Residuals 

Soft 

Hard 

+ 
× 

Concentrations 

= 

Rate constants 

Activation energies 

Lambert-Beer 

Factor model 

Number of species 

Approx. conc. & spectra 

Soft modelling: first insight into the experimental data 
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3b) Beer’s law: Linear relationship between 
spectral absorbance and species concentrations 

 

• absorbance signal yλ [no unit] is linearly dependent on the 
concentrations cs [molL-1] of s=1…ns absorbing species, the 
corresponding coefficients are the molar absorptivities as,λ [Lmol-

1cm-1] and form the pure species spectra 

    





     

 

1 1, , ,
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s s

s

s s n n

n

s s
s

y c a c a c a l

c a l

 
0

log I
Iy


 

absorbance y at wavelength λ: 

Beer’s Law: 
Often: 
path length l =1cm 

I0,λ Iλ 

l 

cuvette 

path length 

input light 
intensity 

output light 
intensity 

Absorption of UV-vis and IR light: 
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3b) Nomenclature 

 But it is time to introduce some useful conventions for a 
scalar/vector/matrix notation: 
 

– matrices are given in boldface capital characters, e.g. Y 

– vectors are given in boldface lower case characters, e.g. y, this 
includes row or column vectors of a matrix Y, e.g. y2,: (2

nd row of Y), 
or y:,3 (3

rd column of Y)  

– scalars are given in italic characters, this includes the elements of a 
vector y or matrix Y, e.g. yi or yi,j 

 In some cases, it is very illustrative to write vector/matrix 
equations in a “line/box” notation, e.g.  

= 

y   = F  ×   a 

= 

y   = F r   

+ 

+ 
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3b) Beer’s law: Linear relationship between 
spectral absorbance and species concentrations 

 

nt 

ns 

ns 

Y C A 

× 

R 

+ = 

nλ nλ nλ 

nt 

ns 

ns 

y C a 

× 

r 

+ = 

• For time and/or wavelength resolved kinetic data, Beer’s law can be 
written in elegant vector (single wavelength) or matrix notation 
(multi wavelengths): 

,

1
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3b) Beer’s law: Linear relationship between 
spectral absorbance and species concentrations 

 

for example: a reaction ABC 
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3b) Beer’s law: Linear relationship between 
spectral absorbance and species concentrations 
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Goal: Find concentration profiles C and species spectra A such that 

the residuals R=Y-CA become small only using a ‘soft model’, i.e. by 

linear factorisation 

? 

e.g. ABC 

Problem: Factorisation is not unique (rotational ambiguity) 



3c) Soft modelling classes 
 

t 1 t

t t 1 +

Start from some guessed , 

then recalculate  and  until satisfied: 

       ( )

       ( )

 



 

 

C

A C

A C C C Y C Y

C YA AA YA

• By using appropriate ‘soft’ restrictions on C and A, e.g. non-negativity, windows of 
existence, closure, unimodality, known spectra, the number of possible solutions 
can be reduced, sometimes can even lead to a unique solution for C & A 

• There are 2 major classes 

1) Factor Analysis (AFA) based 

2) Alternating Least Squares (ALS) based 

1
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, and 
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3c) Principle component analysis 
 

 One very well defined solution is the one received from Abstract Factor 

Analysis (AFA) using Singular Value Decomposition (SVD) 

Y C 
A 

= = = Nt 

N 

U S V

N 
Nc N N N 

N US

N 

V

N 

N 

columns of U (rows of V) are eigenvectors of YYt (YtY)  

U  and Vt are orthonormal 

S is a diagonal matrix with the square root of their 
eigenvalues 

[U,S,Vt]=svd(Y,0); 

in Matlab: 
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3c) Principle component analysis 
 

PC1 

PC2 

Indeed very efficient tool for data compression and noise filtration (orthogonal noise is removed) 



3c) Principle component analysis 
 

 Eigenvectors in U (columns) and V (rows) are arranged in decreasing 

order of magnitude of their corresponding singular values in S 

 Many of them just represent ‘noise’ and can be neglected; the 

significant ‘factors’, the Principal Components, are retained in    and     

and form ‘abstract’ concentration profiles and spectra 

 The diagonal elements of   , the singular values, can be seen as 

normalisation coefficients for    or   

• The number of significant singular(eigen) values and –vectors is the 
 chemical rank of Y and a 1st estimate on the number of absorbing species 
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3c) Principle component analysis 
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3c) Chemical rank – number of absorbing species 

The noise level in the data matrix Y determines the drop in the magnitude 
from significant to insignificant singular values 

Y (Nt  N) log(si,i) vs i 

The rank of a matrix A is the size of the largest collection of linearly independent columns or 
rows of A.  

http://en.wikipedia.org/wiki/Matrix_(mathematics)
http://en.wikipedia.org/wiki/Linear_dependence
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3d) EFA: Chemical rank – number of absorbing species 
 

 the chemical rank of the spectral data matrix Y is determined by 

the number of its significant singular vectors  

 the number of significant singular vectors of Y is determined by 

the number of linearly independent columns or rows in the matrix 

of pure species spectra (A) and corresponding concentration 

profiles (C) 

 linear dependencies in C due to the kinetic model are common 

and sometimes difficult to predict (e.g. A+BC) 

 linear dependencies in A are less common 



3d) Evolving Factor Analysis (EFA) 

 sequential rank analysis of the data matrix along its time 

domain by repeated SVD 

 can be performed in a forward and backward way 

 indicates the rise of new singular vectors and thus gives an 

estimate for the appearance & disappearance of new 

absorbing species 

 ideally designed to follow chromatography experiments 

– species appear & disappear sequentially 

 capable of roughly following kinetic profiles 

– species can appear & dissappear simultaneously 

 



3d) Evolving Factor Analysis (EFA) 

Forward EFA 
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3d) Evolving Factor Analysis (EFA) 

Backward EFA 
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3d) Evolving Factor Analysis (EFA) 

Combined forward/backward EFA results can be 
used as reasonable initial guesses of 
concentration profiles for subsequent iterative 
refinement e.g. by ALS 

 

0 20 40 60 80 100
0

1

2
x 10

-3

c
o

n
c
.

0 20 40 60 80 100
-5

0

5

lo
g

(s
f)

0 20 40 60 80 100
-5

0

5

lo
g

(s
b
)

0 20 40 60 80 100
0

1

2

time

c
o

n
c
. 
w

in
d

o
w

Forward and backward EFA 



3) Table of content: Kinetic soft modelling methods  
 

3a) Soft modelling versus hard modelling 
 

3b) Absorption spectroscopy 
 

– Beer’s law in elegant matrix notation (Y = C  A) 
– Non-unique factorisation of Y / rotational ambiguity 
 

3c) Principal Component Analysis (PCA) 
 

– Abstract Factor analysis (AFA) by Singular Value Decomposition (SVD) 
– Chemical rank of the measurement matrix 
– The number of absorbing species  
 

3d) Evolving Factor Analysis (EFA) 
 

– Evolutionary rank analysis by repeated SVD of sub matrices of Y 
– The ‘Appearance’ & ‘Disappearance’ of absorbing species 
 

3e) Multivariate Curve Resolution by Alternating Least-Squares (MCR-ALS) 
 

– Model-free iterative decomposition of Y = C  A + R 
– Ideas, principles, limitations 



3e) Multivariate curve resolution by alternating least-squares (MCR-ALS) 

 Conceptually very 

simple 

 

 

http://www.mcrals.info/ 



3e) Multivariate curve resolution by alternating least-squares (MCR-ALS) 

end 

-R Y CA

ssqnew > = < ssqold 
do 

something 

> < 

= 

Initial guess for C  

C

A

A =    + Y 

Corrections to A       

C = Y Ã+ 

Corrections to C      

C



3e) Multivariate curve resolution by alternating least-squares (MCR-ALS) 

http://www.mcrals.info/ 



3e) Multivariate curve resolution by alternating least-squares (MCR-ALS) 

http://www.mcrals.info/ 



3e) Multivariate curve resolution by alternating least-squares (MCR-ALS) 

http://www.mcrals.info/ 



3e) Multivariate curve resolution by alternating least-squares (MCR-ALS) 

http://www.mcrals.info/ 



Conclusion: soft-modelling  

• Advantages 
– No prior knowledge on the chemical 

system required 
– Estimation of the number of linearly 

dependent absorbing species and their 
approximate evolution from PCA, EFA 
& ALS 

– Info for the development of a ‘hard’ 
model 

– ‘Better than nothing’ 
 

• Drawbacks 
– No physical model 
– No predictions for other exp. 

conditions possible 
– Uniqueness of the result is rarely given 

and difficult to validate 

MCR-ALS is a very nice software, I strongly recommend it. http://www.mcrals.info 
 
MCR-ALS becomes a very powerful method when multiple datasets are used. 

http://www.mcrals.info/
http://www.mcrals.info/
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4 Kinetic fitting of spectroscopic data with non-linear regression 

The objective of this section 
 

– to understand the underlying ideas and principles of the calibration-free 
modelling (fitting) of spectro-kinetic absorbance data 

– to apply these principles to kinetic problems using Matlab (or R) 

+=modelled modelled MeasuredA C Y

2
min -Measured modelled modelled

k
Y C A

MeasuredY

ModelledC

modelledA4b) 

4a) 

4c) 



4a) The rate law – modelling concentrations profiles 
 

C = f (kinetic model, parameters) 

rate law - initial concentrations 
- rate constants 
- activation energies 
- temperature 

 
rate  

d A t

dt  a
 

d B t

dt b


d C t

dt  c
 k A t

a
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The rate of a molecular reaction is defined by the derivative of the 
concentration of the reactants with respect to time normalised by the 
corresponding stoichiometric coefficient 

 aA bB
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4a) Kinetic model (Batch) 
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 rate
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1
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d D t
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 rate

2

Derivatives 

Except for some very simple cases there is no explicit solution for systems of kinetic 
ODEs  Numerical integration 
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4a) Kinetic model (semi-Batch) 
 

When species are dosed, the set of ODEs 
can be modified accordingly : 

Dosing requires some modifications to the ODEs for all species and the inclusion of 
an ODE for the change of volume due to the flow-rate 
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4a) Numerical integration of the rate law 
 

• Crude approach : Euler’s method (truncated Taylor series) 

 

 

 Applied to our specific example without dosing 

 

 

 

 

• Much more sophisticated integration methods exist, e.g. 
Matlab’s ‘ode45’, a 4th order Runge-Kutta with automatic 
stepsize control 
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4a) Numerical integration of the rate law 
 

• In stepsize controlled ODE solvers, the stepsize is adjusted at each 
step to meet the user-specified accuracy  

 

• The accuracy is measured with absolute (Matlab: AbsTol) and relative 
(Matlab: RelTol) tolerance’s values. 

 

• For some kinetic models, the concentration profiles change on  
dramatically different scales (stiff problem) and a stiff ODE solver 
(eg. Matlab’s ‘ode15s’) is required 



4a) Solving ODE’s with Matlab: Batch example 
 

% Mechanism : A+B>C, 2C>D (batch) 

t         = [0:0.01:2]';       % time vector (column) 

c0        = [1 1 0 0];         % initial concentrations (row) 

k         = [10; 5];           % rate constants (column) 

 

% call ODE solver for numerical integration of dC/dt 

odeoptions = odeset('RelTol',1e-10,'AbsTol',1e-12); 

[tout,C] = ode45('ode_ApBtoC_2CtoD_batch',t,c0',odeoptions,k); 

function cdot = ode_ApBtoC_2CtoD_batch(ti,ci,flag,k) 

% Mechanism : A+B>C, 2C>D (batch) 

 

% rate law 

rates(1)    = k(1)*ci(1)*ci(2); 

rates(2)    = k(2)*ci(3)*ci(3); 

 

% System of ODEs 

cdot(1,1)   = -rates(1);              % dA/dt 

cdot(2,1)   = -rates(1);              % dB/dt 

cdot(3,1)   =  rates(1) - 2*rates(2); % dC/dt 

cdot(4,1)   =  rates(2);              % dD/dt 

batch conditions 
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4a) Solving ODE’s with Matlab: semi-batch example 
 

function cdot = ode_ApBtoC_2CtoD_semi(ti,civi,flag,k,F,t,cdos) 

% Mechanism : A+B>C, 2C>D (semi batch) 

ci        = civi(1:end-1);           % concentration at time ti 

Vi        = civi(end);               % volume at time ti 

fi        = F(find(t<=ti,1,'last')); % flow-rate at time ti 

% rate law 

rates(1)  = k(1)*ci(1)*ci(2); 

rates(2)  = k(2)*ci(3)*ci(3); 

% System of ODEs 

cdot(1,1) = -rates(1)              + (fi/Vi)*(cdos(1)-ci(1)); % dA/dt 

cdot(2,1) = -rates(1)              + (fi/Vi)*(cdos(2)-ci(2)); % dB/dt 

cdot(3,1) =  rates(1) - 2*rates(2) + (fi/Vi)*(cdos(3)-ci(3)); % dC/dt 

cdot(4,1) =  rates(2)              + (fi/Vi)*(cdos(4)-ci(4)); % dD/dt 

cdot(5,1) =  fi;                                              % dV/dt 

semi-batch 
(A dosed) 

% Mechanism : A+B>C, 2C>D (semi batch) 

t     = [0:0.01:4]'; % time vector (column) 

c0    = [0 1 0 0];   % initial concentrations (row) 

k     = [10;5];      % rate constants (column) 

V0    =  0.020;      % initial volume [L] 

tdos  = [0.5 1];     % start and stop times of dosing (row) 

cdos  = [3 0 0 0];   % concentrations of dosed species (row) 

frate =  0.01;       % flow-rate [L/(unit of time)] 

F = flow(t,tdos,frate);  % generate vector F of flow-rates 

 

% call ODE solver for numerical integration of dC/t and dV/t 

odeoptions = odeset('RelTol',1e-10,'AbsTol',1e-12); 

[tout,CV]  = ode45('ode_ApBtoC_2CtoD_semi',t,[c0 V0]',odeoptions,k,F,t,cdos); 

% extract volume and concentration profiles from columns of matrix CV 

C = CV(:,1:end-1); V = CV(:,end); 
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4 Kinetic fitting of spectroscopic data with non-linear regression 

The objective of this section 
 

– to understand the underlying ideas and principles of the calibration-free 
modelling (fitting) of spectro-kinetic absorbance data 

– to apply these principles to kinetic problems using Matlab (or R) 

+=modelled modelled MeasuredA C Y

2
min -Measured modelled modelled

k
Y C A

MeasuredY

ModelledC

modelledA4b) 

4a) 

4c) 



4b) Selection of the objective function?  

Decision tree for the selection of an appropriate method for the kinetic hard‐modelling of spectroscopic data  



4b) the objective function 
 

Target: Find the least-squares minimum as a function of the rate constant(s), 
 the non-linear parameters 
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4b) Data fitting – a quick review of basic principles 

• The most widely used data fitting is the linear regression of a data 
vector y to a straight line (1st order polynomial) 

 As with all other regression methods the task is to minimise the 
least-squares sum ssq of all residuals ri between the data yi and the 
underlying model a1+a2xi by optimising the linear parameters 
defining the model, here slope a2 and intercept a1 

1 2,
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4b) Data fitting – a quick review of basic principles 

• But linear regression is much more than just straight line fitting. It 
also includes the fitting to polynomials of any other order or any 
other function that depends on linear parameters only. 

 For linear parameters, such as slope and intercept there is a non-
iterative solution, i.e. for m data points, a1 and a2 can be 
calculated explicitly: 

2

1 2 2

2 2 2

( )

( )

i i i i i
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i i

x y x x y
a

m x x
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   


  

 In order to find the “best” parameters a1 & a2, i.e. that lead to a 
minimal ssq the following two derivatives must be zero: 
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0
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4b) Data fitting – a quick review of basic principles 

 Linear relationships can be written much simpler in an elegant 
vector or matrix notation. The straight line regression problem is 
then denoted by: 

1 1 2 1 1

2 1 2 2 2

1 2

1 2

i i i

m m m

y a a x r

y a a x r

y a a x r

y a a x r

  

  

  

  

1 11

2 22

1

2

1

1

1

1

i ii

mm m

y rx

y rx

a

y rx a

xy r

    
    
    
      

       
     

    
    

        

( )  y F x a r

F(x) is the design matrix 
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4b) Data fitting – a quick review of basic principles 

 And the generalisation for any polynomial 
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4b) Beer’s law: Linear relationship between 
spectral absorbance and species concentrations 

 

• For a given multi wavelength kinetic measurement, Y, if the concentration 
profiles C are known the corresponding pure species spectra A can be 
determined by multivariate linear regression: 

  Y C A R is minimal 

(CtC)-1Ct is called the left pseudoinverse, C+,  of C 
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t 1 t( ) CA C C Y

 Analogously, if the pure species spectra A are known the corresponding 
concentration profiles C can also be determined by multivariate linear 
regression: 

  Y C A R is minimal 

At(AAt)-1 is called the right pseudoinverse, A+,  of A 

such that 

t t 1( ) A AAC Y
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Calibration with pure spectra and fitting C: 

Calibration free and fitting Y: 
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4b) Beer’s law: Linear relationship between 
spectral absorbance and species concentrations 

 

= x + 

2
min -Measured modelled

k
Y C A

function ( )=modelledC kfunction ( )Calibration =A θ

( )+= calibrationC YA             [1]+= modelledA C Y
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-
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With calibration Calibration free  

Objective function: 

Beer’s law in matrix notation 
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4 Kinetic fitting of spectroscopic data with non-linear regression 

The objective of this section 
 

– to understand the underlying ideas and principles of the calibration-free 
modelling (fitting) of spectro-kinetic absorbance data 

– to apply these principles to kinetic problems using Matlab (or R) 

+=modelled modelled MeasuredA C Y

2
min -Measured modelled modelled

k
Y C A

MeasuredY

ModelledC

modelledA4b) 

4a) 

4c) 



4c) Fitting of kinetics models to concentration profiles or absorbance data 
 

Sphere: 

Goldstein-Price: 

Easom: 

Eggholder: 

HölderTable: 

“Real case”: 

Global optimizer (Heuristic algoritm): 
 
 Evolutionary algorithm 
 Genetic algorithms (GA) 
 Simulated annealing (SA) 
 Tabu search 
 Memetic algorithm 
 Particle swarm optimization (PSO) 

Iterative (gradient based methods) 
 
 Sequential quadratic 

programming (SQP, Hessian ev.) 
 Quasi-Newton methods 
 Gradient descent 
 Simplex 
 Simultaneous perturbation 

stochastic approximation (SPSA) 
 



4c) Fitting of kinetics models to concentration profiles or absorbance data 
 

Global optimizer Ex. Particle Swarm Optimisation (PSO) 

https://www.youtube.com/watch?v=3CR5y8qZf0Y 



4c) Fitting of kinetics models to concentration profiles or absorbance data 
 

Iterative (gradient based methods) 
 

Newton-Gauss 
Steepest descent 

ssq(k0) 

Minimum ssq 
optimum k 

ssq 

k 

Taylor’s  
approximation 

(parabola) Minimum of the parabola 

Steepest direction 

Steepest  
direction 

Steepest  
direction 

Response 
surface 

ssq(k0+Δk) 



4c) Fitting of kinetics models to concentration profiles or absorbance data 
 

• To do so it is convenient to first vectorise the matrices of residuals R 

= C-Ccalc (fitting concentration data C) 

R=Y-Ycalc=Y-CcalcAcalc (fitting spectral data Y) 

 

VECTORISATION :  
R is unfolded into a ´long´ column vector r 

in Matlab: r=R(:) 

R 

VECTORISATIONnt 

ns 

(n ) 

r 

1 

ns (n ) × 

nt 

 It is possible to circumvent the calculation of 

and to develop the Taylor series for the residuals R 

Hessian  
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4c) Fitting of kinetics models to concentration profiles or absorbance data 
 

• Computationally easier and (almost) equivalent: The residuals are 
approximated by a Taylor series expansion truncated after the first 
derivative 

 
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

r k
r k k r k k

k

 ( )            r k J k r k k

thus: linear regression to minimize r(k+Δk) by optimising Δk for a given J  

rearrange for  r(k)  

   t 1 t = ( )      k J J J r k J r k The SHIFT VECTOR k is added to k for the next iteration 

 
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

r k
J

k

The Newton-Gauss algorithm  

requires the calculation of the Jacobian 

Jacobian J  

same structure as before in 
y = C×a + r, with  a = C+y = (CtC)-1Cty 

approx. Hessian H  

Matlab: Δk = -J \ r 



4c) Convergence criterion in Newton-Gauss algorithm 
 

The NG algorithm CONVERGES if the Taylor series expansion is a good 

approximation for the new residuals r(k+Δk), and the shift vector  

   t 1 t = ( )      k J J J r k J r k

leads to a better (smaller) least-squares sum ssq(k+Δk) than ssq(k) of the 

previous iteration or with the initial guess of k. 

Convergence criterion: “small” relative change of ssq (e.g. μ = 10-4) 
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4c) Convergence criterion in Newton-Gauss algorithm 
 

PROBLEM : The NG algorithm DIVERGES if the Taylor series expansion 

is not a good approximation for the residuals function 

(e.g. with poor initial guesses of k) 

SOLUTION : Do not use a Taylor series expansion but move in the 
direction of steepest descent 

 1 t    k H J r k Inverse Hessian method  
(Newton-Gauss) 

 t   k J r k steepest descent 

Is there a way to switch progressively  
from one method to the other ? 

 
    

1 tmp


      k H I J r k

Levenberg-Marquardt  
modification 

The Marquardt parameter (mp) is a scalar added 

to the diagonal elements of H to decrease its 

influence on k and shorten 

the magnitude of k 



4c) The Hessian (Evaluation of the error statistics) 
 

• With               ,   the shift vector Δk can be written as: 

 1 t  k H J r k

 1         
ssq

diag with
df

      k r r yH

tH J J

The Hessian H is a square matrix (nk × nk). It’s inverse is an 
estimate for the variance/covariance matrix for k ! 

The diagonal element(s) of the inverted Hessian 
allow the calculation of the standard error(s) σk 
for the rate constant(s) k: 

σr: standard deviation of the residuals r (R) 

σy: ´true´ standard deviation of the measurement Y (or C) 

df: degree of freedom, df = ntns – nk (C fitted), or df = ntnλ– nk – nsnλ(Y fitted)  
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4 Kinetic fitting of spectroscopic data with non-linear regression 

The objective of this section 
 

– to understand the underlying ideas and principles of the calibration-free 
modelling (fitting) of spectro-kinetic absorbance data 

– to apply these principles to kinetic problems using Matlab (or R) 

+=modelled modelled MeasuredA C Y

2
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k
Y C A

MeasuredY

ModelledC
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4c) 
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4 Kinetic fitting of spectroscopic data with non-linear regression 



4c) Kinetic modelling – Fitting spectra, Y 
 

semi-batch 
(A dosed) 

% load spectro-kinetic experimental data (Y,t,w,c0,V0,F,cdos) 

load('data_fit_CY.mat');  

% Initial guess for the rate constant(s) 

k0 = [7; 3] 

% Fitting of Y (optimization of k0) 

[k, ssq, Hessian, Ccalc, Acalc] =  

               nglm_Y('r_Ycalc', k0, t, c0, Y, cdos, V0, F);  

% Standard deviation on k 

df    = prod(size(Y)) - length(k0) – prod(size(Acalc)); 

sig_r = sqrt(ssq/df) 

sig_k = sig_r*sqrt(diag(inv(Hessian))) 

function [r, ssq, Ccalc, Acalc] = r_Ycalc(k, t, c0, Y, cdos, V0, F) 

odeoptions  = odeset('RelTol', 1e-10, 'AbsTol', 1e-12); 

[tdummy,CV] = ode45('ode_ApBtoC_2CtoD_semi', t, [c0 V0]', 

                     odeoptions, k, F, t, cdos); 

% Extraction of the concentration profiles 

Ccalc       = CV(:,1:end-1); 

Vcalc       = CV(:,end); 

% Calculation of Acalc 

Acalc       = Ccalc\Y; 

% Calculation of the residuals 

R           = Y – Ccalc*Acalc; 

% Vectorization 

r           = R(:); 

% Calculation of the sum of squares 

ssq         = sum(r.^2); 

k0 = 7 3 

 

it=0, k(1)=7,       k(2)=3,       ssq=8.1585 

it=1, k(1)=9.51204, k(2)=4.41167, ssq=7.97518 

it=2, k(1)=10.404, k(2)=4.84956, ssq=7.96041 

it=3, k(1)=10.463, k(2)=4.83658, ssq=7.9604 

 

sig_r = 0.01 

sig_k = 0.2664  0.1312 

Matlab output 

fitted vs ‘measured’ 
absorbances at selected 
wavelengths 

elimination of A 

  

A B
k

1  C

2C     
k

2  D



4d) How to select a kinetic model 
 

 Occam´s razor (lex parsimoniae) 
The principle states that among competing hypotheses, the one with the fewest 
assumptions should be selected. Other, more complicated solutions may 
ultimately prove correct, but—in the absence of certainty—the fewer 
assumptions that are made, the better. 

 

 Akaike information criterion (AIC) 
The AIC is a measure of the relative quality of a statistical model for a given set 
of data. As such, AIC provides a means for model selection. 

AIC = 2k – 2ln(L) 

where k is the number of parameters in the model, and L is the maximized value 
of the likelihood function for the model. 

Models with small AIC should be preferred.  

 

•  Bayesian information criterion (BIC)…and more 

 
 

 



Concluding remarks on hard modelling section 
 

 We “only” considered irreversible homogeneous solution 
chemistry & absorbance measurements but the principles can be 
extended to also deal with 
 

– instantaneous & kinetically observable equilibria 

– multiphasic transitions (e.g. surface catalysis, gas formation) 

– change of pH, ionic strength (activities), temperature 

– other data types (e.g. heat, pressure, pH, conductivity, particle size) 

 

 Generally, this “only” requires an adaptation of the differential 
equations defining the mass transfer and a reassignment of the 
signal(s) to be fitted and/or parameters to be optimised 
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 Framework  

Chemometric will support you for: 

• How to design/select the reactor/instrumentation? 
 
• How to do the experimental design? 
 
• How to “find” the correct kinetic model? 
 
• What to “fit” and how ? 
 
• How to determine the rate constant? 
 
• How to “fit” if “C” can not be isolated and unknown?  
 
• What about baseline drift, shift, noise level? 
 
• Finally, are my fitted parameters “correct” to which extends? 
 
• And we have to be quick to do all the above tasks 
 



Reading material – Thank you 

• Factor Analysis in Chemistry 

E.R. Malinowski, 3rd ed., Wiley, New York 2002 

• Practical Data Analysis in Chemistry 

M. Maeder, Y.M. Neuhold, Elsevier, Amsterdam 2007 

• Practical Guide to Chemometrics 

P. Gemperline (editor), 2nd ed., CRC Press, Boca Raton 2006 

• The Investigation of Organic Reactions and their Mechanisms 

H. Maskill (editor), Blackwell Publishing, Oxford 2006 

• Evolving factor analysis for the resolution of overlapping chromatographic peaks 

 M. Maeder, Anal. Chem. 59 (1987), 527-530 

• Nonlinear Least-Squares Fitting of Multivariate Absorption Data 

 M. Maeder, A. Zuberbühler. Anal. Chem. 62 (1990), 2220-2224 

• Analyses of 3-way data from equilibrium and kinetic investigations 

 R. Dyson , M. Maeder, Y.M. Neuhold, G. Puxty. Anal. Chim. Act. 490 (2003), 99-108 

• Empirical kinetic modelling of on-line simultaneous infrared and calorimetric measurement using a pareto 

optimal approach and multi-objective genetic algorithm 

 S.I. Gianoli, G. Puxty, U. Fischer, M. Maeder, K. Hungerbühler. Chemom. Int. Lab. Syst. 85 (2007), 47-62 

• Tutorial on the Fitting of Kinetic Models to Multivariate Spectroscopic Measurements with Non-Linear 

Regression 

 G. Puxty, M. Maeder, K. Hungerbühler. Chemom. Int. Lab. Syst. 81 (2006), 149-164 

• Data Oriented Process Development: Determination of Reaction Parameters by Small-Scale Calorimetry with 

in situ Spectroscopy 

 G. Puxty, U. Fischer, M. Jecklin, K. Hungerbühler. Chimia 60 (2006), 605-610 


